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ABSTRACT

There is a rapidly growing number of open-source Large Language Models (LLMs) and
benchmark datasets to compare them. While some models dominate these benchmarks,
no single model typically achieves the best accuracy in all tasks and use cases. With a
new dataset, it can be difficult to determine which LLM is best suited to the task. In this
work we will address the challenges associated with selecting the best LLM model out of a
collection for a new task. To do so, benchmark datasets are repurposed to learn a “router”
model for this LLM selection, such that the “router” model will solve a collection of binary
classification tasks. This work will demonstrate the utility and limitations of learning model
routers from various benchmark datasets, where performance is improved upon using any
single model for all tasks.
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Chapter 1

Introduction

Large Language Models (LLMs) have demonstrated groundbreaking abilities to solve diverse
tasks across a variety of NLP domains [1], [2]. Today, researchers in both academia and
industry are releasing new LLMs daily. These models perform tasks ranging from text
classification to question-answering, summarization, and dialogue.

The popularity and influx of open-source LLMs and the diversity of their potential use
cases made it crucial to develop comprehensive benchmarks, i.e., collections of datasets
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Figure 1.1: Model Routing Schematic: We learn the strengths of candidate LLMs (T5,
Falcon, Llama) on various tasks (emojis inside boxes: QA, reasoning, summarization, etc.)
and domains (4 sections within each box: finance, legal, general knowledge, etc.) from
benchmark datasets. We accomplish this by training a binary classifier per LLM (decision
boundaries marked with colors in the upper part of the figure). For a new task (paper stack),
we score each LLM with these binary classifiers and recommend an LLM (here Falcon) to
the user.
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representing different tasks and domains to compare LLMs. For example, HELM [3] consists
of 42 scenarios covering a variety of uses, MMLU [4] is a multiple-choice question answering
benchmark with 57 tasks organized by topics. While there always will be an LLM that is
the best on average across benchmarks, there is unlikely to ever be a model that is strictly
the best on each of the hundreds of datasets comprising various benchmarks. Meanwhile, a
practitioner typically wants to know what is the best model for their specific use case and is
less concerned about average performance on a plethora of other datasets.

We will study the problem of identifying the best LLM for a new task to learn about the
strengths and weaknesses of candidate LLMs we use benchmark datasets that give insights
into the performance of LLMs across tasks and domains. For example, suppose the new
task is answering math questions. In that case, it is more intuitive to consider models
that do well on other STEM question-answering datasets and discount performance on, e.g.,
sociology or toxicity detection. More specifically, we propose a strategy of using the LLM
performances on benchmark datasets to predict how it will perform on a new dataset based
on the similarity between the benchmark datasets and the new dataset.

To make this idea more precise, we cast the learning of model strengths as a binary
supervised learning task, where the features are input embeddings of samples across tasks
and the labels are whether the model “did well” on the corresponding inputs, e.g., generated
correct class label, answered a question correctly, or followed input instructions sufficiently
well. See Figure 1.1 for an illustration.

This work is an updated version of a previously published work under the same name [5]
with additional baselines. My role in this joint work is the implementation and analysis of
all experiments with the exception of 4.4.
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Chapter 2

Related work

2.1 Benchmarking

Comparing models or algorithms across various tasks is a standard practice in ML and Al
literature. Prior to Foundation Models [6], it was typical to apply the same learning algorithm
to train a model on each of the datasets and compare the performance against other learning
algorithms. The UCI Machine Learning Repository [7] is one prominent example of such
a collection of datasets often used to compare learning algorithms. With the emergence of
Foundation Models, i.e., models with billions of parameters trained on massive datasets using
large compute clusters, the paradigm changed to evaluating the same model (or a few-shot
tuned version of it) on a variety of tasks [8]-[10]. In the context of Large Language Models,
many benchmarks [3], [4], [L1]-[15] were proposed to help determine the most capable LLM.
Benchmarks typically average the performance of models across tasks and provide a final
ranking, discarding the rest of the information. In this work, we use the byproducts of
benchmark evaluations, i.e., the per-sample performance of various LLMs across tasks, to
learn about their individual strengths and identify the best LLM for a new task.

