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ABSTRACT

A binary decision tree is a highly interpretable machine learning model, as humans can
easily understand how a prediction is made by answering a series of binary questions. Earlier
work has provided a powerful framework for constructing optimal decision trees by utilizing
multiple random warm starts and local search to iteratively improve each warm start until
a locally optimal decision tree is found. However, local search does not guarantee global
optimality if the number of random warm starts does not exceed the number of local minima.
Hence, we propose to incorporate simulated annealing into decision tree construction, as
some worse transformations could lead to a better final model. We focus on three problem
domains: classification, prescriptive and survival analysis to produce Optimal Classification
Trees with Simulated Annealing (OCT-SA), Optimal Policy Tree with Simulated Annealing
(OPT-SA), and Optimal Survival Tree with Simulated Annealing (OST-SA). This approach
further improves on OCT, OPT, and OST by probabilistically allowing a tree to move to a
tree with a worse objective value. A challenge in designing OCT-SA, OPT-SA, and OST-SA
is to define an appropriate simulated annealing cooling schedule that leads to a global optimal
solution in practical runtime. We evaluate OCT-SA, OPT-SA, and OST-SA on widely-used
benchmarking real-world datasets. The evaluation metrics are out-of-sample performances
over unseen test datasets: Gini impurity scores for classification, mean rewards scores for
prescriptive, and local full likelihood score for survival analysis. The results demonstrate
that our simulated annealing framework benefits the decision trees construction process.

Thesis supervisor: Dimitris Bertsimas
Title: Boeing Professor of Operations Research
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Chapter 1

Introduction

1.1 Optimal Decision Trees with Local Search

Interpretability is a key factor for users to decide whether or not to adopt a particular

machine learning model. It is unlikely for humans to trust a black-box model as there is no

rationale to explain why it makes such predictions. A binary decision tree is one of the most

interpretable machine learning models because it replicates how a person usually solves a

problem by asking a set of binary questions. Each binary question is to ask whether or not

a particular feature has a value less than a cutoff. If the answer is yes, the user navigates

to the left subtree and reaches another binary question at another branch node. If the

answer is no, the navigation will be to the right subtree. Interpretable AI [51] has provided

state-of-the-art binary decision tree construction framework in classification, prescriptive,

and survival analysis including Optimal Classification Tree (OCT) by Bertsimas and Dunn

[10, 11], Optimal Policy Tree (OPT) by Amram et al. [4], and Optimal Survival Tree (OST)

by Bertsimas et al. [16]. Even though OCT, OPT, and OST outperform other popular

decision tree algorithms, they use local search which does not guarantee global optimality.
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1.1.1 Optimal Classification Trees (OCT)

In order to overcome the greedy nature of CART [69], Bertsimas and Dunn [10] developed

OCT by utilizing local search [54]. CART is grown using a top-down approach [32]. It

starts with a single node denoted as a root node and each split is then selected as a feature

and cutoff value that yield the best objective value. For classification problems, typical

objective values include misclassification, Gini impurity, and entropy score [49, 91]. This

greedy approach in CART construction can result in a suboptimal tree, because an early

bad split which CART does not select could lead to a better subsequent split further down

in the tree. By utilizing local search, OCT manages to resolve this issue in CART caused by

the top-down approach.

With the aim to allow an early bad split which may lead to a better split in a classification

tree, OCT starts with multiple random warm start trees [5]. To construct each warm start in

OCT, each best split is determined from the random √p features where p is a total number

of features in a dataset. As illustrated by Bertsimas and Dunn [11], √p features is the

optimal number of features found from their empirical experiments to determine a split of

each random warm start.

After initializing a classification tree with a random warm start, local search optimizes

over all nodes in random order in each iteration until no improvement can be made. There

are three options to optimize each node: updating the split by searching through all available

features and cutoffs, replacing with the left subtree, and replacing with the right subtree.

The option with the best objective value is selected. In order to optimize a leaf node, it

could also spawn its left child and right child, which causes the tree to grow with more

nodes. On the other hand, replacing a node to be optimized with its left or right subtree is

similar to pruning a tree. If any iteration fails to further optimize any node in the tree or

two consecutive iterations have the same objective value, the algorithm terminates for that

warm start. In order to avoid any local minima, OCT has multiple random warm starts (100
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trees by default) and claims that a global optimal solution could be found if the number

of random warm starts exceeds the number of local minima. The final tree with the best

objective values among all warm starts is the OCT.

As demonstrated in Bertsimas and Dunn [11], OCT successfully improves over CART

on mean out-of-sample accuracy across all 61 real-world datasets from the UCI machine

learning repository. From maximum depth 1 to 10, OCT outperforms CART at all depths

with approximately 1% to 2% improvement and the improvement is proven to be statistically

significant. In addition, OCT at only maximum depth 4 could achieve performance at a

similar level as CART at depth 10, which emphasizes the better ability of OCT to capture

significant splits for classification trees.

Gini impurity score is one type of widely-used objective values for a classification tree

[73]. At each leaf node j, we calculate the Gini impurity score ginij as shown in Equation

(1.1) where K is the total number of classes and prob(i) is a probability that a sample belongs

to class i:

ginij =
K∑
i=1

prob(i)(1− prob(i)). (1.1)

Then we calculate the weighted Gini impurity score at each leaf node in Equation (1.2) by

weighting the score over the number of samples in each leaf node. The |nodej| is the number

of samples at the leaf node j and n is the number of samples in the entire classification tree:

ginij,weighted =
|nodej|

n
ginij. (1.2)

Finally, we sum across all weighted Gini impurity scores at each leaf node and adjust with

the complexity of the tree to get a Gini impurity score of the entire classification tree. The

calculation is as shown in Equation (1.3) where L is the number of all leaf nodes, γ is

complexity penalty as determined by hyperparameter tuning, and B is complexity of the
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tree equals the number of branching nodes:

ginitree =
L∑

j=1

ginij,weighted + γB. (1.3)

1.1.2 Optimal Policy Trees (OPT)

OPT construction resembles that of OCT, so local search also limits OPT from reaching a

global optimal solution. Similar to the OCT framework, OPT begins with random warm

start solutions (100 random warm starts by default). At each iteration, OPT optimizes every

node in a random order until no improvement can be made for two consecutive iterations.

There are three options to optimize each node: updating a parallel split, replacing a split

node with its left subtree, or replacing a split node with its right subtree. OPT selects the

option with the best objective value.

One of the main differences between OPT and OCT is objective value calculation. OCT

uses either Gini impurity, misclassification, or entropy score as its objective function, which

are the typical evaluations for classification problems. At each leaf node of OCT, OCT

predicts a class which gives either the optimal Gini impurity, misclassification, or entropy

score. In contrast, OPT optimizes over rewards or outcomes which are specific to each

problem. At each leaf node of OPT, OPT predicts a treatment which gives the optimal

reward.

If not all treatment options were prescribed as observed treatments for each data point, a

counterfactual model is constructed to predict counterfactual outcomes [68]. OPT provides

Random Forest [18] and XGBoost [21] as options for counterfactual models. These coun-

terfactual models can utilize either the direct method or the doubly robust method [8] from

Interpretable AI [51] software to estimate rewards as shown in Equations (1.4) and (1.5):

Γi(t) = ft(xi). (1.4)

28



Γi(t) = ft(xi) + I{Ti = t} · 1

p(xi, t)
(yi − ft(xi)), (1.5)

where

• Γi(t) denotes the estimated rewards of the data point i under treatment t

• ft(xi) denotes the model for each treatment t to predict y as a function of x

• xi denotes the vector of observed features of the data point i

• I{Ti = t} denotes the indicator function (1 if Ti = t is true and 0 otherwise)

• Ti denotes the observed treatment of the data point i

• p(x, t) denotes the model to predict propensity scores [7] as the probabilities that a

sample with features x is assigned treatment t

• yi denotes the observed outcome of the data point i (corresponding to treatment Ti)

The propensity score is what makes the doubly robust method different from the direct

method. As you compare Equation (1.4) with Equation (1.5), the term involving propensity

only presents in Equation (1.5) which corresponds to the doubly robust method. The doubly

robust method utilizes propensity scores to remove bias from treatment assignments so that

the treatment assignments resemble that of the randomized control trials [86].

1.1.3 Optimal Survival Trees (OST)

OST construction resembles that of OCT so local search also limits OST from reaching a

global optimal solution. Similar to OCT framework, OST begins with random warm start

solutions (100 random warm starts by default). At each iteration, OST optimizes every node

in a random order until no improvement can be made for two consecutive iterations. There

are three options to optimize each node: updating a parallel split, replacing a split node
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with its left subtree, or replacing a split node with its right subtree where OST selects an

option resulting in the best objective value.

One of the main differences between OST and OCT is objective value calculation. OCT

uses either Gini impurity, misclassification or entropy score as its objective function which

are the typical evaluations for classification problems. At each leaf node of OCT, OCT

makes a prediction of class that gives the optimal Gini impurity, misclassification or entropy

score. In contrast, OST optimizes over a local full likelihood score which involves cumulative

hazard function with the Nelson-Aalen estimator [1, 71, 72]. At each leaf node of OST, it

predicts a survival time which gives the best local full likelihood score. The curves in each

OST node are the Kaplan-Meier curves [55] which estimate the survival distribution.

We calculate the survival distribution of each observed data point i as a function of the

baseline cumulative hazard function Λ(ti) and an adjustment to the baseline cumulative

hazard function θi of each data point i as shown in Equation (1.6). Then we measure the

log-likelihood of this survival function against the data as shown in Equation (1.7).

P (Si ≤ t) = 1− eθiΛ(t), (1.6)

error =
n∑

i=1

wi(Λ(ti)θi − δi[log(Λ(ti)) + log(θi) + 1]), (1.7)

where

• Si denotes survival time of the data point i.

• wi denotes sample weight assigned to the data points i.

• ti denotes the last observation of the data point i.

• δi ∈ {0, 1} denotes the indicator of the last observation of the data point i whether it

was a death (δi = 1) or a censoring (δi = 0).
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• Λ(t) denotes the cumulative hazard function of the training data calculated with the

Nelson-Aalen estimator.

• θi denotes the fitted hazard coefficient for the data point i.

1.2 Optimal Decision Trees with Simulated Annealing

In optimization, the simulated annealing process is similar to the reformulation of the initial

warm start solution until reaching the global optimal solution at the final lowest temperature

[58]. The initial heating breaks the structure of the initial warm start solution so that its

components can move anywhere. Then, at the cooling step, the temperature starts decreasing

and the solution starts to form its gross structure. The objective value of the optimization

problem is similar to the energy of the metallic annealing that we aim to minimize. The

probability to accept a worse solution is higher at high temperature and gradually decreases

as the temperature decreases. This is similar to the metallic atoms having higher degrees

of freedom in their movements at a higher temperature. Simulated annealing is one type of

heuristic approach [13]. Generally, a heuristic approach can find a good quality suboptimal

solution rapidly even though its runtime is not necessarily polynomial. Different problem

types also require different heating and cooling procedures and this is called an annealing

schedule or a cooling schedule.

The main difference of each simulated annealing cooling schedule is how the temperature

decreases. Some of the common annealing schedules include geometric, logarithmic, and

linear annealing schedules [74]. By defining the initial temperature as temp0, the temperature

at each iteration k of each annealing schedule can be defined as Equations (1.8), (1.9), and

(1.10) respectively:

tempk = αk · temp0, (1.8)
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tempk =
temp0

1 + α · log(1 + k)
, (1.9)

tempk = temp0 − α · k. (1.10)

The typical range of values for α which determines the rate of temperature decay is different

for each type of cooling schedule.

1.2.1 Optimal Classification Trees with Simulated Annealing (OCT-

SA)

By replacing local search in OCT with simulated annealing, we obtain OCT-SA. Unlike local

search that always transforms a current subtree into a neighoring subtree with a better objec-

tive value, simulated annealing probabilistically allows a worse transformation. We calculate

the probability of such transformations based on the current temperature as determined by

the simulated annealing cooling schedule, and the difference in energy, i.e., the objective

value, between the current and the neighboring subtree. The appearance of OCT-SA still

resembles that of OCT where they are both binary decision trees that predict classes of each

data point at leaf nodes. A branching node splits on a particular feature and cutoff value.

Each split divides data into 2 subtrees: the left subtree containing data points with feature

values less than the cutoff, and the right subtree containing data points with feature values

more than or equal to the cutoff. At each leaf node, OCT-SA makes a prediction on a class

of data points in that leaf node that results in the best objective value, i.e., Gini impurity

score for classfication analysis.

1.2.2 Optimal Policy Trees with Simulated Annealing (OPT-SA)

In order to construct OPT-SA, we change local search in OPT to simulated annealing.

Similar to OCT-SA, simulated annealing in OPT-SA permits a bad transformation from a
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current state to a neighboring state. The main difference between OCT-SA and OPT-SA is

the objective value where OCT-SA uses the Gini impurity score while OPT-SA uses the mean

rewards score. At each leaf node, OCT-SA makes a class prediction while OPT-SA makes a

prescription prediction, i.e., an optimal treatment resulting in the best mean rewards score or

the outcomes. In case not all treatment options of interest were prescribed to every subject in

the observed dataset, we need to construct counterfactual models to predict counterfactual

outcomes. The mechanism we use to construct counterfactual models in OPT-SA stay

unchanged from that of OPT. In order to utilize the same simulated annealing framework

as that of OCT-SA, we need to scale mean rewards, whose magnitudes vary depending on

types of datasets, to be in the same range as the Gini impurity score in OCT-SA, i.e., from 0

to 1. The display of OPT-SA is still the same as that of OPT where both of them are binary

decision trees that predict an optimal treatment at each leaf node. However, simulated

annealing can drive the tree transformation for OPT and OPT-SA to have a different final

structure like a different number of nodes, or a different set of selected features and their

cutoff values.

1.2.3 Optimal Survival Trees with Simulated Annealing (OST-SA)

OST-SA improves on OST by swapping local search with simulated annealing. Like that

of OCT-SA and OPT-SA, simulated annealing can improve objective values of OST-SA by

granting some suboptimal tranformations. In OST-SA, the process that we use to estimate

a cumulative hazard function with the Nelson-Aalen estimator for each data point and ap-

proximate the survival distribution by fitting a Kaplan-Meier curve at each leaf node stays

the same as that of OST. Similar to OPT-SA, OST-SA needs to scale the objective value,

i.e., the local full likelihood score, to be in the range from 0 to 1 like the objective value of

OCT-SA. The presentation of OST-SA is still the same as OST where they both represent

binary decision trees that predict survival time, or time to event of interest, of data points

at each leaf node.
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1.3 Main Contributions

We make three main contributions in advancing the development of interpretable machine

learning models for classification, prescriptive, and survival analysis. We implement our

optimal decision trees with a simulated annealing framework, then evaluate it on widely-used

benchmarking real-world datasets, and showcase our applications in the medical domain.

1.3.1 Optimal Decision Trees with Simulated Annealing

We develop an optimal decision trees framework by replacing local search with simulated

annealing. This framework is highly generalizable and can be applied to all the three analysis

domains: classification, prescriptive, and survival analysis. For classification analysis, we

can alter OCT into OCT-SA. In terms of prescriptive analysis, we can adjust OPT into

OPT-SA using the same simulated annealing framework with some additional arguments for

reward estimations. Regarding survival analysis, this simulated annealing framework is also

applicable to the change from OST into OST-SA by incorporating some additional inputs

for hazard coefficients.

1.3.2 Evaluation on Widely-Used Benchmarking Real-World Datasets

We evaluate our simulated annealing optimal decision trees on widely-used benchmarking

real-world datasets. The evaluations demonstrate our success in achieving better out-of-

sample performance over other popular decision tree models with a greedy approach. First,

we evaluate OCT-SA on 61 real-world datasets from the UCI machine learning repository

[6]. Second, we evaluate OPT-SA on 10 real-world datasets from both the UCI machine

learning repository and Kaggle. Third, we evaluate OST-SA on 10 real-world datasets from

SurvSet, an open-source time-to-event dataset repository [29].
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1.3.3 Case Studies on Real-World Medical Datasets

In order to showcase our optimal decision trees with simulated annealing in the medical

domain, we apply our models on all three type of analyses (classification, prescriptive, and

survival) over real-world medical datasets. First, we apply OCT-SA in the sarcoma dataset.

Second, we apply OPT-SA in the Gastrointestinal Stromal Tumor (GIST) dataset. Third,

we apply OST-SA in the sarcoma dataset, the same dataset as that of OCT-SA.

1.4 Structure of the Thesis

This thesis is organized as follows.

Chapter 2: We demonstrate six main adjustments on Interpretable AI [51] optimal de-

cision trees framework when replacing local search with simulated annealing: random warm

start construction, objective value calculation, geometric cooling schedule, transformation of

a tree to a neighbor state, hyperparameter tuning, and terminating condition.

Chapter 3: We point out limitations of OCT and how we incorporate simulated an-

nealing in OCT-SA construction to further improve on OCT. We evaluate OCT-SA on 61

real-world datasets from the UCI machine learning data repositories.

Chapter 4: We show the weak points of OPT and explain how to improve OPT by

swapping local search with a simulated annealing framework in order to build OPT-SA. We

evaluate OPT-SA on 10 real-world datasets from the UCI machine learning data repositories

and Kaggle.

Chapter 5: We indicate drawbacks of OST and exhibit the method to utilize simulated

annealing in place of local search to obtain OST-SA which outperforms OST. We evalu-

ate OST-SA on 10 real-world datasets from SurvSet, an open-source time-to-event dataset

repository.

Chapter 6: We showcase our simulated annealing optimal decision trees on real-world

medical datasets: OCT-SA on the sarcoma dataset, OPT-SA on the Gastrointestinal Stromal
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Tumor (GIST) dataset, and OST-SA on the same sarcoma dataset as that of the OCT-SA.

Chapter 7: We offer our concluding remarks on how simulated annealing can benefit

the decision tree construction process and improve optimality for classification, prescriptive,

and survival analysis.
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Chapter 2

Optimal Decision Trees with Simulated

Annealing

There are five main adjustments we have made on the Interpretable AI [51] optimal decision

trees (OT) framework, which utilizes local search, in order to apply simulated annealing

and obtain optimal decision trees with simulated annealing (OT-SA): random warm start

construction, geometric cooling schedule, transformation of a tree to a neighbor state, hy-

perparameter tuning, and terminating condition.

