
Learning to Update: Using Reinforcement Learning to
Discover Policies for List Update

by

Isabelle A. Quaye
S.B. in Electrical Engineering and Computer Science

Massachusetts Institute of Technology (2022)

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2024

© 2024 Isabelle A. Quaye. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis, or
release the thesis under an open-access license.

Authored by: Isabelle A. Quaye
Department of Electrical Engineering and Computer Science
January 26, 2024

Certified by: Ronitt Rubinfeld
Professor
Thesis Supervisor

Certified by: Piotr Indyk
Professor
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Learning to Update: Using Reinforcement Learning to Discover

Policies for List Update

by

Isabelle A. Quaye

Submitted to the Department of Electrical Engineering and Computer Science
on January 26, 2024, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The use of machine learning models in algorithms design is a rapidly growing
field, often termed learning-augmented algorithms. A notable advancement in
this field is the use of reinforcement learning for algorithm discovery. Develop-
ing algorithms in this manner offers certain advantages, novelty and adaptability
being chief among them. In this thesis, we put reinforcement learning to the task
of discovering an algorithm for the list update problem. The list update problem
is a classic problem with applications in caching and databases. In the process of
uncovering a new list update algorithm, we also prove a competitive ratio for the
transposition heuristic, which is a well-known algorithm for the list update prob-
lem. Finally, we discuss key ideas and insights from the reinforcement learning
agent that hints towards optimal behavior for the list update problem.

Thesis Supervisor: Ronitt Rubinfeld
Title: Professor

Thesis Supervisor: Piotr Indyk
Title: Professor

3

4

Acknowledgments

I would like to thank my thesis advisors Professor Ronitt Rubinfeld and Professor

Piotr Indyk. The impact of their counsel, support and guidance during my MEng

project is immeasurable. This thesis will not be what it is without them.

I would also like to thank Sandeep Silwal for his mentorship and assistance during

my MEng project. I have learnt and grown so much by working with Sandeep.

The work presented in Chapter 6 is joint work with Sandeep.

I also want to thank my mum, Harriet Owusua, and my sister, Jessica Quaye, who

encouraged me and kept me accountable throughout the writing process.

Most importantly, I thank God for seeing me through the ups and downs of my

MEng which has culminated in this body of work.

5

6

Contents

1 Introduction 9

2 Useful Background and Definitions 13

2.1 Reinforcement Learning . 13

2.2 Learned Algorithms and Data Structures 14

2.3 List Update Problem . 16

3 Reinforcement Learning Agent Design 21

4 Evaluating the Reinforcement Learning Agent 27

4.1 Generating Query Sequences . 30

4.2 Results of Evaluation . 32

4.2.1 Optimality Across Query Sequences 38

4.2.2 Adaptability to Changing Query Sequence 42

4.2.3 Consistency of performance at scale 55

4.3 Results summary & Final notes . 58

5 Understanding Reinforcement Learning Agent Policy 67

5.1 Gleaning Behavior from Policy Maps 67

5.2 Verifying the Learned Algorithm’s Behaviour 76

7

5.2.1 Policy Map for Heavy/Light Distribution 76

5.2.2 Policy Map for Uniform query sequence 92

5.2.3 Policy Map for Episode-to-Episode Variation 97

5.2.4 Transition Graphs . 97

5.3 Why the Learned Algorithm is Competitive 105

5.4 The Learned Algorithm in Practice & Some Insights 108

6 A New Competitive Ratio and Surprising Observations 111

6.1 Proof Setup and Useful Lemmas . 112

6.2 Main Lemmas . 114

6.3 Putting it all together: Competitive Ratio Results 120

7 Discussion of Design Choices 127

7.1 Choice of Reinforcement Learning Techniques 127

7.2 Choosing the Right Size for the Experience Buffer 129

7.3 Choosing a State Representation . 142

7.4 Reward functions and their Impact on the Learned Algorithm . . . 155

8 Future Work & Conclusion 163

8.1 Extension to other Data Structures 163

8.2 Analysing Novel Algorithms . 164

A Code 167

8

Chapter 1

Introduction

Learning-augmented algorithms,also known as learning with predictions, consti-

tute an algorithmic design paradigm where the algorithms makes use of predic-

tions or advice from a machine learning model. Typically, the machine learning

model is trained within the same context of the algorithm’s intended application.

The hope is that by delegating decision-making to a trained model, the algorithm

will achieve better results depending on the context. Many learning-augmented

versions of algorithms have been presented, such as learning-augmented caching

algorithms[39, 25], scheduling algorithms[39, 11] and paging algorithms. How-

ever, not all algorithms lend themselves to this design paradigm. This is primar-

ily because it is not always obvious how to decouple and delegate the decision-

making process of an algorithm to a machine learning model or oracle1. Good

candidates for learning with predictions are online and streaming algorithms[34,

41, 20, 8, 49, 33, 1, 9, 6, 15, 22], similarity search [48, 17, 18, 40, 46] and combinato-

rial optimization [29, 12, 33, 39, 16, 14].

1The two words will be used interchangeably in this thesis.

9

While learning-augmented algorithms seek to achieve improved results by

modifying or augmenting an algorithm with advice from an oracle, the question

remains whether we can delegate even more responsibility to the oracle. In that

case, we go from learning-augmented algorithms to learned algorithms. Now,

the machine learning model is tasked with developing an algorithm that behaves

optimally. Of all the machine learning algorithms, reinforcement learning is best

suited to the task and here, too, there have been many successes[19, 29, 35]. How-

ever, much like learning-augmented algorithms, not all problems can be fit within

this mold. As we will see in Chapter 2, reinforcement learning has a specific for-

mulation and only if a problem fits this formulation can we apply reinforcement

learning. Even then, there are challenges that one must successfully overcome

like large state spaces and non-convergence. Generally speaking, combinatorial

optimization problems are excellent candidates for reinforcement learning. As a

result, most data structure problems naturally lend themselves to learned algo-

rithms design.

The list update problem (list access problem or self-organizing sequential search)

involves maintaining a static list from which we look up records sequentially by

walking down the list until we find the record we are looking for. During the ser-

vicing of a query, the list may be rearranged to lower the cost of future queries.

Clearly, if queries are uniformly random i.e. each record is looked up with equal

probability, then rearranging the list will not yield much benefit. However, if it

is the case that the keys are queried with non-uniform probability, then we can

reduce the cost of future queries by rearranging the list. The list update problem

has been well studied over the years[13, 23, 24, 30, 37, 45, 47, 43] with many al-

10

gorithms, both deterministic[47, 4] and randomized[42, 5, 26, 27], being put forth.

This thesis project has three major goals:

1. Discover a learned algorithm for the list update problem using reinforce-

ment learning.

2. Compare the behavior and performance of the learned algorithm to existing

list update algorithms.

3. Analyze and understand the behavior and performance of the learned algo-

rithm relative to existing algorithms to gain insights for designing novel and

competitive list update algorithms.

Throughout the chapters of this thesis, we address each of these goals as we

present the major contribution of this thesis: a learned algorithm for the list up-

date problem.

11

12

Chapter 2

Useful Background and Definitions

2.1 Reinforcement Learning

Reinforcement learning is a class of machine learning techniques or algorithms for

finding an optimal policy for a Markov Decision Process(MDP). In Figure 2-1, we

see the typical setup of an MDP. In reinforcement learning, the bulk of the learning

by the agent is driven by the reward signal received because the goal of the agent

is to maximize the total reward over all time steps. Thus, R must be designed to

capture which states are more desirable than others. Later in Chapter 7, we shall

see that by varying the reward function, the agent learns different policies.

Reinforcement learning algorithms can be classified as either model-based or

model-free. Model-based algorithms require complete information about the en-

vironment in order to simulate and search for the best action to take. Monte Carlo

Tree Search is a popular example of model-based learning. Model-free algorithms

rely on the information collected by the agent’s interactions to decide the best

13

Figure 2-1: Markov Decision Process(MDP) setup.

action to take in a given state. Examples of model-free learning algorithms are

policy iteration and value iteration [36].

Reinforcement learning is a powerful unsupervised learning technique, espe-

cially when the goal is to uncover optimal action(s) to take in different situations.

Some applications of reinforcement learning include recommendation systems

[3], autonomous vehicles [10] and more recently algorithm discovery [19, 35].

2.2 Learned Algorithms and Data Structures

To understand learned algorithms, it is useful to begin with beyond worse case

analysis of algorithms and learning augmented algorithms. While worst case

analysis provides strong theoretical guarantees, in practice, the worst case sel-

14

dom arises. This opens up the possibility of achieving better than worst case per-

formance in practice by designing algorithms and data structures better suited to

practical settings. [44] details attempts at doing just this. This is the inspiration be-

hind data-driven algorithm design [44] and learning-augmented algorithms [44].

Learning augmented algorithms, otherwise known as learning with predic-

tions, describes a design paradigm where an algorithm is furnished with predic-

tions or advice from an oracle. The advice and predictions received from the or-

acle usually takes the place of heuristics or random bits in traditional algorithms.

Learning augmented algorithms have seen huge success with optimization prob-

lems like the ski rental problem [39] and nearest neighbors [48, 17, 18, 40, 46],

streaming algorithms like counting sketches [2], etc.

With learned algorithms, the machine learning model is given even more re-

sponsibility: rather than assuming the role of an advising oracle, the model de-

termines most or all the steps of the algorithm. For learned data structures, the

model is tasked with determining algorithms for all or most of the operations of

the data structure. In DeepMind’s 2022 Nature article [19], the authors present a

learned algorithm for matrix multiplication. In fact, they present multiple novel

algorithms for matrix multiplication that are empirically faster than existing ma-

trix multiplication algorithms like Strassen’s. They use reinforcement learning to

first factor the matrices and then multiply the smaller matrices derived from the

factorization. Learned data structures are also extremely popular with learned

algorithms for indexing databases [31], learned bloom filters [38], learned algo-

rithms for an R-trees operations [21] and many more.

15

Whether it be learning-augmented algorithms or learned algorithms, they have

the advantage of being tailored to a specific use case and so have good empirical

performance when compared with traditional algorithms. In certain cases, they

also have the advantage of being able to adapt to different use cases, and so on

average the good empirical performance seen in one application domain can be

replicated in another with some necessary adjustments. This is especially impor-

tant for online algorithms and data structures because the stream of requests, of-

ten called workload is not known a priori and can change over time. Having an

algorithm that can adapt to a workload dynamically is therefore advantageous.

2.3 List Update Problem

In the list update problem, we are given a list of records L to which a series of

queries, Q, for records will be made. We assume that all queries to L are for

records found in L. The cost of each query is equal to the position or index of

the record in L at the time the query is made. In between queries, records can

be rearranged at a cost to improve the search time for future queries. During a

query to a record in position i, moving the record to any position ≤ i is free(free

exchange [28]). All other rearrangements incur a cost(paid exchange [28]).

The goal then is to develop a policy for maintaining the list so that the average

cost of servicing queries is low, keeping in mind the cost of rearranging records

in the list. Ideally, if the query frequency of each record were known, then we

can achieve optimal query cost by ordering records in L by the query frequency.

However, query frequencies are not known a priori and while we can approxi-

mate this by maintaining frequency counters, space constraints and the potential

for counter overflows make it an unattractive solution. Instead, so-called memory-

16

Figure 2-2: Move-to-front policy action when item 19 is accessed in L

less list update heuristics and policies that approximate this ordering are favored.

Some of these heuristics are deterministic and others are randomized.

Two well-studied memory-less deterministic list update heuristics are move-

to-front and transposition. With move-to-front, each time a record is queried, it

is moved to the front of the list. For transposition, records are moved one position

forward once accessed. We show an example for each algorithm in Figures 2-2

and Figure 2-3.

Usually, randomized list update heuristics tend to be some variation of the move-

to-front heuristic with randomness added. Yet, they achieve better competitive

ratios than move-to-front. For example, in the BIT algorithm [42], each record

in L is initially given a random bit. While servicing a query to a record, if the

record’s random bit is 1, the item is moved to the front, otherwise it is kept in

its original position. The random bit is toggled on each access. An illustration of

17

Figure 2-3: Transposition policy action when item 19 is accessed in L

its progression is shown in Figure 2-4. The BIT algorithm can be viewed as some

randomized version of the move-to-front heuristic and its competitive ratio is 7
8

as compared to move-to-front’s 2. It seems, particularly for independent queries

sampled from some skewed distribution, that a more conservative approach to

moving records forward than move-to-front achieves a better competitive ratio.

This same observation was made in [43] where Rivest shows that the transposi-

tion heuristic achieves a better competitive ratio than move-to-front. In general,

algorithms like TIMESTAMP [4] and BIT [42] which refrain from always moving

records to the front of the list on each access also have better competitive ratios.

The same observation does not hold for dependent accesses [32]. For instance,

consider the scenario where we repeatedly access the last and second to last record.

Then move-to-front will outperform all the other conservative algorithms, espe-

cially transposition. As a result, no one algorithm or heuristic is the best.

The list update problem is a canonical problem for online algorithm analysis be-

18

Figure 2-4: BIT algorithm action when item 19 is accessed in L.

cause of its simplicity, yet it has applications in caching and database systems [13].

Therefore, a performant list update algorithm has important practical benefits.

