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ABSTRACT

Sepsis is a life-threatening medical emergency in which the body responds improperly
to an infection, and is typically treated with intravanous fluids and vasopressors. However,
administering the right balance is often difficult because adverse outcomes can be caused by
both excessive and insufficient treatment. There have been many clinical trials done in the
past to investigate the optimal regime for treating sepsis, however these studies have resulted
in inconclusive results and often take a long time to conduct. Thus, personalized treatment
response prediction under dynamic time-varying treatment strategies can be a very useful
tool for clinicians when deciding what treatment strategy to administer to a patient.

This thesis builds on G-Net, a deep sequential modeling framework for g-computation
that has been evaluated on response prediction under dynamic and time-varying strategies
on the population level. Utilizing real-world data collected from the intensive care unit
(ICU), we evaluate the performance of various deep learning implementations of G-Net on
individual-level response prediction and compare their performances on prediction under
the observational treatment regime. We then apply G-Net to counterfactual prediction
under alternative regimes of interest and show that G-Net is able predict patient covariates
and outcomes that are physiologically plausible and match clinical intuition. Our work
showcases the potential of G-Net as a tool for personalized treatment response prediction to
aid clinicians in determining optimal therapy for sepsis patients in the ICU.
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Chapter 1

Introduction

Sepsis is a life-threatening medical emergency in which the body responds improperly to an
infection, and is typically treated with a balance between intravanous fluids and vasopres-
sors. However finding the correct balance can be difficult. Vasopressors are a type of drug
that constrict the patient’s blood vessels to raise blood pressure, but clinicians tend not
to favor its usage due to its aggressive nature. On the other hand, fluids are typically the
default treatment strategy, but over-administration of fluids can lead to other adverse out-
comes such as pulmonary edema. Recent clinical trials have shown no significant difference
in mortality rate when comparing fluid-liberal and fluid-conservative treatment strategies,
making it difficult to decide what treatment strategy to use for a patient.

Furthermore, in the real world, we can only observe the patient conditions and patient
outcomes under the treatment that was administered, known as the observational regime.
One cannot know what would have occurred if an alternative treatment strategy was chosen
instead, but we often wonder what may have happened. This is especially true for clinicians
who are deciding what treatment plan to use for a patient and don’t have the luxury of testing
the different plans before their decision, such as clinicians who work with sepsis patients.
This is because sepsis patients often react differently to the same treatment, so being able
to predict an particular patient’s response to different regimes would be extremely useful.
Thus, predicting sepsis patient response to treatment strategies is both an important area
of study and the focus of our work.

The rest of this chapter will detail g-computation, a causal inference approach for coun-
terfactual prediction, describe G-Net, a deep-learning implementation of g-computation that
this work builds on, list the individual contributions made in this work, and outline of the
rest of this thesis.

1.1 Counterfactual Prediction and G-computation

Counterfactual prediction is the task of predicting patient conditions and outcomes under an
alternative treatment strategy given observed patient history. In our work, we use patient
covariate trajectories to represent patient history. Sepsis patients often require complex
treatment strategies that require multiple treatment decisions dependent on past history at
any given time. These kinds of treatments are known as dynamic and time-varying treatment
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strategies. Time-varying refers to treatments that make decisions at different times while
dynamic refers to treatments where the treatment administered at each time depends on
past history. Counterfactual prediction is especially difficult for dynamic and time-varying
interventions due to time dependent confounders, when interventions depend on time-varying
covariates which are in turn influenced by past treatments.

Oftentimes, sepsis patients need to be administered large amounts of fluid to increase
blood pressure, but administering too much fluids can lead to fluid overload and other
adverse effects. Thus, fluids are balanced with vasopressor administration, which can be a
very aggressive form of therapy. Treatment plans for sepsis patients will most likely require
deciding whether to give the patient fluids at any given time, and how much to give depending
on their observed history, making these interventions time-varying and dynamic.

Thus, we employ g-computation, a causal inference technique used to estimate counter-
factual outcomes under dynamic and time-varying treatments[1]. G-computation first learns
the distribution of patient covariates, such as heart rate and blood pressure, conditioned on
the patient’s past history of covariates and treatments, then estimates patient counterfactual
outcomes by simulating forward using the learned distribution under counterfactual treat-
ment strategies. One question that remains is how exactly we can learn these distributions.
This leads us to G-Net, a deep learning implementation of g-computation.

1.2 G-Net

Given the high predictive power machine learning and deep learning techniques have demon-
strated in the past, such tools are a perfect fit for implementing g-computation. Specifically,
we can use machine learning and deep learning to learn the conditional distributions of
patient covariates and predict them forward.

Proposed by Li et al., G-Net implements g-computation using recurrent neural networks
(RNNs) to learn the conditional distributions used to simulate forward[2]. RNNs are designed
to capture sequential or temporal dependencies for sequential or time-series data, which
reflects conditioning on the patient’s past history. Li et al. proposed a two-box architecture,
in which the continuous variables were jointly modeled with one neural network and the
categorical variables were jointly modeled with another.

A recent thesis by Hu further refined the original work on G-Net. Hu additionally intro-
duced the one-variable-per-box architecture, in which each covariate was modeled individu-
ally by its own model, and adapted G-Net for prediction using real-world data. However Hu’s
evaluations focused on estimating treatment effects on the population level for clinical data
[3]. Our work is more focused on evaluation of predicting time-varying treatment response
on the individual level for clinical data.

1.3 Contributions

Our work builds on previous works from Li et al. and Hu [2], [3] by doing a more rigorous
evaluation of G-Net for prediction on the individual level. In our study, we investigated
a few more model architectures for implementing G-Net. We then tested and validated
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its performance via the observational check by assessing how well it was able to predict the
observed care. Finally, we evaluated its performance on the task of counterfactual prediction.
Thus the contribution of this thesis are the following:

1. Exploring different model architectures for G-Net. We introduced new model
architectures used to implement G-Net. Specifically, while including the generalized
linear models (GLMs) and Long-Short Term Memory (LSTM) models used in Hu’s
work[3], we additionally included basic recurrent neural networks (RNNs), RNNs im-
plemented with gated recurrent units (GRUs), and a hybrid model that had a mix of
one of these four architectures.

2. Evaluation of G-Net for personalized treatment response. We more rigorously
evaluated G-Net on individual-level predictions for real-world data by introducing new
measures to quantitatively assess G-Net’s performance in personalized prediction un-
der observational treatment regimes. Specifically, we investigate G-Net’s performance
when varying-length of patient’s history was used as input to the model in predicting
future outcomes of individual patients. We introduce an RMSE metric to measure the
model predictive performance for continuous variables over time, while accounting for
the over- and under-prediction in the trajectory length between the actual and the
predicted due to death or discharge. Furthermore, we evaluate G-Net’s performance
in predicting the presence of various adverse clinical outcomes at an individual patient
level using AUC scores as the evaluation metric.

3. Counterfactual prediction for sepsis patients. We use G-Net to predict sepsis
patients’ response under alternative fluids-limiting strategies, with varying degrees of
fluids caps on a patient’s total volume of bolus received during the first 24-hours in the
ICU. Our fluids-limiting strategies are adapted from the recently conducted random-
ized controlled trial, Crystalloid Liberal or Vasopressors Early Resuscitation in Sepsis
(CLOVERS)[4]. Finally, we present an individual case study from the MIMIC-IV
[5]database to illustrate the potential use of G-Net for personalized treatment response
prediction on the individual level.

1.4 Thesis Outline

The next chapter will give an overview of recent works using g-computation and deep learn-
ing techniques for counterfactual prediction. The following chapter will give some more
background on g-computation. Chapter 4 will describe our methods and Chapter 5, will
then describe our experiments, including the implementation and training of G-Net and an
overview of the MIMIC dataset. Chapter 6 will present the results of our predictive check
experiments, and Chapter 7 will present our counterfactual prediction experiments and re-
sults. We will conclude with a summary of our results and discussion for future work in
Chapter 8.
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Chapter 2

Related Works

What regime is optimal for treating sepsis patients has been a question of interest for clini-
cians working with sepsis patients for years. Patients often display heterogeneous reactions
to similar treatment plans, making it often difficult to decide which treatment strategy would
be optimal for a given patient. A recent clinical trial found no statistically significant dif-
ference in patient mortality between a more restrictive fluid strategy compared to a more
liberal fluid strategy [6]. More clinical trials need to be conducted in order to potentially
discover optimal treatment strategies for patients suffering from sepsis, but clinical trials
can often be lengthy, and conclusions can only be drawn for the specific treatment strategies
investigated.

A natural tool to turn to is machine learning and deep learning, techniques known for
their predictive capabilities. In particular with the rise of RNN-style architectures that
allow for capturing temporal dependencies, there has been much interest in applying various
neural networks on the task of estimating treatment effects of different treatment strategies.
This chapter will review some past work that has been done on investigating counterfactual
prediction using machine learning.