2.1 Random Warm Start Construction

The only difference between random warm start construction of OT-SA than that of the OT

framework is how we determine a split at the root node. In OT-SA, we evenly assign each

feature as the first split at root node for all warm starts. For example, let a dataset have

p = 5 features. With 100 warm starts, there will be p or 5 different first split features where

each of them is assigned to 100
p

= 100
5

= 20 warm starts. For the same first split feature, the

best cutoff is also the same as it is determined from the same set of all data points at the

root node. The reason that we generate warm starts in this manner is because the split at

root node can have a significant influence on the tree structure in subsequent depths. When
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we first tried generating warm starts with the same procedure as that of OT, we found that

our warm starts of some datasets lack variety and it was likely because the split at root node

always belongs to a small subset of best features. We still construct the splits at subsequent

depths using a similar procedure as that of OT where each best split is derived from a subset

of random √p features where p equals the number of all features.

We also made use of multiple warm starts in order to distribute the search over the entire

search space like that of OT. Since the search over each warm start is independent, we can

perform multiple searches in parallel in order to reduce runtime. In addition to these 100

random warm starts, we also used an OT model (either OCT, OPT, or OST), a model a

widely-used Python package (CART, or sksurv survival tree [80]) and a single root node as

3 additional warm starts, i.e., 103 warm starts in total.

2.2 Geometric Cooling Schedule

Among the three popular simulated annealing cooling schedules: geometric, logarithmic, and

linear, we found from our empirical experiments that the geometric cooling schedule fits best

with the OT-SA construction. With the geometric cooling schedule, the temperature drops

fast at the beginning of the schedule. This is appropriate for the OT-SA algorithm that starts

with a random warm start at the beginning because it does not need that many iterations

to reformulate the tree into a random structure at high temperature. Then the temperature

drops at a slower and slower rate. This matches well the case when more selective transfor-

mation of the tree is preferred near the end of the cooling schedule. Regarding the logarithm

cooling schedule, it requires much longer runtime than the geometric cooling schedule as it

takes many more iterations to reach the final temperature and this is a significant downside.

In terms of the linear cooling schedule, the temperature linearly drops and this results in

the algorithm spending too many iterations at the high temperature. Consequently, the

initial tree may be transformed into a totally random tree while the random warm start tree
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already has some nice decision power that OT-SA should maintain. In addition, spending

too few iterations at the low temperature also prevents the tree from completely enhancing

its tree structure.

The mechanism of simulated annealing algorithm is driven by the geometric cooling

schedule, the difference in energy, and the acceptance probability as shown in Equations

(2.1), (2.2), and (2.3):

tempk+1 = α · tempk, (2.1)

∆E = |scorecurrent − scoreneighbor|, (2.2)

probk = e
−∆E
tempk . (2.3)

where

• temp denotes temperature

• k denotes iteration number

• α denotes temperature decay rate

• ∆E denotes difference in energy between a current and a neighbor state

• score denotes objective value score

• prob denotes probability to transform a tree from a current state to a neighbor state

• e denotes the Euler’s number equals 2.7183

From our empirical experiments, we found α = 0.95 is an appropriate temperature decay

rate for the real-world datasets we used to evaluate OT-SA.
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2.3 Transformation of a Tree to a Neighbor State

OT-SA allows a tree to move to a worse neighbor state with some probability as shown

in Equation (2.3). If a neighbor state has a lower objective value score than that of the

current state, OT-SA always transforms the tree into a better neighbor state. Otherwise,

the probability to accept a worse neighbor state depends on the current temperature as

shown in Equation (2.1) and how much the objective value score of the neighbor state is

worse than that of the current state as shown in Equation (2.2). OT-SA will then compare

this probability with a random number in the range (0.1, 1). If the probability is more than

or equals to the random number, this worse neighbor state is accepted. Otherwise, the tree

stays unchanged.

2.4 Hyperparameter Tuning

When applying simulated annealing, each dataset may require different Markov chain length

l or number of nodes to optimize per iteration, neighbor search radius r or boundary of

solution search space, and complexity penalty γ. This is due to differences in complexity

of each problem and how far an optimal solution is from a random warm start. The more

complex and deeper tree depths tend to require a longer Markov chain length and search

radius. In OT, all nodes are optimized per iteration which is equivalent to Markov chain

length l equals the total number of nodes in the tree. However, we found that this mechanism

of OT does not work well in OT-SA. The reason that OT-SA does not optimize all nodes

at the same temperature, as in OT, because optimizing a few nodes can significantly change

a tree structure, so OT-SA should use a new threshold for acceptance probability of the

next temperature level when optimizing the subsequent random nodes. In terms of neighbor

search radius r, OT-SA always selects the best neighbor and this is equivalent to search

radius r = 1 which is against the mechanism of simulated annealing where some worse
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transformations are possible under some probability.

To find the best hyperparameters of each dataset, we perform grid search over six com-

binations of hyperparameters with Markov chain length l equals 1, 2 or 3 and search radius

r equals 3 or 4. For each combination of Markov chain length l and neighbor search radius

r, we run model training with 100 random warm starts (i.e., excluding OT, other Python

decision tree, and a single root node) over a training dataset and perform the batch cost

complexity pruning algorithm [30] which outputs an optimal complexity penalty γ that gives

the best validation score for each dataset. Then we use these tuned hyperparameters to rerun

model training over 103 warm starts (i.e., including OT, other Python decision tree, and a

single root node in addition to the 100 random warm starts) with a combined training and

validation dataset. The final tree with the best score over the combination of training and

validation dataset is the OT-SA. From our empirical experiments over real-world datasets

we use to evaluate OT-SA, we find that Markov chain length l = 2 and search radius r = 3

perform best by average.

Another difference in hyperparameter tuning is how OT and OT-SA determine a final

depth of a tree. In OT construction, the best depth is figured out during hyperparameter

tuning where the best depth gives a tree with the best validation score. Then the tuned

hyperparameters are used by OT algorithm to train the trees over the combination of train

and validation dataset with no depth constraint but the tree is finally pruned to the tuned

best depth. On the other hand, OT-SA does not find the best depth during hyperparameter

tuning but always constraints a tree initialization and transformation to not exceed the

specified maximum depth during training so OT-SA does not need to conduct post-pruning

like OT. We decide to use this approach in order for OT-SA algorithm to have a more

thorough search over search space of tree transformations at a particular depth.
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2.5 Terminating Condition

OT-SA stops when it meets either one of these two conditions. First, the algorithm reaches

the end of the cooling schedule. This is to avoid overfitting and to limit the runtime.

Second, the algorithm cannot optimize any node at the same temperature. For the lower

temperature, OT-SA reduces the probability to accept worse states, so it is less likely that

it will optimize any node. OT-SA also keeps track of the tree with the best objective value

which is not necessarily the tree obtained from the last iteration of simulated annealing.

This is to handle the case when transformations at lower temperatures make a tree diverge

from global optimality and the best tree is found at the higher temperature.
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Chapter 3

Optimal Classification Trees with

Simulated Annealing (OCT-SA)

To improve on predictive performance of CART (Classification And Regression Trees), Bert-

simas and Dunn [10] developed Optimal Classification Trees (OCT). OCT utilizes multiple

random warm starts and applies local search to iteratively improve each warm start until

a locally optimal classification tree is found. While OCT improves on CART, local search

does not guarantee global optimality. Hence, we propose a framework called Optimal Clas-

sification Trees with Simulated Annealing (OCT-SA). OCT-SA utilizes simulated annealing

to further improve OCT by probabilistically allowing a tree to move to a tree with a worse

objective value. This mechanism is beneficial as some worse transformations could lead to

a better final model. A challenge in designing OCT-SA is to define an appropriate simu-

lated annealing cooling schedule that leads to a global optimal solution in practical runtime.

We report computational results on 61 real-world datasets from the UCI machine learning

repository. We train OCT-SA, OCT and CART over the maximum depths ranging from 2

to 7. OCT-SA successfully improves over OCT for all maximum depths. This improvement

is statistically significant with p-values ≤ 0.1 at all maximum depths except depth 2. The

improvement is still statistically significant with p-values ≤ 0.05 at maximum depth 3, 4
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and 7. Furthermore, OCT-SA provides significant improvement over CART at all maximum

depths. At the maximum depth 7, OCT-SA improves the average out-of-sample Gini impu-

rity score on the 61 datasets by approximately 0.7% (0.2573 vs 0.2643) compared to OCT

and 2.13% (0.2573 vs 0.2786) compared to CART. Although improvement was not found for

all 61 datasets, OCT-SA achieves better out-of-sample Gini impurity score on 43 out of 61

datasets compared to OCT and also 43 out of 61 datasets compared to CART.

3.1 Introduction

Breiman et al. [17] developed Classification and Regression Trees (CART), a classical classifi-

cation model which is a very interpretable model [19]. CART replicates how a person usually

solves a problem by asking a set of binary questions. Each binary question asks whether or

not a particular feature has a value less than a cutoff. If the answer is yes, the user navigates

to the left subtree and reaches another binary question at another branch node. If the answer

is no, the navigation will be to the right subtree. However, predictive performance of CART

is not optimal due to its greedy approach where it always selects the best split. To elaborate,

some early bad splits may lead to better subsequent splits of decision trees. Similarly, the

other widely used classical classification models like C4.5 [82] and ID3 [81] also fail to reach

optimality due to their greedy approach. The usage of the greedy approach is one way to

construct a binary classification tree in practical time, since to construct an optimal binary

decision tree is an NP-hard problem [61]. Even though some ensemble tree models like

Random Forests [18] and XGBoost [21] improve over CART on predictive performance, they

are not interpretable and are usually viewed as black-box models. With the aim to construct

an interpretable model with higher predictive performance in tractable time, Bertsimas and

Dunn [10, 11] developed Optimal Classification Tree or OCT.

OCT achieved a better accuracy than that of CART on 61 datasets from the UCI machine

learning repository [6]. Bertsimas and Dunn initially formulated OCT construction as a
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Mixed Integer Optimization (MIO) problem but later adjusted their approach into local

search for scaling purposes. Since OCT utilizes local search which always drives the tree

transformation in the direction where objective value is improved, this approach could result

in a suboptimal solution. The authors argued that by using a large enough number of

random warm starts, the algorithm could effectively escape the majority of local minima.

However, we typically do not know an exact number of local minima of each optimization

problem. Hence, we propose a framework utilizing simulated annealing to construct optimal

classification trees called Optimal Classification Trees with Simulated Annealing (OCT-SA).

Given the same number of random warm starts, OCT-SA has a potential to better escape

local minima than OCT.

Simulated annealing is an optimization technique which helps a model to reach a global

optimal solution with some probability [see 12, 58]. Unlike local search, simulated annealing

allows a tree to go to neighboring states with worse objective values. Under an appropriate

cooling schedule, simulated annealing is guaranteed to find an optimal solution asymptot-

ically. The objective of this paper is to see whether simulated annealing helps improve

optimality or not. To fulfill this objective, we develop OCT-SA which makes use of a geo-

metric cooling schedule. We also utilize multiple random warm starts similar to OCT while

also adding CART, OCT, and a single root node as three additional warm starts. To adjust

OCT-SA to fit a particular classification problem, we tune three hyperparameters: Markov

chain length, search radius, and complexity penalty.

We make two main contributions in this chapter. First, OCT-SA is the first application of

a simulated annealing algorithm on classification trees with parallel splits of sizable problems

that guarantees to provide an optimal solution under an appropriate cooling schedule. Even

though Bucy and Diesposti [20] and Lutsko and Kuijpers [65] made initial attempts to apply

simulated annealing to classification trees, they only succeeded on small problems. Second,

we report computational results on the same 61 datasets from Bertsimas and Dunn [11] that

improve upon the out-of-sample performance of OCT while maintaining interpretability of
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each model.

This paper is organized as follows. In Section 3.2, we demonstrate how to incorporate

simulated annealing into OCT construction. Then in Section 3.3, we evaluate OCT-SA on

61 real-world datasets on Gini impurity score and compare the performance of OCT-SA with

OCT and CART. In Section 3.4, we summarize our findings.

3.2 Algorithms

OCT-SA further improves performance of OCT by replacing local search with simulated

annealing. There are five algorithms involving in OCT-SA construction as shown in Figure

3.1. The entire flow of OCT-SA is described in Algorithm 1, which accepts five inputs:

an initial classification tree T1 as a random warm start tree; training data consisting of

feature value X and outcome class y; geometric temperature decay rate c < 1 of a cooling

schedule; Markov chain length l or number of nodes to optimize per iteration; and neighbor

search radius r or boundary of solution search space, then outputs the optimal classification

tree as Tbest, which is an optimal transformation of the initial classification tree T1 with

simulated annealing. Algorithm 1 calls Algorithm 2 to rank and select a tree transformation

from candidate trees. Algorithm 2 determines the quality of each tree transformation by

gradually picking a better candidate tree as temperature in the geometric cooling schedule

decreases. Algorithm 3 generates these candidate trees. There are three options to generate

candidate trees by updating the current subtree root node: by replacing with the left subtree,

by replacing with the right subtree, and by updating a parallel split. In order to update a

parallel split, Algorithm 3 calls Algorithm 4 to generate options to transform the current

subtree by updating the branching at the subtree root node with different features and cutoff

values. Finally, Algorithm 1 calls Algorithm 5 to determine a probability to transform the

current subtree into the neighbor subtree based on their Gini impurity scores and the current

temperature in the annealing schedule.
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3.2.1 Overall Architecture of OCT-SA in Algorithm 1: Simulated

Annealing

In Algorithm 1, we iteratively optimize the initial tree structure T1 until it reaches the final

tree structure Tbest. The number of iterations to optimize the tree equals iterationstotal,

which is the number of iterations required for the initial temperature starting at 1 to be

decreased with geometric decay rate c < 1 until the final temperature goes below 0.01.

At each iteration k, we transform the tree into an intermediate tree Tk by optimizing over

Markov chain length l nodes. Among all possible moves or neighboring trees, the tree does

not necessarily move to the tree with the best objective value but possibly to the next

subsequent best trees within the neighbor search radius r.

We implemented OCT-SA in Python version 3.8.15 and constructed OCT warm start

solutions using an OCT package of Interpretable AI software [51] version 3.2.0 in Julia version

1.9.0. After that, we exported those warm start solutions into text files and imported them

into OCT-SA. We ran OCT-SA on a Windows laptop and also on MIT Supercloud [84]. We

construct the CART warm start solutions with scikit-learn Python package [78].

3.2.2 Algorithm 2: Rank Parallel Split

Algorithm 2 ranks and selects a tree transformation from candidate trees. The algorithm

accepts three inputs: the total number of iterations iterationstotal that OCT-SA will optimize

a tree; a current iteration number k; and a neighbor search radius r (which is determined

from hyperparameter tuning); and outputs a select rank (based on objective value) of a

neighbor subtree that OCT-SA will transform the current tree into. Instead of selecting the

candidate tree with the best objective value, as in OCT, OCT-SA selects the next subsequent

best tree from neighboring trees based on current iteration number k and neighbor search

radius r. In case of neighbor search radius r = 3, the third best tree is selected for the first

iteration. As the iteration number increases, the next best tree is selected, i.e., the second
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Algorithm 1 SimulatedAnnealing
Input: Initial classification tree T1; Training data X, y;

Geometric decay rate c < 1; Markov chain length l; Neighbor search radius r
Output: Optimal classification tree Tbest

1: temp0 ← 1 ▷ temp0 is initial temperature
2: iterationstotal ← kmin − 1 where temp0 · ck < 0.01
3: k ← 1 ▷ k is iteration number
4: Tbest ← T1 ▷ Tbest keeps the best tree
5: repeat
6: tempk ← temp0 · ck ▷ Temperature based on geometric cooling schedule
7: rankk ← RankParallelSplit(iterationstotal, k, r)
8: nodesoptimized ← ∅ ▷ Keep track of optimized nodes at current temperature

▷ Get a set of all current split nodes or leaf nodes in Tk eligible to be split further
9: nodesunoptimized ← SplitNodes(Tk, X, y)

10: repeat
11: nodesunoptimized ← nodesunoptimized − nodesoptimized

12: noderandom ← RandomNode(nodesunoptimized) ▷ Pick one random node
13: nodesunoptimized ← nodesunoptimized − {noderandom}
14: nodesoptimized ← nodesoptimized ∪ {noderandom}

▷ Find subtree of the random node and calculate score
15: Subtreerandom ← Subtree of Tk where noderandom is root
16: I ← {i: xi is assigned to a leaf contained in Subtreerandom}
17: ginicurrent ← GiniImpurity(Subtreerandom, XI , yI)

▷ Find a neighbor of the random subtree and calculate score
18: NeighborSubtreerandom ← NeighborSubtree(Subtreerandom, XI , yI , rankk)
19: ginineighbor ← GiniImpurity(NeighborSubtreerandom, XI , yI)

▷ Determine probability to transform the current subtree to its neighbor state
20: prob← CalculateProbability(ginicurrent, ginineighbor, tempk)
21: if prob ≥ RandomNumber(0.1, 1) then
22: Tk ← Replace Subtreerandom in Tk with NeighborSubtreerandom
23: if GiniImpurity(Tk, X, y) < GiniImpurity(Tbest, X, y) then
24: Tbest ← Tk ▷ Update the best tree if Gini impurity score is lower
25: end if
26: end if
27: until nodesunoptimized = ∅
28: if |nodesoptimized| = 0 then ▷ No node can be optimized at current temperature

▷ Move to the last iteration of the current temperature band
29: k ← kmax where RankParallelSplit(iterationstotal, k, r) returns rankk
30: end if
31: k ← k + 1
32: until k = iterationstotal
33: return Tbest
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Algorithm 2 RankParallelSplit
Input: Total number of iterations iterationstotal in simulated annealing;

Current iteration number k in simulated annealing;
Neighbor search radius r

Output: Selected rank rankselected of parallel split to be used in Algorithm ??