19

20

Chapter 3

Reinforcement Learning Agent

Design

One of the primary goals of this thesis is to present a learned algorithm for the

list update problem using reinforcement learning. In Chapter 2, we mentioned

that there are a variety of reinforcement learning algorithms. In this chapter, we

present our specific choice of algorithms and agent design. Later in chapter 7, we

will discuss and justify the design choices presented here.

Besides optimality, a major goal for the learned algorithm is adaptability. That

is, under different workloads, we want the algorithm to be competitive. This is

especially important, because as we mentioned in Chapter 2, no one list update

algorithm or heuristic is optimal for all query workloads. Having a single algo-

rithm that can achieve near-optimal performance regardless of the query work-

load is desirable.

21

Explainability and interpretability is also of great importance. While the learned

algorithms presented in [19] are faster than Strassen’s, they are not trivial or easy

to pen down. In contrast, we sought learned algorithms whose behaviour we

could interpret. This way, we could analyze them to understand why it outper-

forms existing algorithms. We may then draw inspiration from them for new list

update algorithms.

The primary reinforcement learning technique used is model-free learning.

Specifically, we used deep Q-learning. In tabular Q-learning, the agent learns

the Q-function, which is a function that maps a given state and an action to the

value of taking that action in that state. Usually, this function will be computed

through an iterative process of the agent exploring and earning rewards over time.

The table is indexed by state and action pairs. However, when the state space

and action space is large and complex, it is infeasible to compute the entire table.

Instead, deep Q-learning uses a neural network to approximate the Q-function.

Each component of the MDP for our list update problem on a list L is described

below:

1. Environment: The environment comprises the current list L and the queries

Q.

2. State: Ideally, the state should succinctly capture a faithful representation of

the environment. To this end, the state representation at time t is the current

query qt and the current position of the record referenced by qt. The state

space, therefore, is of size |L|2. We considered other state representations

and a discussion of them can be found in Chapter 7.

3. Action: The set of actions consists of the item to be moved and the position

22

Figure 3-1: Choice of reinforcement learning agent parameters

where the item should be placed. The action space also has size |L|2.

4. Reward Function: At time step t where record x is queried, if x is found in

position i and the agent elects to move it to position j, then the agent receives

a reward according to the following function:

−i j ≤ i

−j j > i

5. Agent and Algorithm: The agent employs an epsilon greedy technique with

the parameters shown in Figure 3-1 In learning the Q-function, we also use

experience replay and target learning to achieve a more stable learning out-

come. An experience is a tuple of a starting state, the action taken in that

state, the reward earned for that action and the next state resulting from tak-

ing the action. In experience replay, as the agent takes a sequence of actions,

23

Figure 3-2: Walkthrough of MDP

we store each experience in a buffer called experience buffer/memory. We

use a buffer size of 10000 experiences.

With target learning, we keep two copies of the neural network. One net-

work is called the target and the other is our Q-table. All training and up-

dates happen on the Q-table and then periodically, we transfer weights to

the target network. Predictions and decisions are made with the target net-

work which is more stable.

An example step through of the MDP can be found in Figure 3-2.

Lastly, the neural network architecture for approximating the Q-function in

our deep Q-learning setup is found in Figure 3-3.

24

Figure 3-3: Deep Q-network Architecture

25

26

Chapter 4

Evaluating the Reinforcement

Learning Agent

Since discovering an optimal and novel list update algorithm is the primary focus

of this thesis, we evaluate the learned algorithm against existing list update algo-

rithms. We compared it against move-to-front, transposition, order-by-access and

do-nothing. We briefly explain each below:

1. Move-to-front: Each time a record is accessed it is moved to the front of the

list.(See Figure 2-2)

2. Transposition: Each time a record is accessed it is swapped with the record

preceding it. (See Figure 2-3)

3. Order-by-access: Maintain frequency counters for each record. Whenever a

record is accessed, we update its frequency counter and shuffle it down the

list until the element in front of it has a counter value greater than or equal

to it.

27

4. Do-nothing: Each time a record is accessed, it is not moved. Under this

policy, the arrangement of records in the list is not changed.

These algorithms provide useful benchmarks for evaluating the performance of

the learned algorithm. In Chapter 5, where we attempt to understand the learned

algorithm’s behaviour, we will compare it with these algorithms too. To evaluate

the learned algorithm and its chosen contemporaries, we set up the following

experiment:

1. Initialize a static list L for each algorithm.

2. Generate a sequence of queries Q to be made to records in L. Q may be

sampled from a distribution or constructed adversarially. We will discuss

the different ways we generate Q in a later subsection of this chapter.

3. Simulate a workload over time using Q.

4. Allow the reinforcement learning agent Ttrain time steps of training so it can

learn an optimal policy.

5. After it has learned a policy for the query sequence, stage a testing phase.

In the testing phase, the agent does no learning. As each query comes in,

it maintains L according to its learned policy. Each of the other algorithms

also maintains their respective lists accordingly as queries come in.

6. During the testing phase, we measure and record cost metrics and move

choices of each algorithm. A move choice is a pair of indices (x1, x2) repre-

senting the position a record was in (x1) and the new position it was moved

to (x2).

28

7. Lastly, we repeat the experiment M times in order to ensure that the cost and

behavior we observe is consistent. Repetitions of the experiment are called

episodes. We allow the agent to carry over whatever it learns from episode

to episode.

We conduct 80 different experiments which differ from each other in how

queries are generated from episode to episode, yet the template of each experi-

ment is roughly as described above. As we present results in this chapter and the

next, there are four main types of graphs we make reference to:

1. Average cost over episodes: This graph shows, for each algorithm, the aver-

age query cost over of all queries in an episode.

2. Policy Map: This graph is a 2D heat map of move choices. Each grid/cell

contains the frequency of a move choice. We construct one per algorithm.

More details on how to read these graphs can be found in Chapter 5.

3. Normalized Policy Map: This graph is identical to the Policy Map except

the frequency count is normalized for each column. This way, we can see

the proportion of times a record in position x1(horizontal axis) was moved

to any of the |L| positions of the list.

4. Transition Graph: This is a weighted directed graph. The list indices (x1, .., x|L|)

are the vertices, the edges represent move choices of the algorithm and weights

represent the frequency of move choices. More details on how to read these

graphs can be found in Chapter 5.

29

4.1 Generating Query Sequences

As mentioned earlier, each experiment we ran differs by the manner in which the

query sequence Q is generated. Figure 4-1 shows a schematic for how the query

sequences were constructed. We expand on each below:

1. Distributional Generation: The sequence of queries for an episode are gen-

erated by sampling i.i.d from a given distribution. We consider three types

of distributions:

(a) Zipfian: Sometimes called a zeta distribution, the frequency distribu-

tion of items under Zipfian is related to their rank. Let L′ be an ordering

of items in L by frequency of access. Then the rank k element in L will

have the following number of accesses over an episode:

|Q|
Hα
|L|

· 1
kα

where Hα
|L| is the harmonic sum ∑|L|

i=0
1
iα and α ≥ 1 which determines the

skew of the distribution. Figure 4-2 and 4-3 illustrates an example of the

Zipfian distribution. An important note here is that we do not let L be

L′ in all experiments so we can see the policy of the learned algorithm.

It is only useful to have it once or twice to test for adaptability.

(b) Uniform: This is a uniform distribution over the list of items.

(c) Heavy/Light: For this distribution, we designate a few items as "heavy"

and others as "light". Heavy items are accessed more than light ones.

For example, heavy items may comprise 95% of the query sequence, Q,

and light items make up the remaining 5% of queries. The number of

30

heavy items can also range from 10% of |L| to 50% of |L|. Figure 4-4

shows an example of this.

2. Adversarial Generation: Here, we generate the sequence of queries for an

episode by choosing specific records to access, with the choice of record

based mainly on its position in the list. The one adversarial sequence we test

is a sequence that repeatedly accesses the last and second to last element, i.e.

x|L| and x|L|−1.

3. Episode-to-Episode variations: For both distributional and adversarial gen-

eration, we have different sets of episode-to-episode variation. We explain

each below:

(a) No List change, No Distribution change: As we go from episode to

episode, the list L and the distribution over the list L from which we

sample our queries does not change. This is a relatively easy workload

for the learned algorithm because whatever it has learned in previous

episodes is relevant for future epsisodes.

(b) No list change, Distribution change: From episode to episode, the

list L remains unchanged and hence the support of the distribution re-

mains unchanged. The only thing that changes is the distribution fre-

quency over the keys. So, for instance, the most frequently accessed

item changes from episode to episode but the list is itself is unchanged.

This experiment exists to ascertain the adaptability of the learned al-

gorithm. If it can recognize that the most frequently accessed records

have changed and modify its behavior accordingly, then it has achieved

adaptability.

31

(c) List change, No Distribution change: Here, rather than change the

access frequency distribution, we keep the distribution the same and

change the support i.e. the list L. Again, this is a test of adaptability. We

want to ensure that the learned algorithm does not merely memorize

specific key values which it carries from episode to episode.

(d) List change, Distribution change: Here, both the list and the distribu-

tion changes. This is also a test of adaptability, to verify that the learned

algorithm can adjust its policy in response to workload changes.

(e) List change & No list change: For the adversarial generation, we have

two variants. In one variant, we change the list from episode to episode

and in another variant, we do not change the underlying list L.

For simplicity, we will refer to a query sequence as either Zipfian, Uniform, Heavy/Light

or Adversarial. The episode-to-episode variation will be specified where neces-

sary. In Figure 4-5, we see a chart showing the optimal algorithm for each query

sequence.

4.2 Results of Evaluation

The results presented here were obtained by running experiments on MIT CSAIL’s

slurm cluster. We used one cpu-per-task with 5GB of memory per task. We have

three main evaluation criteria for the learned algorithm: optimality across differ-

ent query sequences, adaptability to changing query sequence and consistency

at scale. We present evaluation results for each criteria area in the sections below:

32

Figure 4-1: Different ways of generating Q. Note that we also conduct the same
four variants for Uniform and Heavy/Light

33

Figure 4-2: Example of a Zipfian distribution with different skews

34

Figure 4-3: Example of a Zipfian distribution with different skews except the heav-
ier records have larger key values.

35

Figure 4-4: Example of a Heavy/Light distribution for a list of size 100. "%heavy"
is the percentage of the list designated as "heavy" and "%heavy accessed" is the
proportion of queries which constitutes heavy records.

36

Figure 4-5: Optimal algorithms for each type of query sequence

37

0 2 4 6 8
Episode Number

4

5

6

7

8

9

10

11

12
Av

er
ag

e
Co

st
 o

ve
r E

pi
so

de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-6: Results for Zipfian query sequence of length 1000 on list of size 20. No
list change, no distribution change episode-to-episode variation.

4.2.1 Optimality Across Query Sequences

To observe optimality across query workloads, we focus on looking at perfor-

mance for the episode-to-episode variation where the list and the distribution do

not change. In Figure 4-6, 4-7, 4-8 and 4-9 we see the average cost of the learned

algorithm on query sequences from Zipfian, Heavy/Light, Uniform and Adver-

sarial respectively. Notice that the learned algorithm’s performance is competitive

with the best performing algorithm for each query sequence.

Consider for example the results for Zipfian in Figure 4-6 and the results for

38

0 2 4 6 8
Episode Number

4

6

8

10

12

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-7: Results for Heavy/Light query sequence of length 1000 on list of size
20 10% of records are heavy and heavy records make up 75% of the query se-
quence. No list change, no distribution change episode-to-episode variation.

39

0 2 4 6 8
Episode Number

8.75

9.00

9.25

9.50

9.75

10.00

10.25

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-8: Results for Uniform query sequence of length 1000 on list of size 20.
No list change, no distribution change episode-to-episode variation.

40

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-9: Results for Adversarial query sequence of length 1000 on list of size
20. No list change, no distribution change episode-to-episode variation.

41

Adversarial in 4-9. Move-to-front does well for Adversarial but is not as good as

transposition for Zipfian. However, the learned algorithm is close to the best in

both cases.

4.2.2 Adaptability to Changing Query Sequence

To evaluate the learned algorithm’s adaptability, we consider how it performs on

query sequences where the episode-to-episode variation involves the list chang-

ing or the distribution changing. If is capable of adapting to changing query work-

loads, then it should remain competitive with the best algorithm. In Figures 4-10,

4-11, 4-12 and 4-13 when the list changes but the distribution remains the same for

a Zipfian, Heavy/Light, Uniform and Adversarial query sequence respectively,

the learned algorithm still remains competitive.

A similar result is seen in Figures 4-14, 4-15, 4-16 and 4-17 for workloads where

the list remains the same but the distribution over the list changes.

Lastly, when the list and distribution both change, Figures 4-18, 4-19, 4-20 and

4-21 also show that the learned algorithm remains competitive for both Zipfian

and Heavy/Light query sequences. For the adversarial distribution, as the list

and distribution changes, the learned algorithm does not perform as well but it is

still better than transposition.

This means that even if the set of records that are frequently accessed changes,

the learned algorithm will recognize this and adapt accordingly much like existing

list update algorithms.

42

0 2 4 6 8
Episode Number

5

6

7

8

9

10

11

12

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-10: Results for Zipfian query sequence of length 1000 on list of size 20.
List change, no distribution change episode-to-episode variation.