2.2 Model selection

Selecting the best model, or model selection, is a classical topic in statistics and ML [16]-
[18]. However, the typical problem setting is quite different: classical methods like cross-
validation aim to estimate the population error of a model trained on samples from the
population distribution. In other words, the goal is to find the best model for in-distribution
test data, i.e., data sampled from the same distribution as the train data. The notion of
“train” data is quite elusive for LLMs, as they are usually trained on massive datasets with
trillions of tokens with a simple task of next token prediction [2], [19]. However, the tasks we
evaluate them on are often more structured, e.g., classification and question-answering, and
are specific to domains that may or may not be sufficiently represented in the train data. In
addition, techniques like k-fold cross-validation require training the model multiple times,
which is infeasible for LLMs.
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2.3  Out-of-distribution model selection

Recognizing the limitations of the model selection methods for in-distribution test data [20],
[21], recent work has proposed a variety of methods to select models when deployed on data
that may differ from the train data. These methods rely on ideas such as bootstrapping [22],
reweighing (23], [24], agreement of models or ensembles [25]-[27], or aligning model accuracy
in-distribution with a confidence threshold [28]-[30]. Most of these methods are nontrivial
to extend to generation use-cases of LLMs; some require training multiple models, and some
need well-defined in-distribution data related to the new task.

2.4 Routing LLMs

Prior work on selecting LLMs primarily considers choosing one that produces the best gen-
eration for a given input. [15], [31], [32] train dedicated scoring or ranking models that
can be applied to model generations. Unlike our work, these approaches require generat-
ing outputs with every candidate LLM to make a decision, which can be computationally
prohibitive with a large pool of candidate LLMs. FrugalGPT 33| calls LLMs sequentially
until a dedicated scoring model deems the generation acceptable. Prior works in this group
require training data sufficiently representative of each of the tasks and domains of interest
to train the corresponding ranking and scoring models. In this paper, instead, we use data
from benchmarks to learn the strengths and weaknesses of LLMs across tasks and domains.
The resulting model router requires generating outputs only with the chosen LLM at test
time.
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Chapter 3

Model Routing Theory

3.1 Binary Classifier Formulation

We start by introducing notation to describe the majority of NLP benchmarks. Let

{xcll> ce 7x§lzd}§):1

be a collection of inputs across D tasks. Each input text z¢ corresponds to a reference answer
rd, i.e., an ideal generation for the corresponding input. Finally, there is a metric Fy(z,0,7)
that can be task-dependent and measures how well a response o for an input x corresponds
to the reference r. To test an LLM,,, m € {1,..., M}, on the benchmark, for each task
d=1,...,D, its responses are generated

{0fin = LLM () i

i=1
and compared to the corresponding references to obtain performance metrics *

iC?ln = Fd(l'?, 0?7717 r?)}?:dl

At this point, the majority of the benchmark studies will take a (weighted) average of the
performance metrics and report a single score for every LLM to rank them in performance.
Instead, we reuse these evaluation results to formulate a supervised learning problem to
better understand the strengths and weaknesses of various LLMs based on their performance
on data points and tasks.

3.1.1 Supervised learning from benchmarks

Our goal is to learn a simple routing function g,,(z) for each LLM, m = 1,..., M, that can
predict {f& 1%, i.e., the performance of the corresponding LLM on a new task d’. Then

it is trivial to select the best LLM for this task. For efficiency at test time, we restrict the
routers {g,,}*_, to only depend on the input x. This is in contrast to the majority of prior
works on LLM routing that first obtain generations with every candidate LLM and then use

"'We omit dependency on the prompt when generating with an LLM and, w.l.o.g., consider the same LLM
with a different prompting strategy as a different LLM.
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them to choose the best model [15], [31], [32]. With thousands of open-source LLMs, it is
simply infeasible to obtain generations with every LLM for every input at test time.

To complete the problem formulation, we denote the “correctness” of model m on an
input = by y(x,m) € {0,1}. Correctness is evaluated as follows: generate a response of
with LLM m on input z¢, compare it to the corresponding reference r¢, and output 1 if the
model’s response is good enough, i.e., f& > 1,4, and 0 otherwise, where 74 is some threshold
that can be task and/or metric specific. For tasks like classification or multiple-choice QA,
y(zd,m) = fe  while for various evaluation metrics used in summarization and instruction
following tasks [34]-[36], the notion of correctness can help to account for the heterogeneity
of popular metrics and task difficulty levels. In Section 4.4, we also present results with raw
metrics instead of correctness.