2.1 Machine Learning for Counterfactual Prediction

There has been much work done on the application of machine learning for counterfactual
prediction. In 2020, Bica et al. proposed the Counterfactual Recurrent Network (CRN)
that built treatment-invariant representations of a patient’s history that was then used for
counterfactual prediction. These representations, built via domain adversarial training, was
designed to tackle bias from time-varying confounders [7]. Prior to Bica et al.’s work, Lim
et al. demonstrated that marginal structural models implemented with RNNs (known as
recurrent MSMs) performed better than linear models and traditional MSM approaches on
the task of counterfactual prediction [8]. Other recent works by Atan et al., Alaa et al., and
Yoon et al. have applied deep learning to counterfactual prediction given data under the
observed regime [9]–[11].

Although these techniques show promising results for counterfactual prediction, some are
limited to counterfactual prediction for static time-varying treatment strategies. In partic-
ular, we are interested in dynamic treatment strategies as well. Additionally, MSMs rely
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on different modeling assumptions compared to G-computation, allowing G-computation to
handle higher-dimensional patient history. Additionally, G-computation allows for estimat-
ing the distribution of counterfactual outcomes using a time-varying counterfactual strategy,
which is not as easily done using MSMs.

Thus this work turns to G-computation, and specifically continues the work of Hu’s
thesis that expanded on Li et al.’s work on on G-Net, a recurrent network implementation
of G-computation for dynamic and time-varying treatment regimes [2], [3] .

2.2 G-computation and G-Net

The G-computation algorithm, described more in detail in section 3.1, learns conditional
covariate distributions (conditioned on patient history) observed in the data via regression
models. Previous studies have typically used generalized linear models (GLMs) as the regres-
sion model of choice, but theoretically, more complex models can be used as well. Previously,
work by Shulam et al. implemented a continuous time version of G-computation using Gaus-
sian processes (GPs), although they focused on static time-varying counterfactual strategies
when designing their model [12]. Xu et al. also used GPs for individual patient-level treat-
ment response predictions, but they limited their evaluation to predictive checks and did not
evaluate model performance on counterfactual predictions [13]. Additionally, GPs are not
very scalable with the size of the data and has high time-complexity with an increase in the
variables used and modeled. Recurrent neural networks (RNNs) are much more scalable to
higher-dimensional data, and have shown high performance on various time-series regression
tasks [14], [15].

Thus, we build on G-Net, a sequential deep learning implementation of G-computation
used to estimate the conditional distribution of covariates conditioned on patient history
under dynamic, time-varying treatment strategies [2]. However, their work was only evalu-
ated on synthetic datasets. Although Hu’s work adapted G-Net for a real-world dataset, Hu
primarily focused on evaluation on the population level rather than the individual level[3].
This work focuses on G-Net evaluation on real-world data at the individual level.
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Chapter 3

Problem Setup and G-computation

Counterfactual prediction is particularly useful in situations where a decision needs to be
made under uncertain circumstances by predicting the effects of each possible action. De-
pending on the circumstance, there are many methods that could be used for counterfactual
prediction. This work in particular focuses on counterfactual prediction for sepsis patients,
requiring the method of choice to be able to handle dynamic and time-varying regimes that
is conditioned on high-dimensional patient covariate histories. This makes g-computation,
one such method for counterfactual prediction, a perfect candidate for our setting.

G-computation is a causal inference approach to modelling counterfactual prediction on
dynamic and time-varying strategies[1]. The g-computation framework consists of two pri-
mary steps. The first step is learning the conditional distributions of covariates conditioned
on the history of covariate values and treatment actions. The second step then estimates
counterfactual outcomes by using Monte Carlo methods to simulate forward in time from
the learned distributions.

This chapter will first explain the G-Computation framework in more detail then discuss
how it can be applied to our setting.

3.1 Problem Setup

We want to measure the effect of different treatment regimes g on a set of outcomes in
a setting where a set of patient covariates influence both the treatment administered and
the outcomes experienced by the patient. Our strategies of interest are dynamic and time-
varying, meaning the treatment administered at any time step t depends on a patient’s
history of covariates and treatment actions up until t − 1. G-computation can used to
predict the effects of multiple counterfactual strategies of interest by simulating their effects
on both the patient’s covariates and outcomes.

Let us define:

• t ∈ {0, . . . , K}: a discrete-valued time step, with K being the end of followup. This
work uses K = 24.

• At: the observed treatment action at time t
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• Yt: the observed value of the outcome(s) at time t

• Lt: a vector of d covariates at time t that may influence treatment decisions or be
associated with the outcome

• X̄t to be the history X0, . . . , Xt (for example, L̄t would denote patient covariate history
up to and including timestep t)

We denote a dynamic, time-varying treatment strategy g as a collection of functions
g = {g0, . . . , gK}, such that gt maps patient history, a combination of past covariate values
and treatment actions, to a treatment action gt(L̄t, Āt−1) at time t, where (L̄t, Āt−1) is the
patient history prior to the intervention administered at time t. In other words, the treatment
given at time step t will depend on the patient’s past covariate values up to and including
time step t as well as the sequence of treatment actions up to and including time step t− 1.

Given a strategy g, we denote Yt(g) as the patient outcomes observed at time t as a result
of following treatment strategy g from baseline [16]. For example, let us consider a patient
who has had m−1 time steps of observed treatment actions Ām−1. We would like to predict
the effects of administering a strategy of interest g starting from time step m until K. We
then denote the counterfactual outcome at time t as Yt(Ām−1, gm), where t ≥ m.

The goal of counterfactual prediction in our setting is estimating the expected counter-
factual outcomes for a patient

{E[Yt(Ām−1, gm)|L̄m, Ām−1], t ≥ m} (3.1)

conditioned on the patient’s observed covariate history through time m and observed
treatment action history through time m − 1, under a specified counterfactual treatment
strategy g. It is additionally possible to estimate the counterfactual outcome distributions
at future time points

{p(Yt(Ām−1, gm)|L̄m, Ām−1), t ≥ m} (3.2)

for t ≥ m. Notice that we obtain the expectation and distribution respectively over the
population if we do not condition on the patient’s history (L̄m, Ām−1) in Equations 3.1 and
3.2.

3.2 G-computation Framework

Using the problem setup described above, we now define the G-Formula and the assumptions
used in g-computation.

3.2.1 G-Formula

In order to estimate Equations 3.1 and 3.2 via G-computation, some assumptions must hold
[16]. Specifically:
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• Consistency: the counterfactual outcome is the same as the observed outcome when
the counterfactual regime is the observed regime.

Yt(Āt) = Yt for t ∈ {0, . . . , K}

• Sequential Exchangeability: there is no unobserved confounding of the treatment
at any time. In other words, anything that would factor into the treatment decision is
observed at every hour.

• Positivity: the counterfactual strategy g has a non-zero probability of actually be-
ing administered. This is to avoid the situation of conditioning on events with zero
probability.

If these assumptions hold true, we can rewrite Equation 3.2 as

p(Ym(Ām−1, gm)|L̄m, Ām−1) (3.3)
= p(Ym|L̄m, Ām−1, Am = gm(L̄m, Ām−1))

for t = m. In other words, the conditional distribution of the counterfactual outcome is
equivalent to the conditional distribution of the observed outcome given a patient’s history
and the counterfactual treatment strategy in question.

As t > m increases, Equation 3.3 becomes more complicated with the need to adjust for
time-varying confounding. Let us denote Xi, . . . , Xj for any arbitrary variable X as Xi:j.
Then under the assumptions above, the g-formula yields:

p(Yt(Ām−1, gm) = y|L̄m, Ām−1) (3.4)

=

∫
lm+1:t

p(Yt = y|L̄m, Ām−1, Lm+1:t

= lm+1:t, Am:t = g(L̄m, Ām−1, lm+1:t))

×
t∏

j=m+1

p(Lj = lj |L̄m, Ām−1, Lm+1:j−1

= lm+1:j−1, Am:j−1 = g(L̄m, Ām−1, lm+1:j−1))

This equation captures four components that the outcomes at time t > m depends on:

• the observed patient covariate history (for time steps up to m).

• the observed treatment actions (under the observational treatment strategy) up to and
including time step m− 1.

• the counterfactual treatment actions from time step m onwards.

• the estimated effects of the counterfactual regime on the patient’s covariates starting
from time step m+ 1 onwards.
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3.2.2 G-computation Method

Due to difficulties solving for the closed form of the integral in Equation 3.4, in practice we
use Monte Carlo simulations as an approximation instead. Specifically, we first simulate a
population under the counterfactual regime of interest. Then we use the empirical outcome
distribution as an estimation of the actual outcome distribution.

In order to simulate a trajectory for a patient under a counterfactual regime of interest,
we sample from the joint distribution p(Lt|L̄t−1, Āt−1) for each timestep t ∈ {m, . . . ,K}. We
then do this process n times to obtain the simulated population, from which the empirical
distributions of the outcomes gives us a way to approximate Equation 3.2 at each time
step t. The average of the sample draws for each time step t gives us an estimate of the
conditional expectations from Equation 3.1. We can then use the averages as predictions for
Yt(Ām−1, gm).
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Chapter 4

Methods

To utilize the g-computation method, we first need to learn the conditional distribution
p(Lt|L̄t−1Āt−1) of the patient covariates at each time t dependent on the patient’s history.
Then we can use that learned distribution to simulates forward the data to estimate the
counterfactual outcomes under different regimes. The G-Net framework leverages the power
of sequential deep learning models to carry out the g-computation method [2]. In particular,
RNN-style models were the choice of model having shown superior performance on problems
involving high-dimensional sequential data, which is a fit for the time-varying covariate data
we use.

