Large Language Model Routing with Benchmark
Datasets
by
Anthony C Ou
B.S. Electrical Engineering and Computer Science and Physics, Massachusetts Institute of

Technology, 2023

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2024
©) 2024 Anthony C Ou. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,
distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Anthony C Ou
Department of Electrical Engineering and Computer Science
January 19, 2024

Certified by: Neil Thompson

Research Scientist, Thesis Supervisor
Accepted by: Katrina LaCurts

Chair

Master of Engineering Thesis Committee

Large Language Model Routing with Benchmark Datasets
by
Anthony C Ou

Submitted to the Department of Electrical Engineering and Computer Science
on January 19, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

There is a rapidly growing number of open-source Large Language Models (LLMs) and
benchmark datasets to compare them. While some models dominate these benchmarks,
no single model typically achieves the best accuracy in all tasks and use cases. With a
new dataset, it can be difficult to determine which LLM is best suited to the task. In this
work we will address the challenges associated with selecting the best LLM model out of a
collection for a new task. To do so, benchmark datasets are repurposed to learn a “router”
model for this LLM selection, such that the “router” model will solve a collection of binary
classification tasks. This work will demonstrate the utility and limitations of learning model
routers from various benchmark datasets, where performance is improved upon using any
single model for all tasks.

Thesis supervisor: Neil Thompson
Title: Research Scientist

Acknowledgments

I would like to thank Mikhail Yurochkin for his unwavering support and guidance in all
technical matters. I would also like to thank Neil Thompson for his leadership and expertise
to guide the direction of research. Much of the work on this thesis was done in collaboration
with Tal Shnitzer and Mirian Silva; I am grateful for their contributions to this work. Finally,
I would like to express appreciation to the MIT-IBM Watson AI Lab for providing funding
and compute resources for this research.

Contents

Title page

Abstract

Acknowledgments

List of Figures

List of Tables

1

2

Introduction

Related work
2.1 Benchmarking
2.2 Model selection,

2.3 Out-of-distribution model selection
24 Routing LLMs o o e

Model Routing Theory

3.1 Binary Classifier Formulation
3.1.1 Supervised learning from benchmarks

3.2 LLM routing with (imperfect) correctness predictors
3.2.1 A simple OOD confidence model
3.2.2 Correctness predictors
3.2.3 Dataset distanceo
3.24 Kernel smoother oo

3.3 Mixture of experts L

Model Routing Experiments

4.1 Model Routing on HELM oo
4.1.1 Model Routing
4.1.2 Mainresultso
4.1.3 Reducing the OOD gap

4.2 Scores and accuracy correlation oL
4.2.1 Additional results L

4.3 The Efficacy of small LLMs oL

11

13

15
15
15
16
16

17
17
17
18
19
20
20
21
21

4.3.1 Dataset distance and Pearson correlation

4.4 Model routing on Mix-Instruct

4.4.1 Effect of benchmark dataset sparsity

5 Conclusion

References

List of Figures

1.1

4.1

4.2
4.3

4.4

4.5

4.6

Model Routing Schematic: We learn the strengths of candidate LLMs (T5,
Falcon, Llama) on various tasks (emojis inside boxes: QA, reasoning, summa-
rization, etc.) and domains (4 sections within each box: finance, legal, general
knowledge, etc.) from benchmark datasets. We accomplish this by training
a binary classifier per LLM (decision boundaries marked with colors in the
upper part of the figure). For a new task (paper stack), we score each LLM
with these binary classifiers and recommend an LLM (here Falcon) to the user. 13

OOD Experiment: Using min(an?,50) training samples from d’ to reduce

OO0D gap. o 23
OOD Experiment: Correlation(Ss, Accs.) and u(d'). 24
OOD Experiment: Additional results for Reducing the OOD gap experiment
in Figure 4.1. 25
Small LLMs Experiment: LLM routing with < 13B parameter models com-
pared to Llama 2 70B. 26
OOD Experiment: Correlation of scores and LLM accuracies on new tasks
and corresponding data distances.o 27

MixInstruct Experiment: Average metrics on subsets of the MixInstruct test
set, defined by limiting the maximal average distance between test instances
and their closest neighbors in the reference (train) set. 27

10

List of Tables

4.1

4.2

4.3
4.4

LLM routing on HELM: Comparison of various model scores for LLM routing
with the Oracle model selection and performance of the best model on average
(BMA). . .
MixInstruct Experiment: Average metrics for per-instance LLM selection on
the MixInstruct test set. Best results are highlighted with bold and second
best with an underline (excluding Oracle).
HELM dataset details
Candidate LLMs

11

12

Chapter 1

Introduction

Large Language Models (LLMs) have demonstrated groundbreaking abilities to solve diverse
tasks across a variety of NLP domains [1], [2]. Today, researchers in both academia and
industry are releasing new LLMs daily. These models perform tasks ranging from text
classification to question-answering, summarization, and dialogue.

The popularity and influx of open-source LLMs and the diversity of their potential use
cases made it crucial to develop comprehensive benchmarks, i.e., collections of datasets

e

O g\
) @

Wo.3
= @oo / ©
G
&
@«‘?3'
L

Figure 1.1: Model Routing Schematic: We learn the strengths of candidate LLMs (T5,
Falcon, Llama) on various tasks (emojis inside boxes: QA, reasoning, summarization, etc.)
and domains (4 sections within each box: finance, legal, general knowledge, etc.) from
benchmark datasets. We accomplish this by training a binary classifier per LLM (decision
boundaries marked with colors in the upper part of the figure). For a new task (paper stack),
we score each LLM with these binary classifiers and recommend an LLM (here Falcon) to
the user.

13

representing different tasks and domains to compare LLMs. For example, HELM [3] consists
of 42 scenarios covering a variety of uses, MMLU [4] is a multiple-choice question answering
benchmark with 57 tasks organized by topics. While there always will be an LLM that is
the best on average across benchmarks, there is unlikely to ever be a model that is strictly
the best on each of the hundreds of datasets comprising various benchmarks. Meanwhile, a
practitioner typically wants to know what is the best model for their specific use case and is
less concerned about average performance on a plethora of other datasets.

We will study the problem of identifying the best LLM for a new task to learn about the
strengths and weaknesses of candidate LLMs we use benchmark datasets that give insights
into the performance of LLMs across tasks and domains. For example, suppose the new
task is answering math questions. In that case, it is more intuitive to consider models
that do well on other STEM question-answering datasets and discount performance on, e.g.,
sociology or toxicity detection. More specifically, we propose a strategy of using the LLM
performances on benchmark datasets to predict how it will perform on a new dataset based
on the similarity between the benchmark datasets and the new dataset.