43

0 2 4 6 8
Episode Number

4

6

8

10

12

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-11: Results for Heavy/Light query sequence of length 1000 on list of
size 20. 10% of records comprise 75% of the query sequence and the remaining
90% make up the rest of the query sequence. List change, no distribution change
episode-to-episode variation.

44

0 2 4 6 8
Episode Number

9.0

9.2

9.4

9.6

9.8

10.0

10.2

10.4

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-12: Results for Uniform query sequence of length 1000 on list of size 20.
List change, no distribution change episode-to-episode variation.

45

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-13: Results for Adversarial query sequence of length 1000 on list of size
20. List change, no distribution change episode-to-episode variation.

46

0 2 4 6 8
Episode Number

4

5

6

7

8

9

10

11

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-14: Results for Zipfian query sequence of length 1000 on list of size 20.
No list change, Distribution change episode-to-episode variation.

47

0 2 4 6 8
Episode Number

4

6

8

10

12

14

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-15: Results for Heavy/Light query sequence of length 1000 on list of
size 20. 10% of records comprise 75% of the query sequence and the remaining
90% make up the rest of the query sequence. No list change, Distribution change
episode-to-episode variation.

48

0 2 4 6 8
Episode Number

9.0

9.2

9.4

9.6

9.8

10.0

10.2

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-16: Results for Uniform query sequence of length 1000 on list of size 20.
No list change, Distribution change episode-to-episode variation.

49

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-17: Results for Adversarial query sequence of length 1000 on list of size
20. No list change, Distribution change episode-to-episode variation.

50

0 2 4 6 8
Episode Number

4

6

8

10

12

14

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-18: Results for Zipfian query sequence of length 1000 on list of size 20.
List change, distribution change episode-to-episode variation.

51

0 2 4 6 8
Episode Number

4

6

8

10

12

14

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-19: Results for Heavy/Light query sequence of length 1000 on list of size
20. 10% of records comprise 75% of the query sequence and the remaining 90%
make up the rest of the query sequence. List change, distribution change episode-
to-episode variation.

52

0 2 4 6 8
Episode Number

8.75

9.00

9.25

9.50

9.75

10.00

10.25

10.50

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-20: Results for Uniform query sequence of length 1000 on list of size 20.
List change, distribution change episode-to-episode variation.

53

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-21: Average Search Cost for Adversarial query sequence of length 1000
on list of size 20. List change, distribution change episode-to-episode variation.

54

0 2 4 6 8
Episode Number

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-22: Results for Zipfian query sequence of length 1000 on list of size 50.
No list change, No distribution change episode-to-episode variation.

4.2.3 Consistency of performance at scale

Another important metric we evaluate the learned algorithm on is whether its

performance is consistent as the list size changes. In Figures 4-22, 4-23 and 4-24,

we see the same experiment as in Figure 4-6 now on lists of size 50, 100 and 1000

respectively. The learned algorithm continues to remain competitive despite the

changing list size.

Figures 4-25, 4-26 and 4-27 confirm this for Heavy/Light query sequence ac-

cess, Figures 4-28, 4-29 and 4-30 confirm this for Uniform query sequences and

55

0 2 4 6 8
Episode Number

20

30

40

50

60

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-23: Results for Zipfian query sequence of length 1000 on list of size 100.
No list change, No distribution change episode-to-episode variation.

56

0 2 4 6 8
Episode Number

200

300

400

500

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-24: Results for Zipfian query sequence of length 1000 on list of size 1000.
No list change, No distribution change episode-to-episode variation.

57

Figures 4-31 and 4-32 confirm it for Adversarial query sequences.

4.3 Results summary & Final notes

A link to all the results for the different variants of the experiment for each query

sequence can be found in the Appendix. We make a few remarks about the results

presented here:

1. In Chapter 2, we mentioned that the transposition algorithm has a lower ex-

pected search cost than move-to-front for independent accesses but in Fig-

ures 4-23, 4-24, 4-26, 4-27, 4-29 and 4-30 we see that it has a higher average

cost than move-to-front. It is true that asymptotically transposition is better

than move-to-front for independent accesses but transposition takes longer

than move-to-front to converge. In the graphs referenced, there were not

enough accesses for transposition’s list to reach its stationary distribution,

hence the higher than expected average search cost. It is likely this may be

the case for the learned algorithm in certain cases(e.g. Figure 4-24). We will

understand why once we analyze it’s behaviour in Chapter 5.

2. As the list size increases, the performance differences between the algo-

rithms become more pronounced.

3. Lastly, what might look like a small difference in cost, e.g. a ten percent

difference in cost, could be the difference between a cache hit or miss and so

these differences matter in practice.

58

0 2 4 6 8
Episode Number

10

15

20

25

30

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-25: Results for Heavy/Light query sequence of length 1000 on list of size
50. 10% of records comprise 75% of the query sequence and the remaining 90%
make up the rest of the query sequence. No list change, no distribution change
episode-to-episode variation.

59

0 2 4 6 8
Episode Number

20

30

40

50

60

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-26: Results for Heavy/Light query sequence of length 1000 on list of size
100. 10% of records comprise 75% of the query sequence and the remaining 90%
make up the rest of the query sequence. No list change, no distribution change
episode-to-episode variation.

60

0 2 4 6 8
Episode Number

200

250

300

350

400

450

500

550

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-27: Results for Heavy/Light query sequence of length 1000 on list of size
1000. 10% of records comprise 75% of the query sequence and the remaining 90%
make up the rest of the query sequence. No list change, no distribution change
episode-to-episode variation.

61

0 2 4 6 8
Episode Number

23.0

23.5

24.0

24.5

25.0

25.5

26.0

26.5

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-28: Results for Uniform query sequence of length 1000 on list of size 50.
No list change, No distribution change episode-to-episode variation.

62

0 2 4 6 8
Episode Number

46

48

50

52

54

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-29: Results for Uniform query sequence of length 1000 on list of size 100.
No list change, No distribution change episode-to-episode variation.

63

0 2 4 6 8
Episode Number

480

500

520

540

560

580

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-30: Results for Uniform query sequence of length 1000 on list of size 1000.
No list change, No distribution change episode-to-episode variation.

64

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

0

10

20

30

40

50

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-31: Results for Adversarial query sequence of length 1000 on list of size
50. No list change, no distribution change episode-to-episode variation.

and

65

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

0

20

40

60

80

100

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

LEARNED POLICY
MTF
DO NOTHING
ORDER BY ACCESS
TRANSPOSITION

Figure 4-32: Results for Adversarial query sequence of length 1000 on list of size
100. No list change, no distribution change episode-to-episode variation.

66

Chapter 5

Understanding Reinforcement

Learning Agent Policy

In Chapter 4, the evaluation of the learned algorithm showed that it performed

well on each of our three criteria: competitive performance across different query

sequences, the ability to adapt to changing query sequences and consistent per-

formance at scale. We now attempt to understand the behaviour of the learned

algorithm and analyze why it has a lower average search cost. The graphs and

figures we use in this chapter are for lists of size 20 and 10. This is to allow for

easy visualization.

5.1 Gleaning Behavior from Policy Maps

We start by studying the policy maps. Recall from Chapter 4, that policy maps

show the frequency of move choices made by an algorithm. As an example, we

can see the policy map for the Do-nothing algorithm in Figure 5-1. Since it never

67

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5-1: Policy Map for Do Nothing Algorithm.

68

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5-2: Policy Map for Move-to-Front Algorithm.

moves records, only move choices (x1, x2) such that x1 = x2 have non-zero fre-

quency in the policy map. Contrast this with the policy map for move-to-front

shown in Figure 5-2. In move-to-front, records are moved from their position to

the front of the list, therefore only move choices (x1, x2) where x2 = 0 have non-

zero frequency in the policy map.

Let us consider the scenario when the list and the distribution remain static from

episode to episode for a Zipfian query sequence. Figures 5-3, 5-4, 5-5, 5-6 and 5-7

show snapshots of the policy map over a single episode.

Each snapshot, in the order listed, represents the first 20% of accesses, the sec-

69

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

5

10

15

20

25

30

35

Figure 5-3: Policy Map for Learned Algorithm. Shows move choices in the first
20% of accesses in a list of size 20. Zipfian Query Sequence, No list change, No
distribution change

70

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

5

10

15

20

25

30

35

Figure 5-4: Policy Map for Learned Algorithm. Shows move choices in the second
20% of accesses in a list of size 20. Zipfian Query Sequence, No list change, No
distribution change

71

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

5

10

15

20

25

30

Figure 5-5: Policy Map for Learned Algorithm. Shows move choices in the third
20% of accesses in a list of size 20. Zipfian Query Sequence, No list change, No
distribution change

72

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

5

10

15

20

25

30

35

40

Figure 5-6: Policy Map for Learned Algorithm. Shows move choices in the fourth
20% of accesses in a list of size 20. Zipfian Query Sequence, No list change, No
distribution change

73

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

5

10

15

20

25

30

Figure 5-7: Policy Map for Learned Algorithm. Shows move choices in the last
20% of accesses in a list of size 20. Zipfian Query Sequence, No list change, No
distribution change

74

ond 20% of accesses, etc. In the first policy map, the list has not yet reached a

stationary distribution so we see that the move choices of the algorithm does not

have a specific pattern yet. However, as we look to the fourth (Figure 5-6) and fifth

(Figure 5-7) snapshots, we see that records found in position 0 − 5 when accessed

are moved to the front. When records in position 6 − 12, are accessed, the farthest

they are ever moved is to the 4th position. For all other records, they are either

kept in the same position or moved a random number of steps forward. Based on

these policy maps, we propose the following as the learned algorithm’s behavior:

• Decide on a number of buckets, k, for grouping records. Denote the buckets

as b1, ..., bk starting from the front of the list to the back. For a bucket bi, we

call i the index of the bucket.

• Depending on the frequency of access of each record, put it in one of these

buckets. More frequently accessed records are placed in buckets with lower

indices and less frequently accessed buckets are placed in buckets with higher

indices.

• Treat each bucket as its own small list with its own policy. Maintain buckets

with lower indices according to a Move-to-Front policy. For buckets appear-

ing later in the list, adopt a policy we call randomized move-to-front. In

randomized move-to-front, if the record is in position i, randomly choose a

position between the front of the list and i to move the record to.

We call this behavior banded or bucketed policy. In the concluding remarks of

Chapter 4, we discussed the time until convergence of different algorithms. Since

the learned algorithm, much like transposition, conservatively moves records to-

wards the front of the list, it is likely that it will converge to a stationary distribu-

75

tion slower than move-to-front.

5.2 Verifying the Learned Algorithm’s Behaviour

To verify the learned algorithm’s proposed behaviour in Section 5.1, we look at

four things: policy maps of the learned algorithm for Heavy/Light query se-

quences, policy maps of the learned algorithm for Uniform query sequences, pol-

icy maps for the different episode-to-episode variations and transition graphs.

5.2.1 Policy Map for Heavy/Light Distribution

Figures 5-8, 5-9, 5-10, 5-11 and 5-12 show snapshots of the policy map for a Heavy/Light

distribution where 10% of the records are heavy and heavy records make up 90%

of the query sequence. The learned algorithm’s behaviour is the same as described

in 5.1 above. To better appreciate the move choices, we also show normalized

versions of each policy map in Figures 5-13, 5-14, 5-15, 5-16 and 5-17 Focusing on

Figures 5-16 and 5-17 where the algorithm converges, it can be seen that only two

records are ever moved to the front of the list since those two records are accessed

90% of the time. All other records are never moved to the front. They are only

ever moved to some position between position 2 and their current position.

In this case, the learned algorithm chooses 2 buckets for grouping records. The

first half follows move-to-front and the second half follows randomized move-

to-front. The policy map for the Adversarial query sequence (Figures 5-18, 5-19,

5-20, 5-21 and 5-22) is also the same. Only two records are ever accessed in that

case and those two records are kept in the first bucket at the very front of the list.

