
Progress in Parallel Algorithms
by

Damian Tontici

SB in Electrical Engineering and Computer Science

Massachusetts Institute of Technology (2022)

Submitted to the Department of Electrical Engineering and Computer Science in

partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2024

© 2024 Damian Tontici. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to

exercise any and all rights under copyright, including to reproduce, preserve, distribute and

publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Damian Tontici

Department of Electrical Engineering and Computer Science

January 19, 2024

Certified by: Jayson Lynch

Research Scientist, MIT CSAIL, Thesis Supervisor

Certified by: Neil Thompson

Research Scientist, MIT CSAIL, Thesis Supervisor

Accepted by: Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Progress in Parallel Algorithms

by

Damian Tontici

Submitted to the Department of Electrical Engineering and Computer Science on

January 19, 2024, in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT
Parallel computing offers the promise of increased performance over sequential

computing, and parallel algorithms are one of its key components. There has been no
aggregated or generalized comparative analysis of parallel algorithms. In this thesis,
we investigate this field as a whole. We aim to understand the trends in algorith-
mic progress, improvement patterns, and the importance and interactions of various
commonly used metrics. We collect parallel algorithms solving problems in our set
and analyze them. We look at four major themes: how parallel algorithms have pro-
gressed, including in relationship to sequential algorithms and parallel hardware; how
the work and span of algorithms influence performance; how problem size and avail-
able parallelism affect performance; and what researchers’ observable priorities look
like. We find that more problems have had parallel improvements than sequential
ones since the ’80s, that most parallel algorithms don’t improve algorithmic complex-
ities, and much more. This research is important for us to understand how the field
of parallel algorithms has changed throughout time, and what it looks like now.

Thesis Supervisor: Jayson Lynch
Title: Research Scientist, MIT CSAIL

Thesis Supervisor: Neil Thompson
Title: Research Scientist, MIT CSAIL

3

4

Acknowledgments

I’d like to first and foremost thank my advisors, Jayson Lynch and Neil Thomp-

son, for their guidance, support, feedback, and direction. An especially big thanks to

Jayson for being available on short notice on a frequent basis whenever I had ques-

tions. And a huge thanks to Neil for his expertise regarding data analysis methodology

which has proven invaluable.

I’d also like to give many thanks to Jeffery Li and Liva Olina, who’ve been gath-

ering parallel algorithms alongside me. This project would not have been possible

without them. On the same note, thank you to any other students and researchers

who helped with data gathering.

Last but not least, I’d like to thank Rezaul Chowdhury and Charles Leiserson,

who with their expertise helped me better understand the background and helped

flesh out the methodology for this project. And along with TB Schardl and Julian

Shun, for providing useful feedback, helping with tricky algorithms in data gathering,

and catching my mistakes. I’m very thankful to all of them for this and for their

general support.

A joint-authored paper based on the results of this thesis is in the works.

5

6

Contents

1 Introduction 17

1.1 Prior Work . 18

1.2 Objectives and Thesis Organization 19

2 Background 21

Types of Parallelism . 21

2.1 Parallel Models of Computation . 22

Work-Span Cost Model . 23

Parallelism Metrics and other Definitions 24

2.2 Models of Computation Classification 24

Abstract Models . 25

Processor Models . 27

2.3 Some Notable models . 30

PRAM . 30

BSP . 30

Comparison Models . 31

2.4 Simulations . 32

Synchrony . 32

Concurrent vs Exclusive Reads and Writes 33

Simulating Between Shared and Distributed Memory 34

Branching Factor . 34

MIMD to SIMD . 35

2.5 Example Problems . 35

7

3 Methods 37

3.1 Scope . 37

3.2 Data Collection . 39

Processor Data . 40

3.3 Data Processing . 41

Models . 41

Running Time . 42

3.4 Data Analysis . 43

Datasets Used . 43

Parallel Running Time Calculation 43

Calculation of Other Metrics . 44

4 Achievements of Parallelism 47

4.1 Parallel Algorithms Progress . 47

4.2 Parallel Hardware Improvements . 49

4.3 One Problem’s Progress . 51

4.4 Relative Speedup Improvements for all Problems 52

4.5 Overall Parallel Progress . 54

5 Cost of Improvement and Nontrivial Trade-offs 57

5.1 Work and Span . 57

5.2 Nontrivial Work Span Trade-offs . 59

5.3 The Span of Two Algorithmic Extremes 61

5.4 Overhead of Best Span Algorithms 62

6 Problem Size and Parallelism 65

6.1 Two Minimum Spanning Tree Algorithms 65

Running Time with Varying Problem Size 67

Running Time with p as a Function of n 68

6.2 Available Parallelism for Best Span Algorithms 69

8

7 Unexpected Results 71

7.1 Work vs Span Improvement . 71

7.2 Improvement in Performance and Span 74

7.3 Annual Progress . 77

8 Conclusion 81

A Model Statistics 85

B List of Problem Families with No Parallel Algorithms Found 89

C Parameters 91

D Improvement in Runtime and Span for Pareto Frontier Algorithms 93

9

10

List of Figures

4.1 Progress over the decades — a comparison between sequential and

parallel algorithms . 48

4.2 The maximum number of cores available every year for the most pow-

erful supercomputers in the world [1] and for commercially available

personal computers [2] . 50

4.3 Relative speedup for the All Pairs Shortest Paths problem 50

4.4 Relative speedup at the level of problem families over time as the 25th,

50th, and 75th percentiles for sequential algorithms, parallel algorithm

using the maximum commercially available parallelism, and parallelism

available from the most powerful supercomputers, calculated for input

size 106 . 53

4.5 Maximum sequential and parallel (in the cases of commercially avail-

able personal computers as well as supercomputers) relative speedups

from the first algorithm for all problems 55

5.1 Work vs span for the Longest Common Subsequence problem. Each

colored dot represents a parallel algorithm for the respective model,

the best-known sequential algorithm is plotted for reference. The line

shows the Pareto frontier if all the algorithms were simulated on a

shared memory model. 58

5.2 Work-span trade-offs throughout time 60

11

5.3 Comparing the best span and work-efficient algorithms The blue bars

show the distribution of best spans — the percentage of problems with

an algorithm of the corresponding complexity class. The orange bars

show the distribution of spans of the work-efficient algorithms, taking

the lowest ones in the case of ties. 61

5.4 Percentage of problems whose best-span algorithm falls into the re-

spective span and overhead buckets. 63

6.1 Strong scaling for two different algorithms: a work-efficient one, and

one with a better span but not work-efficient. Speedup is relative to

the work-efficient algorithm at p = 1. 66

6.2 Running time as a function of problem size for two different algorithms:

a work-efficient one, and one with a better span but not work-efficient. 67

6.3 Varying the problem size n with the number of processors as a function

of n for two different algorithms: a work-efficient one, and one with a

better span but not work-efficient. 69

6.4 Distribution of available parallelism for best span and for work-efficient

algorithms . 70

7.1 Improvement distribution between span and work 72

7.2 Improvement distribution between span and work, only for algorithms

that pushed the Pareto frontier at the time of their publishing 73

7.3 Improvement distribution based on span and runtime, computed for 9

different combinations of problem size n and number of processors p . 75

7.4 Compound Growth Rate distribution 78

A.1 Utilization of each model over time. Each dot represents one or more

algorithms using that model which was published that year; the size of

the dot indicates how many algorithms of that model were published

that year . 86

A.2 Distribution of models used over time 87

12

D.1 Improvement in running time and span for Pareto frontier algorithms

only . 94

13

14

List of Tables

2.1 Classifying models of computation . 25

2.2 Some models of computation and their categorization 29

C.1 Values for commonly-used parameters 92

15

16

Chapter 1

Introduction

Algorithms are ubiquitous in the modern world, as they form the basis of the field

of computer science. Scientists have always looked for ways to increase the speed of

the algorithms we use — the idea is simple: the more efficient algorithms, the faster

they take to complete. One way of doing that is parallelization, or making different

parts of an algorithm run at the same time (in parallel) instead of one after another

(sequentially).

There have been proposals for parallel algorithms even before the invention of

the modern computer. In 1922, mathematician Lewis Fry Richardson suggested an

algorithm for predicting the weather. [3] That could be done by solving a system of

many differential equations, however, it would have taken one person too much time

to compute a solution. Richardson proposed having multiple people work on smaller

parts of those equations at the same time. While it was only a thought experiment

at the time, it’s now possible to implement it (with processors instead of people),

because parallel computers have actually been built.

The idea of a parallel computer had been floated around for a while, but it was

both very novel and very complex, which made people reluctant to invest in it. After

a long development period, the first parallel computer, ILLIAC IV, was completed

in 1972. [4] It had 64 processors, which was only a quarter of what the initial design

was meant to have. ILLIAC IV was followed by other parallel machines in the 1980s,

such as the connection machine series. [5, 6, 7]

17

Today, parallelism is ubiquitous, with commercially available personal computers

having up to 64 cores. [2] And the biggest supercomputer in the world has a core count

of almost 20 million! [8] At the same time, there have been complementary advances

in algorithms on the theoretical side — for this project, we’ve collected hundreds of

such parallel algorithms.

But just how useful are parallel algorithms? What’s their impact? And what are

their limits? In this thesis, we examine parallel algorithms in an attempt to answer

these questions.

1.1 Prior Work

When we talk about analyzing trends in technology, the first thing that comes to

mind is Moore’s Law. [9] Gordon Moore predicted that the number of transistors in

an integrated circuit would double (computer hardware will become twice as good)

every year. That has been surprisingly accurate until the mid-2000s.

But computer performance depends on both the hardware and software, as well

as the algorithms that run on them. To this point, Sherry and Thompson [10] have

recently inquired into the improvements of sequential algorithms and their impact

on computer technology progress. Their research uncovered interesting findings, such

as “for moderate-sized problems, 30%–43% of algorithmic families had improvements

comparable or greater than those that users experienced from Moore’s Law and other

hardware advances”. Liu [11, 12] and Rome [13, 14] have further developed this

line of research by investigating sequential algorithm lower bounds and space usage

respectively.

In a paper reviewing predicting computer performance improvement after the end

of Moore’s law, Leiserson et al. mention parallelism as one of the crucial aspects

needed for computer performance to increase. [15] Additionally, they argue that most

of the future improvement will come from hardware architecture, software, and algo-

rithms. Therefore, we’re interested in examining one of these three areas — algorithms

— as applied to parallelism.

18

1.2 Objectives and Thesis Organization

In this thesis, we extend this analysis to the realm of parallel algorithms. We’re

interested to see how quickly they’ve improved, how that improvement compares

to sequential algorithms’ progress, how different parts of the parallel computation

impact the performance, and what the extent of such progress is.

Work done for this thesis will be incorporated in the Algorithm Wiki project1.

This thesis is organized as follows. We start with some theoretical background in

Chapter 2, which includes an in-depth look at parallel models of computation, as well

as an organizational framework for them. In Chapter 3, we address our methodology,

detailing our process and pointing out some limitations of our data. We show our first

set of results in Chapter 4, where we compare sequential and parallel improvement

and performance. We then take a look at the existing trade-offs between the span

and work of algorithms and analyze their frequency and magnitude in Chapter 5.

Chapter 6 examines how improvement depends on both problem size and available

parallelism. Finally, Chapter 7 highlights some unexpected results regarding parallel

algorithms.

1algorithm-wiki.csail.mit.edu

19

algorithm-wiki.csail.mit.edu

20

Chapter 2

Background

Research in parallel computing has been varied. Ultimately, some research directions

are of more interest to us than others, and we shall focus on providing a broad

background related to the concepts that are most relevant to this thesis.

We start with a note on the wide variety of what parallelism can refer to. We

then give an overview of parallel models, including a description of the cost model and

other metrics used to describe parallel performance in section 2.1. We then classify

parallel models in section 2.2 and present a few models in more depth in section 2.3.

A discussion on simulating models on each other follows in section 2.4. We conclude

this chapter by briefly defining a few problems in computer science that are going to

be used as examples throughout the rest of the thesis.

Types of Parallelism

Parallel computing can refer to a lot of things. We can parallelize various parts of a

computation, and we can define parallelism based on those.

Bit-level parallelism involves performing operations on more than one bit at a

time. This is hardware-dependent, and it was largely the first type of parallelism to

be implemented — starting with 4-bit word lengths in the ’70s, and reaching 32-bit

words in the mid-’80s and 64-bit in 1996, which are the most widely used today. [16]

Instruction-level parallelism happens at the compiler and hardware level — a

21

processor can perform multiple instructions that use different units (after potentially

reordering them).