To make this idea more precise, we cast the learning of model strengths as a binary
supervised learning task, where the features are input embeddings of samples across tasks
and the labels are whether the model “did well” on the corresponding inputs, e.g., generated
correct class label, answered a question correctly, or followed input instructions sufficiently
well. See Figure 1.1 for an illustration.

This work is an updated version of a previously published work under the same name [5]
with additional baselines. My role in this joint work is the implementation and analysis of
all experiments with the exception of 4.4.

14

Chapter 2

Related work

2.1 Benchmarking

Comparing models or algorithms across various tasks is a standard practice in ML and Al
literature. Prior to Foundation Models [6], it was typical to apply the same learning algorithm
to train a model on each of the datasets and compare the performance against other learning
algorithms. The UCI Machine Learning Repository [7] is one prominent example of such
a collection of datasets often used to compare learning algorithms. With the emergence of
Foundation Models, i.e., models with billions of parameters trained on massive datasets using
large compute clusters, the paradigm changed to evaluating the same model (or a few-shot
tuned version of it) on a variety of tasks [8]-[10]. In the context of Large Language Models,
many benchmarks [3], [4], [L1]-[15] were proposed to help determine the most capable LLM.
Benchmarks typically average the performance of models across tasks and provide a final
ranking, discarding the rest of the information. In this work, we use the byproducts of
benchmark evaluations, i.e., the per-sample performance of various LLMs across tasks, to
learn about their individual strengths and identify the best LLM for a new task.

2.2 Model selection

Selecting the best model, or model selection, is a classical topic in statistics and ML [16]-
[18]. However, the typical problem setting is quite different: classical methods like cross-
validation aim to estimate the population error of a model trained on samples from the
population distribution. In other words, the goal is to find the best model for in-distribution
test data, i.e., data sampled from the same distribution as the train data. The notion of
“train” data is quite elusive for LLMs, as they are usually trained on massive datasets with
trillions of tokens with a simple task of next token prediction [2], [19]. However, the tasks we
evaluate them on are often more structured, e.g., classification and question-answering, and
are specific to domains that may or may not be sufficiently represented in the train data. In
addition, techniques like k-fold cross-validation require training the model multiple times,
which is infeasible for LLMs.

15

2.3 Out-of-distribution model selection

Recognizing the limitations of the model selection methods for in-distribution test data [20],
[21], recent work has proposed a variety of methods to select models when deployed on data
that may differ from the train data. These methods rely on ideas such as bootstrapping [22],
reweighing (23], [24], agreement of models or ensembles [25]-[27], or aligning model accuracy
in-distribution with a confidence threshold [28]-[30]. Most of these methods are nontrivial
to extend to generation use-cases of LLMs; some require training multiple models, and some
need well-defined in-distribution data related to the new task.

2.4 Routing LLMs

Prior work on selecting LLMs primarily considers choosing one that produces the best gen-
eration for a given input. [15], [31], [32] train dedicated scoring or ranking models that
can be applied to model generations. Unlike our work, these approaches require generat-
ing outputs with every candidate LLM to make a decision, which can be computationally
prohibitive with a large pool of candidate LLMs. FrugalGPT 33| calls LLMs sequentially
until a dedicated scoring model deems the generation acceptable. Prior works in this group
require training data sufficiently representative of each of the tasks and domains of interest
to train the corresponding ranking and scoring models. In this paper, instead, we use data
from benchmarks to learn the strengths and weaknesses of LLMs across tasks and domains.
The resulting model router requires generating outputs only with the chosen LLM at test
time.

16

Chapter 3

Model Routing Theory

3.1 Binary Classifier Formulation

We start by introducing notation to describe the majority of NLP benchmarks. Let

{xcll> ce 7x§lzd}§):1

be a collection of inputs across D tasks. Each input text z¢ corresponds to a reference answer
rd, i.e., an ideal generation for the corresponding input. Finally, there is a metric Fy(z,0,7)
that can be task-dependent and measures how well a response o for an input x corresponds
to the reference r. To test an LLM,,, m € {1,..., M}, on the benchmark, for each task
d=1,...,D, its responses are generated

{0fin = LLM () i

i=1
and compared to the corresponding references to obtain performance metrics *

iC?ln = Fd(l'?, 0?7717 r?)}?:dl

At this point, the majority of the benchmark studies will take a (weighted) average of the
performance metrics and report a single score for every LLM to rank them in performance.
Instead, we reuse these evaluation results to formulate a supervised learning problem to
better understand the strengths and weaknesses of various LLMs based on their performance
on data points and tasks.

3.1.1 Supervised learning from benchmarks

Our goal is to learn a simple routing function g,,(z) for each LLM, m = 1,..., M, that can
predict {f& 1%, i.e., the performance of the corresponding LLM on a new task d’. Then

it is trivial to select the best LLM for this task. For efficiency at test time, we restrict the
routers {g,,}*_, to only depend on the input x. This is in contrast to the majority of prior
works on LLM routing that first obtain generations with every candidate LLM and then use

"'We omit dependency on the prompt when generating with an LLM and, w.l.o.g., consider the same LLM
with a different prompting strategy as a different LLM.

17

them to choose the best model [15], [31], [32]. With thousands of open-source LLMs, it is
simply infeasible to obtain generations with every LLM for every input at test time.

To complete the problem formulation, we denote the “correctness” of model m on an
input = by y(x,m) € {0,1}. Correctness is evaluated as follows: generate a response of
with LLM m on input z¢, compare it to the corresponding reference r¢, and output 1 if the
model’s response is good enough, i.e., f& > 1,4, and 0 otherwise, where 74 is some threshold
that can be task and/or metric specific. For tasks like classification or multiple-choice QA,
y(zd,m) = fe while for various evaluation metrics used in summarization and instruction
following tasks [34]-[36], the notion of correctness can help to account for the heterogeneity
of popular metrics and task difficulty levels. In Section 4.4, we also present results with raw
metrics instead of correctness.

To train a predictor of an LLM correctness, for each LLM, m = 1,..., M, we solve the

following optimization problem:

D ng
min >3 g y(at m)), (3.1)
I =t
where we choose ¢ to be a binary cross-entropy loss and g, is any standard probabilistic
classifier, i.e., g,,(z) estimates P(y(x,m) = 1|z).