To train a predictor of an LLM correctness, for each LLM, m = 1,..., M, we solve the

following optimization problem:

D ng
min >3 g y(at m)), (3.1)
I =t
where we choose ¢ to be a binary cross-entropy loss and g, is any standard probabilistic
classifier, i.e., g,,(z) estimates P(y(x,m) = 1|z).

An important consideration when training correctness predictors is their ability to gener-
alize out-of-distribution (OOD) data, since our goal is to estimate LLM performance on a new
task d’ that has not been seen during training. Training predictors given data from multiple
domains that need to generalize to unseen domains is indeed an active area of research in
ML literature. For example, [37], [38] proposed methods for improving OOD generalization
when training on data from multiple domains, while [21] proposed a benchmark for OOD
generalization demonstrating the challenging nature of the problem in various applications.

In this work, we use a simple model for the correctness predictor: we embed all inputs with
a sentence transformer [39] and use a k-nearest neighbors classifier [40] as {g,, }M_,. kNN
is a simple non-parametric classifier that allows us to fit a potentially complicated decision
boundary of an LLM’s correctness across multiple tasks without extensive hyperparameter
tuning. We choose this approach for learning correctness predictors to emphasize the utility
of learning from benchmarks even with a basic method and instead focus on the question
specific to our problem that has not been studied in prior works on OOD generalization:
Can we improve the quality of LLM routing with an imperfect correctness predictor?

3.2 LLM routing with (imperfect) correctness predictors

The goal of LLM routing is to identify an LLM that will have the highest frequency of being
correct on a new task d’, given the inputs {z¢ }/%, from this task:

argmax,, S(m,d'), where S(m,d') = LS y(ad m). (3.2)

Here, S(m,d') is the “oracle” score that we want to estimate. The most intuitive estimator
is simply using the correctness predictor

Si(m,d') = L S0 g (2d), (3.3)
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but prior work has shown that accurately estimating P(y|z), i.e., calibration, is challenging
on OOD data [41]. Meanwhile, g,, may still produce accurate predictions after thresholding
the predicted probability even if the class probabilities are not estimated well, which is often
the case with neural networks [42]. This motivates another score:

So(m, d') = = 320 G ('), where g (') = L(gm(2f) > 1), (3.4)

where t € (0,1) is some threshold, e.g., t = 0.5, I is an indicator function, and g,,(x) € {0,1}
can be interpreted as the prediction of g,, on z. This score, however, does not take into
account the potential “imperfection” of g,,, i.e., lower accuracy on OOD data from task d’.
To address this issue, we model the out-of-distribution confidence of the predictions g,,.

3.2.1 A simple OOD confidence model

We model LLM correctness as follows:
Gm. ith babilit d,
1 — gm(z) with probability 1 — p(d’,m),

i.e., p(d,m) € [0,1] is the probability that g,, is the correct prediction on a data point from
task d’. The above model can be condensed as follows:

y(z,m)|z,d" ~ Bern(gm(z)p(d’,m) + (1 = gm(x))(1 — p(d’, m))). (3.6)

In this simplistic (and approximate) model, we assume that p(d’,m) does not depend
on the input z after conditioning on the task d’. The assumption is analogous to the ho-
moscedastic error term assumption in linear regression models and allows us to interpret
p(d’;m) as the marginal /overall accuracy of g,, on data from the task d’. Prior work has
studied the problem of estimating OOD accuracy given the inputs from a new task, but
existing methods are challenging to combine with our approach. For example, [29] learn a
threshold on model confidence, which is hard to apply when using kNN classifiers, and [27]
require data augmentations that can be challenging to identify given the diversity of tasks
in benchmarks. Prior methods also do not take into account the partition of the train data
into tasks inherent in our problem setting.

We treat the problem of estimating p(d’, m) as a supervised learning task, taking advan-
tage of the task partition. Specifically, we assign a task descriptor u(d) € R, to every task
that measures the distance of the data from task d to the other available tasks combined.
Then we collect the values of p(d, m), i.e., the accuracy of g,, on d, and fit a non-parametric
regression model to predict p(d,m) from u(d). At test time, we compute u(d') for a new
task d’ based on the inputs {z¢ }/%, and predict p(d’,m) using the fitted regression model.
In general, one can consider more sophisticated, higher-dimensional task descriptors u(d),
but here, for simplicity, we keep it 1-dimensional and use a Gaussian kernel smoother (also
known as the Nadaraya-Watson estimator) as the non-parametric regressor. We provide
details in the following section.