1: rankselected ← 1 ▷ 1 is the best rank
2: rankset ← {r, r − 1, r − 2, ..., 1} ▷ Set of all ranks in neighbor search radius r
3: for i in rankset do
4: if k < iterationstotal

i
then

5: rankselected ← i
6: break
7: end if
8: end for
9: return rankselected

best. Eventually, OCT-SA selects the first best tree near the end of the cooling schedule.

OCT-SA selects the worse candidates at early temperature bands in order to form a gross

structure of an optimal tree. This could lead to better states at subsequent temperature

bands. In addition, the candidate ranking could help prevent overshooting. Randomly

picking a candidate from the search neighborhood may make the algorithm diverge away

from the optimal solution.

The implementation of candidate state ranking is outlined in Algorithm 2. Instead of

randomly picking a state from our searched neighborhood, we select a candidate state based

on their Gini impurity score ranking. We define neighbor search radius r where we select the

rth best state transition at the highest temperature while we select the 1st rank or the best

state with the lowest Gini impurity score at the lowest temperature. With search radius r,

the temperatures are divided into r bands. If our simulated algorithm runs for S iterations

in total, the end of each temperature band is at iteration number S
r
, S
r−1

, S
r−2

, ..., S
2
, S. To

illustrate, assume OCT-SA runs for S = 90 iterations with search radius r = 3. We stratify

the temperatures into 3 bands which cover these ranges of iterations and selected candidate

rank: 1 - 30 (3rd rank), 31 - 45 (2nd rank), and 46 - 90 (1st rank). By selecting the 1st

rank candidate at the last temperature band, the algorithm performs similarly to the local
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search heuristic. This is appropriate for the low temperature of simulated annealing where

OCT-SA hardly accepts worse solutions.

3.2.3 Algorithm 3: Neighbor Subtree

Algorithm 3 NeighborSubtree
Input: Initial classification subtree Subtreeinitial to optimize;

Training data XI , yI ;
Selected rank rankselected of parallel split

Output: Neighbor classification subtree Subtreeneighbor with optimal or subopti-
mal split at root of Subtreeinitial

▷ Optimize parallel split of initial subtree and calculate score
1: Subtreeparallel, giniparallel ← OptimizeParallelSplit(Subtreeinitial, XI , yI , rankselected)

▷ 1 is the worst Gini impurity score
2: ginilower ← 1
3: giniupper ← 1

▷ Replace initial subtree with its lower or upper subtree and calculate score
4: if Subtreeinitial is non-leaf node then
5: Subtreelower ← Lower subtree of Subtreeinitial
6: ginilower ← GiniImpurity(Subtreelower, XI , yI)

7: Subtreeupper ← Upper subtree of Subtreeinitial
8: giniupper ← GiniImpurity(Subtreeupper, XI , yI)
9: end if

▷ Determine neighbor subtree with the best Gini impurity score (a lower score is better)
10: if (giniparallel ≤ ginilower) and (giniparallel ≤ giniupper) then
11: Subtreeneighbor ← Subtreeparallel
12: else
13: if ginilower ≤ giniupper then
14: Subtreeneighbor ← Subtreelower

15: else
16: Subtreeneighbor ← Subtreeupper
17: end if
18: end if
19: return Subtreeneighbor

The classification tree state transition is illustrated in Algorithm 3. The algorithm ac-
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cepts three inputs: an initial classification subtree Subtreeinitial to optimize; training data

XI , yI corresponding to subset of training data X, y presenting in the current subtree to op-

timize; and selected rank rankselected as determined by Algorithm 2. The algorithm outputs

a neighbor classification subtree Subtreeneighbor with optimal or suboptimal split at the root

node of Subtreeinitial depending on how we update the subtree. The procedure to update

the current subtree is deterministically defined into three options over the root node of the

subtree: updating a parallel split by considering all possible cutoffs over all features and val-

ues; replacing a branch node with its left subtree; or replacing a branch node with its right

subtree. The logic to update a tree state is very similar to that of OCT, except Subtreeparallel

is not necessarily the subtree obtained from the best split, but it could be the rth best split

where r ranges from 1 to 4.

3.2.4 Algorithm 4: Optimize Parallel Split

Algorithm 4 shows how a parallel split is optimized which is moderately similar to that of

OCT. The algorithm accepts exactly the same three inputs as in Algorithm 3 including an

initial classification subtree Subtreeinitial to optimize, training data XI , yI corresponding to

subset of training data X, y presenting in the current subtree to optimize, and selected rank

rankselected as determined by Algorithm 2. The algorithm outputs an optimized subtree

Subtreeparallel with an optimized parallel split at the root node of Subtreeinitial and the

corresponding Gini impuriry score giniparallel of the optimized subtree.

To update a parallel split, Algorithm 4 iterates through all features and possible cutoff

values of the subtree root node. We examine all possible cutoffs by going through all features,

sorting all distinct feature values in ascending order and calculating each cutoff as a midpoint

between 2 consecutive sorted feature values. The main difference from OCT is that OCT-

SA does not always select the best parallel split, but the split is selected based on solution

ranking determined by Algorithm 2. Hence, the algorithm needs to keep track of parallel

split ranking. If multiple different splits on the same split node resulted in the same objective
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Algorithm 4 OptimizeParallelSplit
Input: Initial classification subtree Subtreeinitial to optimize parallel split;

Training data XI , yI ;
Selected rank rankselected of parallel split

Output: Subtree Subtreeparallel with optimized parallel split at root of Subtreeinitial;
Score giniparallel of the optimized subtree

1: n′ ← Number of samples in XI

2: p′ ← Number of features in XI

3: candidates← ∅

▷ Iterate through all p′ features
4: for v = 1, 2, 3, ..., p′ do
5: featureV alues← {XIuv : u = 1, 2, 3, ..., n′}
6: featureV alues← Sort featureV alues in ascending order
7: f ← Number of unique feature values in featureV alues
8: branchV alues← {1

2
(featureV aluesm + featureV aluesm+1) : m = 1, 2, 3, ..., f − 1}

▷ Iterate through all branch values of feature v
9: for m = 1, 2, 3, ..., f − 1 do

10:
▷ Update split at root node and calculate score

11: Subtreeoptimized ← Split root of Subtreeinitial with feature v and branch value m
12: ginioptimized ← GiniImpurity(Subtreeoptimized, XI , yI)

▷ Keep only one subtree for each unique score
13: if no subtree in candidates with score equals ginioptimized then
14: candidates← candidates ∪ {(Subtreeoptimized, ginioptimized)}
15: end if
16: end for
17: end for

▷ Pick final parallel optimized subtree based on score ranking
18: candidatessorted ← Sort candidates by ginioptimized score in ascending order
19: Subtreeparallel, giniparallel ← Pick subtree and score at rankselected from candidatessorted
20: return Subtreeparallel, giniparallel
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value, the algorithm only kept the first split it found.

3.2.5 Algorithm 5: Calculate Probability

Algorithm 5 CalculateProbability
Input: Gini impurity score of a current classification subtree ginicurrent;

Gini impurity score of a neighbor classification subtree ginineighbor;
Current temperature tempk at iteration number k

Output: Probability prob to transform current subtree into neighbor subtree

1: prob← 0 ▷ No subtree transformation if ginineighbor = ginicurrent
2: if ginineighbor < ginicurrent then ▷ A lower Gini impurity score is better
3: prob← 1 ▷ Always transform to neighbor subtree with better score
4: else

▷ Calculate probability from difference in energy and current temperature
5: if ginineighbor > ginicurrent then
6: ∆E ← |ginicurrent − ginineighbor| ▷ Difference in energy
7: prob← e

−∆E
tempk ▷ Euler’s number e = 2.7183

8: end if
9: end if

Algorithm 5 calculates the probability that OCT-SA will transform a current subtree into

a neighbor subtree. The algorithm accepts three inputs: the Gini impurity score of the

current classification subtree ginicurrent; the Gini impurity score of the neighbor classification

subtree ginineighbor; and the current temperature tempk at iteration number k; and outputs

a probability prob to transform the current subtree into the neighbor subtree. If the current

subtree has the Gini impurity score equal to that of the neighbor subtree, the transformation

will not occur and the probability equals 0. If the neighbor subtree has a lower Gini impurity

score (a lower score is better) than that of the current subtree, OCT-SA always allows the

subtree transformation so the probability equals 1. Otherwise, we calculate the probability of

subtree transformation from the difference in energy ∆E (i.e., the difference in Gini impurity

score between the current and neighbor subtree) and the current temperature tempk.
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3.3 Results on Real-World Datasets and Discussion

3.3.1 Experimental Setup

In order to make a fair comparison with OCT in Bertsimas and Dunn [11], we also evaluate

OCT-SA on the same 61 datasets from the UCI machine learning repository that researchers

widely use as benchmark datasets for classification problems. These 61 datasets have variable

sizes with the numbers of data points ranging from 47 to 245057; the number of features

ranging from 2 to 100; and the number of classes ranging from 2 to 10. We convert all feature

values into numeric values in order to be applicable to Algorithm 4.

Similar to Bertsimas and Dunn [11], we also split each dataset into train, validation, and

test sets with the ratio of train:validation:test being 50:25:25. We used 10% of the total

number of data points in each dataset as a minbucket to avoid overfitting and to ensure the

resulting models are interpretable. The classification trees are trained with the maximum

depths ranging from 2 to 7. The maximum depth 7 is the highest possible maximum depth

given that the minbucket is 10% over the entire dataset and the combination of training and

validation datasets which are used to construct a final OCT-SA account for 75% of the entire

dataset.

We perform the hyperparameter tuning of OCT-SA only over complexity penalty γ while

setting Markov chain length l = 2 and search radius r = 3 which is the combination of

hyperparameters that performs best by average over the 61 datasets as found from our

empirical experiments. The set of hyperparameters giving the best validation score is then

used to retrain all 103 warm starts over a combination of train and validation set. A tree (out

of 103 trees) with the highest score evaluated over the combination of train and validation

set is selected as an OCT-SA of each dataset. The out-of-sample score of the OCT-SA is

then evaluated on an unseen test set. We compare our models (indicated as OCT-SA) with

CART and OCT on out-of-sample Gini impurity score. In order to prove that the results are
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statistically significant, we run the same experiments over five different train:validation:test

splits of each dataset. We measure average performance across the five different data splits

together with standard deviation and derive p-values.

3.3.2 OCT-SA vs OCT vs CART

As shown in Table 3.1, OCT-SA performs better than OCT and CART on average Gini

impurity score at all maximum depths above 1. At the maximum depth 1, all models achieve

almost the same performance with Gini impurity score at approximately 0.3715. Since the

classification tree at the maximum depth 1 only contains 1 branching node which is the root

node, it is very likely that each model selects the same feature and cutoff to branch on.

When comparing OCT-SA with CART on average Gini impurity score and standard

deviation, the results are statistically significant with p-values below 0.05 from the maximum

depth 2 to 7. This suggests that OCT-SA successfully improves over CART. On the other

hand, when comparing OCT-SA with OCT, the results are statistically significant at only 3

maximum depths including depth 3, 4, and 7. This points out that OCT is a strong algorithm

where OCT-SA can truly perform better only for a certain maximum depth constraints. The

result of each dataset at maximum depth 7, which is the highest depth in our experiments is

also included in Table 3.2 and Table 3.3, where OCT-SA beats OCT on 43 out of 61 datasets.

The average Gini impurity scores of OCT-SA, OCT, and CART from Table 3.1 are plotted

in Figure 3.2.

From Table 3.2 and Table 3.3, OCT-SA has the largest performance gap over OCT on

the banknote authentication dataset. This dataset involves an authentication process for

1372 banknotes whether it is a genuine or a fake banknote. Each banknote has four features:

variance, skewness, curtosis, and entropy which are data extracted from a banknote’s image.

Figure 3.3, 3.4, and 3.5 demonstrate differences in tree structure and performance among

OCT-SA, OCT, and CART of the banknote authentication dataset (from one of the five

different data splits) trained with maximum depth 7 and minbucket 10% over the entire
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Maximum
Depth

Mean out-of-sample Mean improvement p-value
Gini impurity score of OCT-SA over

CART OCT OCT-SA OCT CART OCT CART
2 0.3093 0.2942 0.2899 0.0043 ± 0.0025 0.0194 ± 0.0025 0.1291 0.0000
3 0.2857 0.2698 0.2628 0.0069 ± 0.0023 0.0229 ± 0.0047 0.0109 0.0000
4 0.2802 0.2654 0.2588 0.0066 ± 0.0038 0.0213 ± 0.0037 0.0210 0.0001
5 0.2786 0.2646 0.2584 0.0062 ± 0.0032 0.0201 ± 0.0050 0.0543 0.0002
6 0.2786 0.2643 0.2583 0.0060 ± 0.0047 0.0202 ± 0.0055 0.0920 0.0004
7 0.2786 0.2643 0.2573 0.0070 ± 0.0046 0.0213 ± 0.0041 0.0358 0.0001

Table 3.1: Average out-of-sample Gini impurity score (a lower score is better) averaged across
61 datasets from the UCI machine learning repository trained with maximum depth 2 to
7 and minbucket 10% over entire dataset. Mean improvement and p-value are calculated
between OCT-SA vs OCT and OCT-SA vs CART. A positive mean improvement indicates
OCT-SA having better performance than OCT or CART.

1 0.3715 0.3721 0.3715 0.1380
2 0.3093 0.2942 0.2899 1.4461
3 0.2857 0.2698 0.2628 2.5670
4 0.2802 0.2654 0.2588 2.4798
5 0.2786 0.2646 0.2584 2.3276
6 0.2786 0.2643 0.2583 2.2606
7 0.2786 0.2643 0.2573 2.6538
Minimum Gini across all Depths 0.0000 0.0000 0.0000 0.2786 0.2643 0.2573 2.6538

1 0.2660 0.2660 0.2660
2 0.1972 0.2660 0.1862
3 0.1904 0.1885 0.1255
4 0.1904 0.1885 0.1255
5 0.1904 0.1885 0.1090
6 0.1904 0.1885 0.1090
7 0.1904 0.1885 0.1090
Minimum Gini across all Depths 0.0000 0.0000 0.0000

1 1.0 21.4 130.0
2 1.0 21.4 239.6
3 1.0 21.4 316.6
4 1.0 21.0 331.2
5 1.0 21.2 329.4
6 1.0 26.4 326.0
7 1.0 23.2 326.2
Minimum Gini across all Depths 0.0000 0.0000 0.0000

0.35083278 0.3508
0.187660971 0.1877 0.2372

0.01173038 0.0117
0.003862136 0.0039

0.33846072 0.3385
0.045681068 0.0457
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Figure 3.2: Average out-of-sample Gini impurity score (a lower score is better) averaged
across 61 datasets from the UCI machine learning repository trained with maximum depth
2 to 7 and minbucket 10% over entire dataset.

dataset. In terms of performance, OCT-SA performs best by achieving out-of-sample Gini

impurity score (a lower score is better) of 0.1090, followed by OCT with the score 0.1885

while CART performs worse with the score 0.1904. Both OCT-SA and CART have the

same level of complexity with 5 splits. OCT has the simplest tree structure with only 2

splits but it can perform better than CART with 5 splits. This points out that OCT can

identify meaningful splits better than CART. In terms of split features, all three models

select variance and skewness where OCT only split on these two features, while both OCT-
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Mean out-of-sample Mean improvement
Gini impurity score of OCT-SA over

No. Dataset n p K CART OCT OCT-SA OCT CART
1 acute inflammations 1 120 6 2 0.1431 0.0000 0.0000 0.0000 ± 0.0000 0.1431 ± 0.0707
2 acute inflammations 2 120 6 2 0.0899 0.0087 0.0000 0.0087 ± 0.0144 0.0899 ± 0.0354
3 balance scale 625 4 3 0.4294 0.4142 0.3964 0.0178 ± 0.0318 0.0330 ± 0.0282
4 banknote authentication 1372 4 2 0.1857 0.2047 0.0990 0.1057 ± 0.0480 0.0867 ± 0.0275
5 blood transfusion 748 4 2 0.3187 0.3206 0.3119 0.0087 ± 0.0093 0.0068 ± 0.0095
6 breast cancer 277 9 2 0.3613 0.3723 0.3705 0.0018 ± 0.0204 -0.0091 ± 0.0240
7 breast cancer diagnostic 569 30 2 0.1115 0.1158 0.0822 0.0335 ± 0.0131 0.0293 ± 0.0169
8 breast cancer prognostic 194 32 2 0.3480 0.3560 0.3648 -0.0088 ± 0.0234 -0.0168 ± 0.0351
9 car evaluation 1728 6 4 0.2517 0.2517 0.2521 -0.0004 ± 0.0009 -0.0004 ± 0.0009
10 chess king rook vs king pawn 3196 36 2 0.2295 0.1265 0.1221 0.0044 ± 0.0098 0.1074 ± 0.0605
11 climate model crashes 540 18 2 0.1324 0.1055 0.1051 0.0004 ± 0.0048 0.0272 ± 0.0214
12 congressional voting records 232 16 2 0.0522 0.0538 0.0530 0.0007 ± 0.0017 -0.0009 ± 0.0024
13 connectionist bench sonar 208 60 2 0.3215 0.3355 0.3107 0.0248 ± 0.0761 0.0108 ± 0.0478
14 contraceptive method choice 1473 9 3 0.5880 0.5789 0.5734 0.0055 ± 0.0078 0.0147 ± 0.0181
15 credit approval 653 15 2 0.2068 0.2009 0.1962 0.0047 ± 0.0113 0.0106 ± 0.0112
16 dermatology 358 34 6 0.2114 0.2112 0.2083 0.0029 ± 0.0170 0.0030 ± 0.0191
17 echocardiogram 62 7 2 0.3168 0.2909 0.3222 -0.0313 ± 0.1101 -0.0055 ± 0.0218
18 ecoli 336 7 8 0.3050 0.2934 0.2866 0.0068 ± 0.0141 0.0184 ± 0.0182
19 fertility 100 9 2 0.2059 0.2153 0.2111 0.0042 ± 0.0122 -0.0052 ± 0.0158
20 haberman survival 306 3 2 0.3389 0.3493 0.3355 0.0138 ± 0.0097 0.0034 ± 0.0131
21 hayes roth 132 4 3 0.5816 0.5883 0.5866 0.0017 ± 0.0190 -0.0050 ± 0.0353
22 heart disease cleveland 297 13 5 0.5222 0.5193 0.5448 -0.0256 ± 0.0520 -0.0226 ± 0.0372
23 hepatitis 80 19 2 0.1626 0.1704 0.1609 0.0094 ± 0.0174 0.0016 ± 0.0413
24 hill valley with noise 606 100 2 0.5076 0.5053 0.5046 0.0007 ± 0.0033 0.0030 ± 0.0046
25 hill valley without noise 606 100 2 0.5031 0.5017 0.5000 0.0017 ± 0.0046 0.0031 ± 0.0049
26 image segmentation 210 19 7 0.2576 0.2347 0.2355 -0.0008 ± 0.0202 0.0221 ± 0.0287
27 indian liver patient 579 10 2 0.3688 0.3641 0.3678 -0.0036 ± 0.0089 0.0010 ± 0.0147
28 ionosphere 351 34 2 0.1512 0.1610 0.1573 0.0037 ± 0.0111 -0.0061 ± 0.0236
29 iris 150 4 3 0.0899 0.0999 0.0839 0.0159 ± 0.0139 0.0060 ± 0.0124
30 magic gamma telescope 19020 10 2 0.3118 0.3012 0.2945 0.0067 ± 0.0036 0.0173 ± 0.0059

Table 3.2: Out-of-sample Gini impurity score (a lower score is better) on the first 30 datasets
(out of 61 datasets) from the UCI machine learning repository trained with maximum depth
7 and minbucket 10% over entire dataset where n, p and K denote the number of data points,
the number of features, and the number of classes of each dataset respectively. A positive
mean improvement indicates OCT-SA having better performance than OCT or CART.