In that first bucket, the move-to-front policy is maintained and so the only move

76

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

20

40

60

80

100

Figure 5-8: Policy Map for Learned Algorithm. Shows move choices in the first
20% of accesses in a list of size 20. Heavy/Light Query Sequence with 20% heavy,
90% heavy accessed, No list change, No distribution change

77

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

20

40

60

80

Figure 5-9: Policy Map for Learned Algorithm. Shows move choices in the second
20% of accesses in a list of size 20. Heavy/Light Query Sequence with 20% heavy,
90% heavy accessed, No list change, No distribution change

78

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

20

40

60

80

Figure 5-10: Policy Map for Learned Algorithm. Shows move choices in the third
20% of accesses in a list of size 20. Heavy/Light Query Sequence with 20% heavy,
90% heavy accessed, No list change, No distribution change

79

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

10

20

30

40

50

60

70

80

Figure 5-11: Policy Map for Learned Algorithm. Shows move choices in the fourth
20% of accesses in a list of size 20. Heavy/Light Query Sequence with 20% heavy,
90% heavy accessed, No list change, No distribution change

80

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

20

40

60

80

Figure 5-12: Policy Map for Learned Algorithm. Shows move choices in the last
20% of accesses in a list of size 20. Heavy/Light Query Sequence with 20% heavy,
90% heavy accessed, No list change, No distribution change

81

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5-13: Normalized Policy Map for Learned Algorithm. Shows move choices
in the first 20% of accesses in a list of size 20. Heavy/Light Query Sequence with
20% heavy, 90% heavy accessed, No list change, No distribution change

82

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5-14: Normalized Policy Map for Learned Algorithm. Shows move choices
in the second 20% of accesses in a list of size 20. Heavy/Light Query Sequence
with 20% heavy, 90% heavy accessed, No list change, No distribution change

83

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5-15: Normalized Policy Map for Learned Algorithm. Shows move choices
in the third 20% of accesses in a list of size 20. Heavy/Light Query Sequence with
20% heavy, 90% heavy accessed, No list change, No distribution change

84

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5-16: Normalized Policy Map for Learned Algorithm. Shows move choices
in the fourth 20% of accesses in a list of size 20. Heavy/Light Query Sequence
with 20% heavy, 90% heavy accessed, No list change, No distribution change

85

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5-17: Normalized Policy Map for Learned Algorithm. Shows move choices
in the last 20% of accesses in a list of size 20. Heavy/Light Query Sequence with
20% heavy, 90% heavy accessed, No list change, No distribution change

86

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5-18: Normalized Policy Map for Learned Algorithm. Shows move choices
in the first 20% of accesses in a list of size 20. Adversarial Query Sequence, No list
change, No distribution change

choice is (1,0) at the stationary distribution (Figures 5-21 and 5-22).

This bucketing behaviour policy is an indication that the reinforcement learning

agent discovers which items are heavy and places them closer to the front of the

list.

87

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5-19: Normalized Policy Map for Learned Algorithm. Shows move choices
in the second 20% of accesses in a list of size 20. Adversarial Query Sequence, No
list change, No distribution change

88

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5-20: Normalized Policy Map for Learned Algorithm. Shows move choices
in the third 20% of accesses in a list of size 20. Adversarial Query Sequence, No
list change, No distribution change

89

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5-21: Normalized Policy Map for Learned Algorithm. Shows move choices
in the fourth 20% of accesses in a list of size 20. Adversarial Query Sequence, No
list change, No distribution change

90

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5-22: Normalized Policy Map for Learned Algorithm. Shows move choices
in the last 20% of accesses in a list of size 20. Adversarial Query Sequence, No list
change, No distribution change

91

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

2

4

6

8

10

Figure 5-23: Policy Map for Learned Algorithm. Shows move choices in the first
20% of accesses in a list of size 20. Uniform Query Sequence, No list change, No
distribution change

5.2.2 Policy Map for Uniform query sequence

Previously, we studied the policy map for non-uniform query sequences(Zipfian,

Heavy/Light and Adversarial). We now try to decode the algorithm’s behaviour

when records are accessed uniformly at random. Per our description of the learned

algorithm in Section 5.1, it should treat the entire list as a single bucket and follow

a randomized move-to-front policy. In Figures 5-23, 5-24, 5-25, 5-26 and 5-27 this

is indeed the case. For a record queried and found in position x1, the algorithm

92

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

2

4

6

8

10

12

Figure 5-24: Policy Map for Learned Algorithm. Shows move choices in the sec-
ond 20% of accesses in a list of size 20. Uniform Query Sequence, No list change,
No distribution change

93

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

2

4

6

8

10

Figure 5-25: Policy Map for Learned Algorithm. Shows move choices in the third
20% of accesses in a list of size 20.Uniform Query Sequence, No list change, No
distribution change

94

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

2

4

6

8

10

12

14

16

Figure 5-26: Policy Map for Learned Algorithm. Shows move choices in the fourth
20% of accesses in a list of size 20.Uniform Query Sequence, No list change, No
distribution change

95

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

2

4

6

8

10

12

Figure 5-27: Policy Map for Learned Algorithm. Shows move choices in the last
20% of accesses in a list of size 20.Uniform Query Sequence, No list change, No
distribution change

96

chooses some random position between 0 and x1 inclusive to place the record.

5.2.3 Policy Map for Episode-to-Episode Variation

While evaluating the performance of the learned algorithm, we saw that despite

episode-to-episode variations, the learned algorithm remained competitive. Now,

we verify that the behavior of the algorithm is also consistent for different episode-

to-episode variations. We show the policy map over an entire episode of Zipfian

query sequences for each episode-to-episode variant in Figures 5-28, 5-29 and 5-

30.

5.2.4 Transition Graphs

In Chapter 4, we described transition graphs as weighted directed graphs with

positions/indices as vertices, move choices as edges and move choice frequencies

as edge weights. So a move choice (x1, x2) will be shown as an arrow from x1 to x2.

Self-loops indicate that the item remained in that position. In Figure 5-31, we see

an example of the transition graph for the do-nothing algorithm. It contains only

self-loops because records are not moved in the list. To contrast, we also show the

transition graph for move-to-front in Figure 5-32. All edges terminate at the vertex

0 because in Move-to-Front, all records are moved to the front on each access. In

Figure 5-33, the transition graph for the learned algorithm on a list of size 10 with

Zipfian query sequence is shown. Suppose we remove the edges of weight 1. This

will split the graph into three weakly connected components. One component

consists of 0, 1, 2, the second consists of 3, 4, 5, 6, 7, 8 and the last one consists of 9.

These components correspond to the buckets of the learned algorithm mentioned

in section 5.1. As the episode progresses, the membership within buckets and the

97

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

20

40

60

80

100

120

140

Figure 5-28: Policy Map for Learned Algorithm. Shows move choices for all ac-
cesses in a list of size 20. Zipfian Query Sequence, No list change, distribution
change

98

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

25

50

75

100

125

150

175

Figure 5-29: Policy Map for Learned Algorithm. Shows move choices for all ac-
cesses in a list of size 20. Zipfian Query Sequence, List change, No distribution
change

99

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

20

40

60

80

100

120

Figure 5-30: Policy Map for Learned Algorithm. Shows move choices for all
accesses in a list of size 20. Zipfian Query Sequence, List change, Distribution
change

100

Figure 5-31: Transition Graph for Do Nothing Algorithm on list of Size 10.

101

Figure 5-32: Transition Graph for Move-to-Front Algorithm on list of Size 10.

102

Figure 5-33: Transition Graph for Learned Algorithm on list of Size 10. Zipfian
Query Sequence, No list change and No distribution change

103

Figure 5-34: Transition Graph for Learned Algorithm on list of Size 10. Zipfian
Query Sequence, No list change and No distribution change

number of buckets changes to better reflect the heaviness of records. Evidence of

this can be seen in Figure 5-34 where the components are now (0, 1, 2, 3, 4, 5), (6),

(7), (8) and (9).

Seeing more than one component in the transition graph both confirms the

bucketed nature of the learned algorithm and the fact that each bucket acts as its

own small list which maintains its own policy.

104

5.3 Why the Learned Algorithm is Competitive

We now analyze the performance of the learned algorithm. Intuitively, the learned

algorithm approximates the order-by-access algorithm by bucketing records ac-

cording to their frequency of access. It places buckets with heavier records closer

to the front of the list and buckets with lighter records to the back of the list. It also

applies a different policy, where appropriate, within each bucket. Before we an-

alyze its performance, we present the following definition which will also prove

useful in Chapter 6.

Definition 1 Consider a list L of n records r1, r2, ..., rn. Let p1 ≥ p2 ≥ ... ≥ pn be the

access probabilities of these records. Define b(i, j) to be the probability that ri is before rj

in the stationary distribution. Then the expected search cost for record ri is:

∑
1≤j≤n,j ̸=i

b(j, i) · 1

Taking the expectation across all records, we have that the expected search time for a record

in L is:
n

∑
i=0

pi ·
(

∑
1≤j≤n,j ̸=i

b(j, i) · 1
)

For instance, consider the the simple case of the Heavy/Light distribution. The

learned algorithm effectively splits L into two buckets LL and LR. In LL, it per-

forms Move-to-Front and in LR it performs randomized move-to-front. Based on

definition 1, we can decompose the summation as follows:

n

∑
i=0

pi ·
(

∑
1≤j≤n,j ̸=i

b(j, i) · 1
)
= ∑

a∈LL

pa ·
(

∑
a′∈L,a ̸=a′

b(a′, a)
)
+ ∑

b∈LR

pb ·
(

∑
b′∈L,b ̸=b′

b(b′, b)
)

105

From [43] we have that for Move-to-Front, b(j, i) =
pj

pi+pj
so we can substitute

b(a′, a) = pa′
pa′+pa

. Because we perform randomized move-to-front in LR and every

starting permutation of LR is equally likely, b(j, i) is equal for all j, i pairs. There-

fore b(b′, b) = 1
2 . Substituting yields:

∑
a∈LL

pa ·
(

∑
a′∈L,a ̸=a′

pa′

pa′ + pa

)
+ ∑

b∈LR

pb ·
(

∑
b′∈L,b ̸=b′

1
2

)

But all items in LL are accessed with equal frequency therefore we get:

∑
a∈LL

pa ·
(

∑
a′∈L,a ̸=a′

1
2

)
+ ∑

b∈LR

pb ·
(

∑
b′∈L,b ̸=b′

1
2

)

∑
a∈LL

pa ·
(

∑
a′∈L,a ̸=a′

1
2

)
+ ∑

b∈LR

pb ·
(

∑
b′∈L,b ̸=b′

1
2

)

≤ ∑
a∈LL

pa ·
(
|LL|

2

)
+ ∑

b∈LR

pb ·
(
|LR|

2

)

≤ pa ·
(
|LL|2

2

)
+ pb ·

(
|LR|2

2

)
We perform a similar calculation for move-to-front:

∑
a∈LL

pa ·
(

∑
a′∈L,a ̸=a′

b(a′, a)
)
+ ∑

b∈LR

pb ·
(

∑
b′∈L,b ̸=b′

b(b′, b)
)

= ∑
a∈LL

pa ·
(

∑
a′∈L,a ̸=a′

pa′

pa′ + pa

)
+ ∑

b∈LR

pb ·
(

∑
b′∈L,b ̸=b′

pb′

pb′ + pb

)

= ∑
a∈LL

pa ·
(
|LL| ·

1
2
+ |LR| ·

pb
pb + pa

)
+ ∑

b∈LR

pb ·
(
|LR| ·

1
2
+ |LL| ·

pa

pb + pa

)

106

= pa ·
(
|LL|2 ·

1
2
+ |LL| · |LR| ·

pb
pb + pa

)
+ pb ·

(
|LR|2 ·

1
2
+ |LR||LL| ·

pa

pb + pa

)
Thus, move-to-front has a higher expected cost than the learned algorithm.

This analysis can be extended in many ways. For example, consider the case

where we vary the ratio pa
pb

. As pa
pb

→ 1, the expected cost of both algorithms

are exactly the same even thought the learned algorithm follows a randomized

move-to-front policy. As pa
pb

→ ∞1, the banded algorithm outperforms move-to-

front.

Interestingly, varying |LR|
|LL|

will have an effect on the probabilities pa and pb. As
|LL|
|LR|

→ ∞, pa
pb

decreases. Given the behaviour of the learned algorithm described

in Section 5.1, records in LR will be moved to bucket LL and records in LL will

be moved to bucket LR, restoring the invariant that heavy records are found in

buckets with lower indices.

Another interesting consideration is generalizing to k > 2 buckets. This means

we have a distribution where we can group elements by their frequency of access

into k groups. Then, under the assumption that the learned algorithm is able to

break them into k groups, the average cost of the banded policy is:

∑
k∈K

≤ pk ·
(
|Lk|2

2

)

Doing the same calculation for move-to-front:

= ∑
k∈K

pk ·
(
|Lk|2 ·

1
2
+ ∑

k′∈K,k′ ̸=k
|Lk| · |Lk′ | ·

pk′

pk′ + pk

)

. In practice, the learned algorithm may use fewer than k buckets because it only

1We do not consider the case of pa
pb

→ 0 because it is analogous to case where it approaches ∞

107

approximates the bands. Evidence of this is seen in Figure 5-7 where it only cre-

ates 3 bands.

A remarkable observation we make here is that even when we have uniform ac-

cess over L, the algorithm executes randomized move-to-front over the entire list

rather than move-to-front. This likely suggests that when LL gets too large, it no

longer does move-to-front. To confirm this, we look at the policy map in Figure

5-35 for a Heavy/Light distribution where 50% of the list is accessed 90% of the

time. Compare this policy map to Figure 5-36 . In Figure 5-35, we see it follows

a randomized move-to-front policy for the first bucket whereas for Figure 5-36, it

follows a move-to-front policy for the first bucket.

5.4 The Learned Algorithm in Practice & Some Insights

One advantage of the learned algorithm over the order-by-access or other fre-

quency count techniques is that it has finite size while still being competitive. This

is because the neural network, which uses finite memory, learns which elements

are heavy and which ones are light and buckets them appropriately. As we saw in

Chapter 4, it is also able to identify changes in the heaviness status of an element

and reorganizes the list accordingly.

On the other hand, it is not a memory-less heuristic like move-to-front or the trans-

position heuristic. In fact without careful design, the memory overhead can get

quite large. Techniques like reducing the size of the experience buffer and the

state representation help lower this memory overhead usually at the cost of per-

formance.

