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Abstract

Deep learning models have demonstrated impressive capabilities in many settings in-
cluding computer vision, natural language generation, and speech processing. How-
ever, an important shortcoming of these models is that they often need to be trained
on large datasets in order to be most effective. In domains such as medicine, large
datasets are not always available, and thus there is a need for data-efficient models
that perform well even in limited data regimes. In this thesis, motivated by this
need, we present four contributions to data-efficient machine learning: (1) analyzing
and improving few-shot learning, where we study a popular few-shot learning algo-
rithm (Model Agnostic Meta-Learning) and provide insights as to why it is effective,
proposing a simplified version that offers substantial computational benefits; (2) im-
proving supervised learning on small clinical datasets of electrocardiograms (ECGs),
where we develop a new data augmentation strategy for ECGs that helps boost per-
formance on a range of predictive problems; (3) improving pre-training through the
use of nested optimization, introducing an efficient gradient based algorithm to jointly
optimize model parameters and pre-training algorithm design choices; and (4) devel-
oping a new self-supervised learning pipeline for complex clinical time series, where
the design of the pipeline is driven by the multimodal, multi-dimensional nature of
real-world clinical time series data. Unifying several of these contributions is the ap-
plication area of cardiovascular medicine, a setting in which machine learning has the
potential to improve patient care and outcomes.
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ture used to model trajectories in a scenario where the input trajectory has

3 timesteps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
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ing (SMD SSL), which uses losses at two levels to encourage effective

pre-training on complex time series. We start with a batch of trajectories,

each denoted 𝜏 , consisting of a static vector 𝑑 (not shown for clarity) and

a sequence of signals 𝑠𝑡 and structured data 𝑤𝑡 (sequence of length 2 here).

These data are augmented on a per-modality and per-timestep basis (arrows

show flow for the data at a single timestep) and passed through encoders 𝑓𝑠𝜃

and 𝑓𝑤,𝑑𝜃 to generate local embeddings of the signals and structured data at

each timestep. The signal embeddings pass through a projection head 𝑔𝑠𝜑,

after which we compute a component SSL loss ℒC. Separately, the embed-

ding of the entire trajectory (obtained by concatenating the per-modality

embeddings) is passed through a sequence model 𝑓 𝜏𝜃 and a global projection

head 𝑔𝜑, on which we compute the global SSL loss ℒG. The total loss ℒPT

is a weighted sum of the component and global losses. SMD SSL can be

instantiated with both contrastive and non-contrastive losses – shown here

is a contrastive framing (as in SimCLR) with explicit negative pairs. . . . 117

5-4 Studying sensitivity to the component loss weight. We find a higher

optimal component loss weight on Dataset 1 compared to Dataset 2, possibly

due to Dataset 1 having more complex signals. . . . . . . . . . . . . . . . 133
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5-5 Learned representations from SMD SSL are similar to both component-

only and global-only SSL. Comparing learned representations of the sig-

nals using different SimCLR-based SSL strategies – SMD SSL, Global, and

Component, using Centered Kernel Alignment (CKA). Global and Compo-

nent SSL show low representational similarity (right-most bar), but SMD

SSL shows higher similarity with both individually, suggesting that learned

representations in SMD SSL encode aspects of both component and global

SSL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A-1 Euclidean distance before and after finetuning for MiniImageNet.

We compute the average (across tasks) Euclidean distance between the

weights before and after inner loop adaptation, separately for different layers.

We observe that all layers except for the final layer show very little difference

before and after inner loop adaptation, suggesting significant feature reuse. 146
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A-2 Computing CCA similarity pre/post adaptation across different

random seeds further demonstrates that the inner loop doesn’t

change representations significantly. We compute CCA similarity of

𝐿1 from seed 1 and 𝐿2 from seed 2, varying whether we take the representa-

tion pre (before) adaptation or post (after) adaptation. To isolate the effect

of adaptation from inherent variation in the network representation across

seeds, we plot CCA similarity of of the representations before adaptation

against representations after adaptation in three different combinations: (i)

(𝐿1 pre, 𝐿2 pre) against (𝐿1 pre, 𝐿1 post), (ii) (𝐿1 pre, 𝐿2 pre) against (𝐿1

pre, 𝐿1 post) (iii) (𝐿1 pre, 𝐿2 pre) against (𝐿1 post, 𝐿2 post). We do this

separately across different random seeds and different layers. Then, we com-

pute a line of best fit, finding that in all three plots, it is almost identical to

𝑦 = 𝑥, demonstrating that the representation does not change significantly

pre/post adaptation. Furthermore a computation of the coefficient of deter-

mination 𝑅2 gives 𝑅2 ≈ 1, illustrating that the data is well explained by this

relation. In Figure A-3, we perform this comparison with CKA, observing

the same high level conclusions. . . . . . . . . . . . . . . . . . . . . . . 147
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There is more variation in the similarity scores, but we still see a strong
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representations do not change significantly over the inner loop. . . . . . . 148

A-4 Inner loop updates have little effect on learned representations

from early on in learning. We consider freezing and representational

similarity experiments for MiniImageNet-5way-1shot. We see that early on

in training (from as few as 10k iterations in), the inner loop updates have

little effect on the learned representations and features, and that removing

the inner loop updates for all layers but the head have little-to-no impact

on the validation set accuracy. . . . . . . . . . . . . . . . . . . . . . . . 149
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A-5 ANIL and MAML on MiniImageNet and Omniglot. Loss and ac-

curacy curves for ANIL and MAML on (i) MiniImageNet-5way-1shot (ii)

MiniImageNet-5way-5shot (iii) Omniglot-20way-1shot. These illustrate how

both algorithms learn very similarly over training. . . . . . . . . . . . . . 155
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the CCA similarity between an ANIL seed and a MAML seed, plotted against

(i) the MAML seed compared to a different MAML seed (ii) the ANIL seed

compared to a different ANIL seed. We observe a strong correlation of

similarity scores in both (i) and (ii). This tells us that (i) two MAML

representations vary about as much as MAML and ANIL representations

(ii) two ANIL representations vary about as much as MAML and ANIL

representations. In particular, this suggests that MAML and ANIL learn

similar features, despite having significant algorithmic differences. . . . . . 156
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B-6 TaskAug policy for detecting Right Ventricular Hypertrophy.

The learned TaskAug policy: probability of selecting each transfor-

mation in both augmentation stages and the optimized displacement

strengths in the first stage. We show the mean/standard error of the

learned parameter values over 15 runs. Temporal operations (mask-

ing and displacement) have a high probability of selection in Stage 1,

which is sensible since these operations are likely to be label preserving

(RVH is typically detected based on the relative magnitudes of portions

of beats in the ECG). We see that both positive and negative classes

have similar optimized displacement augmentation strengths – we do

not expect displacement to impact the class label differently for the

two classes, so this is sensible. . . . . . . . . . . . . . . . . . . . . . . 169

B-7 Studying performance when we do not optimize the policy param-

eters in TaskAug. We show the mean/standard error of AUROC over 15

runs for AFib and over 5 runs for MI. We see that optimizing the policy
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the policy parameters at their initial values (InitAugs). However, the impact

of optimizing the parameters is reduced at larger dataset sizes, possibly due

to the fact that augmentations are inherently less useful at higher sample

regimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B-8 Studying performance when we do not have class-specific magni-

tude parameters in TaskAug. We show the mean/standard error of AU-

ROC over 15 runs for AFib and over 5 runs for MI. Class-specific magnitude

parameters improve performance most in the low sample regime. At higher

samples, this impact is reduced, possibly due to the fact that augmentations

are inherently less useful at higher sample regimes. . . . . . . . . . . . . 171
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C-2 Comparing learned representations with different PT strategies using CKA

[101]. We obtain model representations before the final linear layer across

6400 FT data points, and then compute CKA between pairs of models

(averaging over different random initialisations). We observe that Meta-

Parameterized PT most closely resembles a combination of CoTrain + Learned

Weights and Supervised PT, which is sensible given that it blends aspects

of both approaches: meta-parameterized PT learns task weights to modu-

late the learned representations (as in CoTrain + Learned Weights), and

representations are adapted using the PT task alone (as in supervised PT).

Interestingly, CoTrain + PCGrad has comparatively little similarity to most
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to have more tasks downweighted (weights below 0.5) than the CoTrain

approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

C-4 Comparing performance on FT tasks with and without two different PT

strategies: standard supervised PT on the left, and meta-parameterized PT

on the right. We show the mean performance over 5 seeds on each of the 40

FT tasks without PT (x axis) and with PT (y axis). A small improvement

is observed in reduced negative transfer with Meta-Parameterized PT. . . 193
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⃒⃒⃒
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C-7 Sweeping over meta FT/FT data points and analyzing performance trends.

We observe that across various settings of FT data availability, a small

amount of MetaFT data can lead to significant performance improvements. 201
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Chapter 1

Introduction

In recent years, high-capacity neural network models have demonstrated impressive

capabilities in a diverse range of domains. This includes applications to image recog-

nition and generation [103, 30, 158], to natural language processing and generation

[141, 46, 25], and to speech recognition and generation [140, 209, 6].

Despite being effective for many problems, neural network models still suffer from

various shortcomings that preclude their widespread use in many domains. One

important challenge is that these models often need to be trained with large datasets

to be sufficiently performant, and in many domains, sufficiently large datasets are not

available.

The challenge of data scarcity — having only limited data with which to build

a machine learning (ML) model —- is particularly noticeable in ML applications in

medicine. For example:

1. Patients with a rare combination of phenotypes. Suppose we wish to

predict an outcome such as 1-year hospital readmission risk, for a patient with

a rare combination of phenotypes, e.g.: a 30 year old Asian patient with car-

diovascular disease, chronic kidney disease and a history of smoking. We might

have few other patients in our dataset that resemble this individual.

2. Predicting labels that are hard to measure. Suppose we wish to infer

a physiological quantity such as mean Pulmonary Capillary Wedge Pressure
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(mPCWP) from an electrocardiogram (ECG). To build a model for this prob-

lem, we require a dataset of (ECG, mPCWP) pairs. However, ground-truth

labels for mPCWP can only be obtained accurately through an invasive pro-

cedure. As a result, we only have small labelled datasets available for model

development.

Since large datasets are not available for many problems, there is an important

need for data-efficient ML models that perform effectively given only limited (labeled)

training data. This need directly motivates the work in this thesis, where we present

four contributions to data-efficient machine learning:

Understanding and Improving Few-Shot Learning (FSL) Algorithms (Chap-

ter 3). FSL is a popularly studied data-efficient learning paradigm. In FSL, at

training time, we are given many related tasks (e.g., multiple single 𝑁 -way classifi-

cation problem), and each task typically has limited labelled data (e.g., 1 labelled

example for each of the 𝑁 classes). The goal in FSL is to use these training tasks to

learn a predictive model that then generalizes effectively to new data-scarce tasks at

testing time.

One highly effective FSL algorithm is Model Agnostic Meta-Learning (MAML)

[55]. MAML incorporates a nested optimization approach to FSL, and has been a

widely used strategy, generating significant follow-on work [130, 57, 159, 83, 56, 66,

184]. Despite its successes, there remain fundamental open questions on MAML:

why is it performant, and what exactly does the nested optimization structure of the

algorithm achieve?

We address these questions, using tools from representation analysis of neural

networks. Through a systematic empirical investigation, we discover that the effec-

tiveness of MAML is mostly due to a paradigm we call feature reuse. Based on this

observation, we formulate a simplified version of the MAML algorithm, demonstrating

that it performs almost identically to the original MAML algorithm on benchmark

few-shot classification and reinforcement learning tasks. Importantly, our simplified

algorithm offers significant computational benefits over MAML.
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Data Augmentation for Supervised Learning on Electrocardiograms (Chap-

ter 4). Data augmentation during training [74, 197, 168, 88, 43, 44] is a useful

strategy to improve the predictive performance of supervised learning models in data-

scarce regimes – effectively increasing the size of the training dataset. However, ex-

isting data augmentation strategies are not well-suited to electrocardiogram (ECG)

data, an important data modality used by clinicians to diagnose and monitor vari-

ous cardiovascular conditions [160, 54, 24]. The main challenge with applying data

augmentations to ECGs is that no single augmentation strategy is suitable for all

ECG predictive tasks – the effect of augmentations on model performance is highly

task-dependent.

This chapter outlines a novel parametric data augmentation strategy for ECGs,

TaskAug, which addresses limitations of current ECG data augmentation approaches

by defining a flexible augmentation policy that is learned on a per-task basis. We

present an algorithm to efficiently optimize the parameters of TaskAug, leveraging

recent work in nested optimization and implicit differentiation [113]. In an empirical

study (across three datasets and eight predictive tasks) of TaskAug and other aug-

mentation strategies, we find that TaskAug is competitive with or improves on other

methods for all problems we examined.

Nested Optimization for Improved Pre-Training. Pre-training (PT) followed

by fine-tuning (FT) is a popular and effective paradigm for training neural network

models in data-scarce regimes [50, 167, 60, 82, 141, 46, 102, 207, 100, 84]. It is typically

used when we want to build a predictive model for a task with limited labeled data

(the fine-tuning task), but have access to a large, related dataset (the pre-training

dataset). A model is learned in two phases: the model parameters are first optimized

using the large pre-training dataset, and then refined from that initialization using

the fine-tuning dataset.

A challenge with this paradigm is that the PT algorithms include high-dimensional,

complex PT meta-parameters, e.g. parameterized data augmentation policies or task

weights [30, 74, 201]. These meta-parameters can significantly affect the quality of
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pre-trained models and the pre-trained model’s suitability for fine-FT [30], and thus

finding techniques to set their values optimally is important. However, optimizing PT

meta-parameters is challenging, and existing methods to do so (e.g., random search,

grid search, Bayesian optimization) are computationally expensive.

We outline a new, scalable gradient-based PT algorithm that jointly optimizes

PT meta-parameters and model parameters over a single PT run. The core com-

ponent of our algorithm is a gradient estimator that efficiently approximates PT

meta-parameter gradients through the two stages of optimization (PT & FT), com-

posing a constant-memory implicit differentiation approximation for the longer PT

stage and exact backpropagation through training for the shorter FT stage.

In experiments, we demonstrate that using our algorithm for PT results in im-

proved performance after FT when compared to various baselines in two settings:

multitask PT on biological graph-structured data, and self-supervised PT on ECG

data.

Self-Supervised Learning for Complex Clinical Time-Series (Chapter 5).

Self-supervised learning (SSL) is a widely used approach for pre-training neural net-

works on unlabelled datasets prior to fine-tuning on downstream tasks with lim-

ited labelled data [30, 76, 14]. Significant prior work has applied self-supervised

pre-training methods to clinical time-series data from the intensive care unit (ICU)

[120, 195, 182, 204]. This is an ideal application for SSL since patients are closely

monitored and generate a profusion of rich, unlabelled time-series data.

Although these works develop effective SSL strategies for clinical time series, they

are designed for unimodal time series alone, such as a sequence of structured features

(e.g., lab values and vitals signs) or an individual high-dimensional physiological

signal (e.g., an electrocardiogram). These methods cannot be readily extended to

model time series that exhibit multimodality — a common occurrence in real-world

clinical datasets — where structured features and high-dimensional data are recorded

at each timestep in the sequence.

We tackle this gap, and outline a novel SSL pipeline for these complex, multimodal
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clinical time-series. Key to our method is a multiscale loss function, involving an SSL

loss applied both at the level of the entire sequence and at the level of the individual

high-dimensional data points in the sequence. This allows us to capture information

at both scales. Experimental evaluation on two clinical datasets indicates that our

approach outperforms various baselines.

In addition to the unifying theme of more data-efficient machine learning, there

are two other themes that tie together subsets of these contributions:

1. Nested Optimization. Chapters 2, 3, and 4 all involve the use of nested opti-

mization algorithms. In Chapter 2, we outline a simplified nested optimization

algorithm for FSL, based on MAML (itself a nested optimization algorithm).

In Chapter 3, our algorithm to learn TaskAug parameters leverages recent work

in hyperparameter learning via nested optimization [113]. In Chapter 4, we

propose a new nested optimization algorithm for learning PT meta-parameters.

2. Applications to Cardiovascular Medicine. A major motivating application

area for the work in this thesis is cardiovascular medicine, since cardiovascular

disease is a major cause of mortality and morbidity worldwide [21]. ML methods

have shown promise in assisting with the diagnosis and monitoring of patients

with cardiovascular disease [152].

In Chapter 3, the data augmentation approaches are developed for various ECG

predictive problems. ECGs are of great utility to clinicians in diagnosing and

monitoring various cardiovascular conditions [160, 54, 24], and significant re-

cent work has studied using neural networks to predict cardiac abnormalities,

diseases, and outcomes directly from ECGs [70, 152, 63, 47, 98, 142]. In Chap-

ter 4, we evaluate our algorithm on the task of detecting cardiac abnormalities

from the ECG. In Chapter 5, we develop our SSL approach for multimodal time

series from patients with cardiovascular disease, focusing on a task of clinical

interest. In Appendix E, we outline another contribution that is focused on this

application domain, in which we train a neural network model to assist with
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the non-invasive monitoring of patients with heart failure, by detecting when

a patient’s mean Pulmonary Capillary Wedge Pressure is elevated. Since this

contribution does not directly relate to data-efficient ML, we defer it to the

appendix.

The rest of this thesis is structured as follows. Chapters 2-5 discuss each of these

contributions in more detail, and Chapter 6 discusses the overall findings and potential

future directions from this work.

42



Chapter 2

Understanding and Improving

Few-Shot Learning Algorithms

2.1 Introduction

A central problem in data-efficient machine learning is few-shot learning, where new

tasks are learned with a small number of labelled datapoints. A significant body of

work has looked at tackling this challenge using meta-learning approaches [99, 189,

172, 55, 161, 155, 130]. Broadly speaking, these approaches define a family of tasks,

some of which are used for training and others solely for evaluation. A meta-learning

algorithm looks at learning properties that generalize across the different training

tasks, and result in fast and efficient learning of the evaluation tasks.

One highly successful meta-learning algorithm is Model Agnostic Meta-Learning

(MAML) [55]. At a high level, the MAML algorithm is comprised of two optimiza-

tion loops. The outer loop (in the spirit of meta-learning) aims to find an effective

meta-initialization, from which the inner loop can perform efficient adaptation – op-

timize parameters to solve new tasks with few labelled examples. This algorithm,

with deep neural networks as the underlying model, has been highly influential, with

significant follow on work, such as first order variants [130], probabilistic extensions

[57], augmentation with generative modelling [159], and others [83, 56, 66, 184].

Despite the popularity of MAML, and the numerous followups and extensions,
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there remains a fundamental open question on the basic algorithm. Does the meta-

initialization learned by the outer loop result in rapid learning on unseen test tasks

(efficient but significant changes in the representations) or is the success primarily

due to feature reuse (with the meta-initialization already providing high quality rep-

resentations)? In this chapter, we explore this question and its consequences. Our

main contributions are:

• We perform layer freezing experiments and latent representational analysis of

MAML, finding that feature reuse is the predominant reason for efficient learn-

ing.

• Based on these results, we propose the ANIL (Almost No Inner Loop) algorithm,

a significant simplification to MAML that removes the inner loop updates for

all but the head (final layer) of a neural network during training and infer-

ence. ANIL performs identically to MAML on standard benchmark few-shot

classification and RL tasks, and offers computational benefits over MAML.

• We study the effect of the head of the network, finding that once training

is complete, the head can be removed, and the representations can be used

without adaptation to perform unseen tasks, which we call the No Inner Loop

(NIL) algorithm.

• We study different training regimes, e.g. multiclass classification, multitask

learning, etc, and find that the task specificity of MAML/ANIL at training

appears to facilitate the learning of better features. We also find that multi-

task training, a popular baseline with no task specificity, performs worse than

random features in the few-shot learning setup.

• We discuss rapid learning and feature reuse in the context of other meta-learning

approaches.

44



2.2 Related Work

MAML [55] is a highly popular meta-learning algorithm for few-shot learning, achiev-

ing competitive performance on benchmark few-shot learning problems [99, 189, 172,

161, 155, 130]. It is part of the family of optimization-based meta-learning algo-

rithms, with other members of this family presenting variations around how to learn

the weights of the task-specific classifier. For example [105, 64, 23, 104, 210] first learn

functions to embed the support set and target examples of a few-shot learning task,

before using the test support set to learn task specific weights to use on the embedded

target examples. [71] proceeds similarly, using a Bayesian approach. The method of

[13] explores a related approach, focusing on applications in text classification.

Of these optimization-based meta-learning algorithms, MAML has been especially

influential, inspiring numerous direct extensions in recent literature [3, 57, 66, 159].

Most of these extensions critically rely on the core structure of the MAML algorithm,

incorporating an outer loop (for meta-training), and an inner loop (for task-specific

adaptation). There is little prior work analyzing why this central part of the MAML

algorithm is practically successful. In this chapter, we focus on this foundational

question, examining how and why MAML leads to effective few-shot learning. To

do this, we utilize analytical tools such as Canonical Correlation Analysis (CCA)

[150, 124] and Centered Kernel Alignment (CKA) [101] to study the neural network

representations learned with the MAML algorithm, which also demonstrates MAML’s

ability to learn effective features for few-shot learning.

Insights from this analysis lead to a simplified algorithm, ANIL, which almost

completely removes the inner optimization loop with no reduction in performance.

Prior works [211, 91] have proposed algorithms where some parameters are only up-

dated in the outer loop and others only in the inner loop. However, these works are

motivated by different questions, such as improving MAML’s performance or learning

better representations, rather than conducting an analysis of the MAML algorithm

and studying this core question of rapid learning vs feature reuse.
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Figure 2-1: Rapid learning and feature reuse paradigms. In Rapid Learning, outer
loop training leads to a parameter setting that is well-conditioned for fast learning, and
inner loop updates result in task specialization. In Feature Reuse, the outer loop leads
to parameter values corresponding to reusable features, from which the parameters do not
move significantly in the inner loop.

2.3 MAML, Rapid Learning, and Feature Reuse

Our goal is to understand whether the MAML algorithm efficiently solves new tasks

through predominantly rapid learning or feature reuse. In rapid learning, large rep-

resentational and parameter changes occur during adaptation to each new task as

a result of favorable weight conditioning from the meta-initialization. In feature

reuse, the meta-initialization already contains highly useful features that can mostly

be reused as is for new tasks, so little task-specific adaptation o the representation

occurs. Figure 2-1 shows a schematic of these two paradigms.

We start off by overviewing the details of the MAML algorithm, and then we

study the rapid learning vs feature reuse question via layer freezing experiments and

analyzing latent representations of models trained with MAML. The results strongly

support feature reuse as the predominant factor behind MAML’s success. In Sec-

tion 2.4, we explore the consequences of this, providing a significant simplification

of MAML, the ANIL algorithm, and in Section 2.6, we outline the connections to

meta-learning more broadly.
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2.3.1 Overview of MAML

The MAML algorithm finds an initialization for a neural network so that new tasks

can be learnt with very few examples (𝑘 examples from each class for 𝑘-shot learning)

via two optimization loops:

• Outer Loop: Updates the initialization of the neural network parameters (of-

ten called the meta-initialization) to a setting that enables fast adaptation to

new tasks.

• Inner Loop: Performs adaptation: takes the outer loop initialization, and,

separately for each task, performs a few gradient updates over the 𝑘 labelled

examples (the support set) provided for adaptation.

More formally, we first define our base model to be a neural network with meta-

initialization parameters 𝜃; let this be represented by 𝑓𝜃. We have have a distribution

𝒟 over tasks, and draw a batch {𝑇1, ..., 𝑇𝐵} of 𝐵 distinct tasks from 𝒟. For each task

𝑇𝑏, we have a support set of examples 𝒮𝑇𝑏 , which are used for inner loop updates, and

a target set of examples 𝒵𝑇𝑏 , which are used for outer loop updates. Let 𝜃(𝑏)𝑖 signify

𝜃 after 𝑖 gradient updates for task 𝑇𝑏, and let 𝜃(𝑏)0 = 𝜃. In the inner loop, during each

update, we compute

𝜃(𝑏)𝑚 = 𝜃
(𝑏)
𝑚−1 − 𝛼∇𝜃

(𝑏)
𝑚−1
ℒ𝑆𝑇𝑏

(𝑓
𝜃
(𝑏)
𝑚−1(𝜃)

) (1)

for 𝑚 fixed across all tasks, where ℒ𝑆𝑇𝑏
(𝑓
𝜃
(𝑏)
𝑚−1(𝜃)

) is the loss on the support set of 𝑇𝑏

after 𝑚− 1 inner loop updates.

We then define the meta-loss as

ℒ𝑚𝑒𝑡𝑎(𝜃) =
𝐵∑︁
𝑏=1

ℒ𝒵𝑇𝑏
(𝑓
𝜃
(𝑏)
𝑚 (𝜃)

)

where ℒ𝑍𝑇𝑏
(𝑓
𝜃
(𝑏)
𝑚 (𝜃)

) is the loss on the target set of 𝑇𝑏 after 𝑚 inner loop updates,

making clear the dependence of 𝑓
𝜃
(𝑏)
𝑚

on 𝜃. The outer optimization loop then updates
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𝜃 as

𝜃 = 𝜃 − 𝜂∇𝜃ℒ𝑚𝑒𝑡𝑎(𝜃)

At test time, we draw unseen tasks {𝑇 (𝑡𝑒𝑠𝑡)
1 , ..., 𝑇

(𝑡𝑒𝑠𝑡)
𝑛 } from the task distribution,

and evaluate the loss and accuracy on 𝒵
𝑇

(𝑡𝑒𝑠𝑡)
𝑖

after inner loop adaptation using 𝒮
𝑇

(𝑡𝑒𝑠𝑡)
𝑖

(e.g. loss is ℒ𝒵
𝑇
(𝑡𝑒𝑠𝑡)
𝑖

(︁
𝑓
𝜃
(𝑖)
𝑚 (𝜃)

)︁
).

2.3.2 Rapid Learning or Feature Reuse?

We now turn our attention to the key question: Is MAML’s efficacy predominantly

due to rapid learning or to feature reuse? In investigating this question, there is an

important distinction between the head (final layer) of the network and the earlier

layers (the body of the network). In each few-shot learning task, there is a different

alignment between the output neurons and classes. For instance, in task 𝒯1, the (wlog)

five output neurons might correspond, in order, to the classes (dog, cat, frog, cupcake,

phone), while for a different task, 𝒯2, they might correspond, in order, to (airplane,

frog, boat, car, pumpkin). This means that the head must necessarily change for each

task to learn the new alignment, and for the rapid learning vs feature reuse question,

we are primarily interested in the behavior of the body of the network. We return to

this in more detail in Section 2.5, where we present an algorithm (NIL) that does not

use a head at test time.

To study rapid learning vs feature reuse in the network body, we perform two

sets of experiments: (1) We evaluate few-shot learning performance when freezing

parameters after MAML training, without test time inner loop adaptation; (2) We

use representational similarity tools to directly analyze how much the network fea-

tures and representations change through the inner loop. We use the MiniImageNet

dataset, a popular standard benchmark for few-shot learning 1, and with the standard

convolutional architecture in [55]. Results are averaged over three random seeds. Full

implementation details are in Appendix A.2.

1MiniImageNet is a more diverse few-shot classification benchmark than the other dataset we
examine in this chapter, Omniglot, and therefore we focus on MiniImageNet in these experiments.
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Table 2.1: Freezing successive layers (preventing inner loop adaptation) mini-
mally affects accuracy, supporting feature reuse as the dominant mode of op-
eration. To test the amount of feature reuse happening in the inner loop adaptation, we
test the accuracy of the model when we freeze (prevent inner loop adaptation) a contiguous
block of layers at test time. We find that freezing even all four convolutional layers of the
network (all layers except the network head) minimally affects accuracy. This supports the
feature reuse hypothesis: layers do not have to change rapidly at adaptation time, since they
already contain effective features from the meta-initialization.

Freeze layers MiniImageNet-5way-1shot MiniImageNet-5way-5shot

None 46.9 ± 0.2 63.1 ± 0.4
1 46.5 ± 0.3 63.0 ± 0.6

1,2 46.4 ± 0.4 62.6 ± 0.6
1,2,3 46.3 ± 0.4 61.2 ± 0.5

1,2,3,4 46.3 ± 0.4 61.0 ± 0.6

Freezing Layer Representations

To study the impact of the inner loop adaptation, we freeze a contiguous subset of

layers of the network, during the inner loop at test time (after using the standard

MAML algorithm, incorporating both optimization loops, for training). In particular,

the frozen layers are not updated at all to the test time task, and must reuse the

features learned by the meta-initialization that the outer loop converges to. We

compare the few-shot learning accuracy when freezing to the accuracy when allowing

inner loop adaptation.

Results are shown in Table 2.1. We observe that even when freezing all layers

in the network body, performance changes quite minimally. This suggests that the

meta-initialization has already learned good enough features that can be reused as

is, without needing to perform any rapid learning for each test time task. One ob-

servation is that we a slight performance difference in the 5shot experiments. This is

likely because the support set in the 5shot experiments is larger, allowing for more

extensive adaptation of layers in the inner loop. However, the overall performance

difference is small.
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Representational Similarity Experiments

We next study how much the latent representations (the latent functions) learned

by the neural network change during the inner loop adaptation phase. Following

several recent works [150, 162, 124, 117, 151, 65, 16] we measure this by applying

Canonical Correlation Analysis (CCA) to the latent representations of the network.

CCA provides a way to the compare representations of two (latent) layers 𝐿1, 𝐿2 of

a neural network, outputting a similarity score between 0 (not similar at all) and 1

(identical). For full details, see [150, 124]. In our analysis, we take 𝐿1 to be a layer

before the inner loop adaptation steps, and 𝐿2 after the inner loop adaptation steps.

We compute CCA similarity between 𝐿1, 𝐿2, averaging the similarity score across

different random seeds of the model and different test time tasks. Full details are in

Appendix A.2.2

The result is shown in Figure 2-2, left pane. Representations in the body of the

network (the convolutional layers) are highly similar, with CCA similarity scores of

> 0.9, indicating that the inner loop induces little to no functional change. By con-

trast, the head of the network, which does change significantly in the inner loop, has

a CCA similarity of less than 0.5. To further validate this, we also compute CKA

(Centered Kernel Alignment) [101] (Figure 2-2 right), another similarity metric for

neural network representations, which illustrates the same pattern. These represen-

tational analysis results strongly support the feature reuse hypothesis, with further

results in the Appendix, Sections A.2.3 and A.2.4 providing yet more evidence.

Feature Reuse Happens Early in Learning

Having observed that the inner loop does not significantly affect the learned repre-

sentations with a fully trained model, we extend our analysis to see whether the inner

loop affects representations and features earlier on in training. We take MAML mod-

els at 10000, 20000, and 30000 iterations into training, perform freezing experiments

(as in Section 2.3.2) and representational similarity experiments (as in Section 2.3.2).
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Figure 2-2: High CCA/CKA similarity between representations before and after
adaptation for all layers except the head. We compute CCA/CKA similarity between
the representation of a layer before the inner loop adaptation and after adaptation. We
observe that for all layers except the head, the CCA/CKA similarity is almost 1, indicating
perfect similarity. This suggests that these layers do not change much during adaptation,
but mostly perform feature reuse. Note that there is a slight dip in similarity in the higher
conv layers (e.g. conv3, conv4); this is likely because the slight representational differences
in conv1, conv2 have a compounding effect on the representations of conv3, conv4. The
head of the network must change significantly during adaptation, and this is reflected in the
much lower CCA/CKA similarity.

Results in Figure 2-3 demonstrate that feature reuse dominates from early in

training. The CCA similarity between activations pre and post inner loop update on

MiniImageNet-5way-5shot are high for the body (just like Figure 2-2), and, similar

to Table 2.1, test accuracy remains approximately the same when freezing contiguous

subsets of layers. This indicates that even early on in training, significant feature reuse

is taking place, with the inner loop having little effect on learned representations.

Results for 1shot MiniImageNet are in Appendix A.2.5, and show similar trends.

2.4 The ANIL (Almost No Inner Loop) Algorithm

In the previous section we saw that for all layers except the head of the neural network,

the meta-initialization learned by the outer loop of MAML results in effective learned

parameters that can be reused as is on new tasks. Inner loop adaptation does not

significantly change the representations of these layers, even from early on in training.

This suggests a natural simplification of the MAML algorithm: the ANIL (Almost
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Figure 2-3: Inner loop updates have little effect on learned representations from
early on in learning. Left pane: we freeze contiguous blocks of layers (no adaptation at
test time), on MiniImageNet-5way-5shot and see almost identical performance. Right pane:
representations of all layers except the head are highly similar pre/post adaptation – i.e.
features are being reused. This is true from early (iteration 10000) in training.

No Inner Loop) algorithm.

In ANIL, during training and testing, we remove the inner loop updates for the

network body, and apply inner loop adaptation only to the head. The head requires

the inner loop to allow it to align to the different classes in each task. In Section 2.5.1

we consider another variant, the NIL (No Inner Loop) algorithm, that removes the

head entirely at test time, and uses learned features and cosine similarity to perform

effective classification, thus avoiding inner loop updates altogether.

For the ANIL algorithm, let 𝜃 = (𝜃1, ..., 𝜃𝑙) be the (meta-initialization) parameters

for the 𝑙 layers of the network. Following the notation of Section 2.3.1, let 𝜃(𝑏)𝑚 be the

parameters after 𝑚 inner gradient updates for task 𝒯𝑏. In ANIL, we have that:

𝜃(𝑏)𝑚 =
(︁
𝜃1, . . . , (𝜃𝑙)

(𝑏)
𝑚−1 − 𝛼∇(𝜃𝑙)

(𝑏)
𝑚−1
ℒ𝑆𝑏

(𝑓
𝜃
(𝑏)
𝑚−1

)
)︁

, i.e., only the final layer gets the inner loop updates. As before, we then define the

meta-loss, and compute the outer loop gradient update. Note that this is distinct to

the freezing experiments, where we only removed the inner loop at inference time.

Figure 2-4 presents the difference between MAML and ANIL, and Appendix A.3.1

considers a simple example of the gradient update in ANIL, showing how the ANIL

update differs from MAML.
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Figure 2-4: Schematic of MAML and ANIL algorithms. The difference between
the MAML and ANIL algorithms: in MAML (left), the inner loop (task-specific) gradient
updates are applied to all parameters 𝜃, which are initialized with the meta-initialization
from the outer loop. In ANIL (right), only the parameters corresponding to the network
head 𝜃ℎ𝑒𝑎𝑑 are updated by the inner loop, during training and testing.

Results of ANIL on Standard Benchmarks: We evaluate ANIL on few-shot

image classification and RL benchmarks, using the same model architectures as the

original MAML authors, for both supervised learning and RL. Further implementa-

tion details are in Appendix A.3.4. The results in Table 2.2 (mean and standard

deviation of performance over three random initializations) show that ANIL matches

the performance of MAML on both few-shot classification (accuracy) and RL (aver-

age return, the higher the better), demonstrating that the inner loop adaptation of

the body is not required for learning good features.

Computational benefit of ANIL: Since ANIL almost has no inner loop, it sig-

nificantly speeds up both training and inference. Table 2.3 shows results from a

comparison of the computation time for MAML, First Order MAML, and ANIL,

during training and inference, with the TensorFlow implementation described previ-

ously, on both MiniImageNet domains. These results are average time for executing

forward and backward passes during training (above) and a forward pass during in-

ference (bottom), for a task batch size of 1, and a target set size of 1. Results are

averaged over 2000 such batches. Speedup is calculated relative to MAML’s execution

time. Each batches’ images were loaded into memory before running the TensorFlow
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Table 2.2: ANIL matches the performance of MAML on few-shot image classi-
fication (top) and reinforcement learning (bottom). We evaluate MAML and ANIL
on both few-shot image classification benchmarks (top table) and few-shot reinforcement
learning (RL) benchmarks (bottom table). For image classification, we report mean and
standard deviation of accuracy over three random initializations, and for RL, we report the
mean and standard deviation of the return (a commonly used metric) over three random
initializations. We find that MAML and ANIL have comparable performance on both classes
of benchmarks.

Method Omniglot-20way-1shot Omniglot-20way-5shot MiniImageNet-5way-1shot MiniImageNet-5way-5shot

MAML 93.7 ± 0.7 96.4 ± 0.1 46.9 ± 0.2 63.1 ± 0.4
ANIL 96.2 ± 0.5 98.0 ± 0.3 46.7 ± 0.4 61.5 ± 0.5

Method HalfCheetah-Direction HalfCheetah-Velocity 2D-Navigation

MAML 170.4 ± 21.0 -139.0 ± 18.9 -20.3 ± 3.2
ANIL 363.2 ± 14.8 -120.9 ± 6.3 -20.1 ± 2.3

computation graph, to ensure that data loading time was not captured in the timing.

Experiments were run on a single NVIDIA Titan-Xp GPU.

During training, we see that ANIL is as fast as First Order MAML (which does

not compute second order terms during training), and about 1.7x as fast as MAML.

This leads to a significant overall training speedup, especially when coupled with the

fact that the rate of learning for ANIL and MAML is very similar; see learning curves

in Figure 2-5. Note that unlike First Order MAML, ANIL also performs comparably

to MAML on benchmark tasks (on some tasks, First Order MAML performs worse

[55]). During inference, ANIL achieves over a 4x speedup over MAML (and thus

also 4x over First Order MAML, which is identical to MAML at inference time).

Both training and inference speedups illustrate the significant computational benefit

of ANIL over MAML.

MAML and ANIL Models Show Similar Behavior: MAML and ANIL per-

form almost equally well on few-shot learning benchmarks, illustrating that removing

the inner loop during training does not hinder performance. To study the behavior

of MAML and ANIL models further, we plot learning curves for both algorithms on

MiniImageNet-5way-5shot, Figure 2-5. We see that loss and accuracy for both algo-

rithms look similar throughout training. We also look at CCA and CKA scores of the
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Table 2.3: ANIL offers significant computational speedup over MAML, during
both training and inference. Table comparing execution times and speedups of MAML,
First Order MAML, and ANIL during training (above) and inference (below) on MiniIma-
geNet domains. Speedup is calculated relative to MAML’s execution time.

Training: 5way-1shot Training: 5way-5shot
Mean (s) Median (s) Speedup Mean (s) Median (s) Speedup

MAML 0.15 0.13 1 0.68 0.67 1
First Order MAML 0.089 0.083 1.69 0.40 0.39 1.7

ANIL 0.084 0.072 1.79 0.37 0.36 1.84

Inference: 5way-1shot Inference: 5way-5shot
Mean (s) Median (s) Speedup Mean (s) Median (s) Speedup

MAML 0.083 0.078 1 0.37 0.36 1
ANIL 0.020 0.017 4.15 0.076 0.071 4.87

Table 2.4: MAML and ANIL models learn comparable representations. Com-
paring CCA/CKA similarity scores of the of MAML-ANIL representations (averaged over
network body), and MAML-MAML and ANIL-ANIL similarity scores (across different ran-
dom seeds) shows algorithmic differences between MAML/ANIL do not result in vastly
different types of features learned.

Model Pair CCA Similarity CKA Similarity

MAML-MAML 0.51 0.83
ANIL-ANIL 0.51 0.86

ANIL-MAML 0.50 0.83

representations learned by both algorithms, Table 2.4. We observe that MAML-ANIL

representations have the same average similarity scores as MAML-MAML and ANIL-

ANIL representations, suggesting the algorithms learn comparable features. Further

learning curves and representational similarity results are presented in Appendices

A.3.2 and A.3.3.

2.5 Contributions of the Network Head and Body

So far, we have seen that MAML predominantly relies on feature reuse, with the

network body (all layers except the last layer) already containing good features at

meta-initialization. We also observe that such features can be learned without inner

loop adaptation during training (ANIL algorithm). The head, however, requires inner
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Figure 2-5: MAML and ANIL learn at similar rates. Loss and accuracy curves
for MAML and ANIL on MiniImageNet-5way-5shot, illustrating how MAML and
ANIL behave similarly through the training process.

loop adaptation to enable task specificity.

In this section, we explore the contributions of the network head and body. We

first ask: How important is the head at test time, when good features have already been

learned? Motivating this question is that the features in the body of the network

needed no adaptation at inference time, so perhaps they are themselves sufficient

to perform classification, with no head. In Section 2.5.1, we find that test time

performance is largely determined by the quality of these representations, and we

can use similarity of the frozen meta-initialization representations to perform unseen

tasks, removing the head entirely. We call this the NIL (No Inner Loop) algorithm.