An important consideration when training correctness predictors is their ability to gener-
alize out-of-distribution (OOD) data, since our goal is to estimate LLM performance on a new
task d’ that has not been seen during training. Training predictors given data from multiple
domains that need to generalize to unseen domains is indeed an active area of research in
ML literature. For example, [37], [38] proposed methods for improving OOD generalization
when training on data from multiple domains, while [21] proposed a benchmark for OOD
generalization demonstrating the challenging nature of the problem in various applications.

In this work, we use a simple model for the correctness predictor: we embed all inputs with
a sentence transformer [39] and use a k-nearest neighbors classifier [40] as {g,, }M_,. kNN
is a simple non-parametric classifier that allows us to fit a potentially complicated decision
boundary of an LLM’s correctness across multiple tasks without extensive hyperparameter
tuning. We choose this approach for learning correctness predictors to emphasize the utility
of learning from benchmarks even with a basic method and instead focus on the question
specific to our problem that has not been studied in prior works on OOD generalization:
Can we improve the quality of LLM routing with an imperfect correctness predictor?

3.2 LLM routing with (imperfect) correctness predictors

The goal of LLM routing is to identify an LLM that will have the highest frequency of being
correct on a new task d’, given the inputs {z¢ }/%, from this task:

argmax,, S(m,d'), where S(m,d') = LS y(ad m). (3.2)

Here, S(m,d') is the “oracle” score that we want to estimate. The most intuitive estimator
is simply using the correctness predictor

Si(m,d') = L S0 g (2d), (3.3)

18

but prior work has shown that accurately estimating P(y|z), i.e., calibration, is challenging
on OOD data [41]. Meanwhile, g,, may still produce accurate predictions after thresholding
the predicted probability even if the class probabilities are not estimated well, which is often
the case with neural networks [42]. This motivates another score:

So(m, d') = = 320 G ('), where g (') = L(gm(2f) > 1), (3.4)

where t € (0,1) is some threshold, e.g., t = 0.5, I is an indicator function, and g,,(x) € {0,1}
can be interpreted as the prediction of g,, on z. This score, however, does not take into
account the potential “imperfection” of g,,, i.e., lower accuracy on OOD data from task d’.
To address this issue, we model the out-of-distribution confidence of the predictions g,,.

3.2.1 A simple OOD confidence model

We model LLM correctness as follows:
Gm. ith babilit d,
1 — gm(z) with probability 1 — p(d’,m),

i.e., p(d,m) € [0,1] is the probability that g,, is the correct prediction on a data point from
task d’. The above model can be condensed as follows:

y(z,m)|z,d" ~ Bern(gm(z)p(d’,m) + (1 = gm(x))(1 — p(d’, m))). (3.6)

In this simplistic (and approximate) model, we assume that p(d’,m) does not depend
on the input z after conditioning on the task d’. The assumption is analogous to the ho-
moscedastic error term assumption in linear regression models and allows us to interpret
p(d’;m) as the marginal /overall accuracy of g,, on data from the task d’. Prior work has
studied the problem of estimating OOD accuracy given the inputs from a new task, but
existing methods are challenging to combine with our approach. For example, [29] learn a
threshold on model confidence, which is hard to apply when using kNN classifiers, and [27]
require data augmentations that can be challenging to identify given the diversity of tasks
in benchmarks. Prior methods also do not take into account the partition of the train data
into tasks inherent in our problem setting.

We treat the problem of estimating p(d’, m) as a supervised learning task, taking advan-
tage of the task partition. Specifically, we assign a task descriptor u(d) € R, to every task
that measures the distance of the data from task d to the other available tasks combined.
Then we collect the values of p(d, m), i.e., the accuracy of g,, on d, and fit a non-parametric
regression model to predict p(d,m) from u(d). At test time, we compute u(d') for a new
task d’ based on the inputs {z¢ }/%, and predict p(d’,m) using the fitted regression model.
In general, one can consider more sophisticated, higher-dimensional task descriptors u(d),
but here, for simplicity, we keep it 1-dimensional and use a Gaussian kernel smoother (also
known as the Nadaraya-Watson estimator) as the non-parametric regressor. We provide
details in the following section.

Finally, given the model of LLM correctness 3.6, S(m,d’) is a random variable (corre-
sponding to S(m,d’)) distributed as a (scaled) sum of two Bernoulli random variables. To

19

arrive at our final score for LLM routing, we take its expected value:
Sy(m,) = Sa(m, d)p(d',m) + (1 — Sa(m, d')) (1 — p(d', m)). (3.7)
When selecting an LLM with S5, we consider an alternative to the arg max criterion based
on our correctness model 3.6, which defaults to the best model on average across benchmark
datasets when we are not sufficiently confident that a candidate model will be better:

{m3 it P(S(mg, d') > S(m*,d)) >n (3.8)

*

m* otherwise,

where m3 = argmax,, S3(m,d’), i.e., the best LLM for the new task according to S3, and
m* = argmax,, Zle S(m,d), i.e., the best LLM across the benchmark datasets. The ex-
peression, P(S(ms,d) > S(m*,d')), required for this step is not available in closed form,
as S is distributed as a (scaled) sum of two Bernoulli random variables. Instead, we esti-
mate the value of the expression via Monte Carlo sampling from the corresponding Bernoulli
distributions. In all past and future experiments, we set n = 0.6.

3.2.2 Correctness predictors

While any probabilistic classifier may fit our setting, in the experiments, we mainly used
a simple kNN classifier applied in an embedded space. Recall that we have D benchmark
datasets with inputs {z¢}7¢, for d = 1,...,D. To compute our correctness predictor based
on the benchmark datasets, we first embed all their inputs. We denote the combined set of
embedded inputs from the benchmark datasets as D = {¢(zf), ..., ¢(xf)}, where ¢ is a
sentence transformer [39]. For all completed experiments we have used all-mpnet-base-v2
from Hugging Face in all experiments. Given a sample ¢ from a new task d’, we embed it
using the same ¢ and define the classifier, g,,, for each model m by:

o () =7 X wem), (3.9

eeNN(¢(z{'),k,D)

where y(e,m) € {0,1} is the correctness of model m on the (embedded) input e, and
NN(¢(z¢), k,D) is the set of k closest embedded neighbors from D to the new embed-
ded sample qb(x?/), according to the cosine distance. Then, g,,, as defined in equation 3.4, is
a binary kNN classifier. Finally, we compute the per-model correctness predictors, Si(m, d’)
and Sy(m,d'), for the new task d’, according to equation 3.3 and equation 3.4, respectively.