SA and CART select a different additional feature: curtosis for OCT-SA and entropy for

CART. OCT-SA selects the additional feature which can significantly improve the overall

performance of OCT-SA over OCT by 7.95% (0.1090 vs 0.1885).

Figures 3.6 and 3.7 demonstrate how performance and runtime of OCT-SA, OCT, and

CART of the banknote authentication dataset get affected as the maximum depth increases.

We conduct the model training on one of the five data splits and it is the same data split

used to train OCT-SA, OCT and CART in Figure 3.3, 3.4, and 3.5. In terms of performance

measured as out-of-sample Gini impurity score (a lower score is better), OCT-SA performs

better than both OCT and CART at all maximum depths while the performance starts
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Mean out-of-sample Mean improvement
Gini impurity score of OCT-SA over

No. Dataset n p K CART OCT OCT-SA OCT CART
31 mammographic masses 830 5 2 0.2455 0.2487 0.2431 0.0056 ± 0.0089 0.0025 ± 0.0055
32 monks problems 1 124 6 2 0.2735 0.2230 0.2196 0.0034 ± 0.0217 0.0538 ± 0.0461
33 monks problems 2 169 6 2 0.4507 0.4510 0.4430 0.0080 ± 0.0392 0.0077 ± 0.0435
34 monks problems 3 122 6 2 0.1108 0.1220 0.1149 0.0071 ± 0.0090 -0.0041 ± 0.0115
35 mushroom 5644 22 2 0.0878 0.0735 0.0761 -0.0026 ± 0.0116 0.0117 ± 0.0070
36 optical recognition 3823 64 10 0.6606 0.5932 0.5965 -0.0033 ± 0.0079 0.0641 ± 0.0205
37 ozone level detection eight 1847 72 2 0.1159 0.1154 0.1147 0.0007 ± 0.0034 0.0011 ± 0.0070
38 ozone level detection one 1848 72 2 0.0579 0.0569 0.0532 0.0038 ± 0.0026 0.0047 ± 0.0013
39 parkinsons 195 22 2 0.2303 0.1434 0.1162 0.0272 ± 0.0331 0.1141 ± 0.0413
40 pen based recognition 7494 16 10 0.5828 0.5706 0.5536 0.0170 ± 0.0306 0.0292 ± 0.0110
41 planning relax 182 12 2 0.4189 0.4095 0.4091 0.0004 ± 0.0053 0.0098 ± 0.0158
42 qsar biodegradation 1055 41 2 0.3114 0.2691 0.2764 -0.0073 ± 0.0150 0.0350 ± 0.0113
43 seeds 210 7 3 0.1327 0.1434 0.1155 0.0279 ± 0.0218 0.0172 ± 0.0202
44 seismic bumps 2584 18 2 0.1139 0.1147 0.1150 -0.0003 ± 0.0019 -0.0011 ± 0.0012
45 skin segmentation 245057 3 2 0.1602 0.0987 0.1026 -0.0039 ± 0.0014 0.0576 ± 0.0008
46 soybean small 47 35 4 0.0700 0.0600 0.0600 0.0000 ± 0.1225 0.0100 ± 0.0945
47 spambase 4601 57 2 0.2535 0.1773 0.1689 0.0084 ± 0.0034 0.0846 ± 0.0012
48 spect heart 80 22 2 0.3813 0.3939 0.3890 0.0049 ± 0.0143 -0.0077 ± 0.0161
49 spectf heart 80 44 2 0.2787 0.3493 0.3342 0.0151 ± 0.0378 -0.0556 ± 0.1000
50 statlog german credit 1000 20 2 0.3649 0.3687 0.3638 0.0049 ± 0.0100 0.0011 ± 0.0051
51 statlog landsat 4435 36 6 0.3967 0.3550 0.3494 0.0056 ± 0.0158 0.0473 ± 0.0082
52 teaching assistant 151 5 3 0.5992 0.5968 0.6084 -0.0117 ± 0.0284 -0.0093 ± 0.0297
53 thoraric surgery 470 16 2 0.2489 0.2528 0.2557 -0.0030 ± 0.0087 -0.0068 ± 0.0086
54 thyroid disease ann 3772 21 3 0.0866 0.0866 0.0866 0.0000 ± 0.0000 0.0000 ± 0.0000
55 thyroid disease new 215 5 3 0.1348 0.1200 0.1140 0.0060 ± 0.0305 0.0208 ± 0.0245
56 tic tac toe endgame 958 9 2 0.3645 0.3680 0.3680 0.0000 ± 0.0001 -0.0035 ± 0.0063
57 wall following robot 2 5456 2 4 0.0631 0.0631 0.0631 0.0000 ± 0.0000 0.0000 ± 0.0000
58 wall following robot 24 5456 24 4 0.2357 0.1408 0.1406 0.0002 ± 0.0033 0.0951 ± 0.0068
59 wine 178 13 3 0.1669 0.1219 0.0981 0.0238 ± 0.0579 0.0688 ± 0.0546
60 yeast 1484 8 10 0.6342 0.6111 0.6035 0.0076 ± 0.0028 0.0307 ± 0.0065
61 zoo 101 16 7 0.1560 0.1728 0.1484 0.0244 ± 0.0170 0.0075 ± 0.0109

Table 3.3: Out-of-sample Gini impurity score (a lower score is better) on the last 31 datasets
(out of 61 datasets) from the UCI machine learning repository trained with maximum depth
7 and minbucket 10% over entire dataset where n, p and K denote the number of data points,
the number of features, and the number of classes of each dataset respectively. A positive
mean improvement indicates OCT-SA having better performance than OCT or CART.

to stabilize at maximum depth 5, which indicates that no deeper split can improve model

performance. On the other hand, OCT performs worse than CART at maximum depth 2

but starts to perform better at maximum depth 3 where both OCT and CART stabilize.

This points out that OCT-SA can better utilize a larger search space and find a better model

at a deeper maximum depth. In terms of runtime, CART runs significantly fast within only

1 second across all maximum depths. OCT-SA requires relatively the same amount of time

to generate a model across all maximum depths with approximately 20 seconds. Since OCT

is trained over 100 random warm starts while CART has no warm start and starts with a

single root node, this is a reason why OCT requires longer runtime than CART. Regarding
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Figure 3.3: OCT-SA of banknote authentication dataset trained with maximum depth 7 and
minbucket 10% over entire dataset. The OCT-SA model has 5 splits and achieves out-of-
sample Gini impurity score (a lower score is better) of 0.1090.
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Figure 3.4: OCT of banknote authentication dataset trained with maximum depth 7 and
minbucket 10% over entire dataset. The OCT model has 2 splits and achieves out-of-sample
Gini impurity score (a lower score is better) of 0.1885.

OCT-SA, the runtime increases as the maximum depth increases starting from 240 seconds

at maximum depth 2 and reaching approximately 330 seconds at maximum depth 3 and

above. The longer runtime of OCT-SA as compared to OCT is due to a larger number of

iterations required by OCT-SA to optimize a model. As specified by the geometric cooling

schedule, OCT-SA keeps running until the temperature drops below a predefined threshold

where optimization at each temperature level is equivalent to an iteration of local search in
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Figure 3.5: CART of banknote authentication dataset trained with maximum depth 7 and
minbucket 10% over entire dataset. The CART model has 5 splits and achieves out-of-sample
Gini impurity score (a lower score is better) of 0.1904.
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Figure 3.6: Out-of-sample Gini impurity score (a lower score is better) on banknote authen-
tication dataset trained with maximum depth 2 to 7 and minbucket 10% over entire dataset.

OCT. On the other hand, OCT stops whenever no further improvement can be made from

2 consecutive iterations of local search.
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Figure 3.7: Runtime (in seconds) of banknote authentication dataset trained with maximum
depth 2 to 7 and minbucket 10% over entire dataset.

3.4 Conclusion

Our research suggests that simulated annealing is beneficial to the classification tree growing

process. OCT-SA successfully improves upon OCT by achieving better average out-of-sample

Gini impurity score for all maximum depths but it is only statistically significant to maximum

depth 3, 4 and 7.
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Chapter 4

Optimal Policy Trees with Simulated

Annealing (OPT-SA)

To improve on predictive performance of Optimal Prescriptive Trees, Amram et al. [4] de-

veloped Optimal Policy Trees (OPT). Even though OPT successfully improves on Optimal

Prescriptive Trees by separating rewards estimation from the objective function, OPT still

uses local search like that of Optimal Classification Trees (OCT), which does not guarantee

global optimality. Since Optimal Classification Trees with Simulated Annealing (OCT-SA)

successfully improves on OCT, in this chapter we apply simulated annealing in the process

of building OPT and obtain Optimal Policy Trees with Simulated Annealing (OPT-SA).

We report computational results on 10 real-world datasets from the UCI machine learning

repository and Interpretable AI [51]. By comparing mean out-of-sample of mean rewards, we

find that OPT-SA outperforms OPT on 3 out of 10 datasets and outperforms Classification

And Regression Trees (CART) on 4 out of 10 datasets.

4.1 Introduction

Bertsimas et al. [14] developed Optimal Prescriptive Trees to prescribe an optimal treatment

or a personalized treatment which leads to an optimal outcome for a particular subgroup
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of subjects. The authors define treatments as anything that can be controlled or changed

in a particular problem with the expectation to achieve better outcomes. For example, in

order to improve the probability that patients survive, we may alter the dosage of medicines.

Another example is to increase the probability that customers will buy strawberries where

department stores adjust prices. Even though Optimal Prescriptive Trees has proven to

effectively prescribe optimal treatments in certain scenarios, there are cases where Optimal

Prescriptive Trees fail to provide realistic results. This failure is due to the design of the

objective function, where Optimal Prescriptive Trees combines both rewards estimation and

treatment assignment within the same objective function. This design may lead to poor

rewards estimation with highly efficient treatment assignment and vice versa. In order to fix

this weak point of Optimal Prescriptive Trees, Amram et al. [4] developed Optimal Policy

Trees (OPT) by separating the rewards estimation process so as to be independent from

treatment assignment when constructing the decision trees. This approach allows reward

estimators to independently achieve the optimal performance without compromising with

the qualities of treatment assignment and vice versa. However, OPT still applies local search

to iteratively find the next best tree transformation. Consequently, this mechanism could

lead to local minimas as some worse transformations may lead to better final models. Since

Optimal Classification Trees with Simulated Annealing (OCT-SA) was proven to successfully

improve on Optimal Classification Trees (OCT), in this paper we apply simulated annealing

in OPT and obtain Optimal Policy Trees with Simulated Annealing (OPT-SA).

Simulated Annealing is an optimization method that guarantees to provide a global

optimal solution asymptotically under an appropriate cooling schedule [see 12, 58]. While

local search always transforms a tree to a neighboring tree with a better objective value,

simulated annealing allows some bad transformations which could lead to a better final tree.

A cooling schedule is a main controller that drives a tree transformation depending a current

temperature and a difference in objective values between the current tree and a neighboring

tree. At high temperatures, the probability to accept worse transformations is high. As
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the temperatures decrease, the chance to accept bad transformations also keeps decreasing.

Simulated annealing terminates when it reaches the predefined lowest temperature or no tree

transformation happens for two consecutive temperatures. In OPT-SA, we are interested in

figuring out alternative treatments which may lead to the better outcomes than the observed

outcomes. However, in the observed datasets, not all possible treatment options exist.

In this study, we use counterfactual outcome estimators to estimate those possible out-

comes. For example, by following a medical guideline, a physician typically prescribes a

specific dosage for a certain type of patient and it is classified as an observed treatment.

However, it could be possible that a medical guideline may fail to recommend an optimal

dosage, a dosage which can provide the best outcome for that patient. In order to predict

what would have happened to that type of patient if a physician had prescribed a differ-

ent dosages, we can use counterfactual outcome estimators to estimate those counterfactual

outcomes. Some examples of counterfactual outcome estimators include Random Forest

and XGBoost models. These counterfactual models make predictions on all treatment op-

tions that we are interested to consider. Generally, these treatment options are specific to

each dataset and are in a subset of observed treatments or treatments that were actually

prescribed as recorded in the dataset. We will refer to these counterfactual outcomes as

rewards. These predicted rewards are then used to build an optimal policy tree to decide

the optimal policy or the best treatment option for each type of subject.

The main differences between OPT-SA and OCT-SA are the objective values where

OCT-SA uses the Gini impurity scores while OPT-SA uses the mean rewards, which are

specific to each problem. In addition, OCT-SA tries to minimize Gini impurity scores while

OPT-SA may want to minimize or maximize the outcomes. For example, in the red wine

quality problem from the UCI machine learning data repository [6], OPT-SA aims to predict

the optimal pH value to maximize the red wine quality. Another example is to predict the

optimal house age in order to minimize the house price of unit area, as buyers are interested

in buying the cheapest house.
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There are two main contributions we have made in this paper. First, OPT-SA is the

first application of the simulated annealing algorithm on policy trees that guarantees to pro-

vide optimal solution under an appropriate cooling schedule. Second, we report computing

results on the same public grocery pricing dataset from Amram et al. [4] and 9 additional

real world datasets from the UCI machine learning repository. These results demonstrate

the improvement of OPT-SA over OPT on 3 datasets on out-of-sample performance while

maintaining interpretability.

This paper is organized as follows. In Section 4.2, we demonstrate how to apply simulated

annealing in OPT construction. The demonstration emphasizes the difference between OPT-

SA and OCT-SA. In Section 4.3, we evaluate OPT-SA on the same grocery pricing dataset

from Amram et al. [4] and 9 additional real-world datasets from the UCI machine learning

repository. In Section 4.4, we make our concluding remarks.

4.2 Algorithms

Since the OCT-SA framework performed better than OCT on classification problems of 61

real-world datasets from the UCI machine learning data repository, we also apply the similar

simulated annealing framework to construct OPT-SA. There are five algorithms involved in

OPT-SA construction as shown in Figure 4.1, which is similar to that of OCT-SA. The entire

flow of OPT-SA is described in Algorithm 6, which accepts seven inputs: an initial policy

tree T1 as a random warm start tree; training data consisting of feature value X; estimated

rewards rw; geometric temperature decay rate c < 1 of a cooling schedule; Markov chain

length l or number of nodes to optimize per iteration; neighbor search radius r or boundary

of solution search space; and scaling factor β to adjust difference in mean rewards to be in

the range from 0 to 1. Then Algorithm 6 outputs the optimal policy tree as Tbest, which is

an optimal transformation of the initial policy tree T1 with simulated annealing. Algorithm

6 calls Algorithm 7 to rank and select a tree transformation from candidate trees. Algorithm
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7 determines the quality of each tree transformation by gradually picking a better candidate

tree as the temperature in the geometric cooling schedule decreases. Algorithm 8 generates

these candidate trees. There are three options to generate candidate trees by updating the

current subtree root node: by replacing with the left subtree, by replacing with the right

subtree, or by updating a parallel split. In order to update a parallel split, Algorithm 8 calls

Algorithm 9 to generate options to transform the current subtree by updating the branching

at the subtree root node with different features and cutoff values. Finally, Algorithm 6

calls Algorithm 10 to determine a probability to transform the current subtree into the

neighboring subtree based on their mean reward scores and the current temperature in the

annealing schedule.

The mechanism of the simulated annealing algorithm is driven by the geometric cooling

schedule, the difference in energy, and the acceptance probability as shown in Equations

(4.1), (4.2), and (4.3):

tempk+1 = α · tempk, (4.1)

∆E = |MeanRewardscurrent −MeanRewardsneighbor|, (4.2)

probk = e
−∆E

β·tempk . (4.3)

where

• temp denotes temperature

• k denotes iteration number

• α denotes temperature decay rate

• ∆E denotes difference in energy between a current and a neighbor state

• MeanRewards denotes mean rewards score

• prob denotes probability to transform a tree from a current state to a neighbor state
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• e denotes the Euler’s number equals 2.7183

• β denotes a scaling factor to adjust ∆E to be in a range from 0 to 1

From our empirical experiments, we found α = 0.95 is an appropriate temperature decay

rate for the 10 real-world datasets we used to evaluate OPT-SA.