Task parallelism is all about making different tasks run on different processes/

threads at the same time.

Data parallelism, a.k.a. word parallelism, implies manipulating more than

one word or piece of data at the same time.

Algorithms have the biggest impact on task and data parallelism — since what

tasks can be performed in parallel depends on the algorithm as well as the hardware,

and what data you can operate in parallel as much on the algorithm you’re using as

the hardware you’re running it on. Therefore, this thesis will focus mainly on these

types of parallelism.

2.1 Parallel Models of Computation

We’ve seen that parallel computers can be very valuable in speeding up computation.

However, parallel algorithms come with several additional complications. Sequential

algorithms are being conceived without a specific computer in mind, and still, they can

be adapted to any computer. To make it easier to reason about algorithms, computer

scientists have abstracted the general computer to models. Although others (such as

Turing machines) exist, by far the most popular one is the Word Random Access

Model, or Word RAM for short. Models like this are very useful, as there are a

certain set of basic operations that every algorithm can be broken down to and each

of those has a predetermined cost (e.g. read a memory address, which takes constant

time).

This becomes more complicated with parallel computing, as there is no one ubiq-

uitous model, but rather a multitude are often used, and new ones are devised fre-

quently. Parallel models need to balance simplicity with how well they would translate

to real parallel computers. Certain things that are abstracted in Word RAM can’t be

as easily eliminated when working with bigger data sets and more complicated real

machines, as we have to do with parallel computing. Some of the most notable issues

22

include communication delays and reading from memory. In addition, with multiple

processors comes the issue of interactions between them, and there are various aspects

to consider, e.g. what happens when multiple processors want to write to the same

memory address at the same time? It turns out that there’s a fine line between all

these considerations, and no model is ideal on all axes.

These circumstances generated a lot of models, among the most popular ones be-

ing PRAM (similar to word RAM, but parallel), SIMD (Single-Instruction, Multiple-

Data), MIMD (Multiple-Instruction, Multiple-Data), BSP (Bulk Synchronous Paral-

lel). Most of these models have subdivisions of their own, to accommodate different

answers to the considerations outlined above. In the sections that follow, we look

closer into what makes each of these special and attempt to classify the parallel

models.

Note that there are multiple levels of abstraction within any computation, and

there is an important distinction to be made between models whose purpose is algo-

rithm design (models of computation) and models that abstract execution (models of

execution a.k.a. programming models). Here, we concern ourselves with theoretical

models of computation only.

Work-Span Cost Model

There’s the notion of a work-span model (also known as a work-depth model) [17],

which defines the following two metrics: work — the total number of operations

an algorithm performs, and span (also known as depth) — the longest chain of

operations performed sequentially. These two measures can be defined for any model

of computation. In that sense, all models of computation are work-span models and

work-span is a cost model.

The span and work are the two possible ends of the algorithm’s runtime.

For models that assume computation is done on a number of processors, another

way of looking at work and span collectively is to define TP — the time an algorithm

takes to run using P processors (its runtime). In that case, T1 is equivalent to work,

and T∞ is the span. For any algorithm, the work law TP ≥ T1/P and the span law

23

TP ≥ T∞ hold, because parallel algorithms can never reduce the total amount of work

that needs to be done. [18]

Parallelism Metrics and other Definitions

Additional useful metrics can be defined based on work and span.

Parallelism is the ratio between work and span (T1/T∞ for processor-based mod-

els) and is a metric that tells us how much faster can an algorithm be made by

parallelizing it.

Absolute (parallel) Speedup is the ratio of work to runtime (T1/TP).

This is not to be confused with relative speedup with respect to another (not

necessarily parallel) algorithm, which is the ratio between the running time of the

reference algorithm and the runtime.

Strong scaling analysis of an algorithm is done by measuring the performance

(as speedup) when the problem size n is kept fixed, and the number of processors p

is varied. Weak scaling is varying both n and p.

Work efficiency Tseq/work is a metric comparing the work of a parallel algorithm

to the time of the best-known sequential algorithm Tseq. If the ratio is O(1), it means

that they’re asymptotically equal, in which case we call the parallel algorithm work-

efficient (also known as work-optimal or work-preserving).

The inverse of work efficiency is work overhead — how much more work (mul-

tiplicatively) one has to do on top of the best sequential runtime. Algorithms with a

constant overhead are work-efficient.

In the following sections, we’ll show how models are classified, then we’ll discuss

some well-known models, and end on how we can simulate different types of models.

2.2 Models of Computation Classification

Throughout the years, multiple approaches to conceptualizing models have arisen.

There are two main ones: in the first, processor-based models, we consider the

24

perspective of parallel machines and their processors. For the second one, we take a

more theoretical perspective and look at abstract models.

A schematic summary of the above is presented in Table 2.1, and Table 2.2 ex-

emplifies it by categorizing selected models.

Processor-based Models Abstract Models

Instruction/Data

MISD MIMD

SISD SIMD

Language-based

models

Communication

Shared

Memory

Distributed

Shared Memory

Distributed

Memory

Vector models

Synchrony

Lock-step Bulk Asynchrony
Circuit models

Table 2.1: Classifying models of computation

Abstract Models

There are three main types of abstract models: circuit, vector machine, and

language-based.

Circuit

In circuit models, the input is processed through gates, which are connected by

wires. The wires carry information, which isn’t stored anywhere else, so they could

be viewed as the equivalent of “memory”. Gates have one or more input wires and one

or more output wires. Each gate performs an operation on the data carried through

the input wires and outputs it through the output wires. In some sense, each gate is

like a specialized processor, as it only computes one function. A given circuit solves

the problem for inputs of a given size; in order to solve a problem, one needs to give

a family of circuits, by defining a circuit for each input size.

25

The wires are one-directional, and there can’t be any cycles, so the circuit is a

DAG. This means we can group the gates into levels so that a gate’s inputs only

depend on computations performed on previous levels. Then a circuit’s span is the

number of levels, while its work is the total number of gates.

By restricting some of the above characteristics, one can get different types of

circuits. For example, boolean circuits only use AND, OR, and NOT gates. [19]

Two other circuit model variations are the bounded fan-in circuit model (the fan-in is

bounded to 2 or a different constant) and the unbounded fan-in circuit model. Note

that universal gates (such as NAND and NOR) can simulate another constant size

universal gate set without asymptotically increasing the number of gates used.

Vector Machine Models

Vector machines [20] are a good example of data parallelism. They are machines

that operate on vectors, where a (bit) vector is a sequence of bits. Vectors can be

seen as infinitely long, and made of two parts: the significant bits, called the non-

constant part, and the leading 0s or 1s, called the constant part of the vector. The

vector machine model consists of bit processors and registers that can hold bit vectors

(a register is essentially a memory location). Vector machines define the set of in-

structions they can perform, such as bitwise boolean operations, shift operations, and

loading vectors into registers. [21] In a parallel vector machine, each of the processors

is responsible for the same bit location in all the vectors in memory. In that sense,

it’s performing instructions on multiple data and is thus a type of MIMD (discussed

below).

Language-based Models

The last types of abstract models are language-based models. [22, 23] They directly

model programming languages, without considering the underlying machine. They

are defined by specifying the language constructs. For example, the PAL model

(parallel applicative lambda calculus) is based on call-by-value lambda calculus. It’s

easily described because it uses the same semantics, the only additional thing to be

26

described being their complexity (i.e. how long each of the basic operations takes).

Processor Models

Now we turn our attention to processor models. As implied by the name, these model

the parallel computer as a set of processors, each of which performs computations to

solve the problem. We classify models on a few different axes. The most widely used

are the following:

� distinguishing models based on instruction/data parallelism. Any program/

computer/model (not necessarily parallel) can perform one or multiple instruc-

tions, and operate on either one or multiple data at the same time (in a single

parallel operation). This gives rise to the following four categories. This classi-

fication is called Flynn’s taxonomy. [24]

– Single Instruction, Single Data (SISD): no parallelism; most sequen-

tial computers are of this type

– Multiple Instruction, Single Data (MISD): multiple instructions are

applied at the same time to the same piece of data; this is usually used for

fault-tolerance

– Single Instruction, Multiple Data (SIMD): multiple processors do

the same job at the same time on their assigned piece of data; in a way,

this is similar to word-level parallelism

– Multiple Instruction, Multiple Data (MIMD): like SIMD, but one

can have multiple types of instructions, not just one. Notice that if we set

all instructions to be the same, we can effectively get a SIMD machine. In

that sense, SIMD is a type of MIMD.

� based on communication. When multiple processors work together to accom-

plish one common goal, we need to make sure they can communicate with each

other (e.g. about data that they both need to modify). They can either pass

27

messages directly from processor to processor, or a processor can write its mes-

sage down somewhere for the other processor (or processors) to read. We get

the following three types of models.

– shared memory: the processors are usually close enough that they can

just write to a shared memory, where other processors can then read from.

Shared memory models can be further subdivided according to their access

policies: multiple processors could be allowed to read the same memory

address at the same time (called concurrent read), or that could be re-

stricted to only one processor at a time (called exclusive read). Applying

a similar rationale to writing to a memory space, we have the following 4

submodels:

* EREW: Exclusive Read, Exclusive Write

* ERCW: Exclusive Read, Concurrent Write

* CREW: Concurrent Read, Exclusive Write

* CRCW: Concurrent Read, Concurrent Write

All versions but the ERCW one are widely used.

– Distributed Memory with Message Passing: under the assumption that

processors don’t have access to a common memory, they need to communi-

cate by sending messages to each other. Often such message passing costs

are non-trivial, and models need to define how they measure the commu-

nication performance of algorithms in addition to computation. There are

generally two ways to model message passing:

* The communication network is a complete graph — in other words,

each processor can directly reach every other processor. An example

of such a model is given in [25]

* Each processor can only reach a limited number of other processors

directly. Examples of such networks include MIMD hypercubes and

meshes [26]

28

– Distributed Shared Memory: this is a mix of the above — all underly-

ing communication is done through message passing, but algorithm design-

ers can assume access to a shared memory, which is abstracted away [27]

Models can also use a combination of the above strategies, such as hierarchical

memory models. [28]

Abstract

model type

Flynn

Taxonomy
Comma Synch

R/W

Policy
Parameters

Performance

Measures
Work Span

Word

RAM
- SISD - - - - time t t t

PRAM - MIMD SM lock-step 4 types processors p time t p · t t

BSP - MIMD MP bulk -

barrier synch l,

gap g,

processors p

supersteps S,

total local

computation W ,

total comm H

W +Hg + Sl S · L [29]

Binary

Forking
language - - - - -

work w,

span s
w s [30]

Queueing

Shared

Memory

- MIMD SM bulk
CRxorCWb

(arbitrary)

processors p,

gap g,

maximum

contention K

ri reads,

wi writes,

ci local

computations

per processor

p · span
∑︁

max{maxi{ci},

g ·maxi{ri, wi}, K}
[31]

LogP - MIMD MP asynch -

processors p,

comm delay L,

overhead o,

bandwidth g

ri reads,

wi writes,

ci local

computations

per processor

∑︁p
i ri(L+ o)+

wio+

max{g(ri + wi), ci}

maxi ri(L+ o)+

wio+

max{g(ri + wi), ci}

[32]

VRAM vector - - - - -

step

complexity,

element

complexity

element

complexity

step

complexity

BDM - MIMD DSM - -

processors p,

latency t,

comm rate s,

packet size m

computation

time Tcomp,

communication

time Tcomm

p · span Tcomp + Tcomm [33]

DMM - MIMD DSM - CRCW processors p time t p · t t [34]

Table 2.2: Some models of computation and their categorization

a Communication: SM (shared memory), MP (distributed memory), or

DSM (distributed shared memory)

b Concurrent reads or writes, but not both.

29

� based on synchrony. Some algorithms rely on processors being in synch with

each other, while others don’t. There are three main ways to categorize that.

– lock-step: every step happens based on a clock, with all processors start-

ing steps at the same time and finishing before the next step starts

– bulk-synchronous: at certain points throughout the program, all proces-

sors wait for everyone else to be finished before they start the next step.

This process is also called barrier synchronization.

– asynchronous: there are no synchrony guarantees

� based on branching factor, which is the number of children at every node of

the computation tree.