Next, we describe a method for estimating the probability p(d’,m) in our confidence
model and the S3(m,d') score, equation 3.7. This method comprises a dataset distance and
a kernel smoother, defined as follows.

3.2.3 Dataset distance

Our dataset distance u(d) is a one-sided variant of the Chamfer distance with extended
neighborhood size. We define it formally below:

1
u(d) = o Znn(mf,D,d), (3.10)
i=1

20

where D_, is the set of (embedded) inputs from the D datasets excluding inputs from d (for
a new task d’', D_y = D since d' is not part of the D benchmark datasets we use for training
LLM routers), and nn(z?,D_,) is the average distance from the input z¢ to its closest &
neighbors in D_g:

1 .
nn(z,D) = - Z cosine(p(x), e), (3.11)
eeENN(¢(z),k,D)
where NN(¢(z), k, D) is the set of k closest embedded neighbors of ¢(z) in D according to
cosine distance. We set x = 19 for the dataset distance in all experiments, which is a value
we found performed well in early experiments.

3.2.4 Kernel smoother

For each LLM m = 1,..., M, to obtain the corresponding kernel smoother estimate we
iterate over the available benchmark datasets, each time holding one out and computing
pairs (u(d), p(d,m)) for held out dataset d, where p(d, m) is the accuracy of g,, on data from
d after training on D_4. For a new task d’, we compute u(d’) using the inputs from this task
and our benchmark datasets and estimate p(d’,m) for each m with simple Gaussian kernel

smoothing: p
Loz P:(m)K (), uz) (3.12)
>t Klu(d), uz)

where KC(u(d'),u,) = exp (—%). We set o = 0.09 in all experiments, which is a value
we found to perform well through early experimentation.

Finally, we note that the proposed confidence model, including the definitions of the
dataset distance and kernel smoother, can be combined with any classifier g,,, and is not
restricted to the kNN classifier used for the correctness predictor in our experiments.

p(d',m) =

3.3 Mixture of experts

Prior work has shown pooling the outputs of multiple models on every instance can greatly
improve performance [43]. Loosely inspired by these ideas, we include an additional strategy
we call Mixture of Experts (MoE). Instead of determining a score and selecting a model for
a dataset, we route on a per instance level. As such, for an instance z; we select the model
m; = arg max,, gm(x;)). For a new task d’, the accuracy of this strategy would be:

ngr

MoE(d') = T Z y(z arg max g, (x

U

).

If gm(x?/) is tied between multiple models, we select the tied model that performs best on
the training data.

21

Chapter 4

Model Routing Experiments

4.1 Model Routing on HELM

We select 29 datasets from the HELM benchmark [3] representing scenarios such as question
answering (including a subset of MMLU [4]), text classification, language, knowledge, and
reasoning, among others. A full list of HELM benchmarks and candidate LLMs can be found
in 4.1 and 4.4 respectively.

4.1.1 Model Routing

The best model on average (BMA) across the 29 considered HELM datasets is 11ama-2-70b
(followed by 1llama-2-70b-chat). Our goal is to show that learning model routers from
benchmark data can simultaneously outperform BMA and reduce inference costs by rec-
ommending smaller LLMs for tasks where they can perform well. We compare models
selected with the three scores, S, S3, and S3, presented in Section 3.2 to the performance of
1llama-2-70b, i.e., the BMA. All correctness predictors g,,s are kNN classifiers with £ = 5.

We also report the performance of the best model according to the “oracle” score S, which
is the upper bound on what can be achieved with model routing, and Ss, which corresponds
to S3 with the true p(d’,m), i.e., the accuracy of (an imperfect) g,, on d’. Finally, we
compare the scoring LLMs with the average log-likelihood (LL) (or negative perplexity) of
the response they generate on the inputs from the task of interest. This last baseline requires
producing generations with every LLM at test time to make a selection, while all of our scores
only require generating with the chosen LLM.

4.1.2 Main results

We conduct 29 sets of experiments, each time selecting 28 of the datasets as the benchmark
data for training the LLM routers and using the remaining task as the new task d’' for
evaluating the quality of the LLM selection for this task. In Table 4.1 we report averages
across experiments for the performance of the selected model (Acc.), ratio of this performance
to the performance of the best model for the corresponding new task (Ratio to Best), Pearson
and Spearman rank correlations between model accuracies and model scores, number of
parameters of the selected model (# Params), rank of the selected model out of 18 considered

22

Table 4.1: LLM routing on HELM: Comparison of various model scores for LLM routing
with the Oracle model selection and performance of the best model on average (BMA).

Acc. Ratio to Best Pearson Spearman % BMA +# Params Rank

Sy eq. 3.3 0.662 0.855 0.685 0.465 0.17 40.3B 6.172
Sy eq. 3.4 0.676 0.868 0.636 0.468 0.10 44.3B 5.897
Ss eq. 3.7, 3.8 0.694 0.898 0.727 0.492 0.48 49.8B 5.310
Ss true p 0.735 0.944 0.799 0.596 0.22 33.8B 3.800
LL 0.684 0.869 0.714 0.459 0.10 — 6.517
MoE 0.635 0.825 — — 0.08 34.0B —

BMA 0.688 0.884 — — 1.00 70.0B 6.069
Oracle 0.773 1.000 — — 0.21 29.1B 1.000

(Rank). We also report the fraction of times the BMA is selected by a method (% BMA).
Best results are highlighted with bold and second best with an underline (excluding Oracle).

First, we notice that accounting for imperfections of the correctness predictors (their
average accuracy is 0.59) has clear benefits: when we have access to the true accuracy of
correctness predictors, the corresponding score, S3 true p, noticeably outperforms all other
scores. Our simple kernel smoothing estimator of this accuracy (MAE= 0.116) allows us
to obtain a practical model routing score Sy that outperforms BMA (1lama-2-70b) while
choosing smaller models for some of the tasks (as evident by the average number of parame-
ters of the chosen models). Sy sacrifices some accuracy but chooses even smaller performant
models. Overall, learning from benchmarks allows us to obtain LLM routers that can im-
prove overall performance while utilizing smaller models where appropriate. MoE chooses
small models, but has low performance compared to other scores. Finally, we note that
log-likelihood (LL) also performs well. However, routing with it requires passing each test
input through each candidate LLM, which has 347B parameters in total.