Finally, given the model of LLM correctness 3.6, S(m,d’) is a random variable (corre-
sponding to S(m,d’)) distributed as a (scaled) sum of two Bernoulli random variables. To
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arrive at our final score for LLM routing, we take its expected value:
Sy(m, ) = Sa(m, d)p(d',m) + (1 — Sa(m, d')) (1 — p(d', m)). (3.7)
When selecting an LLM with S5, we consider an alternative to the arg max criterion based
on our correctness model 3.6, which defaults to the best model on average across benchmark
datasets when we are not sufficiently confident that a candidate model will be better:

{m3 it P(S(mg, d') > S(m*,d)) >n (3.8)

*

m* otherwise,

where m3 = argmax,, S3(m,d’), i.e., the best LLM for the new task according to S3, and
m* = argmax,, Zle S(m,d), i.e., the best LLM across the benchmark datasets. The ex-
peression, P(S(ms,d) > S(m*,d')), required for this step is not available in closed form,
as S is distributed as a (scaled) sum of two Bernoulli random variables. Instead, we esti-
mate the value of the expression via Monte Carlo sampling from the corresponding Bernoulli
distributions. In all past and future experiments, we set n = 0.6.

3.2.2 Correctness predictors

While any probabilistic classifier may fit our setting, in the experiments, we mainly used
a simple kNN classifier applied in an embedded space. Recall that we have D benchmark
datasets with inputs {z¢}7¢, for d = 1,...,D. To compute our correctness predictor based
on the benchmark datasets, we first embed all their inputs. We denote the combined set of
embedded inputs from the benchmark datasets as D = {¢(zf), ..., ¢(xf )}, where ¢ is a
sentence transformer [39]. For all completed experiments we have used all-mpnet-base-v2
from Hugging Face in all experiments. Given a sample ¢ from a new task d’, we embed it
using the same ¢ and define the classifier, g,,, for each model m by:

o () =7 X wem), (3.9

eeNN(¢(z{'),k,D)

where y(e,m) € {0,1} is the correctness of model m on the (embedded) input e, and
NN(¢(z¢), k,D) is the set of k closest embedded neighbors from D to the new embed-
ded sample qb(x?/), according to the cosine distance. Then, g,,, as defined in equation 3.4, is
a binary kNN classifier. Finally, we compute the per-model correctness predictors, Si(m, d’)
and Sy(m,d'), for the new task d’, according to equation 3.3 and equation 3.4, respectively.

Next, we describe a method for estimating the probability p(d’,m) in our confidence
model and the S3(m,d') score, equation 3.7. This method comprises a dataset distance and
a kernel smoother, defined as follows.

3.2.3 Dataset distance

Our dataset distance u(d) is a one-sided variant of the Chamfer distance with extended
neighborhood size. We define it formally below:

1
u(d) = o Znn(mf,D,d), (3.10)
i=1
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where D_, is the set of (embedded) inputs from the D datasets excluding inputs from d (for
a new task d’', D_y = D since d' is not part of the D benchmark datasets we use for training
LLM routers), and nn(z?,D_,) is the average distance from the input z¢ to its closest &
neighbors in D_g:

1 .
nn(z,D) = - Z cosine(p(x), e), (3.11)
eeENN(¢(z),k,D)
where NN(¢(z), k, D) is the set of k closest embedded neighbors of ¢(z) in D according to
cosine distance. We set x = 19 for the dataset distance in all experiments, which is a value
we found performed well in early experiments.

3.2.4 Kernel smoother

For each LLM m = 1,..., M, to obtain the corresponding kernel smoother estimate we
iterate over the available benchmark datasets, each time holding one out and computing
pairs (u(d), p(d,m)) for held out dataset d, where p(d, m) is the accuracy of g,, on data from
d after training on D_4. For a new task d’, we compute u(d’) using the inputs from this task
and our benchmark datasets and estimate p(d’,m) for each m with simple Gaussian kernel

smoothing: p
Loz P:(m)K (), uz) (3.12)
>t Klu(d), uz)

where KC(u(d'),u,) = exp (—%). We set o = 0.09 in all experiments, which is a value
we found to perform well through early experimentation.