– branching factor of 2, for example, the binary forking model

– everything else has an arbitrary branching factor

2.3 Some Notable models

PRAM

PRAM, which stands for Parallel Random Access Model, is the most commonly used

model of parallel computation. It’s the parallel equivalent of the Word-RAM model.

It assumes a computer with p Word-RAM processors. It is a synchronous, shared-

memory MIMD model. There are 4 varieties, as differentiated by the read/write

access, of which the following 3 are used: EREW, CREW, and CRCW.

BSP

The BSP (Bulk Synchronous Parallel) model [29] was introduced by L. Valiant

in 1990 to serve as a “bridging” model of computation, which are models that inform

both algorithm and hardware design. The main difference from other models popular

at the time was how it modeled communication. BSP does not have shared memory,

30

so it keeps track of the communication complexity. A BSP system is composed of a

few processing components, a router that facilitates communication between them,

and ways to synchronize computations.

The model is defined by the following parameters:

� the number of processes (virtual processors) p

� the cost of barrier synchronization l

� g — the average time it takes a processor to deliver a message of size 1

It is a bulk-synchronous model, which means that throughout a program, at cer-

tain predetermined breakpoints, all processors need to be synchronized. Each set of

steps between breakpoints is called a superstep. The breakpoints occur every L

time units, which is called the periodicity of the system.

A BSP algorithm’s performance is then defined by the following measures:

� S — number of supersteps used

� W =
S∑︂

s=1

ws, where wi is processor i’s local computation cost

� H =
S∑︂

s=1

hs, where hi is the number of messages sent by processor i

In terms of those quantities, the work of a BSP algorithm is W + Hg + Sl, and

its span is S · L.

Comparison Models

Sorting is one of the most fundamental, common, and well-studied problems in parallel

computing and computer science in general. Therefore numerous models have been

proposed that focus on comparisons. In addition to sorting, these models are also

useful for various other problems that depend on comparisons, such as finding the

minimum element, finding medians, or searching.

31

� One of the first such models was proposed by Valiant [35]: the Parallel com-

parison model performs p comparisons at each step. It notably allows per-

forming multiple comparisons involving the same element at the same time.

� A more restrictive version of that is the comparator network, whose basic

operation i-j comparison-exchange can also be performed more than once at

a time, but with the restriction that each element is being compared to at

most one other element. [19] A sorting network is a comparator network that

guarantees to sort the items in a non-decreasing order.

� Comparator circuits are circuit models, where the only allowed gate is the

comparison with 2 inputs and 2 outputs — the first wire outputs the maximum

of the input bits, and the second one outputs the minimum. [36]

� The comparison PRAM is a PRAM with the additional operations of com-

parison and moving data around in memory.

2.4 Simulations

If we have a good algorithm designed for a certain model, we would like to be able to

“translate” it to run on a different model. We can do that by simulating a guest

model on a host model. When simulating models, we’re concerned with a few

things. First of all, is possible to achieve the same results on a model as we could

on a different one? How can we do it? Different models have their own parameters

through which they measure performance. What’s the performance of an algorithm

on a simulated model?

In the following subsections, we discuss some tactics that are helpful for simulating

models that differ in certain aspects.

Synchrony

Simulating an asynchronous model on a synchronous one comes with no hindrance

in performance, as synchrony isn’t an impediment to an asynchronous program. The

32

other direction is slightly harder to do. One general way to do it is to stop after each

time step and synchronize all the processors. This comes at a cost since synchronizing

p processors takes at least Ω(log p) time on most models (to send a message to every

processor). [37]

We can perform the simulation with the help of a synchronizer. A synchro-

nizer is an asynchronous algorithm that simulates a synchronous system on top of an

asynchronous one. [38] A synchronizer essentially coordinates with all the processors.

It keeps a clock and sends pulses to all the processors at each simulated timestep.

Awerbuch proposed several synchronizers in [39].

For example, a CRCW PRAM synchronous model using p processors can be sim-

ulated on an asynchronous model with O(p) expected work per step and O(p
log p log∗ p

)

asynchronous processors. [40]

In certain studied cases, however, the simulation overhead cost could be constant.

It’s an open problem exactly what algorithms could be modified in such a way, but

some types have been proven to achieve this performance. [41]

Concurrent vs Exclusive Reads and Writes

Simulating exclusive reads/writes on a concurrent read/write machine comes with

no worsening in performance. The performance might become better, although that

would depend on the program. The general guarantee is the same span and work

bounds.

The reverse is not true: simulating concurrent reads on an exclusive-read machine

is more difficult. One way to do it is using binary trees. [42] We “expand” every time

step by O(log p); in the first sub-timestep, one processor gets to read the value and

copy it as a child in a binary tree, in the second sub-timestep, two processors can do

the same, and so on; at the ith sub-timestep, 2i processors can read the value (since

there are 2i copies) and create another new copy, which again doubles the number of

available copies of the same value. This essentially creates a binary tree, which means

that it takes O(log p) substeps to get enough copies for every processor to read. So

simulating concurrent reads on an exclusive-read machine can be done with a O(log p)

33

overhead in span, work, and space.

A similar reasoning works for writes — the processors write potential values in

the binary tree in O(log p) time, and then each of the non-leaf nodes gets evaluated

according to the concurrent write policy (e.g. if it’s min-CRCW, it writes the mini-

mum of the values in the parent node) in a process called a tournament, which will

take an additional O(log p) time. The overall overhead is the same as for the reads

— O(log p) in span, work, and space.

Simulating Between Shared and Distributed Memory

Simulating message-passing on shared-memory systems can be done with no span and

work overhead with O(p2) additional space, where p is the number of processors. For

each ordered pair of processors pi and pj, designate some part of the memory as their

“inbox”. Then pi can pass a message by writing into that space, and pj can read it

from there.

To simulate shared on distributed memory with message-passing, we need to con-

sider the communication overhead, which is going to be the time it takes to send a

message in the host model. Let that be tm. Since writing to and reading from shared

memory can happen at each time step, the total span of the simulated algorithm will

be O(tm · guest span) and the work will be O(tm · guest work). See [43] for a more

rigorous discussion.

Branching Factor

Models with branching factor c can be simulated on a machine with branching factor

c′ ≥ c with no change in performance. When c′ < c, we incur a ⌈logc′ c⌉ factor slow-

down: instead of a node branching into c nodes, they can branch into c′ nodes, each

of which will have to branch into c/c′ nodes each if c′ ≥ c/c′, or if c′ < c/c′, we will

need to recurse the same way ⌈logc′ c⌉ times.

34

MIMD to SIMD

SIMD is a special case of MIMD, so we can simulate SIMD on MIMD with no changes

in performance (just set all instructions to be the same). The other direction incurs

a O(p) overhead in span and work, where p is the number of processors used. We can

do that in the following way: at any time step, the algorithm is running at most p

different instructions; let that number be k. For each MIMD time step, we have k sub-

timesteps, where processors execute the same ith instruction during sub-timestep i if

that’s the instruction they were meant to execute, and otherwise stay idle. Note that

we would need to perform all communication at the end of each set of k sub-timesteps

in a similar way. [44]

In the worst case, the span complexity of the algorithm becomes equal to its work,

and it’s essentially just running the algorithm sequentially.

2.5 Example Problems

Throughout this thesis, we will give examples based on specific problems. We define

these problems here.

The All-Pairs Shortest Paths problem, also known as APSP, asks, given a

graph with |V | vertices and |E| edges, what is the shortest distance between any pair

of vertices.

The Minimum Spanning Tree problem, also known as MST, is also a graph

problem, looking for the minimum spanning tree. For a given connected graph G, a

spanning tree is a tree that includes all the vertices of G and a subset of its edges. A

minimum spanning tree (MST) is a spanning tree with the minimum weight.

The Longest Common Subsequence problem, also known as LCS, has two

sequences a and b as input, and the goal is to find a sequence that is a subsequence of

both a and b, where to obtain a subsequence of s we remove characters from s. The

resulting subsequence doesn’t need to be contiguous.

35

36

Chapter 3

Methods

In this chapter, we cover the approach we took to obtain the results in the following

chapters, as well as some important limitations resulting from generalizing data.

We focus on the process of generating the data on which we base our results. It

started by looking for parallel algorithms that fit our scope. Then we had to process

this newly acquired data. Finally, we could use that to compute characteristics we

were interested in and analyze them to reach meaningful conclusions. We take a

deeper look into certain aspects of this data flow and its steps.

3.1 Scope

We start by setting the scope of our analysis. There are all kinds of parallel algorithms,

utilizing different forms of parallelism. Since our purpose was to be able to analyze

them together, all of our algorithms had to be comparable — and their differences

quantifiable.

First, we had to determine what problems we wanted to investigate. As a starting

point, we used the set of 140 problem families that Sherry and Thompson created [10]

and Rome [13] further refined. In this context, a problem family is a collection of

various formulations of the same problem. These formulations have the same premise,

but each answers a slightly different question. We call each of these variations.

There’s a wide variety in how these variations are defined, which is specific to each

37

family. For an example on one end of the spectrum, consider the Longest Common

Subsequence (LCS) family. Given two sequences a and b, LCS asks what is the longest

subsequence common to both a and b, where a subsequence is obtained by removing

some characters from the sequence. For this problem family, we only considered two

variations: LCS (as stated) and Multiple Longest Common Subsequence, which is

looking for the longest common subsequence of d sequences, where d is any number

more than 1. On the other end, we have a problem whose variations are further apart

— the Maximum Flow family: for a given graph with n nodes and m edges, each of

those with a given weight wi,j representing its capacity, find the maximum amount of

flow between a source node s and a sink node t. This family’s variations include In-

teger Maximum Flow (the graph weights have to be integers), Unweighted Maximum

Flow (all capacities are set to 1), All-Pairs Maximum Flow (find the maximum flow

between any pair of two nodes), and even Minimum-Cost Flow (find the minimum

flow above a given threshold). Clearly, an algorithm for Minimum-Cost Flow does

not obviously solve any other Maximum Flow algorithms, while an Multiple Longest

Common Subsequence algorithm would also solve the standard LCS problem by set-

ting the number of sequences to d = 2. As a consequence, some algorithms can solve

multiple variations.

For the purposes of our analysis, we split problem families into problems by group-

ing certain variations together in such a way that algorithms for any variation in a

problem can solve all of the other variations. For example, this meant splitting all

graph problem families into their directed and undirected versions; and we combined

the st-Maximum Flow (using the basic definition) and the Integer Maximum Flow

variations. In case an algorithm for a problem family solved the different problems,

we chose the more restrictive problem.

Out of the 140 problem families, 17 didn’t have an exact problem statement; out

of the remaining 123, a further 35 (28.5%) did not have any relevant parallel algo-

rithms, either because they aren’t easily parallelizable, or just because there hasn’t

been enough interest for anyone to research parallel algorithms for them. A list of

these problem families can be found in Appendix B. We’ve excluded them as well as

38

families with an inexact problem statement from our analysis. Out of the remaining

88 families, 25 were discarded because none of the algorithms we found fit our analysis

criteria (see the Data Collection section below). By splitting and regrouping some of

the variations as above, we ended up with 70 problems with at least one analyzable

parallel algorithm that make up the data we’re using for this thesis.

3.2 Data Collection

Most of the data collection took place in the period of June 2023 to January 2024.

Data collection worked as follows: after choosing a problem family, we searched for

algorithms that satisfied our conditions (see below), then we read the papers to extract

the information we were looking for. Algorithms that didn’t satisfy our requirements

were noted down for future projects instead of being discarded. In the end, we’ve

looked at 1373 different papers and collected 486 relevant algorithms that make up

our analyzable dataset.

We looked for papers mostly through Google Scholar. In addition, we used text-

books such as [45] and [46] to double-check that we haven’t missed any important

parallel algorithms.

Let’s now dive deeper into the type of data we collected for each algorithm. The

fields we considered are as follows:

� the problem family it pertains to

� the variation(s) it solves

� the authors of the algorithm

� the year it was published

� the span of the algorithm, as a function of problem size — the running time

assuming infinitely many processors are available (see section 2.1 for more de-

tails)

39

� the work of the algorithm, as a function of problem size — the running time

using a single processor

� the model for which this algorithm was designed for and analyzed in

� whether it’s randomized (i.e. using a probabilistic model, or utilizing random-

ness as part of the algorithm); it should be noted that while we’ve collected this

data field for every algorithm, randomized algorithms that return the correct

result with high probability (1 − nϵ for any small ϵ > 0) are treated the same

way as deterministic algorithms

� whether it’s approximate — we did not analyze approximate parallel algorithms,

instead we put them aside for the future

� whether it’s heuristic-based; such algorithms don’t have a proof of correctness,

and as such not comparable to algorithms with theoretical guarantees

� whether it’s parallel

� whether it’s GPU-based; GPUs use a different type of parallelism — one pro-

cessing unit performs multiple computations at the same time, as opposed to

data and task parallelism, where computations are performed simultaneously

by different processors, each processor doing at most one at a time. For this

reason, we did not include them in our analysis.