The main difference between OCT-SA and OPT-SA is the objective function, where

OCT-SA uses a Gini impurity score, while OPT-SA uses a mean rewards score, which is

specific to each problem. In OCT-SA, we always aim to minimize Gini impurity scores. On

the other hand, OPT-SA may want to minimize or maximize mean rewards score depending

on the policy type. To simply the implementation of OPT-SA, we convert all maximization

problems into minimization problems. In addition, each policy dataset has a different mag-

nitude for its mean rewards and the scaling factor β is applied to adjust a mean rewards

score to be in a similar range from 0 to 1, like the Gini impurity score.

We applied the doubly robust method to estimate rewards for almost all datasets where

propensity score is also taken into account. We use the direct method for the grocery pricing

dataset because an acceptable propensity score estimator cannot be trained with the available

observed dataset, possibly due to the lack of correlation between price (the treatment) and

the other features as mentioned in Interpretable AI [51] documentation. In order to avoid

overfitting, we apply penalty term γ by multiplying it with the complexity parameter cp

where cp equals the sum of the number of branching nodes.

4.2.1 Overall Architecture of OPT-SA in Algorithm 6: Simulated

Annealing

In Algorithm 6, we iteratively optimize the initial policy tree structure T1 until it reaches the

final policy tree structure Tbest. The cooling schedule determines the number of iterations

iterationstotal to optimize the tree where the temperature starts at 1 and gradually decreases

geometrically with the decay rate c < 1 until reaching the final temperature. The algorithm
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Algorithm 6 SimulatedAnnealing
Input: Initial policy tree T1; Training data X; Estimated rewards rw;

Geometric decay rate c < 1; Markov chain length l; Neighbor search radius r;
Scaling factor β

Output: Optimal policy tree Tbest

1: temp0 ← 1 ▷ temp0 is initial temperature
2: iterationstotal ← kmin − 1 where temp0 · ck < 0.01
3: k ← 1 ▷ k is iteration number
4: Tbest ← T1 ▷ Tbest keeps the best tree
5: repeat
6: tempk ← temp0 · ck ▷ Temperature based on geometric cooling schedule
7: rankk ← RankParallelSplit(iterationstotal, k, r)
8: nodesoptimized ← ∅ ▷ Keep track of optimized nodes at current temperature

▷ Get a set of all current split nodes or leaf nodes in Tk eligible to be split further
9: nodesunoptimized ← SplitNodes(Tk, X, rw)

10: repeat
11: nodesunoptimized ← nodesunoptimized − nodesoptimized

12: noderandom ← RandomNode(nodesunoptimized) ▷ Pick one random node
13: nodesunoptimized ← nodesunoptimized − {noderandom}
14: nodesoptimized ← nodesoptimized ∪ {noderandom}

▷ Find subtree of the random node and calculate score
15: Subtreerandom ← Subtree of Tk where noderandom is root
16: I ← {i: xi is assigned to a leaf contained in Subtreerandom}
17: MeanRewardscurrent ←MeanRewards(Subtreerandom, XI , rwI)

▷ Find a neighbor of the random subtree and calculate score
18: NeighborSubtreerandom ← NeighborSubtree(Subtreerandom, XI , rwI , rankk)
19: MeanRewardsneighbor ←MeanRewards(NeighborSubtreerandom, XI , rwI)

▷ Determine probability to transform the current subtree to its neighbor state
20: prob← CalculateProbability(MeanRewardscurrent,MeanRewardsneighbor, tempk, β)
21: if prob ≥ RandomNumber(0.1, 1) then
22: Tk ← Replace Subtreerandom in Tk with NeighborSubtreerandom
23: if MeanRewards(Tk, X, rw) < MeanRewards(Tbest, X, rw) then
24: Tbest ← Tk ▷ Update the best tree if Gini impurity score is lower
25: end if
26: end if
27: until nodesunoptimized = ∅
28: if |nodesoptimized| = 0 then ▷ No node can be optimized at current temperature

▷ Move to the last iteration of the current temperature band
29: k ← kmax where RankParallelSplit(iterationstotal, k, r) returns rankk
30: end if
31: k ← k + 1
32: until k = iterationstotal
33: return Tbest
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stops when the temperature is below 0.01. OPT-SA denotes each iteration with a different

temperature level as an iteration k where OPT-SA derives Tk by optimizing over Markov

chain length l nodes. At higher temperatures, OPT-SA has a higher probability of accepting

worse transformations or neighboring trees within the neighbor search radius r.

As with OCT-SA, we implemented OPT-SA in Python version 3.8.15. Since OCT-SA

includes OCT as a warm start solution, we also include OPT as a warm start solution for

OPT-SA. We constructed OPT warm start solutions using an OPT package of Interpretable

AI software [51] version 3.2.0 in Julia version 1.9.0. Then we exported those OPT models

into text files and imported them into OPT-SA as warm start solutions. We ran OPT-SA on

a Windows laptop and also on MIT Supercloud [84]. In addition, we constructed the CART

warm start solutions with scikit-learn Python package [78]. We used a regression tree from

the CART module as one of the warm start solutions for OPT-SA. In contrast, we use a

classification tree from the CART module as one of the warm solutions for OCT-SA.

4.2.2 Algorithm 7: Rank Parallel Split

Algorithm 7 RankParallelSplit
Input: Total number of iterations iterationstotal in simulated annealing;

Current iteration number k in simulated annealing;
Neighbor search radius r

Output: Selected rank rankselected of parallel split to be used in Algorithm ??

1: rankselected ← 1 ▷ 1 is the best rank
2: rankset ← {r, r − 1, r − 2, ..., 1} ▷ Set of all ranks in neighbor search radius r
3: for i in rankset do
4: if k < iterationstotal

i
then

5: rankselected ← i
6: break
7: end if
8: end for
9: return rankselected

Algorithm 7 in OPT-SA performs exactly the same task as Algorithm 2 in OCT-SA where

it assigns ranks to candidate trees and selects a specific rank based on a current simulated
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annealing temperature. Algorithm 6 passes three inputs into Algorithm 7: the total number

of iterations iterationstotal that OPT-SA will transform a tree; a current iteration number

k; and a neighbor search radius r whose optimal value OPT-SA determines from hyperpa-

rameter tuning. Then Algorithm 7 outputs a select rank of candidate subtrees into which

OPT-SA will convert the current subtree. Unlike OPT, OPT-SA may not select the best tree

transformation in terms of objective values. For example, when the neighbor search radius

r = 3, OPT-SA selects the tree with the third-best objective value at the first iteration.

Then as the temperature decreases and reaches a certain cutoff, OPT-SA will start to select

the second-best tree for a tree transformation. Finally, OPT-SA will select the best tree

when a temperature is low enough. This candidate state ranking mechanism helps OPT-SA

to converge faster than allowing random candidate tree transformations, as a traditional

simulated annealing algorithm usually does, while also preventing overshooting.

We outline the implementation of candidate state ranking in Algorithm 7. For the search

radius r, we divide the entire cooling schedule into r temperature bands: the 1st, the 2nd,

..., and the rth temperature band ranging from the highest to the lowest temperature. If

iterationstotal = S, then OPT-SA defines the last iteration number of each of the r temper-

ature bands as S
r
, S
r−1

, S
r−2

, ..., S
2
, S. We design this temperature band and iteration number

mapping based on empirical experiments of the 10 datasets we used to evaluate our OPT-SA

algorithm. This design is also similar to that of OCT-SA. In terms of the candidate state

selection for each temperature band, OPT-SA selects the rth best state transition for the

1st temperature band, then selects the (r − 1)th best state transition for the 2nd temper-

ature band, and finally selects the 1st best state transition for the rth temperature band,

i.e., the final temperature band. To give an example, let the total number of iterations

iterationstotal = 90 and the search radius r = 3. We then divide this cooling schedule into

3 temperature bands: the 1st temperature band for the iteration number 1 to 30, the 2nd

temperature band for the iteration number 31 to 45, and the 3rd temperature band for the

iteration number 46 to 90 where OPT-SA selects the 3rd, the 2nd and the 1st best state
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transition respectively.

4.2.3 Algorithm 8: Neighbor Subtree

Algorithm 8 illustrates how OPT-SA transforms the policy tree. OPT-SA passes four inputs

into Algorithm 8: an initial policy subtree Subtreeinitial to optimize; training data XI which

is the subset of training data X in the current subtree that OPT-SA optimizes; estimated

rewards rw; and selected rank rankselected which is derived by Algorithm 7. Algorithm 8

outputs a policy subtree Subtreeneighbor which is a subtree in the neighboring area of the

Subtreeinitial. Similar to OPT, there are three options to update the current subtree of

OPT-SA: updating the parallel split, pruning the left subtree, or pruning the right subtree.

The policy subtree Subtreeneighbor may be either an optimal or suboptimal optimization at

the root node of the subtree Subtreeinitial, as determined by the selected rank rankselected

where rankselected = r corresponds to the rth best neighboring subtree when updating a

parallel split.

4.2.4 Algorithm 9: Optimize Parallel Split

Being almost the same as that of OPT, Algorithm 9 optimizes a parallel split by iterating

through all features and cutoff values but does not always update the parallel split with the

option that results in the best objective value. OPT-SA passes four inputs to Algorithm

9. These four inputs to Algorithm 9 are exactly the same as the four inputs to Algorithm

8: an initial policy subtree Subtreeinitial to optimize; training data XI , which is the subset

of training data X in the current subtree that OPT-SA optimizes; estimated rewards rwI ;

and selected rank rankselected, which is derived by Algorithm 7. Assuming rankselected = r,

Algorithm 9 outputs the rth best optimized subtree Subtreeparallel by updating the root

node of the subtree Subtreeinitial and the mean rewards score MeanRewardsparallel of this

optimized subtree.

In order for Algorithm 9 to optimize a parallel split by iterating through all possible cutoff
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Algorithm 8 NeighborSubtree
Input: Initial policy subtree Subtreeinitial to optimize;

Training data XI ;
Estimated rewards rwI ;
Selected rank rankselected of parallel split

Output: Neighbor classification subtree Subtreeneighbor with optimal or subopti-
mal split at root of Subtreeinitial

▷ Optimize parallel split of initial subtree and calculate score
1: Subtreeparallel,MeanRewardsparallel ← OptimizeParallelSplit(Subtreeinitial, XI , rwI , rankselected)

▷ ∞ is the worst mean reward score
2: MeanRewardslower ←∞
3: MeanRewardsupper ←∞

▷ Replace initial subtree with its lower or upper subtree and calculate score
4: if Subtreeinitial is non-leaf node then
5: Subtreelower ← Lower subtree of Subtreeinitial
6: MeanRewardslower ←MeanRewards(Subtreelower, XI , rwI)

7: Subtreeupper ← Upper subtree of Subtreeinitial
8: MeanRewardsupper ←MeanRewards(Subtreeupper, XI , rwI)
9: end if

▷ Determine neighbor subtree with the mean rewards score (a lower score is better)
10: if (MeanRewardsparallel ≤ MeanRewardslower) and (MeanRewardsparallel ≤

MeanRewardsupper) then
11: Subtreeneighbor ← Subtreeparallel
12: else
13: if MeanRewardslower ≤MeanRewardsupper then
14: Subtreeneighbor ← Subtreelower

15: else
16: Subtreeneighbor ← Subtreeupper
17: end if
18: end if
19: return Subtreeneighbor
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Algorithm 9 OptimizeParallelSplit
Input: Initial policy subtree Subtreeinitial to optimize parallel split;

Training data XI ;
Estimated rewards rwI ;
Selected rank rankselected of parallel split

Output: Subtree Subtreeparallel with optimized parallel split at root of Subtreeinitial
Score MeanRewardsparallel of the optimized subtree

1: n′ ← Number of samples in XI

2: p′ ← Number of features in XI

3: candidates← ∅

▷ Iterate through all p′ features
4: for v = 1, 2, 3, ..., p′ do
5: featureV alues← {XIuv : u = 1, 2, 3, ..., n′}
6: featureV alues← Sort featureV alues in ascending order
7: f ← Number of unique feature values in featureV alues
8: branchV alues← {1

2
(featureV aluesm + featureV aluesm+1) : m = 1, 2, 3, ..., f − 1}

▷ Iterate through all branch values of feature v
9: for m = 1, 2, 3, ..., f − 1 do

10:
▷ Update split at root node and calculate score

11: Subtreeoptimized ← Split root of Subtreeinitial with feature v and branch value m
12: MeanRewardsoptimized ←MeanRewards(Subtreeoptimized, XI , rwI)

▷ Keep only one subtree for each unique score
13: if no subtree in candidates with score equals MeanRewardsoptimized then
14: candidates← candidates ∪ {(Subtreeoptimized,MeanRewardsoptimized)}
15: end if
16: end for
17: end for

▷ Pick final parallel optimized subtree based on score ranking
18: candidatessorted ← Sort candidates by MeanRewardsoptimized score from best to worst
19: Subtreeparallel,MeanRewardsparallel ← Pick subtree and score at rankselected from

candidatessorted
20: return Subtreeparallel,MeanRewardsparallel
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values of each feature, we place all unique feature values in ascending order and calculate

midpoints between each pair of two consecutive feature values. Since OPT-SA does not

always select the feature and cutoff value that gives the best objective value, the algorithm

needs to keep track of the r best options to update a parallel split, where rankselected = r. If

there are multiple options to update a parallel split that results in the same objective value,

the algorithm only keeps the first option.

4.2.5 Algorithm 10: Calculate Probability

Algorithm 10 CalculateProbability
Input: Score of a current policy subtree Meancurrent;

Score of a neighbor policy subtree ginineighbor;
Current temperature tempk at iteration number k;
Scaling factor β

Output: Probability prob to transform current subtree into neighbor subtree

1: prob← 0 ▷ No subtree transformation if MeanRewardsneighbor = MeanRewardscurrent
2: if MeanRewardsneighbor < MeanRewardscurrent then ▷ A lower score is better
3: prob← 1 ▷ Always transform to neighbor subtree with better score
4: else

▷ Calculate probability from difference in energy and current temperature
5: if MeanRewardsneighbor > MeanRewardscurrent then
6: ∆E ← |MeanRewardscurrent −MeanRewardsneighbor| ▷ Difference in energy
7: prob← e

−∆E
β·tempk ▷ Euler’s number e = 2.7183

8: end if
9: end if

To drive probabilistic transformations to a worse neighboring state, Algorithm 10 calcu-

lates the probability of such transformations. OPT-SA passes four inputs into Algorithm 10:

the mean rewards score of the current policy subtree MeanRewardscurrent; the mean rewards

score of the neighbor policy subtree MeanRewardsneighbor; the current temperature tempk

at the current iteration number k; and the scaling factor β to adjust the difference in energy

∆E to be in the range from 0 to 1. Algorithm 10 outputs a probability prob to transform

the current policy subtree whose mean rewards score equals MeanRewardscurrent into the
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neighbor subtree whose mean rewards score equals MeanRewardsneighbor. We calculate the

transformation probability from the difference in energy ∆E and the current temperature

tempk as shown in Equation (4.3). On the other hand, if the mean rewards score of the

neighbor policy subtree MeanRewardsneighbor is better than that of the current subtree,

i.e., MeanRewardscurrent, the probability to transform the current subtree to this better

subtree equals 1, which means we always allow transformations to a better subtree. When-

ever MeanRewardsneighbor = MeanRewardscurrent, we never make transformation between

states with the same objective value, so the probability of transformation is set to 0.

4.3 Results on Real-World Datasets and Discussion

4.3.1 Experimental Setup

To compare OPT-SA with OPT in Amram et al. [4], we construct OPT-SA on the same

grocery pricing dataset which is the only public real-world dataset used in that paper. In

addition, we run the experiments on 9 real-world datasets from the UCI machine learning

data repository. These datasets have the number of data points ranging from 301 to 97295;

and the number of features ranging from 5 to 14. Their outcomes and treatments are either

continuous or binary. To make all feature values feasible for Algorithm 9, we convert all

feature values into numeric values.

We split each of the 10 datasets into train, validation, and test sets with the ratio of

train:validation:test being 35:15:50. The reason that we allocate a large amount of data

points to the test set is because OPT-SA needs to construct a separate rewards estimator

for the training set and the test set in order to avoid information leakage. In terms of

minbucket, we tried several minbucket values: 1%, 3%, 5%, and 10% of the total number of

data samples. We found that 3% is the highest value of minbucket for most of the datasets

before OPT throws the error of not having enough data samples for each treatment option.

However, the minbucket of the grocery pricing dataset needs to be as low as 1% as there are
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No. Dataset V ariableoutcome Typeoutcome V ariabletreatment Typetreatment n p

1 auto mpg miles per gallon continuous acceleration continuous 392 6
2 credit approval policy approval status binary anonymized attribute binary 653 14
3 grocery pricing buying decision binary price continuous 97295 7
4 wine quality red quality continuous pH continuous 694 10
5 wine quality white quality continuous residual sugar continuous 1275 10
6 used car selling price continuous km driven continuous 301 7
7 garments worker productivity productivity continuous incentive continuous 673 13
8 concrete compressive strength concrete compressive strength continuous water continuous 1030 7
9 real estate house price of unit area continuous house age continuous 414 5
10 qsar fish toxicity LC50 continuous MLOGP continuous 908 5

Table 4.1: Variable and type of outcome and treatment, number of samples n, and number of
features p of the 10 datasets from the UCI machine learning repository and Interpretable AI
[51]

not that many data samples for some treatment options.

Regarding a type of rewards estimator, OPT-SA utilizes Random Forest and uses 100

trees in a forest of all datasets, except the grocery pricing dataset. Since the grocery pricing

dataset is much larger than other datasets, OPT-SA utilizes Random Forest with 1000 trees

in a forest. We train policy trees with maximum depths in the range from 2 to 5, as policy

trees with the maximum depth 5 are still interpretable while being complex enough to capture

meaningful splits. We reformulate the OPT-SA optimization problems to resemble those of

OCT-SA. Hence, we can use similar hyperparameters where Markov chain length l = 2 and

search radius r = 3. We need to tune only complexity penalty γ. As in OCT-SA, OPT-

SA first tunes a set of hyperparameters over a validation dataset and retrains the model

using the combination of validation and training datasets over 103 warm start solutions (i.e.,

including CART, OPT, and a single root node in addition to the 100 random warm starts).