Given this result, we next study how useful the head is at training (in ensur-

ing the network body learns good features). We look at multiple different training

regimes (some without the head) for the network body, and evaluate the quality of

the representations. We find that MAML/ANIL result in the best representations,

demonstrating the importance of the head during training for feature learning in a

few-shot learning setup.
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Table 2.5: NIL algorithm performs as well as MAML and ANIL on few-shot
image classification. Accuracy of MAML, ANIL, and NIL on few-shot image classification
benchmarks. We see that with no test-time inner loop, and just learned features, NIL
performs comparably to MAML and ANIL, indicating the strength of the learned features,
and the relative lack of importance of the head at test time.

Method Omniglot-20way-1shot Omniglot-20way-5shot MiniImageNet-5way-1shot MiniImageNet-5way-5shot

MAML 93.7 ± 0.7 96.4 ± 0.1 46.9 ± 0.2 63.1 ± 0.4
ANIL 96.2 ± 0.5 98.0 ± 0.3 46.7 ± 0.4 61.5 ± 0.5
NIL 96.7 ± 0.3 98.0 ± 0.04 48.0 ± 0.7 62.2 ± 0.5

2.5.1 The Head at Test Time and the NIL (No Inner Loop)

Algorithm

We study how important the head and task specific alignment are when good features

have already been learned (through training) by the meta-initialization. At test time,

we find that the representations can be used directly, with no adaptation, which leads

to the No Inner Loop (NIL) algorithm:

1. Train a few-shot learning model with ANIL/MAML algorithm as standard. We

use ANIL training.

2. At test time, remove the head of the trained model. For each task, first pass

the 𝑘 labelled examples (support set) through the body of the network, to get

their penultimate layer representations. Then, for a test example, compute

cosine similarities between its penultimate layer representation and those of the

support set, using these similarities to weight the support set labels, as in [189].

The results for the NIL algorithm, following ANIL training, on few-shot classifi-

cation benchmarks are given in Table 2.5. Despite having no network head and no

task specific adaptation, NIL performs comparably to MAML and ANIL.

2.5.2 Training Regimes for the Network Body

The NIL algorithm and results of Section 2.5.1 lead to the question of how important

task alignment and the head are during training to ensure good features. Here, we

study this question by examining the quality of features arising from different training
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Table 2.6: MAML/ANIL training leads to superior features learned, supporting
importance of head at training. We compare the mean/standard deviation of accuracy
for the different methods on the benchmark tasks. Training with MAML/ANIL leads to
higher accuracy when compared to other methods which do not have task specific heads,
supporting the importance of the head at training.

Method MiniImageNet-5way-1shot MiniImageNet-5way-5shot

MAML training-NIL head 48.4 ± 0.3 61.5 ± 0.8
ANIL training-NIL head 48.0 ± 0.7 62.2 ± 0.5

Multiclass training-NIL head 39.7 ± 0.3 54.4 ± 0.5
Multitask training-NIL head 26.5 ± 1.1 34.2 ± 3.5

Random features-NIL head 32.9 ± 0.6 43.2 ± 0.5

NIL training-NIL head 38.3 ± 0.6 43.0 ± 0.2

regimes for the body. We look at (i) MAML and ANIL training; (ii) multiclass

classification, where all of the training data and classes (from which training tasks

are drawn) are used to perform standard classification; (iii) multitask training, a

standard baseline, where no inner loop or task specific head is used, but the network

is trained on all the tasks at the same time; (iv) random features, where the network

is not trained at all, and features are frozen after random initialization; (v) NIL at

training time, where there is no head and cosine distance on the representations is

used to get the label.

After training, we apply the NIL algorithm to evaluate test performance, and

quality of features learned at training. The results are shown in Table 2.6. MAML

and ANIL training performs best. Multitask training, which has no task specific

head, performs the worst, even worse than random features (adding evidence for the

need for task specificity at training to facilitate feature learning.) Using NIL during

training performs worse than MAML/ANIL. These results suggest that the head is

important at training to learn good features in the network body.

In Appendix A.4.1, we study test time performance variations from using a MAML/ANIL

head instead of NIL, finding (as suggested by Section 2.5.1) very little performance

difference. Additional results on similarity between the representations of different

training regimes is given in Appendix A.4.2.
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2.6 Feature Reuse in Other Meta-Learning Algorithms

Up till now, we have examined the MAML algorithm, and demonstrated empirically

that the algorithm’s success is primarily due to feature reuse, rather than rapid learn-

ing. We now discuss rapid learning vs feature reuse more broadly in meta-learning.

By combining our results with an analysis of evidence reported in prior work, we find

support for many meta-learning algorithms succeeding via feature reuse.

2.6.1 Optimization and Model Based Meta-Learning

MAML falls within the broader class of optimization based meta-learning algorithms,

which at inference time, directly optimize model parameters for a new task using

the support set. MAML has inspired many other optimization-based algorithms that

utilize the same two-loop structure [105, 159, 57]. Our analysis so far has thus yielded

insights into the importance of feature reuse vs rapid learning question for this class of

algorithms. Another broad class of meta-learning consists of model based algorithms,

which also have notions of rapid learning and feature reuse.

In the model-based setting, the meta-learning model’s parameters are not directly

optimized for the specific task on the support set. Instead, the model conditions its

output on some representation of the task definition. One way to achieve this condi-

tioning is to jointly encode the entire support set in the model’s latent representation

[189, 176], enabling it to adapt to the characteristics of each task. This constitutes

rapid learning for model based meta-learning algorithms.

An alternative to joint encoding would be to encode each member of the support

set independently, and apply a cosine similarity rule (as in [189]) to classify an un-

labelled example. This mode of operation is purely feature reuse – it does not use

information defining the task to directly influence the decision function.

If joint encoding gave significant test-time improvement over non-joint encoding,

then this would suggest that rapid learning of the test-time task is taking place, as

task specific information is being utilized to influence the model’s decision function.

However, on analyzing results in prior literature, this improvement appears to be
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relatively small. In e.g. Matching Networks [189], using joint encoding one reaches

44.2% accuracy on MiniImageNet-5way-1shot, whereas with independent encoding

one obtains 41.2%. More refined models suggest the gap is even smaller. For instance,

in [32], many methods for one shot learning were re-implemented and studied, and

baselines without joint encoding achieved 48.24% accuracy in MiniImageNet-5way-

1shot, whilst other models using joint encoding such as Relation Net [176] achieve

very similar accuracy of 49.31% (they also report MAML, at 46.47%). As a result,

we believe that the dominant mode of “feature reuse” rather than “rapid learning” is

what has currently dominated both MAML-styled optimization based meta-learning

and model based meta-learning.

2.7 Scope and Limitations

Scope of study. Our study in this chapter focused on the Model Agnostic Meta-

Learning (MAML) algorithm and mostly examined its applications to few-shot image

classification, considering two standard datasets: Omniglot and MiniImageNet. We

did not extend our empirical study to the many variations of MAML that have since

been proposed – this could be a valuable direction of future work. Studying whether

our findings hold for more diverse few-shot learning datasets from e.g., MetaDataset

[184], and in other domains, such as few-shot medical image segmentation [27], are also

open questions. In few-shot learning problems that have substantial distribution shift

between the training and testing tasks, e.g., some of the formulations in MetaDataset,

our approach of freezing the entire network body may not work well and adaptation

may be necessary to obtain good performance.

Few-shot learning setup. In this work, we focused on the standard setup of

’small-K‘ few-shot learning, where the number of examples per class in the support

set is small (e.g., 1-5). Given more data in the support set, it is likely that our main

finding — inner-loop adaptation of MAML is not necessary for the network body

— would not hold. A large support set contains more predictive signal to usefully
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optimize the body parameters in the inner loop, and we would expect performance to

improve with adaptation (as is seen in fine-tuning in transfer learning). However, if

this is the intended use-case, we might not want to use meta-learning based few-shot

learning at all, and instead (partially) fine-tune a large pre-trained model [178].

2.8 Conclusion

In this chapter, we focused on a particular paradigm of data-efficient machine learning:

few-shot learning. We studied the question of why a highly popular few-shot learning

algorithm — Model Agnostic Meta-Learning (MAML) — is effective. Specifically, we

investigated whether MAML predominantly relies on rapid learning (large parameter

changes at adaptation time) or feature reuse (re-use the learned representations at

adaptation time). Through a series of experiments, we found that feature reuse is

the dominant component in MAML’s efficacy on benchmark datasets. This insight

led to the ANIL (Almost No Inner Loop) algorithm, a simplification of MAML that

has almost identical performance on standard image classification and reinforcement

learning benchmarks, and provides computational benefits. We further study the

importance of the head (final layer) of a neural network trained with MAML, discov-

ering that the body (lower layers) of a network is sufficient for few-shot classification

at test time, allowing us to remove the network head for testing (NIL algorithm)

and still match performance. We connected these results to the broader literature in

meta-learning, identifying feature reuse to be a common mode of operation for other

meta-learning algorithms also.

Follow-up work. Since the work in this chapter was published [144], there have

been several follow-up works investigating this question of rapid learning vs feature

reuse in different few-shot learning problems, ranging from theoretical studies sup-

porting our findings [39], to empirical studies that design new algorithms to encourage

rapid learning in settings with greater distribution shift [132]. Few-shot learning more

generally has been a topic of interest in recent work in computer vision [97, 2, 27]
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and natural language understanding [25] – these recent works typically rely on some

notion of feature reuse, with general-purpose representations being learned in a broad

pre-training phase.
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Chapter 3

Data Augmentation for Supervised

Learning on Electrocardiograms

3.1 Introduction

In Chapter 2, we studied one paradigm of data-efficient machine learning: few-shot

learning, in which we are presented many related tasks, each with limited data, and

wish to learn an effective, generalizable predictive model. In this chapter, we turn our

attention to a different data-efficient machine learning setting: supervised learning

problems in which we have access to a single, small labelled dataset, and we wish to

learn an effective predictive model.

The focus of this chapter is data-scarce supervised learning problems on electro-

cardiogram data. Electrocardiography is used widely in medicine as a non-invasive

and relatively inexpensive method of measuring the electrical activity in an individ-

ual’s heart. The electrocardiogram (ECG) is the output of electrocardiography, and

is of great utility to clinicians in diagnosing and monitoring various cardiovascular

conditions [160, 54, 24].

In recent years, there has been significant interest in automatically predicting car-

diac abnormalities, diseases, and outcomes directly from ECGs using neural network

models [70, 152, 63, 47, 98, 142]. Although these models demonstrate impressive

results, training them often requires large labelled datasets with paired ECGs and
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Figure 3-1: The effect of data augmentation on ECG prediction tasks is task-
dependent. We examine the mean/standard error of AUROC over 5 runs when applying
SpecAugment [135], a data augmentation method, to two different ECG prediction tasks.
We observe performance improvement in one setting (left, Right Ventricular Hypertrophy),
and performance reduction in another (right, Atrial Fibrillation).

labels. In some situations, it is challenging to construct such datasets. For example,

consider inferring abnormal central hemodynamics (e.g., elevated mean Pulmonary

Capillary Wedge Pressure) from the ECG; this is important when monitoring patients

with heart failure or pulmonary hypertension [164, 147]. Accurate hemodynamics la-

bels are only obtainable through specialized invasive studies [8, 79], and hence it is

difficult to obtain large datasets with paired ECGs and hemodynamics variables.

Data augmentation [74, 197, 168, 88, 43, 44] during training has been demon-

strated to be a useful strategy to improve the predictive performance of models in

data-scarce regimes. However, there exists limited work studying data augmentation

for ECGs. A key problem with applying standard data augmentations is that fine-

grained information within ECGs, such as relative amplitudes of portions of beats,

carry predictive signal: augmentations may worsen performance if such predictive

signal is destroyed. Furthermore, the effectiveness of data augmentations with ECGs

varies on a task-specific basis – applying the same augmentation for two different tasks

could help performance in one case, and hurt performance in another (Figure 3-1).

In this chapter, we take steps towards addressing these issues. Our contributions

are as follows:

• We propose TaskAug, a new task-dependent augmentation strategy. TaskAug
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defines a flexible augmentation policy that is optimized on a per-task basis.

We outline an efficient learning algorithm for this that leverages recent work in

nested optimization and implicit differentiation. [113].

• We conduct an empirical study of TaskAug and other augmentation strategies

on ECG predictive problems. We consider three datasets and eight different

predictive tasks, which cover different classes of cardiac abnormalities.

• We analyze the results from our evaluation, finding that many augmentation

strategies do not work well across all tasks. Given its task-specific nature,

TaskAug is competitive with or improves on other methods for the problems we

examined.

• We study the learned TaskAug policies, finding that they offer insights as to

what augmentations are most appropriate for different tasks.

• We provide a summary of findings and best practices to assist future studies

exploring data augmentation for ECG tasks.

3.2 Related Work

Data augmentation for time-series. Prior research on time-series data augmen-

tation includes: (1) large-scale surveys exploring the impact of augmentation on var-

ious downstream modalities [88, 89, 197]; and (2) specific methods for particular

modalities, including speech signals [135, 136], wearable device signals [186], and time

series forecasting [11, 171]. There is relatively little work exploring how augmentation

can impact performance for ECG-based prediction tasks, with prior studies mostly

restricted to considering single tasks [73, 12]. In contrast, in this chapter, we begin

by evaluating a set of data augmentation methods on many different ECG predictive

tasks, studying when and why augmentations may help. In addition, the data aug-

mentation strategy proposed in this chapter, TaskAug, can be readily adapted to new

predictive tasks, unlike in existing works where the methods may be designed for a

specific downstream task.
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There is related work on using data augmentation for contrastive pre-training

with ECGs [63, 98, 143, 121]. These works are complementary to the contributions

in this chapter; we focus specifically on supervised learning (rather than contrastive

pre-training), and we hypothesize that the proposed augmentation pipeline could be

used in these prior methods for improved contrastive learning.

Designing and learning data augmentation policies. The structure of TaskAug,

our proposed augmentation strategy, was inspired by related work on flexible data

augmentation policies in computer vision [43, 44, 74]. We extend these ideas to ECG

predictive tasks by (1) selecting appropriate transformations for ECG data, and (2) al-

lowing for class-specific transformation strengths. Since such policies introduce many

hyperparameters, we use a bi-level optimization algorithm to enable scalable policy

learning [113, 146].

3.3 Problem Setup and Notation

We focus on supervised binary classification problems from ECG data. Let 𝑥 ∈ R12×𝑇

refer to a 12-lead ECG of 𝑇 samples and 𝑦 ∈ {0, 1} refer to a binary target. We let

𝒟 = {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 refer to a dataset of 𝑁 ECG-label pairs.

Let 𝑓(𝑥; 𝜃) → 𝑦 be a neural network model with parameters 𝜃 that outputs a

predicted label 𝑦 given 𝑥 as input. Network parameters are optimized to minimize

the average binary cross entropy loss ℒBCE on the training dataset 𝒟(train).

We restrict our study to single label binary classification problems in order to

study the effect of data augmentation on a per-task basis. One can extend this to

multilabel binary classification by letting 𝑦 be a vector of several different binary

labels and training the network to produce a vector of predictions.

Training with Data Augmentation. Let 𝐴(𝑥, 𝑦;𝜑)→ 𝑥̃ refer to a data augmen-

tation function with hyperparameters 𝜑 that takes the input ECG 𝑥 and its label 𝑦

and outputs an augmented version 𝑥̃. Note that this formulation implicitly assumes

that the augmentation is label preserving, since it does not change the label 𝑦. Where
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relevant, the augmentation hyperparameters 𝜑 may control the strength/probability

of applying an augmentation.

The process of training with data augmentation 1 amounts to:

1. Sample a data point and label pair from the training set: (𝑥, 𝑦) ∼ 𝒟(train).

2. Apply the augmentation 𝐴 : 𝑥 ↦→ 𝑥̃, to transform the original input 𝑥 to an

augmented version 𝑥̃.

3. Use the pair (𝑥̃, 𝑦) in training.

A comment on test-time augmentation. We focus in this chapter on augmen-

tations applied during the training process. A related family of techniques consider

test-time augmentation applied at inference time [166], but this is not within the

scope of the current investigation.

3.4 Data Augmentation Methods

We now describe the data augmentation methods considered in our experiments. We

also present our new, learnable data augmentation method that can be used to find

task-specific augmentation policies, and an algorithm to optimize its parameters.

3.4.1 Existing Data Augmentation Methods

We evaluate the following set of existing data augmentation strategies, which includes

operations in the signal (time-domain) space, frequency space, and interpolated signal

space, providing good coverage of the possible space of augmentations.

Time Masking. This is a commonly used method in time-series and ECG data

augmentation work [88, 63]. We mask out (set to zero) a contiguous fraction 𝑤 ∈ [0, 1]

of the original signal of length 𝑇 , We choose a random starting sample 𝑡𝑠 and set all

samples [𝑡𝑠, 𝑡𝑠 + 𝑤𝑇 ] = 0.
1For the SMOTE baseline this process is slightly different; details are in Section 3.4.
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SpecAugment. A highly popular method for augmenting speech signals [135, 136].

We follow the approach from [98], and apply masking (setting components to zero) in

the time and frequency domains as follows. We take the Short-Time Fourier Trans-

form (STFT) of the input signal, and independently mask a fraction 𝑤 of the temporal

bins and frequency bins (this involves setting the complex valued entries in these bins

to 0+0𝑗). The inverse STFT is then used to map the signal back to the time domain.

Discriminative Guided Warping (DGW). Introduced in [89], this method uses

Dynamic Time Warping (DTW) [125, 22] to warp a source ECG to match a repre-

sentative reference signal that is dissimilar to examples from other classes.

SMOTE [29]. A commonly used oversampling strategy, the SMOTE algorithm

generates new synthetic examples of the minority class by interpolating minority class

samples. Given that many ECG prediction problems are characterized by significant

class imbalance, oversampling algorithms are important methods to consider. In

contrast to the other methods, the SMOTE algorithm generates an augmented dataset

prior to any training, based on a predefined training set size, rather than augmenting

examples at each training iteration (as presented in Section 3.4). We set this value

to achieve a balanced number of the two classes.

3.4.2 TaskAug : A New Augmentation Policy

Motivation. The approaches mentioned so far are simple to implement and can

be effective for various problems. However, they are fairly inflexible, given each

individually uses only one or two fixed transformations. With ECGs, recall that it

is unclear on a per-task basis which augmentations may help or worsen performance

(Figure 3-1). Designing a more flexible augmentation strategy that is optimized on a

per-task basis could help with this problem, and we now describe such an approach

– TaskAug.
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Figure 3-2: Structure of TaskAug. Augmentations to apply are sampled from a set
of available operations, and applied in sequence. Here we show an example with 𝐾 = 2
stages of augmentation. For clarity, we omit details relating to the per-class magnitudes
and probabilities of sampling.

High-level structure. We define a set of operations 𝒮 = {𝐴1, . . . , 𝐴𝑀}, each of

which is an augmentation function of the form 𝐴𝑖(𝑥, 𝑦;𝜇0, 𝜇1), where 𝑥 is the input

data point to the augmentation function, 𝑦 is the label, and {𝜇0, 𝜇1} represents the

augmentation strengths for datapoints of class label 0 and class label 1 respectively.

We separately parameterize the augmentation strengths for each class because trans-

formations may corrupt predictive information in the signal for one class but not the

other.

The overall augmentation policy consists of a set of 𝐾 stages, where at each stage

we: (1) sample an augmentation function 𝐴𝑖 to apply; and (2) apply it to the input

signal to that stage. This allows composing combinations of operations in a stochastic

manner. A high-level schematic is shown in Figure 3-2.

Mathematical definition. The policy is defined following [74]. At each aug-

mentation stage 𝑘 ∈ {1, . . . , 𝐾} we have a set of operation selection parameters

𝜋(𝑘) ∈ [0, 1]𝑀 , where
∑︀

𝑖 𝜋
(𝑘)
𝑖 = 1 ∀𝑘. Each vector 𝜋(𝑘) parameterizes a categorical

distribution such that each entry 𝜋(𝑘)
𝑖 represents the probability of selecting operation

𝑖 at augmentation stage 𝑘. We obtain a reparameterizable sample from this categor-

ical distribution (using the Gumbel-Softmax trick, [90, 116]) at each stage to select
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the operation to use, as follows:

𝑢 ∼ Categorical(𝜋(𝑘)) # Note that 𝑢 ∈ R𝑀 (3.1)

𝑖 = argmax𝑢 (3.2)

𝑥̃ =
𝑢𝑖

stop_grad(𝑢𝑖)
𝐴𝑖(𝑥, 𝑦;𝜇0, 𝜇1). (3.3)

Why the multiplicative factor? We use the multiplicative factor 𝑢𝑖
stop_grad(𝑢𝑖)

to allow gradient flow to the operation selection parameters 𝜋. If we just selected

𝑖 = argmax𝑢 and had no scaling in Eqn 3.3, there would be no gradient flow to 𝜋,

since the argmax operation is not differentiable.

The denominator of this scaling factor is necessary because 𝑢𝑖, obtained from the

reparameterized sample from the categorical distribution, is not one-hot. The result-

ing fraction used as the scaling factor always has magnitude 1, since |stop_grad(𝑢𝑖)| =

|𝑢𝑖|. When we take the gradient, we get:

𝜕

𝜕𝜋

𝑢𝑖
stop_grad(𝑢𝑖)

=
1

stop_grad(𝑢𝑖)
𝜕𝑢𝑖
𝜕𝜋

,

so the stop_grad(𝑢𝑖) acts as a scaling term.

Suppose a particular augmentation function 𝐴𝑖 with strength parameters 𝜇0 and

𝜇1 is obtained following Eqns 3.1 and 3.2. Then, denoting the input to this augmen-

tation stage as 𝑥 with label 𝑦, the function 𝐴𝑖 that computes the augmented output

is defined as:

𝐴𝑖(𝑥, 𝑦;𝜇0, 𝜇1) = 𝑡𝑖(𝑥; 𝑠), (3.4)

where 𝑡𝑖 is the transformation applied to the signal (e.g., time masking), and 𝑠 is the

transformation strength, computed as follows: 𝑠 = 𝑦𝜇1 + (1− 𝑦)𝜇0. See Appendix

B.1 for a detailed example of the different steps in applying TaskAug.

Extension to multiclass and multilabel settings. Our instantiation of TaskAug

is for the binary classification setting, since this is the scenario we consider in our
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experiments. One way to extend this formulation to multiclass/multilabel problems

is by defining an operation selection probability matrix and strength matrix at each

augmentation stage. The operation selection probabilities and operation strengths

for a given example are then obtained by taking the matrix product of the relevant

parameter matrix and the label vector 𝑦. This is not necessarily an optimal approach

– a more general setup is computing the probabilitites/strengths for transformations

through a learnable non-linear transformation of the label vector.

Optimizing Policy Parameters

Although the defined policy is flexible, it introduces many new parameters – for

a binary problem, there are 𝑀 operation selection parameters for the categorical

distributions at each stage, and 2 strength parameters at each stage, resulting in

𝐾 × (𝑀 + 2) total parameters 2. Finding effective values for these parameters with

random/grid search or Bayesian optimization is computationally expensive since they

require training models many times with different parameter settings. Amortized

strategies such as hypernetworks do not scale well to hyperparameter spaces of this

size. We therefore use a gradient-based learning scheme to learn these parameters

online.

We optimize policy parameters to minimize a model’s validation loss, which is

computed using non-augmented data. Following prior work [113, 74, 146], we alter-

nate gradient updates on the network parameters 𝜃 and the augmentation parameters

𝜑 by iterating the following steps:

• Optimize the model parameters 𝜃 for 𝑃 steps: at each step, sample a batch

(𝑥, 𝑦) of data from 𝒟(train), augment the batch with the augmentation policy to

obtain (𝑥̃, 𝑦), compute the predicted label 𝑦, and update the model parameters

using gradient descent: 𝜃 ← 𝜃 − 𝜂∇ℒ(𝑦, 𝑦). Let the base model parameters

after 𝑃 update steps be denoted as 𝜃(𝜑).

• Compute the validation loss ℒ𝑉 using 𝜃(𝜑) and an un-augmented batch from

2With the multiclass extension, this could be substantially larger.
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the validation dataset.

• Perform a gradient update on the augmentation parameters 𝜑 using implicit

differentiation, as follows. First, we use the chain rule to re-express the gradient

wrt the augmentation parameters:

𝜕ℒ𝑉
𝜕𝜑

=
𝜕ℒ𝑉
𝜕𝜃
× 𝜕𝜃

𝜕𝜑
.

We compute this gradient of interest by evaluating both terms on the RHS of

this equation.

The first term on the RHS can be found exactly using standard backpropagation,

since it is represents the gradient of a simple function of the network’s output

(the loss) wrt the model parameters.

The second term is more challenging to compute – it represents the gradient of

the (partially) optimized base model parameters wrt TaskAug policy parame-

ters. Computing this naively by explicitly differentiating through several steps

of optimization is too computationally expensive. To get around this, we re-

express this second term using the implicit function theorem (IFT) as in [113].

Using ℒ𝑇 to denote the training loss, the IFT allows us to write this second

term as:

𝜕𝜃

𝜕𝜑
= −

[︂
𝜕2ℒ𝑇
𝜕𝜃 𝜕𝜃𝑇

]︂−1

× 𝜕2ℒ𝑇
𝜕𝜃 𝜕𝜑𝑇

⃒⃒⃒
𝜃(𝜑)

, (3.5)

which is a product of an inverse Hessian and a matrix of mixed partial deriva-

tives. Adopting the algorithm from [113], we approximate this with a truncated

Neumann series with 1 term, and implicit vector-Jacobian products. The aug-

mentation parameters are then updated: 𝜑← 𝜑− 𝜂 𝜕ℒ𝑉

𝜕𝜑
.

Training Algorithm. Presented more formally, the algorithm to jointly optimize

base model parameters and TaskAug policy parameters is given in Algorithm 1,

mirroring the approach used in [146]. Note that this a nested optimization algo-
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rithm, learning the TaskAug parameters by optimizing through the training of the

base model. A similar idea is presented in Chapter 2 when optimizing a meta-

initialization for few-shot learning, and in Chapter 4 when optimizing pre-training

meta-parameters.

Algorithm 1 Optimizing TaskAug parameters.
1: Initialize base model parameters 𝜃 and TaskAug parameters 𝜑
2: for 𝑡 = 1, . . . , 𝑇 do
3: Compute training loss, ℒ𝑇 (𝜃)
4: Compute 𝜕ℒ𝑇

𝜕𝜃

5: Update 𝜃 ← 𝜃 − 𝜂𝜃 𝜕ℒ𝑇

𝜕𝜃

6: if 𝑡 % 𝑃 == 0 then
7: Set 𝜃 = 𝜃
8: Compute the validation loss, ℒ𝑉 (𝜃)
9: Compute 𝜕ℒ𝑉

𝜕𝜃

10: Approximate 𝜕𝜃
𝜕𝜑

using Equation 3.5.

11: Compute the derivative 𝜕ℒ𝑉

𝜕𝜑
= 𝜕ℒ𝑉

𝜕𝜃
× 𝜕𝜃

𝜕𝜑
using the previous two steps.

12: Update 𝜑← 𝜑− 𝜂𝜑 𝜕ℒ𝑉

𝜕𝜑

13: end if
14: end for

By using this algorithm, augmentation parameters are learned on a per-task basis.

Analyzing the learned parameters helps to understand which augmentations are useful

for different problems – we return to this in Section 3.5.2.

Computational cost. Optimizing policy parameters in this manner is significantly

more computationally efficient than running a grid search over parameter values.

With 𝑃 = 1, running this algorithm has about 2 − 3× the computational cost of

training without any augmentations. Further discussion on how to set 𝑃 is given in

Appendix B.1.2.

3.5 Experiments

We evaluate the data augmentation strategies on ECG prediction tasks. We have

two main experimental questions: (1) in what settings can data augmentation be
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beneficial, and (2) when data augmentation does help, which augmentation strategies

are most effective? To investigate these questions, we consider a range of settings

that cover three different 12-lead ECG datasets and eight prediction tasks of varying

difficulty, class imbalance, and training set sizes.

3.5.1 Experimental Setup

Datasets and Tasks

We highlight key information about our datasets and tasks here, with a summary in

Table 3.1.

Dataset A is from Massachusetts General Hospital (MGH) and contains paired

12-lead ECGs and labels for different cardiac abnormalities. Of the available labels in

the dataset, we select Right Ventricular Hypertrophy (RVH) and Atrial Fibrillation

(AFib) as two of the predictive tasks in our evaluation. These were chosen because

(1) they have been previously studied as prediction targets from the ECG [42, 109],

and (2) they have low positive prevalence: 1% for RVH, and 5% for AFib, and there-

fore help to understand the impact of data augmentation for imbalanced prediction

problems.

Dataset B is PTB-XL [191, 61], an open-source dataset of 12-lead ECGs. Each

ECG has labels for four different categories of cardiac abnormality. This dataset has

been used in prior work to evaluate ECG predictive models [63, 98]. We also use this

dataset in Chapter 4, where we consider this task of predicting cardiac abnormalities

from the ECG in a semi-supervised learning setting.

Dataset C is from the same hospital (MGH) as Dataset A and contains paired

ECGs and labels for two hemodynamics parameters, Cardiac Output (CO) and Pul-

monary Capillary Wedge Pressure (PCWP). These measures of cardiac health are

important in deciding treatment strategies for patients with cardiac disease [202,
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Dataset Task name Prevalence Abnormality type #ECGs/#patients

Dataset A Right Ventricular Hypertrophy (RVH) 1% Structural 705057/705057
Atrial Fibrillation (AFib) 5% Electrical 705057/705057

Dataset B (PTB-XL)

Hypertrophy (HYP) 12% Structural 21837/18885
ST/T Change (STTC) 22% Ischemia 21837/18885
Conduction Disturbance (CD) 24% Electrical 21837/18885
Myocardial Infarction (MI) 25% Ischemia 21837/18885

Dataset C Low Cardiac Ouput (CO) 4% Hemodynamics 6290/4051
High Pulmonary Capillary Wedge
Pressure (PCWP) 26% Hemodynamics 6290/4051

Table 3.1: Summary information about the datasets and tasks considered in our empirical
evaluation.

86, 174]. As outlined in Chapter 1, these parameters can typically only be mea-

sured accurately through an invasive cardiac catheterization procedure. [8, 79]. As

a result, datasets with paired ECGs and hemodynamics measurements are relatively

small. Considering the use of data augmentations to improve model performance

in this limited data regime is therefore clinically relevant. We specifically consider

inferring abnormally low Cardiac Output, and abnormally high mean Pulmonary

Capillary Wedge Pressure. In Chapter 4 and Appendix E we return to this question

of non-invasive estimation of hemodynamics parameters – in Chapter 4, inferring

hemodynamics from multimodal ICU time series, and in Appendix E, focusing on a

specific cohort of patients with heart failure (an important application area for these

predictive models).

Note that the tasks considered cover different classes of cardiac abnormalities:

ischemia (MI, STTC), structural (HYP, RVH), electrical (CD, AFib), and abnormal

hemodynamics (low CO, high PCWP).

Dataset splitting. Since the value of data augmentation can depend on the amount

of training data, we train on different dataset sizes. For the non-hemodynamic tasks

(Datasets A and B), we generate development datasets with 1000, 2500, and 5000

ECGs. On the more challenging hemodynamics inference tasks (Dataset C), for

elevated PCWP, we consider two settings: using a development set of size 1000, and

using the full dataset. For low CO, we only use the full dataset, since reducing the
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dataset size led to poor quality models.

In each setting, we split datasets into development and testing sets on a patient-

level (no patient is in both sets). We split the development set into an 80-20 training-

validation split.

TaskAug Transformations

Based on prior work in time series and ECG data augmentation [88, 121] we use the

following transformations in the TaskAug policy. Mathematical descriptions are in

Appendix B.1.

• Random temporal warp: The signal is warped with a random, diffeomorphic

temporal transformation. This is formed by sampling from a zero mean, fixed

variance Gaussian at each temporal location in the signal to obtain a veloc-

ity field, and then integrating and smoothing (following [9, 10]) to generate a

temporal displacement field, which is applied to the signal. The variance is the

strength parameter, with higher variance indicating more warping.

• Baseline wander: A low-frequency sinusoidal component is added to the sig-

nal, with the amplitude of the sinusoid representing the strength.

• Gaussian noise: IID Gaussian noise is added to the signal, with the strength

parameter representing the variance of the Gaussian.

• Magnitude scale: The signal amplitude is scaled by a number drawn from a

scaled uniform distribution, with the scale being the strength parameter.

• Time mask: A random contiguous section of the signal is masked out (set to

zero) 3.

• Random temporal displacement: The entire signal is translated forwards

or backwards in time by a random temporal offset, drawn from a uniform dis-

tribution scaled by a strength parameter.
3Optimizing the size of the masked proportion is difficult since it is not differentiable. As a result,

we fix the strength of this transformation (the masking proportion)
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Note that our instantiation of the augmentation policy could utilize many more op-

erations, but we keep it to this number for simplicity and to assist in interpreting the

learned policies.

Implementation Details

Network architecture. We standardize the network architecture to be a 1D con-

volutional network, based on the ResNet-18 architecture, since prior work has shown

architectures of this form to be effective with ECG data [47]. Full architectural details

are in the appendix.

Training Details. On Datasets A and B, all models are trained for 100 epochs, us-

ing early stopping based on validation loss. For the hemodynamics inference problems

on Dataset C, we train models for 50 epochs with early stopping (since we observed

significant overfitting after this point). We consider 15 random development/testing

set splits for Datasets A and C (lower prevalences for some tasks meant that per-

formance was more variable with fewer runs), and 5 splits for Dataset B. We train

models using the Adam optimizer and a learning rate of 1e-3. This value resulted in

stable and effective training across all models. As evaluation, we take the model that

obtains the best validation set performance and evaluate its AUROC on the held-out

testing set, and report mean/standard error across runs. We also report results for a

baseline (NoAugs) that does not use any data augmentation.

Augmentation Hyperparameters. In TaskAug, we set the number of augmen-

tation stages to 𝐾 = 2 (defined in Section 3.4.2), following prior work [74]. For the

number of model optimization steps 𝑃 (defined in Section 3.4.2), we evaluate both

𝑃 = 1 and 𝑃 = 5, and select the best performing setting based on validation set loss.

Further discussion on the choice of 𝑃 is in Appendix B.1.

For Time Masking and SpecAugment, we search over the masking window, con-

sidering 𝑤 ∈ {0.1, 0.2} for SpecAugment (range based on [98]) and 𝑤 ∈ {0.1, 0.2, 0.5}

for Time Masking (range based on [63]).
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Dataset A Dataset B
RVH AFib MI HYP STTC CD

NoAugs 72.6 ± 2.7 79.8 ± 1.4 80.0 ± 0.8 84.3 ± 1.4 87.6 ± 0.8 82.2 ± 0.6
TaskAug 78.4 ± 1.9 82.8 ± 1.0 82.3 ± 0.5* 83.7 ± 0.5 87.8 ± 0.4 83.1 ± 0.4
SMOTE 75.9 ± 1.8 79.0 ± 1.4 81.2 ± 0.6 80.4 ± 0.6 87.0 ± 0.5 82.6 ± 0.8
DGW 73.6 ± 1.7 77.4 ± 1.5 81.1 ± 0.6 83.9 ± 0.7 87.5 ± 0.5 81.8 ± 1.0
SpecAug 77.9 ± 1.7 77.2 ± 2.1 81.1 ± 0.7 83.5 ± 0.8 87.7 ± 0.4 82.2 ± 0.7
TimeMask 72.8 ± 2.1 77.9 ± 1.9 81.1 ± 1.3 82.9 ± 0.7 87.7 ± 0.7 83.8 ± 1.1

Table 3.2: Augmentation strategies improve AUROC on detecting most cardiac
abnormalities in the low-sample regime (𝑁 = 1000), and TaskAug is among the
best-performing methods. Table shows mean and standard error of AUROC (best-
performing method bolded, second best underlined, statistically significant (𝑝 < 0.05) im-
provement over NoAugs marked *). The impact of augmentations is task-dependent, with
some tasks (such as RVH, MI) showing improved performance on average with almost all
strategies, and others (HYP) showing no improvement with any strategy. TaskAug is among
the best methods across tasks, and improves performance on tasks such as AFib where no
other augmentations help.

3.5.2 Results

Quantitative Results

Non-hemodynamics tasks. We first analyze performance of augmentation strate-

gies on the non-hemodynamics tasks. Given that performance improvements are most

evident in the lowest sample regimes for both datasets (𝑁 = 1000), we focus on this

setting with results shown in Table 3.2. Results for the higher sample regimes are in

the appendix. We summarize key findings here.

The value of augmentation varies by task. For some tasks such as RVH and MI,

almost all augmentation strategies lead to performance improvements. On other

tasks such as STTC and HYP, performance is the same or worse when applying

augmentations. The improvement seen with RVH could be due to the fact that it is

particularly low prevalence (1%), so all augmentation strategies have an oversampling

effect and thus boost performance.

TaskAug performs well on average. TaskAug almost always improves on the

NoAugs baseline, and even boosts performance on some tasks where other augmen-

tations worsen performance (AFib). Although TaskAug does not always result in a
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Dataset C
Low CO High PCWP: 𝑁 = 1000 High PCWP: All Data

NoAugs 65.9 ± 1.2 66.7 ± 0.7 74.4 ± 0.5
TaskAug 68.2 ± 1.0 67.9 ± 0.7 75.1 ± 0.4
SMOTE 66.0 ± 1.4 67.2 ± 0.5 73.6 ± 0.5
DGW 68.3 ± 0.9 66.4 ± 0.6 74.9 ± 0.4
SpecAug 66.1 ± 0.9 66.4 ± 1.3 75.0 ± 0.4
TimeMask 66.8 ± 1.1 67.3 ± 0.4 74.6 ± 0.4

Table 3.3: Training with data augmentation improves AUROC on two hemody-
namics inference tasks, and TaskAug again is among the best-performing meth-
ods. Table shows mean and standard error of AUROC (best-performing method bolded,
second best underlined). All methods are comparable with or improve on the no augmen-
tation baseline for Low CO prediction, possibly because of the low prevalence of the label
(4%). The performance of methods on the High PCWP task is more variable across the two
sample sizes. TaskAug obtains improvements in all three settings considered.

statistically significant (𝑝 < 0.05) improvement in AUROC, it is the only method to

significantly improve AUPRC over NoAugs on the low-prevalance tasks, RVH and

AFib (see Appendix B.3, Table B.1).

When TaskAug results in lower performance than other augmentation strategies

(e.g., TimeMasking for CD), it is still competitive with these methods and never

causes a statistically significant reduction in performance compared to other methods.

This suggests that for a new task, it may always be worth using TaskAug to see if

performance is boosted. We hypothesise that TaskAug’s efficacy is due to its flexible

and learned nature, examined in ablation studies (Section 3.5.2).

Performance improvements are smaller on Dataset B. The maximum improve-

ment over the NoAugs baseline in Dataset A (5.8%) is greater than the maximum

improvement in Dataset B (2.3%). We hypothesise two reasons for this. Firstly,

the prevalence in Dataset B is higher, meaning that augmentations may not have as

much of an effect at 𝑁 = 1000. We study this in Appendix B.3, Table B.8, where we

examine performance at the 𝑁 = 500 data regime for Dataset B, and find that the

maximum improvement (obtained with TaskAug for MI) goes up to 4%.

Secondly, Dataset A has narrower label definitions than Dataset B, and this af-

fects performance, especially with TaskAug. The HYP, STTC, and CD classes of
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abnormalities in Dataset B aggregrate many sub-categories together (see Appendix

B.2), and these sub-categories might each benefit from different augmentations. In

contrast, the labels in Dataset A are fine-grained, and so TaskAug, which optimizes

augmentations on a per-task basis, learns more appropriate augmentation strategies.

This hypothesis is supported by the fact that with MI (a more fine-grained label than

HYP, CD, and STTC) we observe improvements over the NoAugs baseline (clearly

seen in the 𝑁 = 500 regime, Appendix B.3, Table B.8).

Performance improvements at higher samples are lower, as seen in the results in

Appendix B.3. Augmentations do not worsen performance, however, and some tasks

(STTC, CD) benefit a small amount, ∼ +1% AUROC.