108

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

20

40

60

80

100

Figure 5-35: Policy Map for Learned Algorithm. Shows all move choices over an
episode in a list of size 20. Heavy/Light Query Sequence with 50% heavy, 90%
heavy accessed, No list change, No distribution change

109

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Previous Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

Ne
xt

 In
de

x

0

100

200

300

400

Figure 5-36: Policy Map for Learned Algorithm. Shows all move choices over an
episode in a list of size 20. Heavy/Light Query Sequence with 10% heavy, 90%
heavy accessed, No list change, No distribution change

110

Chapter 6

A New Competitive Ratio and

Surprising Observations

As we saw in Chapter 5, the learned algorithm does not move all items to the

front of the list; it adopts a more conservative approach for less frequently ac-

cessed items. This was a surprising observation, given the reward function, but

confirms the notion expressed in Chapter 2.3: while move-to-front is competitive,

algorithms that do not always move items to the front tend to achieve better com-

petitive ratios.

Of particular interest is the argument presented in [43]. There Rivest proves that

the transposition heuristic achieves a lower expected search cost even though no

competitive ratio was explicitly computed. In this chapter, we will show that

the transposition heuristic in fact achieves (1 + o(1)) · OPT for Zipfian query se-

quences.

111

6.1 Proof Setup and Useful Lemmas

Recall definition 1 from Chapter 5 that the expected search cost for record ri is:

∑
1≤j≤n,j ̸=i

b(j, i) · 1

Taking the expectation across all records, we have that the expected search time

for a record in L is:
n

∑
i=0

pi ·
(

∑
1≤j≤n,j ̸=i

b(j, i) · 1
)

For a Zipfian distribution where pi ∝ 1
i with skew(α = 1), we can write the

following for the expected search cost:

n

∑
i=0

1
Hn

· 1
i
·
(

∑
i≤j≤n,j ̸=i

b(j, i) · 1
)

where Hn is the nth harmonic number. To achieve OPT, items in L must be or-

ganized from most frequently accessed to least frequently accessed. The OPT ex-

pected search cost, therefore, for a Zipfian access distribution will yield:

n

∑
i=0

1
Hn

· 1
i
· i =

n

∑
i=0

1
Hn

=
1

Hn

n

∑
i=0

1 =
n

Hn
= O

(
n

ln n

)

When we consider the stationary distribution over the permutations of L, we

define Q(π) for a permutation π of L to be the probability of π in a stationary

distribution. Given a set S of permutations, we define Q(S) = ∑π∈S Q(π).

In [43], the following useful lemma is presented for the stationary distribution

under the transposition heuristic:

112

Lemma 6.1.1 Let π be a permutation where record a immediately precedes record b and

let π′ be the same permutation but with a and b swapped, then

Q(π)

Q(π′)
=

pa

pb
.

This will be the driving lemma for the proof.

Lemma 6.1.2 Let b(i, j) be the probability that record i appears before record j in L and

let b(j, i) be analogously defined. Then:

b(i, j)
b(j, i)

=
∑π,i appears before j Q(π)

∑π,j appears before i Q(π)
.

Lemma 6.1.3 Define b(i, j) as in Lemma 6.1.2 but for a list L maintained under the

transposition heuristic. Define b′(i, j) also as in Lemma 6.1.2 but for a list maintained

under the move-to-front heuristic. Then:

b(i, j) > b′(j, i) =
pi

pi + pj

Define Dt to be the set of permutations where record j appears before record i and

there are at least t other records between them. We are interested in proving the

competitive ratio for the following setting:

• i ≥ log n

• j ≥ i + i0.9

• 0 ≤ t ≤ i0.15 := T

An important fact which we use repeatedly is that because j > i, pj < pi under

a Zipfian access distribution.

113

6.2 Main Lemmas

For the setting described in 6.1, let π be a permutation in the set of permutations

Dt (Recall that 0 ≤ t ≤ i0.15 := T). Then we consider the following partitioning

for Dt:

1. Partition 1 (D1
t): Permutations where a record rl, l ≥ j− 2j0.75 is immediately

before j.

2. Partition 2 (D2
t): Permutations not in Partition 1 where a record rl, l ∈ {j −

1, j − 2, ..., j − j0.75} is somewhere before j.

3. Partition 3 (D3
t): All other permutations not found in Partition 1 or 2.

From the description, we see that these partitions are disjoint and also cover all

of Dt. Given a permutation π, we can swap records around in π to yield another

permutation π′. Thus swapping records around in π gives rise to a mapping from

π to other permutations. To this end, we define a mapping f for each partition of

Dt as follows:

1. fD1
t

: Swap the record immediately before record j with record j. Denote the

set of permutations arising from applying this mapping to D1
t as D1

t .

2. fD2
t

: Swap one of the records rl, l ∈ {j − 1, j − 2, ..., j − j0.75} with the record

immediately before j. Then swap rl with record j. Denote the set of permu-

tations arising from applying this mapping to D2
t as D2

t .

3. fD3
t

: Swap record i and record j. Then swap one of the records rl, l ∈ {j −

1, j − 2, ..., j − j0.75

2 } that appears farthest after record j. Denote the set of

permutations arising from applying this mapping to D3
t as D3

t .

114

We denote the set of all permutations after applying each partition’s respective

mapping as Dt.

We now present the first building-block lemma for permutations in Partition 1

which is a consequence of Lemma 6.1.1:

Lemma 6.2.1

∑
π∈D1

t

Q(π) ≤
(

1 +
4j0.75

j

)
· ∑

π′∈D1
t

Q(π′)

Proof: First consider single terms Q(π) and Q(π′) where π ∈ D1
t and π′ ∈ D1

t .

Let rl be the record that was swapped with record j. Then from lemma 6.1.1., we

see that:
Q(π)

Q(π′)
=

pl
pj

But we know that l ≥ j − 2j0.75 from our description of Partition 1 and under a

Zipfian access distribution, we have that pl ≤ pj−2j0.75 which yields:

Q(π)

Q(π′)
≤

pj−2j0.75

pj

Substituting that pi ∝ 1
i for Zipfian, we get:

Q(π)

Q(π′)
≤ j

j − 2j0.75

Rearranging and using a taylor approximation of 1
1−c , we get:

Q(π) ≤
(

1 +
2j0.75

j

)
Q(π′)

115

Since fD1
t

is a one-to-one mapping, we can sum over all permutations in π and π′

on both sides to yield the inequality:

∑
π∈D1

t

Q(π) ≤
(

1 +
2j0.75

j

)
∑

π′∈D1
t

Q(π′) ≤
(

1 +
4j0.75

j

)
∑

π′∈D1
t

Q(π′)

Finally, as desired, we get:

∑
π∈D1

t

Q(π) ≤
(

1 +
4j0.75

j

)
∑

π′∈D1
t

Q(π′)

We present a similar lemma for permutations in Partition 2:

Lemma 6.2.2

∑
π∈D2

t

Q(π) ≤
(

1 +
2(j0.75)2

j2

)
· ∑

π′∈D2
t

Q(π′)

Proof: First denote D2′
t as the set of permutations obtained from performing the

first swap in the mapping on permutations in D2
t . Then, from Lemma 6.1.1, we

can also write the following for π ∈ D2
t and π′′ ∈ D2′

t :

Q(π)

Q(π′′)
=

pl
pb

where l ∈ {j − 1, ..., j − j0.75} and rb is the record immediately before record j

with access probability pb. Based on our description of Partition 2, we know that

b < j − 2j0.75 and so importantly, pb > pj−2j0.75 . From this, we get that:

Q(π)

Q(π′′)
≤ pl

pj−2j0.75

In the same way, we can also write an equation between Q(π′′) and Q(π) where

116

π′′ ∈ D2′
t and π′ ∈ D2

t :
Q(π′′)

Q(π′)
=

pl
pj

Multiplying both sides of the inequality with this new relation:

Q(π)

Q(π′)
≤

p2
l

pj·j−2j0.75

But much like in the previous proof, pl ≤ pj−j0.75 , so we get that:

Q(π)

Q(π′)
≤

p2
rj−j0.75

pj·rj−2j0.75

. Substituting for a Zipfian access distribution, we get that:

Q(π)

Q(π′)
≤ j · (j − 2j0.75)

(j − j0.75)2

. Rewriting j · (j − 2j0.75):

j · (j − 2j0.75) = (j − j0.75 + j0.75) · (j − j0.75 − j0.75) = (j − j0.75)2 − (j0.75)2

This gives us finally that:

Q(π)

Q(π′)
≤ (j − j0.75)2 − (j0.75)2

(j − j0.75)2 =

(
1 − (j0.75)2

(j − j0.75)2

)

Rearranging, we get that:

Q(π) ≤
(

1 − (j0.75)2

(j − j0.75)2

)
· Q(π′) ≤

(
1 +

2(j0.75)2

j2

)
· Q(π′)

117

Summing over all permutations in D2
t , we get:

∑
π∈D2

t

Q(π) ≤
(

1 +
2(j0.75)2

j2

)
· ∑

π′∈D2
t

Q(π′)

as desired.

We present the last building block lemma for permutations in Partition 3:

Lemma 6.2.3

∑
π∈D3

t

Q(π) ≤
(

1 − j0.75

2j

) j0.75
2

· ∑
π′∈D3

t

Q(π′)

Proof: First denote D3′
t as the set of permutations obtained from performing the

first swap in the mapping on permutations in D3
t . The first observation is that j

and i are not necessarily next to each other. Therefore, we cannot write a simple

ratio between Q(π) and Q(π′′) where π ∈ D3
t and π′′ ∈ D3′

t . We must therefore

apply Lemma 6.1.1 repeatedly to obtain this ratio. That is, consider intermediate

permutations π1 such that we swap record i with the record in front of it, the

permutation π2 such that we swap record i with the record in front of it again,

and on and on until record j is directly in front of i. After swapping j and i, you

must swap j back down to record i’s old position. If we let rt
1, rt

2,, rt
t be the set of

records that are between j and i, we can chain the ratios together to get:

Q(π)

Q(π′′)
=

prt
t

pri

·
prt

t−1

pri

· ... ·
prt

1

pri

·
prj

pi
·

pj

prt
1

·
prj

prt
2

· ... ·
prj

prt
t

=

(prj

pri

)t+1

Applying a similar reasoning, when we attempt to swap j with the record from

among rj−j0.75 , ..., r
j− j0.75

2
appearing farthest to its right, we can chain ratios together

118

to get the following ratio:
Q(π′′)

Q(π′)
=

(prj

prl

)k+1

where k is the number of records between record j and the rightmost record. No-

tice that records rj−j0.75 ...rj−1 must appear after record j on the assumption that

Partition 3 considers all permutations except those found in Partition 1 and 2.

For the second swap, we are choosing among records rj−j0.75 , ..., r
j− j0.75

2
and so

pl ≥ p
j− j0.75

2
which gives:

Q(π′′)

Q(π′)
≤

(prj

pr
j− j0.75

2

)k+1

Substituting for Zipfian distribution and multiplying the two ratios, we get:

Q(π)

Q(π′)
≤

(
i
j

)t+1

·
(

j − j0.75

2
j

)k+1

Consider an arrangement of L where all the records rj−j0.75 ...rj−1 appear consecu-

tively after j with record i spliced t spots behind j. Such an arrangement presents

the closest the rightmost element from among rj−j0.75 ...rj−1 could ever be to j.

Therefore k ≥ j0.75

2 − t. Substituting this yields:

Q(π) ≤
(

i
j

)t+1

·
(

j − j0.75

2
j

) j0.72
2 −t+1

· Q(π′)

Seeing that j − j0.75 > i, we can write that:

Q(π) ≤
(

i
j

)t+1

·
(

j − j0.75

2
j

) j0.72
2 −t+1

· Q(π′) ≤
(

j − j0.75

2
j

) j0.72
2 +2

· Q(π′)

119

Simplifying and summing over permutations, we get the desired inequality:

∑
π∈D3

t

Q(π) ≤
(

1 − j0.75

2j

) j0.72
2 +2

· ∑
π′∈D3

t

Q(π′) ≤
(

1 − j0.75

2j

) j0.72
2

· ∑
π′∈D3

t

Q(π′).

In the next section, we put these lemmas together to prove two theorems.

6.3 Putting it all together: Competitive Ratio Results

We start with the first result:

Theorem 6.3.1 Let b(i, j) be the probability that record i appears before record j under

the transposition heuristic and analogously define b(j, i). Under the settings of Section

6.1, we have
b(i, j)
b(j, i)

≥ (1 − o(1))
1
T
·
(

j
i

)T
.

Proof: Using Lemma 6.1.2, we have:

b(i, j)
b(j, i)

=
∑π,i appears before j Q(π)

∑π,j appears before i Q(π)
.