Finally, the policy with the best objective value among all 103 optimized trees is the

OPT-SA. We then evaluate out-of-sample performance of this OPT-SA model on the unseen

test dataset. We perform the experiments on 5 different train-test data splits and average

the results as well as getting standard deviations. The characteristics of each dataset are

illustrated in Table 4.1 where we list the variable and type of both the outcome and treatment,

the number of samples n, and the number of features p of each dataset.
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Mean out-of-sample of Mean improvement
mean rewards of OPT-SA over

No. Dataset Policy n p CART OPT OPT-SA OPT CART
1 auto mpg maximization 392 6 23.3280 23.8520 23.4420 -0.4100 ± 0.6435 0.1140 ± 0.3706
2 credit approval policy maximization 652 14 0.4272 0.4486 0.4472 -0.0014 ± 0.0134 0.0200 ± 0.0162
3 grocery pricing maximization 92588 7 0.0556 0.0556 0.0556 0.0000 ± 0.0000 0.0000 ± 0.0000
4 wine quality red maximization 694 10 5.4437 5.4506 5.4419 -0.0087 ± 0.0162 -0.0018 ± 0.0254
5 wine quality white maximization 1276 10 6.0644 6.0703 6.0805 0.0102 ± 0.0591 0.0161 ± 0.0275
6 used car maximization 300 7 5.2047 5.1220 5.1383 0.0163 ± 0.1137 -0.0664 ± 0.0948
7 garments worker productivity maximization 672 12 0.7518 0.7547 0.7504 -0.0043 ± 0.0024 -0.0014 ± 0.0027
8 concrete compressive strength maximization 1030 7 46.2322 46.2322 45.8659 -0.3663 ± 0.3177 -0.3663 ± 0.3177
9 real estate minimization 414 5 35.9262 36.0852 36.2738 -0.1886 ± 0.4945 -0.3476 ± 0.8438
10 qsar fish toxicity minimization 634 5 4.2368 4.2626 4.2040 0.0586 ± 0.0632 0.0328 ± 0.0398

Table 4.2: Out-of-sample mean rewards (a higher mean rewards is better for maximization
policy and vice versa) on 10 datasets from UCI machine learning repository trained with
maximum depth 5 and minbucket 3% (only grocery pricing uses minbucket 1%) over entire
dataset where Policy, n and p denote the policy type (maximization or minimization), the
number of data points and the number of features of each dataset, respectively. A positive
mean improvement indicates OPT-SA having better performance than OPT or CART.

4.3.2 OPT-SA vs OPT vs CART

In Table 4.2, we calculate the average mean rewards scores across all 5 data splits of CART,

OPT, and OPT-SA. We also calculate the mean improvement of OPT-SA over OPT as well as

the mean improvement of OPT-SA over CART, where a positive mean improvement indicates

that OPT-SA outperforms OPT or CART. As shown in Table 4.2, OPT-SA outperforms

OPT on 3 datasets and also outperforms CART on 4 datasets

The QSAR fish toxicity dataset has the largest performance gap between OPT-SA and

OPT as well as OPT-SA and CART. This dataset involves 6 features which are molecular

descriptors of 908 chemicals and contains 634 data points. We can use these molecular

descriptors to predict quantitative acute aquatic toxicity towards the fish called fathead

minnow (Pimephales promelas). The structure of OPT-SA, OPT, and CART of the QSAR

fish toxicity dataset are as shown in Figure 4.2, 4.3, and 4.4.

Figure 4.5 demonstrates the runtime of OPT-SA, OPT, and CART of the QSAR fish

toxicity dataset when we train these models at different maximum depths ranging from 2 to

5 on one of the five data splits. We use the same data split that we use to train OPT-SA,

OPT, and CART in the Figure 4.2, 4.3, and 4.4. Both CART and OPT spend approximately

the same amount of time to train their models, i.e., around one minute. In contrast, the
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Prescribe 1.0
Mean Reward = 3.799

Figure 4.3: OPT of QSAR fish toxicity dataset trained with maximum depth 5 and minbucket
3% over entire dataset. The OCT model has only one split and achieves out-of-sample mean
rewards score (a lower score is better) of 4.4770.
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Figure 4.5: Runtime (in minutes) of QSAR fish toxicity dataset trained with maximum depth
2 to 5 and minbucket 3% over entire dataset.

runtime of OPT-SA is as high as 12 minutes at maximum depth 2, then rapidly increases to

24 minutes at maximum depth 3, while starting to stabilize at maximum depth 4 with 29

minutes and 31 minutes at maximum depth 5.

One of the main reasons underlying the long runtime of OPT-SA is the number of iter-

ations that OPT-SA runs to optimize a tree. Unlike OPT that terminates whenever no im-

provement can be made for two consecutive rounds, the simulated annealing cooling schedule

determines the number of iterations that OPT-SA runs. Even though OPT-SA may termi-

nate early if no improvement can be made for two consecutive temperatures, it typically runs

for more iterations and leads to optimization over more nodes than in OPT.

Another reason that OPT runs slower than CART is that we implemented OPT on

Python programming language. Python is a widely-used and versatile programming lan-

guage, which is appropriate to prototype our OPT-SA framework. However, the versatility

of Python is a trade-off with speed. In order to significantly speed up model training, Julia

and Cython, where OPT and CART are implemented on, can be good candidates.
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4.4 Conclusion

Simulated annealing benefits decision tree construction and performs better than local search

in reaching global optimality. The results were demonstrated on the 10 real-world datasets

where OPT-SA achieved better out-of-sample mean rewards on 3 datasets compared to OPT

and 4 datasets compared to CART. Even though performance gain was not the case for all

10 datasets, the results imply that there might be certain types of datasets that benefit more

from our simulated annealing framework. We will conduct evaluations on additional datasets

to prove or disprove this hypothesis.
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Chapter 5

Optimal Survival Trees with Simulated

Annealing (OST-SA)

To improve on predictive performance of publicly available survival tree algorithms, Bert-

simas et al. [16] developed Optimal Survival Tree (OST). OST outperforms the existing

survival tree algorithms, especially the well documented and user-friendly algorithms such

as rpart [92] and ctree [50] in R packages [83]. However, OST utilizes local search like that of

Optimal Classification Trees (OCT), which always picks the best solution locally, and may

lead to a suboptimal global solution. Optimal Classification Trees with Simulated Annealing

(OCT-SA) successfully improves on OCT by replacing local search with simulated anneal-

ing approach. Therefore, we also apply the same simulated annealing framework in this

chapter to obtain Optimal Survival Tree with Simulated Annealing (OST-SA). We report

computational results on 10 real-world datasets from SurvSet, an open-source time-to-event

dataset repository. We train OST-SA and OST over the maximum depths ranging from 2

to 7. OST-SA successfully improves over OST for all maximum depths, and the results are

statistically significant with p-values less than 0.05 at any maximum depths higher than 2.

Although improvement was not found for all 10 datasets at the maximum depth 7, OST-SA

achieves better out-of-sample local full likelihood scores on 8 out of 10 datasets compared to
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OST.

5.1 Introduction

Optimal Survival Tree (OST) [16] involves censored data [40]. An example of application in

this area is to predict survival time of patients where we have some censored data because

we lose follow-up with some patients (so we do not know whether or not they are still alive)

or some patients are still alive (so we do not know exactly when they will die) [59]. In

order to predict survival time of censored data, we construct OST. The objective function

of OST is a local full likelihood score used by LeBlanc and Crowley [62] which involves a

cumulative hazard function with the Nelson-Aalen estimator. The curves in each OST node

are the Kaplan-Meier curves which estimate the survival distribution. Evaluation of OST

on a wide variety of both synthetic and real-world datasets shows improvement in accuracy

when comparing with other existing survival tree-based methods like rpart and ctree in R,

especially on large datasets.

Survival analysis involves the study of censored data, i.e., data with unknown time to

event of interest [40]. The events of interest vary among different problem domains. In the

medical domain, an event of interest could be a disease onset, a patient death, or a patient

reaction to a treatment. In the reliability domain, an event of interest could be a hardware

failure, or a software failure [57]. In the economics domain, an event of interest could be a

massive unemployment, inflation, or bankruptcy [26, 37, 38]. In the sociology domain, an

event of interest could be a war, a protest, or a crime [2, 3, 79]. The medical domain is one of

the domains where survival analysis is heavily used [22, 41, 44, 63, 88]. To predict patients’

survival time, we consider patients’ death as events of interest which are binary events.

A survival distribution function is a widely-used technique in survival analysis with a

binary event. First, we use the Nelson–Aalen estimator to generate a cumulative harzard

function. In the case that a death is an event of interest, the Nelson–Aalen estimator
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can estimate a risk of death. Second, we use the Kaplan-Meier curve to plot a survival

distribution function. At a particular time point, the Kaplan-Meier curve demonstrates the

number of patients who survive. In order to make the Kaplan-Meier curve more interpretable,

we can use survival trees to group subjects with a similar survival distribution function

together.

A limited number of survival tree algorithms are publicly available, well documented, and

user-friendly. Two of these algorithms are rpart and ctree in R packages. Even though rpart

and ctree perform well on small datasets, they fail to scale on large datasets. To address

the issue of scalability, Bertsimas et al. [16] developed OST. However, OST still uses the

same decision tree construction framework like that of Optimal Classification Trees (OCT)

where local search does not guarantee global optimality. Since Optimal Classification Trees

with Simulated Annealing (OCT-SA) has successully improved on OCT by replacing local

search with simulated annealing approach, in this paper, we also utilize the same simulated

annealing framework to improve on OST and develop Optimal Survival Tree with Simulated

Annealing (OST-SA).

OST-SA utilizes a similar approach as that of OCT-SA. The main difference is an ob-

jective value: OCT-SA uses a Gini impurity score while OST-SA uses a local full likelihood

score or how well the survival time prediction fits the calculated Kaplan-Meier curve. In

other words, OST-SA aims to minimize the error between its prediction and that of the

Kaplan-Meier curve.

We make two main contributions in this paper. First, OST-SA is the first application

of a simulated annealing algorithm on survival trees that guarantees to provide an optimal

solution under an appropriate cooling schedule. Ying et al. [99] applied simulated annealing

in survival analysis but on a non-tree-based model like a median regression model. Second,

we report computational results on 10 real-world datasets from SurvSet, an open-source

time-to-event dataset repository. These results improve upon the out-of-sample performance

of OST while maintaining interpretability of each model.
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We organizes this paper as follows. In section 5.2, we demonstrate how to apply simulated

annealing in OST construction. The demonstration emphasizes the difference between OCT-

SA and OST-SA. In Section 5.3, we evaluate OST-SA on 10 real-world datasets from SurvSet.

In section 5.4, we make our concluding remarks.

5.2 Algorithms

OST-SA replaces local search in OST with simulated annealing to improve the predictive

performance. Figure 5.1 outlines how the five algorithms in OST-SA interact with each other.

Starting at Algorithm 11, it directs the main flow of the OST-SA algorithm. Algorithm

11 obtains six inputs: an initial survival tree T1 as a random warm start tree; training

data consisting of feature value X and event outcome y; estimated hazard coefficients hc;

geometric temperature decay rate c < 1 of a cooling schedule; Markov chain length l or

number of nodes to optimize per iteration; and neighbor search radius r or boundary of

solution search space. Then Algorithm 11 produces one output, i.e., the optimal survival

tree Tbest which is the best tree from the series of transformations of the initial survival tree

T1. In order to derive the optimal survival tree Tbest, Algorithm 11 calls Algorithm 12 to select

a rank of candidate solutions to transform the current tree into. As the temperature of the

simulated annealing cooling schedule decreases, OST-SA selects a better rank of candidate

trees and Algorithm 13 is responsible for generating those candidate trees. Similar to OST

transformation, there are three ways to transform a subtree in OST-SA: updating a parallel

split, removing a left subtree, or removing a right subtree. Algorithm 13 calls Algorithm 14

to generate a new parallel split by iterating through all features and all feature values. At

the last step, Algorithm 11 calls Algorithm 15 to determine a probability to transform the

current subtree into a neighbor subtree based on the difference in local full likelihood scores

of these two subtrees and the current temperature in the cooling schedule.

The mechanism of the simulated annealing algorithm is driven by the geometric cooling
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schedule, the difference in energy between the current state and the neighboring state, and

the acceptance probability as shown in Equations (5.1), (5.2), and (5.3):

tempk+1 = α · tempk, (5.1)

∆E = |Scorecurrent − Scoreneighbor|, (5.2)

probk = e
−∆E
tempk . (5.3)

where

• temp denotes temperature

• k denotes iteration number

• α denotes temperature decay rate

• ∆E denotes difference in energy between a current and a neighbor state

• Score denotes local full likelihood score

• prob denotes probability to transform a tree from a current state to a neighbor state

• e denotes the Euler’s number equals 2.7183

From our empirical experiments, we found α = 0.95 is an appropriate temperature decay

rate for the 10 real-world datasets we used to evaluate OST-SA.

In addition to OCT-SA, we also applied the simulated annealing framework in Optimal

Policy Tree (OPT) and obtained Optimal Policy Tree with Simulated Annealing (OPT-SA).

OPT-SA successfully improved on OPT on certain types of datasets. OST-SA resembles

OPT-SA in such a way that OST-SA needs to first calculate hazard coefficient hc while OPT-

SA needs to first calculate rewards rw. However, it is simpler to estimate hazard coefficients

hc than to estimate rewards rw. OST-SA uses the off-the-shelf Nelson-Aalen estimator

to derive the cumulative hazard function and uses the Kaplan-Meier curves to estimate the
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survival distribution. There is no hyperparameter tuning involved in constructing the Nelson-

Aalen estimator and the Kaplan-Meier curves. In contrast, OPT-SA uses counterfactual

models like Random Forest to estimate rewards rw where hyperparameter tuning highly

influences the quality of those counterfactual models. In addition, the local full likelihood

scores, which are the objective values of OST-SA, have the same value range for all datasets.

In contrast the mean rewards scores, which are the objective values of OPT-SA, have varied

value ranges depending on the datasets. Accordingly, the procedure to scale the mean

rewards score of each dataset to be in a similar range can significantly influence how well the

objective values of OPT-SA fit with the design of the simulated annealing cooling schedule.

5.2.1 Overall Architecture of OST-SA in Algorithm 11: Simulated

Annealing

Algorithm 11 gradually optimizes the initial survival tree structure T1 and finally derives the

best survival tree Tbest. The cooling schedule starts with the highest temperature of 1 and

geometrically decreases the temperature with the decay rate c < 1. It takes iterationstotal

iterations for the temperature to fall below 0.01 and it is when the algorithm terminates.

For each iteration number k, OST-SA transforms the survival tree over l nodes, i.e., Markov

chain length, and obtains Tk or the survival tree at temperature tempk. Following a typical

simulated annealing mechanism, the probability to accept worse transformations is high at

high temperatures, and vice versa.

As with OCT-SA and OPT-SA, we build OST-SA in Python version 3.8.15. Since OCT-

SA and OPT-SA add OCT and OPT as warm start solutions, we also add OST as one of

the warm start solutions for OST-SA. We use the OST package of Interpretable AI software

[51] version 3.2.0 in Julia version 1.9.0 to make OST warm start solutions. In order to

import those OST models into OST-SA as warm start solutions, we dumped those OST

models into text files before importing them into OST-SA. We use a Windows laptop and

also MIT Supercloud [84] to run OST-SA. Instead of using CART as a warm start solution
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Algorithm 11 SimulatedAnnealing
Input: Initial survival tree T1; Training data X, y; Estimated hazard coefficients hc;

Geometric decay rate c < 1; Markov chain length l; Neighbor search radius r
Output: Optimal survival tree Tbest

1: temp0 ← 1 ▷ temp0 is initial temperature
2: iterationstotal ← kmin − 1 where temp0 · ck < 0.01
3: k ← 1 ▷ k is iteration number
4: Tbest ← T1 ▷ Tbest keeps the best tree
5: repeat
6: tempk ← temp0 · ck ▷ Temperature based on geometric cooling schedule
7: rankk ← RankParallelSplit(iterationstotal, k, r)
8: nodesoptimized ← ∅ ▷ Keep track of optimized nodes at current temperature

▷ Get a set of all current split nodes or leaf nodes in Tk eligible to be split further
9: nodesunoptimized ← SplitNodes(Tk, X, y, rw)

10: repeat
11: nodesunoptimized ← nodesunoptimized − nodesoptimized

12: noderandom ← RandomNode(nodesunoptimized) ▷ Pick one random node
13: nodesunoptimized ← nodesunoptimized − {noderandom}
14: nodesoptimized ← nodesoptimized ∪ {noderandom}

▷ Find subtree of the random node and calculate score
15: Subtreerandom ← Subtree of Tk where noderandom is root
16: I ← {i: xi is assigned to a leaf contained in Subtreerandom}
17: Scorecurrent ← Score(Subtreerandom, XI , yI , hcI)

▷ Find a neighbor of the random subtree and calculate score
18: NeighborSubtreerandom ← NeighborSubtree(Subtreerandom, XI , yI , hcI , rankk)
19: Scoreneighbor ← Score(NeighborSubtreerandom, XI , yI , hcI)

▷ Determine probability to transform the current subtree to its neighbor state
20: prob← CalculateProbability(Scorecurrent, Scoreneighbor, tempk)
21: if prob ≥ RandomNumber(0.1, 1) then
22: Tk ← Replace Subtreerandom in Tk with NeighborSubtreerandom
23: if Score(Tk, X, y, hc) < Score(Tbest, X, y, hc) then
24: Tbest ← Tk ▷ Update the best tree if score of Tk is lower
25: end if
26: end if
27: until nodesunoptimized = ∅
28: if |nodesoptimized| = 0 then ▷ No node can be optimized at current temperature

▷ Move to the last iteration of the current temperature band
29: k ← kmax where RankParallelSplit(iterationstotal, k, r) returns rankk
30: end if
31: k ← k + 1
32: until k = iterationstotal
33: return Tbest
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like that of OCT-SA and OPT-SA, we use sksurv, a survival tree from scikit-survival which

is a Python module for survival analysis expanded from scikit-learn [80], as one of our warm

start solutions.