Hemodynamics tasks. Table 3.3 presents results for performance on the challeng-

ing hemodynamics prediction tasks. All methods are comparable with or improve on

the no augmentation baseline for low CO prediction, likely because of the low preva-

lence of the positive label (4%). For inferring high PCWP, at both low sample and

higher samples, TaskAug obtains improvements in performance (though not signifi-

cant at the 𝑝 < 0.05 level); however, other methods do not consistently improve on

the no augmentation baseline. Although improvements in AUROC are not statisti-

cally significant, we observe significant improvements with TaskAug in AUPRC for

low CO detection (see Appendix B.3, Table B.3). Again, we see that the benefit of

augmentation varies with the task, prevalance, and dataset size, and that TaskAug

is better than or competitive with other strategies.

Analyzing Learned Policies

We analyze the learned policies for three of the predictive tasks: AFib, PCWP, and

RVH (Appendix B.3).

AFib, Figure 3-3. We see that time mask has a high probability of selection

(Figure 3-3a). Since AFib is characterized in the ECG by an irregular R peak-R peak

interval [42], which is often present regardless of which section of ECG is selected,
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Figure 3-3: The TaskAug policy for Atrial Fibrillation detection. We focus on
the probability of selecting each transformation in both augmentation stages (left) and the
optimized temporal warp strengths in the first stage (right). We show the mean/standard
error of these optimized policy parameters over 15 runs. Given the characteristic features
of AFib (e.g., irregular R-R interval), Time Masking is likely to be label preserving and
therefore it is sensible that it has a high probability of selection. The temporal warp strength
for positive samples is higher than that for negative samples, which makes sense since time
warping a negative sample too strongly could change its label.
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(b) Warp strengths

Figure 3-4: The TaskAug policy for detecting elevated Pulmonary Capillary
Wedge Pressure. We focus on the probability of selecting each transformation in both
augmentation stages (left) and the optimized magnitude scaling strengths in the second
stage (right). We show the mean/standard error of these optimized policy parameters over
15 runs. There exists little domain knowledge about what features in the ECG may encode
elevated PCWP, so examining the learned augmentations here could provide hypotheses of
invariances in the data. Of interest is that the positive class is augmented with stronger
magnitude scaling than the negative class, suggesting that scaling negative examples could
affect their labels.
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time masking is likely label preserving, and is a sensible choice. Considering the

learned time warp strength in Figure 3-3b, we observe that signals labelled negative

for AFib are warped less strongly than those with AFib, again sensible since time

warping may affect the label of a signal and introduce AFib in a signal where it was

not originally present.
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Figure 3-5: Optimizing the TaskAug policy parameters results in performance
improvements. We show the mean/standard error of AUROC over 15 runs for AFib
and over 5 runs for MI. Without optimizing policy parameters (InitAug), performance is
comparable to not using augmentations at all, indicating the importance of learning the
policy parameters.

PCWP, Figure 3-4. We have limited domain understanding of what augmenta-

tions might be label preserving and help model performance, since detecting high

PCWP from ECGs is not something clinicians are typically able to do [164]. Ana-

lyzing the augmentations could provide hypotheses about what features in the data

encode the class label. Noise, displacement, and baseline wander all obtain higher

weight in the first stage, and scaling obtains higher weight in the second stage. The

high weight assigned to noise could be to help the model build invariance to it, and

not use it as a predictive aspect of the signal. Studying the magnitude scaling in

Figure 3-4b, we see positive examples are scaled significantly more than negative ex-

amples. It is possible that negative examples are more sensitive to scale, and scaling

them pushes them into positive example space. The positive examples may have more

variance in scaling, and thus scaling them further has less of an effect.

Ablation Studies

How much does optimizing augmentations help? Our results show that TaskAug

offers improvements in performance. In Figure 3-5, we examine how the optimization

of the augmentation policy parameters (operation selection probabilities and mag-

nitudes, Section 3.4.2) affects performance, considering the AFib and MI detection

tasks and 𝑁 = 1000. We compare the performance of optimizing the policy param-

82



No Augs TaskAug Ablation 
 (Not Class-Specific)

TaskAug

76

78

80

82

84

AU
RO

C

AFib

No Augs TaskAug Ablation 
 (Not Class-Specific)

TaskAug

76

78

80

82

84

AU
RO

C

MI

Figure 3-6: Class-specific magnitude parameters in TaskAug lead to improve-
ments in performance. We show the mean/standard error of AUROC over 15 runs for
AFib and over 5 runs for MI. The improvements from using class-specific magnitude param-
eters is particularly clear for tasks such as AFib where some operations may not be label
preserving.

eters vs. keeping them fixed at their initialized values and training. We observe

improvements in performance through the optimization process, suggesting that it is

not only the range of augmentations that leads to improved performance, but also the

optimization of the policy parameters. In Appendix B.3, we study this at different

dataset sizes and find that performance is improved by optimization at each size.

How much do class-specific magnitudes help? TaskAug instantiates magni-

tude parameters for the augmentation operations on a per-class basis, as described in

Section 3.4.2, allowing positive and negative examples to be augmented differently.

We examine this further, considering the AFib and MI detection tasks and 𝑁 = 1000.

We compare performance using class-specific magnitude parameters (the positive and

negative examples have independent augmentation magnitudes 𝜇1 and 𝜇0) vs. using

global magnitude parameters (the positive and negative examples are forced to have

the same augmentation magnitude: 𝜇 = 𝜇0 = 𝜇1). Results are shown in Figure 3-6.

We observe noticeable improvements in performance with class-specific magnitude

parameters, demonstrating the importance of independently specifying magnitudes

for the two classes. In Appendix B.3, we study this at different dataset sizes and find

that performance is improved at each size.
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Summary and Best Practices

• Training with data augmentations does not always improve model performance,

and might even hurt it. The impact of augmentation depends on nature of the

task, positive class prevalence, and dataset size.

• Augmentations are most often useful in the low-sample regime. Where the

prevalence is particularly low (see results for RVH detection) various augmen-

tation strategies improve performance, perhaps by functioning as a form of

oversampling.

• Data augmentations do not always improve performance at high sample sizes,

but do not hurt it.

• TaskAug, our proposed augmentation strategy, is the most effective method on

average, and could therefore be the first augmentation strategy one tries on a

new ECG prediction problem. TaskAug defines a flexible augmentation policy

that is optimized on a task-dependent basis, which directly contributes to its

effectiveness.

• TaskAug also offers insights as to what augmentations are most effective for

a given problem, which could be useful in novel prediction tasks (e.g., hemo-

dynamics inference) to suggest what aspects of the ECG determine the class

label.

3.6 Scope and Limitations

Nature of predictive tasks. We focused in this chapter on developing a task-

adaptive data augmentation strategy for data-scarce binary prediction tasks from

ECGs. We did not consider extensions to multiclass or multilabel settings, both of

which are valuable directions of future work (and are discussed in the methods section

of this chapter).
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Choice of base transformations. Our data augmentation approach incorporates

a base set of ECG transformations. In our implementation, we kept the size of this

set to be relatively small for simplicity; however, we could include a larger number of

transformations in this set.

More broadly, when considering appropriate base transformations, there are some

points that we did not consider in detail in this work, namely: (1) Ensuring that

the transformations always preserve physiological consistency of the signal (such as

the voltage relation between different ECG leads); and (2) Transforming signals in

a fine-grained fashion (such as only operating on specific parts of the cardiac cycle).

Note that if the set of base transformations is chosen poorly, or none of the base

transformations are label preserving for the predictive task(s) of interest, then our

method will not be effective.

Hyperparameter initialization. An important detail in using our method is to

ensure that the initialization point for the augmentation strengths and probabilities

are reasonable. If these are poorly initialized (e.g., apply a destructive masking

transformation that masks almost the entire signal), then the gradient based approach

we outline would not be able to recover a useful augmentation strategy.

3.7 Conclusion

In this chapter, we studied a particular data-scarce machine learning task: improv-

ing supervised learning performance on small, labelled datasets of electrocardiogram

(ECG) data. This direction of inquiry was motivated by the fact that certain clin-

ically relevant ECG predictive tasks (such as inferring abnormal hemodynamics, as

discussed in Chapter 1) face data scarcity challenges, with it being difficult to con-

struct large paired datasets of ECGs and labels. Our focus in this chapter was to

explore whether data augmentation strategies, which have been effective in many

data-scarce prediction problems, could be used to improve model performance on

data-scarce ECG prediction tasks.
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We conducted an experimental evaluation of existing data augmentation strate-

gies on three ECG datasets and eight distinct predictive tasks, and found that these

existing strategies are not always helpful, and on some tasks, may even worsen per-

formance. To improve on the shortcomings of existing augmentation strategies, we

proposed TaskAug, a new, learnable data-augmentation strategy for ECGs. TaskAug

is among the strongest performing methods on all predictive tasks, and the learned

TaskAug augmentation policies are additionally interpretable, providing insight as

to what transformations are most important for different problems. We compiled a

set of best practices from our empirical evaluation, specifying what characteristics of

predictive problems (for example, low prevalence of the positive class) might result

in augmentations being most useful.

86



Chapter 4

Nested Optimization for Improved

Pre-Training

4.1 Introduction

So far in this thesis, we have presented contributions to two paradigms of data-efficient

machine learning (ML): few-shot learning (Chapter 2) and supervised learning on

small, labelled datasets (Chapter 3). In this chapter and the next, we investigate a

different data-efficient ML paradigm: pre-training (PT) followed by fine-tuning (FT).

In PT followed by FT, the situation is typically as follows. We wish to train a

predictive model for a task with limited labeled data (the FT task), and additionally

have access to a large, related dataset (the PT dataset), which may be labelled or

unlabelled. Learning a model proceeds in two phases. We first use the PT dataset

to learn an effective initialization for the model parameters (we pre-train the model).

Then, from this initialization, the model’s parameters are optimized further for the

FT task, using the (often) small, labelled FT dataset.

This paradigm has seen widespread use in transfer learning [50, 167, 60, 82, 141, 46,

102, 207, 100, 84] and semi-supervised learning [31, 30, 76] (semi-supervised learning

is the focus of Chapter 5), and has led to impressive performance in many domains,

including computer vision [50, 167, 60, 102, 207, 100], natural language processing

[82, 141, 46, 111, 95], graph structured prediction [84], and clinical machine learning
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[119, 120, 4, 126].

Although powerful, the PT & FT paradigm introduces additional complexity in

the form of high-dimensional, complex PT hyperparameters, such as parameterized

data augmentation policies used in contrastive representation learning [30, 74] or the

use of task, class, or instance weighting variables in multi-task PT to avoid negative

transfer [201]. These hyperparameters can significantly affect the quality of pre-

trained models [30], and thus finding techniques to set their values optimally is an

important area of research.

Choosing optimal PT hyperparameter values is challenging, and existing methods

do not work well. Simple approaches such as random or grid search are inefficient since

evaluating a hyperparameter setting requires performing the full, two-stage PT & FT

optimization, which may be prohibitively computationally expensive. Gradient-free

approaches, such as Bayesian optimization or evolutionary algorithms [94, 173, 122],

are also limited in how well they scale to this setting. Gradient-based approaches

[115, 112, 114, 113] can be used online to jointly learn hyperparameters and model

parameters and can scale to millions of hyperparameters [113], but typically deal with

a standard single-stage learning problem (e.g., normal supervised learning) and are

therefore not directly applicable to the two-stage PT & FT learning problem.

In this chapter, we address this gap and propose a method for high-dimensional

PT hyperparameter optimization. We first formalize a variant of the PT & FT

paradigm, which we call meta-parameterized pre-training (Figure 4-1), where meta-

parameters refer to arbitrary PT hyperparameters or parameterizable architectural

choices that can be optimized to improve the learned representations.1 We outline a

nested optimization problem characterizing the optimal meta-parameters and propose

a gradient-based method to learn meta-parameters. Our contributions are:

• We formalize meta-parameterized pre-training, a variant of the pre-training and

fine-tuning (PT & FT) paradigm where PT is augmented to incorporate meta-

parameters : arbitrary structures that can be optimized to improve learned rep-
1We use the term meta-parameter since these structures do not directly affect inference of the

final model after FT, but instead inform the process of learning this model (by modulating the PT
process).
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resentations.

• We propose a scalable gradient-based algorithm to learn meta-parameters using

a novel method to obtain meta-parameter gradients through the two-stage PT &

FT process. Our gradient estimator composes a constant-memory implicit dif-

ferentiation approximation for the longer PT stage and exact backpropagation

through training for the shorter FT stage.

• We show that our algorithm recovers near-optimal meta-parameters in toy ex-

periments on synthetic data.

• We demonstrate that our algorithm improves performance over baselines in two

real-world experimental domains involving PT and FT: multitask learning to

predict protein functions from graph-structured data [84], and semi-supervised

learning to predict cardiac abnormalities from electrocardiography data.

4.2 Related Work

Gradient-based hyperparameter optimization (HO): There are roughly two

groups of gradient-based HO algorithms. The simpler and less scalable approach dif-

ferentiates through training [49, 115]. The other approach assumes that optimization

reaches a fixed point, and approximates the best-response Jacobian [20, 112, 114, 113].

Neither of these approaches can be straightforwardly applied to scalably differentiate

through two stages of optimization (PT & FT). Direct differentiation through both

stages would be too memory-intensive. Approximating the best-response Jacobian

using the IFT as in [113] twice is feasible, but requires changing the FT objective

to include a proximal term [153], and tuning two sets of interacting approximations.

Instead, we compose a constant-memory IFT approximation for the lengthy PT stage

with an exact backprop-through-training for the shorter FT stage.

Applications of Nested Optimization: Many prior works frame learning as

nested optimization, including few-shot learning [55, 3, 57, 153, 66, 159, 144, 211,
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91, 104], neural network teaching [52, 53, 175, 145], learning data augmentation and

reweighting strategies [92, 74, 157, 169, 85], and auxiliary task learning [129, 137, 110].

The majority of this work studies nested optimization in the standard one-stage su-

pervised learning paradigm, unlike our setting: the two-stage PT & FT problem. The

most closely related works to ours are [201], where PT task weights are learned for a

multitask PT problem using electronic health record data, and [203], where a masking

policy is learned for masked language modelling PT. In contrast to our work, which

introduces the more general framing of meta-parameter optimization, [201] and [203]

are focused only on specific instantiations of meta-parameters as task weights and

masking policies. The learning algorithms in these works either differentiate directly

through truncated PT & FT [203] (which may not be scalable to longer PT/large

encoder models), or leverage extensive first-order approximations [201], unlike our

more generally applicable approach.

4.3 Problem Setup and Preliminaries

In this section, we define the meta-parameterized pre-training problem, and com-

pare it to traditional fine-tuning and pre-training. A full glossary of notation is in

Appendix C.1, Table C.1.

Notation Let the subscript ∙ be a placeholder for either PT (pre-training) or

FT (fine-tuning), 𝒳 ⊆ R𝑑 be our input domain, 𝒴∙ and 𝒴∙ be the true and pre-

dicted output spaces for some model respectively, and Θ,Ψ∙,Φ be spaces of pa-

rameters for models. We will use 𝑓∙ : 𝒳 ; (Θ,Ψ∙) → 𝒴∙ to refer to a parametric

model, with the semicolon separating the input space from the parameter spaces.

We then define 𝑓∙ = 𝑓
(head)
∙ ∘ 𝑓 (feat), such that 𝑓 (feat)(·;𝜃 ∈ Θ) is a feature extrac-

tor that is transferable across learning stages (e.g., pre-training to fine-tuning), and

𝑓
(head)
∙ (·;𝜓 ∈ Ψ∙) is a stage-specific head that is not transferable. Given a data dis-

tribution x∙, y∙ ∼ 𝒟∙, parametric model 𝑓∙, and loss function ℒ∙ : 𝒴∙ × 𝒴∙ → R,

we will also define for convenience a corresponding expected loss 𝐿∙ : Θ,Ψ∙ → R
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via 𝐿∙(𝜃,𝜓∙;𝒟∙) = E𝒟∙ [ℒ∙(𝑓∙(𝑥∙;𝜃,𝜓∙), 𝑦∙)]. We also adopt the convention that

the output of the argmin operator is any arbitrary minimum, rather than the set of

possible minima, to avoid complications in notation.

4.3.1 Problem Formulation

Supervised Learning (Fig. 4-1A). In a fully-supervised setting (our fine-tuning

domain), we are given a data distribution 𝒟FT, model 𝑓 , and loss ℒFT. Using a

learning algorithm AlgFT (e.g., SGD) that takes as input initial parameters 𝜃(0)FT,𝜓
(0)
FT,

our goal is to approximate the ℒFT-optimal parameters:

𝜃*FT,𝜓
*
FT = AlgFT(𝜃

(0)
FT,𝜓

(0)
FT;𝒟FT) ≈ argmin

𝜃∈Θ,𝜓∈ΨFT

𝐿FT(𝜃,𝜓;𝒟FT).

Pre-training (Fig. 4-1B). For tasks where data is scarce, we can additionally in-

corporate a pre-training step and approximate the optimal initial parameters for FT

(i.e., the final pre-trained weights are used as initialization weights of the FT stage),

again via an optimization algorithm AlgPT: 2

𝜃*PT = AlgPT(𝜃
(0)
PT,𝜓

(0)
PT;𝒟PT) ≈ argmin

𝜃∈Θ
𝐿FT(AlgFT(𝜃,𝜓

(0)
FT;𝒟FT);𝒟FT).

Meta-Parameterized PT (Fig. 4-1C). In Meta-Parameterized PT, we recognize

that, in addition to taking as input the PT parameters 𝜃, AlgPT is itself parameterized

by a set of meta-parameters 𝜑 ∈ Φ: arbitrary, potentially high dimensional quantities

that inform the structure of the algorithm directly. These could represent weighting

strategies, data augmentation policies, or sampling processes. The optimal meta-

parameters 𝜑(opt) are the solution to the following meta-PT optimization problem:

𝜑(opt) = argmin
𝜑∈Φ

𝐿FT

(︁
AlgFT

(︁
AlgPT

(︁
𝜃
(0)
PT,𝜓

(0)
PT;𝒟PT,𝜑

)︁
,𝜓

(0)
FT;𝒟FT

)︁
;𝒟FT

)︁
.

2Note that we discard the PT head 𝜓*
PT here as only the PT feature extractor 𝜃*PT is transferred.
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4.3.2 Example: Multitask Meta-Parameterized Pre-Training

To make our notation concrete, we instantiate our setup for a multitask pre-training

problem.

Problem: Suppose we have a multitask classification dataset, (𝒳 ×𝒴)𝑁 such that

𝒴 = 𝒴1 × · · · × 𝒴𝐾 consists of labels for 𝐾 distinct tasks. Of this full set of tasks, we

are interested only in a subset of 𝑀 tasks, 𝑆 = {𝑡1, . . . , 𝑡𝑀} ⊆ {1, . . . , 𝐾}.

Supervised FT: Under supervised FT alone, we can directly average a cross-

entropy loss ℒCE over only the tasks in 𝑆:

ℒFT(𝑦,𝑦) =
1

𝑀

𝑀∑︁
𝑗=1

ℒCE(𝑦
(𝑡𝑗), 𝑦(𝑡𝑗)),

and then solve this problem via SGD.

PT: If we assume that 𝑆 is a random subset of the full set of tasks, we can introduce

a PT stage over all tasks:

ℒPT(𝑦,𝑦) =
1

𝐾

𝐾∑︁
𝑖=1

ℒCE(𝑦
(𝑖), 𝑦(𝑖)),

followed by FT on 𝑆 alone. As 𝑆 is a random subset, leveraging all tasks for PT is

well motivated and may improve performance.

Meta-Parameterized PT: In the case where 𝑇 is not a random subset, the

PT strategy described above is no longer well-motivated. However, using meta-

parameterized PT, we can still effectively pre-train by introducing the meta-parameters

that weight the tasks 𝜑 =
[︁
𝜑1 . . . 𝜑𝐾

]︁
and modulate the loss function ℒPT:

ℒPT(𝑦,𝑦;𝜑) =
𝐾∑︁
𝑖=1

𝜑𝑖ℒ𝐶𝐸(𝑦(𝑖), 𝑦𝑖).
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Figure 4-1: Meta-Parameterized Pre-Training. A paradigm where meta-parameters
— rich, potentially high dimensional structures that generalize PT hyperparameters — are
incorporated in PT to improve the learned representations. Meta-parameters are optimized
in a meta-PT phase, using data from FT task(s) in a meta-FT dataset. The FT and meta-
FT datasets are (potentially overlapping) samples from the FT data distribution.

With optimal meta-parameters 𝜑(opt), the PT stage will leverage only that subset

of tasks that best informs the final FT performance. This setting mirrors our real-

world experiment in Section 4.6.

4.4 Methods: Optimizing Meta-Parameters

We now introduce our gradient-based algorithm to optimize meta-parameters. We

first describe how to efficiently approximate meta-parameter gradients through the

two-stage PT and FT optimization. We then present our algorithm, and outline

practical considerations when using it.

4.4.1 Efficient Computation of Meta-Parameter Gradients

We begin by defining:

𝑔(𝜑;𝜃
(0)
PT,𝜓

(0)
PT,𝜓

(0)
FT) = 𝐿FT

(︁
AlgFT

(︀ Parameter𝜃PT⏞  ⏟  
AlgPT(𝜃

(0)
PT,𝜓

(0)
PT;𝒟PT,𝜑),𝜓

(0)
FT;𝒟FT

)︀⏟  ⏞  
Parameters𝜃FT,𝜓FT

;𝒟FT

)︁
,

(4.1)

so that 𝜑(opt) = argmin𝜑∈Φ 𝑔(𝜑).
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We also define two best-response values:

𝜃*PT(𝜑) = AlgPT(𝜃
(0)
PT,𝜓

(0)
PT;𝒟PT,𝜑),

𝜃*FT(𝜑), 𝜓
*
FT(𝜑) = AlgFT(𝜃

*
PT(𝜑),𝜓

(0)
FT;𝒟FT).

We do not explicitly include the dependence of the best responses on the initial-

ization values for notational convenience.

With these defined, we now consider the desired gradient term, 𝜕𝑔
𝜕𝜑

. Under our

definitions, the direct partial derivatives 𝜕𝐿FT
𝜕𝜑

and 𝜕AlgFT
𝜕𝜑

are zero, so 𝜕𝑔
𝜕𝜑

reduces to a

simple expression of the chain rule:

𝜕𝑔

𝜕𝜑

⃒⃒⃒⃒
𝜑′

=
𝜕𝐿FT

𝜕
[︁
𝜃FT, 𝜓FT

]︁
⃒⃒⃒⃒
⃒⃒
𝜃*FT(𝜑′),𝜓*

FT(𝜑′)⏟  ⏞  
FT Loss Gradient

×

FT Best Response Jacobian⏞  ⏟  
𝜕AlgFT

𝜕𝜃PT

⃒⃒⃒⃒
𝜃*PT(𝜑′)

× 𝜕AlgPT

𝜕𝜑

⃒⃒⃒⃒
𝜑′⏟  ⏞  

PT Best Response Jacobian

.

(4.2)

The FT Loss Gradient term on the RHS of (4.2) is easily computed using back-

propagation. Computing the other two terms is more involved, and we detail each

below, beginning with the PT best response Jacobian. The full algorithm with both

gradient estimation terms is provided in Algorithm 2.

PT Best Response Jacobian 𝜕AlgPT
𝜕𝜑

Using recent work in hyperparameter opti-

mization with implicit differentiation [113], we re-express this term using the implicit

function theorem (IFT). If we assume that 𝜃*PT(𝜑) = AlgPT

(︁
𝜃
(0)
PT;𝒟PT,𝜑

)︁
is a good

approximation of argmin𝜃∈Θ 𝐿PT (𝜃;𝒟PT,𝜑) (i.e., the PT model converges to ℒPT-

optimal parameters), then under certain smoothness and regularity assumptions on

the PT parameters and meta-parameters, the IFT allows us to re-express 𝜕AlgPT
𝜕𝜑

as:

𝜕AlgPT

𝜕𝜑

⃒⃒⃒⃒
𝜑′

= −
[︁

𝜕2𝐿PT
𝜕𝜃PT 𝜕𝜃

⊤
PT

]︁−1

× 𝜕2𝐿PT

𝜕𝜃PT 𝜕𝜑⊤

⃒⃒⃒⃒
𝜃*PT(𝜑′),𝜑′

, (4.3)
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which is the product of the inverse Hessian and a matrix of mixed partial deriva-

tives. Following [113], the inverse can be efficiently approximated using a truncated

Neumann series.

FT Best Response Jacobian 𝜕AlgFT
𝜕𝜃PT

First, note that without additional con-

straints on AlgFT, the FT best response Jacobian may be zero. This is because 𝐿FT

has no functional dependence on the variable 𝜃PT and, if we assume the convergence

point 𝜃*FT is stable (as we did for the PT best response Jacobian), this implies that

the gradient of 𝜃*FT with respect to 𝜃PT would be zero. To enable effective learn-

ing, we must therefore either (1) impose restrictions on AlgFT to ensure there is a

dependence between the initialization point and the final loss value (e.g., proximal

regularization [153]) or (2) leverage methods that do not differentiate through AlgFT

through convergence, since at non-converged points we will still observe nonzero 𝐿FT-

gradients [85, 137]. Given that the FT phase often involves shorter optimization

horizons than PT, we take approach 2 here, and iteratively update 𝜃FT for 𝐾 steps.

We first initialize the FT head 𝜓(0)
FT and then compute:

𝜃
(0)
FT = copy(𝜃*PT) (init with PT solution, implicitly performing stop gradient)

𝜃
(𝑘)
FT,𝜓

(𝑘)
FT =

[︁
𝜃
(𝑘−1)
FT , 𝜓

(𝑘−1)
FT

]︁
− 𝜂FT

𝜕𝐿FT

𝜕
[︁
𝜃FT, 𝜓FT

]︁
⃒⃒⃒⃒
⃒⃒
𝜃
(𝑘−1)
FT ,𝜓

(𝑘−1)
FT

𝑘 = 1, . . . , 𝐾

𝜃*FT,𝜓
*
FT ≈ 𝜃

(𝐾)
FT ,𝜓

(𝐾)
FT ,

(4.4)

and compute the gradient 𝜕AlgFT
𝜕𝜃PT

⃒⃒⃒
𝜃*PT(𝜑′)

by differentiating through this optimization.3

It is also possible to freeze the feature extractor parameters 𝜃FT and update only

the head parameters 𝜓FT during truncated FT and to obtain meta-parameter gradi-

ents. This resembles linear evaluation, where a linear classifier is trained on top of

fixed, pre-trained feature extractors [134, 5, 177].

3While Equation 4.4 uses standard gradient descent, we could use other differentiable optimizers
(e.g., Adam).
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Together, these two approximations allow for efficient computation of meta-parameter

gradients.

4.4.2 Our Algorithm and Practical Considerations

By leveraging the above approximations, we obtain Algorithm 2 to optimize meta-

parameters 𝜑 online during PT & FT of the base model. Note that AlgPT is explicitly

written out as a sequence of gradient updates (lines 4-6 in Algorithm 2). By using data

from the FT set during pre-training (to optimize meta-parameters), our algorithm

couples the PT and FT problems, helping to mitigate issues with negative transfer.

There are certain important implementation details and practical considerations for

this algorithm, which we now discuss. Further details are given in Appendix C.2.

Algorithm 2 Gradient-based algorithm to learn meta-parameters. Notation defined
in Table C.1. Note that vector-Jacobian products (VJPs) can be efficiently computed
by standard autodifferentiation.

1: Initialize PT parameters 𝜃(init)
PT ,𝜓

(init)
PT ,𝜓

(init)
FT and meta-parameters 𝜑(0)

2: for 𝑛 = 1, . . . , 𝑁 iterations do
3: Initialize 𝜃(0)PT = 𝜃

(init)
PT and 𝜓(0)

PT = 𝜓
(init)
PT .

4: for 𝑝 = 1, . . . , 𝑃 PT iterations do

5:
[︁
𝜃
(𝑝)
PT,𝜓

(𝑝)
PT

]︁
=
[︁
𝜃
(𝑝−1)
PT ,𝜓

(𝑝−1)
PT

]︁
−𝜂PT

𝜕𝐿PT

𝜕
[︁
𝜃PT,𝜓PT

]︁ ⃒⃒⃒⃒
𝜃
(𝑝−1)
PT ,𝜓

(𝑝−1)
PT

# Unrolled step of AlgPT

6: end for
7: if 𝑛 < 𝑁warmup then
8: Update PT initialization by setting: 𝜃(init)

PT = 𝜃
(𝑃 )
PT and 𝜓(init)

PT = 𝜓
(𝑃 )
PT

9: Skip meta-parameter update and continue
10: end if
11: Initialize FT parameters 𝜓(0)

FT = 𝜓
(init)
FT and 𝜃(0)FT = copy(𝜃(𝑃 )

PT ).

12: Approximate 𝜃*FT,𝜓
*
FT using (4.4), with 𝒟(tr)

FT .

13: Compute 𝑔1 = 𝜕𝐿FT

𝜕
[︁
𝜃FT, 𝜓FT

]︁ ⃒⃒⃒⃒
𝜃*
FT,𝜓*

FT

, using 𝒟(val)
FT . # FT Loss gradient

14: Compute VJP 𝑔2 = 𝑔1
𝜕AlgFT
𝜕𝜃PT

⃒⃒⃒
𝜃
(𝑃 )
PT ,𝜓

(0)
FT

using the unrolled learning step from line 12, and

𝒟(tr)
FT .

15: Approximate VJP 𝜕𝑔
𝜕𝜑

⃒⃒⃒
𝜑(𝑛−1)

= 𝑔2
𝜕AlgPT

𝜕𝜑

⃒⃒⃒
𝜑(𝑛−1)

using IFT (4.3).

16: 𝜑(𝑛) = 𝜑(𝑛−1) − 𝜂V
𝜕𝑔
𝜕𝜑

⃒⃒⃒
𝜑(𝑛−1)

# Update meta-parameters

17: Update PT initialization by setting: 𝜃(init)
PT = 𝜃

(𝑃 )
PT and 𝜓(init)

PT = 𝜓
(𝑃 )
PT .

18: Update FT initialization by setting: 𝜓(init)
FT = 𝜓*

FT.
19: end for
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(1) Notational clarification: vector concatenation: We use the notation:[︁
𝜃FT, 𝜓FT

]︁
to represent concatenation of the two vectors 𝜃FT and 𝜓FT. The output

of AlgFT contains two parameter vectors, and these are implicitly concatenated to

make sure that dimensionalities agree in the algorithm.

(2) Access to 𝒟FT and generalizing to new FT tasks: Solving the meta-PT

problem requires availability of the model 𝑓∙, the PT data 𝒟PT, and the FT data

𝒟FT. In this work, we assume availability of the model and PT dataset, but since

assuming access to the complete FT dataset at meta-PT time is more restrictive, we

study two scenarios: Full FT Access, where all FT data that we expect to encounter

is available at meta-PT time, and Partial FT Access, where the FT data available at

meta-PT time is only a sample from the full distribution of FT data.

Full FT Access occurs in settings like semi-supervised learning, where we are

given a large unlabelled PT dataset and a small labelled FT dataset and our goal

is to achieve the best possible performance by leveraging these two fixed datasets

[199, 206, 78, 76, 30, 31].

Partial FT Access occurs when our goal is to learn transferable representations:

at meta-PT time, we might have limited knowledge of FT tasks or data. In evaluating

this scenario, we examine generalizability to new FT tasks, given only small amounts

of FT data/task availability at meta-PT time, demonstrating that even very limited

FT access can be sufficient for effective meta-parameter optimization [46, 119, 154, 84].

(3) 𝒟FT splits: In practice, we have access to finite datasets and use minibatches,

rather than true data-generating processes. Following standard convention, we split

𝒟FT into two subsets for meta-learning: 𝒟(tr)
FT and 𝒟(val)

FT (independent of any held-out

𝒟FT testing split), and define the FT data available at meta-PT time as 𝒟(Meta)
FT =

𝒟(tr)
FT ∪ 𝒟

(val)
FT . We use 𝒟(tr)

FT for the computation of 𝜕AlgFT
𝜕𝜃PT

⃒⃒⃒
𝜃
(𝑃 )
PT ,𝜓

(0)
FT

and 𝜕AlgPT
𝜕𝜑

⃒⃒⃒
𝜑(𝑛−1)

and 𝒟(val)
FT for the computation of 𝜕𝐿FT

𝜕

[︃
𝜃FT, 𝜓FT

]︃
⃒⃒⃒⃒
⃒⃒⃒
𝜃*FT,𝜓

*
FT

in Algorithm 2.
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(4) Online updates: Given that PT phases often involve long optimization hori-

zons, for computational efficiency, we update 𝜃PT and 𝜓PT online rather than re-

initializing them at every meta-iteration (see Algorithm 2). FT phases are often

shorter so we could in theory re-initialize 𝜓FT at each meta-iteration. However, for

computational and memory efficiency, in our experiments, we also optimize these pa-

rameters online. For 𝜓FT, this makes each meta-iteration resemble a “warm-start” to

the FT problem. Algorithm 2, reflects this implementational detail.

Note that prior work [198] has suggested that online optimization of certain hyper-

parameters (e.g., learning rates) using short horizons may yield suboptimal solutions.

We comment on this in Appendix C.2, study this effect for our algorithm in syn-

thetic experiments in Appendix C.4, and in real-world experiments on self-supervised

learning in Appendix C.6, revealing it is not a significant concern.

(5) Warmup iterations: We can optionally include warmup iterations where we

optimize the PT parameters and do not perform updates to the meta-parameters.

This is to ensure that the PT parameters are a reasonable approximation of ℒPT-

optimal parameters. The description in Algorithm 2 reflects this detail, with the

𝑁warmup reflecting the number of warmup iterations.

(6) Computational tractability: Our method can scale to large encoder models

and high-dimensional meta-parameters, despite the complexity of the two-stage PT &

FT process. This is because: (i) meta-parameters are optimized jointly with the base

model parameters; (ii) using the IFT to obtain gradients has similar time and memory

complexity to one iteration of training [113]; (iii) the FT best response Jacobian can

be approximated efficiently using a small number of unrolled optimization steps 𝐾,

and by only unrolling the FT head of the network. In our real-world experiments

(Sections 4.6 and 4.7), meta-parameterized PT has less than twice the time cost of

standard PT. Further details on time and memory cost are provided in Appendices C.5

and C.6.
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(7) Setting optimizer parameters: Learning rates and momentum values can

impact the efficacy of the algorithm. A discussion on how to set them in practice is

provided in Appendix C.3.

4.4.3 Connections to Other Algorithms in this Thesis

The algorithm presented here has two clear connections to the other nested optimiza-

tion work in this thesis.

Firstly, computing gradients wrt the fine-tuning initialization point (i.e., the pre-

trained parameters) via differentiating through optimization, mirrors what is done in

the MAML algorithm [56] in Chapter 2 for few-shot learning. Our new algorithms in

Chapter 2, ANIL and NIL, also utilize this same strategy during the meta-training

phase. Recall that we employ differentiating through optimization for this gradient

term rather than implicit differentiation since the initialization point does not directly

affect the optimized loss, as discussed in Section 4.4.1.

Secondly, the use of implicit differentiation techniques (through the implicit func-

tion theorem) to approximately compute gradients through long optimization tra-

jectories is used in Chapter 3 when optimizing the parameters of our flexible data

augmentation pipeline, TaskAug. Implicit differentiation is a sensible choice in both

cases since the parameters we wish to optimize (pre-training meta-parameters in this

chapter, and augmentation hyperparameters in Chapter 3) directly impact the opti-

mal value of the optimized model parameters.

Overall, this algorithm can be viewed as extending traditional one-stage gradient-

based hyperparameter optimization strategies to the two-stage pre-training & fine-

tuning problem.

4.5 Synthetic Experiments

We validate that our algorithm recovers optimal low and high dimensional meta-

parameters in two synthetic MNIST experiments with Full FT Access. Further details

and results are provided in Appendix C.4, including a study of how our method
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performs comparably to differentiating exactly through the entire learning process of

PT & FT, without approximations.

First, we optimize low dimensional meta-parameters characterizing a data aug-

mentation scheme. We tune a 1-D meta-parameter 𝜑 representing the mean of a

normal distribution 𝒩 (𝜑, 12) from which we sample rotation augmentations to apply

to PT images. FT images undergo rotations from a normal distribution 𝒩 (𝜇FT, 1
2)

with 𝜇FT = 90∘; we therefore expect that 𝜑 should converge to near 𝜇FT. Using Algo-

rithm 2 to optimize 𝜑, we find that the mean error in the optimized meta-parameter

over 10 different initializations is small: 7.2±1.5∘, indicating efficacy of the algorithm.

Next, we consider learning high dimensional meta-parameters that characterize a

PT per-example weighting scheme. The PT dataset contains some examples that have

noisy labels, and FT examples all have clean labels. The meta-parameters are the

parameters of a neural network that assigns importance weights to each PT example,

which is used to weight the loss on that example during PT. We use Algorithm 2 again

to optimize 𝜑, over 10 random initializations, finding the ratio of assigned importance

weights between clean label PT examples and noisy label PT examples is greater than

102. This is expected since the noisy label classes may worsen the quality of the PT

model and so should be down-weighted.

4.6 Meta-Parameterized Multitask Pre-Training for

Graph Neural Networks

We consider optimizing PT task weights for a multitask PT & FT problem of pre-

dicting the presence of protein functions (multitask binary classification) given graph-

structured biological data as input.

We have two experimental goals: first, in the Full FT Access setting, where meth-

ods are given access to all FT data at PT time, we evaluate whether optimizing task

weighting meta-parameters can improve predictive performance on the FT tasks. Sec-

ond, motivated by how in typical transfer learning problems, new tasks or labels not
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available at PT time may become available at FT time, we study the Partial FT

Access setting, investigating how our method performs when it only sees limited FT

tasks at PT time.

4.6.1 Problem Setup

Dataset and Task. We consider the transfer learning benchmark introduced in

[84], where the prediction problem at both PT and FT is multitask binary classi-

fication: predicting the presence/absence of specific protein functions (𝑦) given a

Protein-Protein Interaction (PPI) network as input (represented as a graph 𝑥). The

PT dataset has pairs 𝒟PT = {(𝑥𝑖, 𝑦𝑖)}|𝒟PT|
𝑖=1 , where 𝑦 ∈ {0, 1}5000 characterizes the

presence/absence of 5000 particular protein functions. The FT dataset has pairs

𝒟FT = {(𝑥𝑖, 𝑦𝑖)}|𝒟FT|
𝑖=1 , where 𝑦 ∈ {0, 1}40 now characterizes the presence/absence of

40 different protein functions. Further dataset details in Appendix C.5.

Meta-Parameterized Multitask PT. To define a meta-parameterized PT scheme,

we let meta-parameters 𝜑 ∈ R5000 be weights for the binary PT tasks. Then, we define

a PT loss incorporating the weights:

ℒPT =
1

5000

5000∑︁
𝑖=1

2 𝜎(𝜑𝑖) ℒCE(𝑓PT(𝑥;𝜃PT,𝜓PT)𝑖, 𝑦𝑖),

with 𝑖 indexing the tasks, 𝜎(·) representing the sigmoid function (to ensure non-

negativity and clamp the range of the weights), and ℒCE denoting the binary cross-

entropy loss. With this loss defined, we use Algorithm 2 (with 𝑃 = 10 PT steps and

𝐾 = 1 truncated FT steps) to jointly learn 𝜑 and the feature extractor parameters

𝜃PT. For computational efficiency, we only update the FT head when computing the

FT best response Jacobian and keep the feature extractor of the model fixed. We

use the training and validation splits of the FT dataset 𝒟FT proposed by the dataset

creators [84] for computing the relevant gradient terms.

Baselines. Motivated by our goals, we compare with the following PT baselines:
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• No PT: Do not perform PT (i.e., feature extractor parameters are randomly

initialized).

• Graph Supervised PT: As explored in prior work on this domain [84], per-

form multitask supervised PT with 𝒟PT. This corresponds to setting all task

weights to 1: 𝜑𝑖 = 1, 𝑖 = 1, . . . , 5000.

• CoTrain: A common baseline that makes use of the FT data available during

PT [201] (like meta-parameterized PT). We PT a model with 5000+40 outputs

(covering the space of PT and FT labels) jointly on both 𝒟PT and 𝒟FT. We

do so by alternating gradient updates on batches sampled from each dataset in

turn. Further details are in Appendix C.5.