In order to perform g-computation, G-Net works in two primary stages. First, through
training, we fit our networks of choice to enable us to sample from p(Lt|L̄t−1Āt−1). Then,
we simulate forward according to the method described in Section 3.2.2 by using our trained
model to sample the covariates at each time step. The rest of this chapter will explain the
G-Net framework, describe the experiments we conducted and our evaluation metrics, and
introduce our dataset of choice.

4.1 G-Net Framework

The first stage in g-computation is learning the covariate conditional distributions. When
learning these conditional distribution, we can separate the vector of covariates Lt into p
disjoint groups, where each group can be separately modelled. Specifically, if we set p = 1,
we would model all the covariates simultaneously and approximate the covariates’ joint
distribution. If we set p > 1, we can model covariates separately. This can be desirable
in situations where the distributions of the covariates may be different, such as if the data
contains both continuous covariates and categorical covariates. In our study, we set p to be
d, our total number of covariates of interest. In other words, for each covariate, we have a
box that models its conditional distribution. We call this approach the one-variable-per-box
approach.

Due to our choice of the one-variable-per-box architecture, we can train and optimize
each box independently of one another. This also means at each given time step, we can
impose an (arbitrary) ordering in which the covariates are to be predicted. Then at time t,
for the covariate j in the prediction order, we can condition on all covariates up until time
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t− 1 and all covariates until j − 1 at time t. Namely, we learn p(Lj
t |L̄t−1Āt−1L

0
t . . . L

j−1
t ) for

each covariate. Then, we can use the probability identity

p(Lt|L̄t−1Āt−1) =p(L0
t |L̄t−1Āt−1)× p(L1

t |L̄t−1Āt−1L
0
t )

× · · · × p(Ld
t |L̄t−1Āt−1L

0
t
d−1
t )

to simulate our final p(Lt|L̄t−1Āt−1). Specifically, we can simulate our final predicted
p(Lt|L̄t−1Āt−1) by simulating our covariates in the arbitrary order we impose on them during
training.

4.2 G-Net Architecture

At each time t, G-Net is trained to predicted Lt, the covariates at time t conditioned on
L̄t−1Āt−1, the patient’s covariate history and treatment history. In the setting described in
Section 4.1, if we set p = 1, we would have 1 box f 0(;̇Λ0) with parameters Λ0 learned during
training and input (L̄t−1Āt−1).

Then for any arbitrary p, we would have p boxes to model each p groups of covariates. Let
us use the convention Li

t to denote the prediction of box i. Then for the first box f 0(;̇Λ0), the
input is just L̄t−1Āt−1, the patient’s covariate and action history. The output L0

t is then also
used as input to the next box. Then for arbitrary box i, Li

t = f i(L̄t−1Āt−1L̂0
t . . .

ˆLi−1
t ; Λi).

In other words, the input to box i is the concatenation of the patient’s history with the
predictions from the previous i− 1 boxes.

There are many configurations possible to implement G-Net with. This work focuses
on the one-variable-per-box implementation, where we set p = d. As such, each covariate
distribution is learned and modeled by its own box.

4.2.1 G-Net Training

G-Net is fit to the one-step-ahead prediction task, which will provide us with estimates
of E[Lj

t |L̄t−1Āt−1L
0
t
j−1
t ] for all t and j, the conditional expectations of covariate j at time

t. Then using these conditional distributions, we can simulate from p(Lj
t |L̄t−1Āt−1L

0
t
j−1
t ) as

described in Section 3.2. The following sections will discuss choices made during the training
process.

Teacher-Forcing Strategy

We trained G-Net on the one-step-ahead prediction task using a teacher-forcing strategy.
Specifically, at each time step t for box j in the arbitrary ordering, we input the ground
truth for all covariates up until time t − 1 as well as the ground truth for all covariates up
until j − 1 at time t. This was chosen in contrast to the student-forcing strategy, where we
input the ground truth for all covariates up until time t− 1 and the predicted values for
all covariates up until j − 1 at time t, to learn the conditional distributions that exist in the
observed data.
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Loss Function

As in classic machine learning, optimizing the right choice of loss function and employing
effective gradient descent techniques can enable efficient training of our model to predict the
covariates at each time t. We choose to optimize each box individually, rather than jointly,
to allow for greater flexibility while training. Additionally, we choose to average over all
time steps over all patients per batch to reduce bias related to a variable number of time
steps. We choose binary cross-entropy loss (BCE) for binary variables and mean squared
error (MSE) for continuous variables.

G-Net Simulation

At each time step for each covariate, we simulate Lj
t |L0

t . . . L
j−1
t L̄t−1Āt−1 ∼ Ê[Lj

t |L0
t . . . L

j−1
t

L̄t−1Āt−1] + ϵjt , where Ê[Lj
t |L0

t . . . L
j−1
t L̄t−1Āt−1] is our model’s prediction. If covariate j is

continuous, we choose ϵjt to be randomly drawn from an empirical set of residuals Lj
t − L̂j

t

that are generated from our validation dataset. If the covariate is binary, we instead take a
Bernoulli draw characterized by the output of our model, assuming the ouput of our model
is in the range [0, 1]. This can be done via an activation function, such as the sigmoid
activation.

For each simulation, we simulate forward until the patient has a full 24-hour trajectory,
or until the patient is predicted to have ended their stay. This occurs when death or release
is predicted for the patient of interest.

4.3 Experimental Overview

We want to perform personalised outcome prediction for sepsis patients. In particular, we
want to perform counterfactual prediction on the individual level for sepsis patients under
alternative fluid therapies. However, the effects of fluid treatment do not always emerge
immediately. Oftentimes, outcomes due to fluid therapies, such as pulmonary edema, are
observed a period of time after the initial treatment.

Thus we first apply the G-Net framework on our cohort of interest to predict forward a
patient’s covariates and outcomes experienced until 24 hours post ICU admission, as men-
tioned in the previous section. If the patient is predicted to have already experienced the
outcomes of interest in the 24 hour study period, we do not need to predict further.

If the patient has not been predicted to have experienced certain outcomes, which may
be due to the delayed onset of outcomes due to fluid therapies, we want to then predict
whether or not a patient will ultimately experience those outcomes.

4.3.1 72 Hour Outcome Prediction Framework

For each outcome of interest, we want a binary classifier hj(;̇Γj) with learned parameters
Γj to predict whether a patient will experience that outcome of interest within 72 hours of
ICU admission given the patient’s 24 hour covariate trajectories. Specifically, we would like
to know Y i, the binary outcome label representing whether a patient experiences outcome
i, conditioned on L̄24Ā24. We impose an almost arbitrary ordering for prediction of the 72
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hour outcomes - the only rule we impose is that release and mortality are predicted last in
no particular order. Similarly to the 24-hour case, input to each 72-hour model for outcome
j is the 24-hour patient covariate and treatment action history L̄24Ā24 as well as the binary
outcome labels prior to j in the ordering, Y 0 . . . Y j−1. As with the 24-hour case, we use the
teacher-forcing strategy and BCE loss to train the 72 hour outcome binary classifiers.

4.4 Evaluation

To choose the best-performing model for our counterfactual analysis and to showcase the
reliability of our models, we need to choose relevant and meaningful metrics of evaluation.
In general, we were interested in measuring how well our models were able to predict and
simulate forward the conditional covariate distributions, as well as how well our models were
able to predict patient outcomes. Thus we chose two quantitative measures for evaluating
our models.

4.4.1 Individual-Level RMSE

Our first evaluation measure is the Root Mean Squared Error (RMSE) on the normalized
values, used as a quantitative measure of the difference between our predicted covariate
trajectories and the ground truth covariate trajectories. This metric was applied solely to
our assess our G-Net framework for the 24 hour period.

We start by averaging the N Monte Carlo simulations per covariate per patient to con-
solidate our simulations into a representation of the patient’s final predicted covariate tra-
jectories. Thus for each patient, we have a mean L̄j

t . We then use the RMSE formula, with
Nc as the number of patients and f being our model,

√√√√ 1

Nc(K −m)d

Nc∑
i=1

K∑
t=m

d∑
h=1

(Lh,CF
ti − L̂h,CF

ti (f))2 (4.1)

to calculate RMSE over time steps m to K[2].