We decompose the set of permutations we sum over in the denominator based on

the number of elements appearing between record j and record i. Denote Dm as

the set of permutations such that record j and record i are separated by m other

records. Given our work in Section 6.2, we choose to split the set Dm into two

groups: the set of permutations where record j and record i are separated by ≤ T

(recall that T = i0.15) records and permutations where they are separated by > T

120

records. We rewrite the ratio of sums as follows:

b(i, j)
b(j, i)

=
∑π,i appears before j Q(π)

∑T
m=0 Q(Dm) + ∑m>T Q(Dm)

We decompose the first summation into the three partitions from Section 6.2 to

yield:

b(i, j)
b(j, i)

=
∑π,i appears before j Q(π)

∑T
m=0 Q(D1

m) + ∑T
m=0 Q(D2

m) + ∑T
m=0 Q(D3

m) + ∑m>T Q(Dm)

Using Lemma 6.2.1 and 6.2.2, we can bound the first two sums in the denomi-

nator as follows:

T

∑
m=0

Q(D1
m ∪ D2

m) ≤ T ·
(

1 +
4j0.75

j

)
· Q(DT) ≤ T ·

(
1 +

4j0.75

j

)T

· Q(DT)

Recall that the resulting permutations from applying D1
m’s and D2

m’s respective

mappings to them keeps j in front of i and keeps them m + 1 spots apart. For

m < T, this ensures j and i are still within T of each other.

We now seek to use Lemma 6.2.3 to bound the third sum in the denominator.

When we apply the mapping on permutations in partition 3, j is no longer in front

of i. In fact, i appears before j. Therefore, it must be an expression involving a

term in the numerator, since all permutations with i before j are in the numerator.

Notice, that for every permutation in the numerator, there is a "counterpart" in the

denominator which is exactly identical except that j and i’s positions have been

swapped. Therefore, we can write the following for the third summation in the

denominator:
T

∑
m=0

Q(D3
m) ≤

(
1 − j0.75

2j

) j0.75
2

· Q(Nm′)

121

where m′ ≥ m + j0.75

2 . Using the approximation
(
1 − 1

x
)ky ≤ e−

ky
x , we write that:

T

∑
m=0

Q(D3
m) ≤ (e−

j0.75
2 · j0.75

2j) · Q(Nm′) = (e−
j2·0.75

4j) · Q(Nm′)

We make two interesting observations. The first is that m′ > T, and so if we also

decompose the numerator into two sums (∑T
m=0 Q(Nm) + ∑m>T Q(Nm)) like we

did initially with the denominator, we can write that:

T

∑
m=0

Q(D3
m) ≤ (e−

j2·0.75
4j) · ∑

m>T
Q(Nm) ≤ T · (e−

j2·0.75
4j) · ∑

m>T
Q(Nm)

The second observation is that we can rewrite ∑T
m=0 Q(Nm) in terms of DT. Recall

that one can match each permutation in the numerator with a permutation in the

denominator where the position of j and i are swapped. For Nm where m ≤ T, we

can write:
T

∑
m=0

Q(Nm) ≤ Q(DT) ·
(

pi

pj

)T

Putting all these together, we have that:

b(i, j)
b(j, i)

=
Q(DT) · (pi

pj
)T + ∑m>T Q(Nm)

T · (1 + 4j0.75

j)T · Q(DT) + ∑T
m=0 Q(D3

m) + ∑m>T Q(Dm)

≥
Q(DT) · (pi

pj
)T +

(
Te

−j0.75·2
4j

)
· ∑T

m=0 Q(D3
m)

T · (1 + 4j0.75

j)T · Q(DT) + ∑T
m=0 Q(D3

m) + ∑m>T Q(Dm)

Because we want to use the fact that a+b+c
d+e+ f ≥ min(a

d , b
e , c

f), we split the second

122

term in the numerator into two and express it in terms of ∑m>T Q(Dm) to yield:

≥
Q(DT) · (pi

pj
)T +

(
1
2 Te

−j0.75·2
4j

)
· ∑T

m=0 Q(D3
m) +

1
2 · (

pi
pj
)T(∑m>T Q(Dm))

T · (1 + 4j0.75

j)T · Q(DT) + ∑T
m=0 Q(D3

m) + ∑m>T Q(Dm)

Using the inequality a+b+c
d+e+ f ≥ min(a

d , b
e , c

f) and substituting for a Zipfian distribu-

tion, we get our desired bound:

b(i, j)
b(j, i)

≥ min
(

1
T
·
(

j
i

)T

· 1
(1 + 4j0.75/j)T ,

1
2

Te
−j0.75·2

4j ,
1
2
·
(

j
i

)T)

≥ (1 − o(1))
1
T
·
(

j
i

)T

Theorem 6.3.2 Suppose n is sufficiently large. Under a Zipfian access distribution, the

expected lookup cost of the transposition rule is n
log n (1 + o(1)).

Proof In Section 6.1, we showed that the expected search cost for a particular

record i:
n

∑
i=0

pi ·
(

∑
1≤j≤n,j ̸=i

b(j, i) · 1
)

We will compute this sum first for j ≤ i + i0.9 and start by substituting Zipfian

access distribution:

n

∑
i=0

pi ·
(

∑
1≤j≤n,j ̸=i

b(j, i)
)
=

n

∑
i=0

1
Hn

· 1
i
·
(

∑
1≤j≤i+i0.9,j ̸=i

b(j, i)
)

≤ 1
Hn

n

∑
i=0

1
i
·
(

i + ∑
i≤j≤i+i0.9,j ̸=i

b(j, i)
)

123

≤ 1
Hn

n

∑
i=0

1 +
(

1
i ∑

i≤j≤i+i0.9,j ̸=i
b(j, i)

)

≤ n
Hn

+
1

Hn

n

∑
i=0

1
i

(
∑

i≤j≤i+i0.9,j ̸=i
b(j, i)

)
Using Lemma 6.1.3 and Zipfian probability formula, we can write:

≤ n
Hn

+
1

Hn

n

∑
i=0

1
i

(
∑

i≤j≤i+i0.9,j ̸=i

i
j + i

)
=

n
Hn

+
1

Hn

n

∑
i=0

(
∑

i≤j≤i+i0.9,j ̸=i

1
j + i

)

≤ n
Hn

+
1

Hn

n

∑
i=0

(∫ 2i+i0.9

2i

1
x

dx
)
=

n
Hn

+
1

Hn

n

∑
i=0

(
ln

(
2i + i0.9

2i

))

=
n

Hn
+

1
Hn

n

∑
i=0

(
ln

(
1 +

1
2i0.1

))
≤ n

Hn
+

1
Hn

· n ≤ (1 + o(1))
n

Hn

We now handle the case where j > i + i0.9. We make use of Theorem 6.2.3

which says that:
b(i, j)
b(j, i)

≥ 1
2
· 1

T
·
(

j
i

)T

From this, we can also say that:

b(i, j) ≥ 1
2
· 1

T
·
(

j
i

)T

, b(j, i) = 1 − b(i, j) ≤ 1 − 1
2
· 1

T
·
(

j
i

)T

=
2TiT

2TiT + jT

We now bound the expected search cost sum as follows:

n

∑
i=0

pi ·
(

∑
j>i+i0.9

b(j, i)
)
=

n

∑
i=0

1
Hn

· 1
i
·
(

∑
j>i+i0.9

b(j, i)
)

≤ 1
Hn

n

∑
i=0

1
i ∑

j>i+i0.9

2TiT

2TiT + jT =
1

Hn

n

∑
i=0

1
i ∑

j>i+i0.9

1

1 + jT

2TiT

124

≤ 1
Hn

·
n

∑
i=0

2TiT

i

∫ ∞

i+i0.9

1
xT dx

≤ 1
Hn

·
n

∑
i=0

2TiT

i

∫ ∞

i+i0.9

1
xT dx

≤ 1
Hn

·
n

∑
i=0

2TiT−1

(T − 1) · (i + i0.9)T−1

≤ 1
Hn

· 2T
T − 1

n

∑
i=0

(
1

1 + i−0.1

)T−1

≤ 1
Hn

· 2T
T − 1

n

∑
i=0

(
i0.1

i0.1 + 1

)T−1

≤ 1
Hn

· 2T
T − 1

n

∑
i=0

(
1 − 1

i0.1 + 1

)T−1

Using the approximation that
(
1 − 1

x
)ky ≤ e−

ky
x , we can write:

≤ 1
Hn

· 2T
T − 1

n

∑
i=0

(
e−

T−1
1+i0.1

)
= O

(
1

ln n

)
·

n

∑
i=1

e−Θ(i0.05) = o(1)

Putting all of this together, we get the desired bound for the expected search cost

to be (1 + o(1)) n
ln n .

Notice, however, that the analysis above is for the setting we gave in Section 6.1

where i ≥ log n. We now consider the case where i < log n:1

∑
i≤log n

pi ·
(

∑
j>i+i0.9

b(j, i)
)
≤ 1

Hn
∑

i≤log n
∑

j>i+i0.9

1
i + j

=
1

Hn
∑

i≤log n
Hn − Hi

1The summation here is for j > i + i0.9 because the case when i < log n and j < i + i0.9 was
handled when we considered the case j ≤ i + i0.9

125

=
1

Hn
·
(

∑
i≤log n

Hn − ∑
i≤log n

Hi

)
= log n − 1

Hn
∑

i≤log n
Hi = O(log n)

which is still (1 + o(1)) n
ln n .

While the proof above supports the conjecture presented by Rivest in [43] for a

Zipfian access, a counterexample to the conjecture is offered in [7]. The counterex-

ample, however, differs in an important way: our results prove the conjecture for

Zipfian accesses on a large list. The counterexample presented focuses on a dis-

tribution where all but two of the records are heavily accessed and every other

record has equal probability of access. They somewhat confirm this reasoning

by stating that the transposition heuristic only performs worse when the access

probabilities resemble the one in their given counterexample.

126

Chapter 7

Discussion of Design Choices

In Chapter 3, we presented the design of the reinforcement learning agent. In this

chapter, we discuss those design choices and any trade-offs.

7.1 Choice of Reinforcement Learning Techniques

In Chapter 3 we mentioned that we used a form of model-free deep Q-learning

with experience replay and target learning. We describe each choce below:

1. Model-free learning: The alternative to model-free learning is model-based

learning. Given the experiments that we ran, we could have used model-

based learning since we knew the distributions a priori. However, this would

not be representative of the online setting we wanted to simulate for the re-

inforcement learning agent. Therefore, we opted for model-free learning to

better capture the application domain.

2. Experience Replay: The experience memory/buffer is essential to model-

free learning. In model-free learning, the agent first collects information

127

about the environment and then learns from that information so the infor-

mation collected must be stored in a buffer. This buffer is called an experi-

ence buffer. A single unit of experience memory consists of a tuple of the

current state st, the action that was taken at, the reward that was received rt

and the resulting state st+1. As new memories come, old ones are removed

to make room where necessary.

In experience replay, we use the experience memory units to compute the

"loss" of the neural network on its approximation of the optimal Q-function

and then update the network accordingly. The units are chosen uniformly at

random from the experience buffer to break any correlation that might arise

from using sequential memory units. We discuss how we choose the right

buffer size in section 7.2.

3. Target Learning: Let us consider the update equation used in deep Q-learning:

qt(s, a) = 1 − learning rate · qt(s, a)+

learning rate · max
a′∈A

(rt + discount factor · qt−1(s, a′))

In the above equation, computing maxa′∈A(rt + discount factor ∗ qt−1(s, a′))

relies on estimates from the neural network itself. This causes the Q values

to not converge and our estimates of the Q-function are unstable. To rectify

this, we maintain two neural networks. We call one the Q-network and the

other, the target network. The estimates used for computing maxa′∈A(rt +

discount factor ∗ qt−1(s, a′)) come from the target network to update the Q-

network’s values during training. Periodically, the weights of the Q-network

are transferred to the target network. This way, our Q-values converge to a

128

stable value.

7.2 Choosing the Right Size for the Experience Buffer

Choosing the right buffer size can have a big impact on the quality of the Q-

function approximation and consequently the policy. If the buffer size is too large,

the learned algorithm’s memory overhead increases and we run the risk of hold-

ing on to memories which are not relevant for future inference. If the buffer size

is too small, we may also lose vital examples that could inform the learned algo-

rithm’s actions in the future.

We determine the right buffer size for our setting through experimentation. The

experiment we conduct is similar to the one described in Chapter 4, but we outline

it here for clarity:

1. Initialize a static list L.

2. Generate a sequence of queries Q to be made to items in L. Q may be sam-

pled from a distribution or constructed adversarially.

3. Initialize a different reinforcement learning agent for each buffer size.

4. Simulate a workload over time using Q.

5. Allow each reinforcement learning agent N time steps of training so it can

learn an optimal policy.

6. Stage a testing phase for each learned algorithm.

7. During the testing phase, we measure and record cost of search for each

reinforcement learning agent.

129

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

12.0

12.5

13.0

13.5

14.0

14.5
Av

er
ag

e
Co

st
 o

ve
r E

pi
so

de
10000_buffer
9000_buffer
8000_buffer
7000_buffer
6000_buffer
5000_buffer

Figure 7-1: Average cost of learned algorithm on Zipfian query sequence on a
list of size 50 for different buffer sizes. List remains unchanged and distribution
remains unchanged from episode to episode.

8. Lastly, we repeat the experiment M times in order to ensure that the cost and

behavior we observe is consistent.

In the first round of experiments, we check to see if the optimal buffer size varies

from distribution to distribution. In Figures 7-1, 7-2 and 7-3 we see the average

search cost of the learned algorithm for Zipfian, Heavy/Light and Uniform re-

spectively. The buffer size 5000 appears to achieve the lowest average cost.