• CoTrain + PCGrad: An extension of CoTrain, where we leverage the method

PCGrad [205] to perform gradient projection and prevent destructive gradient

interference between updates from 𝒟PT and 𝒟FT. Further details and variants

we tried are in Appendix C.5.

Experimental Details. We use a standardized setup to facilitate comparisons.

Following [84], all methods use the Graph Isomorphism Network architecture [200],

undergo PT for 100 epochs, and FT for 50 epochs, over 5 random seeds. At FT time,

we employ early stopping based on validation set performance (so models are trained

for a maximum of 50 epochs). During FT, we initialize a new FT network head and

either FT the whole network or freeze the PT feature extractor and learn the FT head

alone (Linear Evaluation [134]). We report results for the strategy that performed

best (full results in the appendix). We consider two experimental scenarios: (1) Full

FT Access: Provide methods full access to 𝒟PT and 𝒟FT at PT time (𝒟(Meta)
FT = 𝒟FT)

and evaluate on the full set of 40 FT tasks; (2) Partial FT Access: Limit the number

of FT tasks seen at PT time, by letting 𝒟(Meta)
FT include only 30 of the 40 FT tasks.

At FT time, models are fine-tuned on the held-out 10 tasks not in 𝒟(Meta)
FT . We use

a 4-fold approach where we leave out 10 of the 40 FT tasks in turn, and examine

performance across these 10 held-out tasks, over the folds.
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Method AUC (𝒟(Meta)
FT = 𝒟FT) AUC (𝒟(Meta)

FT excludes tasks)

No PT 66.6 ± 0.7 65.8 ± 2.5
Graph Supervised PT 74.7 ± 0.1 74.8 ± 1.8
CoTrain 70.2 ± 0.3 69.3 ± 1.8
CoTrain + PCGrad 69.4 ± 0.2 68.1 ± 2.3
Meta-Parameterized PT 78.6 ± 0.1 77.0 ± 1.3

Table 4.1: Meta-Parameterized PT improves predictive performance over base-
lines. Table showing mean AUC and standard error for two evaluation settings. When
provided all FT data at PT time (first results column), meta-parameterized PT significantly
improves predictive performance. In a more challenging setting when 𝒟(Meta)

FT excludes FT
tasks (10 of the 40 available tasks are held-out), evaluating mean AUC/standard error across
four folds with each set of 10 FT tasks held out in turn, meta-parameterized PT again obtains
the best performance: it is effective even with partial information about the downstream
FT tasks.

4.6.2 Results

Key Findings. By optimizing PT task weights, meta-parameterized multitask PT

improves performance on the FT problem of predicting presence/absence of protein

functions given a protein-protein interaction graph as input. Performance improve-

ments are also seen when generalizing to new FT tasks (protein functions), unseen at

meta-PT time.

Commentary on results. Table 4.1 presents quantitative results for the two ex-

perimental settings described. For the No PT and Graph Supervised PT baselines, we

re-implement the methods from [84], obtaining improved results (full comparison in

Appendix Table C.3). In both full and partial FT access settings, meta-parameterized

PT improves on other methods, indicating that optimizing meta-parameters can im-

prove predictive performance generally, and be effective even when new, related tasks

are considered at evaluation time. Interestingly, we observe that CoTrain and Co-

Train + PCGrad obtain relatively poor performance compared to other baselines;

this could be because the methods overfit to the FT data during PT. Further analysis

of this is presented in Appendix C.5.
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Further experiments. In Appendix C.5, we study another partial FT access

scenario with smaller 𝒟(Meta)
FT , setting

⃒⃒⃒
𝒟(Meta)

FT

⃒⃒⃒
= 0.5 |𝒟FT|, and find that meta-

parameterized PT again outperforms other methods. (Table C.5). We also examine

another meta-parameter learning baseline, namely a version of CoTrain where we op-

timize task weights using a traditional hyperparameter optimization algorithm [113]

jointly with the main model. We find that our method outperforms this baseline also

(Table C.3).

Analysis of learned structures. In Appendix C.5, we conduct further analysis

and study the effect of various PT strategies on the pre-trained representations (Fig-

ure C-2), finding intuitive patterns of similarity between different methods. We also

examine the learned task weights (Figure C-3), and examine performance on a per-FT

task basis with/without meta-parameterized PT (Figure C-4), finding little evidence

of negative transfer.

4.7 Meta-Parameterized SimCLR for Semi-Supervised

Learning with ECGs

We now explore a second real-world application of our method: optimizing a data

augmentation policy for self-supervised PT with SimCLR [30, 31] on electrocardio-

grams (ECGs). SimCLR is a popular self-supervised PT method that leverages data

augmentations to define a contrastive PT objective (details in Appendix C.6.1). The

choice/strength of the augmentations used significantly impacts the effectiveness of

the algorithm [30]. In settings where relevant augmentations are known (e.g., natural

images), SimCLR is readily applicable; however, for ECGs, effective augmentations

are less clear, motivating the use of our algorithm to optimize the augmentation

pipeline. This question of finding effective data augmentations for ECG data is also

the focus of Chapter 3 of this thesis; however, in that contribution, we explored fully

supervised learning, whereas here, we study a self-supervised PT scenario where we

have unlabelled data.
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Figure 4-2: A single lead (or channel) of the 12 lead ECG signal and two augmented views
(following cropping, jittering, and temporal warping) that are used in contrastive learning.

We have two experimental goals. Firstly, we examine the typical semi-supervised

learning setting of Full FT Access : we explore whether optimizing the augmentations

in SimCLR PT can improve performance on the supervised FT task of detecting

pathologies from ECGs, given access to all FT data at meta-PT time. Secondly, to

study the data efficiency of our method, we consider the Partial FT Access setting

and explore performance given access to limited FT data at meta-PT time.

4.7.1 Problem Setup

Dataset and Task. We construct a semi-supervised learning (SSL) problem using

PTB-XL [191, 61], an open-source dataset of electrocardiogram (ECG) data. We also

use this dataset in our experimental evaluation in Chapter 3.

Let the model input at both PT and FT time be denoted by 𝑥, which represents

a 12-lead (or channel) ECG sampled at 100 Hz for 10 seconds resulting in a 1000×12

signal. Our goal is to pre-train a model 𝑓PT on an unlabeled PT dataset of ECGs

𝒟PT = {𝑥𝑖}|𝒟PT|
𝑖=1 using SimCLR PT [30], and then fine-tune it on the labeled FT

dataset 𝒟FT = {(𝑥𝑖, 𝑦𝑖)}|𝒟FT|
𝑖=1 , where the FT labels 𝑦 ∈ {0, 1}5 encode whether the

signal contains certain features indicative of particular diseases/pathologies. Further

dataset details in Appendix C.6.

ECG Data Augmentations. To augment each ECG for SimCLR, we apply three

transformations in turn (based on prior work in time series augmentation [87, 197]):

1. Random cropping: A randomly selected portion of the signal is zeroed out.
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2. Random jittering: IID Gaussian noise is added to the signal.

3. Random temporal warping: The signal is warped with a random, diffeomor-

phic temporal transformation. This is formed by sampling from a zero mean,

fixed variance Gaussian at each temporal location in the signal to obtain a ve-

locity field, and then integrating and smoothing (following [9, 10]) to generate

a temporal displacement field, which is applied to the signal.

An example of applying these augmentations is shown in Figure 4-2.

Meta-Parameterized SimCLR. To construct a meta-parameterized SimCLR PT

scheme, we instantiate meta-parameters 𝜑 as the weights of a neural network 𝑤(𝑥;𝜑)

that takes in an input signal and outputs the warp strength: the variance of the

Gaussian that is used to obtain the velocity field for temporal warping. This param-

eterization permits signals to be warped more/less aggressively depending on their

individual structure. With this definition, the SimCLR PT loss is directly a function

of the meta-parameters, and we can use Algorithm 2 (with 𝑃 = 10 PT steps and

𝐾 = 1 truncated FT steps) to jointly learn 𝜑 and the feature extractor parameters

𝜃PT. For computational efficiency, we only update the FT head when computing the

FT best response Jacobian and keep the feature extractor of the model fixed. We

use the training and validation splits of the FT dataset 𝒟FT proposed by the dataset

creators [191] for computing the relevant gradient terms.

Baselines. Our experimental goals suggest the following PT baselines:

• No PT: Do not perform PT (i.e., feature extractor parameters are randomly

initialized).

• SimCLR: Pre-train a model using SimCLR with the above three augmentations

without learning per-example temporal warping strengths.

Experimental Details. We standardize the experimental setup to facilitate com-

parisons. All methods use a 1D CNN based on a ResNet-18 [77] architecture. The
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Test AUC at different FT dataset sizes |𝒟FT|

FT dataset size |𝒟FT| 100 250 500 1000 2500

No PT 71.5 ± 0.7 76.1 ± 0.3 78.7 ± 0.3 82.0 ± 0.2 84.5 ± 0.2
SimCLR 74.6 ± 0.4 76.5 ± 0.3 79.8 ± 0.3 82.2 ± 0.3 85.8 ± 0.1
Meta-Parameterized SimCLR 76.1 ± 0.5 77.8 ± 0.4 81.7 ± 0.2 84.0 ± 0.3 86.7 ± 0.1

Table 4.2: Meta-Parameterized SimCLR obtains improved semi-supervised
learning performance. Table showing mean AUC/standard error over seeds across 5
FT binary classification tasks for baselines and meta-parameterized SimCLR at different
sizes of 𝒟FT, with 𝒟(Meta)

FT = 𝒟FT. We observe improvements in performance with meta-
parameterized SimCLR, which optimizes the augmentation pipeline.

temporal warping network 𝑤(𝑥;𝜑) is a four layer 1D CNN. SimCLR PT takes place

for 50 epochs for all methods (further PT did not result in improved performance

after FT), over three PT seeds. At evaluation time, for all methods, we initialize

a new FT network head over the PT network feature extractor and FT the whole

network for up to 200 epochs (with early stopping based on validation set AUC), over

five FT seeds. We consider two experimental settings: (1) Full FT Access, standard

SSL: consider different sizes of the labelled FT dataset 𝒟FT and make all the FT data

available at meta-PT time, 𝒟(Meta)
FT = 𝒟FT; and (2) Partial FT Access, examining

data efficiency of our algorithm: SSL when only limited FT data is available at meta-

PT time: 𝒟(Meta)
FT ⊆ 𝒟FT. We evaluate performance across the 5 binary classification

tasks in both settings. Further details are provided in Appendix C.6.

4.7.2 Results

Key Findings. By optimizing the data augmentation policy used in SimCLR PT,

meta-parameterized SimCLR improves performance on the FT problem of detecting

pathologies from ECG data. Even a small amount of FT data provided at meta-PT

time can lead to improved FT performance.

Commentary on results. Table 4.2 shows results for the Full FT Access setting,

𝒟(Meta)
FT = 𝒟FT: mean AUC/standard error over seeds across the 5 FT binary classifi-

cation tasks at different sizes of 𝒟FT. We observe that meta-parameterized SimCLR
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improves on other baselines in all settings. Note that these gains are obtained with

simple augmentation policies; our method might yield further improvements if ap-

plied to policies with more scope to specialize the augmentations. Leveraging some of

the insights from the augmentations developed in Chapter 3, and generalizing them

to become task agnostic, might be a promising direction of exploration.

Next, we consider the Partial FT Access scenario where 𝒟(Meta)
FT ⊆ 𝒟FT, which

is relevant when we only have a small amount of FT data at meta-PT time. Fixing

|𝒟FT| = 500, we find that with |𝒟(Meta)
FT | as small as 50, we obtain test AUC of

81.3± 0.5, compared to 79.8± 0.3 with no optimization of augmentations: this shows

that even small |𝒟(Meta)
FT | appear to be sufficient for meta-parameter learning. Further

results showing performance curves varying |𝒟(Meta)
FT | are in Appendix C.6.

Further experiments. In Appendix C.6, we study other aspects of our method on

this domain, including: (1) Exploring different values of 𝐾, the number of FT steps

differentiated through when obtaining meta-parameter gradients; and (2) Examining

a meta-parameter learning baseline where augmentations are optimized for supervised

learning, using the method in [113], and then applied to semi-supervised learning (to

compare how optimizing augmentations for supervised learning compares to optimiz-

ing them for semi-supervised learning). We find that our method is not very sensitive

to the value of 𝐾 (provided 𝐾 > 0), and that it outperforms this additional baseline.

4.8 Scope and Limitations

Intended use-case. Our gradient-based algorithm applies in situations where we

want to optimize PT hyperparameters, or meta-parameters, and have access to a

model, PT data, and FT data. We demonstrated that even limited FT data avail-

ability can be sufficient to guide meta-parameter learning; however, our method would

not apply when no FT data at all is available at meta-PT time, or if the model and/or

PT data were not available at meta-PT time. In general, our method is most useful

when the PT process is long and/or the meta-parameter space is high-dimensional,
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and so it is not feasible to use methods such as random/grid search and Bayesian

optimization (which involve multiple runs of PT and FT). In a setting like that de-

scribed in Chapter 5, where self-supervised PT and FT are relatively quick to run and

there meta-parameters are low-dimensional, a grid search is more efficient than using

this nested optimization algorithm and optimizing its learning rate hyperparameters.

Requirements on meta-parameters. Our algorithm requires meta-parameters

to be differentiable, and cannot directly be used to optimize meta-parameters that

do not affect the PT optimization landscape (e.g., PT learning rates). Similarly to

what was discussed in Chapter 3, the initialization point of meta-parameters is im-

portant. If meta-parameters are initialized poorly, it will be difficult for our algorithm

to recover from that setting and be effective. One strategy to address this in prac-

tice could be to conduct a small random search to find a promising meta-parameter

initialization, and then applying our algorithm afterwards.

4.9 Conclusion

In this chapter, we investigated the popular pre-training (PT) followed by fine-tuning

(FT) paradigm. In this setting, our goal is to train a model on a task of interest that

only has limited labelled data (the FT task). To address this data scarcity challenge,

we employ a two stage training process: we first use a large related dataset (the

PT dataset) to learn an effective initialization for the model parameters, and then

we further optimize these model parameters for the task of interest. This two-stage

training can result in improved performance compared to training directly on the

downstream task.

We began by identifying that the PT & FT paradigm, although effective, intro-

duces high-dimensional design choices, or meta-parameters during the PT phase. To

pre-train a model effectively, these meta-parameters must be optimized well. We out-

lined a new PT algorithm that jointly optimizes meta-parameters and model parame-

ters by efficiently approximating gradients through the two-stage PT & FT optimiza-
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tion. In experiments, we found that using our PT algorithm improves performance

over baselines (following FT) on two real-world tasks: transfer learning on graph

structured biological data [84], and semi-supervised learning on electrocardiograms

[191].
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Chapter 5

Self-Supervised Learning for Complex

Clinical Time-Series

5.1 Introduction

In the previous chapter, we studied the data-efficient learning paradigm of pre-training

(PT) followed by fine-tuning (FT), and in particular explored how to pre-train models

more effectively using tools from nested optimization. In this chapter, we continue our

investigation of this paradigm, but instead of exploring how to improve PT algorithms

more generally (the goal of Chapter 4), we focus on developing a new PT algorithm for

complex, unlabelled clinical time series data, using tools from self-supervised learning

(SSL).

There have been many efforts in the literature to develop self-supervised PT algo-

rithms for clinical time series data, with the goal of using these pre-trained models for

various downstream predictive tasks with small labelled datasets [120, 195, 182, 204,

179]. In particular, developing PT algorithms for clinical time series data from the

intensive care unit (ICU) has been well-studied, since patients in the ICU are closely

monitored and consequently generate a profusion of unlabeled time series data, which

contains significant physiological information about a patient’s state and progression

over time [93].

Although prior works develop effective strategies to model clinical time series data,
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they typically focus only on unimodal time series, such as a sequence of structured fea-

tures alone, or an individual high dimensional physiological signal. In reality however,

data originating from a patient’s encounter is significantly more complex, containing

multimodal data recorded at regular intervals. As an example, a given patient might

have two very different types of data recorded hourly: (1) high-frequency physiological

signals (e.g., an electrocardiogram recorded at 240 Hz); and (2) structured data from

labs and vitals signs. These modalities provide complementary information about a

patient’s physiological state. Extending existing SSL methods to operate on these

time series is challenging, since they do not deal with sequences of high-dimensional

data, and do not contend with the multimodal data stream.

In this chapter, we take steps towards addressing this gap and outline an approach

for self-supervised pre-training on these complex clinical time series. We propose a

SSL strategy where we jointly optimize two SSL losses to better capture structure in

the data. Our contributions are as follows:

1. We formalize the problem of self-supervised learning (SSL) on trajectories, our

abstraction of a multimodal time series that contains complex, high-dimensional

data recorded at each timestep in the sequence.

2. We outline a new SSL method, Sequential Multi-Dimensional Self-Supervised

Learning (SMD SSL), for trajectories. Motivated by the structure of trajecto-

ries, SMD SSL incorporates two losses: (1) a component SSL loss on the level of

individual high dimensional data points in the sequence; and (2) a global SSL

loss on the level of the overall sequence. SMD SSL can be instantiated with

contrastive losses, as in SimCLR [30] or non-contrastive losses, as in VICReg

[14]. This is beneficial since different loss functions may be effective in different

applications.

3. We evaluate SMD SSL on two real-world clinical datasets where the time series

contains sequences of (1) high-frequency electrocardiograms and (2) structured

data from labs and vitals signs. On both datasets and on two downstream

tasks — (1) detecting elevated pulmonary pressures and (2) predicting 24 hour
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mortality — we find SMD SSL improves performance over baselines. In sev-

eral settings, we observe performance boosts using both SimCLR and VICReg

objective functions.

5.2 Related Work

Self-supervised learning (SSL). SSL methods are used to pre-train models and/or

learn generalizable representations using unlabeled data. Many existing methods take

either a multiview perspective [30, 33, 14, 76, 33, 67] or an autoregressive denoising

approach [188, 75]. Here, we focus on multiview approaches since they have been

effective in improving predictive performance on clinical tasks [195, 182].

SSL for clinical data. Existing applications of multiview SSL to medical data

have been focused either on physiological signals, such as electrocardiograms (ECGs)

[35, 98, 63, 47, 133], on sequences of tabular data, such as laboratory tests [204, 107], or

on medical imaging [156]. In contrast, we consider SSL on time series where individual

timesteps contain both high-dimensional data (such as ECGs) and structured features.

Prior studies exploring SSL on multimodal medical data typically infer one modality

of data from the other at test time, such as predicting radiologist comments from

chest X-ray images [180], rather than modeling sequences of multimodal data where

the modalities present non-overlapping sources of information, as we do here.

Multilevel SSL loss functions. Our method uses a two-level loss function that

is motivated by the complex structure of the data stream we consider: sequences in

which individual elements are themselves high-dimensional. A related approach in

computer vision, VICRegL [15], applies multilevel self-supervision to images where

patch-level similarity is defined using spatial transformations. In contrast to VI-

CRegL, which formulates a component level loss using patches, our method formulates

a component level loss on entire signals, and so operates on a different level of abstrac-

tion. Another recent method decouples local and global representation learning for

a single time series [183]. This work also operates on a different level of abstraction
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Figure 5-1: An example of a multimodal clinical time-series or trajectory’ The
trajectory 𝜏 contains an static vector 𝑑 consisting of measurements that remain constant over
the time period, and a sequence of high-dimensional physiological signals 𝑠𝑡 and structured
data 𝑤𝑡 measured at each time step. Here, each time step is a 1 hour window.

than ours, since it does not consider sequences of time series. Finally, [156] demon-

strate that multiscale SSL for neuroimaging offers improvement on downstream tasks.

However, their techniques are tailored for neuroimaging and do not generalize readily

to the data we consider.

5.3 Methods

In this section, we describe our approach for self-supervised learning (SSL) on mul-

timodal clinical time series: Sequential Multi-Dimensional SSL. We first outline our

problem setup, describing the multimodal data stream that we consider. We then

detail our SSL scheme, specifying the loss functions used to learn representations on

both an individual timestep (component) level and on a overall sequence (global)

level. We conclude with a discussion of other applications of the method.

5.3.1 Problem Setup

Defining trajectories. We use the term trajectory to refer to a sequence of physio-

logical signals and structured data collected over time for a patient. This definition is

motivated by an important use-case in cardiovascular medicine, where patients may

be monitored with telemetry devices that regularly record physiological waveforms

in addition to having lab tests and vitals signs periodically measured. The concept

of a trajectory could be expanded to include other information, such as imaging or

medications, depending on the context.
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Figure 5-2: Model architecture used in our experiments. We show the architecture
used to model trajectories in a scenario where the input trajectory has 3 timesteps.

Formally, a trajectory 𝜏 of length 𝑇 has the structure:

𝜏 = (𝑑, {(𝑤𝑡, 𝑠𝑡)}𝑇𝑡=1).

Here, 𝑑 ∈ R𝐿 represents a set of static features that do not change over the trajectory

(such as demographic information or infrequently measured lab values). The sequence

{(𝑤𝑡, 𝑠𝑡)}𝑇𝑡=1

contains a vector of structured data 𝑤 ∈ R𝑀 , and a high-dimensional signal 𝑠 ∈ R𝐶×𝑃 ,

where 𝐶 is the number of signal channels and 𝑃 is the number of samples in the

signal (typically on the order of a few thousand). Note that under this definition, a

trajectory is a time-series where the data at each time step also contains a time series

(the signal). A visualization of a trajectory is shown in Figure 5-1.

Trajectory neural network. Trajectories are mapped into vector representations

using a neural network 𝑓𝜃 with three components (Figure 5-2): (1) a static and struc-

tured features encoder 𝑓𝑤,𝑑𝜃 ; (2) a signals encoder 𝑓 𝑠𝜃 ; and (3) a sequence module 𝑓 𝜏𝜃 .
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At each timestep 𝑡, the modalities are embedded and concatenated into timestep

representations:

𝑧𝑡 = concat
(︁
𝑓𝑤,𝑑𝜃 (𝑤𝑡, 𝑑), 𝑓

𝑠
𝜃 (𝑠𝑡)

)︁
.

The sequence module maps these representations into a vector:

𝑧 = 𝑓 𝜏𝜃 (𝑧1, 𝑧2, . . . , 𝑧𝑇 ).

In a supervised setting, a classifier 𝑐𝜓 maps 𝑧 to a predicted label 𝑦.

Also shown in Figure 5-2 is the projection head 𝑔𝜑, which is used during self-

supervised learning (as described in Section 5.3.2). More implementation details

about the architecture are presented in Appendix D.2.2.

Trajectory self-supervised learning (SSL). Inspired by recent work in SSL

[30, 31, 14, 208], we consider a two-stage learning problem: pre-training (PT) followed

by fine-tuning (FT). We first pre-train the model 𝑓𝜃 on an unlabelled dataset of

trajectories using some SSL algorithm, and then evaluate the SSL method by FT

this pre-trained model on a set of downstream tasks and measuring performance on

these tasks. At FT time, different paradigms could be used – we could initialize a

classification head and then fine-tune the whole model, or train a linear classifier on

the frozen model.

Note that this paradigm of PT followed by FT was also studied in Chapter 4 –

as discussed previously in this thesis, it is a general framework for building powerful

neural network models in situations where a FT task of interest is data-scarce. Here,

our innovation is to develop a new PT algorithm for multimodal, multidimensional

trajectory data, rather than use nested optimization to improve existing PT algo-

rithms (as in Chapter 4). Given our use-case of PT on unlabelled data, we also focus

exclusively on self-supervised PT, rather than supervised PT.

To pre-train the model, we assume access to an unlabelled PT dataset of 𝑁PT

patient trajectories, 𝒟PT = {𝜏 (𝑛)}𝑁PT
𝑛=1 . To fine-tune the model, we assume access to
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Figure 5-3: Overview of Sequential Multi-Dimensional Self-Supervised Learning
(SMD SSL), which uses losses at two levels to encourage effective pre-training on complex
time series. We start with a batch of trajectories, each denoted 𝜏 , consisting of a static vector
𝑑 (not shown for clarity) and a sequence of signals 𝑠𝑡 and structured data 𝑤𝑡 (sequence of
length 2 here). These data are augmented on a per-modality and per-timestep basis (arrows
show flow for the data at a single timestep) and passed through encoders 𝑓 𝑠𝜃 and 𝑓𝑤,𝑑𝜃 to
generate local embeddings of the signals and structured data at each timestep. The signal
embeddings pass through a projection head 𝑔𝑠𝜑, after which we compute a component SSL
loss ℒC. Separately, the embedding of the entire trajectory (obtained by concatenating the
per-modality embeddings) is passed through a sequence model 𝑓 𝜏𝜃 and a global projection
head 𝑔𝜑, on which we compute the global SSL loss ℒG. The total loss ℒPT is a weighted sum
of the component and global losses. SMD SSL can be instantiated with both contrastive and
non-contrastive losses – shown here is a contrastive framing (as in SimCLR) with explicit
negative pairs.

a set of labelled FT datasets – given 𝐾 FT tasks indexed by 𝑘, we denote each FT

dataset as 𝒟(𝑘)
FT = {(𝜏 (𝑛), 𝑦(𝑛)}𝑁

(𝑘)
FT

𝑛=1 , where 𝑦(𝑛) denotes the label for a trajectory 𝜏 (𝑛).

5.3.2 Sequential Multi-Dimensional SSL

We propose a new method for SSL on trajectories – Sequential Multi-Dimensional

SSL (SMD SSL), depicted in Figure 5-3. Our approach builds on multi-view SSL like

SimCLR [30] and VICReg [14], since prior work has successfully used these strategies

on clinical data [47, 98, 63, 190, 133].

SMD SSL uses a loss function with two terms – a global loss, computed at the

trajectory level, and a component loss, computed at the individual signal level. We

now describe these two losses, and then present the overall objective.
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Global Loss

The global loss ℒG encourages the encoding model 𝑓𝜃 to embed similar trajectories

to similar points in the representation space. We follow related work [30] and define

a similar (or positive) pair of trajectories to be those that are augmentations of the

same base trajectory, and negatives to be other trajectories in the sampled batch.

Given a trajectory-level augmentation function, the computation of the global loss

proceeds as follows:

1. Sample a batch of trajectories from the PT dataset: {𝜏 (𝑛)}𝐵𝑛=1, where 𝐵 is the

batch size.

2. For each trajectory 𝜏 (𝑛), generate two augmented views of it: 𝜏 (𝑛) and 𝜏 (𝑛).

3. Pass the augmented views through the representation model 𝑓𝜃 and a projection

head 𝑔𝜑 generating two sets of projections: ℎ̃(𝑛) and ℎ̂(𝑛).

4. Assemble projected pairs into two sets of matrices: 𝐻̂ = [ℎ̂(1), . . . , ℎ̂(𝐵)], 𝐻̃ =

[ℎ̃(1), . . . , ℎ̃(𝐵)].

5. The global loss is equal to the trajectory self-supervised loss ℒ𝜏SSL computed on

these projections:

ℒG = ℒ𝜏SSL(𝐻̂, 𝐻̃). (5.1)

The choice of the trajectory self-supervised loss ℒ𝜏SSL is a design decision; one choice

is the normalized temperature-scaled cross-entropy loss (NT-Xent) as in SimCLR

[30, 31]. Given all 2𝐵 positive pairs (ℎ𝑖, ℎ𝑗) as the rows of the two matrices [𝐻̂, 𝐻̃]

and [𝐻̃, 𝐻̂], we compute:

ℒ𝜏NT-Xent =
1

2𝐵

2𝐵∑︁
𝑖=1

− log
exp(sim(ℎ𝑖, ℎ𝑗)/𝛾)∑︀2𝐵

𝑘=1 1[𝑘 ̸=𝑖] exp(sim(ℎ𝑖, ℎ𝑘)/𝛾)
, (5.2)

where sim(𝑎, 𝑏) is cosine similarity and 𝛾 is the temperature hyperparameter. Another

choice is the VICReg loss, minimizing mean squared error between positive pairs, with
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variance and covariance regularizers [14]:

ℒ𝜏VICReg = 𝜆𝐼(𝐻̂, 𝐻̃) + 𝜇Var(𝐻̂, 𝐻̃) + 𝜈Cov(𝐻̂, 𝐻̃), (5.3)

where 𝐼() is the mean squared error, Var() is the variance regularizer, Cov() is the

covariance regularizer, and 𝜆, 𝜇, and 𝜈 are hyperparameters. Flexibility in the form of

the loss function is beneficial since different applications might benefit from different

losses. In our experiments, we use the NT-Xent and VICReg loss functions.

Component Loss

Pre-training with the global loss is a straightforward application of SSL to trajecto-

ries. However, each trajectory contains complex substructures (the high-frequency

signals 𝑠𝑡) and the global loss alone may not be sufficient to guide the model to learn

useful representations of these substructures. Incorporating a second loss term on the

individual signal level, the component loss ℒC, leads to learning richer representations

of the signals.

Given a signal augmentation function, we compute the component loss as follows:

1. Sample a batch of trajectories from the PT dataset: {𝜏 (𝑛)}𝐵𝑛=1, where 𝐵 is the

batch size.

2. Generate two augmented views of each signal in each trajectory. For a given

trajectory 𝜏 (𝑛), let the two augmented sets of signals be: {𝑠(𝑛)𝑡 }𝑇𝑡=1 and {𝑠(𝑛)𝑡 }𝑇𝑡=1.

3. Pass the augmented views through the signal encoder model 𝑓 𝑠𝜃 and a signal

projection head 𝑔𝑠𝜑 generating two sets of projections: {ℎ̃(𝑛)𝑡 }𝑇𝑡=1 and {ℎ̂(𝑛)𝑡 }𝑇𝑡=1.

4. Assemble these pairs of projections into pairs on a per-timestep basis: 𝑆𝑡 =

[ℎ̂
(1)
𝑡 , . . . , ℎ̂

(𝐵)
𝑡 ], 𝑆𝑡 = [ℎ̃

(1)
𝑡 , . . . , ℎ̃

(𝐵)
𝑡 ],∀𝑡 = 1, . . . , 𝑇 .

5. The component loss is equal to the signal self-supervised loss ℒ𝑠SSL averaged
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over timesteps:

ℒC =
1

𝑇

𝑇∑︁
𝑡=1

ℒ𝑠SSL(𝑆𝑡, 𝑆𝑡). (5.4)

As with the global loss, the form of the signal SSL loss used is a design deci-

sion. The intuition for computing the signal SSL loss separately at each timestep is

that nearby timesteps in a trajectory can be very similar. Particularly if we use a

contrastive loss such as NT-Xent, we do not want these nearby timesteps to serve

as negative examples in the contrastive loss. Separating out the computation over

timesteps addresses this issue.

Overall Objective

The overall objective used at PT is:

ℒPT = 𝛼ℒG + 𝛽ℒC. (5.5)

The hyperparameters 𝛼 and 𝛽 control the contributions of the global and component

losses. Fixing 𝛼 = 0 is SSL on a signal-level alone (only PT the signal encoder) and

fixing 𝛽 = 0 is SSL on the overall trajectory level alone; we evaluate both in our

experiments, finding that combining the two losses is beneficial to performance. In

Appendix D.2.3, we study the evolution of the two losses over SMD SSL training,

which provides intuition as to the effect of each term during pre-training. We observe

that the two terms are not independent (minimizing one also contributes to the other

being reduced).

Connections to multi-scale learning. The overall objective can be interpreted

as a multi-scale SSL loss, capturing the fact that trajectories contain predictive in-

formation at two different scales: individual physiological signals (component) and

overall time series (global).

120



5.3.3 Augmentation Functions

SMD SSL requires augmentations for trajectories and signals in order to compute the

global and component losses respectively. We now describe these.

Trajectory augmentation. We form an augmented trajectory by separately aug-

menting each of the data modalities within the trajectory, using the following ap-

proach for each data type (further details in Appendix D.1):

• High-frequency signal 𝑠: For each twenty second long signal in the trajectory

of length 𝑇 , we form a pair of augmented views by first splitting the signal into

two disjoint segments (e.g., taking the first 10 seconds as one view, and the

second 10 seconds as the second view), and then applying random masking and

noise addition as augmentations to each view independently. This is similar

to the approach used in CLOCS [98]. The intuition is that two segments of a

signal that are close in time should encode similar physiology, and can therefore

be considered paired views. Random masking and noise addition are commonly

used as time-series augmentations [63, 208, 148, 88].

• Structured-time series data 𝑤: The tabular data sequence forms a 𝑇 ×𝑀

matrix over all timesteps of the trajectory. Following prior work [204], we apply

two data augmentation strategies to this matrix: Gaussian noise addition and

history cutout.

• Static features 𝑑: Following [204], we use random dropout and noise addition.

Other corruption strategies (e.g., [7]), were found to be less effective, potentially

because of being too strong (also seen in [106]). Dropout in particular is a

sensible augmentation here since static features are sometimes missing, and are

imputed with the mean in that case. Dropout therefore resembles a situation

where the feature was not measured in the data.

We note that our approach of forming augmented trajectories by independently trans-

forming each individual data type is straightforward, but not necessarily optimal.
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Exploring other strategies for generating multiple views of trajectory data is an im-

portant direction of future work.

Signal augmentation. For computational efficiency, we re-use the augmented sig-

nals already generated during the trajectory-level augmentation when computing the

component loss. However, additional/different augmentations could be applied on

the signal level.

5.3.4 Broader Applications of SMD SSL

We have instantiated SMD SSL for a setting in which multimodal trajectories con-

sists of a sequence of structured data and high-dimensional signals. Our approach is

potentially valuable in any setting where we have sequences of high-dimensional data

– the two-level loss function encourages representation learning on both an individual

signal level and an overall sequence level. For example, SMD SSL could be useful in

modeling sequence of medical images for a patient taken over time. The component

loss encourages learning rich embeddings of individual images, and the global loss

encourages learning temporal trends.

5.4 Experiments

In this section, we evaluate Sequential Multi-Dimensional Self-Supervised Learning

(SMD SSL) on two clinical datasets. We begin by describing the datasets, tasks, and

experimental setup. We then evaluate SMD SSL and baselines in two settings:

1. Unimodal : with trajectories that contain only a sequence of physiological sig-

nals.

2. Multimodal, with trajectories containing both signals and structured data.

We find that SMD SSL performs strongly in both settings. We also analyze SMD

SSL’s sensitivity to the component loss weight and its learned representations.
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Table 5.1: Dataset Statistics.

Dataset 1 Dataset 2

Task # Patients # Trajectories Prevalence # Patients # Trajectories Prevalence

Pre-training 8888 43858 N/A 5022 26615 N/A
Elevated mPAP 2025 48511 77.5% 500 14957 87.9%
24hr Mortality 9605 57758 1.4% 5689 318306 2.3%

5.4.1 Datasets and Tasks

We consider two clinical datasets (Table 5.1):

• Dataset 1 is a private dataset derived from the electronic health record (EHR)

of the Massachusetts General Hospital (MGH), consisting of a cohort of patients

with a prior diagnosis of heart failure. For each patient, we have structured

data from the EHR and physiological signals measured by a bedside telemetry

monitor. These signals include vitals signs such as heart rate (HR) and oxygen

saturation (SpO2), measured at a low frequency (0.5 Hz), and waveforms such

as the electrocardiogram (ECG), measured at a high frequency (240 Hz).

• Dataset 2 is a public dataset derived from the commonly used MIMIC-III

clinical database [93, 61] and its associated database of physiological signals

[123]. The clinical database contains structured data over a patient’s stay,

and the physiological signals database contains vitals signs (HR, SpO2) and

waveforms (ECG) measured by a bedside telemetry monitor.

We use the widely adopted preprocessing pipeline introduced in [72] to form the

specific cohort and extract the structured data features used in modeling. This

pipeline also provides the functionality to create development and testing sets

for the different downstream tasks we consider.

The clinical database is available on PhysioNet [61] to credentialed users. The

database of physiological signals is open-access on PhysioNet.

Constructing PT and FT sets. Each dataset consists of a number of patient

hospital visits. We resample each patient’s hospital visit at hourly resolution, and
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each hour of a patient’s stay represents a single timestep in our trajectory abstraction.

For simplicity, we fix the length of trajectories to be 8 elements (letting a trajectory

correspond to a common shift length of 8 hours).

To generate PT trajectories from these resampled visits, we first split each visit

into non-overlapping contiguous 12 hour blocks. A PT trajectory is formed by first

sampling a 12 hour block, and then selecting 8 contiguous timesteps from that block

(with the starting timestep selected randomly). We discuss the implications of this

in Appendix D.2.1. At a high level, this strategy ensures that negative samples never

overlap in time with an anchor trajectory.

To generate FT trajectories, we use a sliding window to select contiguous 8 hour

blocks at 1 hour increments from each visit. Each of these contiguous 8 hour blocks is

a trajectory in the FT dataset. The trajectory labels are formed based on the specific

task, as described below.

Fine-tuning tasks. We consider two predictive tasks:

• Elevated mPAP: Each hour, detect whether a patient’s mean Pulmonary

Arterial Pressure (mPAP) is abnormally high. This task is of clinical interest

since the mPAP is typically measured via an invasive study, and so inferring

whether it is abnormal using minimally invasive information (i.e., the ECG,

labs, and vitals signs) is valuable. Prior work [164, 147] studied similar tasks of

predicting hemodynamic variables from the 12-lead ECG, but not in the context

of online trajectory data, as we do here.

• 24hr Mortality: Each hour, predict whether the patient is going to die in the

next 24 hours. This task is commonly used to evaluate predictive models for ICU

time series data [120, 204] – our goal with studying this task is to understand

how our approach performs when compared to other established methods. In

Dataset 2, this task is named ‘Decompensation’ in the preprocessing pipeline

from [72]; we refer to it at 24hr mortality here.

Studying these two predictive tasks, particularly the former, connects back to the
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broader motivating goal of constructing data-efficient ML models for applications in

cardiovascular medicine (discussed in Chapter 1).

Trajectory features and preprocessing. The trajectories in PT and FT sets

consist of static features 𝑑 and a time-series of structured data and physiological

signals {(𝑤𝑡, 𝑠𝑡)}𝑇𝑡=1, as presented in Section 5.3.1. The static features 𝑑 contain

information on infrequently measured vitals signs and lab values; 𝑑 ∈ R9 in Dataset

1 and 𝑑 ∈ R38 in Dataset 2. At each timestep, 𝑤𝑡 captures summary statistics related

to regularly measured vitals signs within a 1 hour window; 𝑤𝑡 ∈ R30 in Dataset 1 and

𝑤𝑡 ∈ R13 in Dataset 2. 𝑠𝑡 is a 10 second electrocardiogram (ECG) signal extracted

from a longer signal measured within each 1 hour window; in Dataset 1, 𝑠𝑡 ∈ R4×2400

is a 240 Hz 4-channel ECG, and in Dataset 2, 𝑠𝑡 ∈ R1×1250 is a 125 Hz 1-channel

ECG.

Missing structured data are forward-fill imputed if part of a time series, and

otherwise imputed with the mean over the training dataset. Missing signals are

represented with zeros. Any trajectories that have more than 1 timestep with a

missing signal are excluded. Further dataset and preprocessing details are in the

appendix.

5.4.2 Experimental Setup

Dataset splits. We split Dataset 1 on a per-patient level into 80/20 develop-

ment/test sets and use 20% of the development set as a validation set. For Dataset 2,

we use the predefined development/test split defined in the preprocessing pipeline [72],

and use 20% of the development set (splitting on a per-patient basis) as a validation

set.

Model architecture. Recall that the encoder 𝑓𝜃 has three components: we im-

plement the structured features encoder as a 2-layer MLP, the signals encoder as a

1-D ResNet18 CNN [77], and the sequence model as a 4-layer GRU. We use a 2-layer

MLP for the projection head 𝑔𝜑. The model architecture is described more fully in
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Appendix D.2.2, and is shown pictorially in Figure 5-2.

Training setup. We conduct pre-training for 15 epochs, using a batch size of 128,

with the Adam optimizer [96]. We found that model performance did not improve

with longer pre-training times (Appendix D.2.3).

At fine-tuning time, we consider two evaluation strategies:

1. Linear evaluation: train a linear classifier on the frozen representations from 𝑓𝜃

[30].

2. Full FT: initialize a new linear layer after 𝑓𝜃 and fine-tune the entire model for a

maximum of 10 epochs with Adam (performance did not improve after this point),

with early stopping based on validation AUROC.