RMSE Padding Choice

A complication arises due to the potentially non-uniform length in predicted trajectories.
This is because a patient can experience death or discharge during the first 24 hours, which
could result in either over-prediction, where a Monte Carlo simulation predicts an end of stay
on a time step after the patient had actually ended his or her stay, or under-prediction, where
a Monte Carlo simulation predicts an end of stay on a time step before the ground truth. In
order to make sure our RMSE results are valid and meaningful, we decided handle the cases
of over and under-prediction by padding the missing data with an ad-hoc selected value.
For both the predicted and actual trajectories, we pad the missing values for trajectories
that have experienced release with population mean. Specifically, a covariate’s post-release
timesteps are padded with the population mean of that covariate. To account for death, we
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decided to use the minimum value observed in the dataset for each covariate for padding.
However, a few of our covariates are represented in their log-normalized form, meaning we
take the log of the raw value and normalizing via the mean and standard deviation of the log
values. This poses an issue if the minimum value observed is negative or 0 because the log of
a value less than or equal to 0 is undefined. Thus, for covariates that used log-normalization,
we padded the post-death trajectories with 0.0001 if the observed minimum was negative or
0, which would give the padded values a defined value. These padding values were intended
to represent the patient’s physiological status change.

4.4.2 AUC-ROC Score

To evaluate our model’s ability to predict whether a patient experienced certain outcomes,
we use the area under the receiver operating characteristic (ROC) curve (AUC) metric. We
choose to use this assessment primarily to measure our model’s ability to predict whether
a patient will experience an outcome of interest. An AUC score of 0.5 is congruent with a
fair coin flip and an AUC score of 1.0 indicates the ability to perfectly discriminate between
positive and negative labels. We additionally used the DeLong’s assessment to find 95%
confidence intervals[17]. This metric was used to assess both 24 hour outcome prediction
and 72 hour outcome prediction.

4.5 MIMIC Dataset Overview

For our study, we use the MIMIC IV dataset, which contains real-world ICU data sourced
from the electronic health record of the Beth Israel Deaconess Medical Center [5]. We will
now specify how we selected our cohort and introduce the covariates we used in our study.

4.5.1 Cohort Selection

We select ICU patients that met the Sepsis-3 criteria, which identifies sepsis and septic
shock identifying sepsis and septic shock using the most up-to-date definitions [18]. Under
the Sepsis-3 criteria patients are classified as septic if they have an episode of suspected
infection and have a Sequential Organ Failure Assessment (SOFA) score of 2 points or more
[18], [19]. An episode of suspected infection can be characterized by either an antibiotic
administration followed by a sampled culture within 24 hours of the antibiotic or a sampled
culture followed by an antibiotic administration within 72 hours of the culture. The time of
the first event to occur (between antibiotic and culture sampling) is used as the onset time
of suspected infection. Our cohort of interest included only patients over the age of 16 at
the time of sepsis onset and had no missing data. Our final dataset yielded 27,139 patients
with 35,010 ICU stays related to sepsis.

We exclude patients whose time of suspected infection was more than 24 hours post ICU
admission due to our selection of ICU admission as the start time of our study and K = 24.
We also excluded patients who were admitted following cardiac, vascular, or trauma surgery
due to their inherently different mortality risk compared to other ICU patients [19]. We
only included the first stay for any patient, whether they had one or multiple ICU stays,
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to avoid repeated measurements. We also excluded patients who did not have any recorded
documentation regarding fluids administered before their ICU admission. Given most sepsis
patients are expected to receive fluid therapy of some sort prior to ICU admission, we assume
the lack of pre-ICU fluid documentation is more likely to be due to erroneous documentation
rather than the patient actually not being administered any fluids. In the case this was true,
the inclusion of these patients would most likely cause confounding issues.

After generating our population of interest, we did one last filtering step for patients
who had outlier values of certain measurements as determined with reference to a clinician.
Specifically, we capped the amount of pre-ICU fluid administration at 10L because these
patients were unlikely to be administered even more fluids under observed care. Given our
interest in variations in fluid treatment strategies, including these patients in our cohort
would not be meaningful.

The final size of our study population was 8,721 patients with one sepsis-related ICU
stay each. During our experiments, we used 6,976 (80%) patients in the training set, 872
(10%) in the validation set, and 873 (10%) patients in the testing set. Table 4.1 presents an
overview of our Sepsis-3 cohort of interest by describing the distribution of patients in our
cohort with more detail, which helps us frame our work. Table 4.2 presents the population-
level proportion of patients who experienced various outcomes of interest. This helps give
context to the results of our experiments. In particular, we notice that these proportions
are similar to those of our test set, which will be presented in Chapter 6, indicating that the
distribution of outcomes experienced in our test set is fairly similar to the entire population.

Table 4.1: Population statistics describing our entire study cohort, including age, gender,
and race.

Characteristic n
Number of ICU stays 8,721

Age (µ, σ) (65.31, 17.33)
Pre-ICU Fluids (µ, σ) (2.87L, 1.99L)

Male 56.30%
Race – white 66.40%
Race – black 8.78%
Race – other 24.81%

CHF 3.47%
ESRD 25.59%
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Table 4.2: Proportion of our cohort of interest that experiences each outcome within 24
hours and 72 hours of ICU admission respectively. *Denotes release from ICU (not from the
hospital).

Outcome 24 Hour 72 Hour
Pulmonary Edema (%) 32.85 44.36

Mechanical Ventilation (%) 42.46 45.08
Diuretics (%) 15.46 27.19
Dialysis (%) 2.56 4.55
Release* (%) 11.49 86.00

In-Hospital Mortality (%) 1.83 14.00

4.5.2 Patient Covariates

We selected covariates that would be both important for determining sepsis treatment deci-
sions and are typically monitored in the ICU as predictors for our model. We also included
potential confounders. We used similar covariates to the ones used by both Li et al.[2] and
Hu [3]. We had a combination of unmodeled static covariates, such as basic demographic
information, comorbidities, and pre-ICU fluids, as well as dynamic and modeled variables,
such as SOFA score, vital signs, and urine output [2], [3]. A comprehensive list is provided
in Tables A.1 and A.2.
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Chapter 5

Experiments

Our study’s primary focus is evaluating the G-Net framework for predicting individual-level
dynamic and time-varying treatment response on clinical data. To do this, we first inves-
tigated our model’s performance via the predictive check, where we evaluated our model’s
ability to predict the observed outcomes under the observed regime. This showcases the re-
liability of our model’s predictions and provides metrics to select a model for counterfactual
prediction. Then we evaluate our best-performing model on individual-level counterfactual
prediction. The rest of this chapter will specify how we implemented and carried out the
methods described in Chapter 4 and give an overview of the evaluations we performed.

5.1 G-Net Experiments

In this section, we will discuss the details of our experiments. We start by introducing the
architectures we used to implement G-Net with. We then describe the different simulations
we conducted for the predictive check for both the 24-hour and 72-hour cases.

5.1.1 G-Net Model Implementation

In order to perform g-computation, we first need to select model architectures that will allow
us to learn and sample from the conditional covariate distributions. We chose five different
architectures to implement G-Net with, four of which use the same model for all boxes, and
one of which uses a combination of the architectures for its boxes. The latter approach is
possible because each box is independently trained in the one-variable-per-box approach.
Specifically, we have the following:

1. Linear where all of the boxes used generalized linear models (GLMs)

2. RNN where all of the boxes used basic recurrent neural networks (RNNs).

3. GRU where all of the boxes used RNNs using gated recurrent units (GRU).

4. LSTM where all of the boxes used Long-Short Term Memory (LSTM) networks.

5. Hybrid where each box was implemented using either a GLM, LSTM, RNN, or GRU.
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We decided to test a variety of RNN architectures due to their use of a hidden state to
store memory, which mimics conditioning on the entire history of a patient by capturing time-
varying correlations. We noticed that some there was not one architecture that consistently
higher performance, so we decided to create a hybrid model in which each covariate is
modeled by the “best" architecture for that covariate. Our final hybrid model consisted of
the architecture with the highest validation performance out of the other four models per
box. For the boxes predicting binary variables, we additionally included a sigmoid activation
layer.

5.1.2 G-Net Training

We used the Adam optimizer as our gradient descent algorithm of choice with MSE loss
for the continuous covariates and BCE loss for the binary variables to train our models.
For each box, we performed a grid search across a space of hyper-parameters, and selected
the hyper-parameters that resulted in the model with the highest validation score per box.
Figure A.4 details the hyper-parameter space we searched through per model.

Then for each box, we selected the box with the highest validation score from our Linear,
RNN, GRU, and LSTM models to comprise our final Hybrid model, which is detailed in
Figure A.3.

5.1.3 G-Net 24-Hour Predictive Check

In order to do our 24 hour predictive check, we first simulated forward patient covariate
trajectories. In order to mitigate the effects of randomness during our simulation process and
better approximate the conditional distribution using our learned conditional expectations,
we repeat the simulation process for a total of n = 100 Monte Carlo simulations per test
patient.

Time Delays

To more rigorously evaluate the G-Net framework, this study also investigated our model’s
performance on the task of individualized prediction conditioned on variable number of time
steps. Thus we additionally experimented with different simulation start times post ICU
admission. When simulating with start time k, we first feed time steps 1 to k − 1 of the
patient’s ground truth covariate trajectories into our model before initiating our simulation
process. The remaining predictions are conditioned on k − 1 time steps of observed ground
truth data. This emulates the setting in which a clinician has observed a patient for k−1 time
steps in the ICU and would like to predict the patient’s condition in the future conditioned
on what has been observed thus far. We used k = 2, 4, 6, and 8 in our experiments.