Processor Data

While most of the data collection has been focused on the parallel algorithms them-

selves, we’ve used other types of data for the analysis. More specifically, we used data

on the maximum number of available processors in both supercomputers and com-

mercially available (personal) computers. For supercomputers, this processor data

was scraped from the TOP500 dataset [1], which ranks the top supercomputers in

the world. Twice-yearly rankings are available, starting with June 1993. The other

successful parallel computers not covered by this dataset are the ILLIAC IV [4], the

40

first parallel computer to be built, and the Connection Machines series. [5, 6, 7]

For commercially available computers, we’ve used a dataset mainly composed of the

CHIPS dataset. [47, 2]

3.3 Data Processing

After the algorithm data was collected, we then had to process it. To be able to do

a general analysis, every aspect of every algorithm had to be categorized. We looked

at the main aspects that we needed to standardize this way.

Models

Since there are many models of computation (as seen in section 2.1), we’d like to be

able to group together the ones that share the same main characteristics, in such a

way that all models in the same group are comparable to each other. Here is the

categorization we chose:

� PRAM, split up by read/write policies into EREW, CREW, and CRCW.When

the PRAM subtype is not specified, the most powerful model, CRCW, is as-

sumed

� SIMD-SM, similarly separated by its read/write policy

� MIMD-TC — tightly-coupled (a.k.a. shared memory) MIMD. This is also

separated by its read/write policy

� BSP — Bulk Synchronous Parallel Model

� comparator circuits, including sorting networks and hardware sorters

� Distributed memory models — a general category grouping together all dis-

tributed memory models, such as MIMD hypercubes, or unnamed models using

message passing. These models aren’t always directly comparable, but all of

them imply (sometimes weaker) bounds on simulated machines

41

� Other— any model that doesn’t fit into any of the above categories is collected,

but not analyzed

It’s worth noting that sometimes it can be useful to compare different algorithms,

even though they’re designed for different models. To do this, we simulate all our

model categories on one “main” model. We use a shared memory MIMD with con-

current reads and writes (CRCW MIMD-TC) as the main model. We’ve already

discussed details on how models can be simulated on other models, as well as what

the new simulated bounds are, in the background subsection 2.1.

We’ve examined some trends related to the model data we’ve collected. This

analysis is available in Appendix A.

Running Time

Running times don’t always depend purely on the problem size n. For example,

running times for graph problems often depend on both |V |, the number of vertices,

and |E|, the number of edges. The number of parameters that runtimes are based on

vary widely with the problem families and their variations. We needed to standardize

these so we’d be able to compare runtimes the same way irrespective of the problem.

We settled on defining n as the problem size, and for every problem family/

variation, choosing parameters in terms of this size n to be something “universal”,

which would be a special case of the problem that is widely used. For example,

for graph problems, we take the special case of dense graphs. We define dense

as |E| = Θ(|V |2). Then n = |V | + |E| = Θ(|V |2), and we get |E| = Θ(n) and

|V | = Θ(
√
n). You can find some common generalizations in Appendix C.

Note that we define n as the problem input size. This sometimes goes against

convention (e.g. for graphs usually n = |V |, while here we take it to be n = |V |+ |E|).

We think that this would make the analysis more meaningful, as n is defined the same

across all problems.

All span, work, parallelism, and sequential time measures have been redefined this

way in terms of n.

42

3.4 Data Analysis

In this section, we briefly describe implementation details of our analysis.

Datasets Used

Based on the above data, we’ve created two parallel datasets that we used for different

parts of the analysis:

� the original dataset: we include all of the analyzable parallel algorithms from

our parallel data. This does not include algorithms that have been designed for

a distributed memory model or for a model we labeled as “Other”.

� the simulated dataset: we simulate all algorithms (except ones with an “Other”

model) on our main model (CRCW MIMD-TC). Since this is one of the most

powerful models, all running time bounds for the other models hold here as well.

This dataset allows us to compare more algorithms and get a more meaningful

analysis.

The sequential dataset used was created using data collected for the initial algo-

rithms improvement project. [10] That dataset was updated by Rome et al. [13, 14]

and further by us to a limited extent.

Parallel Running Time Calculation

Lastly, we describe how certain metrics are calculated. These are the basic tools that

we used in our analysis in the following chapters.

One of the metrics we’ve used the most is that of running time. Often it’s useful

to be able to compute runtime numerically. Sequential time, span, and work are all

asymptotic functions of the problem size n.

For numerical sequential times, we can just evaluate the asymptotic function for

a given n; the work and span for a given n can be found in a similar way. That allows

us to compute parallel times, which should be a function of both problem size n and

the number of processors used p. Here we have two options:

43

1. runtime = max{work/p, span}

2. runtime = work/p+ span

These are equivalent asymptotically, but numerically they differ slightly. In fact,

runtime is bounded by both options when scheduled by a Greedy scheduler:

max{work/p, span} ≤ runtime ≤ work/p+ span

and either option is within a factor of 2 of the optimal runtime. [18]

We will be mostly using the second upper bound definition throughout this thesis.

The only exception is section 7.2, where we’d like to be able to compare pairwise

performances that are equivalent asymptotically, and the max function ensures that

two algorithms with the same asymptotic runtimes get treated as equal.

It’s worth it to note that for most of our results, switching to the first lower bound

definition would lead to insignificant differences. The only part where this distinction

matters is section 6.1, where we plot the running times and speedups separately. We

discuss this in more detail in that section.

Note that we’re not taking into account leading constant factors, so this only leads

to rough estimates, but Sherry and Thompson show that for most problems, at least

serially, this is a good approximation. [10]

Calculation of Other Metrics

Another commonly used metric is that of relative speedup. The speedup of an

algorithm A with respect to another base algorithm B is calculated as the ratio

between the runtime of the base algorithm B and the runtime of A. This way, the

relative speedup is > 1 if our algorithm is faster (i.e. has a lower running time). The

base algorithm is often the first known sequential algorithm, but can be any other

one, such as the first known parallel algorithm or the best sequential algorithm at the

same time.

relative speedupB(A) =
runtime(B)

runtime(A)

44

We also use the notion of improvement. We define sequential improvement

by the algorithm’s running time — an algorithm makes a sequential improvement if

its running time is asymptotically faster than the best-known algorithm at the time

(i.e. the year before). The span and work improvements are defined similarly. The

performance improvement for a given problem size n and number of processors p is

defined as a faster runtime (as calculated above). A general parallel improvement

is defined as an algorithm having pushed out the Pareto frontier, i.e. there’s no other

existing algorithm with the same or better span and the same or better work.

45

46

Chapter 4

Achievements of Parallelism

4.1 Parallel Algorithms Progress

When studying parallel algorithms, it’s only natural to compare them to their sequen-

tial counterparts. Our first question then is, how much progress has there been in

parallel algorithms as compared to sequential ones? We analyze how many improve-

ments there have been for each category over time for cases where there are both.

It turns out that almost since the start of this field, there have been more parallel

algorithms with improvements than sequential ones.

Figure 4.1 shows what proportion of the problems had improvements in each

decade, for both sequential algorithms and parallel algorithms. Note that we only

consider the 70 problems for which we have at least one parallel algorithm. Here,

we define sequential improvement as having an algorithm with a smaller asymptotic

runtime at the end of the decade compared to the beginning of the decade. For

parallel algorithms, that metric needs to change slightly, since the running time of

an algorithm depends both on its work and its span. We settled on considering an

algorithm as being better if its span (respectively work) was better than that of the

algorithm with the best span (respectively work), or if at the end of the decade, there

was an algorithm for which none of the algorithms at the beginning of the decade had

both better span and better work. In other words, if it pushed the Pareto frontier

of the work-span trade-off (see a deeper discussion of this concept in Chapter 5).

47

Figure 4.1: Progress over the decades — a comparison between sequential and
parallel algorithms

One of the first details one notices about this plot is that there was a lot a lot

more sequential improvement until the ’70s — 56% of problems had sequential im-

provements by the end of the ’70s, and more parallel improvement after, skewing the

parallel bars towards the present. Both of these match our expectations — for the

sequential side, there weren’t that many problems with significant improvements in

runtime after the ’70s because many had already hit their theoretical lower bound. [12]

On the other hand, there was lots of progress to be made on the parallel algorithms

side since the start of the field was only in the late ’60s. 1

Parallel algorithms start in the late ’60s, the first algorithm in our database is

from 1968. Parallel improvements happen at a much higher rate in the ’80s and ’90s

— 61.4% and 42.9% of problems had parallel improvements respectively.

1Note that Liu’s thesis [11] has a similar analysis for the sequential upper bounds in Figure 1-1b,
which looks slightly different from the sequential part in our Figure 4.1. This difference mainly
comes from a slight restructuring of how we define our problems, as well as the fact that we’re not
considering problems without any parallel algorithms.

48

The ’80s constitute an impressive peak of parallel progress, after which we’ve had

a consistent decline. In the last decade, there has been progress for almost 10% .

4.2 Parallel Hardware Improvements

None of the algorithms designed for parallel computers would be of any use if there

were no parallel computers. Figure 4.2 shows the number of available processing

cores over time for two different situations: the best supercomputers in the world,

and commercially available personal computers.

The supercomputer data is mostly based on the TOP500 lists, and the data on

commercially available machines is from WikiChip. [1, 2] A historical note is that

today, the standard word size for supercomputers is 64 bits; that has not always

been the case. This affects the early supercomputers up to roughly 1990, with the

Connection Machine series being especially relevant to our analysis. We accounted for

this by treating 4 32-bit processors as 1 64-bit processor for CM-2 — with 2048 32-bit

floating point units, it’s the second green step in Figure 4.2 at 512 processors. For

the same reason, we’ve also excluded the CM-1 machine because its 65536 processors

were all 1-bit.

The first step in the picture is the ILLIAC IV machine, the first ever parallel

computer to be built (in 1972). ILLIAC IV had a 64-bit mode of operation for its 64

processors.

The Connection Machines (1985-1993) sparked a more or less consistent exponen-

tial increase in the number of supercomputer processors, reaching almost 20 million

cores in 2017 thanks to the ExaScaler Gyoukou computer. [8]

On the front of commercially available computers, the first ones with more than

1 core were Intel Core Duo T2050 and AMD Athlon 64 X2 3800+, both released in

2005. AMD released EPYC models 7702, 7702P, and 7742 in 2019, and with 64 cores,

they currently have the highest available number of processors.

49

Figure 4.2: The maximum number of cores available every year for the most powerful
supercomputers in the world [1] and for commercially available personal computers [2]

Figure 4.3: Relative speedup for the All Pairs Shortest Paths problem

50

4.3 One Problem’s Progress

We’d like to observe how both hardware and algorithms have impacted parallelism

progress. We study an individual problem and track its performance, which we define

here as the speedup relative to the first known algorithm. As a reminder, the relative

speedup of an algorithm A with respect to B is the ratio between the running time

of B and runtime of A, and the runtime of an algorithm is computed just from the

asymptotic complexities of its span and work (see section 3.3 for more details).

We’ve used the highest number of available processors in computing parallel run-

ning times — both the top supercomputer and commercially available ones. So in

some sense, this represents the maximum practically achievable speedup at the time,

assuming each of the two scenarios.2

Figure 4.3 shows the performance for the All Pairs Shortest Paths problem for a

problem size of n = 106. The three lines represent sequential progress, or speedup with

only one available processor, parallel progress with commercially available numbers

of processors, and parallel progress with the highest existing numbers of processors.

The sequential improvements are small. We start out with speedup 1 with the first

known APSP algorithm corresponding to the Floyd–Warshall sequential algorithm in

1962, [48] with O(|V |3) running time. This is improved to the subcubic time of

O(n3(log log n/ log n)1/3) by Fredman in 1976. [49] In the dense graphs case (the case

we’re considering, see Appendix C), |V | = O(
√
n), which leaves us with a speedup of

1.67.