0781 .._._0—0—0—+—0—0—k¢‘0—“_’++

A +T+++
¥~"‘*+*'ﬁ;:a

i - Ss eq. (8)

e o i: 5 twep

i it T s i

- BMA

-4 Oracle
-%- Few-Shot

o
\1
=)

o
N
IS

Average Accuracy
o
~
N

o
~
o
*
00\-4‘
|}
1
N
CHRY 3
I ‘.
N e
H
H_
4d
-8
"f‘
\

ly /
0.66 *

o
)
©
~%Q
S
o [=re—b §
a\
g
*

.05 0.10 0.15 0.20 0.25
a

Figure 4.1: OOD Experiment: Using min(an?, 50) training samples from d’ to reduce OOD
gap.

23

4.1.3 Reducing the OOD gap

The average accuracy of correctness predictors across tasks and models for the experiments
in Table 4.1 is 0.59. It is a fairly low accuracy for binary classification, which we attribute to
the diversity of tasks in HELM leading to substantial distribution shifts when predicting the
correctness of LLMs on held-out tasks. We investigate the quality of model routing when
we reduce this OOD gap. A simple strategy to reduce this gap is to collect a small number
of labeled in-distribution samples. This can be accomplished by asking a practitioner to
provide reference answers (r¥s) for a small number of inputs from their task to evaluate
the correctness of candidate LLMs on these in-distribution inputs and use it to improve
correctness predictors.

We simulate this scenario by moving min(an®,50) samples from the data from a new
task d’ to the data for training the correctness predictors. The upper limit of 50 samples is
to maintain practical utility while accounting for varying dataset sizes. We conduct 29 sets
of experiments, repeating each one 10 times to obtain standard deviations (randomness is
due to random selection of data points from a new task for reducing the OOD gap). We
summarize the average accuracy of models selected with various routing scores for varying «
in Figure 4.1 (a = 0 corresponds to Table 4.1). Furthermore, we add an additional baseline,
Few-shot, which selects the best performing model on the samples. This baseline performs
considerably poorer for small values of o and approach the performance of S; for high values
of a. Results for Pearson correlation are in Figure 4.3(a).

We see that even a small number of in-distribution samples (o = 0.05) can reduce the
OOD gap (corresponding average accuracy of correctness predictors is 0.65; see Figure 4.3(b))
and noticeably improves the model routing performance of all three of our scores. When
the number of in-distribution samples further increases, S; starts to outperform S;. We
attribute this observation to kNN being well-calibrated in-distribution, i.e., the correctness
predictors provide reliable estimates of their own confidence P(y|x), which are used by S; in
equation 3.3. Finally, we note a fairly large variance in the results due to random selection
of the in-distribution training samples from d’, suggesting that active learning [44| can help
to improve LLM routing further.

1.0 1

ot e o o o
8) ~ © ©
s N .

Pearson Corr(S3 eq. (7), Accs.)
o
=

o
)
A

01 02 03 04 05 06 07 08
Dataset Distance u(d’)

Figure 4.2: OOD Experiment: Correlation(Ss, Accs.) and u(d’).

24

4.2 Scores and accuracy correlation

We anticipate learning LLM routers from benchmarks to be the most effective when new tasks
are similar to the benchmark tasks, thus reducing the OOD gap without any labeling burden
for a practitioner. To empirically investigate this hypothesis, in Figure 4.2 we visualize the
relation between the quality of model routing with S5, measured with Pearson correlation
between model scores and accuracies of candidate LLMs, and the distance u(d’) from a new
task d’ to the available benchmark data for training the routers. In this experiment, we
aggregate results across different o values from Figure 4.1. For smaller distance values the
correlation is approaching 1, while for large distances it sometimes deteriorates.

4.2.1 Additional results

We present additional results for this experiment in Figure 4.3. (a) shows Pearson correlation
improvement as we increase «, similar to the trends in accuracy improvement in Figure 4.1;
(b) demonstrates that the accuracy of correctness predictors g,,s improves as we increase
the number of samples from d' used for training them, thus reducing the OOD gap; (c)
shows the mean absolute error (MAE) of our kernel smoothing estimator of the accuracy
of correctness predictors p(d’,m) — the estimator does not improve as much with increased
«, thus S3 eventually becomes worse than S; in terms of correlation and accuracy of the
selected models.

0116
4-4+-4 “Nk’#«r%

_+4-—0—"“~0"*"" 0.68

sty

)

~ 0.85 t —*
’/ “/L__‘L_;,*~$—
A
Y
././f,.‘.+...,_.....-__,_,_.+...+v--+\+..+._.;_..+--._L.J-

0.114

o
®
S

o
Y
&

Nl

:
\
>

-¥- S1eq.(3)

v 5z eq. (4)
S3 eq. (7)

—4- Sitruep /

!

-4 L A

Pearson Corr(Score, Accs
o o
S S
S G

0.106

o
o
&
)
@
S

Average Acc. of gms
o o
o o
S 2
>,
MAE of estimating p
° o °
i = =
S = =
@ s S
el
-
—
—
B S
e
l/
P W
\
RN I W
—_
H
e
_
RN
_ &

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
a a a

a) Pearson correlation b) Accuracy of g,,s ¢) Estimation of p(d’,m)s
(a) yof g p(d,

Figure 4.3: OOD Experiment: Additional results for Reducing the OOD gap experiment in
Figure 4.1.

4.3 The Efficacy of small LLMs

As discussed in 4.1, while a given LLM may work best on average, these models tend to
be the biggest and therefore most expensive to run. Practitioners can achieve gains in
cost, compute, and latency if we can successfully predict whether a smaller LLM can be
adequate for a given task. Identifying good smaller models for tasks of interest will also
redefine the cost/benefit tradeoff behind automating certain tasks, potentially incentivizing

the automation of new tasks that were previously cost-prohibitive to automate with larger
LLMs.

25

o
3
o

y-.-q+9—0--0-¢+0—¢*‘¢‘"¢—+/¢

»\+++++++‘Tt+—+++

:%%if;,-—*-*/*-***#f*#

- S1eq.(3)
/ Sz eq. (4)

S3 eq. (8)
:'/_) --+._.+,_,+»~+~-+,_,+.-+.-.+__,+ _I. sz true p
—4 LL
#- Llama 2 708

—4— Oracle

Average Accuracy
o o o o o
[=2] [«)} ~ ~ ~
o © o N N

o
o
I

o
o
N

000 005 010 015 020 025
a

Figure 4.4: Small LLMs Experiment: LLM routing with < 13B parameter models compared
to Llama 2 70B.