Finally, we note that the proposed confidence model, including the definitions of the
dataset distance and kernel smoother, can be combined with any classifier g,,, and is not
restricted to the kNN classifier used for the correctness predictor in our experiments.

p(d',m) =

3.3 Mixture of experts

Prior work has shown pooling the outputs of multiple models on every instance can greatly
improve performance [43]. Loosely inspired by these ideas, we include an additional strategy
we call Mixture of Experts (MoE). Instead of determining a score and selecting a model for
a dataset, we route on a per instance level. As such, for an instance z; we select the model
m; = arg max,, gm(x;)). For a new task d’, the accuracy of this strategy would be:

ngr

MoE(d') = T Z y(z arg max g, (x

U

).

If gm(x?/) is tied between multiple models, we select the tied model that performs best on
the training data.
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Chapter 4

Model Routing Experiments

4.1 Model Routing on HELM

We select 29 datasets from the HELM benchmark [3] representing scenarios such as question
answering (including a subset of MMLU [4]), text classification, language, knowledge, and
reasoning, among others. A full list of HELM benchmarks and candidate LLMs can be found
in 4.1 and 4.4 respectively.

4.1.1 Model Routing

The best model on average (BMA) across the 29 considered HELM datasets is 11ama-2-70b
(followed by 1llama-2-70b-chat). Our goal is to show that learning model routers from
benchmark data can simultaneously outperform BMA and reduce inference costs by rec-
ommending smaller LLMs for tasks where they can perform well. We compare models
selected with the three scores, S, S3, and S3, presented in Section 3.2 to the performance of
1llama-2-70b, i.e., the BMA. All correctness predictors g,,s are kNN classifiers with £ = 5.

We also report the performance of the best model according to the “oracle” score S, which
is the upper bound on what can be achieved with model routing, and Ss, which corresponds
to S3 with the true p(d’,m), i.e., the accuracy of (an imperfect) g,, on d’. Finally, we
compare the scoring LLMs with the average log-likelihood (LL) (or negative perplexity) of
the response they generate on the inputs from the task of interest. This last baseline requires
producing generations with every LLM at test time to make a selection, while all of our scores
only require generating with the chosen LLM.

4.1.2 Main results

We conduct 29 sets of experiments, each time selecting 28 of the datasets as the benchmark
data for training the LLM routers and using the remaining task as the new task d’' for
evaluating the quality of the LLM selection for this task. In Table 4.1 we report averages
across experiments for the performance of the selected model (Acc.), ratio of this performance
to the performance of the best model for the corresponding new task (Ratio to Best), Pearson
and Spearman rank correlations between model accuracies and model scores, number of
parameters of the selected model (# Params), rank of the selected model out of 18 considered
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Table 4.1: LLM routing on HELM: Comparison of various model scores for LLM routing
with the Oracle model selection and performance of the best model on average (BMA).

Acc. Ratio to Best Pearson Spearman % BMA +# Params Rank

Sy eq. 3.3 0.662 0.855 0.685 0.465 0.17 40.3B 6.172
Sy eq. 3.4 0.676 0.868 0.636 0.468 0.10 44.3B 5.897
Ss eq. 3.7, 3.8 0.694 0.898 0.727 0.492 0.48 49.8B 5.310
Ss true p 0.735 0.944 0.799 0.596 0.22 33.8B 3.800
LL 0.684 0.869 0.714 0.459 0.10 — 6.517
MoE 0.635 0.825 — — 0.08 34.0B —

BMA 0.688 0.884 — — 1.00 70.0B 6.069
Oracle 0.773 1.000 — — 0.21 29.1B 1.000

(Rank). We also report the fraction of times the BMA is selected by a method (% BMA).
Best results are highlighted with bold and second best with an underline (excluding Oracle).

First, we notice that accounting for imperfections of the correctness predictors (their
average accuracy is 0.59) has clear benefits: when we have access to the true accuracy of
correctness predictors, the corresponding score, S3 true p, noticeably outperforms all other
scores. Our simple kernel smoothing estimator of this accuracy (MAE= 0.116) allows us
to obtain a practical model routing score Sy that outperforms BMA (1lama-2-70b) while
choosing smaller models for some of the tasks (as evident by the average number of parame-
ters of the chosen models). Sy sacrifices some accuracy but chooses even smaller performant
models. Overall, learning from benchmarks allows us to obtain LLM routers that can im-
prove overall performance while utilizing smaller models where appropriate. MoE chooses
small models, but has low performance compared to other scores. Finally, we note that
log-likelihood (LL) also performs well. However, routing with it requires passing each test
input through each candidate LLM, which has 347B parameters in total.