The first parallel improvement we see is Savage’s 1977 algorithm with O(|V |3 log |V |

work and O(log |V |2) span. [50] On an ILLIAC IV, it would outperform the best se-

quential algorithm at the time with a speedup of 3.2.

As we go towards the present, we can see that the shapes of the yellow and green

lines look similar to the lines in Figure 4.2 — those improvements correspond to hard-

ware improvements using the same algorithm. This is because the relative speedup

2A caveat is that the architectures of existing supercomputing machines oftentimes use a mix
of shared and distributed memory, and throughout this thesis, we’re assuming that algorithms are
either designed for or simulated on shared memory models. See section 2.4 for more on model
simulations.

51

of an algorithm is linear in the number of processors roughly until we reach the al-

gorithm’s available parallelism. In this case, most of the APSP parallel algorithms

have almost cubic available parallelism, which is roughly 18 orders of magnitude. We

discuss available parallelism more in Chapter 6.

Other times, the line raises even more, which signifies a new better algorithm, such

as the significant 1992 improvement with a randomized algorithm by Han, Pan, and

Reif. [51] They improved on both span and work, the new measures being O(log |V |)

and O(|V |3) respectively. 1992 had a separate improvement with an unrelated se-

quential algorithm by Takaoka. [52]

Today, APSP parallel algorithms running on supercomputers are able to provide

more than a 9 million-fold theoretical increase in performance over the best available

sequential algorithm.

4.4 Relative Speedup Improvements for all

Problems

Some problems achieve bigger speedups than others, and we’d like to see what this

speedup looks like in the general case. To do this, we observe the 25th, 50th, and 75th

percentiles for speedup over all problems, for each year. Just as before, we consider

these in three situations: sequential improvement, parallel improvement assuming

commercially available levels of parallelism, and parallel improvement assuming su-

percomputing parallelism. As before, we take the problem size to be n = 106.

The shapes of the parallel lines are once again reminiscent of the ones for the avail-

able processors in Figure 4.2. This means that the above reasoning holds in general,

and the current speedup values are bounded by hardware more than algorithms.

The lines start at speedup 1, and stay constant for a very long time (progressively

shorter as we consider a higher percentile) — this makes sense because a lot of prob-

lems don’t have that much improvement, especially in the beginning. On top of that,

algorithms with tight bounds have been found before that for many problems, see

52

Figure 4.4: Relative speedup at the level of problem families over time
as the 25th, 50th, and 75th percentiles for sequential algorithms, parallel algorithm
using the maximum commercially available parallelism, and parallelism available

from the most powerful supercomputers, calculated for input size 106

53

[11]). We’re using 1968 as the speedup reference year since it’s the year correspond-

ing to the first parallel algorithm in our database. In addition, some problems were

not defined or didn’t have parallel algorithms by that point.

For those reasons, we see that the sequential lines for the 25th and 50th percentiles

stay at or slightly 1 throughout the present, and for a significant portion of time,

so do the parallel lines. This shows that at least 50% of the problems didn’t have

any sequential improvements in the decade between 1968 and the late 2000s. On the

other hand, 50% of problems have seen a parallel speedup greater than 1 starting in

1987, with 25% more problems getting improvements in the short span between 1987

and 1992.

The 75th percentile lines start increasing early, 25% of problems having had both

a sequential and parallel improvement by 1977. All 75th percentile lines rise a lot.

An interesting phenomenon to notice happens in 2012: the 75th percentile sequential

algorithm goes above the then-best parallel algorithm with personal computer paral-

lelism. This happens occasionally because PC-level parallelism is small enough that

new good sequential algorithms are able to overtake it.

In 2024, the speedup of the 75th percentile is 43148, 941, and 550 times greater

compared to the 25th percentile for sequential, PC parallelism, and supercomputer

parallelism respectively. For the top 25% problems, the speedup gain of supercomputer-

level algorithms is over 107. For the median and top 75%, the gain is at roughly 106

and 105 respectively.

4.5 Overall Parallel Progress

Finally, we’d like to look at the overall progress. How much impact do parallel

algorithms actually have? We look at the overall improvement of each problem,

as measured by the relative speedup of the best current-day algorithm taken with

respect to the first existing algorithm. Once again, we’re interested in those measures

in three situations: sequential, personal computer parallelism, and supercomputer

parallelism. We want to see how much improvement in each of these accounts for the

54

total improvement, as measured against the highest speedup. We use the geometric

proportion for this. Figure 4.5 shows their arithmetic averages for three different

problem sizes.

Sequential algorithms account for roughly 27% of algorithmic progress across all

problem sizes. We also notice that the amount of parallelism is very important —

the more parallelism we have, the more improvement we can get. This seems to be

especially important with increasing problem size — for n=103 it’s only 36%, but for

109 it increases by roughly half to 56%. On the other hand, personal computers seem

to make a bigger difference for smaller problem sizes.

Overall, we see that parallel algorithms can have a lot of impact, especially for

large problem sizes and especially if lots of processors are available.

Figure 4.5: Maximum sequential and parallel (in the cases of commercially available
personal computers as well as supercomputers) relative speedups from the first

algorithm for all problems

55

56

Chapter 5

Cost of Improvement and

Nontrivial Trade-offs

5.1 Work and Span

The relative speedup that we’ve studied in the previous chapter is directly related to

the running time of a parallel algorithm. That running time depends, in turn, on the

work and span of the algorithm. When trying to improve the runtime of an algorithm,

one can either improve the span, or the work, or both. Naturally, improving both

at the same time is the hardest. We’d like to investigate how these two measures

interact. We start by plotting them for all algorithms of an individual problem.

Figure 5.1 shows this for the Longest Common Subsequence (LCS) problem, which,

given two sequences a and b, asks to find the longest subsequence common to both of

them, where a subsequence of a string s can be obtained by removing (not-necessarily

contiguous) characters from s.

Figure 5.1 plots all algorithms for the LCS problem according to their spans and

works — each dot depicts an algorithm; its color is representative of the model for

which the algorithm was devised, and the year next to it is the year in which the

algorithm was published. In addition to parallel algorithms, the plot also shows one

sequential algorithm — the one with the best running time, shown in lavender on the

lower right side.

57

Figure 5.1: Work vs span for the Longest Common Subsequence problem.
Each colored dot represents a parallel algorithm for the respective model, the

best-known sequential algorithm is plotted for reference. The line shows the Pareto
frontier if all the algorithms were simulated on a shared memory model.

For this problem, the best sequential running time is O(n2). [53] We can interpret

it as a parallel algorithm that always runs on exactly 1 processor. In that case, both

its span and work would be O(n2). Notice that there are no algorithms with work

lower than that — this is to be expected because a parallel algorithm with better

work would imply the existence of a sequential algorithm with better time (since we

can just run it on a single processor). The algorithms on the same line all have the

same work as the best sequential algorithm, therefore they are all work-efficient.

On the other hand, one can notice that none of the spans are greater than O(n2).

While that can sometimes be the case, it’s rare to see parallel algorithms with worse

spans than the best sequential time — on a parallel computer, the sequential one

would still be faster. Therefore this mostly happens when the parallel algorithm is

designed before the sequential one is published. For the Longest Common Subse-

quence problem, however, all parallel algorithms appeared after 1974.

58

In terms of reading performance on this graph, an algorithm is “better” the lower

it is and the more to the left it is. However, there is no LCS algorithm that’s the

best in both respects — that would have to be in the lower left corner, e.g. an O(n2)

work, O(log n) span algorithm.

Sometimes, a new algorithm is better in both span and work — for example, for

CRCW PRAM algorithms, the 1997 O(n2 log n)-work O(log n)-span algorithm is bet-

ter in both dimensions than the previous one from 1990. Other times, improvements

occur only in one direction — such as the span improvements for the work-efficient

algorithms. Algorithms improving one metric can also sometimes make the other

metric worse.

The blue line represents the Pareto frontier of span and work for the algorithms

simulated on an asynchronous CRCW shared-memory MIMD. Algorithms on this line

represent the best trade-offs between work and span.

This plot also shows us how the Pareto frontier was pushed through the years.

For example, The 1988 CREW PRAM algorithm was improved upon in 1990 by two

algorithms in two different directions — improving work but having a slightly worse

span for the MIMD-TC algorithm, and the opposite for the PRAM-CRCW one (a

CREW algorithm implies both a PRAM CRCW algorithm and a MIMD-TC one with

the same bounds, see section 2.4).

5.2 Nontrivial Work Span Trade-offs

LCS is an example of a problem with non-trivial trade-offs — there is no algorithm

with both the best span and the best work. But how often does this happen? We

analyzed how many of our problems have such nontrivial trade-offs between work and

span. Currently, the figure stands at 35.7%, a significant proportion.

This number has changed throughout the years, as Figure 5.2 shows. We track

the portion of such algorithms for each decade starting from the 1980s. Specifically,

we check how many problems had work-span trade-offs at the end of each decade out

of how many problems had parallel algorithms at all. A problem is considered to have

59

a work-span trade-off in a decade if, at the end of it, no algorithm has both the best

span and the best work.

Figure 5.2: Work-span trade-offs throughout time

The number of problems considered for each bar also varies — every decade we

only consider the problems that had at least one parallel algorithm by the end. For

example, the first decade only had two problems with parallel algorithms by the end of

1970 (Comparison Sorting and Discrete Fourier Transform). Discrete Fourier Trans-

form had an O(n log n) work algorithm, the same as the best sequential at the time.

Since all Comparison Sorting algorithms had O(log2 n) span and O(n log2 n) work,

and the best sequential algorithm was O(n log n), it turns out that 50% problems

with parallel algorithms had work-span trade-offs. 50 out of our 70 problems have

had their first parallel algorithm by the end of the ’80s however, with a further 13 by

the end of the ’90s.

We can see that the proportion has stayed pretty consistent since then, mildly

60

decreasing, probably because as more algorithms get designed, we’re able to find ones

that are better in both span and work.

5.3 The Span of Two Algorithmic Extremes

A different way to look at this existing trade-off would be to look at both extremes and

compare them. In the work-span graph of a problem (such as Figure 5.1 for LCS), this

would correspond to the leftmost vertical line — representing the lowest achievable

span, and the lowest horizontal line — representing work-efficient algorithms. We

will be comparing these two types of algorithms in different contexts.

Figure 5.3: Comparing the best span and work-efficient algorithms
The blue bars show the distribution of best spans — the percentage of problems

with an algorithm of the corresponding complexity class. The orange bars show the
distribution of spans of the work-efficient algorithms, taking the lowest ones in the

case of ties.

61

Looking at the theoretical limit on how fast algorithms can run, we wish to start

by examining the best spans for these two categories across all problems. Note that

a best-span algorithm can be defined for all problems (as long as they have at least

one algorithm in general), and the same applies to work-efficient algorithms as well.

In the case that there are no work-efficient parallel algorithms, the best sequential

algorithm is the work-efficient one, since it can be viewed as a parallel algorithm with

a maximum parallelism of 1.

Therefore for each problem, we can take the span of the best-span algorithm and

the span of the work-efficient algorithm (we take the lowest such span in the case of

ties). We plot the distribution obtained this way in Figure 5.3.

We can see that the lowest span distribution is skewed to the left compared to

the work-efficient distribution. This is to be expected because, for a given problem,

a work-efficient algorithm’s span can only be as low as the best span one. If they’re

equal, that would mean that there’s no nontrivial trade-off for that problem, and

both of its algorithms fall into the same complexity class bucket. The fact that the

distributions aren’t the same is therefore because nontrivial trade-offs exist.

5.4 Overhead of Best Span Algorithms

Ideally, we’d like the algorithms we use to be work-efficient. Besides using fewer

resources in general, this also minimizes the running time — especially for small

values of p (the number of processors), the magnitude of the work has a bigger impact

than the span (see Chapter 6). We can quantify how “far” an algorithm is from being

work-efficient by defining work overhead as the ratio between work and the best

sequential time, asymptotically. By this definition, a work-efficient algorithm has

O(1) work overhead.

Then we can see what the “cost” of using the lowest span algorithm would be, as

represented by the work overhead of the algorithm. Figure 5.4 shows that in the form

of a grid comparing the span and the work overhead of the lowest span algorithm

for each problem. Each square shows the percentage of problems that fall into the

62

corresponding span and overhead buckets. The Total column and row show the sums

of each row and column, and therefore also represent the distributions of span and

overhead.

Figure 5.4: Percentage of problems whose best-span algorithm falls into the
respective span and overhead buckets.