To evaluate the potential of smaller LLMs we revisit our HELM experiment in Figure
4.1. In Figure 4.4, we perform LLM routing using only models with < 13B parameters and
compare it to the performance of Llama 2 70B. Oracle’s performance demonstrates that it
is conceptually possible to outperform a large model by routing smaller LLMs. Results with
our scores 57 and S5 demonstrate that it is also practically feasible to match the performance
of the 70B model by combining learning from benchmarks with a small number (o = 0.04,
i.e., 2-40 samples) of labeled samples from a new task that a practitioner can provide to save
on the inference costs in their LLM application.

This has interesting implications when considering the cost of LLM performance. We
show that the relationship between LLMs performance and task is multifaceted. For a user,
the path to improving LLM performance may not be to use a larger more expensive model,
but rather to collect samples and use said samples to determine which smaller model is
optimal.

4.3.1 Dataset distance and Pearson correlation

The dataset distance u(d’) is computed as in equation 3.10. As evident from equation 3.11,
dataset distance will usually decrease for larger values of « as inputs from d’ are moved into
D (assuming that inputs from d' are on average closer to each other than they are to inputs
from other tasks). In this experiment, this serves as a mechanism to study the performance of
LLM routing on closer datasets, providing insights into the benefits of learning LLM routers
on more benchmarks where it is more likely that dataset distance for a new task is small.

In Figure 4.5 we present relations between dataset distance u(d') and Pearson correlation
between various model scores and accuracies of candidate LLMs. For results with S; see
Figure 4.2.

26

-
o
-
o

1.0 . - . 3 %
— . ~ . LINN e
Y M e | il T g
<os . ol <os <08 -1'.' =
- oo = s 5
8 | s s
0.6 0.6 Zos *
) & 8
g os 4 5 5 o4 go4
c c c
8 02 8 02 g 02
. . 5 0.
g . g g)
0.0 0.0 0.0
01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08
Dataset Distance u(d’) Dataset Distance u(d’) Dataset Distance u(d’)
(a) Sy equation 3.3 (b) S2 equation 3.4 (c) S3 equation 3.7

Figure 4.5: OOD Experiment: Correlation of scores and LLM accuracies on new tasks and
corresponding data distances.

4.4 Model routing on Mix-Instruct

We further demonstrate our approach in a different setting and task type, on the MixInstruct
benchmark dataset [15]. The dataset is composed of instruction-following tasks, divided into
train/validation /test sets of 100K /5K /5K samples, and includes evaluations of N = 11 open-
source LLMs using common metrics, e.g. BERTScore [34], BARTScore [36], and BLEURT
[35]. In [15], this benchmark was used to compare different LLM ranking methods in per-
instance model selection. We follow the same setting and apply our score S;(m, d’) to the test
set, per-instance, where we use the 100K-sample train set as the benchmark data for training
our LLM router. Due to the per-instance setting, and since the test set was constructed from
in-distribution data, we focus on our simplest router model Sy, equation 3.3.

]
S 4 —+——F—r—————F
O 751 F—F——Fm ¥y F e F == ¥--0UrS
L,Q 701 —4—Oracle
& L

g 65 4 === T e St IR B T N - -

01 02 03 0.4 05 06

= — 4 ———— [y
: ~1@.1§17.21%..37.‘Z°_4§%_§;%_z;% Sqe____9p% ___1g00

Percentage of test-set used
4 e g E oy - +

0.1 0.2 0.3 0.4 0.5 0.6

BARTScore
L b
o u o

F—— 99—+ 4+ —L
I e 4 —— + — —

—0.501
—0.75 1
-1.00

© o
N o
[V

R Al ARt S S Sy

BLEURT

> PR - &+ -
& . 3 - - -

01 02 03 0.4 05 06
Maximal distance to reference data

Figure 4.6: MixInstruct Experiment: Average metrics on subsets of the MixInstruct test set,
defined by limiting the maximal average distance between test instances and their closest
neighbors in the reference (train) set.

We compare our approach with the scoring methods examined by [15], as well as scoring
based on the average log-likelihood (LL) of the model responses to the inputs. Additionally,
we present the metrics for the best models on average (BMA), Open-Assistant [45] and
Vicuna [46]. We report the results of BERTScore, BARTScore and BLEURT in Table

27

Table 4.2: MixInstruct Experiment: Average metrics for per-instance LLM selection on the
MixInstruct test set. Best results are highlighted with bold and second best with an underline
(excluding Oracle).

BERTScore © BARTScore ¥ BLEURT 1 MCPI

Random 66.36 -3.76 -0.77 -
LL 65.83 -4.12 -0.96 N
BMA: Open-Assisant 74.68 -3.45 -0.39 -
BMA: Vicuna 69.60 -3.44 -0.61 -
MLM-Scoring [47] 64.77 -4.03 -0.88 N
SimCLS [31] 73.14 -3.22 -0.38 N
SummaReranker [32] 71.60 -3.25 -0.41 N
PairRanker [15] 72.97 -3.14 -0.37 N
Ours 74.75 -3.40 -0.38 2
Oracle 77.67 -2.87 -0.15 N

4.2, along with the number of model calls per instance (MCPI), for N LLMs, performed
during inference time. All compared methods require model generations for every point in
the test set, by each of the examined LLMs, whereas our approach requires only one model
generation and one call to some general embedding function. In addition, all methods, except
for LL, require training auxiliary language models, whereas our approach is a simple kNN
classifier on the embedded inputs. While our approach does not consistently outperform the
compared methods, these results demonstrate the potential of using benchmark datasets for
model routing with significantly better inference-time efficiency.

4.4.1 Effect of benchmark dataset sparsity

To highlight the potential of our approach in this setting, we examine the effect of the
reference benchmark data sparsity. We apply our method to different subsets of the test
set, Xiest, where the subsets are defined by limiting the maximal average distance of each
test set point to the closest points from the reference (train) set, denoted by NNyain, i.e.
Xt = {a' € X
distance and X, is the resulting subset of the test set. Figure 4.6 presents the metric scores
for the different subsets using our method, the oracle (best possible choices), and LL scoring.
We also report the percentage of the test set that is used in each subset. This figure depicts
that our predictor approaches the oracle metrics as the average distance to the reference
points decreases. This suggests that adding more benchmark datasets to reduce the sparsity
of the reference space may lead to better LLM selections with our approach.