0781 .._._0—0—0—+—0—0—k¢‘0—“_’++

A +T+++
¥~"‘*+*'ﬁ;:a

i - Ss eq. (8)

e o i: 5 twep

i it T s i

- BMA

-4 Oracle
-%- Few-Shot

o
\1
=)

o
N
IS

Average Accuracy
o
~
N

o
~
o
*
00\-4‘
|}
1
N
CHRY 3
I ‘.
N e
H
H_
4d
-8
"f‘
\

ly /
0.66 *

o
)
©
~%Q
S
o [=re—b §
a\
g
*

.05 0.10 0.15 0.20 0.25
a

Figure 4.1: OOD Experiment: Using min(an?, 50) training samples from d’ to reduce OOD
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4.1.3 Reducing the OOD gap

The average accuracy of correctness predictors across tasks and models for the experiments
in Table 4.1 is 0.59. It is a fairly low accuracy for binary classification, which we attribute to
the diversity of tasks in HELM leading to substantial distribution shifts when predicting the
correctness of LLMs on held-out tasks. We investigate the quality of model routing when
we reduce this OOD gap. A simple strategy to reduce this gap is to collect a small number
of labeled in-distribution samples. This can be accomplished by asking a practitioner to
provide reference answers (r¥s) for a small number of inputs from their task to evaluate
the correctness of candidate LLMs on these in-distribution inputs and use it to improve
correctness predictors.

We simulate this scenario by moving min(an®,50) samples from the data from a new
task d’ to the data for training the correctness predictors. The upper limit of 50 samples is
to maintain practical utility while accounting for varying dataset sizes. We conduct 29 sets
of experiments, repeating each one 10 times to obtain standard deviations (randomness is
due to random selection of data points from a new task for reducing the OOD gap). We
summarize the average accuracy of models selected with various routing scores for varying «
in Figure 4.1 (a = 0 corresponds to Table 4.1). Furthermore, we add an additional baseline,
Few-shot, which selects the best performing model on the samples. This baseline performs
considerably poorer for small values of o and approach the performance of S; for high values
of a. Results for Pearson correlation are in Figure 4.3(a).

We see that even a small number of in-distribution samples (o = 0.05) can reduce the
OOD gap (corresponding average accuracy of correctness predictors is 0.65; see Figure 4.3(b))
and noticeably improves the model routing performance of all three of our scores. When
the number of in-distribution samples further increases, S; starts to outperform S;. We
attribute this observation to kNN being well-calibrated in-distribution, i.e., the correctness
predictors provide reliable estimates of their own confidence P(y|x), which are used by S; in
equation 3.3. Finally, we note a fairly large variance in the results due to random selection
of the in-distribution training samples from d’, suggesting that active learning [44| can help
to improve LLM routing further.
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Figure 4.2: OOD Experiment: Correlation(Ss, Accs.) and u(d’).
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4.2 Scores and accuracy correlation

We anticipate learning LLM routers from benchmarks to be the most effective when new tasks
are similar to the benchmark tasks, thus reducing the OOD gap without any labeling burden
for a practitioner. To empirically investigate this hypothesis, in Figure 4.2 we visualize the
relation between the quality of model routing with S5, measured with Pearson correlation
between model scores and accuracies of candidate LLMs, and the distance u(d’) from a new
task d’ to the available benchmark data for training the routers. In this experiment, we
aggregate results across different o values from Figure 4.1. For smaller distance values the
correlation is approaching 1, while for large distances it sometimes deteriorates.

4.2.1 Additional results

We present additional results for this experiment in Figure 4.3. (a) shows Pearson correlation
improvement as we increase «, similar to the trends in accuracy improvement in Figure 4.1;
(b) demonstrates that the accuracy of correctness predictors g,,s improves as we increase
the number of samples from d' used for training them, thus reducing the OOD gap; (c)
shows the mean absolute error (MAE) of our kernel smoothing estimator of the accuracy
of correctness predictors p(d’,m) — the estimator does not improve as much with increased
«, thus S3 eventually becomes worse than S; in terms of correlation and accuracy of the
selected models.
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Figure 4.3: OOD Experiment: Additional results for Reducing the OOD gap experiment in
Figure 4.1.

4.3 The Efficacy of small LLMs

As discussed in 4.1, while a given LLM may work best on average, these models tend to
be the biggest and therefore most expensive to run. Practitioners can achieve gains in
cost, compute, and latency if we can successfully predict whether a smaller LLM can be
adequate for a given task. Identifying good smaller models for tasks of interest will also
redefine the cost/benefit tradeoff behind automating certain tasks, potentially incentivizing

the automation of new tasks that were previously cost-prohibitive to automate with larger
LLMs.
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Figure 4.4: Small LLMs Experiment: LLM routing with < 13B parameter models compared
to Llama 2 70B.