For each method and task, we report the test set AUROC from the evaluation strategy

that obtains the best validation set AUROC. We adopt this approach since our goal

is to determine which self-supervised pre-training approach is best – in order to do

so fairly, we compare results under the evaluation strategy that obtains the highest

performance. To obtain error bars, we use bootstrapping: we sample with replacement

100 bootstraps from the testing dataset, and report the 95% confidence interval in

AUROC over these bootstraps. Since the mortality task has low prevalence, we

additionally report trends in AUPRC in Appendix D.2.3.

Unimodal and Multimodal evaluation. SMD SSL is generally applicable when

we have sequence-structured data where at least one elemtn of the sequence is it-

self high-dimensional. As mentioned earlier, we consider two instantiations of such

sequences here: (1) the unimodal setting, where the input trajectory only contains

the signals sequence of the input, 𝜏 = {𝑠𝑡}𝑇𝑡=1; (2) the full multimodal setting, where

the input trajectory contains the full input sequence of structured data and signals,

𝜏 = (𝑑, {(𝑤𝑡, 𝑠𝑡)}𝑇𝑡=1).

Baselines and SMD SSL variations. Existing methods for SSL on clinical data

are not exactly applicable, since they do not study pre-training pipelines for multi-

modal and multi-dimensional time series. For example, Neighbourhood Contrastive
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Learning (NCL) [204] is primarily designed for structured data time series alone, and

CLOCS [98] and SACL [35] operate on single physiological waveforms (rather than

sequences of waveforms).

As a result, we focus here on evaluating general SSL methods as baselines (with

further baselines in Appendix D.2.3), varying whether we use the component and/or

global loss, in both unimodal and multimodal settings. Our goal is to understand

whether the two-level loss formulation boosts performance. The full set of baselines

is as follows (further details in Appendix D.2.2):

• RandInit: A standard baseline: train a model from random initialization on

each FT task.

• SimCLR (global) [30]: Pre-train using the NT-Xent global loss alone. This

is SimCLR PT on the trajectory level, setting 𝛼 = 1, 𝛽 = 0 in Eqn. 5.5.

• VICReg (global) [14]: Pre-train using the VICReg global loss alone. This is

VICReg PT on the trajectory level, setting 𝛼 = 1, 𝛽 = 0 in Eqn. 5.5.

• SimSiam (global) [34]: Pre-train using SimSiam at a global level. This is

SimSiam PT on the trajectory level.

• SimCLR (component): Pre-train using the NT-Xent component loss alone

(𝛼 = 0, 𝛽 = 1 in Eqn. 5.5).

• VICReg (component): Pre-train using the VICReg component loss alone

(𝛼 = 0, 𝛽 = 1 in Eqn. 5.5).

• SimSiam (component): Pre-train using SimSiam at a component level.

We consider two variations of SMD SSL:

• SMD SSL (SimCLR): Pre-train using SMD SSL with the NT-Xent loss

(Eqns. 5.2 and 5.5), fixing the global loss weight 𝛼 = 1 and tuning the compo-

nent loss weight 𝛽.
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Table 5.2: Pre-training with the SMD SSL objective improves performance on
both datasets in the unimodal setting. Mean and 95% confidence interval of AUROC
on FT tasks. We observe that PT methods outperform not doing PT, and training with the
SMD SSL (component and global) losses boosts performance the most.

(a) Results on Dataset 1.

Elevated mPAP 24hr Mortality

RandInit 65.0 ± 0.1 56.1 ± 0.6
SimCLR (global) 68.1 ± 0.1 66.7 ± 0.5
VICReg (global) 66.6 ± 0.1 64.9 ± 0.5
SimSiam (global) 63.8 ± 0.1 50.6 ± 0.6
SimCLR (component) 67.5 ± 0.1 71.7 ± 0.5
VICReg (component) 68.7 ± 0.1 63.5 ± 0.4
SimSiam (component) 64.2 ± 0.1 54.3 ± 0.5

SMD SSL (SimCLR) 69.9 ± 0.1 72.3 ± 0.4
SMD SSL (VICReg) 67.6 ± 0.1 74.6 ± 0.5

(b) Results on Dataset 2.

Elevated mPAP 24hr Mortality

RandInit 63.4 ± 0.4 54.6 ± 0.2
SimCLR (global) 65.9 ± 0.4 56.6 ± 0.2
VICReg (global) 66.7 ± 0.4 53.6 ± 0.2
SimSiam (global) 61.9 ± 0.4 61.1 ± 0.2
SimCLR (component) 65.7 ± 0.4 61.1 ± 0.2
VICReg (component) 66.7 ± 0.4 63.1 ± 0.2
SimSiam (component) 65.9 ± 0.4 50.3 ± 0.2

SMD SSL (SimCLR) 67.0 ± 0.4 65.9 ± 0.2
SMD SSL (VICReg) 66.6 ± 0.4 58.5 ± 0.2

• SMD SSL (VICReg): Pre-train using SMD SSL with the VICReg loss (Eqns.

5.3 and 5.5), fixing the global loss weight 𝛼 = 1 and tuning the component loss

weight 𝛽.

Hyperparameters. There are various hyperparameters to tune, such as learning

rates and loss weighting for VICReg and SMD SSL. Evaluating many hyperparameters

is computationally expensive (involves doing both PT and FT runs), so we conduct

a reduced search on a subset of the hyperparameters focusing only on the Elevated

mPAP task in the unimodal setting, optimizing validation AUROC. We include full

details in Appendix D.2.2.
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5.4.3 Results

Unimodal Evaluation

Table 5.2 shows results in the unimodal setting, where the input trajectories consist

only of the signals. We highlight three key takeaways from these results:

1. Pre-training (PT) helps performance. In the unimodal setting, PT (par-

ticularly SimCLR or VICReg variants in Tables 5.2a and 5.2b) almost always

improve performance over not doing any PT (RandInit in Tables 5.2a and 5.2b).

This result is expected, since we would expect that given the complex input

space, a PT phase for the highly-parameterized CNN encoder and GRU should

condition the model better for the downstream tasks, given the limited amount

of labelled data on these tasks.

2. SMD SSL obtains the best performance. On both datasets, we observe

that a SMD SSL method does best, suggesting the utility of a two-level loss,

which encourages the learning of informative representations on both a signal-

level and a sequence-level.

3. SMD SSL vs single-level SSL. When using SimCLR, we find that SMD SSL

consistently improves on both component-only and global-only SimCLR mod-

els. With VICReg, improvements are less consistent, and the component-only

VICReg variation often performs the best. This may be because VICReg has

many loss weighting terms, and these were not jointly tuned with the component

loss weight in SMD SSL. A more thorough hyperparameter search, perhaps us-

ing efficient gradient-based methods [143], might improve performance of SMD

SSL (VICReg).

Unimodal experiments with structured data. Since our main contribution is

the strategy to conduct SSL on the sequence of high-dimensional signals, our unimodal

evaluation focuses on the setting where the only modality in the trajectory is the

signals. For completeness however, we also show in Table 5.3 the results for the other
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Table 5.3: Mean and 95% confidence interval of AUROC on fine-tuning tasks in the uni-
modal setting when only using structured data, comparing no PT (RandInit) to PT with the
SimCLR and VICReg global losses. We find that when considering structured data alone,
PT does not offer much benefit to performance; however, there are improvements seen in
the Elevated mPAP task.

(a) Results on Dataset 1.

Elevated mPAP 24hr Mortality

RandInit 65.3 ± 0.1 79.0 ± 0.4
SimCLR 66.8 ± 0.1 79.0 ± 0.4
VICReg 66.0 ± 0.0 77.9 ± 0.4

(b) Results on Dataset 2.

Elevated mPAP 24hr Mortality

RandInit 65.0 ± 0.3 90.1 ± 0.1
SimCLR 66.8 ± 0.3 88.1 ± 0.1
VICReg 68.1 ± 0.3 89.3 ± 0.1

unimodal setting, when training on only the structured data (structured time-series

and static vector) in the trajectory. The key finding is that the Elevated mPAP task

can benefit from pre-training, but the 24hr Mortality task performance is not boosted

by pre-training. This is likely because the structured data are relatively simple and

low-dimensional, and there is enough data to learn useful predictive information from

these data as-is, without pre-training.

Multimodal Evaluation

Table 5.4 shows results in the multimodal setting, where the input trajectories consist

of both signals and structured data. In addition to the aforementioned baselines, we

also include results from RandInit and SSL methods trained on only signals and on

only structured data. We highlight some key takeaways from these results:

1. The effect of multimodal data is task-specific. Incorporating both the

signals and structured data leads to improvements in the Elevated mPAP task

on both datasets (particularly with SMD SSL), but has less significant effects in

the 24hr Mortality task. This is likely because the structured data in their raw

(relatively low-dimensional) form are highly predictive of mortality, and so there
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is little benefit to be gained from PT. This is seen clearly when comparing the

performance of RandInit (structured) and SSL (structured). This phenomenon

has been observed in prior work [120].

2. SMD SSL performs effectively. On the Elevated mPAP task (both datasets)

and 24hr mortality task (Dataset 2), SMD SSL, either with the SimCLR or

VICReg loss function, obtains the best performance among all methods.

3. SMD SSL vs single-level SSL. When compared to single-level SSL, we ob-

serve improvements when using SMD SSL on Elevated mPAP for both SimCLR

and VICReg. However, this is not the case for 24hr Mortality – for example,

component-only SSL with SimCLR on this task performs better than SMD SSL.

This may arise because structured data PT does not improve performance sig-

nificantly, and so it is preferable to only pre-train the signals encoder rather

than the entire model.
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Table 5.4: Pre-training with the SMD SSL objective improves performance in
three settings in a multimodal evaluation. Mean and 95% confidence interval of
AUROC on FT tasks. In all settings except 24hr Mortality on Dataset 1, we observe that
SMD SSL obtains the best performance. The 24 hour mortality task on Dataset 1 appears
to benefit little from incorporating the high-dimensional signals, which could explain why
SMD SSL worsens performance here.

(a) Results on Dataset 1.

Elevated mPAP 24hr Mortality

RandInit (signals) 65.0 ± 0.1 56.1 ± 0.6
SSL (signals) 69.9 ± 0.1 74.6 ± 0.5
RandInit (structured) 65.3 ± 0.1 79.1 ± 0.4
SSL (structured) 66.7 ± 0.1 79.0 ± 0.4

RandInit 69.1 ± 0.1 79.0 ± 0.4
SimCLR (global) 69.8 ± 0.1 76.4 ± 0.5
VICReg (global) 69.4 ± 0.1 78.0 ± 0.4
SimSiam (global) 69.6 ± 0.1 78.4 ± 0.4
SimCLR (component) 71.4 ± 0.1 78.6 ± 0.4
VICReg (component) 64.0 ± 0.1 74.0 ± 0.5
SimSiam (component) 68.4 ± 0.1 79.0 ± 0.4

SMD SSL (SimCLR) 72.3 ± 0.1 77.4 ± 0.4
SMD SSL (VICReg) 70.3 ± 0.1 77.0 ± 0.4

(b) Results on Dataset 2.

Elevated mPAP 24hr Mortality

RandInit (signals) 63.4 ± 0.4 54.6 ± 0.2
SSL (signals) 67.0 ± 0.4 65.9 ± 0.2
RandInit (structured) 65.3 ± 0.3 90.0 ± 0.1
SSL (structured) 68.3 ± 0.3 89.3 ± 0.1

RandInit 65.3 ± 0.3 87.8 ± 0.1
SimCLR (global) 63.7 ± 0.4 86.6 ± 0.1
VICReg (global) 70.4 ± 0.4 87.8 ± 0.1
SimSiam (global) 60.6 ± 0.3 90.4 ± 0.1
SimCLR (component) 59.7 ± 0.4 89.8 ± 0.1
VICReg (component) 67.1 ± 0.4 84.4 ± 0.1
SimSiam (component) 67.4 ± 0.4 90.6 ± 0.1

SMD SSL (SimCLR) 69.9 ± 0.3 88.1 ± 0.1
SMD SSL (VICReg) 71.6 ± 0.3 90.7 ± 0.1
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Figure 5-4: Studying sensitivity to the component loss weight. We find a higher
optimal component loss weight on Dataset 1 compared to Dataset 2, possibly due to Dataset
1 having more complex signals.

Further Results

Additional evaluation. In Appendix D.2.3, we present three additional experi-

ments. First, we compare SMD SSL to other global-only baselines using different

loss functions (NCL, CLOCS, and SACL), finding that SMD SSL improves on these

methods. Second, we compare linear evaluation to full FT for different methods,

finding that full FT improves on linear evaluation. Third, we investigate the effect of

longer PT times, finding that performance does not improve.

Component loss weight sensitivity. Considering SMD SSL (SimCLR) in the

unimodal setting, we fix the global loss weight 𝛼 = 1.0 and vary the component loss

weight 𝛽 for the Elevated mPAP task. The validation set AUROC results are shown

in Figure 5-4. The optimal value of the component loss weight is higher for Dataset

1, perhaps because the signals in Dataset 1 are more complex than the signals in

Dataset 2 (higher sampling rate, multiple channels).

Representational similarity analysis. Using Centered Kernel Alignment (CKA)

[101], we study the representations learned by the signal encoder on Dataset 2 under

different SSL methods. Our findings are: (1) representations from SMD SSL encode

aspects of both component-only SSL and global-only SSL (illustrated in Figure 5-5);

(2) the component loss appears to have more effect in the earlier layers of the signal
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Figure 5-5: Learned representations from SMD SSL are similar to both
component-only and global-only SSL. Comparing learned representations of the signals
using different SimCLR-based SSL strategies – SMD SSL, Global, and Component, using
Centered Kernel Alignment (CKA). Global and Component SSL show low representational
similarity (right-most bar), but SMD SSL shows higher similarity with both individually,
suggesting that learned representations in SMD SSL encode aspects of both component and
global SSL.

encoder, whereas the global loss has more effect in later layers (details in Appendix

D.2.3).

5.5 Scope and Limitations

Intended use-case. Our method is most appropriate in settings where we have

multimodal trajectory data for patients, i.e., both structured data and ECGs are

available. This use case is driven by our target application of monitoring patients

with cardiovascular disease (Dataset 1), where the majority of patients have both

structured data and ECGs. In datasets where a small proportion of patients have

multimodal data (such as in Dataset 2), it may be preferable to use other unimodal

SSL approaches so that patients without multimodal data can still be included in

model development. Although Dataset 2 does not exactly match our intended use

case, we still considered it because it is publicly available and well-studied in related
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work.

Choice of data augmentations. SMD SSL uses data augmentations to generate

different views. Our main contribution is in our two-level loss function, so we did not

investigate novel augmentation strategies, instead leveraging existing effective data

augmentations for clinical data. Our framework could equally apply with different

augmentations or multiview generation approaches. However, in a setting where

effective augmentations (or methods to generate different views) do not exist, our

method may not be effective. It may be preferable to use other pre-training schemes

in those scenarios, such as supervised pre-training or masked imputation [119].

Additional data modalities. Our experiments focused on clinical time series con-

sisting of a sequence of structured data and high-dimensional physiological signals; we

did not include predictive information that may be available from other modalities,

such as medical imaging. SMD SSL could be extended to this scenario, and it could

be a valuable direction to explore.

5.6 Conclusion

In this chapter, we continued our exploration of the pre-training (PT) followed by

fine-tuning (FT) paradigm, and focused specifically on self-supervised pre-training

for complex, unlabelled clinical time series data. We observed that real-world clinical

time series are often multimodal, and individual timesteps in a time series may contain

high-dimensional information, such as physiological signals. Existing self-supervised

learning (SSL) methods and pipelines cannot readily be used for pre-training on data

of this form.

To address this gap, we first introduced an abstraction of these multimodal and

multidimensional time-series, which we called trajectories. We then outlined a new

method for pre-training on trajectories, Sequential Multi-Dimensional SSL (SMD

SSL), whose design is motivated by the structure of these complex time-series. SMD

SSL encourages effective pre-training on both a component level (level of individual
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signals in a sequence) and a global level (level of the entire sequence). In experiments

on two clinical datasets, we showed that pre-training with SMD SSL and then fine-

tuning improves performance on downstream tasks compared to baselines.
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Chapter 6

Summary and Conclusion

6.1 Thesis Summary

This thesis presented four contributions to data-efficient machine learning (ML),

where the goal is to build effective ML models given only limited (labeled) train-

ing data. Our contributions span different paradigms of data-efficient ML, namely:

1. Few-shot learning, where we have many related prediction tasks (often where

each task is data-scarce), and we wish to learn a predictive model that general-

izes effectively to new tasks.

2. Supervised Learning on small datasets, where we have a task with a small

labelled dataset, and wish to learn an effective model for that task.

3. Transfer and Semi-Supervised Learning, where we have a small labeled dataset

of interest (the downstream dataset) and a large related dataset (labelled or un-

labelled) that we can leverage to build more effective models for the downstream

dataset.

Our contributions include both (1) analysis of existing strategies for data-efficient ML,

revealing potential areas for improvement; and (2) new methods to build data-efficient

models that improve on the current state of the art.
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Aside from the theme of data-efficient ML, two other common themes are ex-

plored. From a methodological standpoint, three of the contributions in the thesis

draw on ideas from nested optimization. From an application standpoint, three of the

contributions are motivated by challenges in applying ML to cardiovascular medicine,

a setting in which it is not always possible to obtain large labelled datasets for model

training.

In more detail, the contributions of each chapter are as follows:

1. In Chapter 2, we studied few-shot learning, and analyze why MAML [56], a

popular few-shot learning method, works as well as it does: a question that

had previously not been explored. Through our investigation, we understood

why MAML is effective, and this led us to a method for simplifying it. We

formalized and benchmarked this simplified version of MAML, finding that it

performs almost equivalently to the original algorithm while offering substantial

computational benefits.

2. In Chapter 3, we studied the use of data augmentation to improve model perfor-

mance on data-scarce prediction problems from electrocardiogram (ECG) data.

Through a detailed empirical study, we showed that existing task-agnostic data

augmentation strategies for ECG data are not consistently beneficial. We out-

lined a learnable task-aware data augmentation strategy for ECG data that

outperforms (or performs as well as) other augmentation strategies on a range

of ECG predictive problems.

3. In Chapter 4, we studied the learning paradigm of pre-training (PT) followed

by fine-tuning (FT). This paradigm is relevant when a FT task of interest

is data-scarce, but we have abundant related data that can be used in PT

to learn an effective model initialization. PT algorithms often have complex

design choices, which we term meta-parameters, that can significantly affect

the quality of pre-trained models and their suitability for FT. We introduced

a new, scalable gradient-based PT algorithm that jointly learns these meta-

parameters and base model parameters over a single PT run. This algorithm
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uses a novel gradient estimator for computing gradients through the two-stage

PT followed by FT process. In two experimental domains — multitask PT on

protein-protein interaction graphs and self-supervised PT on ECG data — we

found our PT algorithm results in pre-trained models that perform better than

baselines after undergoing FT.

4. In Chapter 5, we studied a specific instantiation of the pre-training then fine-

tuning paradigm. We explored using self-supervised learning (SSL) algorithms

for pre-training models on unlabeled multimodal multidimensional time-series

data from the intensive care unit, focusing on a cohort of patients with a diag-

nosis of cardiovascular disease (heart failure). We outlined a new SSL algorithm

designed for the structure of this data stream, utilizing a multiscale loss func-

tion, and demonstrated that our method outperforms baselines on two clinical

datasets.

6.2 Limitations and Future Work

There are several areas of promising future work that address limitations of this work.

We present selected topics below.

Chapter 3: Data Augmentation for ECG Supervised Learning.

• Local transformations. Our approach for ECG augmentation, TaskAug, does

not incorporate transformations that affect only local structures (such as specific

parts of the cardiac cycle). Doing so could improve performance, potentially

leveraging mathematical techniques from [138].

• Latent space augmentation. We study augmentations in the raw signal

space, in the time-domain. A promising investigation area is to augment ECG

data in a model’s latent space [36] in addition to/instead of the signal space –

these latent space transformations might promote additional invariance in the

models, leading to improved performance. A further advantage of latent space
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transformations is that they can be readily extended to multimodal data input

(e.g., ECG + tabular data), whereas the feature space transformations we use

require transforming each modality independently.

Chapter 4: Nested Optimization and Pre-Training.

• Broader applications. We applied our algorithm to optimize two types of

meta-parameters in two domains: task weights for multitask PT on graph data

and augmentations for self-supervised PT on ECGs. An extension to this work

could apply the method to richer augmentation strategies, such as those ex-

plored in Chapter 3. Augmentations are a crucial component of self-supervised

PT methods, and thus optimizing them further could yield significant benefits.

This could be especially valuable in under-explored domains where the best

augmentations are unknown – one could parameterize a highly general transfor-

mation space, and optimize augmentation meta-parameters accordingly. Appli-

cations of our method to other domains (e.g., computer vision, natural language

understanding), and to other PT meta-parameters (such as those discussed in

[145]) are also interesting directions of investigation.

• Algorithmic investigations. Our gradient estimator uses backpropagation

through training to compute derivatives through the FT stage. We used this

strategy since it does not requiring tuning a second implicit differentiation ap-

proximation. However, this design choice is not necessarily optimal – for exam-

ple, would a proximal regularization approach [153] be more appropriate for this

stage? In general, a more thorough benchmarking of our algorithm, analogously

to what was explored for standard hyperparameter optimization in [38], is an

important direction of inquiry.

Chapter 5: Self-Supervised Learning on Multimodal Clinical Time Series.

• Long time series. Our method operates on sequences of short ECG segments

(10 seconds). Often, much longer ECGs are recorded, and incorporating these
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could be advantageous. Utilizing newer time-series encoding architectures such

as structured state space models [68, 170] could allow us to efficiently model

these longer time series. Doing so would likely require adaptations to our SSL

pipeline.

• Information content overlap. We focus on a scenario in which the data

modalities measured have partial overlap in information. That is, the vitals

signs/labs and ECGs recorded for a given patient capture both shared and

unshared aspects of a patient’s physiology. However, our SSL pipeline treats the

two data modalities independently, in contrast to other work in multimodal self-

supervised learning, e.g., [139]. Designing a new loss function that captures the

partial overlap between the information contained in the different modalities,

could lead to a more effective pre-training scheme. Methods such as [62] that

have both a intra-modality and inter-modality objective could also be interesting

to explore.

• Other data modalities. Many other data modalities are recorded for a given

patient, such as imaging, omics data, etc. Extending our approach to these

data modalities that are more sparsely measured is a valuable investigation.

6.3 Final Takeaways

This dissertation outlined four contributions to data-efficient machine learning (ML),

spanning different paradigms: few-shot learning, traditional supervised learning, trans-

fer learning, and semi-supervised learning. We both analyze existing approaches for

data-efficient ML within these paradigms, and propose new methods that improve on

the existing state of the art.

Many of our contributions are motivated by applying ML to cardiovascular medicine.

This application area has inspired both the choice of problems studied and the data

modalities for which we develop methods. An important message is that effective

modelling of specialized data modalities (e.g., electrocardiograms) often requires new
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methodological insights (such as new data augmentations and self-supervised learning

algorithms).

We hope that the methods and insights from this thesis inform future work on

data-efficient ML both in the domain of cardiovascular medicine and more broadly.
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Appendix A

Additional Information and Results

for Chapter 2

A.1 Few-Shot Image Classification Datasets and Ex-

perimental Setups

We consider the few-shot learning paradigm for image classification to evaluate MAML

and ANIL. We evaluate using two datasets often used for few-shot multiclass classi-

fication – the Omniglot dataset and the MiniImageNet dataset.

Omniglot: The Omniglot dataset consists of over 1600 different handwritten char-

acter classes from 23 alphabets. The dataset is split on a character-level, so that

certain characters are in the training set, and others in the validation set. We con-

sider the 20-way 1-shot and 20-way 5-shot tasks on this dataset, where at test time,

we wish our classifier to discriminate between 20 randomly chosen character classes

from the held-out set, given only 1 or 5 labelled example(s) from each class from this

set of 20 testing classes respectively. The model architecture used is identical to that

in the original MAML paper, namely: 4 modules with a 3 x 3 convolutions and 64

filters with a stride of 2, followed by batch normalization, and a ReLU nonlinearity.

The Omniglot images are downsampled to 28 x 28, so the dimensionality of the last

143



hidden layer is 64. The last layer is fed into a 20-way softmax. Our models are trained

using a batch size of 16, 5 inner loop updates, and an inner learning rate of 0.1.

MiniImageNet: The MiniImagenet dataset was proposed by [155], and consists

of 64 training classes, 12 validation classes, and 24 test classes. We consider the

5-way 1-shot and 5-way 5-shot tasks on this dataset, where the test-time task is to

classify among 5 different randomly chosen validation classes, given only 1 and 5

labelled examples respectively. The model architecture is again identical to that in

the original paper: 4 modules with a 3 x 3 convolutions and 32 filters, followed by

batch normalization, ReLU nonlinearity, and 2 x 2 max pooling. Our models are

trained using a batch size of 4. 5 inner loop update steps, and an inner learning rate

of 0.01 are used. 10 inner gradient steps are used for evaluation at test time.

A.2 Additional Details and Results: Freezing and

Representational Similarity

In this section, we provide further experimental details and results from freezing and

representational similarity experiments.

A.2.1 Experimental Details

We concentrate on MiniImageNet for our experiments in Section 2.3.2, as it is more

complex than Omniglot.

The model architecture used for our experiments is identical to that in the orig-

inal paper: 4 modules with a 3 × 3 convolutions and 32 filters, followed by batch

normalization, ReLU nonlinearity, and 2 × 2 max pooling. Our models are trained

using a batch size of 4, 5 inner loop update steps, and an inner learning rate of 0.01.

10 inner gradient steps are used for evaluation at test time. We train models 3 times

with different random seeds. Models were trained for 30000 iterations.
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A.2.2 Details of Representational Similarity

CCA takes in as inputs 𝐿1 = {𝑧(1)1 , 𝑧
(1)
2 , ..., 𝑧

(1)
𝑚 } and 𝐿2 = {𝑧(2)1 , 𝑧

(1)
2 , ..., 𝑧

(2)
𝑛 }, where

𝐿1, 𝐿2 are layers, and 𝑧
(𝑗)
𝑖 is a neuron activation vector: the vector of outputs of

neuron 𝑖 (of layer 𝐿𝑗) over a set of inputs 𝑋. It then finds linear combinations of

the neurons in 𝐿1 and neurons in 𝐿2 so that the resulting activation vectors are

maximally correlated, which is summarized in the canonical correlation coefficient.

Iteratively repeating this process gives a similarity score (in [0, 1] with 1 identical and

0 completely different) between the representations of 𝐿1 and 𝐿2.

We apply this to compare corresponding layers of two networks, net1 and net2,

where net1 and net2 might differ due to training step, training method (ANIL vs

MAML) or the random seed. When comparing convolutional layers, as described in

[149], we perform the comparison over channels, flattening out over all of the spatial

dimensions, and then taking the mean CCA coefficient. We average over three random

repeats.

A.2.3 Similarity Before and After Inner Loop with Euclidean

Distance

In addition to assessing representational similarity with CCA/CKA, we also consider

the simpler measure of Euclidean distance, capturing how much weights of the network

change during the inner loop update (task-specific finetuning). We note that this

experiment does not assess functional changes on inner loop updates as well as the

CCA experiments do; however, they serve to provide useful intuition.

We plot the per-layer average Euclidean distance between the initialization 𝜃 and

the finetuned weights 𝜃(𝑏)𝑚 across different tasks 𝑇𝑏, i.e.

1

𝑁

𝑁∑︁
𝑏=1

||(𝜃𝑙)− (𝜃𝑙)
(𝑏)
𝑚 ||

across different layers 𝑙, for MiniImageNet in Figure A-1. We observe that very quickly

after the start of training, all layers except for the last layer have small Euclidean
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Figure A-1: Euclidean distance before and after finetuning for MiniImageNet. We
compute the average (across tasks) Euclidean distance between the weights before and after
inner loop adaptation, separately for different layers. We observe that all layers except for
the final layer show very little difference before and after inner loop adaptation, suggesting
significant feature reuse.

distance difference before and after finetuning, suggesting significant feature reuse.

(Note that this is despite the fact that these layers have more parameters than the

final layer.)

A.2.4 CCA Similarity Across Random Seeds

The experiment in Section 2.3.2 compared representational similarity of 𝐿1 and 𝐿2

at different points in training (before/after inner loop adaptation) but corresponding

to the same random seed. To complete the picture, it is useful to study whether

representational similarity across different random seeds is also mostly unaffected by

the inner loop adaptation. This motivates four natural comparisons: assume layer 𝐿1

is from the first seed, and layer 𝐿2 is from the second seed. Then we can compute the

representational similarity between (𝐿1 pre, 𝐿2 pre), (𝐿1 pre, 𝐿2 post), (𝐿1 post, 𝐿2

pre) and (𝐿1 post, 𝐿2 post), where pre/post signify whether we take the representation

before or after adaptation.

Prior work has shown that neural network representations may vary across differ-

ent random seeds [150, 124, 108, 193], organically resulting in CCA similarity scores

much less than 1. So to identify the effect of the inner loop on the representation,

we plot the CCA similarities of (i) (𝐿1 pre, 𝐿2 pre) against (𝐿1 pre, 𝐿2 post) and

(ii) (𝐿1 pre, 𝐿2 pre) against (𝐿1 post, 𝐿2 pre) and (iii) (𝐿1 pre, 𝐿2 pre) against (𝐿1
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Figure A-2: Computing CCA similarity pre/post adaptation across different ran-
dom seeds further demonstrates that the inner loop doesn’t change representa-
tions significantly. We compute CCA similarity of 𝐿1 from seed 1 and 𝐿2 from seed 2,
varying whether we take the representation pre (before) adaptation or post (after) adapta-
tion. To isolate the effect of adaptation from inherent variation in the network representation
across seeds, we plot CCA similarity of of the representations before adaptation against rep-
resentations after adaptation in three different combinations: (i) (𝐿1 pre, 𝐿2 pre) against
(𝐿1 pre, 𝐿1 post), (ii) (𝐿1 pre, 𝐿2 pre) against (𝐿1 pre, 𝐿1 post) (iii) (𝐿1 pre, 𝐿2 pre) against
(𝐿1 post, 𝐿2 post). We do this separately across different random seeds and different layers.
Then, we compute a line of best fit, finding that in all three plots, it is almost identical to
𝑦 = 𝑥, demonstrating that the representation does not change significantly pre/post adap-
tation. Furthermore a computation of the coefficient of determination 𝑅2 gives 𝑅2 ≈ 1,
illustrating that the data is well explained by this relation. In Figure A-3, we perform this
comparison with CKA, observing the same high level conclusions.

post, 𝐿2 post) separately across the different random seeds and different layers. We

then compute the line of best fit for each plot. If the line of best fit fits the data

and is close to 𝑦 = 𝑥, this suggests that the inner loop adaptation doesn’t affect the

features much – the similarity before adaptation is very close to the similarity after

adaptation.

The results are shown in Figure A-2. In all of the plots, we see that the line

of best fit is almost exactly 𝑦 = 𝑥 (even for the pre/pre vs post/post plot, which

could conceivably be more different as both seeds change) and a computation of

the coefficient of determination 𝑅2 gives 𝑅2 ≈ 1 for all three plots. Putting this

together with Figure 2-2, we can conclude that the inner loop adaptation step doesn’t

affect the representation learned by any layer except the head, and that the learned

representations and features are mostly reused as is for the different tasks.
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Figure A-3: We perform the same comparison as in Figure A-2, but with CKA instead.
There is more variation in the similarity scores, but we still see a strong correlation between
(Pre, Pre) and (Post, Post) comparisons, showing that representations do not change sig-
nificantly over the inner loop.

A.2.5 MiniImageNet-5way-1shot Freezing and CCA Over Train-

ing

Figure A-4 shows that from early on in training, on MiniImageNet-5way-1shot, that

the CCA similarity between activations pre and post inner loop update is very high

for all layers but the head. We further see that the validation set accuracy suffers

almost no decrease if we remove the inner loop updates and freeze all layers but the

head. This shows that even early on in training, the inner loop appears to have

minimal effect on learned representations and features. This supplements the results

seen in Figure 2-3 on MiniImageNet-5way-5shot.

A.3 ANIL Algorithm: More Details

In this section, we provide more details about the ANIL algorithm, including an ex-

ample of the ANIL update, implementation details, and further experimental results.

A.3.1 An Example of the ANIL Update

Consider a simple, two layer linear network with a single hidden unit in each layer:

𝑦(𝑥;𝜃) = 𝜃2(𝜃1𝑥). In this example, 𝜃2 is the head. Consider the 1-shot regression

problem, where we have access to examples
{︁
(𝑥

(𝑡)
1 , 𝑦

(𝑡)
1 ), (𝑥

(𝑡)
2 , 𝑦

(𝑡)
2 )
}︁

for tasks 𝑡 =
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Figure A-4: Inner loop updates have little effect on learned representations from
early on in learning. We consider freezing and representational similarity experiments for
MiniImageNet-5way-1shot. We see that early on in training (from as few as 10k iterations
in), the inner loop updates have little effect on the learned representations and features, and
that removing the inner loop updates for all layers but the head have little-to-no impact on
the validation set accuracy.

1, . . . , 𝑇 . Note that (𝑥
(𝑡)
1 , 𝑦

(𝑡)
1 ) is the (example, label) pair in the meta-training set

(used for inner loop adaptation – support set), and (𝑥
(𝑡)
2 , 𝑦

(𝑡)
2 ) is the pair in the meta-

validation set (used for the outer loop update – target set).

In the few-shot learning setting, we firstly draw a set of 𝑁 tasks and labelled

examples from our meta-training set:
{︁
(𝑥

(1)
1 , 𝑦

(1)
1 ), . . . , (𝑥

(𝑁)
1 , 𝑦

(𝑁)
1 )

}︁
. Assume for sim-

plicity that we only apply one gradient step in the inner loop. The inner loop updates

for each task are thus defined as follows:

𝜃
(𝑡)
1 ← 𝜃1 −

𝜕𝐿(𝑦(𝑥
(𝑡)
1 ;𝜃), 𝑦

(𝑡)
1 )

𝜕𝜃1
(A.1)

𝜃
(𝑡)
2 ← 𝜃2 −

𝜕𝐿(𝑦(𝑥
(𝑡)
1 ;𝜃), 𝑦

(𝑡)
1 )

𝜕𝜃2
(A.2)

where 𝐿(·, ·) is the loss function, (e.g. mean squared error) and 𝜃
(𝑡)
𝑖 refers to a

parameter after inner loop update for task 𝑡.

The task-adapted parameters for MAML and ANIL are as follows. Note how only
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the head parameters change per-task in ANIL:

𝜃
(𝑡)
MAML =

[︁
𝜃
(𝑡)
1 , 𝜃

(𝑡)
2

]︁
(A.3)

𝜃
(𝑡)
ANIL =

[︁
𝜃1, 𝜃

(𝑡)
2

]︁
(A.4)

In the outer loop update, we then perform the following operations using the data

from the meta-validation set:

𝜃1 ← 𝜃1 −
𝑁∑︁
𝑡=1

𝜕𝐿(𝑦(𝑥
(𝑡)
2 ;𝜃(𝑡)), 𝑦

(𝑡)
2 )

𝜕𝜃1
(A.5)

𝜃2 ← 𝜃2 −
𝑁∑︁
𝑡=1

𝜕𝐿(𝑦(𝑥
(𝑡)
2 ;𝜃(𝑡)), 𝑦

(𝑡)
2 )

𝜕𝜃2
(A.6)

Considering the update for 𝜃1 in more detail for our simple, two layer, linear

network (the case for 𝜃2 is analogous), we have the following update for MAML:

𝜃1 ← 𝜃1 −
𝑁∑︁
𝑡=1

𝜕𝐿(𝑦(𝑥
(𝑡)
2 ;𝜃

(𝑡)
MAML), 𝑦

(𝑡)
2 )

𝜕𝜃1
(A.7)

𝑦(𝑥
(𝑡)
2 ;𝜃

(𝑡)
MAML) =

(︃[︃
𝜃2 −

𝜕𝐿(𝑦(𝑥
(𝑡)
1 ;𝜃), 𝑦

(𝑡)
1 )

𝜕𝜃2

]︃
·

[︃
𝜃1 −

𝜕𝐿(𝑦(𝑥
(𝑡)
1 ;𝜃), 𝑦

(𝑡)
1 )

𝜕𝜃1

]︃
· 𝑥2

)︃
(A.8)

For ANIL, on the other hand, the update will be:

𝜃1 ← 𝜃1 −
𝑁∑︁
𝑡=1

𝜕𝐿(𝑦(𝑥
(𝑡)
2 ;𝜃

(𝑡)
ANIL), 𝑦

(𝑡)
2 )

𝜕𝜃1
(A.9)

𝑦(𝑥
(𝑡)
2 ;𝜃

(𝑡)
ANIL) =

(︃[︃
𝜃2 −

𝜕𝐿(𝑦(𝑥
(𝑡)
1 ;𝜃), 𝑦

(𝑡)
1 )

𝜕𝜃2

]︃
· 𝜃1 · 𝑥2

)︃
(A.10)

Note the lack of inner loop update for 𝜃1, and how we do not remove second order

terms in ANIL (unlike in first-order MAML); second order terms still persist through
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the derivative of the inner loop update for the head parameters.

A.3.2 ANIL Learns Almost Identically to MAML

We implement ANIL on MiniImageNet and Omniglot, and generate learning curves

for both algorithms in Figure A-5. We find that learning proceeds almost identically

for ANIL and MAML, showing that removing the inner loop has little effect on the

learning dynamics.

A.3.3 ANIL and MAML Learn Similar Representations

We compute CCA similarities across representations in a MAML seed and an ANIL

seed, and then plot these against the same MAML seed representation compared to a

different MAML seed (and similarly for ANIL). We find a strong correlation between

these similarities (Figure A-6), which suggests that MAML and ANIL are learning

similar representations, despite their algorithmic differences. (ANIL and MAML are

about as similar to each other as two ANILs are to each other, or two MAMLs are to

each other.)

A.3.4 ANIL Implementation Details

Supervised Learning Implementation: We used the TensorFlow MAML im-

plementation open-sourced by the original authors [55]. We used the same model

architectures as in the original MAML paper for our experiments, and train models

3 times with different random seeds. All models were trained for 30000 iterations,

with a batch size of 4, 5 inner loop update steps, and an inner learning rate of 0.01.

10 inner gradient steps were used for evaluation at test time.

Reinforcement Learning Implementation: We used the open source PyTorch

implementation of MAML for RL 1, due to challenges encountered when running

the open-sourced TensorFlow implementation from the original authors. We note

1https://github.com/tristandeleu/pytorch-maml-rl
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that the results for MAML in these RL domains do not exactly match those in the

original paper; this may be due to large variance in results, depending on the random

initialization. We used the same model architecture as the original paper (two layer

MLP with 100 hidden units in each layer), a batch size of 40, 1 inner loop update

step with an inner learning rate of 0.1 and 20 trajectories for inner loop adaptation.

We trained three MAML and ANIL models with different random initialization, and

quote the mean and standard deviation of the results. As in the original MAML

paper, for RL experiments, we select the best performing model over 500 iterations

of training and evaluate this model at test time on a new set of tasks.

A.4 Further Results on the Network Head and Body

A.4.1 Training Regimes for the Network Body

We add to the results of Section 2.5.2 in the main text by seeing if training a head

and applying that to the representations at test time (instead of the NIL algorithm)

gives in any change in the results. As might be predicted by Section 2.5.1, we find no

change the results.

More specifically, we do the following:

• We train MAML/ANIL networks as standard, and do standard test time adap-

tation.

• For multiclass training, we first (pre)train with multiclass classification, then

throw away the head and freeze the body. We initialize a new e.g. 5-class head,

and train that (on top of the frozen multiclass pretrained features) with MAML.

At test time we perform standard adaptation.

• The same process is applied to multitask training.

• A similar process is applied to random features, except the network is initialized

and then frozen.
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Table A.1: Test time performance is dominated by features learned, with no
difference between NIL/MAML heads. We see identical performances of MAML/NIL
heads at test time, indicating that MAML/ANIL training leads to better learned features.