m D NN (o) dist (2", 2) < C }, where C' is the maximal average

28

Table 4.3: HELM dataset details

Dataset H Size (instances) ‘ Type
RAFT-ADE Corpus V2 40 Binary Classification
RAFT-Banking 77 40 77 Class Classification
RAFT-NeurIPS Impact Statement Risks 40 Binary Classification
RAFT-One Stop English 40 3 Class Classification
RAFT-Overruling 40 Binary Classification
RAFT-Semiconductor Org Types 40 3 Class Classification
RAFT-Systematic Review Inclusion 40 Binary Classification
RAFT-TAI Safety Research 40 Binary Classification
RAFT-Terms of Service 40 Binary Classification
RAFT-Tweet Eval Hate 40 Binary Classification
RAFT-Twitter Complaints 40 Binary Classification
IMDB 1000 Binary Classification
Civil Comments-demographic=all 1000 Binary Classification
bAbI-QA-task=all 1000 Q&A: one word answers
BoolQ 1000 Binary Classification
Entity Matching-Dataset—=Beer 182 Binary Classification
Entity Matching-Dataset=Dirty iTunes Amazon 218 Binary Classification
Entity Matching-Dataset=Abt Buy 1000 Binary Classification
Entity Data Imputation-Dataset=Restaurant 242 Q&A: one word answers
Entity Data Imputation-Dataset=Buy 182 Q&A: one word answers
BBQ-subject=all 1000 Multiple Choice Questions
Legal Support 1000 Multiple Choice Questions
LSAT QA-task=all 461 Multiple Choice Questions
MMLU-Subject=Abstract Algebra 111 Multiple Choice Questions
MMLU-Subject=College Chemistry 108 Multiple Choice Questions
MMLU-Subject=Computer Security 111 Multiple Choice Questions
MMLU-Subject=Econometrics 126 Multiple Choice Questions
MMLU-Subject=US foreign policy 111 Multiple Choice Questions
Truthful QA-task=mc single 654 Multiple Choice Questions
Total: 29 datasets H 9946

29

Table 4.4: Candidate LLMs

Name H Model Size, B | Average Accuracy on the 29 HELM tasks
codegen-16b-mono 16 0.451
dial-flant5-xI1 3 0.454
falcon-40b 40 0.641
flan-t5-x1 3 0.650
flan-t5-xx1 11 0.658
flan-ul2 20 0.668
gpt-jt-6b-v1 6 0.576
gpt-neox-20b 20 0.492
mpt-7b-instruct 7 0.514
mt0-xxl1 13 0.543
llama-2-13b 13 0.624
llama-2-13b-chat 13 0.623
llama-2-13b-chat-beam 13 0.603
llama-2-70b 70 0.688
llama-2-70b-chat 70 0.687
llama-2-7b 7 0.610
llama-2-7b-chat 7 0.605
starcoder 15 0.587
Total: 18 LLMs || 347

30

Chapter 5

Conclusion

In this work we have explored the idea of using benchmark datasets to route models and inves-
tigated the problem of out-of-distribution datasets. Our results show that by using a simple
method to select models, it is possible to outperform the best overall model. Additionally,
we improved performance with a strategy to overcome the challenge of out-of-distribution
datasets through use of dataset-distance. While this work covers the entirety of my involve-
ment with these efforts, this avenue of research is far from concluded. My collaborators are
exploring adding additional datasets to improve the performance of our method. During
my time working on this thesis, I was involved in other work on the costs of LLMs which
built upon the ideas presented in this work. I wish my collaborators the best of luck as they
continue their work in this domain, and I am excited to learn of the results that they find.

31

References

1]

2]

3]

4]

[5]

[6]

17l

18]

19]

[10]

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” arXiv preprint
arXw:1810.04805, 2018.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models are
few-shot learners,” Advances in neural information processing systems, vol. 33,
pp. 1877-1901, 2020.

P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu, M. Yasunaga, Y. Zhang,
D. Narayanan, Y. Wu, A. Kumar, et al., “Holistic evaluation of language models,”
arXiv preprint arXw:2211.09110, 2022.

D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt,
“Measuring massive multitask language understanding,” arXiv preprint
arXiw:2009.03300, 2020.

T. Shnitzer, A. Ou, M. Silva, K. Soule, Y. Sun, J. Solomon, N. Thompson, and
M. Yurochkin, Large language model routing with benchmark datasets, 2023. arXiv:
2309.15789 [cs.CL].

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx,
M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill, et al., “On the opportunities and
risks of foundation models,” arXiv preprint arXiv:2108.07258, 2021.

M. Kelly, R. Longjohn, and K. Nottingham, The UCI Machine Learning Repository,
2023. [Online|. Available: https://archive.ics.uci.edu.

O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn, J. Leveling, C. Monz,

P. Pecina, M. Post, H. Saint-Amand, et al., “Findings of the 2014 workshop on
statistical machine translation,” in Proceedings of the ninth workshop on statistical
machine translation, 2014, pp. 12-58.

P. Goyal, D. Mahajan, A. Gupta, and I. Misra, “Scaling and benchmarking
self-supervised visual representation learning,” in Proceedings of the ieee/cuf
International Conference on computer vision, 2019, pp. 6391-6400.

C. Li, H. Liu, L. Li, P. Zhang, J. Aneja, J. Yang, P. Jin, H. Hu, Z. Liu, Y. J. Lee, et
al., “Elevater: A benchmark and toolkit for evaluating language-augmented visual
models,” Advances in Neural Information Processing Systems, vol. 35, pp. 9287-9301,
2022.

32

https://arxiv.org/abs/2309.15789
https://archive.ics.uci.edu

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]
[20]

21]

22]

23]

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, “Glue: A
multi-task benchmark and analysis platform for natural language understanding,”
arXiv preprint arXw:1804.07461, 2018.

A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and
S. Bowman, “Superglue: A stickier benchmark for general-purpose language
understanding systems,” Advances in neural information processing systems, vol. 32,

2019.

A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch, A. R. Brown,
A. Santoro, A. Gupta, A. Garriga-Alonso, et al., “Beyond the imitation game:
Quantifying and extrapolating the capabilities of language models,” arXiv preprint
arXiw:2206.04615, 2022.

E. Beeching, C. Fourrier, N. Habib, S. Han, N. Lambert, N. Rajani, O. Sanseviero,
L. Tunstall, and T. Wolf, Open llm leaderboard,
https://huggingface.co/spaces/HuggingFaceH4 /open 1lm leaderboard, 2023.

D. Jiang, X. Ren, and B. Y. Lin, “Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion,” in Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Toronto, Canada: Association for Computational Linguistics, Jul. 2023,

pp. 14165-14178. po1: 10.18653/v1/2023.acl-long.792. [Online|. Available:
https://aclanthology.org/2023.acl-long.792.

C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning.
Springer, 2006, vol. 4.
T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of

statistical learning: data mining, inference, and prediction. Springer, 2009, vol. 2.