We also check to see if the story is true for episode-to-episode variations. Fig-

130

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

4

6

8

10

12

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

10000_buffer
9000_buffer
8000_buffer
7000_buffer
6000_buffer
5000_buffer

Figure 7-2: Average cost of learned algorithm on Heavy/Light query sequence on
a list of size 50 for different buffer sizes. 10% heavy and heavy accessed 90%. List
remains unchanged and Distribution remains unchanged from episode to episode

131

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

23.0

23.5

24.0

24.5

25.0

25.5

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

10000_buffer
9000_buffer
8000_buffer
7000_buffer
6000_buffer
5000_buffer

Figure 7-3: Average cost of learned algorithm on Uniform query sequence on a
list of size 50. for different buffer sizes. List remains unchanged and Distribution
remains unchanged from episode to episode

132

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

4

5

6

7

8

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

10000_buffer
9000_buffer
8000_buffer
7000_buffer
6000_buffer
5000_buffer

Figure 7-4: Average cost of learned algorithm on Heavy/Light query sequence on
a list of size 50 for different buffer sizes. 10% heavy and heavy accessed 90%. List
remains unchanged but distribution changes from episode to episode.

ures 7-4, 7-5 and 7-6 show different episode-to-episode variations of Heavy/Light

query sequences. Figures 7-7, 7-8 and 7-7 show different episode-to-episode vari-

ations of Uniform query sequences. Figures 7-10, 7-11 and 7-12 show different

episode-to-episode variations of Zipfian query sequences. We still see that the

buffer size of 5000 maintains a competitive average cost across all the variations

for each type of distribution.

133

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

4

5

6

7

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

10000_buffer
9000_buffer
8000_buffer
7000_buffer
6000_buffer
5000_buffer

Figure 7-5: Average cost of learned algorithm on Heavy/Light query sequence on
a list of size 50. for different buffer sizes. 10% heavy and heavy accessed 90%. List
changes but distribution remains unchanged from episode to episode

134

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

4.0

4.5

5.0

5.5

6.0

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

10000_buffer
9000_buffer
8000_buffer
7000_buffer
6000_buffer
5000_buffer

Figure 7-6: Average cost of learned algorithm on Heavy/Light query sequence on
a list of size 50. for different buffer sizes. 10% heavy and heavy accessed 90%.
Both the list and distribution change from episode to episode

135

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

23.5

24.0

24.5

25.0

25.5

26.0

26.5

27.0

27.5

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

10000_buffer
9000_buffer
8000_buffer
7000_buffer
6000_buffer
5000_buffer

Figure 7-7: Average cost of learned algorithm on Uniform query sequence on a
list of size 50. for different buffer sizes. List remains unchanged but distribution
changes from episode to episode.

136

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

23.5

24.0

24.5

25.0

25.5

26.0

26.5

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

10000_buffer
9000_buffer
8000_buffer
7000_buffer
6000_buffer
5000_buffer

Figure 7-8: Average cost of learned algorithm on Uniform query sequence on a
list of size 50. for different buffer sizes. List changes but distribution remains
unchanged from episode to episode

137

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

23.0

23.5

24.0

24.5

25.0

25.5

26.0

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

10000_buffer
9000_buffer
8000_buffer
7000_buffer
6000_buffer
5000_buffer

Figure 7-9: Average cost of learned algorithm on Uniform query sequence on a
list of size 50. for different buffer sizes. Both the list and distribution change from
episode to episode

138

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

10000_buffer
9000_buffer
8000_buffer
7000_buffer
6000_buffer
5000_buffer

Figure 7-10: Average cost of learned algorithm on Zipfian query sequence on a
list of size 50. for different buffer sizes. List remains unchanged but distribution
changes from episode to episode.

139

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

11.5

12.0

12.5

13.0

13.5

14.0

14.5

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

10000_buffer
9000_buffer
8000_buffer
7000_buffer
6000_buffer
5000_buffer

Figure 7-11: Average cost of learned algorithm on Zipfian query sequence on a
list of size 50. for different buffer sizes. List changes but distribution remains
unchanged from episode to episode

140

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

12

14

16

18

20

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

10000_buffer
9000_buffer
8000_buffer
7000_buffer
6000_buffer
5000_buffer

Figure 7-12: Average cost of learned algorithm on Zipfian query sequence on a
list of size 50. for different buffer sizes. Both the list and distribution change from
episode to episode

141

7.3 Choosing a State Representation

Out of all the design choices, this is perhaps the most important one. The choice

of state representation is crucial to the agent’s learning because a poor represen-

tation will cause the agent to incorrectly value different states of the environment

leading to a poor performing policy/learned algorithm. At the same time, we

want to keep the state representation small so we can scale to larger list sizes.

It is clear that the state at time step t, st, should capture both the state of the list

and the query at that time step qt. The different state representations we consid-

ered stemmed from the different ways we could choose to represent the state of

the list. We explain each one below and in Figures 7-13, 7-14 and 7-15 we use an

example to illustrate each state representation1:

1. Permutation Matrix: This list representation is much like a standard permu-

tation matrix consisting of only 0s and 1s with each row and column having

only a single entry being equal to 1. For a list L, the row of the permuta-

tion matrix represents the position of a record in the initial permutation of L

and the column represents the position it has been moved to. This list state

representation has size |L|2 and the total size of the state representation is

|L|2 + 1. The size of the total state space is |L| · 2|L|.

2. First Item: The first record in the list L. This list state representation has size

1 and the total size of the state representation is 2. The size of the total state

space is |L|2.

3. Preceding Item: Given that qt references the record in position i, the preced-

ing item list state representation chooses the record i − 1 as the list state. If

1All size descriptions are in terms of the number of records

142

i = 1, then the preceding item list state chooses the record i itself. This list

state representation has size 1 and the total size of the state representation is

2. The size of the total state space is |L|2.

4. Succeeding Item: Given that qt queries the record in position i, the succeed-

ing item list state representation chooses the record i + 1 as the list state. If

i = |L|, then the succeeding item list state chooses the record i itself. This list

state representation has size 1 and the total size of the state representation is

2. The size of the total state space is |L|2.

5. Preceding and Succeeding Item: This list state representation uses both the

preceding and succeeding item representation. This list state representation

has size 2 and the total size of the state representation is 3. The size of the

total state space is ≤ |L|3.

6. Current Position: Given that qt queries the record in position i, the current

position list state representation chooses the index i as the list state. This list

state representation has size 1 and the total size of the state representation is

2. The size of the total state space is |L|2.

7. First log N: The first log |L| records of L are the list state representation. This

list state representation has size log |L| and the total size of the state repre-

sentation is log |L|+ 1. The size of the total state space is |L| · (|L|
log |L|).

8. Last log N: The last log |L| records of L are the list state representation. This

list state representation has size log |L| and the total size of the state repre-

sentation is log |L|+ 1. The size of the total state space is |L| · (|L|
log |L|).

9. First member of log N: Given a list L, break it up into |L|
log |L| sections each of

143

Figure 7-13: List for illustrating different list representations.

size log |L|. The list state representation consists of the first record of each

log |L| chunk. This list state representation has size |L|
log |L| and the total size

of the state representation is |L|
log |L| + 1. The size of the total state space is

|L| · (|L|
|L|

log |L|
).

We now look at the average cost of the learned algorithm from each of the state

representations. We start as usual by looking at performance across different dis-

tributions in Figures 7-16, 7-17 and 7-18. From the results, the current position list

representations seems to be the state representation that maintains a competitive

performance across distributions. Looking also at performance across different

episode to episode variations for both Heavy/Light(Figures 7-19, 7-20 and 7-21)

and Zipfian(Figures 7-22, 7-23 and 7-24), the current position list representation

remains competitive.

The experiment for comparing each reward function is identical to the process

described in section 7.2. The difference is that rather than a different buffer size

for each agent, the state representation is different.

144

Figure 7-14: Illustration of different list representations for list in Figure 7-13.

Figure 7-15: Illustration of different list representations for list in Figure 7-13 con-
tinued.

145

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

PERMUTATION_MATRIX
FIRST_ITEM
PRECEEDING_ITEM
SUCCEEDING_ITEM
PRECEEDING_AND_SUCCEEDING_ITEM
CURR_POSITION
FIRST_LOGN
FIRST_MEMBER_OFLOGN
LAST_LOGN

Figure 7-16: Average cost of learned algorithm on Zipfian query sequence on a list
of size 50 for different state representations. List remains unchanged and Distri-
bution remains unchanged from episode to episode.

146

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

PERMUTATION_MATRIX
FIRST_ITEM
PRECEEDING_ITEM
SUCCEEDING_ITEM
PRECEEDING_AND_SUCCEEDING_ITEM
CURR_POSITION
FIRST_LOGN
FIRST_MEMBER_OFLOGN
LAST_LOGN

Figure 7-17: Average cost of learned algorithm on Heavy/Light query sequence
on a list of size 50 for different state representations. 10% heavy items with heavy
items making up 90% of the query sequence. List remains unchanged and Distri-
bution remains unchanged from episode to episode

147

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

23.5

24.0

24.5

25.0

25.5

26.0

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

PERMUTATION_MATRIX
FIRST_ITEM
PRECEEDING_ITEM
SUCCEEDING_ITEM
PRECEEDING_AND_SUCCEEDING_ITEM
CURR_POSITION
FIRST_LOGN
FIRST_MEMBER_OFLOGN
LAST_LOGN

Figure 7-18: Average cost of learned algorithm on Uniform query sequence on
a list of size 50 for different state representations. List remains unchanged and
Distribution remains unchanged from episode to episode

148

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

PERMUTATION_MATRIX
FIRST_ITEM
PRECEEDING_ITEM
SUCCEEDING_ITEM
PRECEEDING_AND_SUCCEEDING_ITEM
CURR_POSITION
FIRST_LOGN
FIRST_MEMBER_OFLOGN
LAST_LOGN

Figure 7-19: Average cost of learned algorithm on Heavy/Light query sequence
on a list of size 50 for different state representations. List remains unchanged but
distribution changes from episode to episode.

149

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

PERMUTATION_MATRIX
FIRST_ITEM
PRECEEDING_ITEM
SUCCEEDING_ITEM
PRECEEDING_AND_SUCCEEDING_ITEM
CURR_POSITION
FIRST_LOGN
FIRST_MEMBER_OFLOGN
LAST_LOGN

Figure 7-20: Average cost of learned algorithm on Heavy/Light query sequence
on a list of size 50 for different state representations. List changes but distribution
remains unchanged from episode to episode

150

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

PERMUTATION_MATRIX
FIRST_ITEM
PRECEEDING_ITEM
SUCCEEDING_ITEM
PRECEEDING_AND_SUCCEEDING_ITEM
CURR_POSITION
FIRST_LOGN
FIRST_MEMBER_OFLOGN
LAST_LOGN

Figure 7-21: Average cost of learned algorithm on Heavy/Light query sequence
on a list of size 50 for different state representations. Both the list and distribution
change from episode to episode

151

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

11

12

13

14

15

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

PERMUTATION_MATRIX
FIRST_ITEM
PRECEEDING_ITEM
SUCCEEDING_ITEM
PRECEEDING_AND_SUCCEEDING_ITEM
CURR_POSITION
FIRST_LOGN
FIRST_MEMBER_OFLOGN
LAST_LOGN

Figure 7-22: Average cost of learned algorithm on Zipfian query sequence on a list
of size 50 for different state representations. List remains unchanged but distribu-
tion changes from episode to episode.

152

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

PERMUTATION_MATRIX
FIRST_ITEM
PRECEEDING_ITEM
SUCCEEDING_ITEM
PRECEEDING_AND_SUCCEEDING_ITEM
CURR_POSITION
FIRST_LOGN
FIRST_MEMBER_OFLOGN
LAST_LOGN

Figure 7-23: Average cost of learned algorithm on Zipfian query sequence on a list
of size 50 for different state representations. List changes but distribution remains
unchanged from episode to episode

153

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode Number

11

12

13

14

15

16

Av
er

ag
e

Co
st

 o
ve

r E
pi

so
de

PERMUTATION_MATRIX
FIRST_ITEM
PRECEEDING_ITEM
SUCCEEDING_ITEM
PRECEEDING_AND_SUCCEEDING_ITEM
CURR_POSITION
FIRST_LOGN
FIRST_MEMBER_OFLOGN
LAST_LOGN

Figure 7-24: Average cost of learned algorithm on Zipfian query sequence on a list
of size 50 for different state representations. Both the list and distribution change
from episode to episode

154

7.4 Reward functions and their Impact on the Learned

Algorithm

Alongside the state representation, the reward function/signal also has a huge in-

fluence on the agent’s learned policy. In our experiments, we unsurprisingly ob-

served that when the reward function changes, the reinforcement learning agent’s

policy changes too. We looked at three different reward functions. In the descrip-

tions below, we consider the reward at time step t where record x is queried, it is

found in position i and the agent elects to move it to position j to be:

1. Reward Function One: −i j ≤ i

−j j > i

2. Reward Function Two: −i j ≤ i

−1000 j > i

3. Reward Function Three: −i j < i

−1000 j ≥ i

Denote πR1 as the learned policy of reward function one, πR2 as the learned pol-

icy of reward function two and πR3 as the learned policy of reward function three.