RMSE

For our RMSE calculations, we took the average across each time step for each continuous
covariate to get a final predicted covariate trajectory for each patient that we used for our
RMSE calculations. For different time delays k, we set m = k in Equation 4.1.
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5.1.4 Data Preparation and Analyses for Outcome Prediction

To calculate our 24 hour AUC score, we first filter out patients who have ended their ICU stay
from time steps 1 to k − 1. This is because we would have already observed what outcomes
the patient had experienced up until the end of their stay, and not only would including
these patients artificially inflate our evaluation, it doing so would not have meaning in the
use case of predicting what a patient will experience in the future up until 24 hours of care
in the ICU.

For each Monte Carlo simulation per patient with simulation start time k, we label the
trajectory with 1 if the outcome indicator at any time step from k to 24 was 1. Then for
each patient, we take the proportion of Monte Carlo simulations with a label of 1 to be the
patient’s predicted probability of experiencing the outcome. The ground truth labels were
generated by determining if the outcome indicator at any time step from k to 24 was 1 in the
patient’s ground truth trajectory, much like what was done for each Monte Carlo simulation.
The final predicted probability was then compared against the ground truth labels to find
the final AUC score.

5.2 72 Hour Outcome Prediction

Additionally, as mentioned in Section 4.3, oftentimes the effects of certain treatments are not
observable immediately, so we extend our assessment to predicting various clinical outcomes
within 72 hours of ICU admission via a binary classifier.

5.2.1 72 Hour Outcome Binary Classifier Training

We used the same training, validation, and testing splits used to train our G-Net models to
train our 72-hour outcome binary classifiers, which we chose to implement using an LSTM
model with sigmoid activation. The outcome ground-truth labels were generated by looking
for the presence of the outcome in each patient’s 72-hour ICU data. For each k, we looked
for the presence of the outcome from time steps k to 72 to generate their final label. During
training for each outcome model, we then exclude patients who had already ended their stay
or experienced the outcome of interest during time steps 1 to k − 1.

We performed a grid search across a space of hyper-parameters that are documented in
Figure A.5.

5.2.2 72 Hour Outcome Prediction Testing

During our 72-hour outcome predicting process, we keep the imposed arbitrary ordering used
during training. Similar to the 24 hour case, for each outcome, we not only input the 24 hour
predicted trajectories as input to the model, but also the outcomes predicted previously in
the imposed order. For example, we input L̄24Ā24, into our first 72 hour outcome binary
classifier model to get h0(L̄24Ā24; Γ

0). In the 24-hour case, we chose to use a Bernoulli
sample characterized by the predicted value to convert to a binary label, however in this
case, a random sampling would only add unwanted noise.
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Instead, we use the ROC curve of the validation data set. We input the ground truth
L̄24Ā24 and Y 0 . . . Y j−1 of the validation data as input to our model, and compared the
predicted Ŷ j to the ground truth Y j to find the ROC curve. Then we picked the optimal
threshold to use, indicated by the lowest false positive and highest true positive rate (i.e.
the most top-left point on the ROC curve), denoted pjval.

So for every outcome j, we threshold each predicted hj(L̄24Ā24; Γ
0) using pjval to obtain

a predicted binary label Ŷ j to feed as input to the next model.

5.2.3 72 Hour Predictive Check

To perform our 72 hour predictive check, we used the n = 100 simulated trajectories from
the 24-hour experiments. We use AUC as our metric for assessment. We will now describe
how we conducted our 72 hour AUC evaluation.

Data Preparation and Analyses for 72 Hour Outcome Prediction

Same as in the 24 hour case, we filter for patients who have not experienced death or release
for time steps 1 to k − 1. We additionally filter out patients who experienced the outcome
from hours 1 to k−1 as we did during training. For each patient, we first look at each of their
n = 100 24 hour Monte Carlo simulations. If the patient experienced the outcome of interest
from time steps k to 24, which was determined by looking at the indicator variable in the
trajectory like in the labelling of the 24 hour case, we label the simulation with probability
1. Otherwise, if the patient had ended their stay after time step k and did not experience
the outcome during their stay, we labelled the simulation with probability 0. We input all
other trajectories to our model to obtain a prediction in the range [0, 1].

This gave us n = 100 72 hour predicted probabilities hj(L̄24,iĀ24,iŶ
0
i . . . Ŷ j−1

i ) = pji for
each outcome of interest. We then took the average of the predicted probabilties to get a
final predicted probability p̄ =

∑n
i=1 p

j
i

n
per patient. These predicted probabilities were then

compared against the patient’s 72 hour ground truth labels to calculate the final AUC.
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Chapter 6

Results of Predictive Check of G-Net on
Sepsis Cohort

In this section, we will present the results of the predictive check of our G-Net models on the
sepsis cohort. The predictive check will serve as an evaluation of our model’s capabilities and
give context to the counterfactual experiments due to the lack of ground truth for quantitative
evaluation on counterfactual predictions. It will also allow us to compare different model
architectures to select the highest performer for our counterfactual setting. We start with
the 24-hour qualitative and quantitative results, then finish with the 72 hour results.

6.1 24 Hour Population-level Trajectories

We first qualitatively assessed our results via population-level trajectory plots, a few of which
are displayed in Figure 6.1. The trajectories were generated by aggregating all n = 100 Monte
Carlo simulations per patient in our test set (873 total patients). To qualitatively evaluate
our model, we visually compared our predicted population-level average trajectories against
the population-level average ground truth trajectories. If our predictions are accurate on the
individual level, we would expect the population-level trajectories to be similar as well.

We caution that while interpreting these plots, the reader should keep in mind that the
trajectories have variable length depending on if a patient experienced death or release, thus
the number of simulations averaged across is not necessarily the same across every time step.
This is particularly true when using these results to frame the counterfactual results that
will be presented in Chapter 7.

We see that the general trends of the true population average are well-reflected in the
predicted population average, however as the time step increases, the models’ predictions
tend to deviate more from the ground truth. This is to be expected due to the compounding
error that is accumulated throughout time. Additionally, the RNN-style architectures seem
to perform better than the Linear model for many of the covariates, which is reflected in the
results from the 24 hour RMSE, which will be presented in section 6.2.
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Figure 6.1: Comparison of simulated population-level trajectories under different architectures of
G-Net compared to the ground truth population-level trajectories at k = 2. The Death and Release
plots are cumulative.
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6.2 24 Hour Individual-level RMSE

We now present the 24 hour individual level RMSE results, which helps us evaluate each
model’s ability to predict the continuous covariates. Table 6.1 presents the RMSE calculation
done, with the padding strategy described in Section 4.4.1. This means the numerical value
of the RMSE results evaluate both the model’s prediction to predict continuous covariates
similarly to the ground truth and over- and under-prediction, which is difficult to tease apart
without further analysis.

Table 6.1: 24-hour individual-level RMSE, evaluating the performance of various G-Net
architectures in predicting the 24-hour patient continuous covariate trajectories. Predictions
start at time k and is conditioned on all covariates from time step 1 to k − 1, as well as
the previous covariates predicted in the arbitrarily imposed prediction order. Time steps
post-release are padded with population average, and time steps post-death are padded with
either the population minimum or 0.0001 for covariates that are log-normalized. This table
appears in [20].

Model k = 2 k = 4 k = 6 k = 8 k = 10
Linear 5.949 6.232 6.792 6.570 6.584
GRU 5.663 6.226 6.211 6.373 6.699
RNN 5.842 6.226 6.053 6.223 6.490

Hybrid 5.758 5.999 6.220 6.269 6.642
LSTM 5.864 6.286 5.921 5.765 6.439

Although the RMSE values are not standardized against any external metric and therefore
do not carry any inherent meaning, we can compare amongst the RMSEs per model to
evaluate model performance. In particular, we notice that the Linear model does not out-
perform its recurrent architecture counterparts for any of the delay times. This can be
attributed to the RNN-style models’ architecture that contains a hidden state that can
capture temporal dependencies. In our setting, where each Lj

t is dependent on L̄t−1Āt−1,
the capability to store and use previously seen information would lead to more accurate
predictions. Additionally, due to the more complex structure of the LSTM, we expect the
LSTM to be able to capture more complex dependencies in the data. However, due to its
complexity, it also may need to see more data before it becomes advantageous over the other
models, explaining why it performs better for the larger values of k. Overall, the LSTM
performs the best under the RMSE metric.

6.3 24 Hour Outcome AUC-ROC

Next, we will present the 24 hour AUC results, which evaluates the model’s predictive
capabilities for the binary outcome indicator variables. We note that this evaluation is
not as fine-grained as the RMSE calculations because the predicted label is determined by
whether the model predicts an outcome of interest at all from time steps k to 24, rather
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than a per-time-step evaluation, as the RMSE does. To frame our findings, we first present
an overview of the 24-hour test population used in our evaluations in Table 6.2.