Method MiniImageNet-5way-1shot MiniImageNet-5way-5shot

MAML training-MAML head 46.9 ± 0.2 63.1 ± 0.4
MAML training-NIL head 48.4 ± 0.3 61.5 ± 0.8
ANIL training-ANIL head 46.7 ± 0.4 61.5 ± 0.5
ANIL training-NIL head 48.0 ± 0.7 62.2 ± 0.5

Multiclass pretrain-MAML head 38.4 ± 0.8 54.6 ± 0.4
Multiclass pretrain-NIL head 39.7 ± 0.3 54.4 ± 0.5
Multitask pretrain-MAML head 26.5 ± 0.8 32.8 ± 0.6
Multitask pretrain-NIL head 26.5 ± 1.1 34.2 ± 3.5

Random features-MAML head 32.1 ± 0.5 43.1 ± 0.3
Random features-NIL head 32.9 ± 0.6 43.2 ± 0.5

The results of this, along with the results from Table 2.6 in the main text is

shown in Table A.1. We observe very little performance difference between using

a MAML/ANIL head and a NIL head for each training regime. Specifically, task

performance is purely determined by the quality of the features and representations

learned during training, with task-specific alignment at test time being (i) unnecessary

(ii) unable to influence the final performance of the model (e.g. multitask training

performance is equally with a MAML head as it is with a NIL-head.)

A.4.2 Representational Analysis of Different Training Regimes

In Table A.2 we include results on using CCA and CKA on the representations learned

by the different training methods. Specifically, we studied how similar representations

of different training methods were to MAML training, finding a direct correlation with

performance – training schemes learning representations most similar to MAML also

performed the best. We computed similarity scores by averaging the scores over the

first three conv layers in the body of the network.
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Table A.2: MAML training most closely resembles multiclass pretraining, as il-
lustrated by CCA and CKA similarities. On analyzing the CCA and CKA similarities
between different baseline models and MAML (comparing across different tasks and seeds),
we see that multiclass pretraining results in features most similar to MAML training. Mul-
titask pretraining differs quite significantly from MAML-learned features, potentially due to
the alignment problem.

Feature pair CCA Similarity CKA Similarity

(MAML, MAML) 0.51 0.83

(Multiclass pretrain, MAML) 0.48 0.79
(Random features, MAML) 0.40 0.72
(Multitask pretrain, MAML) 0.28 0.65
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Figure A-5: ANIL and MAML on MiniImageNet and Omniglot. Loss and accuracy
curves for ANIL and MAML on (i) MiniImageNet-5way-1shot (ii) MiniImageNet-5way-5shot
(iii) Omniglot-20way-1shot. These illustrate how both algorithms learn very similarly over
training.
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Figure A-6: Computing CCA similarity across different seeds of MAML and
ANIL networks suggests these representations are similar. We plot the CCA simi-
larity between an ANIL seed and a MAML seed, plotted against (i) the MAML seed com-
pared to a different MAML seed (ii) the ANIL seed compared to a different ANIL seed.
We observe a strong correlation of similarity scores in both (i) and (ii). This tells us that
(i) two MAML representations vary about as much as MAML and ANIL representations
(ii) two ANIL representations vary about as much as MAML and ANIL representations.
In particular, this suggests that MAML and ANIL learn similar features, despite having
significant algorithmic differences.
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Appendix B

Additional Information and Results

for Chapter 3

B.1 Augmentation Methods

In this section, we provide further details on the different augmentation strategies

explored (existing and TaskAug), and visualize their operation.

B.1.1 Existing methods

Figures B-1-B-4 present examples following augmentation using the existing methods.

We show only one lead for clarity; however, these operations will be applied to each

lead.

Original signal After time masking

Figure B-1: Time Masking.
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Original signal After SpecAugment

Figure B-2: SpecAugment.

Original signal After DGW

Figure B-3: Discriminative Guided Warping (DGW).

B.1.2 Further Details on TaskAug

Example Application of TaskAug. Suppose we have a one-stage TaskAug policy,

𝐾 = 1, our augmentation set has two operations 𝒮 = {𝐴1, 𝐴2} which are 𝐴1 =

TimeMask(𝑥, 𝑦;𝜇0 = 0.2, 𝜇1 = 0.1) and 𝐴2 = Noise(𝑥, 𝑦;𝜇0 = 2.1, 𝜇1 = 5.3), and the

operation selection probability vector is 𝜋 = [0.9, 0.1] (that is, we select TimeMask

with probability 0.9, and noise with probability 0.1). Now consider applying TaskAug

to a (data, label) pair (𝑥, 1), i.e., the label is 1. We follow these steps:

1. Obtain a reparameterizable sample 𝑢 from Categorical([0.9, 0.1]): let this be

𝑢 = [0.75, 0.25].

2. Find 𝑖 = argmax𝑢; in this case, 𝑖 = 1.

3. Select the operation 𝐴1, i.e. TimeMask.

4. Compute the masking strength based on the label. Recall this is defined as

𝑠 = 𝑦𝜇1 + (1− 𝑦)𝜇0, so 𝑠 = 1× 0.1 + (1− 1)× 0.2 = 0.1.

5. Apply time-masking with strength 0.1 to 𝑥, generating 𝑥̂.

6. Scale this by 𝑢1
stop_grad(𝑢1)

to generate 𝑥̃.
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Original signal example Signal generated with SMOTE

Figure B-4: SMOTE.

Algorithm 3 Optimizing TaskAug parameters.
1: Initialize base model parameters 𝜃 and TaskAug parameters 𝜑
2: for 𝑡 = 1, . . . , 𝑇 do
3: Compute training loss, ℒ𝑇 (𝜃)
4: Compute 𝜕ℒ𝑇

𝜕𝜃

5: Update 𝜃 ← 𝜃 − 𝜂𝜃 𝜕ℒ𝑇

𝜕𝜃

6: if 𝑡 % 𝑃 == 0 then
7: Set 𝜃 = 𝜃
8: Compute the validation loss, ℒ𝑉 (𝜃)
9: Compute 𝜕ℒ𝑉

𝜕𝜃

10: Approximate 𝜕𝜃
𝜕𝜑

using Equation 3.5.

11: Compute the derivative 𝜕ℒ𝑉

𝜕𝜑
= 𝜕ℒ𝑉

𝜕𝜃
× 𝜕𝜃

𝜕𝜑
using the previous two steps.

12: Update 𝜑← 𝜑− 𝜂𝜑 𝜕ℒ𝑉

𝜕𝜑

13: end if
14: end for

Choice of 𝑃 in optimization algorithm. As detailed in the main text, there

are many learnable parameters in TaskAug, and we use gradient-based optimization

to learn these jointly with the base model parameters – the algorithm to do so is

reproduced here, Algorithm 3.

An important hyperparameter in this algorithm is 𝑃 . This influences how many

‘inner’ gradient steps (to the base model) we perform before an ‘outer’ gradient step

(to the TaskAug parameters). There is a tradeoff here: if 𝑃 is too small, then applying

the IFT to approximate 𝜕𝜃
𝜕𝜑

will result in a poor approximation [113]; if 𝑃 is too large,

then updates to the policy parameters will have little effect on model parameters since

the base model has already reached minimal training loss (and may start to overfit).

In our experiments, we find that 𝑃 > 5 suffered from this second problem, and 𝑃 = 1

159



was sometimes unstable due to the first problem. In general, 𝑃 = 1 worked well at

small sample sizes (𝑁 = 1000), and 𝑃 = 5 worked better at 𝑁 = 2500 and 𝑁 = 5000.

Augmentation operations

1

0

1

2

Original signal

1

0

1

2

After TaskAug Time Mask

1
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1

2

After TaskAug Gaussian Noise
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After TaskAug Temporal Warp
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After TaskAug Temporal Displacement

Figure B-5: Examples of the different operations used in TaskAug.

Figure B-5 shows the different operations used in TaskAug. We show only one lead

for clarity; however, these operations will be applied to each lead. We now provide

more details on the implementation of these operations in our experiments.

• TimeMask. As with the existing TimeMask strategies, we randomly select a

contiguous portion of the signal to set to zero. We set 10% of the signal to zero in

our implementation. This parameter is not optimized.

• Gaussian Noise. IID Gaussian noise is added to the signal. This is formed

as follows. We first compute the standard deviation of each lead of the signal:

let us denote this as 𝜎. Then, the noise added to each sample of the signal is
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expressed as: 𝜖 = 0.25×𝜎×sigmoid(𝑠)×𝒩 (0, 1), where 𝑠 is the learnable strength

parameter, initialized to 0. The coefficient 0.25 was found by visual inspection of

some augmented examples, and observing that this allowed flexible augmentations

to be generated without overwhelming the signal with noise.

• Temporal warping. The signal is warped with a random, diffeomorphic temporal

transformation. To form this, we sample from a Gaussian with zero mean, and a

fixed variance 100× 𝑠2, where 𝑠 is the learnable strength parameter (initialized to

1), at each temporal location, to generate a length 𝑇 dimensional random velocity

field. This velocity field is then integrated (following the scaling and squaring nu-

merical integration routine used by [9, 10]). This resulting displacement field is then

smoothed with a Gaussian filter to generate the smoothed temporal displacement

field. This field represents the number of samples each point in the original signal

is translated in time. The field is then used to transform the signal, translating

each channel in the same way (i.e., the field is the same across channels).

• Baseline wander. We firstly form a wander amplitude by computing: 𝐴 =

0.25×sigmoid(𝑠)×Uniform(0, 1), where again 𝑠 is a learnable strength parameter.

Then, we compute the frequency and phase of the sinusoidal offset. The frequency

is computed as: 𝑓 = 20×Uniform(0,1)+10
60

, based on the approximate number of breaths

per minute for an adult. The phase is: 𝜑 = 2𝜋×Uniform(0, 1). Then, the sinusoidal

offset is computed as: 𝐴 sin(𝑓𝑡+ 𝜑).

• Magnitude scaling. We scale the entire signal by a random magnitude given

by sigmoid(𝑠)× Uniform(0.75, 1.25), where 𝑠 is a learnable strength parameter,

initialized to 0.

• Temporal displacement. We shift the entire signal in time, padding with zeros

where required. Our implementation directly generates a displacement field (as

with temporal warping) and uses the spatial transformation from [9, 10] to trans-

form the signal. This allows the operation to be differentiable, and for us to learn

the displacement strength 𝑠. The displacement magnitude is a Uniform distribution

on [−100× 𝑠2, 100× 𝑠2], with the strength being initialized to 0.5.
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B.2 Dataset Details

We provide more details about the three datasets.

B.2.1 Dataset A

The labels for RVH and AFib were assigned to each example based on whether rele-

vant diagnostic statements were present in either a clinician’s read of the ECG, or a

machine read of the ECG.

For RVH, there were six diagnostic statements that led to a positive label being

assigned: “right ventricular hypertrophy", “biventricular hypertrophy", “combined

ventricular hypertrophy", “right ventricular enlargement", “rightventricular hypertro-

phy", “biventriclar hypertrophy".

For AFib, there were nine such statements: “atrial fibrillation with rapid ven-

tricular response", “atrial fibrillation with moderate ventricular response", “fibrilla-

tion/flutter", “atrial fibrillation with controlled ventricular response", “afib", “atrial

fib", “afibrillation", “atrial fibrillation", “atrialfibrillation".

Preprocessing. ECGs were sampled at 250 Hz for 10 seconds, resulting in a 2500×

12 tensor for all 12 leads, per-ECG. We normalized the signals by dividing by 1000.

Other forms of normalization for this dataset (e.g., z-scoring) resulted in some abnor-

mally large/small values.

B.2.2 Dataset B

The four labels are obtained by aggregating relevant sets of diagnostic statements

– we refer the reader to the PTB-XL paper [191] for further details. Of relevance

here is that certain labels, such as MI, contain a small number of distinct diagnostic

statements (3), potentially suggesting why many augmentation strategies can help –

it is a fine-grained task. Others (such as CD) are much broader, covering many more

diagnostic statements.
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Preprocessing. ECGs in the dataset are sampled at 500 Hz for 10 seconds; we

downsample these by a factor of 2 for consistency with Dataset A and C, resulting

in a 2500 × 12 tensor for all 12 leads, per-ECG. Normalization involved z-scoring,

following the code provided with the dataset.

B.2.3 Dataset C

The hemodynamics prediction cohort consists of patients who had an ECG and right

heart catheterization procedure on the same day. The catheterization procedure

measures hemodynamics variables including the pulmonary capillary wedge pressure

(PCWP) and cardiac output (CO), and these are used to form the prediction targets.

We consider inferring abnormally low Cardiac Output (less than 2.5 L/min), and

abnormally high Pulmonary Capillary Wedge Pressure (greater than 20 mmHg).

Preprocessing. ECGs were sampled at 250 Hz for 10 seconds, resulting in a 2500×

12 tensor for all 12 leads, per-ECG. We normalized the signals by dividing by 1000.

Other forms of normalization for this dataset (e.g., z-scoring) resulted in some abnor-

mally large/small values, so we opted for the division-based normalization.
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B.3 Experiments

In this section, we provide further experimental details. We first provide implemen-

tation details, and then outline additional experimental results including: Results for

AUPRC in the low-sample (𝑁 = 1000) regime, performance on Datasets A and B

in the high-sample regime, performance on Dataset B in an additional low sample

regime (𝑁 = 500 data points), interpretation of the TaskAug policy for RVH, a study

of the impact of optimizing policy parameters across different sample size regimes,

and a study of the impact of class-specific magnitudes across different sample size

regimes.

B.3.1 Implementation details

Network architecture. In all experiments, we use a 1D CNN based on a ResNet-

18 [77] architecture. This model has convolutions with a kernel size of 15, and stride

2 (informed by the temporal window we want the convolutions to operate over). The

blocks in the ResNet architecture have convolutional layers with 32, 64, 128, and

256 channels respectively. The output after the final block is average pooled in the

temporal dimension, and then a linear layer is applied to predict the probability of

the positive class.

Optimization settings. As discussed, we used Adam with a learning rate of 1e-3

for all methods, given that this resulted in stable training across all settings. When

optimizing the TaskAug policy parameters, we used RMSprop with a learning rate of

1e-2, following [113].

Computational information. All models and training were implemented in Py-

Torch and run on a single NVIDIA V100 GPU.
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B.3.2 Additional results

AUPRC results at 1000 samples. As discussed in Section 3.5.2, the improve-

ments in AUROC are not always statistically significant. Given that some of the

labels are very low prevalence (RVH: 1%, AFib: 5%, low CO: 4%), we evaluate

the AUPRC in the low-sample regime, which provides additional information about

model performance. Results are shown in Tables B.1, B.2, and B.3. We observe that

for the low prevalence RVH, AFib, and Low CO tasks, TaskAug obtains statistically

significant improvements in performance. On Dataset A tasks (RVH and AFib), it is

the only method to do so.

RVH AFib

NoAugs 7.4 ± 1.3 21.2 ± 2.0
TaskAug 10.8 ± 0.8* 27.3 ± 1.8*

SMOTE 9.7 ± 1.2 21.0 ± 2.2
DGW 7.1 ± 0.9 19.4 ± 2.3
SpecAug 10.6 ± 1.2 21.1 ± 2.0
TimeMask 10.1 ± 1.5 20.3 ± 2.3

Table B.1: Mean and standard error of AUPRC for various data augmentation strategies
when detecting cardiac abnormalities on Dataset A. We consider a low-sample regime with a
development set of 1000 data points. The best-performing method is bolded, and the second
best is underlined, and * indicates statistically significant improvement at the 𝑝 < 0.05 level.
TaskAug is the only method to obtain significant improvements in performance on both
tasks.
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MI HYP STTC CD

NoAugs 59.2±2.1 53.1±1.7 66.9±2.5 67.3±1.1
TaskAug 63.1±1.7 55.2±0.9 68.7±1.3 66.8±1.2
SMOTE 62.0±1.6 41.2±2.9 65.9±1.0 62.7±1.1
DGW 61.1±1.2 53.9±1.6 67.9±1.1 64.7±2.6
SpecAug 61.7±1.6 54.5±1.5 68.8±1.5 65.8±1.4
TimeMask 60.3±1.3 52.8±1.8 68.8±1.2 70.1±1.3

Table B.2: Mean and standard error of AUPRC for various data augmentation strategies
on detecting cardiac abnormalities on Dataset B. We consider a low-sample regime with a
development set of 1000 data points. The best-performing method is bolded, and the second
best is underlined, and * indicates statistically significant improvement at the 𝑝 < 0.05 level.

Low CO High PCWP:
𝑁 = 1000

High PCWP:
All Data

NoAugs 7.2 ± 0.4 42.5 ± 0.8 49.7 ± 0.8
TaskAug 8.8 ± 0.6* 43.5 ± 0.9 50.8 ± 0.8
SMOTE 8.8 ± 0.6* 41.9 ± 0.7 46.9 ± 0.7
DGW 8.1 ± 0.7 41.2 ± 0.7 49.7 ± 1.0
SpecAug 7.8 ± 0.4 42.3 ± 1.1 50.3 ± 0.8
TimeMask 8.0 ± 0.5 42.4 ± 0.7 50.1 ± 0.9

Table B.3: Mean and standard error of AUPRC for various data augmentation strategies
for the hemodynamics inference task in Dataset C. We consider a low-sample regime with a
development set of 1000 data points. The best-performing method is bolded, and the second
best is underlined, and * indicates statistically significant improvement at the 𝑝 < 0.05 level.
TaskAug is the one of only two methods to obtain significant improvements in performance
on the low CO detection task.
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Results at higher sample regimes. Tables B.4-B.7 show AUROC for the dif-

ferent augmentation methods on the tasks from Datasets A and B. We observe that

augmentations are less effective at higher samples. Particularly when the development

set sizes are 2500 and 5000 datapoints, we observe that the improvement with using

augmentations (over the NoAugs baseline) with any of the methods is quite small,

and nearly always less than 1% AUROC. This suggests that in general, augmentations

are less useful at these higher data regimes.

RVH AFib

NoAugs 86.1±0.9 89.0 ± 0.4
TaskAug 86.9±0.9 89.1 ± 0.4
SMOTE 85.5±1.3 89.1 ± 0.5
DGW 84.8±1.3 88.4 ± 0.5
SpecAug 83.3±1.8 89.1 ± 0.3
TimeMask 85.8±1.1 88.2 ± 0.4

Table B.4: Mean and standard error of AUROC for augmentation methods on Dataset A
tasks with a development set of 2500 data points. The best performing method is bolded,
and the second best is underlined.

RVH AFib

NoAugs 90.6±0.6 92.6±0.2
TaskAug 90.6±0.4 92.8±0.1
SMOTE 89.8±0.6 92.6±0.2
DGW 90.8±0.5 92.5±0.2
SpecAug 90.5±0.8 92.7±0.1
TimeMask 89.4±0.7 92.6±0.2

Table B.5: Mean and standard error of AUROC for augmentation methods on Dataset A
tasks with a development set of 5000 data points. The best performing method is bolded,
and the second best is underlined.
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MI HYP STTC CD

NoAugs 84.5±0.5 86.4±0.4 89.7±0.3 85.8±0.3
TaskAug 86.1±0.5 86.2±0.4 89.7±0.3 86.6±0.4
SMOTE 84.7±0.7 81.9±1.3 88.7±0.4 85.5±0.6
DGW 84.1±0.5 85.9±0.6 89.5±0.3 86.2±0.3
SpecAug 84.6±0.8 86.2±0.6 90.2±0.3 86.8±0.6
TimeMask 85.7±0.4 86.6±0.3 90.1±0.1 87.0±0.7

Table B.6: Mean and standard error of AUROC for augmentation methods on Dataset B
tasks with a development set of 2500 data points. The best performing method is bolded,
and the second best is underlined.

MI HYP STTC CD

NoAugs 89.4±0.3 88.2±0.2 91.0±0.3 89.3±0.4
TaskAug 89.4±0.3 88.3±0.2 91.6±0.2 90.0±0.2
SMOTE 86.6±0.7 86.7±0.4 90.6±0.3 88.0±0.3
DGW 88.6±0.3 88.0±0.2 91.3±0.1 89.3±0.2
SpecAug 89.5±0.2 88.4±0.4 91.6±0.2 89.9±0.2
TimeMask 89.3±0.3 88.6±0.2 91.6±0.2 89.8±0.2

Table B.7: Mean and standard error of AUROC for augmentation methods on Dataset B
tasks with a development set of 5000 data points. The best performing method is bolded,
and the second best is underlined.
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MI HYP STTC CD

NoAugs 74.4 ± 0.9 81.9 ± 0.8 85.2 ± 0.5 78.9 ± 1.2
TaskAug 78.4 ± 0.5 81.5 ± 1.2 86.2 ± 0.4 80.7 ± 0.6
SMOTE 75.7 ± 1.2 79.2 ± 1.5 85.5 ± 0.3 78.6 ± 1.5
DGW 78.2 ± 0.6 78.7 ± 1.2 82.0 ± 1.3 79.0 ± 0.9
SpecAug 77.8 ± 0.7 81.0 ± 0.6 86.3 ± 0.4 79.3 ± 1.1
TimeMask 77.8 ± 1.0 80.9 ± 1.3 86.6 ± 0.5 80.3 ± 0.8

Table B.8: Mean and standard error of AUROC for augmentation methods on Dataset B
tasks with a development set of 500 data points. The best performing method is bolded,
and the second best is underlined.

Results on Dataset B at 𝑁 = 500. Table B.8 shows AUROC for the different

augmentation methods in an additional low sample regime, with 𝑁 = 500. We

see that the maximum improvement over the NoAugs baseline by any augmentation

strategy is greater in this regime than it was at 𝑁 = 1000 (see Table 3.2). Given that

the prevalence of these tasks is relatively high, we see more significant performance

improvements in the 𝑁 = 500 regime.

Figure B-6: TaskAug policy for detecting Right Ventricular Hypertrophy.
The learned TaskAug policy: probability of selecting each transformation in both
augmentation stages and the optimized displacement strengths in the first stage. We
show the mean/standard error of the learned parameter values over 15 runs. Temporal
operations (masking and displacement) have a high probability of selection in Stage
1, which is sensible since these operations are likely to be label preserving (RVH is
typically detected based on the relative magnitudes of portions of beats in the ECG).
We see that both positive and negative classes have similar optimized displacement
augmentation strengths – we do not expect displacement to impact the class label
differently for the two classes, so this is sensible.
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Interpreting the RVH policy. We visualize the TaskAug policy for RVH in Fig-

ure B-6. We observe high probability assigned to selecting two temporal operations in

stage 1, namely masking and displacement. Relative magnitudes of different portions

of the ECG affect the RVH label, so temporal operations having higher probability of

selection is sensible since they are more likely to be label preserving than operations

that change the relative magnitudes of different parts of the ECG. We examine the

learned strengths for the displacement operation in Stage 1, Figure B-6b, and we see

that there is little differentiation on a per-class basis. This is sensible, since we do

not expect displacement of the signal in time to affect the RVH label for differently

for the positive and negative classes.

Further study on the impact of optimizing augmentations. As shown in the

main text, Figure 3-5, optimizing the policy parameters improves performance over

keeping them fixed at their initial values. In Figure B-7, we study this effect across

different dataset sizes and find that the optimization has the most impact in the low

sample regime, but still results in improvements even at higher samples. This could

be due to the fact that at higher samples, augmentations boost performance less in

general, so the specific parameter settings in TaskAug also have less impact.

Further study on the impact of class-specific magnitudes. As shown in the

main text, Figure 3-6, optimizing class-specific magnitudes improves over learning

one magnitude parameter for each class. Figure B-8 studies this effect across different

dataset sizes and we see that the class-specific parameters improve performance at all

dataset sizes, but the improvement is most clearly seen at low samples. Similarly with

the optimization of augmentation parameters, this could be due to the fact that at

higher samples, augmentations boost performance less in general, so the class-specific

parameterization in TaskAug has less impact.
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Figure B-7: Studying performance when we do not optimize the policy param-
eters in TaskAug. We show the mean/standard error of AUROC over 15 runs for AFib
and over 5 runs for MI. We see that optimizing the policy parameters results in notice-
able improvements in performance over keeping the policy parameters at their initial values
(InitAugs). However, the impact of optimizing the parameters is reduced at larger dataset
sizes, possibly due to the fact that augmentations are inherently less useful at higher sample
regimes.
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Figure B-8: Studying performance when we do not have class-specific magnitude
parameters in TaskAug. We show the mean/standard error of AUROC over 15 runs
for AFib and over 5 runs for MI. Class-specific magnitude parameters improve performance
most in the low sample regime. At higher samples, this impact is reduced, possibly due to
the fact that augmentations are inherently less useful at higher sample regimes.
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Appendix C

Additional Information and Results

for Chapter 4

C.1 Notation and Acronyms
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PT Pre-training
FT Fine-tuning

AUROC (AUC) Area Under Receiver-Operator Characteristic
∙ Placeholder for either PT or FT
𝒳 Input domain to models
𝑥 Model input
𝒴∙ True output space (e.g., space of labels)
𝑦 Label
𝒴∙ Prediction output space of a model
𝑦 Predicted Label
Θ Parameter space for feature extractors of models
𝜃 Feature extractor parameters
Ψ∙ Parameter space for prediction head of model (output layer)
𝜓∙ Head parameters
Φ Space of meta-parameters
𝜑 Meta-parameters

𝑓∙ : 𝒳 ; Θ,Ψ∙ → 𝒴∙ General parameteric model satisfying compositional structure 𝑓∙ = 𝑓
(head)
∙ ∘ 𝑓 (feat)

𝑓 (feat)(·;𝜃 ∈ Θ) Feature extractor that is transferable across learning stages (e.g., PT to FT)
𝑓
(head)
∙ (·;𝜓 ∈ Ψ∙) Output ‘head’ of a model that is stage-specific and not transferable.

𝒟∙ General data distribution or dataset
ℒ∙ : 𝒴∙ × 𝒴∙ → R Loss function

ℒCE Example loss function: cross-entropy
𝐿∙(𝜃,𝜓∙;𝒟∙) Expected loss over a data distribution E𝒟∙ [ℒ∙(𝑓∙(𝑥∙;𝜃,𝜓∙), 𝑦∙)].

Alg∙ Learning algorithm used for optimization (e.g., stochastic gradient descent)
𝑔(𝜑) Meta-parameter optimization objective 𝐿FT

(︁
AlgFT

(︀
AlgPT(𝜃

(0)
PT,𝜓

(0)
PT;𝒟PT,𝜑),𝜓

(0)
FT;𝒟FT

)︀
;𝒟FT

)︁
𝜑(opt) Optimal meta-parameters satisfying 𝜑(opt) = argmin𝜑∈Φ 𝑔(𝜑)

𝜃*PT(𝜑) PT best response values satisfying 𝜃*PT(𝜑) = AlgPT(𝜃
(0)
PT,𝜓

(0)
PT;𝒟PT,𝜑)

𝜃*FT(𝜑), 𝜓*
FT(𝜑) FT best response values satisfying 𝜃*FT(𝜑), 𝜓*

FT(𝜑) = AlgFT(𝜃*PT(𝜑),𝜓
(0)
FT;𝒟FT)

𝜕𝑔
𝜕𝜑

Gradient w.r.t. meta-parameters, which we compute for gradient-based optimization of 𝜑[︀
𝜃FT, 𝜓FT

]︀
Shorthand to representation concatenation of parameter vectors.

𝜕𝐿FT
𝜕
[︁
𝜃FT, 𝜓FT

]︁ FT loss gradient: first term in meta-parameter gradient.

𝜕AlgFT
𝜕𝜃PT

FT best response Jacobian: second term in meta-parameter gradient.
𝜕AlgPT

𝜕𝜑
PT best response Jacobian: third term in meta-parameter gradient.

𝐾 Number of steps we unroll in FT to compute FT best response Jacobian.
𝑃 Number of PT steps before each meta-parameter update.

copy(𝜃) Make a copy of the parameters 𝜃 such that gradients do not flow through (like a stop-gradient).
𝒟(tr)

FT Training split of the FT data set, used during meta-parameter learning for updating the FT parameters.
𝒟(val)

FT Validation split of the FT data set, used during meta-parameter learning for optimizing meta-parameters.
𝒟(Meta)

FT FT data available at PT time for meta-parameter learning. We have that 𝒟(Meta)
FT = 𝒟(tr)

FT ∪ 𝒟(val)
FT ⊆ 𝒟(all)

FT .
IFT Implicit Function Theorem
GIN Graph Isomorphism Network
ECG Electrocardiogram
𝜂PT learning rate for PT
𝜂FT learning rate for FT
𝜂V learning rate for meta parameters

Table C.1: Notation

174



C.2 Our Algorithm: Further Details

Algorithm 4 Gradient-based algorithm to learn meta-parameters, incorporating
other practical details not present in the main paper description. Notation defined in
Table C.1. Note that vector-Jacobian products (VJPs) can be efficiently computed
by standard autodifferentiation.

1: Initialize PT parameters 𝜃(init)
PT ,𝜓

(init)
PT ,𝜓

(init)
FT and meta-parameters 𝜑(0)

2: for 𝑛 = 1, . . . , 𝑁 iterations do
3: Initialize 𝜃(0)PT = 𝜃

(init)
PT and 𝜓(0)

PT = 𝜓
(init)
PT .

4: for 𝑝 = 1, . . . , 𝑃 PT iterations do

5:
[︁
𝜃
(𝑝)
PT,𝜓

(𝑝)
PT

]︁
=
[︁
𝜃
(𝑝−1)
PT ,𝜓

(𝑝−1)
PT

]︁
−𝜂PT

𝜕𝐿PT

𝜕
[︁
𝜃PT,𝜓PT

]︁
⃒⃒⃒⃒
⃒
𝜃
(𝑝−1)
PT ,𝜓

(𝑝−1)
PT

# Unrolled step of AlgPT

6: end for
7: if 𝑛 < 𝑁warmup then
8: Update PT initialization by setting: 𝜃(init)

PT = 𝜃
(𝑃 )
PT and 𝜓(init)

PT = 𝜓
(𝑃 )
PT

9: Skip meta-parameter update and continue
10: end if
11: Initialize FT parameters 𝜓(0)

FT = 𝜓
(init)
FT and 𝜃(0)FT = copy(𝜃(𝑃 )

PT ).

12: Approximate 𝜃*FT,𝜓
*
FT using (4.4), with 𝒟(tr)

FT .

13: Compute 𝑔1 =
𝜕𝐿FT

𝜕
[︁
𝜃FT, 𝜓FT

]︁
⃒⃒⃒⃒
⃒
𝜃*FT,𝜓

*
FT

, using 𝒟(val)
FT . # FT Loss gradient

14: Compute VJP 𝑔2 = 𝑔1
𝜕AlgFT
𝜕𝜃PT

⃒⃒⃒
𝜃
(𝑃 )
PT ,𝜓

(0)
FT

using the unrolled learning step from line 12,

and 𝒟(tr)
FT .

15: Approximate VJP 𝜕𝑔
𝜕𝜑

⃒⃒⃒
𝜑(𝑛−1)

= 𝑔2
𝜕AlgPT
𝜕𝜑

⃒⃒⃒
𝜑(𝑛−1)

using IFT (4.3).

16: 𝜑(𝑛) = 𝜑(𝑛−1) − 𝜂V
𝜕𝑔
𝜕𝜑

⃒⃒⃒
𝜑(𝑛−1)

# Update meta-parameters

17: Update PT initialization by setting: 𝜃(init)
PT = 𝜃

(𝑃 )
PT and 𝜓(init)

PT = 𝜓
(𝑃 )
PT .

18: Update FT initialization by setting: 𝜓(init)
FT = 𝜓*

FT.
19: end for

On optimization horizons. For reference, our algorithm to optimize meta-parameters

online is reproduced here, in Algorithm 4. Prior work [198] has suggested that online

optimization of certain hyperparameters (such as learning rates) using short hori-

zons may yield suboptimal solutions. This is known as the short-horizon bias (SHB)

problem. We now discuss this concern further in the context of our algorithm.

• What is the short-horizon bias (SHB) problem? SHB is understood

to be a special case of the bias induced by truncating telescoping sums for
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optimization parameters. The effects of the truncation can be pronounced with

optimization parameters [198], but there exist methods like [19] to deal with

these if they occur.

• Do we expect this to be a concern in our setting? There are two hyper-

gradients in our system that could suffer from bias: the PT hypergradients and

the FT hypergradients. In both cases, the impact from biased hypergradients

appears to be minimal. We will argue for this claim through each hypergradient

term separately.

PT Hypergradient: The PT hypergradient does not suffer from the short-

horizon bias because the PT model is expected to have approximately converged

at each hyperparameter update. This is not only a requirement of the implicit

function theorem and the algorithm from [113] to apply, but also is directly

enforced in our system through the use of online-updates and a warmup period

(see Algorithm 4).

FT Hypergradient: For the gradient through FT, we acknowledge that dif-

ferentiating through only one step could, in theory, produce biased hypergradi-

ents. However, several prior works on meta-learning various structures similar

to what we consider [137, 145, 113, 129, 85] did not observe significant bias.

Therefore, from an empirical standpoint, this bias is not necessarily expected

to be a significant issue.

As seen in our experimental results, we also observe improved experimental

results by setting 𝐾 = 1 in our algorithm, suggesting minimal SHB impact.

To study this issue further, we include experiments comparing to full back-

propagation through PT and FT in synthetic experiments (Appendix C.4), and

compare different values of 𝐾 in our semi-supervised learning experiments (Ap-

pendix C.6).

• Why might SHB not be a concern with the hyperparameters we con-

sider? As stated, the SHB issue has mainly been observed in the context of

optimization hyperparameters such as the learning rate. This could be because
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the learning rate directly affects the rate at which we approach the critical

point, but it does not directly change the critical point. As seen in the analysis

in [198], optimizing the LR with short rollouts results in (far too aggressively)

decaying the step size to decrease variance and converge faster. In contrast,

other hyperparameters, like weight decay or augmentations, directly change the

fixed point that we are converging to (as opposed to just the rate). In setups

where the hyperparameters directly affect the fixed point, SHB has not been

observed — for example, see [157, 114]. These works do online, limited horizon

optimization of hyperparameters directly affecting the critical point.
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C.3 Practical Heuristics for Tuning Optimizer Pa-

rameters

The optimization parameters used in nested optimization can be crucial for success.

In our synthetic experiments in Section 4.5 we were able to use default optimizer

selections; however these settings may not work in practice for all domains (as seen

in our real-world experiments). Here, we list some basic guidelines a practitioner can

iterate through to debug meta-parameter optimization.

Step 1: What to do if the meta-parameters are changing wildly? First,

decrease the learning rate for the meta-parameters. Momentum parameters can be

dangerous – see [59]; using an optimizer without momentum may work better in some

situations. If the meta-parameters begin oscillating later into training, try decreasing

momentum.

Step 2: What to do if the pre-training parameters are changing wildly?

First, make sure the meta-parameters are not moving around rapidly. Once the

meta-parameters are stable, you should be able to decrease the learning rate of the

pre-training optimizer until convergence.

Step 3: What to do if the meta-parameters are not changing? First, make

sure that your pre-training parameters are finding good solutions by examining the

pre-training optimization and optimizer settings. Next, make sure that the IFT is

giving a good approximation for the pre-training response. You should begin with

1 Neumann term (or an identity inverse-Hessian approximation), because this often

works well; see [113]. If 1 Neumann term works, you can try adding more until they

offer no benefit. Next, make sure that differentiation through optimization is giving a

reasonable gradient. If the unrolled optimizer is diverging, this will not give us useful

gradients, so we must make sure these FT parameters converge. After you verify

these components, try increasing the meta-parameter learning rate.
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C.4 Synthetic Experiments: Further Details

We discuss further details on the synthetic experiments. All experiments in this

section were run on Google Colab, using the default GPU backend.

C.4.1 Meta-Parameterized Data Augmentation

Here, we have additional details for the data augmentation synthetic experiments in

Section 4.5.

Dataset. Both PT and FT tasks are supervised MNIST digit classification (i.e., a

10-class classification problem). Our pre-training dataset is 3000 randomly-sampled

MNIST data points. The fine-tuning training and validation sets are a distinct set

of 3000 randomly-sampled MNIST data points augmented with a rotational degree

drawn from 𝒩 (𝜇, 𝜎2) for some mean 𝜇 and standard deviation 𝜎.

In the main text (Section 4.5) we studied the situation where the FT rotation

distribution was 𝒩 (𝜇, 12), 𝜇 = 90∘; note that the standard deviation is fixed at 1.

We also examine here a situation where we try to learn both the mean and standard

deviation (results in Figure C-1a), where the FT rotation distribution is 𝒩 (45, 152).

Defining meta-parameters. Our meta-parameters parameterize a rotational aug-

mentation distribution that we apply to the PT images, 𝒩 (𝜇PT, 𝜎
2
PT). We consider

two scenarios. First, where we only optimize the mean: 𝜑 = {𝜇PT}, and 𝜎PT is fixed

to 1, which is the situation in Section 4.5. In this case, the initialization of 𝜑 is sam-

pled uniformly from [45, 135]. Second, we optimize both the mean and the standard

deviation of the rotation distribution: 𝜑 = {𝜇PT, 𝜎PT} (results in Figure C-1a). In

both settings, we expect the optimal PT rotation distribution for augmentations to

be equal to what is used at FT time.

Model architectures. Our model is a fully-connected feedforward network, with

1 hidden layer with 64 hidden units and a ReLU activation.
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Algorithm and Implementation details. We are able to use implicit differ-

entiation with 1 Neumann term for the pre-training, and 1 step of differentiation

through optimization for the fine-tuning training step. We use an Adam optimizer

with a LR of 0.01 for pre-training and 0.3 for the meta-parameters. For fine-tuning,

we use SGD (to match exactly the methods description in (4.4)) with the default

learning rate of 0.01. We train with a batch size of 64 for each optimizer for 5

epochs. We alternate between taking 1 step of optimization for each set of param-

eters: 𝑁warmup = 0, 𝐾 = 1, 𝑃 = 1. These hyperparameters were chosen based on a

simple strategy discussed in Section C.3, without particular tuning.

Experimental setup. For the main experiments where we learn only the mean, we

consider 10 different sampled mean initializations from [45, 135]. For the additional

experiments where we learn the mean and the standard deviation, we fix the target

distribution at 𝒩 (45, 152) and examine two initializations: 𝜑(0) = {0, 1} and 𝜑(0) =

{90, 1}.

Results. When learning the mean, we are able to approximately recover the true

rotation distribution after training with a final difference mean and standard error of

7.2± 1.5∘, over 10 sampled mean rotations, indicating efficacy of the algorithm.

Next, we examine the results for learning the mean and standard deviation from

different initializations, in Figure C-1a, and observe that we can approximately recover

the true augmentation distribution from both initializations.

C.4.2 Meta-Parameterized Per-Example Weighting

Here, we have additional details for the example weighting synthetic experiments in

Section 4.5.

Dataset. PT and FT tasks are again based on supervised MNIST image classifi-

cation. The PT task is adjusted to be a 1000-class problem, where MNIST digits

in classes 0-4 keep their original labels, and MNIST digits in classes 5-9 are now
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assigned a noisy label: a random label between 5 and 1000. Our PT set is 3000

randomly-sampled MNIST data points. We use the standard MNIST training set for

pre-training, and if any data point is in class 5-9 we noise it, by assigning a random

label between 5 and 1000. We use the standard MNIST testing set for FT, split into

a FT training and validation set. The FT set contains only images with classes 0-4.

Defining meta-parameters. Our meta-parameters 𝜑 are the parameters of a

weighting CNN that assigns an importance weight to each PT data point, which

is then used to weight the loss on that data point during PT. We expect the optimal

weighting strategy to assign maximal weight to PT images in classes 0-4, since these

are not noisy and are seen at FT time, and minimal weight to the other images, since

these have noisy labels.

Model architectures. Our weighting network has an architecture of two convolu-

tional layers, then a fully-connected layer. The first layer has 32 filters with a kernel

size of 5, followed by batch-norm, with a ReLU activation and max pooling. The

second convolutional layer is the same as the first, except with 64 filters and a kernel

size of 3. The fully-connected layer has a 1-dimensional output with an activation of

2𝜎 applied, so the output is in (0, 2).

Implementation details. As with the MNIST augmentation experiments, we are

able to use implicit differentiation with 1 Neumann terms for the PT, and 1 step of

differentiation through optimization for the FT training. Again, we use an Adam

optimizer with default parameters for PT and the meta-parameters, and SGD with

default learning rate of 0.01 for FT. We use a batch-size of 100 for each optimizer and

train each seed for 100 epochs. We alternate between taking 1 step of optimization

for each set of parameters: 𝑁warmup = 0, 𝐾 = 1, 𝑃 = 1. These hyperparameters were

chosen based on a simple strategy discussed in Section C.3, without particular tuning.