We can see that most of the problems are concentrated in the upper-left corner,

which is where the fastest algorithms fall. Looking at the bottom Total row, we can

see the distribution of work overhead among the lowest span algorithms. We can see

that most of our problems (64%) have constant overhead, which means that they’re

work-efficient. This is consistent with the fact that 35.7% of the problems have a

nontrivial work-span trade-off. Most of the rest are split between (poly)logarithmic

and linear complexity (17% and 14%), leaving only 4% of problems with exponential

overhead.

The rightmost Total column shows the lowest span histogram. It’s consistent with

63

the lowest span (blue) bars from Figure 5.3, with slightly different categories. Most

lowest spans are logarithmic, and only 9% are superlinear.

64

Chapter 6

Problem Size and Parallelism

We’ve talked about how work is the leading factor in running time when the number

of processors is small; that’s one of the main reasons why we prefer work-efficient

algorithms to non-work-efficient ones, especially in practice. However, work efficiency

is not necessarily strictly better. In particular, in this section, we look at the available

parallelism of an algorithm, the largest number of non-idle processors it can use.

Asymptotically, this is achieved when the runtime becomes equal to the span, which

is why we calculate the available parallelism complexity as work/span.

6.1 Two Minimum Spanning Tree Algorithms

To illustrate why available parallelism can be as important as work efficiency, we

show two different algorithms for the same problem, one which is work-efficient, and

one which has a better span. We consider the Minimum Spanning Tree problem (see

section 2.5). The work-efficient algorithm is due to Deo and Yoo (1981), [54] and has

O(n0.75) span and O(n) work, and O(n0.25) available parallelism. The other algorithm

is due to Johnson and Metaxas (1992), [55] with O(log n1.5) span, O(n log n1.5) work,

and O(n) available parallelism.

First, we look at what happens to the algorithms’ performance when we vary the

number of processors for three values of problem size n — 103, 106, 109 (see Figure

6.1). In this instance, we take the performance to be the speedup of the algorithm

65

relative to the best sequential algorithm. This is sometimes referred to as strong

scaling.

Figure 6.1: Strong scaling for two different algorithms: a work-efficient one, and one
with a better span but not work-efficient. Speedup is relative to the work-efficient

algorithm at p = 1.

Since the work-efficient algorithm has the same work as the best sequential run-

time, all three lines for the DY81 algorithm start at speedup 1 for all p = 1. On the

other hand, JM92 is not work-efficient, so its speedup with respect to the best se-

quential algorithm is less than 1 — in this case their speedups at p = 1 start at 0.037,

0.0116, and 0.006. The larger n, the larger the difference between their runtimes and

the best sequential time. Ultimately, at p = 1, JM92 has a worse performance.

However, as we increase the number of processors, DY81 reaches a plateau much

more quickly — this is due to its available parallelism being much smaller — it will

reach this plateau at O(n0.25) processors. For our values of n, that’s only 6, 32,

and 176 processors — a personal computer with 64 processors would theoretically

reach this limit for problem sizes smaller than 1.6× 107. On the other hand, JM92’s

performance keeps growing. For n = 109, the speedup only reaches a plateau at

almost 107, which is more than 4 orders of magnitude difference compared to DY81.

The vertical lines show the currently available numbers of processors for easy ref-

66

erence — 64 for commercially available multicore computers and almost 20 million

for supercomputers. While DY92 is better at p = 64, JM92 is better if using su-

percomputer parallelism. Therefore, available parallelism needs to be kept in mind

when choosing an algorithm — work efficiency is a more important metric for smaller

values of p, while available parallelism is more valuable with higher p.

Note that we use the upper bound of runtime for computing speedup (see section

3.3) in Figure 6.1. If we were to use the lower bound instead, the main difference

would be that the transition between the linear growing line and the constant one

would be sudden instead of gradual. Each curve would be made out of two distinct

straight line segments — one with a positive slope (the work) and a constant one —

which intersect at the point where span = work/p.

Running Time with Varying Problem Size

We can also make the reverse comparison: how does problem size affect performance

for certain values of p? In Figure 6.2, we plot the running time against the problem

size. This is an equally good measure of performance, but in this case, running time

Figure 6.2: Running time as a function of problem size for two different algorithms:
a work-efficient one, and one with a better span but not work-efficient.

67

is more meaningful. Speedups increase when running times decrease, which happens

as we increase p; however, increasing n increases runtimes, which leads to negative

speedups (when compared to a constant performance, such as for n = 1).

DY81, with the runtime O(n/p + n0.75), generates lines for p = 1 and p = 8 that

mostly grow as n0.75 — since that’s the significant part of the runtime for n > 1 and

n > 4096 respectively. Even though the curvature is slight, it can be noticed between

the p = 8 and p = 106 lines — since for p = 106 the runtime is mainly dominated by

the n term until n = 108, it looks more linear.

JM92’s runtime, O(n log n1.5/p+ log n1.5), is dominated by the work for the range

of values shown in the plot. The slopes of these quasilinear lines decrease with p.

This makes JM92 runtime lines more spread out than the DY81, and we can see that

for small values of p, they’re less efficient.

Running Time with p as a Function of n

Now let’s examine what happens when p and n interact, keeping neither constant. In

Figure 6.3, we look at running time as we vary the problem size; however, here we

investigate p values that depend on n: p = n0.25, p =
√
n, and p = n.

For the DY81 subplot, all lines are asymptotically O(n0.75), the dominating term

in the runtime. However, their slopes are different — for p = n0.25 the slope is 2, and

it approaches 1 as p’s complexity function increases.

For JM92, the line shapes are all different. For the p = n line, it looks like

it’s a constant zero function. It’s actually O(log n1.5), which is much smaller than

O(
√
n log n1.5) at large values of n. The p = n line corresponds to runtime equalling

span and therefore it’s the minimum possible runtime (within a factor of 2).

68

Figure 6.3: Varying the problem size n with the number of processors as a function
of n for two different algorithms: a work-efficient one, and one with a better span

but not work-efficient.

6.2 Available Parallelism for Best Span Algorithms

As we’ve seen in the previous section, available parallelism for an algorithm is quite

important. So how does available parallelism in general compare for the best span

and work-efficient algorithms? Take a look at Figure 6.4, which plots the histogram of

available parallelisms for the best work-efficient and lowest-span algorithms for every

problem. The y-axis shows the percentage of problem families that whose respective

algorithms fall into each complexity class. As opposed to Figure 5.3, where lower

complexity classes were better, here we would like to have more parallelism.

As expected, the lowest span histogram is skewed to the right, which tells us that

the lowest span algorithms have higher available parallelism.

A curious case is the constant complexity class — a problem being included in this

bar implies that the span is asymptotically the same as the work, and few parallel

algorithms have that. Consequently, all problems that don’t have a work-efficient

parallel algorithm fall into this category, and a big part of it is sequential algorithms

69

Figure 6.4: Distribution of available parallelism for best span and for work-efficient
algorithms

for problems where no parallel algorithm has achieved the same work.

In practice, available parallelism matters only in some contexts — an algorithm

with high available parallelism isn’t very useful on machines with few processors trying

to solve large problems.

70

Chapter 7

Unexpected Results

We’ve left some results that we found surprising for this last chapter. We start with a

more “social” perspective in which we want to see what researchers are most working

on — span and work are both measures of complexity for parallel algorithms, but

which one gets improved on more often?

7.1 Work vs Span Improvement

Figure 7.1 shows the distribution of all algorithms, categorizing them based on whether

they improve or not upon the best span and best work at the time. In practice, that

means that we compare it to the previous year. Works and spans are better if they

have an asymptotically strictly smaller complexity; the same and worse cases are

defined similarly (equal and strictly greater complexity respectively). Note that the

spans and works are compared independently to each other. Therefore, for example,

an algorithm that pushes the Pareto frontier but does not improve upon either the

best span or the best work would be categorized as worse-worse and would fall into

the lower left square.

We see that the categories of worse span with same and worse work are by far

the most common with roughly 28.6% and 23.9% respectively. On the other hand,

improvements in complexity seem to be more rare — with roughly 24.2% improving

at least one of span and work, and only 3.5% improving both. This might strike the

71

Figure 7.1: Improvement distribution between span and work

reader as surprising. We give a few reasons for why that’s the case, besides it being

hard to design better algorithms.

There are other worthwhile reasons to design and publish new algorithms besides

improving complexity. We’ve collected all kinds of algorithms, not just the ones

that make a complexity improvement over the best existing metric. Some common

qualities that are being improved on in such algorithms include smaller constants,

less communication (for distributed-memory models), simpler algorithms, etc. Oc-

casionally, it can also be the case that researchers aren’t aware of existing better

results, although that’s been less common in recent decades, thanks to easier access

to research and digital tools.

Additionally, as explained above, algorithms that push the Pareto frontier can

fall into any of the squares. 198 (40.74%) of the algorithms in our database have

72

pushed the Pareto frontier at their time of publication. One may wonder how much of

that 76% of seemingly non-improving algorithms from Figure 7.1 still make a Pareto

frontier improvement. To answer that question, we look at Figure 7.2, for which we

ran a similar analysis, but we restricted it to only include algorithms that had pushed

the Pareto frontier at the time of their publishing.

First, we notice that this figure looks almost completely reversed. In fact, the raw

numbers (not proportions) of the 5 squares with at least one better measure have

stayed the same. This is because an algorithm that has improved over the best span

and/or the best work has most certainly extended the Pareto frontier to that new

measure. We can get each square’s Figure 7.2 proportions by multiplying its Figure

7.1 proportion by 402/114, the ratio between the number of algorithms considered for

the first and the second figures. Notice that for both scenarios, 84 of the algorithms

Figure 7.2: Improvement distribution between span and work, only for algorithms
that pushed the Pareto frontier at the time of their publishing

73

aren’t included because, at the time of their publishing, there was no other parallel

algorithm to compare them to.

Only 17 Pareto frontier algorithms (14.9%) do not improve on either the best span

or the best work. That means that 4.2% of the algorithms have a Pareto frontier

improvement, but are in the lower left 4 squares in Figure 7.1. That leaves 288 (or

71.6%) of the algorithms that don’t improve complexity in any of the ways we’ve

discussed.

As for the work versus span question, it seems like there are a few more algorithms

improving work — some possible causes for that might be that researchers recognize

work as being slightly more important to improve on, or just that span improvements

happen with bigger strides at a time.

7.2 Improvement in Performance and Span

Work is important, but ultimately the most practically useful measure of how an

algorithm performs is its runtime. How often does it get improvements? We present

Figure 7.3, where for 9 different combinations of problem size n and number of pro-

cessors p, we examine the performance of all algorithms in our database and compare

it to their spans. An algorithm’s runtime can be classified as worse, same, or better

than the best runtime existing at the time just as well as span and work; however, in

this case, we must resort to using numerical.

As a reminder, for this section, we’re using the lower bound definition of runtime:

runtime = max{work/p, span}

Based on this definition, we can see two cases: when the work/p term dominates (is

greater than the span), which we call work-bound, and when the span dominates

the runtime, which we call span-bound.

74

Figure 7.3: Improvement distribution based on span and runtime, computed for 9
different combinations of problem size n and number of processors p

First of all, the totals for each span category row stay consistent, because the span

isn’t calculated numerically in terms of n and p. This means that the only changes

we see across each of the subplots consist of algorithms being moved from one bucket

to another in the same row. Notice that as we increase the number of processors p

and decrease the problem size n, we see it has different effects on the three different

span category rows.

For the top span category row, corresponding to better span, we see algorithms

75

get moved right, towards better runtime; for the middle row, “same span”, both worse

and better runtime algorithms tend to combine into the “same runtime” category;

and for the bottom “worse span” row, algorithms get classified more frequently as

having worse runtimes. This looks very interesting, but there’s a good reason for it

to be this way.

Because we compute an algorithm’s runtime by taking the dominating factor out

of work/p and span, we need to look at how varying p and n affect both of these terms

in relationship to each other. Increasing p means that work/p gets smaller while span

doesn’t change; therefore, span is likelier to become the dominating factor. We see

the same happening when we lower the problem size n — in that case, both work

and span decrease, which makes p have a bigger influence on the work/p term, and

therefore it has a similar effect to increasing p by becoming work-bound.

At this point, we’d like to draw the reader’s attention to how this figure compares

to Figure 7.1. Since work is the asymptotic runtime at p = 1 as n → ∞, we conclude

that Figure 7.1 is the natural continuation of the top row (for p = 1) to the right.