Table 6.2: Size of set of patients Nc contributing to the 24 hour AUC calculations for each
delay k, as well as proportion of contributing patients experiencing outcomes of interest.
1Refers to release from Hospital.

k Nc Edema MV Diuretics Dialysis Release1 Death
2 873 30.24% 38.72% 15.35% 1.95% 11.45% 2.29%
6 873 29.67% 35.97% 13.52% 1.83% 11.45% 2.29%
8 870 29.77% 33.79% 12.76% 1.84% 11.26% 2.18%
10 868 29.72% 32.03% 12.56% 1.73% 11.06% 2.19%

Table 6.3: Predictive Check. Performance of G-Net in predicting clinical outcomes within
the first 24 hours of ICU admission at varying simulation start times. Values reported are
AUCs and 95% confidence intervals produced using DeLong’s method [17]. 1Refers to release
from Hospital.

Model k Edema MV Diuretics Dialysis Release1 Death
Linear 2 0.85 (0.82, 0.88) 0.89 (0.87, 0.92) 0.74 (0.69, 0.79) 0.78 (0.67, 0.90) 0.67 (0.61, 0.73) 0.49 (0.37, 0.62)

GRU 2 0.86 (0.83, 0.89) 0.91 (0.88, 0.93) 0.77 (0.73, 0.82) 0.88 (0.79, 0.98) 0.67 (0.61, 0.73) 0.68 (0.55, 0.81)

RNN 2 0.85 (0.82, 0.88) 0.91 (0.89, 0.93) 0.75 (0.70, 0.8) 0.93 (0.86, 1.00) 0.66 (0.6, 0.72) 0.61 (0.48, 0.75)

Hybrid 2 0.85 (0.82, 0.88) 0.90 (0.88, 0.92) 0.78 (0.74, 0.83) 0.90 (0.81, 0.98) 0.67 (0.61, 0.74) 0.66 (0.52, 0.79)

LSTM 2 0.86 (0.84, 0.89) 0.90 (0.88, 0.92) 0.82 (0.77, 0.86) 0.92 (0.84, 1.00) 0.66 (0.6, 0.72) 0.74 (0.62, 0.87)

Linear 6 0.89 (0.86, 0.91) 0.93 (0.91, 0.95) 0.72 (0.66, 0.77) 0.87 (0.78, 0.97) 0.68 (0.62, 0.74) 0.45 (0.33, 0.57)

GRU 6 0.90 (0.87, 0.92) 0.94 (0.92, 0.96) 0.82 (0.78, 0.87) 0.92 (0.85, 1.00) 0.67 (0.61, 0.73) 0.65 (0.51, 0.78)

RNN 6 0.88 (0.86, 0.91) 0.94 (0.92, 0.96) 0.78 (0.74, 0.83) 0.96 (0.90, 1.00) 0.64 (0.58, 0.7) 0.64 (0.51, 0.77)

Hybrid 6 0.88 (0.85, 0.91) 0.94 (0.92, 0.96) 0.81 (0.77, 0.86) 0.95 (0.89, 1.00) 0.67 (0.61, 0.73) 0.68 (0.55, 0.81)

LSTM 6 0.89 (0.87, 0.92) 0.95 (0.94, 0.97) 0.81 (0.76, 0.86) 0.95 (0.89, 1.00) 0.65 (0.59, 0.71) 0.85 (0.74, 0.96)

Linear 8 0.91 (0.89, 0.94) 0.93 (0.91, 0.95) 0.73 (0.68, 0.79) 0.97 (0.91, 1.00) 0.70 (0.64, 0.76) 0.38 (0.26, 0.5)

GRU 8 0.89 (0.87, 0.92) 0.95 (0.93, 0.97) 0.79 (0.74, 0.84) 0.92 (0.83, 1.00) 0.70 (0.64, 0.76) 0.69 (0.56, 0.82)

RNN 8 0.91 (0.88, 0.93) 0.95 (0.93, 0.97) 0.78 (0.72, 0.83) 0.98 (0.93, 1.00) 0.70 (0.64, 0.76) 0.68 (0.55, 0.82)

Hybrid 8 0.90 (0.87, 0.92) 0.95 (0.93, 0.97) 0.79 (0.74, 0.84) 0.95 (0.88, 1.00) 0.70 (0.63, 0.76) 0.65 (0.52, 0.79)

LSTM 8 0.91 (0.88, 0.93) 0.96 (0.94, 0.97) 0.80 (0.75, 0.85) 0.90 (0.82, 0.99) 0.70 (0.64, 0.76) 0.78 (0.66, 0.91)

Linear 10 0.92 (0.9, 0.94) 0.94 (0.92, 0.96) 0.75 (0.69, 0.8) 0.99 (0.95, 1.00) 0.71 (0.65, 0.77) 0.56 (0.43, 0.7)

GRU 10 0.92 (0.9, 0.95) 0.95 (0.93, 0.97) 0.80 (0.75, 0.85) 0.92 (0.83, 1.00) 0.72 (0.66, 0.78) 0.67 (0.54, 0.81)

RNN 10 0.92 (0.89, 0.94) 0.95 (0.94, 0.97) 0.78 (0.73, 0.83) 0.96 (0.90, 1.00) 0.71 (0.65, 0.77) 0.78 (0.65, 0.90)

Hybrid 10 0.92 (0.90, 0.95) 0.95 (0.93, 0.96) 0.81 (0.76, 0.86) 0.95 (0.88, 1.00) 0.70 (0.64, 0.76) 0.75 (0.62, 0.87)

LSTM 10 0.93 (0.91, 0.95) 0.95 (0.93, 0.97) 0.82 (0.77, 0.87) 0.98 (0.94, 1.00) 0.68 (0.62, 0.75) 0.69 (0.56, 0.83)

According to Table 6.3, we see that G-Net implemented with Linear tends to be outper-
formed by its RNN-structure counterparts, which is expected as mentioned in the previous
section, and the LSTM implementation performs the best overall. We also note that as the
delay increases, the AUCs tend to increase as well. This can be attributed to the additional
ground truth we are conditioning on as we increase k.

We also see a relatively lower performance for in-hospital mortality and release from
ICU. This could be due to the final nature of the two outcomes. The other outcomes are
potentially reoccurring, and oftentimes if a patient experiences it earlier on in their ICU stay,
they are more likely to experience it in the future as well. Our model may have observed
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and learned this from the training data distribution. On the other hand, death and release
occur only once, and there are likely more nuances in the covariate and treatment data to
predict either death or release, making it more difficult for our model to predict.

6.4 72 Hour Outcome AUC-ROC

We now examine the 72 hour outcome AUC results, which evaluates our model’s ability
to predict whether a patient will experience outcomes of interest further down the line.
Potential error could stem from two sources - the error in the simulated trajectories as well
as the error for the 72 hour binary classifier. Thus, as a reference, we also include the
AUC for the predictions when the ground truth trajectories are fed into our binary classifier.
We ask the reader to keep in mind when interpreting the ground truth 72 hour outcome
prediction performance that if the outcome occurred from time steps k to 24, the prediction
is not reliant on the binary classifier and may be artificially inflating the performance. Thus
they are presented and intended to be used as reference only.

We first present some population statistics in Table 6.4 to frame our results.

Table 6.4: Size of set of patients contributing to the 72 hour AUC calculations for each
outcome at each delay k, as well as proportion of contributing patients experiencing each
outcome. 1Refers to release from Hospital. 2Refers to In-Hospital Mortality.

k Edema MV Diuretics Dialysis Release1 Death2

2 (873, 43.64%) (873, 44.90%) (873, 27.38%) (873, 4.70%) (873, 84.77%) (873, 15.23%)
6 (666, 26.13%) (561, 14.26%) (829, 23.40%) (864, 4.04%) (873, 84.77%) (873, 15.23%)
8 (649, 24.35%) (548, 12.41%) (813, 22.14%) (861, 3.48%) (870, 84.75%) (870, 15.25%)
10 (632, 22.63%) (536, 10.63%) (803, 21.42%) (856, 3.15%) (868, 84.83%) (868, 84.83%)

Table 6.5: Performance of G-Net in predicting clinical outcomes within the first 72 hours of
ICU admission at varying simulation start times. Model refers to the G-Net implementation
that generated the 24 hour trajectories used for labelling and input to the 72 hour binary
classifier. Values reported are AUCs and 95% confidence intervals produced using DeLong’s
method [17]. 1Refers to release from Hospital. 2Refers to In-Hospital Mortality. 3Ground
truth trajectory as input to 72 hour outcome classifier model.