Results. Using Algorithm 2 once again, we find that PT images from class 0-4 are

assigned high weight, and those from classes 5-1000 are assigned low weight. This is
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(a) Visualizing the optimization of meta-
parameters, which parameterize PT rotation
augmentation distributions. We consider
two different meta-parameter initializations of
mean/standard deviation, 𝜑 = {90, 1} (or-
ange) and 𝜑 = {0, 1} (blue), showing the mean
(solid line) and standard deviation (shaded re-
gion) over learning. The rotation distribution
for the FT validation set is 𝒩 (45, 152), shown
with a solid black line (mean) and dashed
lines (plus/minus standard deviation). In
both cases, we observe approximate recovery
of the optimal meta-parameters, namely the
FT mean and standard deviation. The final
mean and standard deviation for the 90 ini-
tialization and 0 initialization are 42.4± 13.9
and 45.9± 15.5 respectively.

(b) The distribution of impor-
tance weights assigned to examples
with/without noisy labels, over 10
random seeds of weights, produced by
a weighting CNN. We show the average
weight applied to non-noised and noised
examples, normalized by dividing by the
sum of the data weights. The weighted
CNN has recovered the desired solution
of down-weighting examples with noisy
labels, indicating successful learning of
high-dimensional meta-parameters.

Figure C-1: Results for learning pre-training augmentation meta-parameters.

an expected result: since the PT classes 0-4 are also the FT classes, we expect images

from these classes to be upweighted. PT images not from these classes do not appear

at FT and have noisy labels, hence are downweighted. This result is visualized in

Figure C-1b.

C.4.3 The Impact of Approximating Meta-Parameter Gradi-

ents

We now study how using the two gradient approximations in our algorithm compare

to storing the entire PT and FT process in GPU memory and differentiating through

the whole process to obtain meta-parameter gradients. We consider our first synthetic
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setting, where we aim to learn rotation augmentations for MNIST PT, given that the

FT set is augmented in a specific way. In the following experiments, the FT set is

augmented with rotations drawn from 𝒩 (90, 1).

Experimental setup. We compare the following methods to study the impact

of the gradient approximations.

• Backpropagation through training (BPTT): The PT augmentation distribution

is initialized to 𝒩 (45, 1). We do 500 steps of PT and 500 steps of FT steps, and

use BPTT (through these 1000 optimization steps) to optimize the augmenta-

tions. This is near the limit of what we could fit into our GPU memory. This

process is then repeated for 500 hyperparameter optimization steps.

• Meta-parameterized PT: We run our algorithm. The PT augmentation distri-

bution is initialized to 𝒩 (45, 1). We set 𝑃 = 1, 𝐾 = 1, running for 500 PT and

FT steps overall (for a fair comparison with BPTT).

• Optimal augmentations: We set the PT augmentation distribution to be the

optimal setting (i.e., identical to that used for FT): 𝒩 (90, 1). This is also run

for 500 PT and 500 FT steps.

• Initialization augmentations: We set the PT augmentation distribution to be:

𝒩 (45, 1) as a baseline. This is also run for 500 PT and 500 FT steps.

Results.

• BPTT without compute limitations: Running BPTT for 500 hyperparameter

optimization steps takes about 20 hours. Doing so, it achieves a test accuracy

of 88.0%.

• Meta-parameterized PT: Running our method takes about 30 minutes. This

achieves a test accuracy of 87.6%.

• BPTT with compute limitations: Limiting the compute budget of BPTT to be

similar to our method, it obtains a test accuracy 83.4%.
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• Optimal augmentations: This achieves a test accuracy of 88.3%.

• Initialization augmentations: This achieves a test accuracy of 80.1%.

Analysis. As seen, our method, with about 2-3% of the compute time and sig-

nificantly lower memory cost than BPTT, obtains very comparable performance in

this toy domain, and almost matches the performance with the optimal hyperpa-

rameter setting. This indicates effective optimization of the hyperparameters.This

performance is achieved even when differentiating through a short FT optimization

of 1 step.

Conclusions. In this toy domain, our method obtains performance very com-

parable to BPTT and the optimal hyperparameter setting, and has a fraction of the

compute and memory cost of BPTT. This suggests that optimizing the augmentations

online is not incurring significant short horizon/truncation bias.
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C.5 Meta-Parameterized Multitask PT: Further De-

tails

We provide further dataset details, experimental details, and results for the multitask

PT experiments. All experiments in this section were run on a single NVIDIA V100

GPU.

C.5.1 Further dataset details

The transfer learning benchmark we consider is the biological data benchmark from

[84] where the prediction problem at both PT and FT is multitask binary classi-

fication: predicting the presence/absence of specific protein functions (𝑦) given a

Protein-Protein Interaction (PPI) network as input (represented as a graph 𝑥). The

PT and FT datasets both contain 88K graphs.

[84] provide open-source code in their paper to download the raw dataset and then

pre-process it. The important steps are extracting subgraphs of the PPI networks

centered at particular proteins, and then using the Gene Ontology to identify the set

of protein functions associated with each of the proteins.

Importantly, the set of protein functions that we predict at PT time and FT time

are different. The PT targets represent coarse-grained biological functions, and the

FT targets are fine-grained biological functions, which are harder to obtain experi-

mentally and therefore there is interest in predicting them having pre-trained a model

on predicting the targets that are more readily obtained. The PT dataset has labels

𝑦 ∈ {0, 1}5000, and the FT dataset has labels 𝑦 ∈ {0, 1}40.

[84] discuss the importance of appropriate train/validation/test set splitting for

this domain. We follow their suggestion and use the species split, where the test set

involves predicting biological functions for proteins from new species, not encountered

at training/validation time.

We refer the reader to [84] for full details on the pre-processing and construction of

subgraphs, the nature of the labels, and the splitting strategy for training, validation,

185



and testing.

C.5.2 Further experimental details

Baselines

We include most important details for baselines in Section 4.6. Here, for the CoTrain

+ PCGrad baseline we provide further details, and we also include information about

another baseline, CoTrain + Learned Task Weights.

CoTrain + PCGrad details: In our implementation, we computed gradient

updates using a batch of data from 𝒟PT and 𝒟FT separately, averaging the losses

across the set of binary tasks in each dataset (5000 for 𝒟PT and 40 for 𝒟FT). PCGrad

[205] was then used to compute the final gradient update given these two averaged

losses. We also experimented with: (1) computing the overall update using all 5040

tasks (rather than averaging), but this was too memory expensive; and (2) computing

the overall update using an average over the 5000 PT tasks and each of the 40 FT

tasks individually, but this was unstable and did not converge.

A further baseline: CoTrain + Learned Task Weights: We also tried a

variant of CoTrain where we learn task weights for each of the 5040 tasks (from 𝒟PT

and 𝒟FT), along with training the base model. We treat the task weights as high-

dimensional supervised learning hyperparameters and optimize these task weights us-

ing traditional gradient-based hyperparameter optimization, following the work from

[113]. These weights are optimized based on the model’s loss on the validation set

split of 𝒟FT.

Implementation details

General details for all methods. For all methods, we use the Graph Isomorphism

Network (GIN) architecture [200], which was found to be effective on this domain [84].

All methods first undergo PT for 100 epochs with Adam, with a batch size of 32.

We used LR=1e-3 for Graph Supervised PT, CoTrain and CoTrain + PCGrad, which

is the default LR in the prior work [84]. For the two nested optimization methods
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that jointly pre-train and learn weights, CoTrain + Learned Task Weights and Meta-

Parameterized PT, we used LR=1e-4; we originally tried LR=1e-3, but this led to

unstable nested optimization.

After PT, all methods are then fine-tuned for 50 epochs using Adam, with a batch

size of 32, over 5 random seeds, using early stopping based on validation set AUC

(following [84]). We used 5 seeds rather than 10 ([84] used 10) for computational

reasons. For all models, we initialize a new FT network head on top of the PT

network body. At FT time, we either FT the whole network (Full transfer) or freeze

the PT encoder and learn the FT head alone (Linear Evaluation [134]). We report

results here for both FT policies for all methods.

When fine-tuning models using the Full Transfer paradigm, we found that methods

were sensitive to LR choices and a FT LR of 1e-3 used in [84] was unstable. The Adam

optimizer FT LRs of 1e-5, 3e-5, and 1e-4 were tried for different methods, with FT

validation set AUC used to choose the best LR. For Meta-Parameterized PT, we used

a full transfer FT LR of 1e-5, and for the other methods, we used 3e-5. For linear

evaluation, we used Adam with an LR of 1e-4 for all methods, which was stable.

Further details for Meta-Parameterized PT. For meta-parameterized PT,

during the meta-PT phase, we use the Adam optimizer with a learning rate of 1e-4

for both PT and FT parameters, and use Adam with a LR of 1 for meta-parameters.

These values were set based on the methodology in Appendix C.3. In Algorithm 4, we

use a Neumann series with 1 step in evaluating the inverse Hessian for PT, 1 warmup

epoch, 𝑃 = 10 PT steps, 𝐾 = 1 FT steps; we did not search over values for these,

and these choices were partly influenced by compute considerations (e.g., large 𝐾 is

more memory expensive).

With these settings, meta-parameterized PT on this task takes about 8-9 GB of

GPU memory (about twice the memory cost of normal PT, which is 4-5 GB), and

takes about 5 hours to run (as compared to about 2.5 hours for standard PT).
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Further details for CoTrain + Learned Task Weights. Following a similar

process to the above, we used Adam with LR of 1e-4 for the base parameters and

LR of 1 for the task weights. We use a Neumann series with 1 step when using the

method from [113] for the fairest comparison with meta-parameterized PT.

Experimental Setup

We re-state the two settings considered, and provide more details about an additional

scenario in the Partial FT Access setting.

(1) Full FT Access: Provide methods full access to 𝒟PT and 𝒟FT at PT time

(𝒟(Meta)
FT = 𝒟FT) and evaluate on the full set of 40 FT tasks.

(2) Partial FT Access: Consider two situations. First, construct a scenario where

we limit the FT data available at PT time directly:
⃒⃒⃒
𝒟(Meta)

FT

⃒⃒⃒
= 0.5 |𝒟FT|. We assess

performance on the full FT dataset, as before. Results for this were not presented in

the main text due to space constraints.

Second, limit the number of FT tasks seen at PT time, by letting 𝒟(Meta)
FT include

only 30 of the 40 FT tasks. At FT time, models are fine-tuned on the held-out 10

tasks not in 𝒟(Meta)
FT . We use a 4-fold approach where we leave out 10 of the 40 FT

tasks in turn, and examine performance across these 10 held-out tasks, over the folds.

C.5.3 Further results

Quantitative Results

Summary of main quantitative results. Table C.2 summarizes the main results

across full and limited data/task regimes, reporting the better of Full Transfer and

Linear Evaluation. We observe consistent improvements with the meta-parameterized

PT strategy over the baselines on the three different experimental evaluation settings.

In the remainder of this section, we discuss these quantitative results further,

showing both full transfer and linear evaluation results, and other analysis.
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Method AUC (
⃒⃒⃒
𝒟(Meta)

FT

⃒⃒⃒
= |𝒟FT|) AUC (

⃒⃒⃒
𝒟(Meta)

FT

⃒⃒⃒
= 0.5 |𝒟FT|) AUC (𝒟(Meta)

FT excludes tasks)

No PT 66.6 ± 0.7 66.6 ± 0.7 65.8 ± 2.5
Graph Sup PT 74.7 ± 0.1 74.7 ± 0.1 74.8 ± 1.8
CoTrain 70.2 ± 0.3 71.0 ± 0.2 69.3 ± 1.8
CoTrain + PCGrad 69.4 ± 0.2 71.1 ± 0.2 68.1 ± 2.3
Meta-Parameterized PT 78.6 ± 0.1 78.2 ± 0.1 77.0 ± 1.3

Table C.2: Meta-Parameterized PT improves predictive performance in three
evaluation settings. Table showing mean AUC and standard error on mean for three
different evaluation settings. First results column: Full FT Access, with evaluation
on all tasks, with all FT data provided at PT time. Second results column:
Partial FT Access, evaluation with limited FT data at PT time. When only 50%
of the FT dataset is provided at PT time, Meta-Parameterized PT can again improve on
other methods in mean test AUC over 40 FT tasks, demonstrating sample efficiency. Third
results column: Partial FT Access, evaluation on new, unseen tasks at FT time.
When 10 of the 40 available FT tasks are held-out at PT, over four folds (each set of 10 FT
tasks held out in turn), considering mean test AUC across tasks and folds (and standard
error on the mean), meta-parameterized PT obtains the best performance: it is effective
even with partial information about the downstream FT tasks.

Further results for Full FT Access setting. Table C.3 presents results for all

methods across 40 FT tasks, considering both full transfer and linear evaluation.

We observe that meta-parameterized PT improves on other baselines in both set-

tings, but most noticeably so in linear evaluation. We also present the results for

No PT and Graph Supervised PT from [84]. We observe improvements with our

re-implementation, which uses lower FT LRs.

Studying potential overfitting in CoTrain strategies. For methods leveraging

the FT dataset during PT, the process of performing FT might worsen performance

if the model overfits the FT training set. We evaluate FT test performance ‘online’

during the PT phase, with results in Table C.4, and observe that meta-parameterized

PT outperforms other methods here also. We do observe some of this overfitting

behaviour: note the improved performance on the test set with the learned weights

strategy.

Further results for Partial FT Access setting. Table C.5 shows improved per-

formance even with smaller meta-FT datasets, and Table C.6 shows improved per-
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Method Full Transfer Linear Evaluation

Rand Init (from [84]) 64.8 ± 0.3 N/A
Rand Init (reimplement, lower FT LR) 66.6 ± 0.7 N/A
Graph Sup PT (from [84]) 69.0 ± 0.8 N/A
Graph Sup PT (reimplement, lower FT LR) 73.9 ± 0.2 74.7 ± 0.1
CoTrain 70.2 ± 0.3 65.9 ± 0.1
CoTrain + PCGrad 69.4 ± 0.2 62.4 ± 0.3
CoTrain + Learned Task Weights 67.7 ± 0.2 64.4 ± 0.1
Meta-Parameterized PT 74.7 ± 0.3 78.6 ± 0.1

Table C.3: Meta-Parameterized PT results in improved predictive performance.
Table showing mean AUC and standard error on mean across 40 FT tasks on the held-out test
set, over 5 random FT seeds. We observe that Meta-Parameterized PT outperforms other
baselines in both Full Transfer and Linear Evaluation settings, with significant improvement
with Linear Evaluation. Note that with a lower FT LR, baselines from [84] are improved
relative to previously reported performance.

Method Test AUC Validation AUC

Meta-Parameterized PT 76.1 88.2

CoTrain 67.3 83.1
CoTrain + PCGrad 69.0 84.0
CoTrain + Learned Task Weights 70.7 84.6

Table C.4: Mean AUC across FT tasks evaluated during PT, for methods that use the FT
set at PT time. The separate FT stage may worsen performance of some of the methods, and
evaluating in this manner helps account for that. In this setting also, meta-parameterized
PT improves on other baselines, in both test and validation set performance.

formance even with limited tasks at meta-FT time.

Qualitative Results

We now analyze other aspects of meta-parameterized PT.

Analyzing learned representations. To understand the impact of meta-parameterized

PT on what the model learns, we compare the learned representations on the FT data

across the different PT strategies using Centered Kernel Alignment (CKA) [101, 41]

in Figure C-2. We observe that Meta-Parameterized PT most closely resembles a

combination of CoTrain + Learned Weights and Supervised PT, which is sensible

given that it blends aspects of both approaches.
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Method Full Transfer Linear Evaluation

Rand Init (from [84]) 64.8 ± 0.3 N/A
Rand Init (reimplement, lower FT LR) 66.6 ± 0.7 N/A
Graph Sup PT (from [84]) 69.0 ± 0.8 N/A
Graph Sup PT (reimplement, lower FT LR) 73.9 ± 0.2 74.7 ± 0.1
CoTrain 71.0 ± 0.2 64.4 ± 0.1
CoTrain + PCGrad 71.1 ± 0.2 64.4 ± 0.1
CoTrain + Learned Task Weights 66.0 ± 0.3 64.6 ± 0.3
Meta-Parameterized PT 74.3 ± 0.2 78.2 ± 0.1

Table C.5: Meta-Parameterized PT also improves predictive performance with
smaller MetaFT datasets. In a setting where only 50% of the FT dataset is provided
at PT time, Meta-Parameterized PT can again improve on other methods in mean test
AUC over 40 FT tasks, indicating that it is effective even with limited amounts of FT data
available at PT time.

Analyzing learned weights. Figure C-3 compares learned weights for meta-parameterized

PT and the CoTrain+Learned Weights strategies. We observe differences in the his-

togram of weights, and also the specific values on a per-task basis for these two

strategies, indicating that they learn different structures.

Analyzing negative transfer. Figure C-4 assesses potential negative transfer on

a per-task basis, comparing performance with PT to performance after supervised

PT and meta-parameterized PT. Both PT strategies have little negative transfer,

and meta-parameterized PT obtains a small extra reduction in negative transfer over

standard supervised PT.
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Method Full Transfer Linear Evaluation

Rand Init 65.8 ± 2.5 N/A
Graph Sup PT 71.5 ± 1.6 74.8 ± 1.8
CoTrain 69.3 ± 1.8 67.0 ± 2.0
CoTrain + PCGrad 67.1 ± 1.5 68.1 ± 2.3
CoTrain + Learned Weights 65.4 ± 2.0 69.1 ± 2.6
Meta-Parameterized PT 71.3 ± 2.5 77.0 ± 1.3

Table C.6: When evaluating on new, unseen tasks at FT time, meta-
parameterized PT again improves on other methods. We consider a setting where
10 of the 40 available FT tasks are held-out at PT, and only provided at FT time. Over four
folds (where different sets of 10 FT tasks are held out in turn), considering mean test AUC
across tasks and folds (and standard error on the mean over folds), meta-parameterized PT
obtains the best performance. This suggests that the method can perform well even with
partial information about the downstream FT tasks.
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Figure C-2: Comparing learned representations with different PT strategies using CKA
[101]. We obtain model representations before the final linear layer across 6400 FT data
points, and then compute CKA between pairs of models (averaging over different random
initialisations). We observe that Meta-Parameterized PT most closely resembles a combi-
nation of CoTrain + Learned Weights and Supervised PT, which is sensible given that it
blends aspects of both approaches: meta-parameterized PT learns task weights to modulate
the learned representations (as in CoTrain + Learned Weights), and representations are
adapted using the PT task alone (as in supervised PT). Interestingly, CoTrain + PCGrad
has comparatively little similarity to most other methods in terms of its learned represen-
tations.
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is 0.13± 0.09. Meta-Parameterized PT appears to have more tasks downweighted (weights
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the mean performance over 5 seeds on each of the 40 FT tasks without PT (x axis) and
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Parameterized PT.
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C.6 Meta-Parameterized SimCLR PT: Further De-

tails
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Figure C-5: A single lead (or channel) of the 12 lead ECG signal and two augmented views
(following cropping, jittering, and temporal warping) that are used in contrastive learning.

We provide further SimCLR details, dataset details, experimental details, and

results for the SimCLR ECG experiments. All experiments in this section were run

on a single NVIDIA V100 GPU.

C.6.1 SimCLR summary

SimCLR is a variant of contrastive self-supervised learning [194, 199, 134, 81]. During

training, examples are augmented in two different ways to create two views 𝑥𝑖 and 𝑥𝑗,

each of which are encoded independently to produce representations 𝑓 (enc)(𝑥𝑖) = ℎ𝑖

and 𝑓 (enc)(𝑥𝑗) = ℎ𝑗. These representations are further transformed using a multi-layer

decoder (“projection head”) to produce vectors 𝑓 (dec)(ℎ𝑖) = 𝑧𝑖 and 𝑓 (dec)(ℎ𝑗) = 𝑧𝑗.

Models are trained to minimize the normalized temperature-scaled cross-entropy loss

(NT-Xent), which contrasts the similarity between pairs of views derived from the

same example against the other 2𝑁 − 2 views in a minibatch of size 𝑁 :

ℒPT(𝑧𝑖, 𝑧𝑗) = − log
exp(sim(𝑧𝑖, 𝑧𝑗)/𝜏)∑︀2𝑁

𝑘=1 1[𝑘 ̸=𝑖] exp(sim(𝑧𝑖, 𝑧𝑘)/𝜏)
(C.1)

where sim(𝑎, 𝑏) = 𝑎T𝑏/(‖𝑎‖‖𝑏‖) is cosine similarity and 𝜏 is the temperature hyper-

parameter.
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C.6.2 Further dataset details

We construct our semi-supervised learning (SSL) problem using PTB-XL [191, 61],

an open-source dataset of electrocardiogram (ECG) data. Let the model input at

both PT and FT time be denoted by 𝑥, which represents a 12-lead (or channel)

ECG sampled at 100 Hz for 10 seconds resulting in a 1000 × 12 signal. An exam-

ple signal is in Figure C-5. The PTB-XL dataset contains 21837 ECGs from 18885

unique patients. Each ECG has a 5-dimensional label 𝑦 ∈ {0, 1}5, where each di-

mension indicates whether the signal contains certain features indicative of particular

diseases/pathologies, namely: Normal ECG, Myocardial Infarction, ST/T Change,

Conduction Disturbance, and Hypertrophy. The dataset is split in 10 folds on a

patient-level (ECGs from the same patient are all in the same fold), with a suggested

train-validation-testing split.

To form an SSL problem from this dataset, we take the training and validation

folds, remove the labels, and use only the unlabelled ECGs as the PT dataset. This

PT dataset has 19634 unique ECGs. For the FT dataset, we take a random sample

of |𝒟FT| ECG-label pairs from the training and validation folds. As is common in

prior SSL work, we consider different sizes of 𝒟FT to understand performance given

different amounts of labelled data. The FT testing set is the testing fold of the original

dataset, which has 2203 ECG-label pairs.

At both PT and FT time, ECGs are normalized before input to the model using

zero mean-unit variance normalization, following [191].

We refer the reader to the open-source data repository on PhysioNet [61], and the

paper introducing the dataset [191] for further details.

C.6.3 Further experimental details

ECG Data Augmentations

To augment each ECG for SimCLR, we apply three transformations in turn (based

on prior work in time series augmentation [87, 197]):

1. Random cropping: A randomly selected portion of the signal is zeroed out. We
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randomly mask up to 50% of the input signal.

2. Random jittering: IID Gaussian noise is added to the signal. The noise is zero

mean and has standard deviation equal to 10% of the standard deviation of the

original signal.

3. Random temporal warping: The signal is warped with a random, diffeomor-

phic temporal transformation. To form this, we sample from a Gaussian with

zero mean, and a fixed variance at each temporal location, to generate a 1000

dimensional random velocity field. This velocity field is then integrated (follow-

ing the scaling and squaring numerical integration routine used by [9, 10]). This

resulting displacement field is then smoothed with a Gaussian filter to generate

the smoothed temporal displacement field, which is 1000 dimensional. This field

represents the number of samples each point in the original signal is translated in

time. The field is then used to transform the signal, translating each channel in

the same way (i.e., the field is the same across channels).

Two augmented views of an ECG are shown in Figure C-5.

Implementation details

General details for all methods. For all methods, we use a 1D CNN based on a

ResNet-18 [77] architecture as the base model that undergoes PT & FT. This model

has convolutions with a kernel size of 15, and stride 2 (set based on the rough temporal

window we wish to capture in the signal). The convolutional blocks have 32, 64, 128,

and 256 channels respectively. The output of these layers is average pooled in the

temporal dimension, resulting in a 256 dimensional feature vector. For SimCLR PT,

the projection head takes this 256 dimensional vector as input and is a fully connected

network with 1 hidden layer of size 256, and output size of 128, with ReLU activation.

These hyperparameters were not tuned.

The SimCLR methods are first pre-trained on the PT dataset using SimCLR PT,

with a temperature of 0.5 in the NT-Xent loss. We use Adam with an LR of 1e-4 for

SimCLR PT, with a batch size of 256, and pre-train for 50 epochs. We consider 3 PT

seeds. The methods are then fine-tuned on the FT dataset, replacing the projection
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head with a new linear FT network head. This whole network is fine-tuned for 200

epochs with Adam, learning rate of 1e-3, batch size of 256. We used an 80%-20%

split of the labelled data to form training and validation sets, and validation set AUC

was used for early stopping. We consider 5 FT seeds, resulting in a total of 15 runs

for each method at each setting.

Further details for Meta-Parameterized PT. Meta-parameterized SimCLR

incorporates a learned per-example temporal warping strength. We form this by in-

stantiating a four-layer 1D CNN 𝑤(𝑥;𝜑) that takes in the input ECG 𝑥 and outputs

the variance (1-D output) of the velocity field used to generate the random velocity

field. This network has four blocks of convolution, batch norm, and ReLU activation

with a kernel size of 15, stride of 2, and 32 channels. We also a optimize a global

warping strength scale that multiplies the network output to adjust the overall scale

of the warping. The network weights and the global scale are optimized using Adam,

with LR=1e-4 and LR=1 respectively. These values were set based on the method-

ology in Section C.3. In Algorithm 4, we use a Neumann series with 1 step when

evaluating the inverse Hessian for PT, 1 warmup epoch, 𝑃 = 10 PT steps, 𝐾 = 1

FT steps; we did not search over these, and chose these values based on compute

considerations. However, we do conduct a comparison with running for other values

of 𝐾 in Appendix C.6.4.

With these settings, meta-parameterized PT on this task takes about 8-9 GB of

GPU memory (about twice the memory cost of normal PT, which is 4-5 GB), and

takes about 3 hours to run (as compared to about 1.5 hours for standard PT).

When running meta-parameterized PT with very small meta-FT datasets, of size

10 or 25, the 80%-20% split is not as practical. When
⃒⃒⃒
𝒟(Meta)

FT

⃒⃒⃒
= 10, we use a 50-50

split in training and validation, and when it is 25, we use a 60-40 split.

An additional baseline: SimCLR + Optimized Supervised Learning Aug-

mentations (SimCLR + OptSLA): We also investigated a baseline in this do-

main where the same parametric augmentation policy used for meta-parameterized
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PT above is: (1) optimized for supervised learning on the labelled FT set, 𝒟FT, fol-

lowing the method from [113]; (2) used as is in SimCLR PT to learn representations;

(3) evaluated in a standard FT setting. When using the algorithm from [113], the

augmentation meta-parameters are optimized based on the model’s loss on the vali-

dation set split of 𝒟FT, as is typical in hyperparameter optimization. This baseline

compares how optimizing augmentations over the two stage PT and FT compares to

optimizing for supervised learning alone. We use Adam for optimization, and use 1

Neumann step in the algorithm from [113].

Experimental Setup

We re-state the two experimental settings considered. In both settings, we evaluate

performance as average AUC across the 5 binary classification tasks, reporting mean

and standard error over the 15 runs.

(1) Full FT Access, standard SSL: consider different sizes of the labelled FT

dataset 𝒟FT and make all the FT data available at meta-PT time, 𝒟(Meta)
FT = 𝒟FT.

(2) Partial FT Access, examining data efficiency of our algorithm: SSL when only

limited FT data is available at meta-PT time: 𝒟(Meta)
FT ⊆ 𝒟FT.

C.6.4 Further results

We now present additional results in the semi-supervised learning domain.

Further Full PT Access results with new baseline. We first present results

in the Full PT Access setting, varying |𝒟FT| and setting 𝒟FT = 𝒟(Meta)
FT , shown in

Table C.7. As seen, meta-parameterized SimCLR obtains improvements over the

one-stage hyperparameter learning baseline, SimCLR + OptSLA, suggesting that

learning augmentations for the two-stage PT & FT process is advantageous.

Impact of 𝐾. We now study the impact of different values of 𝐾, the number of

unrolled differentation steps when computing the gradient through FT. In our main
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Test AUC at different FT dataset sizes |𝒟FT|
100 250 500 1000

No PT 71.5 ± 0.7 76.1 ± 0.3 78.7 ± 0.3 82.0 ± 0.2
SimCLR 74.6 ± 0.4 76.5 ± 0.3 79.8 ± 0.3 82.2 ± 0.3
SimCLR + OptSLA 74.6 ± 0.6 77.0 ± 0.3 79.6 ± 0.4 82.8 ± 0.2
Meta-Parameterized SimCLR 76.1 ± 0.5 77.8 ± 0.4 81.7 ± 0.2 84.0 ± 0.3

Table C.7: Meta-Parameterized SimCLR obtains improved semi-supervised
learning performance. Table showing mean AUC/standard error over seeds across 5
FT binary classification tasks for baselines and meta-parameterized SimCLR at different
sizes of 𝒟FT, with 𝒟(Meta)

FT = 𝒟FT. We observe improvements in performance with meta-
parameterized SimCLR over other baselines, including SimCLR + OptSLA, which optimizes
the augmentations purely for one-stage supervised learning (rather than two-stage PT and
FT).

experiments, we set 𝐾 = 1 for simplicity and computational efficiency. We now seek

to understand the following alternative choices:

• 𝐾 = 0: In this setting, we perform no FT when optimizing the meta-parameters;

that is, we use a randomly initialized linear classifier on top of the PT repre-

sentations when we compute the FT loss. The meta-learning problem here cor-

responds to learning PT meta-parameters that optimize the performance of a

randomly initialized linear classifier. This experiment tests what happens when

the gradient through FT is noisy, but the component through PT is informative.

• 𝐾 > 1: This setting tests whether unrolling more steps during FT can improve

the gradient signal received when optimizing meta-parameters.

Results are shown in Table C.8. As can be seen, unrolling through one step of

FT (𝐾 = 1) improves upon using a noisy FT gradient (𝐾 = 0) in all cases. Using

a noisy FT gradient but an informative PT component (𝐾 = 0) improves on not

optimizing the augmentations at all (SimCLR). This implies that both the PT and

FT components inform the optimization of the augmentations. When 𝐾 > 1, we do

observe some improvement with more steps, but diminishing returns as 𝐾 increases

further.

199



Test AUC at different FT dataset sizes |𝒟FT|
100 250 500 1000

SimCLR 74.6 ± 0.4 76.5 ± 0.3 79.8 ± 0.3 82.2 ± 0.3
𝐾 = 0 75.3 ± 0.5 77.1 ± 0.5 80.5 ± 0.4 83.7 ± 0.3
𝐾 = 1 76.1 ± 0.5 77.8 ± 0.4 81.7 ± 0.2 84.0 ± 0.3
𝐾 = 5 76.6 ± 0.2 78.3 ± 0.3 81.9 ± 0.4 84.2 ± 0.2
𝐾 = 10 76.3 ± 0.5 78.1 ± 0.4 81.7 ± 0.4 84.3 ± 0.3

Table C.8: Examining how the number of unrolled FT steps affects semi-
supervised learning performance. Table showing mean AUC/standard error over seeds
across 5 FT binary classification tasks for meta-parameterized SimCLR when we vary the
number of unrolled FT steps used to compute the meta-parameter gradient. We observe
that using a noisy FT gradient (𝐾 = 0) improves on not optimizing augmentations at all,
but is worse than using a single step (𝐾 = 1). Using more unrolled steps can lead to small
improvements.

Further Partial PT Access results. We now consider the Partial FT Access

setting. Firstly, Figure C-6 shows the performance of meta-PT when we fix |𝒟FT| =

500 and vary
⃒⃒⃒
𝒟(Meta)

FT

⃒⃒⃒
. We find that meta-PT can be effective even with very small

validation sets (consider the sharp improvement at small MetaFT data points, with

0 MetaFT points representing no optimization of the augmentations). This result

was just considering the |𝒟FT| = 500 setting; in Figure C-7, we consider other FT

dataset sizes and analyze performance. We see that in all regimes, there is a noticeable

increase in performance at small meta-FT dataset sizes, which is a desirable result

since it shows that our algorithm can be effective even with very limited labelled data

available at meta-PT time.
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Figure C-7: Sweeping over meta FT/FT data points and analyzing performance trends.
We observe that across various settings of FT data availability, a small amount of MetaFT
data can lead to significant performance improvements.
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Appendix D

Additional Information and Results

for Chapter 5

D.1 Augmentation Functions for Sequential Multi-

Dimensional Self-Supervised Learning

In this section, we specify more details about augmentation functions used in our

method.

D.1.1 Augmentation Details

We form an augmented trajectory by separately augmenting each of the data modal-

ities within the trajectory, using the following approach for each data type.

High-frequency signal 𝑠: For each signal in the trajectory of length 𝑇 , we form

a pair of augmented views by first splitting the signal into two disjoint segments and

then applying random masking and noise addition as augmentations to each view

independently, similar to the approach used in CLOCS [98]. The intuition is that

two segments of a signal that are close in time should encode similar physiology, and

can therefore be considered paired views. Random masking and noise addition are

commonly used as time-series augmentations [63, 208, 148, 88]. In more detail:
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• Signal splitting: We split a raw signal of 30 seconds into two disjoint 10 second

segments for the first phase of the augmentation process.

• Random signal masking: we choose a random 25% of the signal to set to zero

– this was found to overall be more effective than masking proportions of 10%

and 50%.

• Noise addition: we add Gaussian noise with standard deviation 0.25 to the

signal.

Structured-time series data 𝑤: The tabular data sequence forms a 𝑇×𝑀 matrix

over all timesteps of the trajectory. Following prior work [204], we apply two data

augmentation strategies to this matrix: history cutout and noise addition. In more

detail:

• History cutout: For each feature, with probability 0.25, randomly set 25% of the

timesteps in that timeseries to be missing. Forward fill impute this value. This

mirrors the imputation strategy used in our raw data. Unlike in [204], we use

forward filling rather than replacing with zeros, because our time series are much

shorter (8 timesteps rather than 48) and therefore replacing with zeros destroyed

too much information. Using more aggressive cutout augmentations was found

to worsen performance, likely because they destroyed too much information in

the data. This is in general a challenge when using relatively short time series.

• Noise addition: For each feature, add Gaussian noise with standard deviation

equal to 10% of the standard deviation of that feature’s values in the training

set.

Static features 𝑑: Following [204], we use random dropout and noise addition.

Other corruption strategies (e.g., [7]), were found to be less effective, potentially due

being too strong (also seen in [106]). We randomly drop out 25% of the features

(impute with the mean value) and add add Gaussian noise with standard deviation

equal to 10% of the standard deviation of that feature’s values in the training set.
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D.1.2 Other Augmentations

Early on in our experiments, we investigated other augmentation functions such as

channel dropout for the structured time-series data [204] and more complex signal

augmentations, such as random lead masking [133]. However, we found the improve-

ments from these to be inconsistent and the hyperparameters to be difficult to tune,

so we opted for this more focused set of augmentations.

D.2 Further Experimental Details

In this section, we provide further details about our experiments. We first describe

more about the datasets and data preprocessing. We then provide further information

on the model architecture for our method and baselines, and discuss our hyperpa-

rameter search and settings. We then provide additional quantitative results and

representational similarity analysis.

D.2.1 Dataset Details

As discussed in the main text, we consider two clinical datasets in our experiments:

• Dataset 1 is a private dataset derived from the electronic health record (EHR)

of the Massachusetts General Hospital (MGH), consisting of a cohort of patients

with a prior diagnosis of heart failure. For each patient, we have structured

data from the EHR and physiological signals measured by a bedside telemetry

monitor. These signals include vitals signs such as heart rate (HR) and oxygen

saturation (SpO2), measured at a low frequency (0.5 Hz), and waveforms such

as the electrocardiogram (ECG), measured at a high frequency (240 Hz).

This dataset was obtained with IRB approval (protocol number 2020P003053).

Since the dataset has some identifiable information, all computations are per-

formed on a server that sits behind the hospital firewall. Due to restrictions

surrounding its use, this dataset cannot be released at this stage.
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Table D.1: Dataset statistics.

Dataset 1 Dataset 2

Task # Patients # Trajectories # Patients # Trajectories

Pre-Training 8888 43858 5022 26615
Elevated mPAP 2025 48511 500 14957
24hr mortality 9605 57758 5689 318306

• Dataset 2 is a public dataset derived from the commonly used MIMIC-III

clinical database [93, 61] and its associated database of physiological signals

[123]. The clinical database contains structured data over a patient’s stay,

and the physiological signals database contains vitals signs (HR, SpO2) and

waveforms (ECG) measured by a bedside telemetry monitor.

We use the widely adopted preprocessing pipeline introduced in [72] to form the

specific cohort and extract the structured data features used in modeling. This

pipeline also provides the functionality to create development and testing sets

for the different downstream tasks we consider.

The clinical database is available on PhysioNet [61] to credentialed users. The

database of physiological signals is open-access on PhysioNet.

Constructing PT and FT sets. As outlined in Section 5.4.1, both datasets

consist of a number of hospital visits, which we resample at hourly resolution. We

extract 30 seconds of the high-dimensional physiological signals at each hour marker

from the raw data store.

To generate PT trajectories from these resampled visits, we first split each visit

into non-overlapping contiguous 12 hour blocks. A PT trajectory is formed by first

sampling a 12 hour block from all the extracted blocks, and then selecting 8 contiguous

timesteps from the sampled block (with the starting timestep selected randomly).

This trajectory construction strategy has implications in terms of the negative samples

in both losses:

• Global loss. Consider a sampled anchor trajectory from a given patient 𝑖,

timesteps 1 − 8. When computing the global loss, the negative pairs for that
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anchor trajectory are either: (1) a trajectory from a different patient 𝑗 ̸= 𝑖; or

(2) or a trajectory from that same patient 𝑖 starting after timestep 8.

• Component loss. When computing the component loss, recall that for an

anchor signal, other signals from the same trajectory are not used as negatives,

in order to minimize correlation between the anchor and negatives. Therefore,

negative pairs for an anchor signal are either signals from a different patient, or

signals from that same patient from further off in time.

This strategy of sampling trajectories that do not overlap was applied to ensure that

we do not use highly correlated trajectories/signals as negatives. We note that this

strategy is not necessarily optimal, and that different approaches could be used for

both the component and global loss terms. Our framework could easily be used with

these other sampling strategies and loss formulations.

To generate FT sets, we first use a sliding window to select contiguous 8 hour

blocks at 1 hour increments from each visit. Each of these contiguous 8 hour blocks

becomes a trajectory in the FT dataset. The trajectory labels are formed based on

the nature of the specific task. For example, for the 24 hour mortality task, the

label is based on whether the patient dies within 24 hours of the ending time of that

trajectory.

Trajectory Features and Preprocessing. The trajectories in PT and FT sets

consist of static features 𝑑 and a time-series of structured data and physiological

signals {(𝑤𝑡, 𝑠𝑡)}𝑇𝑡=1, as presented in Section 5.3.1.

In Dataset 1, 𝑑 ∈ R9 contains the following features from the EHR: BUN, Chloride,

CO2, Creatinine, Glucose, Potassium, Sodium, Systolic Blood Pressure, Diastolic

Blood Pressure. We take the average if multiple values are recorded in each time

window. 𝑤𝑡 ∈ R30 has mean, standard deviation, maximum, and minimum of heart

rate and SpO2 recorded within each hour window (this is sourced from the telemetry

monitor), and also 22 heart rate variability features from the ECG recorded by the

telemetry monitor during each time window. 𝑠𝑡 ∈ R4×2400 is a 10 second 4-channel

ECG measured at 240 Hz, containing leads I, II, III, and V1, extracted from a longer
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ECG measured by the telemetry monitor during that hour window.

In Dataset 2, 𝑑 ∈ R38 contains the following features from the EHR: FiO2, Glucose,

Temperature, pH, and one-hot encoded Glasgow Coma Scale measures, following

[72]. 𝑤𝑡 ∈ R13 contains the following information from the physiological signals

database: mean, standard deviation, maximum, and minimum of heart rate and

SpO2 recorded within each hour window from the telemetry monitor, diastolic blood

pressure, systolic blood pressure, mean blood pressure, heart rate, and SpO2 from

the EHR. 𝑠𝑡 ∈ R1×1250 is a 10 second 1-channel ECG measured at 125 Hz, containing

lead II, extracted from a longer ECG measured by the telemetry monitor during that

hour window.

Missing structured data are forward-fill imputed where possible (for example, if

part of a time series) and otherwise imputed with the mean over the training dataset.

Missing signals are represented with zeros. We drop any trajectories that have more

than 1 timestep with a missing signal. For Dataset 2, we note that by dropping any

trajectory with more than 1 timestep with a missing signal, we have a smaller dataset

than in [72].