Since we chose to use reward function one in our design, πR1 has already been

analyzed in Chapter 5. We therefore start by discussing the policy map for reward

function two across different query sequences: From the policy maps of reward

155

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Previous Index

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7-25: Normalized Policy Map of learned algorithm from reward function
two for last 20% of Zipfian query sequence on a list of size 50. Both the list and
distribution remain unchanged from episode to episode

156

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Previous Index

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7-26: Normalized Policy Map of learned algorithm from reward function
two for last 20% of Heavy/Light query sequence on a list of size 50. Both the list
and distribution remain unchanged from episode to episode

157

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Previous Index

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7-27: Normalized Policy Map of learned algorithm from reward function
two for last 20% of Uniform query sequence on a list of size 50. Both the list and
distribution remain unchanged from episode to episode

158

function two shown in Figures 7-25, 7-26 and 7-27 we see that πR2 also displays a

similar banded policy as described in Chapter 5. The main difference, is that πR2

does not employ randomized move-to-front for buckets located further from the

front of the list as πR1 does. Instead, πR2 follows a move-to-front policy within

each of its buckets. This is interesting, because, by changing the cost of mov-

ing a record backward, it appears we forced the agent to maintain move-to-front

policy in all buckets. However, upon careful inspection of the Q-function values

estimated by the neural network, we observed that by choosing a large cost for

moving a record backward, the Q-values computed over time tend to approach

∞. For this reason, taking maxa∈A q(s, a) returns the action of moving the item to

the front of the list always.

We now turn our attention to the learned algorithm resulting from reward func-

tion three(πR3) shown in Figures 7-28, 7-29 and 7-30. The policy is also banded

like in πR2 , except in the policy map, we see that πR3 prefers to move items closer

to the front and seldom keeps records in the same position. Again, this is because

in reward function three, there is a large penalty associated with keeping a record

in the same position once it has been accessed. As in Section 7.3, the experiment

for comparing each reward function is identical to the process described in sec-

tion 7.2. The difference is that rather than a different buffer size for each agent, the

reward function is different.

159

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Previous Index

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7-28: Normalized Policy Map of learned algorithm from reward function
three for Zipfian query sequence on a list of size 50. Both the list and distribution
remain unchanged from episode to episode

160

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Previous Index

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7-29: Normalized Policy Map of learned algorithm from reward function
three for Heavy/Light query sequence on a list of size 50. Both the list and distri-
bution remain unchanged from episode to episode

161

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Previous Index

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

Ne
xt

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7-30: Normalized Policy Map of learned algorithm from reward function
three for Uniform query sequence on a list of size 50. Both the list and distribution
remain unchanged from episode to episode

162

Chapter 8

Future Work & Conclusion

The learned algorithm, as we saw in the evaluation presented in Chapter 4 holds

great promise. We now present potential extensions for the ideas presented in this

thesis.

8.1 Extension to other Data Structures

While we presented a learned algorithm for the list update problem, the idea can

be extended to other data structures such as the binary search tree. The binary

search tree is a good candidate because there are a finite number of actions that can

be performed in the binary search tree model(i.e. rotations) and the cost/reward

function is easy to define. The challenge, however, lies in developing a good state

representation. One can draw inspiration from some of the state representations

suggested in Chapter 7. For example, choosing to represent the state of the tree

using the root or the first log n items in the tree in level-order. A learned binary

search tree algorithm, like the learned algorithm for list update, could potentially

163

give us insights into designing novel self-adjusting binary search trees.

8.2 Analysing Novel Algorithms

In Chapter 5, we discussed the banded behaviour of the learned algorithm. We

now present two algorithms inspired by this:

• k−Banded Move-to-Front: This is a parameterized algorithm where k repre-

sents the number of buckets/bands. Each bucket behaves as its own list as

described in Chapter 5. Each bucket is maintained with a move-to-front pol-

icy. Records may be promoted from higher bucket indices to lower bucket

indices and records can be demoted from lower bucket indices to higher

bucket indices. When the first record in a bucket i (where i > 1) is accessed,

it is promoted to the next bucket i − 1 by swapping it with the last record in

bucket i − 1.

• k, β−Banded Move-to-Front: This algorithm is identical to the first one ex-

cept when the first record in bucket i > 1 is accessed, it is not immediately

promoted to the bucket i − 1. It is only promoted when that same record has

been accessed β times while it was in position one of bucket i.

An area of future work is to compute the competitive ratio of these algorithms.

As was our desired goal, we presented a learned algorithm for the list update

problem using reinforcement learning which we evaluated and analyzed. The

observations from our analysis led us to prove a competitive ratio for the trans-

position heuristic for Zipfian distributions. Beyond the insights gleaned from the

164

learned algorithm, we also have a neural network capable of distinguishing heavy

and light records in a stream of query sequences. The contributions of this thesis

are only just the beginnings of interesting research directions.

165

166

Appendix A

Code

All code for this project can be found at https://github.com/isabellequaye/

MEng including code for generating the plots and graphs here.

167

168

Bibliography

[1] Anders Aamand, Justin Y. Chen, and Piotr Indyk. (Optimal) Online Bipartite
Matching with Degree Information. In Advances in Neural Information Process-
ing Systems, volume 35, 2022.

[2] Anders Aamand, Justin Y Chen, Huy Lê Nguyen, Sandeep Silwal, and Ali
Vakilian. Improved frequency estimation algorithms with and without pre-
dictions. arXiv preprint arXiv:2312.07535, 2023.

[3] M Mehdi Afsar, Trafford Crump, and Behrouz Far. Reinforcement learning
based recommender systems: A survey. ACM Computing Surveys, 55(7):1–38,
2022.

[4] Susanne Albers. Improved randomized on-line algorithms for the list update
problem. SIAM Journal on Computing, 27(3):682–693, 1998.

[5] Susanne Albers, Bernhard Von Stengel, and Ralph Werchner. A combined bit
and timestamp algorithm for the list update problem. Information Processing
Letters, 56(3):135–139, 1995.

[6] Keerti Anand, Rong Ge, and Debmalya Panigrahi. Customizing ml predic-
tions for online algorithms. In International Conference on Machine Learning,
pages 303–313, 2020.

[7] Edward James Anderson, P Nash, and Richard R Weber. A counterexam-
ple to a conjecture on optimal list ordering. Journal of Applied Probability,
19(3):730–732, 1982.

[8] Spyros Angelopoulos, Christoph Dürr, Shendan Jin, Shahin Kamali, and
Marc Renault. Online computation with untrusted advice. In 11th Innova-
tions in Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2020.

169

[9] Antonios Antoniadis, Christian Coester, Marek Eliáš, Adam Polak, and
Bertrand Simon. Online metric algorithms with untrusted predictions. ACM
Transactions on Algorithms, 19(2):1–34, 2023.

[10] Szilárd Aradi. Survey of deep reinforcement learning for motion planning of
autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems,
23(2):740–759, 2020.

[11] Yossi Azar, Stefano Leonardi, and Noam Touitou. Flow time scheduling with
uncertain processing time. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1070–1080, 2021.

[12] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik.
Learning to branch. In International Conference on Machine Learning, pages
353–362, 2018.

[13] PJ Burville and JFC Kingman. On a model for storage and search. Journal of
Applied Probability, 10(3):697–701, 1973.

[14] Justin Y. Chen, Sandeep Silwal, Ali Vakilian, and Fred Zhang. Faster funda-
mental graph algorithms via learned predictions. In International Conference
on Machine Learning, ICML, volume 162 of Proceedings of Machine Learning Re-
search, pages 3583–3602, 2022.

[15] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Ali Vakilian, and
Nikos Zarifis. Learning online algorithms with distributional advice. In In-
ternational Conference on Machine Learning, pages 2687–2696, 2021.

[16] Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and
Sergei Vassilvitskii. Faster matchings via learned duals. Advances in neural
information processing systems, 34:10393–10406, 2021.

[17] Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Learn-
ing sublinear-time indexing for nearest neighbor search. arXiv preprint
arXiv:1901.08544, 2019.

[18] Jon C. Ergun, Zhili Feng, Sandeep Silwal, David P. Woodruff, and Samson
Zhou. Learning-augmented k-means clustering. In 10th International Confer-
ence on Learning Representations, ICLR, 2022.

170

[19] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino
Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Fran-
cisco J R Ruiz, Julian Schrittwieser, Grzegorz Swirszcz, et al. Discovering
faster matrix multiplication algorithms with reinforcement learning. Nature,
610(7930):47–53, 2022.

[20] Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-
or-buy with expert advice. In Proceedings of the 36th International Conference
on Machine Learning, pages 2319–2327, 2019.

[21] Tu Gu, Kaiyu Feng, Gao Cong, Cheng Long, Zheng Wang, and Sheng Wang.
The rlr-tree: A reinforcement learning based r-tree for spatial data. Proceed-
ings of the ACM on Management of Data, 1(1):1–26, 2023.

[22] Anupam Gupta, Debmalya Panigrahi, Bernardo Subercaseaux, and Kevin
Sun. Augmenting online algorithms with ε-accurate predictions. Advances in
Neural Information Processing Systems, 35:2115–2127, 2022.

[23] WJ Hendricks. The stationary distribution of an interesting markov chain.
Journal of Applied Probability, 9(1):231–233, 1972.

[24] WJ Hendricks. An extension of a theorem concerning an interesting markov
chain. Journal of Applied Probability, 10(4):886–890, 1973.

[25] Sungjin Im, Ravi Kumar, Aditya Petety, and Manish Purohit. Parsimonious
learning-augmented caching. In International Conference on Machine Learning,
pages 9588–9601. PMLR, 2022.

[26] Sandy Irani. Two results on the list update problem. Information Processing
Letters, 38(6):301–306, 1991.

[27] Sandy Irani, Nick Reingold, Jeffery Westbrook, and Daniel D Sleator. Ran-
domized competitive algorithms for the list update problem. In Proceedings
of the second annual ACM-SIAM symposium on Discrete algorithms, pages 251–
260, 1991.

[28] Shahin Kamali and Alejandro López-Ortiz. A survey of algorithms and mod-
els for list update. In Space-Efficient Data Structures, Streams, and Algorithms:
Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday, pages 251–
266. Springer, 2013.

171

[29] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning
combinatorial optimization algorithms over graphs. In Advances in Neural
Information Processing Systems, pages 6348–6358, 2017.

[30] Donald Ervin Knuth. The art of computer programming, volume 3. Pearson
Education, 1997.

[31] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The
case for learned index structures. In Proceedings of the 2018 international con-
ference on management of data, pages 489–504, 2018.

[32] Kin Lam, Ming-Ying Leung, and Man-Keung Siu. Self-organizing files with
dependent accesses. Journal of Applied Probability, 21(2):343–359, 1984.

[33] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvit-
skii. Online scheduling via learned weights. In Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1859–1877.
SIAM, 2020.

[34] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with ma-
chine learned advice. In International Conference on Machine Learning, pages
3302–3311, 2018.

[35] Daniel J Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco
Selvi, Cosmin Paduraru, Edouard Leurent, Shariq Iqbal, Jean-Baptiste
Lespiau, Alex Ahern, et al. Faster sorting algorithms discovered using deep
reinforcement learning. Nature, 618(7964):257–263, 2023.

[36] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Re-
inforcement learning for combinatorial optimization: A survey. Computers &
Operations Research, 134:105400, 2021.

[37] John McCabe. On serial files with relocatable records. Operations Research,
13(4):609–618, 1965.

[38] Michael Mitzenmacher. A model for learned bloom filters and optimizing
by sandwiching. In Advances in Neural Information Processing Systems, pages
464–473, 2018.

[39] Michael Mitzenmacher. Scheduling with predictions and the price of mispre-
diction. In 11th Innovations in Theoretical Computer Science Conference (ITCS
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

172

[40] Thy Nguyen, Anamay Chaturvedi, and Huy Le Nguyen. Improved learning-
augmented algorithms for k-means and k-medians clustering. 2023.

[41] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algo-
rithms via ml predictions. In Advances in Neural Information Processing Sys-
tems, pages 9661–9670, 2018.

[42] Nick Reingold, Jeffery Westbrook, and Daniel D Sleator. Randomized com-
petitive algorithms for the list update problem. Algorithmica, 11(1):15–32,
1994.

[43] Ronald Rivest. On self-organizing sequential search heuristics. Communica-
tions of the ACM, 19(2):63–67, 1976.

[44] Tim Roughgarden. Beyond worst-case analysis. Communications of the ACM,
62(3):88–96, 2019.

[45] Geza Schay, Jr and Francis W Dauer. A probabilistic model of a self-
organizing file system. SIAM Journal on Applied Mathematics, 15(4):874–888,
1967.

[46] Sandeep Silwal, Sara Ahmadian, Andrew Nystrom, Andrew McCallum,
Deepak Ramachandran, and Seyed Mehran Kazemi. Kwikbucks: Correlation
clustering with cheap-weak and expensive-strong signals. In The Eleventh In-
ternational Conference on Learning Representations, 2023.

[47] Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28(2):202–208, 1985.

[48] Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. Learning to hash for
indexing big data - a survey. Proceedings of the IEEE, 104(1):34–57, 2016.

[49] Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs
for learning-augmented online algorithms. Advances in Neural Information
Processing Systems, 33:8042–8053, 2020.

173