Model k Edema MV Diuretics Dialysis Release1 Death2

Actual3 6 0.87 (0.84, 0.91) 0.92 (0.88, 0.96) 0.87 (0.83, 0.90) 0.97 (0.93, 1.00) 0.87 (0.84, 0.89) 0.83 (0.79, 0.88)

Linear 6 0.67 (0.62, 0.72) 0.71 (0.64, 0.77) 0.67 (0.62, 0.72) 0.87 (0.80, 0.95) 0.76 ((0.72, 0.79) 0.75 ((0.71, 0.80)

GRU 6 0.68 (0.63, 0.73) 0.67 (0.60, 0.74) 0.71 (0.66, 0.75) 0.89 (0.82, 0.96) 0.74 ((0.70, 0.78) 0.74 ((0.69, 0.79)

RNN 6 0.65 (0.60, 0.70) 0.71 (0.64, 0.78) 0.70 (0.65, 0.74) 0.90 (0.83, 0.97) 0.75 ((0.72, 0.79) 0.75 ((0.70, 0.80)

Hybrid 6 0.68 (0.63, 0.73) 0.68 (0.61, 0.74) 0.71 (0.66, 0.75) 0.91 (0.84, 0.97) 0.74 ((0.70, 0.78) 0.73 ((0.68, 0.78)

LSTM 6 0.67 (0.62, 0.72) 0.71 (0.64, 0.77) 0.72 (0.68, 0.76) 0.91 (0.84, 0.98) 0.74 ((0.70, 0.78) 0.74 ((0.69, 0.79)

Actual3 8 0.86 (0.82, 0.90) 0.9 (0.86, 0.95) 0.86 (0.82, 0.89) 0.95 (0.90, 1.00) 0.88 (0.85, 0.90) 0.84 (0.79, 0.88)

Linear 8 0.69 (0.64, 0.74) 0.65 (0.58, 0.72) 0.67 (0.62, 0.72) 0.90 (0.83, 0.97) 0.78 ((0.75, 0.82) 0.78 ((0.74, 0.83)

GRU 8 0.67 (0.62, 0.72) 0.72 (0.65, 0.79) 0.71 (0.66, 0.76) 0.91 (0.84, 0.98) 0.76 ((0.72, 0.80) 0.76 ((0.71, 0.81)

RNN 8 0.67 (0.62, 0.72) 0.72 (0.65, 0.79) 0.68 (0.63, 0.73) 0.90 (0.83, 0.98) 0.77 ((0.74, 0.81) 0.78 ((0.73, 0.83)

Hybrid 8 0.69 (0.64, 0.74) 0.71 (0.64, 0.79) 0.71 (0.66, 0.75) 0.92 (0.85, 0.99) 0.78 ((0.74, 0.81) 0.78 ((0.73, 0.83)

LSTM 8 0.69 (0.64, 0.74) 0.73 (0.66, 0.8) 0.72 (0.67, 0.77) 0.92 (0.86, 0.99) 0.77 ((0.74, 0.81) 0.76 ((0.71, 0.81)
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Overall, the LSTM performed the best for generating trajectories that accurately predict
72 hour outcomes. On average, the AUC scores for the 72 hour outcomes are lower than those
of the 24 hour outcomes. Two factors could be at play here. First, there is compounding error
- on top of the compounding error that the 24 hour outcomes have, the 72 hour outcome
predictions have an additional source of error from the binary classifiers. In addition, in
the 24 hour case, fewer patients were excluded from the calculations and the ground truth
proportions are much closer to the population-level proportions compared to the 72 hour case,
and the resulting AUCs are much higher. Additionally, if we consider the dialysis outcome,
we note that much fewer patients were excluded from the calculations at the 72 hour level
compared to the other outcomes and the proportion remains similar to the population-level
proportion. In accordance, the AUC for dialysis is much more comparable to the 24 hour
performance. Thus the performance evaluation for the 72 hour case should be considered in
the context of the population used for evaluation.
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Chapter 7

G-Net for Counterfactual Prediction

Given the promising results obtained from the predictive check, we proceed to estimate coun-
terfactual covariate trajectories. This chapter will first describe the counterfactual strategies
we used in our experiments then showcase our results via population-level trajectories and
a case study of interest.

7.1 Counterfactual Strategies of Interest

A common initial treatment for sepsis patients is the administration of fluids to elevate blood
pressure to normal levels in the patient. However, excess fluids can lead to adverse outcomes
as a result of fluid overload, such as pulmonary edema. Clinicians will often have to make
the decision of how much fluid to give to the patient, as well as decide how to balance fluids
with vasopressors when deciding what treatment regime to administer to the patient. Thus
we designed counterfactual strategies inspired by the CLOVERS [4] clinical trials.

Figure 7.1: Decision flow chart for our counterfactual fluid-conservative treatment regimes.

For all our fluid strategies of interest, we used a MAP threshold of 65mmHg and a 1L
bolus every time bolus was administered. We define a patient being fluid overloaded if
the patient has pulmonary edema, is on dialysis, or is on diuretics but not on mechanical
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ventilation. We additionally stipulated that we would only administer bolus, so we don’t
administer maintenance fluids at all, with the exception of the fluid liberal strategy. For all
counterfactual strategies, vasopressor administration was modeled as a confounding variable,
and not explicitly controlled as part of our CF strategies.

We chose to use the LSTM implementation of G-Net to simulate our counterfactual
covariate trajectories. We simulated trajectories for the testing set patients under two fluid-
conservative strategies and one fluid-liberal strategy. The fluid-conservative strategies fol-
lowed the strategy described above with Fluid Cap values of 3L and 5L. The Fluid Liberal
strategy similarly implemented the strategy described with no Fluid Cap with the exception
of administering maintenance fluids as predicted under the predicted care.

7.2 24 Hour Population Trajectories

We present the simulated population-level trajectories for covariates in Figure 7.2 to compare
the population-level predictions for the three strategies. n = 5 Monte Carlo simulations were
produced for each patient in the test set (873 patients total). Each counterfactual strategy
was initiated at time step 1 and covariate predictions started at time step 2. An average
was taken across all Monte Carlo simulations for all patients to obtain the population-level
trajectories shown.

Due to our lack of ground truth in counterfactual prediction for real-world data, the
main criteria for G-Net assessment for counterfactual prediction is whether the resulting
predictions follow clinical intuition and can be physiologically explained. We notice that
under more fluid-liberal strategies, the bolus volume, urine output, and systolic blood pres-
sure tends to increase, which aligns with physiological expectations. We additionally observe
lower levels of predicted creatinine and lactate with more fluid-liberal strategies, which align
with our expectations. We additionally note that the trajectories presented in Figure 7.2
should not be interpreted as evaluation of treatment effects. Similar to the observational
check, due to early end of stay due to death or release, the length of each simulated trajec-
tory is variable, and the number of trajectories factoring into the average population does
not remain consistent throughout all 24 time steps.
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Figure 7.2: Comparison of simulated population-level trajectories under different simulated coun-
terfactual strategies using the LSTM model at k = 2.
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7.3 Sample Case Study

We also examined our model’s performance on an individual case through a case study. Many
times, clinicians may wonder what would have happened to a patient if a different treatment
regime was administered, so we selected a clinically interesting case study to demonstrate a
potential use case.

Case Study Patient Introduction

Our patient of interest is a 75 year old female with a history of congestive heart failure
(CHF), admitted to MICU/SICU with 4L of pre-ICU fluids. Within 4 hours after ICU
admission, patient had developed a hypotensive episode (with mean arterial blood pressure
< 60mmHg). The counterfactual strategies were applied starting at the end of hour 5 after
ICU admission and covariate simulation was initiated for hour 6 after ICU admission.

Case Study Experiment Details

We primarily wanted to contrast the predicted counterfactual outcomes under a fluid conser-
vative compared to fluid liberal regime. We chose the fluid conservative regime with Fluid
Cap 3L and Fluid Liberal strategies presented in the previous section. As before, we choose
the LSTM version of G-Net, due to its higher performance during the observational checks,
to the task of individual-level counterfactual prediction for an individual in our test set.

Case Study Results

Figure 7.3 indicates a higher volume of bolus administered to the patient under the fluid
liberal strategy compared to fluid conservative strategy. Furthermore, we see an increase
in predicted probability of the patient being put on mechanical ventilation under the fluid
liberal strategy compared to the fluid conservative strategy. This aligns with signs of fluid
overload and excess fluids in the body, which is expected of a regime that administered more
fluids compared to the fluid conservative strategy.

We can see that the trends from Figure 7.3 are clinically valid. For example, fluid liberal
strategy is predicted to have lower creatinine concentration and slightly higher urine output
than its fluid conservative counterpart. We additionally compare the predicted probability
of 72 hour outcomes the patient will experience under the two regimes.

Figure 7.4 displays the predicted probabilities of this patient developing various adverse
clinical outcomes under the observational, conservative and liberal fluid strategies respec-
tively. We note that the patient is predicted to have a higher probability of experiencing
most of the adverse outcomes of interest associated with fluid overload under the fluid liberal
strategy compared to the conservative strategy.

We note here that the probabilities are not well calibrated due to the lack of calibration
in our 72 hour binary classifiers. Therefore we focus on the difference between the two pre-
dicted values rather than the actual predicted value and see that the fluid liberal strategy
consistently predicts higher probability of experience fluid overload outcomes, which is clini-
cally consistent. However, as mentioned before, these results are not to be taken to measure
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treatment effects due to lack of uncertainty quantification, and rather is to showcase an
application of our work.