5.2.2 Algorithm 12: Rank Parallel Split

Algorithm 12 RankParallelSplit
Input: Total number of iterations iterationstotal in simulated annealing;

Current iteration number k in simulated annealing;
Neighbor search radius r

Output: Selected rank rankselected of parallel split to be used in Algorithm ??

1: rankselected ← 1 ▷ 1 is the best rank
2: rankset ← {r, r − 1, r − 2, ..., 1} ▷ Set of all ranks in neighbor search radius r
3: for i in rankset do
4: if k < iterationstotal

i
then

5: rankselected ← i
6: break
7: end if
8: end for
9: return rankselected

Algorithm 12 in OST-SA performs exactly the same task as Algorithm 2 in OCT-SA and

in OPT-SA where it assigns ranks to candidate trees and selects a specific rank based on the

current simulated annealing temperature. Algorithm 12 obtains three inputs from Algorithm

11: iterationstotal representing the total number of iterations that OST-SA runs on different

temperatures; k representing the current iteration number; and r representing the neighbor

search radius whose the optimal value OST-SA derives from hyperparameter tuning. Next,

Algorithm 12 outputs a rank of candidate solutions into which OST-SA will transform the

current subtree. Unlike local search in OST, OST-SA does not always transform the current

subtree into a subtree with the best objective value. If the neighbor search radius r = 3,

OST-SA will pick the third best candidate solution for the current subtree to transform into

at the start of the annealing schedule. As temperatures decrease, OST-SA will select better

candidate solution, i.e, the second-best solution and eventually the first-best solution. The
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benefit of this candidate state ranking compared to the random candidate state selection,

which is in a typical simulated annealing, is a faster convergence rate to the global optimal

solution. In addition, this procedure can prevent overshooting.

The detailed implementation step of the candidate state ranking is shown in Algorithm

12. If r is the search radius, Algorithm 12 then divides temperature of the entire simu-

lated annealing cooling schedule into r temperature bands: the 1st, the 2nd, ..., and the rth

temperature band covering the highest to the lowest temperatures. OST-SA maps a iter-

ation number to the end of each temperature band with a series S
r
, S
r−1

, S
r−2

, ..., S
2
, S where

iterationstotal = S and r is the number of temperature bands. We derive this mapping

from the empirical experiments on the 10 datasets that we evaluate our OST-SA algoritm

on and it is exactly the same mapping used in OCT-SA and OPT-SA. Assuming we have

iterationstotal = 90 and the search radius r = 3, we can divide the entire cooling schedule

into 3 temperature bands: iteration 1 to 30 where OST-SA selects the 3rd best solution,

iteration 31 to 45 where OST-SA selects the 2nd best solution, and iteration 46 to 90 where

OST-SA selects the 1st best solution.

5.2.3 Algorithm 13: Neighbor Subtree

Algorithm 13 selects a neighboring subtree into which the current subtree will transform.

Algorithm 11 passes four inputs into Algorithm 13: an initial survival subtree Subtreeinitial

that OST-SA will optimize; training data XI , yI or training data X, y in the current subtree

that OST-SA will optimize; estimated hazard coefficients hcI of the current subtree; and

rankselected denoting the selected rank of candidate solution from Algorithm 12. After that,

Algorithm 13 outputs a survival subtree Subtreeneighbor, i.e., a transformation of the initial

survival subtree which may be an optimal or suboptimal transformation at the root node of

Subtreeinitial. As in OST, OST-SA can update the current subtree in three ways: updating

the parallel split, pruning the left subtree, or pruning the right subtree. In terms of the

update to the parallel split when rankselected = r , the rth best transformation will take
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Algorithm 13 NeighborSubtree
Input: Initial survival subtree Subtreeinitial to optimize;

Training data XI , yI ;
Estimated hazard coefficients hcI ;
Selected rank rankselected of parallel split

Output: Neighbor survival subtree Subtreeneighbor with optimal or suboptimal
split at root of Subtreeinitial

▷ Optimize parallel split of initial subtree and calculate score
1: Subtreeparallel, Scoreparallel ← OptimizeParallelSplit(Subtreeinitial, XI , yI , hcI ,

rankselected)

▷ 1 is the worst local full likelihood score
2: Scorelower ← 1
3: Scoreupper ← 1

▷ Replace initial subtree with its lower or upper subtree and calculate score
4: if Subtreeinitial is non-leaf node then
5: Subtreelower ← Lower subtree of Subtreeinitial
6: Scorelower ← Score(Subtreelower, XI , yI , hcI)

7: Subtreeupper ← Upper subtree of Subtreeinitial
8: Scoreupper ← Score(Subtreeupper, XI , yI , hcI)
9: end if

▷ Determine neighbor subtree with the local full likelihood score (a lower score is better)
10: if (Scoreparallel ≤ Scorelower) and (Scoreparallel ≤ Scoreupper) then
11: Subtreeneighbor ← Subtreeparallel
12: else
13: if Scorelower ≤ Scoreupper then
14: Subtreeneighbor ← Subtreelower

15: else
16: Subtreeneighbor ← Subtreeupper
17: end if
18: end if
19: return Subtreeneighbor
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place.

5.2.4 Algorithm 14: Optimize Parallel Split

Algorithm 14 in OST-SA performs the same task as that of OCT-SA and OPT-SA where

OST-SA updates a parallel splits by going through all features and all branching values, and

selects the new parallel split that is the rth best option where rankselected = r. Similar to

Algorithm 13, Algorithm 14 accepts four inputs: an initial survival subtree Subtreeinitial that

OST-SA will optimize; training data XI , yI corresponding to the training data X, y in the

current subtree that OST-SA will optimize; estimated hazard coefficients hcI ; and selected

rank rankselected whose value determined by Algorithm 12. In the case of rankselected = r,

Algorithm 14 outputs the subtree Subtreeparallel, which is the transformation of the root

node of the subtree Subtreeinitial with the rth best parallel split, and the corresponding local

full likelihood score Scoreparallel of the subtree Subtreeparallel.

To go over all possible branching values of each feature, Algorithm 14 rearranges all

unique feature values in ascending order and find midpoints between two consecutive feature

values. Algorithm 14 stores only a set of r best features and branching values. Whenever

there are multiple parallel split options resulting in the same objective value, Algorithm 14

maintains only the first option and discard all subsequent options.

5.2.5 Algorithm 15: Calculate Probability

Since OST-SA allows a probabilistic transformation to a worse neighboring state, Algorithm

15 calculates such probability based on three inputs: the local full likelihood score Scorecurrent

of the current survival subtree; the local full likelihood score Scoreneighbor of the neighbor

survival subtree; and the current temperature tempk at the current iteration number k. Then

Algorithm 15 outputs the probability prob for OST-SA to transform the current subtree with

the local full likelihood score of Scorecurrent into the worse neighboring state with the local full

likelihood score of Scoreneighbor. In order to calculate the probability of worse transformation,
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Algorithm 14 OptimizeParallelSplit
Input: Initial survival subtree Subtreeinitial to optimize parallel split;

Training data XI , yI ;
Estimated hazard coefficients hcI ;
Selected rank rankselected of parallel split

Output: Subtree Subtreeparallel with optimized parallel split at root of Subtreeinitial
Score Scoreparallel of the optimized subtree

1: n′ ← Number of samples in XI

2: p′ ← Number of features in XI

3: candidates← ∅

▷ Iterate through all p′ features
4: for v = 1, 2, 3, ..., p′ do
5: featureV alues← {XIuv : u = 1, 2, 3, ..., n′}
6: featureV alues← Sort featureV alues in ascending order
7: f ← Number of unique feature values in featureV alues
8: branchV alues← {1

2
(featureV aluesm + featureV aluesm+1) : m = 1, 2, 3, ..., f − 1}

▷ Iterate through all branch values of feature v
9: for m = 1, 2, 3, ..., f − 1 do

10:
▷ Update split at root node and calculate score

11: Subtreeoptimized ← Split root of Subtreeinitial with feature v and branch value m
12: Scoreoptimized ← Score(Subtreeoptimized, XI , yI , hcI)

▷ Keep only one subtree for each unique score
13: if no subtree in candidates with score equals Scoreoptimized then
14: candidates← candidates ∪ {(Subtreeoptimized, Scoreoptimized)}
15: end if
16: end for
17: end for

▷ Pick final parallel optimized subtree based on score ranking
18: candidatessorted ← Sort candidates by Scoreoptimized score from best to worst
19: Subtreeparallel, Scoreparallel ← Pick subtree and score at rankselected from candidatessorted
20: return Subtreeparallel, Scoreparallel
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Algorithm 15 CalculateProbability
Input: Score Scorecurrent of a current survival subtree;

Score Scoreneighbor of a neighbor survival subtree;
Current temperature tempk at iteration number k

Output: Probability prob to transform current subtree into neighbor subtree

1: prob← 0 ▷ No subtree transformation if Scoreneighbor = Scorecurrent
2: if Scoreneighbor < Scorecurrent then ▷ A lower score is better
3: prob← 1 ▷ Always transform to neighbor subtree with better score
4: else

▷ Calculate probability from difference in energy and current temperature
5: if Scoreneighbor > Scorecurrent then
6: ∆E ← |Scorecurrent − Scoreneighbor| ▷ Difference in energy
7: prob← e

−∆E
tempk ▷ Euler’s number e = 2.7183

8: end if
9: end if

we first calculate the difference in energy ∆E as shown Equation (5.2), i.e., the absolute

difference between the local full likelihood score Scorecurrent of the current subtree and

the local full likelihood score Scoreneighbor of the neighbor subtree. Then we follow the

calculation shown in Equation (5.3) to obtain the probability of worse transformation prob

from the difference in energy ∆E and the current temperature tempk. In contrast, we

always allow a better transformation from the current subtree into a neighboring state with

a better objective value and we enforce this mechanism by setting the probability prob of

state transformation to 1 for this scenario. For the case that the local full likelihood score

Scorecurrent of the current subtree equals the local full likelihood score Scoreneighbor of the

neighboring subtree, we never make a transformation between states with the same objective

values and we enforce this mechanism by setting the probability prob of state transformation

to 0.
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5.3 Results on Real-World Datasets and Discussion

5.3.1 Experimental Setup

We evaluate OST-SA on 10 datasets from SurvSet, an open-source time-to-event dataset

repository [29]. These datasets have number of data points in a range from 137 to 3371, and

number of features in a range from 3 to 80. All datasets demonstrate binary events but the

time to event may have different time units, e.g., days, months, years etc.

To separate data points of each dataset into train, validation, and test set, we allocate

the ratio of train:validation:test being 50:25:25. In order to avoid overfitting and obtain

interpretable models that can still capture meaningful information from each dataset, we set

10% over each entire dataset as minbucket. Since the combination of train and validation

dataset accounts for 75% of the entire dataset, the highest survival tree is at maximum depth

7. For these reasons, we train the models with maximum depths ranging from 2 to 7.

We use the Nelson-Aalen estimator from the OST package of Interpretable AI software

[51] to estimate a hazard coefficient for each data point. To make a fair performance com-

parison, we train sksurv, OST, and OST-SA using the same estimated hazard coefficients

of each dataset. As mentioned in Section 5.2, sksurv is a survival tree from scikit-survival

which is a Python module for survival analysis expanded from scikit-learn [80]. We scale the

local full likelihood score to be in the range from 0 to 1, the same range as the objective value

of OCT-SA. We obtain the scaling factor by calculating the ratio of the local full likelihood

score of the final tree in comparison with a baseline tree. A baseline tree is a tree with only

one node and it predicts the same survival time for all patient. Accordingly, we can apply

the same combination of hyperparameters as that of OCT-SA in OST-SA, i.e., Markov chain

length l = 2 and search radius r = 3, and only need to tune the complexity penalty γ.

Similar to that of OCT-SA and OPT-SA, after obtaining the best hyperparameter over

the validation dataset, we retrain the model over the combination of the validation and the
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training dataset. Out of the 103 warm starts (sksurv, OST, a single node, and 100 random

warm starts), we pick the tree with the best objective value as the OST-SA. Then we evaluate

the OST-SA on the unseen test dataset and report out-of-sample performance in comparison

to OST-SA and sksurv models. To ensure that our results are statistically significant, we

run the same experiments over 5 different train:validation:test data splits on each dataset

and calculate p-values, based on the average scores and the standard deviations.

5.3.2 OST-SA vs OST vs sksurv

As shown in Table 5.1, OST-SA outperforms OST at all maximum depths ranging from 2 to

7, and also outperforms sksurv at all maximum depths except depth 3. At each maximum

depth, we average the local full likelihood scores over all the 10 datasets and 5 data splits. In

terms of p-values, the mean improvements of OST-SA over OST are statistically significant

with p-values less than 0.05 at any maximum depths higher than 2. This trend indicates

strong improvements of OST-SA over OST when models are complicate enough to capture

meaningful signal within each dataset. In contrast, the mean improvements of OST-SA

over sksurv are not statistically significant and the magitude of improvements are much

lower than the improvement of OST-SA over OST. This trend demonstrates that sksurv is

a strong algorithm.

Figure 5.2 plots mean out-of-sample local full likelihood scores of sksurv, OST, and

OST-SA from Table 5.1. Table 5.2 shows average results over 5 data splits of each dataset

at maximum depth 7, i.e., the highest survival tree depth in our experiments. The results

demonstrate that OST-SA outperforms OST on 8 out of 10 datasets, and also outperforms

sksurv on 6 out of 10 datasets.

From Table 5.2, OST-SA of the unemployment dataset outperforms both the OST and

sksurv model. The unemployment dataset is a four-month panel of revised Current Popula-

tion Survery data regarding unemployment conducted by the Bureau of Labor Statistics in

1993 [85]. There are 450 data points in this dataset and each data sample has 5 features: race
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Maximum
Depth

Mean out-of-sample Mean improvement p-value
local full likelihood score of OST-SA over
sksurv OST OST-SA OST sksurv OST sksurv

2 0.8876 0.9008 0.8772 0.0236 ± 0.0137 0.0104 ± 0.0104 0.0628 0.2066
3 0.8633 0.9053 0.8636 0.0416 ± 0.0285 -0.0004 ± 0.0101 0.0329 0.9723
4 0.8616 0.9042 0.8564 0.0478 ± 0.0417 0.0051 ± 0.0179 0.0258 0.7034
5 0.8614 0.9041 0.8587 0.0454 ± 0.0334 0.0027 ± 0.0104 0.0269 0.8162
6 0.8614 0.9048 0.8608 0.0440 ± 0.0319 0.0006 ± 0.0131 0.0271 0.9558
7 0.8614 0.9048 0.8609 0.0439 ± 0.0301 0.0005 ± 0.0106 0.0264 0.9611

Table 5.1: Average out-of-sample local full likelihood score (a lower score is better) averaged
across 10 datasets from SurvSet, an open-source time-to-event dataset repository, trained
with maximum depth 2 to 7 and minbucket 10% over entire dataset. Mean improvement and
p-value are calculated between OST-SA vs OST and OST-SA vs sksurv. A positive mean
improvement indicates OST-SA having better performance than OST or sksurv.
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Figure 5.2: Average out-of-sample local full likelihood score (a lower score is better) averaged
across 10 datasets from SurvSet, an open-source time-to-event dataset repository, trained
with maximum depth 2 to 7 and minbucket 10% over entire dataset.

(white vs non-white), sex (male vs female), reason (one of the 3 reasons of unemployment),

search (one of the 2 types of unemployment), and public employment (usage of a public

employment agency). As shown in Figures 5.3, 5.4, and 5.5 where all models are trained on

the same data split at maximum depth 7 and minbucket 10%, OST-SA achieves the best

out-of-sample performance of 0.974 (a lower score is better) and also has the most complex

tree structure with 4 split nodes. By comparing OST-SA with sksurv model which is the

second-best model, both survival trees select the same set of 3 features: public employment,
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Mean out-of-sample of Mean improvement
local full likelihood score of OST-SA over

No. Dataset n p sksurv OST OST-SA OST sksurv
1 aids 1151 11 0.8874 0.9601 0.9090 0.0511 ± 0.0904 -0.0216 ± 0.0464
2 breast cancer 198 80 0.8537 0.9629 0.8716 0.0913 ± 0.0399 -0.0179 ± 0.0665
3 diabetes 394 4 0.9126 0.9292 0.9349 -0.0057 ± 0.0112 -0.0223 ± 0.0120
4 divorce 3371 3 0.9936 0.9955 0.9932 0.0023 ± 0.0032 0.0005 ± 0.0010
5 german breast cancer study group 2 686 8 0.9056 0.8955 0.8798 0.0157 ± 0.0174 0.0258 ± 0.0262
6 mgus2 1338 5 0.8294 0.8127 0.8170 -0.0044 ± 0.0111 0.0123 ± 0.0242
7 unemployment 450 5 0.9779 0.9871 0.9586 0.0285 ± 0.0234 0.0193 ± 0.0204
8 veterans lung cancer 137 6 0.7076 0.8897 0.7122 0.1774 ± 0.0997 -0.0046 ± 0.0309
9 worcester heart attack study 500 14 0.7594 0.7895 0.7529 0.0367 ± 0.0769 0.0066 ± 0.0363
10 zinc 431 13 0.7870 0.8261 0.7796 0.0465 ± 0.0595 0.0074 ± 0.0356

Table 5.2: Out-of-sample local full likelihood score (a lower score is better) on 10 datasets
from SurvSet, an open-source time-to-event dataset repository, trained with maximum depth
7 and minbucket 10% over entire dataset where n and p denote the number of data points
and the number of features of each dataset, respectively. A positive mean improvement
indicates OST-SA having better performance than OST or sksurv.
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Figure 5.3: OST-SA of unemployment dataset trained with maximum depth 7 and minbucket
10% over entire dataset. The OST-SA model has 4 splits and achieves out-of-sample local
full likelihood score (a lower score is better) of 0.974.