Forming labels. The FT labels for the Elevated mPAP task are formed based

on the PA pressure waveform recorded for patients (when available) – if the mean

pressure is over 20 mmHg over a 1 minute period at the final timestep of the trajectory,

we assign a binary label of 1, and else 0. For the 24 hour mortality task, we use the

recorded time of death recorded in the EHR and if it is less than 24 hours from the

end time of the trajectory, we assign a label of 1, and otherwise 0. This is as was

done in [72].

D.2.2 Experimental Setup

Model Architecture

We use the following architecture for the encoder and projection head for all methods:

• Encoder: Each signal 𝑠𝑡 in the trajectory is passed through a ResNet-styled
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Figure D-1: Model architecture used in our experiments. We show the architecture
used to model trajectories in a scenario where the input trajectory has 3 timesteps.

1-D CNN encoder with global average pooling. We base our CNN encoder

model off a ResNet-18 architecture with kernel size of 15. Following global

average pooling over the temporal dimension, each signal is projected into 128

dimensions with a linear layer.

The structured data 𝑤𝑡 at each timestep is embedded with a 2-layer fully-

connected network with 128 hidden units and ReLU activation at each layer,

and this embedding is then concatenated with the signal embedding. The static

features 𝑑 are passed through a different 2-layer fully-connected network with

128 hidden units and ReLU activation at each layer, and then concatenated with

the embeddings of the signal and structured data timeseries at each timestep.

The resulting sequence of vectors is passed into a 4-hidden layer GRU with

hidden size of 384, with the last hidden state of the GRU being used as the

overall trajectory embedding vector.

• Projection heads: The two projection heads for the signal and the trajectory

are both 2-layer fully connected networks with batch normalization and ReLU
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activation with 2048 hidden units. The trajectory projection head takes the

last hidden state of the GRU as input, and the signal projection head takes the

output of the signals encoder as the input. When using the NT-Xent loss, the

resulting projection is normalized [30] before computing the NT-Xent loss over

the batch.

Figure D-1 shows the model architecture in a scenario in which the input trajectory

has 3 timesteps.

SSL Methods: Implementation

We describe the implementation of the SimCLR and VICReg methods in the main

paper, Section 5.3. For SimSiam, we follow the setup in [34] and use a predictor

network in the trainable branch, and minimize cosine distance between the output of

the predictor network in the trainable branch and the output of the projection head

in the stop-gradient branch.

For simplicity, we let this predictor network have the same architecture as the

projection head – a two layer fully connected network with batch normalization and

ReLU activation, with 2048 hidden units. We did not find a bottleneck structure

to improve performance in initial investigations, but further experiments may be

warranted here.

Loss, Architecture, and Optimization Hyperparameters

There are various hyperparameters to tune, such as learning rates, loss weighting for

VICReg loss terms, and loss weighting for SMD SSL. Evaluating many hyperparam-

eter settings is very computationally expensive (since it entails doing both a PT and

FT run), so we conduct a reduced search on a subset of the hyperparameters focus-

ing only on the Elevated mPAP task in the unimodal setting, optimizing validation

AUROC.

In our hyperparameter search, we use the following setup:

• Learning rate: tune on a randomly initialized model for the elevated mPAP
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task on each dataset, and then use this learning rate for all other experiments.

We compared Adam with a learning rate of 1e-4, 3e-4, 1e-3, and 3e-3. We found

1e-3 to be the most stable and best performing.

• VICReg loss weights: Tune these for the VICReg (global) model only, and use

the best hyperparameters for all other uses of the VICReg loss, including SMD

SSL (VICReg). Following the original paper, we set the covariance weight 𝜈 = 1

and then tune the invariance weight 𝜆 and variance weight 𝜇. We found in early

experiments that the variance weight did not have much impact on performance,

and so focused on the invariance weight, studying 𝜆 = 1, 2, 5. We found 𝜆 = 1

to perform the best on both datasets.

• SMD SSL (SimCLR) component loss weight: Set the global weight 𝛼 = 1 in Eqn.

5.5, and tune the component weight 𝛽, on both datasets separately, comparing

𝛽 = 0.25, 0.5, 1.0, 2.0. We found 𝛽 = 1.0 to perform the best on Dataset 1, and

𝛽 = 0.25 to perform the best on Dataset 2.

• SMD SSL (VICReg) component loss weight: Use the best VICReg loss weights

found above, set the global weight 𝛼 = 1 in Eqn. 5.5, and tune the compo-

nent loss weight 𝛽, comparing 𝛽 = 0.1, 0.25, 0.5, 1.0, 2.0. We found 𝛽 = 1.0 to

perform the best on Dataset 1, and 𝛽 = 0.1 to perform the best on Dataset 2.

We fixed the temperature of the NT-Xent loss to 0.1, following [204].

We did not conduct tuning of the architecture hyperparameters, and instead opted

to use architectural choices that were found to be effective in previous works, such

as a ResNet signal encoder [143, 148], a wide projection head [31, 14], and a GRU

sequence model [120]. Similar to [120], we did not find a transformer model to be

beneficial as the sequence model, though perhaps architectural tuning could improve

its performance.
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Compute Details

All models were trained on either a single NVIDIA Quadro RTX 8000 or a single

NVIDIA RTX A6000 GPU. Pre-training takes about 8 hours on Dataset 1 and about

2 hours on Dataset 2. Fine-tuning on Dataset 1 tasks takes about 4 hours. Fine-

tuning in Dataset 2 on Elevated mPAP takes about 30 minutes, and about 4 hours

on 24hr Mortality. Pre-training uses approximately 20 GB of GPU memory, and

fine-tuning uses approximately 10 GB of GPU memory.

D.2.3 Additional Results

Studying loss curves. Figure D-2 shows training loss curves for SimCLR-based

models on Dataset 2. We observe that SMD SSL effectively minimizes both compo-

nent and global losses over training. Considering the component loss alone (left plot),

we see that this loss naturally reduces during training of the SimCLR (global) model

even though this is not explicitly enforced during model training – we compute the

component loss in this case with a randomly initialized signal level projection head

that is not updated, and the network parameters are also not updated to minimize

this component loss. An analogous situation with SimCLR (component) and the

global loss is seen in the right plot. This suggests that training with one of the losses

does encourage structure in both representation spaces, even with random projec-

tions, but this structure is more clearly defined when the loss is explicitly minimized

(as in SMD SSL).

Trends in AUPRC. Since the mortality task has low prevalence, we study trends

in AUPRC among methods as they compare to AUROC. We find that in the unimodal

setting, on both datasets, our objective improves AUPRC by 1-2% over baselines, but

AUPRCs are all relatively low (<5%) due to the limited predictive signal in the ECGs

alone for the mortality prediction task. In the multimodal setting, on Dataset 1, SMD

SSL worsens AUPRC over the single-level approach by 2.9% AUPRC (10.8% vs 7.9%)

– this is consistent with what was seen with AUROC. On Dataset 2, the AUPRC with
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Figure D-2: Studying training loss curves for SMD SSL and variations. We observe
that SMD SSL effectively minimizes both the component and global NT-XEnt losses during
training. Interestingly, we observe that the NT-Xent loss computed on the signal level
and trajectory level reduces somewhat even when it is not explicitly minimized. To see this,
consider the SimCLR (global) method and the component Loss – the component loss reduces
over training even with a random projection head, without adding this term to the objective.
This indicates that the global loss and component loss are not entirely independent (as is
expected).

our approach is 28.4%, an improvement of about 4% over the best baseline.

Additional baselines. As discussed in the main text, related SSL strategies for

time series data are not exactly applicable in our setting since they formulate pipelines

for structured data-only time series (rather than multimodal time series), or are con-

cerned with individual physiological waveforms (rather than sequences of waveforms).

Despite these differences, for completeness, we study here the performance of

adapted versions of three related methods from the literature for Dataset 2 (MIMIC-

III), focusing on the multimodal setting. Specifically, we evaluate the SSL objective

functions proposed in NCL [204], SACL [35], and CLOCS (specifically the CMSC

formulation) [98]. We use each of these losses in a global-only SSL setup in order to

compare how they perform to our proposed two-level loss function. We additionally

evaluate structured data-only NCL.

We evaluate these methods using the same experimental setup (augmentation

pipeline, optimization hyperparameters, model architecture, etc) as what was used

when evaluating our method. For NCL, we considered two values of 𝛼 (0.3 and 0.5),

and fixed 𝑤 = 16 as in the original paper’s configuration on MIMIC. We select the
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Table D.2: Test AUROC of different SSL algorithms on Dataset 2 (MIMIC) in the mul-
timodal setting. We observe that SMD SSL (VICReg) improves on these additional SSL
baselines.

Elevated mPAP 24hr Mortality

SMD SSL (VICReg) 71.6 90.7
NCL (Structured data only) 67.6 87.7
NCL (Multimodal) 65.5 89.9
SACL 64.7 89.8
CLOCS 64.3 89.9

value of 𝛼 that obtained the best validation AUROC on each downstream task.

Results are shown in Table D.2. As seen, the best two-level approach, SMD SSL

(VICReg), outperforms the different baselines. This indicates that a two-level loss

is not easily outperformed by other global-only loss functions. An important inves-

tigation is to conduct a more thorough hyperparameter search for these alternative

loss functions, and also evaluate whether two-level versions of these other objectives

could improve on SMD SSL (VICReg).

Linear Evaluation vs Full Fine-tuning. As discussed in the main paper, our goal

is to develop a self-supervised pre-training algorithm that finds an effective model

initialization for adaptation to downstream tasks (i.e., a transfer learning setting).

As a result, we evaluate both full FT and linear evaluation, reporting the evaluation

strategy that obtains the best validation AUROC on a per-method and per-task basis.

It is important to consider full FT since it almost always outperforms linear evaluation

– we observed this in our results, and a similar finding was see in the evaluation from

[120]. Table D.3 highlights this finding for a subset of the methods on Dataset 2

(MIMIC), in the multimodal setting.

Studying longer Pre-training. On Dataset 2 (MIMIC), we pre-trained methods

for longer (50 epochs) and compared performance after 15 and 50 epochs, following

the best of full FT and linear evaluation (following our standard experimental setup).

Results are in Table D.4, indicating that performance did not improve following longer

PT.
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Table D.3: Comparing test AUROC of the two evaluation paradigms — Linear Evaluation
and Full Fine-tuning (FT) — with selected SSL algorithms on Dataset 2 (MIMIC) in the
multimodal setting. We find that Full FT routinely performs better than linear evaluation.

Elevated mPAP 24hr Mortality

Full FT Linear Evaluation Full FT Linear Evaluation

RandInit 65.3 N/A 87.8 N/A
SMD SSL (VICReg) 71.6 65.0 90.7 72.2
VICReg (Global) 70.4 64.4 87.8 71.7
SimCLR (Global) 63.7 63.1 86.8 71.7
SimSiam (Component) 67.4 61.6 90.6 71.9
SimSiam (Global) 60.6 50.6 90.4 50.0

Table D.4: Comparing test AUROC after different amounts of PT with selected SSL algo-
rithms on Dataset 2 (MIMIC) in the multimodal setting. Performance does not appear to
improve after more PT.

Elevated mPAP 24hr Mortality

15 epochs PT 50 epochs PT 15 epochs PT 50 epochs PT

SMD SSL (VICReg) 71.6 66.6 90.7 89.3
VICReg (Global) 70.4 63.2 87.8 78.8
SimSiam (Component) 67.4 59.6 90.6 78.8
SimSiam (Global) 60.6 51.1 90.4 88.2

Additional representational similarity experiments. In the main text, we pre-

sented a simple representational similarity study examining the how the learned repre-

sentations by the CNN signals encoder compared in SMD SSL (SimCLR) vs. SimCLR

(component only) and SimCLR (global only) pre-training. We found that SMD SSL

representations had reasonable Centered Kernel Alignment (CKA) similarity [101]

with both component-only and global-only PT. On the other hand, global-only and

component-only PT were quite dissimilar.

To further understand the effect of training with the component and global losses

in SMD SSL, we conduct a finer-grained CKA study. We take the output of each

residual block of the CNN signals encoder and compare the CKA similarity in these

representations (following pooling over the sequence dimension) to the CKA similarity

of component-only and global-only PT models, on a per-block basis. That is, we

average the CKA similarity between SMD SSL (block 𝑖) and component-only PT
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Figure D-3: Studying per-block representational similarity in the CNN en-
coder between SMD SSL pre-training and component-only and global-only pre-
training. SMD SSL representations are more similar to component-only PT early on in the
CNN signals encoder, and more similar to global-only PT deeper in the network.

(blocks 1, 2, 3, 4), and similarly for global-only PT. The results are shown in Figure D-

3. We see that SMD SSL PT has more similarity with component-only PT in the first

block, and greater similarity with global-PT in the remaining blocks. This suggests

that the component loss is having the most impact on SMD SSL representations in the

earlier CNN layers, indicating that these low-level features are particularly relevant

for minimizing the component loss – this makes sense, since we would expect lower-

level features to matter more in a per-signal embedding, and global-level features to

matter more in a sequence-level embedding.

216



Appendix E

ECG-guided Non-invasive Estimation

of Pulmonary Congestion in Patients

with Heart Failure

E.1 Introduction

In the main thesis, we outlined contributions to data-efficient machine learning (ML):

strategies to build effective ML models given only limited labelled training data.

One application area that motivated several of these methodological contributions

was using ML models for diagnosis in cardiovascular medicine, particularly using

rich data modalities such as the electrocardiogram (ECG). Here, we describe a more

application-focused contribution we make to the area of ML for cardiovascular medicine:

building deep learning models to assist in non-invasive monitoring of patients with

heart failure.

As some background, heart failure (HF) is a global public health burden with a

prevalence of approximately 12% in individuals over 60 years of age [187]. Despite

advances in diagnosis and therapy, patients with HF remain at increased risk for a

variety of adverse outcomes including repeat hospitalization and death [28].

The clinical evaluation of patients with HF involves an assessment of their un-
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derlying hemodynamics, with the cardiac output and mPCWP – an estimate of the

left atrial pressure – being quantities that are used to assess the hemodynamic sever-

ity [48]. Although originally developed for patients who present with an acute my-

ocardial infarction, the Forrester classification scheme has been validated in patients

with heart failure and continues to provide prognostic information in these patients

[58, 37, 17, 18]. Forrester identified four distinct hemodynamic subsets based on two

hemodynamic parameters: the mPCWP and the cardiac index (CI). Patients with a

mPCWP ≥ 18 and a CI ≥ 2.2L/min/m2 (“dry-warm”) had the best prognosis, while

patients with a mPCWP > 18mmHg and a CI < 2.2L/min/m2 (“wet-cold”) had the

worst prognosis [58, 131]. In addition, the mPCWP has particular importance in

clinical assessment as a mPCWP>18mmHg is an independent predictor of adverse

outcomes, while the CI is not [1, 69].

Unfortunately, both the mPCWP and CI are challenging to estimate from the

clinical exam alone and are best are obtained via insertion of a pulmonary-artery

catheter, which cannot always be performed safely and expeditiously in many clinical

settings [51]. Current methods for the non-invasive estimation of mPCWP rely on

analyses of mitral inflow velocities, obtained from a cardiac ultrasound [128, 127, 181].

However, this approach necessarily requires the acquisition of spectral Doppler images

from an experienced sonographer and therefore may not be routinely available.

Deep learning (DL) holds the promise of leveraging non-invasive measurements

that are easily obtained in a many clinical venues to estimate quantities that are typ-

ically acquired via an invasive study. Recent work developed DL models to estimate

when the mPCWP is elevated using CXR images [80]. This approach, however, was

not specifically developed for, nor tested in, patients with known HF. As ECG param-

eters have been shown to be correlated with abnormal hemodynamic profiles in some

patient populations [185], the 12-lead ECG serves as a potential data source that can

be leveraged to estimate central pressures. Recently, we developed a deep learning

model to estimate when the mPCWP is greater than 15mmHg from ECG data using a

heterogeneous cohort of patients who were referred for right heart catherization [164].

While the discriminatory ability of the model was good in a subset of patients who
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Table E.1: Model performance (AUROC) on test data. HFNet significantly outper-
forms the baseline logistic regression (LR) model. Asterisk (*) indicates p-value <
1e-10.

Model AUROC

Internal Test Set External Holdout Set

LR 0.71 ± 0.01 0.67 ± 0.01
HFNet 0.82 ± 0.01 * 0.81 ± 0.01 *

were referred for an evaluation of heart failure, a mPCWP cutoff of 15mmHg at rest

has not been shown to risk stratify patients with chronic heart failure [1]. Indeed, our

previous model was intended to be a screening tool to rule out an elevated mPCWP

in all patients over 60 years old. [164].

Our contribution here is to use an independent cohort of HF patients to develop

and validate a model that uses the 12-lead ECG and simple demographic features

(age, sex) to detect whether mPCWP > 18mmHg. As in our previous work, our

underlying hypothesis is that subtle changes in the ECG, which are difficult to detect

by visual inspection alone, have diagnostic significance. We also developed a measure

of model uncertainty using the predictive entropy of the model, which provides insight

into when a patient-specific model prediction is likely to be untrustworthy.

E.2 Results

E.2.1 HFNet Discriminatory Performance

Table E.1 shows the AUROC of our method, HFNet, and a baseline logistic regres-

sion model that uses ECG intervals, age, and sex to detect an elevated mPCWP >

18mmHg. HFNet achieves an AUROC of 0.82 ± 0.01 on the internal holdout set, and

significantly outperforms a logistic regression model trained using age/sex and ECG

intervals. The associated receiver operator characteristic curves for each model are

shown in Figure E-1.
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Figure E-1: Receiver Operator Characteristic on the internal holdout set for (a) Logistic
Regression baseline and (b) HFNet, showing 10 bootstraps. HFNet obtains significant im-
provements over the logistic regression baseline (paired t-test, p < 1e-10).

Figure E-2: Performance stratified by entropy-based uncertainty score, showing mean and
standard deviation over 10 bootstraps. HFNet performance is improved in cohorts with low
uncertainty.

E.2.2 A Prediction-Specific Uncertainty Score

We developed a prediction-specific score, based on the prediction entropy, to identify

instances in which model performance is likely to be poor. We hypothesized that the

set of predictions with high prediction entropies correspond to a subset where model

performance is poor. The discriminatory ability of the model is reduced in cohorts

that have high predictive entropies (Figure E-2). We compute entropy percentiles on

the “dev” set, and find that the cohort consisting of patients with entropies below

the 90th percentile has a testing set AUROC of 0.86 ± 0.01; on predictions within

the top entropy decile, the AUROC is 0.50 ± 0.02. At the 75th percentile entropy
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Figure E-3: HFNet predictive value. (A) Specificity vs Sensitivity on the entire
internal holdout set; (B) PPVs on the subcohort of the internal holdout set with re-
duced Ejection Fraction (EF < 40) and as a function of CXR findings on present on
presentation. CXR(edema+) = evidence of interstitial edema; CXR(edema-) = intersti-
tial edema absent; CXR(redistribution+) = evidence of pulmonary vascular redistribution;
CXR(redistribution-)=no pulmonary vascular redistribution noted. Prevalence of different
CXR findings in patients with reduced LV function taken from [26]. Plots show mean and
standard deviation over 10 bootstraps.

threshold, the AUROC is 0.87 ± 0.01, and within the top quartile of entropy values,

the AUROC is 0.57 ± 0.02.

E.2.3 HFNet Predictive Value

Sensitivity and Specificity plots for HFNet for the entire cohort are shown in Fig-

ure E-3. Using a threshold that achieves a sensitivity of 80% on the “dev” set, the

associated specificity is 0.72 ± 0.01. Using our prediction-specific uncertainty score

at the 90th percentile entropy threshold, and again an 80% sensitivity threshold, the

model specificity increases to 0.83 ± 0.01. At the 75th percentile entropy threshold,

the specificity increases to 0.91 ± 0.01.

To determine the predictive value of the model in the presence/absence of clinical

findings consistent with volume overload, knowledge of the sensitivity, specificity and

prevalence of an elevated mPCWP are needed (see equation 1). Since patients in

our cohort do not reliably have a chest X-ray (CXR) in close proximity to when the

RHC is performed, we rely on previously published data to estimate the prevalence of

mPCWP > 18mmHg in HF patients with reduced Ejection Fraction (HFrEF) in the

setting of different CXR findings (see Table E.3) [26]. Figure E-3 shows the calcu-
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lated PPVs as function of sensitivity. In patients who have CXR findings consistent

with interstitial edema, the PPV of the model is 0.89 ± 0.01, using a threshold cor-

responding to an 80% sensitivity. In patients who do not have evidence of interstitial

edema on CXR, the PPV of the model 0.78 ± 0.02, again using a threshold that

captures 80% of the true positive values. For the isolated CXR findings of vascular

redistribution, the PPV of the model is 0.93 ± 0.01, and when there are no signs of

vascular redistribution the PPV is 0.64 ± 0.03. Negative predictive values for the

model are not as informative; i.e., in the presence of the CXR consistent with volume

overload the NPV is 0.34 ± 0.02, and in the absence of such findings the NPV is 0.54

± 0.03.

E.2.4 HFNet Tracks Patient Specific Changes in mPCWP

We assessed the ability of the HFNet to predict patient specific changes in hemody-

namics. For each patient in the internal test set who had two or more right heart

catheterizations, we computed the average accuracy of the model for detecting ele-

vated mPCWP on that patient’s sequence of catheterizations; e.g., an accuracy of

100% means that the model reproduces the trend of mPCWPs measured across of

that patient’s invasively measured mPCWPs. Figure E-4 summarizes the results.

For patients with multiple mPCWP measurements, the model achieves an average

accuracy of 78.7 ± 2.4%, and the lower the entropy, the greater the accuracy. In the

cohort with entropy values below the 75th percentile, the accuracy is approximately

87%.

Figure E-4 also plots model predictions and mPCWP for two patients in the

internal test set (additional examples are shown in Figures E-9 and E-10). These

data demonstrate that the model’s output can reproduce trends in the mPCWP over

time and captures both reductions and increases in mPCWP over time.
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Figure E-4: Performance on patients with multiple catheterizations. (A): Showing
mean accuracy and standard error on sequences of catheterizations for patients at varying
degrees of prediction uncertainty (N=136). (B,C): Two examples of patients who had mul-
tiple catheterizations, showing measured mPCWP and model predictions. The blue dashed
line corresponds to 18mmHg mPCWP (left axis), and the dashed green line indicates the
model output threshold corresponding to an 80% sensitivity level.
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Figure E-5: Model sensitivity and saliency map analysis. Top: A saliency-map
analysis showing that over 95% of the samples in the test set ECGs with the highest saliency
score occur within 400ms of the subsequent R-peak. Bottom: Model output as a function
of changes to the ECG, indicating that the model output is most sensitive to changes in the
P-wave amplitude.

E.2.5 Saliency Analysis and Model Sensitivity

Saliency maps constitute one often-used method for identifying what portions of an

ECG are most important for model decision making [164]. The method produces a

“saliency value” for each sample in the ECG signal that quantifies the importance of

that sample for the model’s prediction. For each ECG in the test set, we computed

a saliency map for the input ECG, take the 100 highest saliency points in each ECG

and compute the average time between the highest saliency point and the subsequent

R-peak. Figure E-5 presents the results. Over 95% of the highest saliency points are

within 400ms of the subsequent R-peak, indicating that the diastolic portion of the

cardiac cycle has the greatest influence on model predictions.

To determine what specific ECG features (e.g., P-wave, QRS complex, T-wave)

most influence model predictions, we generated synthetic ECG data using a previ-

ously described ECG generation tool that defines a dynamical system that can be
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used to produce synthetic 12-lead ECG waveforms [163]. The method enables us to

systematically vary portions of the ECG signal to determine how sensitive the model

output is to modifying the amplitude of different regions of the cardiac cycle. Results

are shown in Figure E-5. Of the three perturbations, increasing the P wave amplitude

most affects the model output probability. Reducing the QRS amplitude elevates the

predicted probability, though not as much as increased P wave amplitude. Changes

to the T wave amplitude have little effect on the model output probability.

E.2.6 Validation on an external dataset

We assessed HFNet performance using data from a second institution (See Table E.1);

Figure E-6 summarizes our key findings. HFNet significantly outperforms (p < 1e-10)

the baseline logistic regression model on this dataset – HFNet achieves an AUROC

of 0.81 ± 0.01, compared to an AUROC of 0.67 ± 0.01 for the baseline model (Table

E.1, Figure E-6).

Using our prediction-specific uncertainty score, we find that at the 90th percentile

entropy threshold, the AUROC increases to 0.82 ± 0.01, and on the subgroup with

high uncertainty it is 0.56 ± 0.04. Using the 75th percentile entropy threshold, the

AUROC is 0.81 ± 0.01, and in the cohort with high uncertainty, the AUROC is 0.60

± 0.02. This suggests that the uncertainty score also is effective on the validation

dataset. Figure E-6 shows the specificity vs sensitivity plot for the external holdout

set, and it is similar to what was observed on our internal test set. Using a threshold

that achieves a sensitivity of 80% on the dev set, the specificity on the external holdout

set is 0.82 ± 0.01; i.e., similar to what we obtained with the internal test set. Using

our prediction-specific uncertainty score and the 90th percentile entropy threshold,

at an 80% sensitivity threshold, the model specificity increases to 0.89 ± 0.01. At

the 75th percentile entropy threshold, the specificity is 0.92 ± 0.01. We do not have

ejection fraction (EF) data for Hospital 2, so we could not calculate metrics in the

reduced EF cohort with different clinical findings. Considering patients with multiple

catheterizations, HFNet achieves an average accuracy of 76.2 ± 1.8% across multiple

catherizations per patient. The accuracy increases to above 80% in the cohort for
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predictions that are in the lower 75th percentile of entropy.
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Figure E-6: Validation on external dataset. On a dataset from a second institution,
showing: (a),(b) Receiver Operator Characteristics for baseline logistic regression and HFNet
over 10 bootstraps; (c) Performance stratified by prediction uncertainty score showing mean
and standard deviation over 10 bootstraps; (d) Sensitivity and Specificity and PPV/NPV
on the external dataset showing mean and standard deviation over 10 boostraps; (e) Se-
quence accuracy for patients with multiple catheterizations, showing mean and standard
error (N=281). The performance trends demonstrated on the internal test set are consistent
in the external validation set.
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E.3 Discussion

In this study we developed a deep learning model to estimate the probability that

a patient’s mPCWP is elevated, using a threshold of 18mmHg in patients who have

a prior diagnosis of HF. The resulting model has good discriminatory ability across

a cohort of HF patients from two different hospitals – the AUROC scores on the

internal and external holdout datasets were 0.82 ± 0.01 and 0.81 ± 0.01 respectively.

While good discriminatory ability is a necessary condition for a clinical useful

model, this, by itself, is far from sufficient [165]. For example, given that no model is

ever, in practice, accurate 100% of the time, understanding failure modes of any model

is important for high stakes decision making. We therefore developed a prediction-

specific score, based on the entropy of the model output, which quantifies how certain

the model is when it makes a prediction. We demonstrate that model discriminatory

ability is significantly reduced when the associated entropy is high. Overall, the degree

to which a specific model prediction should affect clinical decision making should be

weighted by the associated prediction-specific reliability score.

When studying our model’s performance for patients with multiple catheteriza-

tions, we find that its predictions can approximately track the trends in the patient’s

ground truth mPCWP measurements through catheterization. This is most evident

when considering the model’s most confident predictions (with low entropy), and this

trend is observed in both the internal and external datasets.

To gauge how HFNet could be integrated into clinical practice, we computed

predictive values for patients with HF and reduced left ventricular ejection fraction

(LVEF) in different clinical scenarios of interest. As the CXR forms a routine part

of the evaluation of HF patients in the emergency room and in inpatients with a HF

exacerbation, we focus on the added value of model predictions given different CXR

findings. When signs of pulmonary congestion are evident on CXR, then the diagnosis

of HF is very likely. In this setting HFNet provides incremental benefit, as its role

would be to confirm the diagnosis of cardiogenic pulmonary edema. However, the

CXR is not always a reliable indicator of cardiogenic pulmonary edema in patients
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with HF. For example, several studies suggest that approximately 20% of patients

with acute decompensated HF present with normal CXRs and up to 50% of patients

with HF have a mPCWP > 18mmHg and CXR findings that are not consistent with

vascular redistribution or interstitial edema [26, 192]. Hence, arriving at the right

diagnosis is challenging in HF patients with suspected decompensated heart failure

who have unremarkable chest x-ray findings. Plasma levels of B-type natriuretic

peptide (BNP) and N-Terminal pro-BNP (NT-proBNP) have high negative predictive

value for ruling out acute heart failure in patients who present with dyspnea [118].

However, since BNP and NT-proBNP levels can be persistently elevated in patients

with chronic HF, the positive predictive value of natriuretic peptides in the diagnosis

of acute decompensated HF in these patients is not as clear [45].

Using estimates of the prevalence of mPCWP > 18mmHg in HFrEF patients, given

different radiographic pulmonary findings, and a decision threshold corresponding to

a sensitivity of 80%, we estimate that the PPV is 0.89 ± 0.01 when the CXR is

consistent with interstitial edema. When signs of interstitial edema are absent the

PPV is 0.78 ± 0.02, again at a sensitivity of 80%. HFNet can therefore provide

information that complements CXR findings in patients with HF. Indeed, an HFNet

prediction consistent with an elevated mPCWP is meaningful even if the CXR does

not show signs of pulmonary edema; i.e., a diagnosis of acute HF is likely in patients

with a positive HFNet prediction and negative CXR findings. Moreover, given that

a persistently elevated mPCWP after directed therapy for a HF is associated with

adverse outcomes [40], HFNet could be part of the evaluation of HF patients before

discharge, even when the CXR may be unremarkable. When considering whether a

given inpatient with HF is ready for hospital discharge, a positive prediction should

raise the suspicion that their filling pressures remain elevated and that additional

inpatient therapy is required. Lastly, we note that while we focus on a decision

threshold corresponding to a sensitivity of 80% – a common cutoff used in the medical

literature – we note that higher PPVs are achieved at lower sensitivity values (as

shown in Figure E-3).

Deep learning models suffer from the criticism that they are opaque algorithms
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because it is challenging to understand what these models have learned in practice

[165]. In order to probe what HFNet has learned, we used two complementary ap-

proaches. The first method, saliency map analysis, is a widely used approach for

understanding what portions of the input data have the greatest influence on model

predictions. The second approach used synthetic ECG sequences to systematically

vary the amplitude of different portions of the ECG to study how the model output

varies as different portions of the ECG are modified. Both approaches suggest that

HFNet preferentially focuses on the diastolic portion of the cardiac cycle, with the

amplitude of the P-wave having the greatest influence on model output. These data

are consistent with the longstanding clinical intuition that the mPCWP is a reason-

able estimate for left sided pressures at end diastole in many patients [196]. While

this does not constitute a comprehensive explanation of what the model has learned,

it does suggest that HFNet has garnered information that is consistent with our prior

understanding of human pathophysiology.

While we believe these data suggest that HFNet has a role in the evaluation and

management of patients with HF, our study has limitations. Our approach estimates

whether the mPCWP is above a threshold or below it, rather than predicting the

precise value of the mPCWP itself. Although a finer grained prediction would be

more useful, the method here identifies patients who have pulmonary congestion and

helps to prioritize who should have additional investigative studies. More data are

needed to develop a robust method that can precisely estimate the mPCWP. Also,

when curating our dataset of paired ECGs and mPCWP measurements, we ensured

that the ECG and catheterization were performed on the same day, however, the

specific time of catheterization relative to the ECG recording is not known and this

introduces some uncertainty in our results. Obtaining the ECG immediately prior to

catheterization could improve predictive performance. In addition, our ECG dataset

was not restricted to patients with normal sinus rhythm – as we hope to develop

a method that would work in the setting of different cardiac arrythmias. However,

assessing the performance in cohorts with significant arrhythmias are challenging as

our set of ECGs with significant arrhythmias is small; e.g., less than 10% of our ECGs
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Table E.2: Dataset summary statistics.

Dataset Institution # RHCs # patients Age % Female % with mPCWP >18mmHg

Development Hospital 1 5680 3014 63± 15 34% 37.7%
Internal Test Hospital 1 1441 753 63 ±15 38% 35.5%

External Validation Hospital 2 2725 1249 56 ± 15 32% 34.3%

have atrial fibrillation. Additional work is needed to fully assess the performance of

our model on patients with significant arrhythmias. Furthermore, our estimates for

the PPV and NPV rely on estimates of the prevalence of elevated mPCWP that

were derived from prior studies of patients with HF and reduced LVEF. Since we

have limited data on the demographics of this population (i.e., only age, sex, filling

pressures, LVEF), it is difficult to make definitive statements about how these results

generalize to other populations that may have very different characteristics. Further

prospective studies are needed to verify that these estimates are applicable to the wide

swath of patients that are seen in modern day practice; for example, to evaluate how

the model performs on patients who had an ECG but who would not have undergone

catheterization as part of their care.

Overall, our study suggests that there is a role for deep learning models in the

estimation of central cardiac pressures in patients with heart failure. The method

has the potential to provide clinically useful information when invasive assessment of

central hemodynamics is either not possible or feasible.

E.4 Methods

E.4.1 Datasets

We develop and validate our model using datasets from two different hospitals. Our

first dataset consists of 7121 records from 3767 unique patients who underwent cardiac

catheterization at Massachusetts General Hospital (Hospital 1). All patients had a

diagnosis of HF (according to ICD 9/10 codes in their medical record) within the 1

year prior to their catheterization date.

This dataset is split into an 80% development set, used to train predictive models,
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and a 20% internal holdout test set, used for model evaluation. Datasets are con-

structed such that no data from a single patient appears in different data splits; i.e.,

all data splits are done on a per-patient basis. We further split the development set

on a per-patient level using an 80-20 split into training and “dev” sets. The training

set is used to train the model and the dev set is used to determine when training is

completed.

Our second dataset consists of 2725 records from 1249 unique patients who un-

derwent cardiac catheterization at the Brigham and Women’s Hospital (Hospital 2).

As with data from MGH, these patients all had a diagnosis of heart failure (according

to ICD 9/10 codes in their medical record) within the 1 year prior to their catheter-

ization date. We used this entire dataset as an external validation set for model

evaluation.

Each record in the datasets consists of: the mean Pulmonary Capillary Wedge

Pressure (as measured by cardiac catheterization), a 10-second, 12-lead ECG recorded

by the same system (GE Healthcare MUSE) on the same day as the catheterization

procedure, and basic demographic information (age/sex). Dataset details are sum-

marized in Table E.2.

E.4.2 Data pre-processing

We resampled all 12-lead ECGs at 250 Hz (the raw ECG signals were recorded at

either 250 Hz or 500 Hz) and removed any ECGs containing non-physical voltage

values (> 5mV in magnitude) in any lead. We additionally removed ECGs that

had any leads that were zero-valued for more than 5 seconds. We normalized the

continuous age feature using Z-scoring based on the mean and standard deviation of

age in the training set. We binarized the sex feature and then subtracted 0.5 to center

it on zero; i.e., 0.5 denotes male and -0.5 denotes female. The continuous mPCWP

measurements were binarized using the threshold of 18 mmHg.
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E.4.3 Baseline Model

We constructed a Logistic Ridge Regression model to predict elevated mPCWP from

age, sex, and intervals extracted from the ECG (heart rate and PR, QRS, and QT

intervals) to predict whether the mPCWP is above 18 mmHg. The regularization

strength was chosen to be the value that gave the best AUROC on the dev set. The

intervals were normalized using z-scoring based on training set statistics, and the age

and sex features were normalized as described above.

E.4.4 Model development

We developed a deep learning model, HFNet, which estimates whether a patient’s

mPCWP is over 18mmHg, using the 10-second 12-lead ECG, age, and sex as input

features. We included age and sex in the model since we hypothesized that that these

features encode some prior information about filling pressures; e.g., older age and male

sex are associated with a higher prevalence of cardiac disease. The model combines

a convolutional encoder for the ECG and a fully connected network encoder for the

demographic features. The model’s weights and biases are first randomly initialized.

The model is then trained to minimize the binary cross-entropy loss between its

output, corresponding to mPCWP > 18mmHg, and the binary label of whether the

pressure measured during catheterization was elevated or not. Training proceeds for

at most 50 epochs using the Adam optimizer with a learning rate of 1e-3, however, we

use early stopping based on the dev set AUROC score to prevent model overfitting.

Full architectural details of the model are in given in Section E.5.

E.4.5 Statistics

We obtain measures of uncertainty in performance using empirical bootstrapping;

we sample data points at random, with replacement, obtaining 10 bootstrapped sets

that have the same size as the original set. Performance metrics are computed on

each of the bootstraps, and then the mean/standard deviation of performance across

these bootstraps is reported. Paired t-tests were used to calculate p-values to assess
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statistical significance.

Positive and Negative Predictive Values as a function of sensitivity, specificity,

and prevalence were computed using the following relationships:

PPV =
sensitivity × prevalence

sensitivity × prevalence + (1− specificity) * (1− prevalence)

NPV =
specificity × (1− prevalence)

specificity × (1− prevalence) + (1− sensitivity) * prevalence

E.4.6 Identifying Untrustworthy Predictions

Assessing whether a given prediction made by the model is trustworthy or not is

important for practical use, since it helps clinicians decide in which cases to trust a

given model prediction. We hypothesized that we could use the predictive entropy of

the model’s output as a way of determining whether the model’s output is trustworthy

or not on a per-ECG basis. The predictive entropy is defined as:

Entropy(𝑥) = − (𝑦 log 𝑦 + (1− 𝑦) log(𝑦)) ,

where 𝑥 denotes the ECG and age, sex (inputs to the model); and 𝑦 is the model

output (the prediction). We hypothesize that large entropy values (which correspond

to the predicted probability being near 0.5) arise in situations where the model is

least reliable, and the lowest entropy values (which correspond probabilities near 0 or

1) arise for inputs where the model’s prediction is most reliable.
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E.5 Supplementary Information

E.5.1 Model Architecture

Figure E-7: Overall HFNet Model Architecture.

Figure E-8: ECG Encoder Architecture.

Our model has three components: an ECG encoder, a demographic features en-

coder, and a classifier, shown in Figure E-7.

ECG encoder. Our ECG encoder is a convolutional neural network (CNN). We

adopt the encoder architecture from [47] for the encoder, Figure E-8. This model con-

sists of a residual architecture followed by a Global Average Pooling layer to produce
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a 320-dimensional representation of the 12-lead ECG signal.

Demographic features encoder. The demographic features encoder is a fully

connected neural network. The two-dimensional vector with normalized age and sex

is first projected into a 16-dimensional space with a Dense layer. This is then passed

through a fully connected block with a Dense layer mapping into 128-dimensions,

followed by Batch Normalization, ReLU activation and Dropout (rate 0.5).

Classifier. The classifier first concatenates the output from the ECG encoder and

demographic features encoder, yielding a 448-dimensional vector, and then applies

Dropout (rate 0.5). Then, 3 blocks of Dense, BatchNorm, ReLU, Dropout (rate

0.5) are applied, with Dense layer output dimensionalities being 256, 128, and 64

dimensions. This is followed by a final Dense layer with 2 dimensional output, which

corresponds to the probability of mPCWP being above 18 mmHg and below 18 mmHg

respectively.
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E.5.2 Further Patient Characteristic and Prevalence Details

Table E.3: Prevalence of mPCWP>18mmHg as a function of different CXR findings.
Taken from [26].

CXR Finding Prevalence of mPCWP>18mmHg
in patients with HFrEF

Sensitivity of positive CXR for
detecting mPCWP>18mmHg

Interstitial edema 0.83 27%
No interstitial 0.68 -
Pulmonary Vascular
Redistribution 0.89 65%

No Pulmonary Vascular
Distribution 0.52 -

Table E.4: Characteristics of patients with reduced ejection fraction (EF).

Dataset # RHCs # patients Age % Female % with
mPCWP >18mmHg

Mean and
standard deviation
of EF

Development 1535 1053 63± 15 25% 59.2% 24 ± 8
Internal Test 358 245 64 ±14 30% 62.2% 24 ± 8
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E.5.3 Further multiple catheterization results

Figure E-9: Multiple catheterization: further examples from the internal test set. The blue
dashed line corresponds to 18mmHg mPCWP (left axis), and the dashed green line indicates
the model output threshold corresponding to an 80% sensitivity level.
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Figure E-10: Multiple catheterization: further examples from the external validation set.
The blue dashed line corresponds to 18mmHg mPCWP (left axis), and the dashed green
line indicates the model output threshold corresponding to an 80% sensitivity level.
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