In fact, all subplots in the top row are the same: for p = 1, the runtime becomes

max{work, span}, and no matter the value of n, and since work ≥ span, the calculated

runtime is the same as the work.1

On the opposite end, letting p grow to infinity to the bottom left reduces the

work/p term to the point that span becomes the dominating factor. Therefore, as

suggested by the n = 103, p = 106 subplot, runtime and span will be equal, and all

but the diagonal squares will be equal to 0, and the diagonal squares will show the

totals for the span improvement categories.

This ties in back to the parallelism discussion from the last chapter: the increasing

n has the opposite effect of increasing p, which leads to the two opposite corners being

the two extremes.

1The subplots in the top row of Figure 7.3 have slightly different values from the ones in Figure
7.1, contrary to the theoretical argument presented here. This difference however stems from the
fact that for Figure 7.3, runtime is calculated numerically, while in Figure 7.1, we compare work
asymptotic complexities. For example, O(logc n) ∈ O(nϵ) for an arbitrarily small ϵ and arbitrarily
large constant c, however when computing them with the parameters that we’ve chosen (ϵ = 0.01,
c = 6), we get the opposite O(logc n) > O(nϵ) for the relatively small values of n we’re considering.

76

The version of this figure using only Pareto algorithms undergoes similar changes,

which is why we don’t include it here. The curious reader can find it in Appendix D.

7.3 Annual Progress

Lastly, we’d like to see how much yearly progress has been made. We measure yearly

progress with the compound growth rate (CGR).

The compound growth rate is computed as

CGR = (f/b)1/t − 1

where f is the present-day best parallel speedup, b is the best sequential speedup,

both with respect to the first algorithm for the problem and t is the number of years

since the first parallel algorithm.

We’ve computed the compound growth rate for each problem for 9 different com-

binations of n and p, and then we plotted their distributions in Figure 7.4.

We see that the number of processors has the biggest impact on the CGR — the

higher p, the more the distribution skews right towards bigger CGRs. We notice that

this effect is bigger with bigger n. When increasing p, the only part of the CGR

equation that changes is the parallel speedup. Since speedup increases linearly with

p, all CGRs have to increase as p increases.

Similarly, but to a smaller extent, increasing n skews the distribution towards

higher CGR. The reasoning behind this is slightly more complicated, as now both f

and b increase with n. However, we know that f > b, which means that f increases

slightly faster than b, which leads to the ratio f/b also increasing as n increases.

In general, the compound growth rates for parallel algorithms stay under 30%,

even for n = 109 and p = 106. This is below the hardware improvement rate as

calculated using the SPECInt benchmark. [56, 10] We can also compare the growth

rates with the sequential ones given in [10]. In general, parallel improvement rates

are worse than their sequential counterparts for low numbers of processors. This is

77

Figure 7.4: Compound Growth Rate distribution

because, at such low — almost constant — values of parallelism, the parallel running

times are very close to the sequential running times, so f/b is very close to 1. This

explains why for p = 8 all the problems have CGRs of under 10%.

For both p = 103 and p = 106, we can see bigger differences with respect to

sequential improvement rates — the majority category of the parallel problems is

always either 10-20% or 20-30%, while for sequential problems, it’s always < 10% for

all values of n. On the other hand, a significant number of sequential problems have

improvements that go above the hardware average improvement rate — 16%, 27%,

78

and 37% for each of n = 103, n = 106, and n = 109 respectively. [10]

Overall, one can see that the compound growth rates for parallel problems tend to

not vary as much as the sequential improvement rates; however, on average they tend

to get higher growth for large enough values of p than their sequential counterparts.

79

80

Chapter 8

Conclusion

It’s important to know what parallel algorithms have to offer. In this thesis, we’ve

provided a quantitative assessment of this field and how it evolved since its inception.

We hope this is useful to anyone who wants to understand the state of the art of

parallel algorithms. We also hope that this thesis provides more rigorous quantitative

evidence to supplement any of the reader’s empirical observations, whether it proves

or disproves any such acquired preconceptions. We aimed to provide a landscape of

what parallel algorithms can do at their best, worst, and across the whole range. On

its most basic level, the goal of this work is to provide more knowledge and a deeper

understanding of the state of parallel algorithms.

Parallel algorithms have had significantly more progress than sequential ones since

the ’80s. Hardware has also improved: commercially available computers have up to

64 cores, and the best supercomputers in the world have up to almost 20 million.

Assuming these numbers of processors, most parallel algorithms have had improved

speedups when compared to sequential algorithm speedups. For the All Pair Shortest

Paths problem, the best speedup achievable by a supercomputer is 9 million higher

than the best sequential speedup (for a problem size of 1 million), both relative to the

first known algorithm. Similarly, all problems with parallel algorithms have parallel

speedups greater than sequential ones. Overall, progress in sequential algorithms

accounts for only a quarter of the progress, compared to the maximum available

speedup due to parallel algorithms.

81

Since parallel algorithm performance is measured by both span and work, this

gives rise to potential trade-offs. Sometimes there’s no single algorithm that has both

the best span and the best work for a given problem. In fact, more than a third of

our problems have such nontrivial trade-offs, a proportion that has slightly decreased

since the 60s. This gives rise to the two extremes: algorithms with the best span,

and algorithms that are work-efficient (having the same work as the best sequen-

tial algorithm). In general, the spans are better for the best span algorithms than

their work-efficient counterparts, which makes them faster with enough processors.

The downside however is that such best span algorithms have non-constant work

overheads. This makes them not as advantageous with few available processors.

Another way to look at the same trade-off is through available parallelism (more

with better span) and work overhead (lower with better work). Best span algorithms

generally have more available parallelism than work-efficient ones. Performance de-

pends on both work overhead and available parallelism: for small values of the number

of processors p, the work-efficient algorithms have better speedups; but that quickly

changes as we increase p to values above those on the scale of commercially avail-

able personal computers — that’s when the best span algorithms get significantly

better speedup for the same problem size. In general, with small numbers of proces-

sors, work efficiency is more important; however, with increased processor numbers,

smaller spans give us bigger gains. It’s important to know what system one is de-

signing algorithms for, to know what to prioritize. This knowledge can help with

choosing an algorithm that better suits the system’s purpose.

We’ve also had some unexpected results. Annual progress for parallel algorithms,

as expressed by the compound growth rate, doesn’t exceed 30% for common values of

p and n, which is smaller than the annual progress of hardware and sequential algo-

rithms. In addition, only about 40% of the algorithms have improved at least one of

span or work. More research could be done into the other issues researchers try to im-

prove when designing parallel algorithms, such as locality, constants, communication,

and so on.

Exploring other issues is just one potential direction of future work. Other di-

82

rections to be explored are other types of algorithms that we’ve excluded from our

analysis. In this thesis we’ve limited the scope to consider only specific algorithms:

we haven’t included approximate, heuristic, GPU-based algorithms, etc. We also

plan to expand our algorithms database and will do so before the updated paper is

published.

While the presented theoretical gains of parallel algorithms are impressive, in

practice they’re not implemented to their fullest extent. This is for many reasons,

the main one being the difficulty of writing correct and efficient parallel code. This

is yet another part of the field that would benefit from more research. We have

many good parallel algorithms, thanks to the amazing progress throughout the last

few decades. Coming up with ways to make parallel implementation easier and more

widely available would help bring more of these theoretical benefits into reality.

Parallel computing has progressed significantly throughout the years, and we can’t

wait to see how the field will continue to advance.

83

84

Appendix A

Model Statistics

Keeping in mind the limitations outlined in Chapter 3, we can look at what the

distribution of models looks like for the algorithms we’ve collected. While this doesn’t

tell us much about progress in parallel algorithms per se, it’s very interesting to

analyze the use and interest of various types of models and their historical trends.

Figures A.1 and A.2 show the distribution of the models for the algorithms we’ve

collected over the decades. It’s worth noting that data for the “Other” model category

is not very reliable, since we haven’t tried collecting all the algorithms with such

models.

One of the first interesting facts one notices while looking at both of these figures

is that the PRAM models seem to be the most popular. They’ve been widely used

throughout the ’80s and the ’90s. Their distribution is also fascinating — CREW

and CRCW seem to have been more popular a little earlier on, and EREW only got

more of a following at the end of the ’80s — based on Figure A.2 it looks like EREW

replaced a significant part of CREW algorithms. Around this time, lots of papers

started mentioning the practicality of EREW when compared to CRCW. It seems to

not have been a very long-lasting trend though, as EREW algorithms went extinct

after 2010, unlike their CREW and CRCW counterparts.

Looking at other models, shared-memory SIMD models were the first to make a

big wave; however, that was short-lived until the PRAM models took over to replace

85

Figure A.1: Utilization of each model over time.
Each dot represents one or more algorithms using that model which was published
that year; the size of the dot indicates how many algorithms of that model were

published that year

SIMD. Tightly-coupled MIMD has had a relatively more consistent presence in that

period, albeit slightly smaller. Consistency can also be seen with BSP models after

1995; it was the last big model to appear in Valiant’s 1990 paper. [29]

The earliest were comparator circuits, models that are especially useful for the

problem of sorting a given list of elements. As one of the most ubiquitous problems

in computer science, it’s understandable why it was one of the first to be explored in

the context of parallelism.

Figure A.2 shows the number of algorithms using the models per decade. We can

see that the ’80s and ’90s were the most active period for new parallel algorithms,

with 185 and 156 algorithms respectively. It coincides with the period of increased

advances in building parallel computers. Since then it’s been steadily slowing down,

partly because progress has been made in most problems where progress was more

easily achievable, and partly because the focus has shifted to working on more recent

technologies.

86

Figure A.2: Distribution of models used over time

It should be noted that while the bar for the 1960s is small, that’s because parallel

computers had only been brought to attention recently — the first algorithm in our

database is from 1968. A similar argument applies to the last bar, since at the time

of writing there have only been 3 years in this decade.

87

88

Appendix B

List of Problem Families with No

Parallel Algorithms Found

Informed Search

Joins

NFA to DFA conversion

Key Exchange

Mutual Exclusion

Minimum value in each row of an implicitly-defined totally monotone matrix

Register Allocation

Dependency Inference Problem

BCNF Decomposition

4NF Decomposition

Cryptanalysis of Linear Feedback Shift Registers

Longest Palindromic Substring

AST to Code Translation

Graph Realization Problems

Duplicate Elimination

Hyperbolic Spline Interpolation

Maximum Likelihood Methods in Unknown Latent Variables

Filtering Problem (Stochastic Processes)

89

All Maximal Non-Branching Paths in a Graph

Distributed Locking Algorithms

Cyclic Peptide Sequencing Problem

Clock Synchronization in Distributed Systems

Wiener Index

Rod-Cutting Problem

Turnpike Problem

Median String Problem

Frequent Words with Mismatches Problem

Tower of Hanoi

The Frequent Words Problem

d-Neighborhood of a String

Change-Making Problem

Secret Sharing

Page Replacements

Recovery

Gröbner Bases

90

Appendix C

Parameters

Here are the non-problem size parameters we encountered most, along with the value

we set them to, as a function of the problem size n.

Parameters Value Applicable Problem(s)

ϵ arbitrarily small number 0.01 all problems

c
highest log exponent for

polylogarithmic expressions
6 all problems

|E| number of edges |V |2 = n all graph problems

d depth of the graph |V | all graph problems

U maximum edge capacity 2|V | = 2
√
n Maximum Flow

d number of dimensions n

Linear Programming,

Convex Hull,

Closest Pair Problem

k number of points of intersection n2 Line segment intersection

h number of points on the convex hull n Convex Hull

m length of shorter string n
Sequence Alignment,

Longest Common Subsequence

length of the LCS n Longest Common Subsequence

m length of pattern n String Search

m, k m x k and k x n matrices n Matrix Product

91

Parameters Value Applicable Problem(s)

d maximum degree n Single Source Shortest Paths

dc
the maximum weight of a

shortest path
2n Single Source Shortest Paths

L maximum magnitude of lengths 2n Single Source Shortest Paths

N integer to be factorized log n Integer Factoring

k size of alphabet O(1) DFA Minimization

n number of vertices n Clique Problems

M number of cliques n Clique Problems

wmin minimum weight 2n The Subset-Sum Problem

wmax maximum weight 2n The Subset-Sum Problem

t target sum 2n The Subset-Sum Problem

∆
maximum number of acceptable

partners for one participant
n Stable Matching Problem

|G| grammar size O(1) CFG Problems

Table C.1: Values for commonly-used parameters

92

Appendix D

Improvement in Runtime and Span

for Pareto Frontier Algorithms

We present the plot analyzing improvement quality in span and work in Figure D.1

on the next page. The discussion in section 7.2 applies to this graph as well.