Predict survival time = 39.37
Local Full Likelihood = 1.0

Figure 5.4: OST of unemployment dataset trained with maximum depth 7 and minbucket
10% over entire dataset. The OST model has only one split and achieves out-of-sample mean
local full likelihood score (a lower score is better) of 1.

reason, and sex. However, OST-SA selects an additional feature, i.e., race and this feature

helps improve the out-of-sample local full likelihood score from 0.9746 in OST to 0.974 in

OST-SA. This points out that simulated annealing framework is beneficial in identifying a

meaningful split that sksurv was unable to capture. In contrast, OST performs worse with

the local full likelihood score of 1 and the survival tree only has one node. This is possibly
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Figure 5.5: sksurv survival tree of unemployment dataset trained with maximum depth 7
and minbucket 10% over entire dataset. The sksurv model has 3 splits and achieves out-of-
sample local full likelihood score (a lower score is better) of 0.9746.

due to local search of OST is trapped in local minimas.
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Figure 5.6: Out-of-sample local full likelihood score (a lower score is better) on unemployment
dataset trained with maximum depth 2 to 7 and minbucket 10% over entire dataset.

As maximum depths increase, the performance improves while runtimes also increase as

demonstrated in Figures 5.6 and 5.7. We use the same data split as that of the OST-SA, OST,

and sksurv models in Figures 5.3, 5.4, and 5.5 to measure these performance and runtime

trade-offs. The performance and runtime of OST-SA, OST and sksurv follow the same trend

where they only differ between maximum depth 2 and 3. As the performance and runtime
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Figure 5.7: Runtime (in minutes) of unemployment dataset trained with maximum depth 2
to 7 and minbucket 10% over entire dataset.

stabilize at maximum depth 3, they stay the same from depth 3 to 7. This trend indicates

that the survival trees already capture all meaningful splits at maximum depth 3. In terms

of performance, OST-SA performs best, followed by sksurv and OST. Regarding runtime,

sksurv and OST spend approximately 1 minute at all maximum depths while OST-SA is a

lot slower and requires 4 to 5 minutes for model training. This is possibly due to a much

larger number of warm start solutions that OST-SA uses in model training when compared

to a single model training in sksurv. In addition, OST-SA also runs for a larger number

of iterations to optimize a tree as determined by the cooling schedule compared to that of

OST, which stops whenever no improvement can be made from 2 consecutive iterations.

5.4 Conclusion

Simulated annealing benefits decision tree construction and performs better than local search

in reaching global optimality. The results were demonstrated on the average local full like-

lihood scores over the 10 real-world datasets. OST-SA achieved better out-of-sample local

full likelihood score than that of OST at all maximum depths. Specifically, the results are

statistically significant with p-values less than 0.5 at any maximum depths higher than 2.
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Chapter 6

Case Studies

To demonstrate versatility of optimal decision trees with the simulated annealing algorithm,

we conduct experiments on datasets in the medical domain: OCT-SA on the sarcoma dataset,

OPT-SA on the Gastrointestinal Stromal Tumor (GIST) dataset, and OST-SA on the sar-

coma dataset (the same dataset as that of the OCT-SA).

6.1 Classification Analysis for Sarcoma

6.1.1 Experimental Setup

To showcase the OCT-SA algorithm in the medical domain, we construct a model to predict

whether or not patients with sarcoma [90] will die from this disease within 5 years after

surgery [70]. This problem can be formulated as a binary classification problem that predicts

patients’ mortality status: alive or dead. We obtain this sarcoma dataset from Memorial

Sloan Kettering Cancer Center (MSKCC). The dataset contains data of patients whose

surgeries (definitive surgery for primary extremity and truncal liposarcoma (LPS) [24, 25, 42])

were performed at MSKCC between July 1982 and October 2017. We exclude any patients

who are still alive and follow-up times are less than 5 years. Accordingly, 596 patients are

eligible to be included in this 5-year mortality prediction.
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We use 17 features of each patient in this analysis: 2 continuous features (age [34], and

maximum tumor size [43]), and 15 binary features (gender [100], 3 tumor sites1 [39, 60],

tumor depth [87], bone invasion [33], nerve invasion [75], 5 histologic subtypes2 [23], and

3 surgical margins3 [31]). For any non-numeric features, we convert their feature values

into numeric for feasibility with the OCT-SA algorithm. We split the dataset into training,

validation, and testing dataset with the ratio of train:validation:test equals 70:15:15. We

use 35 patients as minbucket and train a model with maximum depth 5. We decide this

combination of hyperparameters based on clinical intuition from our medical collaborators.

Similar to the evaluation on the 61 real-world benchmarking datasets, we also use Markov

chain length l = 2 and search radius r = 3 when training OCT-SA. Then we tune only

complexity penalty γ. We also train OCT and CART as our baseline models to compare

with OCT-SA.

6.1.2 OCT-SA vs OCT vs CART

The OCT-SA, OCT, and CART of the sarcoma dataset, where we trained at maximum

depth 5 and minbucket 35 patients, are shown in Figures 6.1, 6.2, and 6.3. By comparing

out-of-sample performance, OCT-SA achieves the lowest Gini impurity score (a lower score

is better) of 0.1600, followed by OCT whose score is 0.1686, and CART is the worst model

with the score of 0.1698. In terms of tree complexity, OCT-SA has the highest complexity

with 8 splits, followed by CART with 7 splits, and OCT is the simplest model with 4

splits. The out-of-sample Gini impurity scores and tree complexities indicate that OCT is

a strong algorithm compared to CART, as 4 meaningful splits in OCT outperforms 7 splits

in CART. Even though OCT is a strong algorithm, OCT-SA can still outperform OCT.

This performance improvement reaffirms that probabilistically allowing bad transformations

in simulated annealing is definitely effective. Regarding feature selection, all the 3 models,
1The 3 tumor sites are 3 binary features: lower extremity (y/n), trunk (y/n), and upper extremity (y/n).
2The 5 histologic subtypes are 5 binary features: dedifferentiated (y/n), myxoid (y/n), pleomorphic (y/n),

round cell (y/n), and well differentiated (y/n)
3The 3 surgical margins are 3 binary features: resection R1 (y/n), R2 (y/n), and R3 (y/n).
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i.e., OCT-SA, OCT, and CART, select maximum tumor size, and 2 histologic subtypes

(well differentiated, and pleomorphic). In addition to these 3 features, OCT-SA selects a

histologic subtype myxoid, and surgical margin R1. Then CART selects age as an additional

feature. To sum up, OCT-SA performs best in terms of out-of-sample Gini impurity score

for classification analysis, as it can determine additional meaningful splits on extra features

better than OCT, while CART performs worse on both the classification performance, and

the complexity of its tree structure.

6.2 Prescriptive Analysis for Gastrointestinal Stromal Tu-

mor (GIST)

6.2.1 Experimental Setup

In order to demonstrate an application of OPT-SA in the medical domain, we construct

a model to select subgroup of patients with Gastrointestinal Stromal Tumor (GIST) [94]

who will benefit from getting chemotherapy after tumor removal surgery [76], where the

chemotherapy will reduce the chance that the tumor recurs within 5 years after surgery

[56, 96]. We can translate this problem to a prescriptive analysis, where we want to prescribe

a binary treatment (undergoing chemotherapy, or no chemotherapy), in order to maximize

the probability of recurrence free survival at 5 years after surgery.

We obtain the GIST dataset from MSKCC, the same institution from which we obtain

the sarcoma dataset for classification analysis case study. Originally, the dataset contained

536 patients who underwent surgery at MSKCC from 1982 to 2017. We use a matching

framework based on prognostic strata [52, 77, 97] to match the 82 treated patients to the

untreated patients, so there are 164 patients in total in our prescriptive analysis. In terms

of counterfactual models to predict counterfactual outcomes, we train 2 separate survival

Random Forest models: one model for the treated patient group, and another model for the
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untreated patient group. We train these counterfactual models using the direct method, as

shown in Equation (1.4), to estimate rewards and measure the performance of these reward

estimators using Harrell’s C-statistic [45–47, 93].

We include 3 significant tumor characteristics, as identified based on clinical intuition of

our medical collaborator, in our analysis: maximum tumor size, primary mitotic count, and

tumor site (gastric site vs non-gastric site) [27, 66, 67]. We encode all of these feature values

in numeric values, so that they are feasible for the OPT-SA algorithm when determining

parallel split. We define the prescription as a binary treatment over chemotherapy (prescrib-

ing chemotherapy or no chemotherapy). The outcomes of interest are whether or not tumors

recurred within 5 years after surgery. In terms of rewards, they are the probabilities of recur-

rence free survival at 5 years after surgery, and we want to maximize the mean rewards score.

As not all treatment options were actually prescribed to each patient in our observed dataset,

we use a Random Forest counterfactual model to estimate the counterfactual outcomes.

Since the GIST dataset is relatively small, we use all data samples, i.e., 164 patients to

train the model, so there is no unseen test dataset. In terms of model training, we train the

models with maximum depths ranging from 2 to 5. We cap the maximum depth at 5 in order

to ensure models are not too complicated, which will increase the chance of model adoption

by physicians in the real world. We vary minbuckets as 3%, 5%, and 10% of the total number

of training samples. As we did in the evaluation on the 10 real-world benchmarking datasets

for prescriptive analysis, we also use Markov chain length l = 2 and search radius r = 3

when training OPT-SA. The complexity penalty γ is the only hyperparameter that we tune.

Finally, we select the OPT-SA model that uses all 3 tumor characteristics in the model

and achieves the highest in-sample mean rewards score. Following the recommendation

from our medical collaborator, we target the model that selects all 3 features of tumor

characteristics, as such model is more likely to make clinical sense and provide interesting

feature interactions. To make performance comparison with OPT-SA, we also train OPT

and CART as our baseline models.
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6.2.2 OPT-SA vs OPT vs CART

Figures 6.4, 6.5, and 6.6 demonstrate the OPT-SA, OPT, and CART of the GIST dataset.

We trained these 3 models with maximum depth ranging from 2 to 5, and minbucket 3%, 5%,

or 10% over the entire dataset. Based on the clinical intuition of our medical collaborators,

we only select models that split all 3 features, i.e., maximum tumor size, primary mitotic

count, and tumor site (gastric site vs non-gastric site). Accordingly, all the 3 features are

present in the OPT-SA, OPT, and CART. Since the GIST dataset is rather small, we use the

entire dataset for training and have no hold-out test set. That is why we can measure only

in-sample mean rewards score. In terms of performance ranking based on in-sample mean

rewards score, OPT-SA ranks number one, followed by CART, and finally OPT, with their

mean rewards scores equal 0.8238, 0.8223, and 0.8178 (a higher score is better) respectively.

By examining the tree complexities, OPT is the simplest model with no split, followed by

OPT-SA with 6 splits, and CART is the most complex model with 8 splits. This is one

example scenario where OPT can fail to overcome CART. This kind of failure is possibly

due to local search in OPT getting stuck in local minima. Given less complex tree structure,

OPT-SA can still outperform CART on the in-sample mean rewards score. Such performance

improvement proves that simulated annealing can effectively find more meaningful split than

CART.
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6.3 Survival Analysis for Sarcoma

6.3.1 Experimental Setup

In order to showcase the OST-SA algorithm in the real-world medical dataset, we conduct

survival analysis on the sarcoma dataset, the same dataset we use to conduct classification

analysis in Section 6.1. Instead of focusing on a specific time point, i.e., 5 years after surgery,

like that of classification analysis case study, we perform survival analysis on the full span of

survival time of patients in the dataset [28]. Our aim is to estimate how long each subgroup

of patients survives after surgery. Accordingly, we do not exclude any patients, and use all

712 patients in our analysis. They are all the patients with sarcoma who had surgery at

MSKCC between July 1982 and October 2017. In contrast, the classification analysis case

study only includes 596 patients, as we need to remove any censored data for the 5-year time

point after surgery.

We also use the same 17 features as that of classification analysis in this survival analy-

sis: 2 continuous features (age, and maximum tumor size), and 15 binary features (gender,

3 tumor sites4, tumor depth, bone invasion, nerve invasion, 5 histologic subtypes5, and 3

surgical margins6). Similarly, we convert all non-numeric features to numbers for feasibility

when finding parallel split in the OST-SA algorithm. We use the same training and unseen

test dasaset as that of classification analysis case study. We split the dataset into training,

validation, and testing dataset with the ratio of train:validation:test equals 70:15:15. We

train OST-SA, OST, and sksurv models with the same hyperparameter as that of our clas-

sification analysis, i.e., 35 patients as minbucket, and maximum depths ranging from 2 to 5.

These hyperparameters are based on clinical intuition of our medical collaborators. When

training OST-SA, we use Markov chain length l = 2 and search radius r = 3, as they are the
4The 3 tumor sites are 3 binary features: lower extremity (y/n), trunk (y/n), and upper extremity (y/n).
5The 5 histologic subtypes are 5 binary features: dedifferentiated (y/n), myxoid (y/n), pleomorphic (y/n),

round cell (y/n), and well differentiated (y/n)
6The 3 surgical margins are 3 binary features: resection R1 (y/n), R2 (y/n), and R3 (y/n).
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hyperparameters we use when training OST-SA on the 10-real world benchmarking datasets.

The only hyperparameter that we tune when training OST-SA is complexity penalty γ.

6.3.2 OST-SA vs OST vs sksurv

As we investigate models’ performance trained with maximum depth ranging from 2 to 5,

and minbucket 35 patients, all models achieve the best local full likelihood score at maximum

depth 4 as shown in Figures 6.7, 6.8, and 6.9. In terms of out-of-sample performance, sksurv

survival tree achieves the best out-of-sample local full likelihood score (a lower score is

better) of 0.6739, followed by OST-SA with the score of 0.7123, and finally, OST obtains

the worst score of 0.7269. The trend of out-of-sample performance in this survival analysis

case study follows the same trend as that of the 10 real-world benchmarking datasets for

survival analysis. Regarding tree complexity, OST is the simplest model with 4 splits,

followed by sksurv with 7 splits, and OST-SA is the most complex model with 11 splits.

The results indicate that simulated annealing can benefit decision tree growing process for

survival analysis in the real-world medical datasets. That is why OST-SA outperforms OST

on out-of-sample performance, as it can identify additional meaningful splits to improve out-

of-sample local full likelihood score. Interestingly, sksurv is a very strong algorithm, and can

effectively identify 7 meaningful splits that outperforms 11 splits in OST-SA. By considering

feature selection, all the 4 features selected by OST also get selected by OST-SA and sksurv.

Those 4 features are 2 histologic subtypes (well differentiated, and pleomorphic), maximum

tumor size, and surgical resection R1. In addition to these 4 features, sksurv selects one

additional feature: a round cell histologic subtype. For the case of OST-SA, it selects

additional 2 features (besides the 4 features that all models select): a myxoid histologic

subtype and age. In summary, OST-SA outperforms OST by achieving better out-of-sample

local full likelihood score as it can effectively identify meaningful splits on additional features,

while it is interesting to note that sksurv can still perform better than OST-SA in terms of

the out-of-sample performance with the simpler tree structure.
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Chapter 7

Conclusion

The optimal decision trees with simulated annealing successfully improve out-of-sample per-

formance on optical decision trees with a greedy approach on classification, prescriptive, and

survival analysis. First, OCT-SA outperforms OCT on out-of-sample Gini impurity scores

over 61 real-world benchmarking datasets at all maximum depths. The results are statis-

tically significant at maximum depths 3, 4, and 7. Second, OPT-SA outperforms OPT on

3 out of 10 real-world benchmarking datasets. Although the improvement was not found

for all datasets, the results suggest there are certain types of datasets for which simulated

annealing can better benefit the decision tree construction process. Third, OST-SA outper-

forms OST on 10 real-world benchmarking datasets at all maximum depths. The results are

statistically significant at any maximum depths higher than 2.

Beyond the improvement on benchmarking datasets, the optimal decision trees with

simulated annealing also exhibit improvement on case studies in the medical domain. First,

OCT-SA can provide more accurate mortality prediction of patients with sarcoma to predict

whether or not they will die within 5 years after surgery. This improvement in classification

performance helps healthcare professionals to better focus on critical cases. Second, OPT-

SA prescribes a better treatment option than OPT for patients with GIST. This better

prescription leads to a decrease in the recurrence rate of GIST in patients. Third, OST-
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SA predicts more accurate survival time than OST for patients with sarcoma. This better

accuracy helps the healthcare institutions to derive more appropriate care for patients.

Even though the optimal decision trees with simulated annealing achieve satisfactory

performance in classification, prescriptive, and survival analysis, further improvement can

still be made. In addition to classification, prescriptive, and survival analysis, regression

analysis is another problem domain that is widely-used. Accordingly, we can also apply this

type of optimal decision tree with simulated annealing framework to regression analysis. In

investigating results on benchmarking datasets, improvement was not found on all datasets.

This failure could possibly be due to our model training being susceptible to bias. One

potential mitigation is to incorporate robust optimization in model training [9, 15, 64, 95].

Besides OCT, OPT, and OST, Interpretable AI [51] also provides Optimal Regression

Tree (ORT) for regression analysis. As ORT also utilizes local search like that of OCT, OPT,

and OST, it may fail to reach global optimality. By replacing local search with simulated

annealing in ORT and obtaining ORT-SA, we can improve the predictive performance of

ORT as some worse transformations in ORT-SA can result in a better final model. We can

adopt a similar framework as that of OCT-SA to implement ORT-SA with the change from

class prediction in OCT-SA to continuous value prediction in ORT-SA. In addition, we also

need to scale the objective value of ORT-SA to be in the range from 0 to 1, i.e., the same

range as the objective value of OCT-SA. This scaling process requires an appropriate scaling

factor for each dataset.

One of the underlying reasons why simulated annealing still fails to outperform local

search in some cases could be due to overfitting [48] or failure to obtain appropriate hy-

perparameters in model training [35]. By incorporating robustness in model training, the

trained models are likely to be less susceptible to noisy data and can better capture meaning-

ful information [36, 53]. This approach can result in more generalized models, which leads to

better out-of-sample performance. Regarding hyperparameter tuning, the current approach

selects the best combination of hyperparameters solely on scoring over validation datasets.
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This procedure can yield inappropriate hyperparameter selection if a validation dataset is

not a good representative of its corresponding training dataset [89]. Similarly, utilizing ro-

bustness to take into account the characteristics of validation datasets can possibly reduce

bias in hyperparameter selection [98].
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