To evaluate the potential of smaller LLMs we revisit our HELM experiment in Figure
4.1. In Figure 4.4, we perform LLM routing using only models with < 13B parameters and
compare it to the performance of Llama 2 70B. Oracle’s performance demonstrates that it
is conceptually possible to outperform a large model by routing smaller LLMs. Results with
our scores 57 and S5 demonstrate that it is also practically feasible to match the performance
of the 70B model by combining learning from benchmarks with a small number (o = 0.04,
i.e., 2-40 samples) of labeled samples from a new task that a practitioner can provide to save
on the inference costs in their LLM application.

This has interesting implications when considering the cost of LLM performance. We
show that the relationship between LLMs performance and task is multifaceted. For a user,
the path to improving LLM performance may not be to use a larger more expensive model,
but rather to collect samples and use said samples to determine which smaller model is
optimal.

4.3.1 Dataset distance and Pearson correlation

The dataset distance u(d’) is computed as in equation 3.10. As evident from equation 3.11,
dataset distance will usually decrease for larger values of « as inputs from d’ are moved into
D (assuming that inputs from d' are on average closer to each other than they are to inputs
from other tasks). In this experiment, this serves as a mechanism to study the performance of
LLM routing on closer datasets, providing insights into the benefits of learning LLM routers
on more benchmarks where it is more likely that dataset distance for a new task is small.

In Figure 4.5 we present relations between dataset distance u(d') and Pearson correlation
between various model scores and accuracies of candidate LLMs. For results with S; see
Figure 4.2.
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4.4 Model routing on Mix-Instruct

We further demonstrate our approach in a different setting and task type, on the MixInstruct
benchmark dataset [15]. The dataset is composed of instruction-following tasks, divided into
train/validation /test sets of 100K /5K /5K samples, and includes evaluations of N = 11 open-
source LLMs using common metrics, e.g. BERTScore [34], BARTScore [36], and BLEURT
[35]. In [15], this benchmark was used to compare different LLM ranking methods in per-
instance model selection. We follow the same setting and apply our score S;(m, d’) to the test
set, per-instance, where we use the 100K-sample train set as the benchmark data for training
our LLM router. Due to the per-instance setting, and since the test set was constructed from
in-distribution data, we focus on our simplest router model Sy, equation 3.3.
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Figure 4.6: MixInstruct Experiment: Average metrics on subsets of the MixInstruct test set,
defined by limiting the maximal average distance between test instances and their closest
neighbors in the reference (train) set.

We compare our approach with the scoring methods examined by [15], as well as scoring
based on the average log-likelihood (LL) of the model responses to the inputs. Additionally,
we present the metrics for the best models on average (BMA), Open-Assistant [45] and
Vicuna [46]. We report the results of BERTScore, BARTScore and BLEURT in Table
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Table 4.2: MixInstruct Experiment: Average metrics for per-instance LLM selection on the
MixInstruct test set. Best results are highlighted with bold and second best with an underline
(excluding Oracle).

BERTScore © BARTScore ¥ BLEURT 1 MCPI

Random 66.36 -3.76 -0.77 -
LL 65.83 -4.12 -0.96 N
BMA: Open-Assisant 74.68 -3.45 -0.39 -
BMA: Vicuna 69.60 -3.44 -0.61 -
MLM-Scoring [47] 64.77 -4.03 -0.88 N
SimCLS [31] 73.14 -3.22 -0.38 N
SummaReranker [32] 71.60 -3.25 -0.41 N
PairRanker [15] 72.97 -3.14 -0.37 N
Ours 74.75 -3.40 -0.38 2
Oracle 77.67 -2.87 -0.15 N

4.2, along with the number of model calls per instance (MCPI), for N LLMs, performed
during inference time. All compared methods require model generations for every point in
the test set, by each of the examined LLMs, whereas our approach requires only one model
generation and one call to some general embedding function. In addition, all methods, except
for LL, require training auxiliary language models, whereas our approach is a simple kNN
classifier on the embedded inputs. While our approach does not consistently outperform the
compared methods, these results demonstrate the potential of using benchmark datasets for
model routing with significantly better inference-time efficiency.