S. Raschka, “Model evaluation, model selection, and algorithm selection in machine
learning,” arXiv preprint arXiv:1811.12808, 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., “Language
models are unsupervised multitask learners,” OpenAlI blog, vol. 1, no. 8, p. 9, 2019.

[. Gulrajani and D. Lopez-Paz, “In search of lost domain generalization,” in
International Conference on Learning Representations, 2021.

P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsubramani, W. Hu,
M. Yasunaga, R. L. Phillips, I. Gao, et al., “Wilds: A benchmark of in-the-wild
distribution shifts,” in International Conference on Machine Learning, PMLR, 2021,
pp. H637-5664.

H. Xu and R. Tibshirani, “Estimation of prediction error with known covariate shift,”
arXiw preprint arX1w:2205.01849, 2022.

M. Chen, K. Goel, N. S. Sohoni, F. Poms, K. Fatahalian, and C. Ré, “Mandoline:
Model evaluation under distribution shift,” in International conference on machine
learning, PMLR, 2021, pp. 1617-1629.

33

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://doi.org/10.18653/v1/2023.acl-long.792
https://aclanthology.org/2023.acl-long.792

[24]

[25]

[26]

27]

28]

29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

S. Maity, M. Yurochkin, M. Banerjee, and Y. Sun, “Understanding new tasks
through the lens of training data via exponential tilting,” in International Conference
on Learning Representations, 2023.

Y. Jiang, V. Nagarajan, C. Baek, and J. Z. Kolter, “Assessing Generalization of SGD
via Disagreement,” in International Conference on Learning Representations, 2021.

J. Chen, F. Liu, B. Avci, X. Wu, Y. Liang, and S. Jha, “Detecting errors and
estimating accuracy on unlabeled data with self-training ensembles,” Advances in
Neural Information Processing Systems, vol. 34, pp. 14 980-14 992, 2021.

N. H. Ng, N. Hulkund, K. Cho, and M. Ghassemi, “Predicting out-of-domain
generalization with neighborhood invariance,” Transactions on Machine Learning
Research, 2023.

D. Guillory, V. Shankar, S. Ebrahimi, T. Darrell, and L. Schmidt, “Predicting with
confidence on unseen distributions,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2021, pp. 1134-1144.

S. Garg, S. Balakrishnan, Z. C. Lipton, B. Neyshabur, and H. Sedghi, “Leveraging
unlabeled data to predict out-of-distribution performance,” in International
Conference on Learning Representations, 2022.

Y. Yu, Z. Yang, A. Wei, Y. Ma, and J. Steinhardt, “Predicting out-of-distribution
error with the projection norm,” in International Conference on Machine Learning,
PMLR, 2022, pp. 2572125 746.

Y. Liu and P. Liu, “Simcls: A simple framework for contrastive learning of abstractive
summarization,” in Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), 2021, pp. 1065-1072.

M. Ravaut, S. Joty, and N. Chen, “Summareranker: A multi-task mixture-of-experts
re-ranking framework for abstractive summarization,” in Proceedings of the 60th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), 2022, pp. 4504-4524.

L. Chen, M. Zaharia, and J. Zou, “Frugal GPT: How to Use Large Language Models
While Reducing Cost and Improving Performance,” arXiv preprint arXiv:2305.05176,
2023.

T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “BERTScore:
Evaluating Text Generation with BERT,” in International Conference on Learning
Representations, 2020.

T. Sellam, D. Das, and A. Parikh, “BLEURT: Learning robust metrics for text
generation,” in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020, pp. 7881-7892.

W. Yuan, G. Neubig, and P. Liu, “Bartscore: Evaluating generated text as text
generation,” Advances in Neural Information Processing Systems, vol. 34,
pp. 27263-27277, 2021.

34

37]

38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

|46]

47]

B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep domain
adaptation,” in Computer Vision-ECCV 2016 Workshops: Amsterdam, The
Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part III 14, Springer, 2016,
pp- 443-450.

M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, “Invariant risk
minimization,” arXiv preprint arXiw:1907.02893, 2019.

N. Reimers and 1. Gurevych, “Sentence-bert: Sentence embeddings using siamese
bert-networks,” in Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing, Association for Computational Linguistics, 2019.

T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEFEFE transactions
on information theory, vol. 13, no. 1, pp. 21-27, 1967.

Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon,

B. Lakshminarayanan, and J. Snoek, “Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift,” Advances in neural
information processing systems, vol. 32, 2019.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural
networks,” in International conference on machine learning, PMLR, 2017,
pp- 1321-1330.

Z. Chen, Y. Deng, Y. Wu, Q. Gu, and Y. Li, Towards understanding mizture of
experts in deep learning, 2022. arXiv: 2208.02813 [cs.LG].

B. Settles, “Active learning literature survey,” 2009.

LAION-AI Open assistant, 2023. [Online|. Available:
https://github.com/LAION-AI/Open-Assistant.

W.-L. Chiang, Z. Li, Z. Lin, et al., Vicuna: An open-source chatbot impressing gpt-4
with 90%* chatgpt quality, Mar. 2023. [Online|. Available:
https://lmsys.org/blog/2023-03-30-vicuna/.

J. Salazar, D. Liang, T. Q. Nguyen, and K. Kirchhoff, “Masked language model
scoring,” in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020, pp. 2699-2712.

35

https://arxiv.org/abs/2208.02813
https://github.com/LAION-AI/Open-Assistant
https://lmsys.org/blog/2023-03-30-vicuna/

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Related work
	2.1 Benchmarking
	2.2 Model selection
	2.3 Out-of-distribution model selection
	2.4 Routing LLMs

	3 Model Routing Theory
	3.1 Binary Classifier Formulation
	3.1.1 Supervised learning from benchmarks

	3.2 LLM routing with (imperfect) correctness predictors
	3.2.1 A simple OOD confidence model
	3.2.2 Correctness predictors
	3.2.3 Dataset distance
	3.2.4 Kernel smoother

	3.3 Mixture of experts

	4 Model Routing Experiments
	4.1 Model Routing on HELM
	4.1.1 Model Routing
	4.1.2 Main results
	4.1.3 Reducing the OOD gap

	4.2 Scores and accuracy correlation
	4.2.1 Additional results

	4.3 The Efficacy of small LLMs
	4.3.1 Dataset distance and Pearson correlation

	4.4 Model routing on Mix-Instruct
	4.4.1 Effect of benchmark dataset sparsity

	5 Conclusion
	References