93

Figure D.1: Improvement in running time and span for Pareto frontier algorithms
only

94

Bibliography

[1] “TOP500 Dataset.” www.top500.org, 2023. Accessed: 2023-12-07.

[2] “Wikichip.” en.wikichip.org/wiki/WikiChip, 2024. Accessed: 2024-01-07.

[3] L. F. Richardson, Weather prediction by numerical process. University Press,

1922.

[4] W. J. Bouknight, S. A. Denenberg, D. E. McIntyre, J. Randall, A. H. Sameh,

and D. L. Slotnick, “The Illiac IV system,” Proceedings of the IEEE, vol. 60,

no. 4, pp. 369–388, 1972.

[5] B. A. Kahle and W. D. Hillis, “The Connection Machine model CM-1 archi-

tecture,” IEEE transactions on systems, man, and cybernetics, vol. 19, no. 4,

pp. 707–713, 1989.

[6] T. Machines, “Connection Machine model CM-2 technical summary,” Thinking

Machines Technical Report HA87-4, 1987.

[7] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Gan-

mukhi, J. V. Hill, D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells, et al.,

“The network architecture of the Connection Machine CM-5,” in Proceedings

of the fourth annual ACM symposium on Parallel algorithms and architectures,

pp. 272–285, 1992.

[8] “Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, Infiniband

EDR, PEZY-SC2 700Mhz — TOP500 — top500.org.” https://www.top500.

org/system/179102/. [Accessed 16-08-2023].

95

www.top500.org
en.wikichip.org/wiki/WikiChip
https://www.top500.org/system/179102/
https://www.top500.org/system/179102/

[9] G. E. Moore, “Cramming more components onto integrated circuits, Reprinted

from Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff.,” IEEE solid-

state circuits society newsletter, vol. 11, no. 3, pp. 33–35, 2006.

[10] Y. Sherry and N. C. Thompson, “How fast do algorithms improve?[point of

view],” Proceedings of the IEEE, vol. 109, no. 11, pp. 1768–1777, 2021.

[11] E. Liu, “A metastudy of algorithm lower bounds,” Master’s thesis, Massachusetts

Institute of Technology, 2021.

[12] E. Liu, Y. Sherry, W. Kuszmaul, J. Lynch, and N. C. Thompson, “How close

are algorithms to being optimal?,” Working Paper, 2023.

[13] H. Rome, “The space race: Progress in algorithm space complexity,” Master’s

thesis, Massachusetts Institute of Technology, 2023.

[14] H. Rome, J. Lynch, J. Li, C. Falor, and N. C. Thompson, “How fast are al-

gorithms reducing the demands on memory? A survey of progress in space

complexity,” Working Paper, 2024.

[15] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W. Lampson,

D. Sanchez, and T. B. Schardl, “There’s plenty of room at the Top: What will

drive computer performance after Moore’s law?,” Science, vol. 368, no. 6495,

p. eaam9744, 2020.

[16] D. Culler, J. P. Singh, and A. Gupta, Parallel computer architecture: A hard-

ware/software approach. Gulf Professional Publishing, 1999.

[17] Y. Shiloach and U. Vishkin, “An O(n2 log n) parallel max-flow algorithm,” Jour-

nal of Algorithms, vol. 3, no. 2, pp. 128–146, 1982.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

algorithms. MIT press, 2022.

[19] R. M. Karp and V. Ramachandran, “Chapter 17 - Parallel algorithms for shared-

memory machines,” in Algorithms and Complexity (J. VAN LEEUWEN, ed.),

96

Handbook of Theoretical Computer Science, pp. 869–941, Amsterdam: Elsevier,

1990.

[20] G. E. Blelloch, Vector models for data-parallel computing, vol. 2. Citeseer, 1990.

[21] V. R. Pratt, M. O. Rabin, and L. J. Stockmeyer, “A characterization of the

power of vector machines,” in Proceedings of the sixth annual ACM symposium

on Theory of computing, pp. 122–134, 1974.

[22] G. Blelloch and J. Greiner, “Parallelism in sequential functional languages,” in

Proceedings of the seventh international conference on Functional programming

languages and computer architecture, pp. 226–237, 1995.

[23] G. E. Blelloch, “Programming parallel algorithms,” Communications of the

ACM, vol. 39, no. 3, pp. 85–97, 1996.

[24] M. Flynn, “Very high-speed computing systems,” Proceedings of the IEEE,

vol. 54, no. 12, pp. 1901–1909, 1966.

[25] A. Bar-Noy and S. Kipnis, “Designing broadcasting algorithms in the postal

model for message-passing systems,” in Proceedings of the fourth annual ACM

symposium on Parallel algorithms and architectures, pp. 13–22, 1992.

[26] F. T. Leighton, Introduction to parallel algorithms and architectures: Arrays·

trees· hypercubes. Elsevier, 2014.

[27] B. Nitzberg and V. Lo, “Distributed shared memory: A survey of issues and

algorithms,” Computer, vol. 24, no. 8, pp. 52–60, 1991.

[28] B. H. Juurlink and H. A. Wijshoff, “The parallel hierarchical memory model,” in

Algorithm Theory—SWAT’94: 4th Scandinavian Workshop on Algorithm Theory

Aarhus, Denmark, July 6–8, 1994 Proceedings 4, pp. 240–251, Springer, 1994.

[29] L. G. Valiant, “A bridging model for parallel computation,” Communications of

the ACM, vol. 33, no. 8, pp. 103–111, 1990.

97

[30] Z. Ahmad, R. Chowdhury, R. Das, P. Ganapathi, A. Gregory, and M. M. Ja-

vanmard, “Low-span parallel algorithms for the binary-forking model,” in Pro-

ceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Archi-

tectures, pp. 22–34, 2021.

[31] P. B. Gibbons, Y. Matias, and V. Ramachandran, “Can shared-memory model

serve as a bridging model for parallel computation?,” in Proceedings of the ninth

annual ACM symposium on Parallel algorithms and architectures, pp. 72–83,

1997.

[32] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subra-

monian, and T. Von Eicken, “LogP: Towards a realistic model of parallel compu-

tation,” in Proceedings of the fourth ACM SIGPLAN symposium on Principles

and practice of parallel programming, pp. 1–12, 1993.

[33] J. JaJa and K.W. Ryu, “The block distributed memory model for shared memory

multiprocessors,” in Proceedings of 8th International Parallel Processing Sympo-

sium, pp. 752–756, IEEE, 1994.

[34] R. M. Karp, M. Luby, and F. Meyer auf der Heide, “Efficient PRAM simulation

on a distributed memory machine,” in Proceedings of the twenty-fourth annual

ACM symposium on Theory of computing, pp. 318–326, 1992.

[35] L. G. Valiant, “Parallelism in comparison problems,” SIAM Journal on Com-

puting, vol. 4, no. 3, pp. 348–355, 1975.

[36] S. Aaronson, “The power of the Digi-Comp II: My first conscious paperlet,” Dec

2016.

[37] N. Nishimura, “Efficient asynchronous simulation of a class of synchronous paral-

lel algorithms,” Journal of Computer and System Sciences, vol. 50, no. 1, pp. 98–

113, 1995.

[38] M. Raynal and M. Raynal, “Simulating synchrony on top of asynchronous sys-

tems,” Distributed Algorithms for Message-Passing Systems, pp. 219–244, 2013.

98

[39] B. Awerbuch, “Complexity of network synchronization,” J. ACM, vol. 32,

p. 804–823, oct 1985.

[40] C. Martel, R. Subramonian, and A. Part, “Asynchronous PRAMs are (almost)

as good as synchronous PRAMs,” in Proceedings [1990] 31st Annual Symposium

on Foundations of Computer Science, pp. 590–599, IEEE, 1990.

[41] R. Subramonian, “Designing synchronous algorithms for asynchronous proces-

sors,” in Proceedings of the fourth annual ACM symposium on Parallel algorithms

and architectures, pp. 189–198, 1992.

[42] T. Hagerup and T. Radzik, “Every robust CRCW PRAM can efficiently simulate

a Priority PRAM,” in Proceedings of the second annual ACM symposium on

Parallel algorithms and architectures, pp. 117–124, 1990.

[43] O. Aguilar, A. Datta, and S. Ghosh, “Simulating shared memory in message

passing model,” in [1991 Proceedings] Tenth Annual International Phoenix Con-

ference on Computers and Communications, pp. 232–238, 1991.

[44] J. E. Savage, Models of Computation: Exploring the Power of Computing. USA:

Addison-Wesley Longman Publishing Co., Inc., 1st ed., 1997.

[45] J. JáJá, An introduction to parallel algorithms. Addison Wesley Longman Pub-

lishing Co., Inc., 1992.

[46] S. G. Akl, The design and analysis of parallel algorithms. Prentice-Hall, Inc.,

1989.

[47] Y. Sun, N. B. Agostini, S. Dong, and D. Kaeli, “Summarizing CPU and GPU

design trends with product data,” arXiv preprint arXiv:1911.11313, 2019.

[48] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5, p. 345,

June 1962.

[49] M. L. Fredman, “New bounds on the complexity of the shortest path problem,”

SIAM Journal on Computing, vol. 5, no. 1, pp. 83–89, 1976.

99

[50] C. Savage, “Parallel algorithms for graph theoretic problems,” University of Illi-

nois Coordinated Science Laboratory Report UILU-ENG-77-2231, 1977.

[51] Y. Han, V. Pan, and J. Reif, “Efficient parallel algorithms for computing all pair

shortest paths in directed graphs,” in Proceedings of the fourth annual ACM

symposium on Parallel algorithms and architectures, pp. 353–362, 1992.

[52] T. Takaoka, “A new upper bound on the complexity of the all pairs shortest path

problem,” Information Processing Letters, vol. 43, no. 4, pp. 195–199, 1992.

[53] R. A. Wagner and M. J. Fischer, “The string-to-string correction problem,” J.

ACM, vol. 21, p. 168–173, jan 1974.

[54] M. J. Quinn and N. Deo, “Parallel graph algorithms,” ACM Comput. Surv.,

vol. 16, p. 319–348, sep 1984.

[55] D. B. Johnson and P. Metaxas, “A parallel algorithm for computing minimum

spanning trees,” in Proceedings of the Fourth Annual ACM Symposium on Paral-

lel Algorithms and Architectures, SPAA ’92, (New York, NY, USA), p. 363–372,

Association for Computing Machinery, 1992.

[56] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative ap-

proach. Elsevier, 2011.

100

	Introduction
	Prior Work
	Objectives and Thesis Organization

	Background
	Types of Parallelism
	Parallel Models of Computation
	Work-Span Cost Model
	Parallelism Metrics and other Definitions

	Models of Computation Classification
	Abstract Models
	Processor Models

	Some Notable models
	PRAM
	BSP
	Comparison Models

	Simulations
	Synchrony
	Concurrent vs Exclusive Reads and Writes
	Simulating Between Shared and Distributed Memory
	Branching Factor
	MIMD to SIMD

	Example Problems

	Methods
	Scope
	Data Collection
	Processor Data

	Data Processing
	Models
	Running Time

	Data Analysis
	Datasets Used
	Parallel Running Time Calculation
	Calculation of Other Metrics

	Achievements of Parallelism
	Parallel Algorithms Progress
	Parallel Hardware Improvements
	One Problem's Progress
	Relative Speedup Improvements for all Problems
	Overall Parallel Progress

	Cost of Improvement and Nontrivial Trade-offs
	Work and Span
	Nontrivial Work Span Trade-offs
	The Span of Two Algorithmic Extremes
	Overhead of Best Span Algorithms

	Problem Size and Parallelism
	Two Minimum Spanning Tree Algorithms
	Running Time with Varying Problem Size
	Running Time with p as a Function of n

	Available Parallelism for Best Span Algorithms

	Unexpected Results
	Work vs Span Improvement
	Improvement in Performance and Span
	Annual Progress

	Conclusion
	Model Statistics
	List of Problem Families with No Parallel Algorithms Found
	Parameters
	Improvement in Runtime and Span for Pareto Frontier Algorithms