Figure 7.3: Comparison of predicted covariate trajectories for select patient under fluid liberal and
fluid conservative counterfactual regimes. Dotted lines indicate cumulative plots.
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Figure 7.4: Predicted probability of the patient of interest experiencing adverse outcomes associated
with fluid overload within 72 hours of ICU admission under the observational, fluid liberal, and fluid
conservative regimes.
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Chapter 8

Conclusion

Determining optimal care for sepsis patients is difficult due to the variety in response to
the same treatment regime and to the potential adverse outcomes that can result from
the treatment itself. In the real world, clinicians can only observe the set of outcomes that
actually occurred, but it would be useful to be able to predict the outcomes of their choices of
treatment before choosing one to administer. G-Net is a deep sequential learning framework
based of g-computation that tackles this task of counterfactual prediction for sepsis patients.
However, past work has primarily evaluated G-Net on population-level treatment effects.

This thesis focuses on personalized treatment response prediction under dynamic and
time-varying treatment strategies by building on G-Net. First, we introduced the GRU
and RNN implementation of G-Net and presented their performances against the GLM and
LSTM implementations, and additionally presented a Hybrid version. We then evaluated the
models in the predictive check, primarily focusing on assessment on the individual level. We
find that the LSTM implementation seemed to perform the best on average – it performed
the best for RMSE on most of the delay k settings and for the 24 hour AUCs as well. It also
generated trajectories that resulted in highest 72 hour AUC for the majority of the outcomes
of interest along different delay times.

After selecting the optimal performer based on the predictive check results, we apply the
LSTM implementation on counterfactual prediction. We chose to adapt sepsis treatment
strategies that appeared in recent clinical trials to fit our setting under modelling limitations.
We found that our model’s predictions were physiologically plausible and aligned with clinical
intuition. However, a few limitations and open issues remain present in our current work.

8.1 Limitations

One open issue lies in the RMSE calculation. Because we are working with real world data
in a problem setting that results in variable-length covariate trajectories, we need to adjust
the RMSE calculation to account for over- and under-prediction of trajectories, i.e. when
the predicted and the actual trajectories have different lengths. In our study, we choose to
determine a standard length for all trajectories, then pad any missing values using a padded
value that was chosen ad-hoc. Thus the current RMSE measures both error in predicting
the continuous variables and over and under-prediction of the death or release of a patient.
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More sensitivity analysis should be done to tease apart the respective contributions to the
final RMSE scores.

Additionally, for the 72 hour AUC assessment, there was a dip in performance with
respect to delay time k. As mentioned prior, this is most likely due to the inconsistent
set of patients that factor into our evaluation, particularly with respect to the distribution
of patients who ultimately experience the outcome in the set of patients factoring into the
evaluation. A more stable and concise evaluation technique might be more useful and allow
us to draw more concrete conclusions.

Additionally, more work can be done to refine the Hybrid model. In theory, because we
selected the model with the best validation performance for each box, we expected better
results from the Hybrid model. That’s not to say the model with the best validation score
will definitely perform best on the test set, but there may be better ways to produce a Hybrid
model, such as including different combinations of models for the boxes during the validation
stage.

Finally, there are many limitations regarding the counterfactual analysis. The first lim-
itation is in the lack of uncertainty quantification, which can most likely be done using
variational dropout or some bootstrapping techniques. This would be able to provide more
meaningful results and potentially allow for us to draw more conclusions about the perfor-
mance of our model on counterfactual prediction. Additionally, as mentioned previously,
there may be confounding in the data itself. Specifically, the data that is measured and
presented in the MIMIC IV dataset [5] may not have sufficiently granular data enough to
test certain counterfactual regimes.

8.2 Future Works

This thesis used several deep sequential models to implement G-Net with, however they are
by no means the current state-of-the-art models. More complex sequential models, such as
Transformers and LLMs, have surfaced with recent works and are a great fit for the G-Net
framework.

It would also be interesting to use representation learning in our framework to investigate
if subgroups of people may react similarly to treatment regimes. This could be further
extended to discover optimal treatment regimes for subgroups of patients, which would be
clinically relevant as well.

8.3 Final Words

We hope that the individual-level evaluations of G-Net presented in this thesis showcase
a clinically-relevant use case that will be able to aid clinicians in their choice of care and
ultimately improve the outcomes of sepsis patients as a whole. This thesis focused on ap-
plying G-Net to counterfactual prediction for sepsis patients, but the flexibility of the G-Net
framework makes its potential application space much broader.
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Appendix A

Appendix

A.1 Tables

Table A.1: MIMIC static variables. All variables were used as inputs to our models.

Variable Name Variable Type Units
Age Continuous years

Gender Binary N/A
Pre-ICU Fluid Amount Continuous mL

Elixhauser Score Continuous N/A
End Stage Renal Failure Binary N/A
Congestive Heart Failure Binary N/A
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Table A.2: MIMIC time-varying variables. All variables were used as inputs to our models,
and boluses and vasopressors were also intervention variables. *Refers to maintenance fluids
(not an intervention).

Variable Name Variable Type Units
Heart Rate Continuous beats/min

Diastolic Blood Pressure Continuous mmHg
Systolic Blood Pressure Continuous mmHg
Mean Blood Pressure Continuous mmHg

Minimum Mean Blood Pressure Continuous mmHg
Minimum Change in Mean Blood Pressure from Baseline Continuous mmHg

Minimum Mean Blood Pressure from Baseline Continuous mmHg
Minimum Change in Mean Blood Pressure from Previous Continuous mmHg

Temperature Continuous C
SOFA Score Treated as Continuous N/A

Change in SOFA Score from Baseline Treated as Continuous N/A
Change in SOFA Score from Previous Treated as Continuous N/A

Platelet Continuous counts/109L
Hemoglobin Continuous g/dL

Calcium Continuous mg/dL
BUN Continuous mmol/L

Creatinine Continuous mg/dL
Bicarbonate Continuous mmol/L

Lactate Continuous mmol/L
O2 Requirement Level Continuous N/A

Change in O2 from Baseline Continuous N/A
Change in O2 from Previous Continuous N/A

pO2 Continuous mmHg
sO2 Continuous %
spO2 Continuous %
pCO2 Continuous mmHg

Total CO2 Continuous mEq/L
pH Continuous Numerical[1,14]

Base excess Continuous mmol/L
Weight Continuous kgs

Change in Weight Continuous kgs
Respiratory Rate Continuous breaths/min
Fluid Volume* Continuous mL
Urine Output Continuous mL

Cumulative Edema Binary N/A
Pulmonary Edema Indicator Binary N/A

Diuretics Indicator Binary N/A
Dialysis Indicator Binary N/A

Mechanical Ventilation Indicator Binary N/A
Vasopressor Indicator Binary N/A

Bolus Volume Continuous mL
In-Hospital Mortality Indicator Binary N/A

Release Indicator Binary N/A
Cumulative Fluids Continuous mL

Fluid Balance in ICU Continuous mL
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Table A.3: Chosen architecture for each box in the final Hybrid model based on validation score.

Variable Box Architecture
Heart Rate LSTM

Diastolic Blood Pressure GRU
Systolic Blood Pressure GRU
Mean Blood Pressure GRU

Minimum Mean Blood Pressure LSTM
Temperature GRU
SOFA Score GRU

Platelet GLM
Hemoglobin GLM

Calcium GRU
BUN LSTM

Creatinine GRU
Bicarbonate GRU

Lactate LSTM
O2 Requirement Level GRU

pO2 LSTM
sO2 GRU
spO2 LSTM
pCO2 GLM

Total CO2 GRU
pH LSTM

Base excess GLM
Weight GLM

Respiratory Rate GRU
Vasopressor Amount LSTM

Maintenance Fluid Volume GRU
Urine Output GRU

Edema Indicator GLM
Diuretic Indicator GRU
Dialysis Indicator GRU

Mechanical Ventilation Indicator GRU
Vasopressor Indicator GRU

Bolus Volume GRU
Death Indicator GRU
Release Indicator GRU
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Table A.4: G-Net Tuning Hyperparameters.

Hyperparameter LSTM Linear GRU RNN
Epoch 100 100 100 100

Stop Window 10 10 10 10
Stop tolerance 0.001 0.001 0.001 0.001

Batch size 32 32 32 32
Hidden dimension [32, 64] N/A [32, 64] [32, 64]
Number of Layers [2, 3] N/A [2, 3] [2, 3]

Learning rate 0.001 0.001 0.001 0.001
Weight decay (L2 penalty) 1e-6 1e-6 1e-6 1e-6

Dropout Probability 0.1 0.0 0.1 0.1

Table A.5: Binary Outcome Classifier Tuning Hyperparameters.

Hyperparameter Range
Epoch 50

Stop Window 5
Stop tolerance [0.001, 0.0001]

Batch size 64
Hidden dimension [32, 64]
Number of Layers [2, 3]

Learning rate 0.001
Weight decay (L2 penalty) [1e-6, 1e-5]

Dropout Probability 0.0

50
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