4.4.1 Effect of benchmark dataset sparsity

To highlight the potential of our approach in this setting, we examine the effect of the
reference benchmark data sparsity. We apply our method to different subsets of the test
set, Xiest, where the subsets are defined by limiting the maximal average distance of each
test set point to the closest points from the reference (train) set, denoted by NNyain, i.e.
Xt = {a' € X
distance and X, is the resulting subset of the test set. Figure 4.6 presents the metric scores
for the different subsets using our method, the oracle (best possible choices), and LL scoring.
We also report the percentage of the test set that is used in each subset. This figure depicts
that our predictor approaches the oracle metrics as the average distance to the reference
points decreases. This suggests that adding more benchmark datasets to reduce the sparsity
of the reference space may lead to better LLM selections with our approach.

m D NN (o) dist (2", 2) < C }, where C' is the maximal average
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Table 4.3: HELM dataset details

Dataset H Size (instances) ‘ Type
RAFT-ADE Corpus V2 40 Binary Classification
RAFT-Banking 77 40 77 Class Classification
RAFT-NeurIPS Impact Statement Risks 40 Binary Classification
RAFT-One Stop English 40 3 Class Classification
RAFT-Overruling 40 Binary Classification
RAFT-Semiconductor Org Types 40 3 Class Classification
RAFT-Systematic Review Inclusion 40 Binary Classification
RAFT-TAI Safety Research 40 Binary Classification
RAFT-Terms of Service 40 Binary Classification
RAFT-Tweet Eval Hate 40 Binary Classification
RAFT-Twitter Complaints 40 Binary Classification
IMDB 1000 Binary Classification
Civil Comments-demographic=all 1000 Binary Classification
bAbI-QA-task=all 1000 Q&A: one word answers
BoolQ 1000 Binary Classification
Entity Matching-Dataset—=Beer 182 Binary Classification
Entity Matching-Dataset=Dirty iTunes Amazon 218 Binary Classification
Entity Matching-Dataset=Abt Buy 1000 Binary Classification
Entity Data Imputation-Dataset=Restaurant 242 Q&A: one word answers
Entity Data Imputation-Dataset=Buy 182 Q&A: one word answers
BBQ-subject=all 1000 Multiple Choice Questions
Legal Support 1000 Multiple Choice Questions
LSAT QA-task=all 461 Multiple Choice Questions
MMLU-Subject=Abstract Algebra 111 Multiple Choice Questions
MMLU-Subject=College Chemistry 108 Multiple Choice Questions
MMLU-Subject=Computer Security 111 Multiple Choice Questions
MMLU-Subject=Econometrics 126 Multiple Choice Questions
MMLU-Subject=US foreign policy 111 Multiple Choice Questions
Truthful QA-task=mc single 654 Multiple Choice Questions
Total: 29 datasets H 9946
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Table 4.4: Candidate LLMs

Name H Model Size, B | Average Accuracy on the 29 HELM tasks
codegen-16b-mono 16 0.451
dial-flant5-xI1 3 0.454
falcon-40b 40 0.641
flan-t5-x1 3 0.650
flan-t5-xx1 11 0.658
flan-ul2 20 0.668
gpt-jt-6b-v1 6 0.576
gpt-neox-20b 20 0.492
mpt-7b-instruct 7 0.514
mt0-xxl1 13 0.543
llama-2-13b 13 0.624
llama-2-13b-chat 13 0.623
llama-2-13b-chat-beam 13 0.603
llama-2-70b 70 0.688
llama-2-70b-chat 70 0.687
llama-2-7b 7 0.610
llama-2-7b-chat 7 0.605
starcoder 15 0.587
Total: 18 LLMs || 347
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Chapter 5

Conclusion

In this work we have explored the idea of using benchmark datasets to route models and inves-
tigated the problem of out-of-distribution datasets. Our results show that by using a simple
method to select models, it is possible to outperform the best overall model. Additionally,
we improved performance with a strategy to overcome the challenge of out-of-distribution
datasets through use of dataset-distance. While this work covers the entirety of my involve-
ment with these efforts, this avenue of research is far from concluded. My collaborators are
exploring adding additional datasets to improve the performance of our method. During
my time working on this thesis, I was involved in other work on the costs of LLMs which
built upon the ideas presented in this work. I wish my collaborators the best of luck as they
continue their work in this domain, and I am excited to learn of the results that they find.
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