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Abstract

The learned behaviors of AI systems and robots should align with the intentions of
their human designers. In service of this goal, people—especially experts—must be
able to easily specify, inspect, model, and revise AI system and robot behaviors. These
four interactions are critical building blocks for human-AI alignment. In this thesis,
I study each of these problems. First, I study how experts write reward function
specifications for reinforcement learning (RL). I find that these specifications are
written with respect to the RL algorithm, not independently, and I find that experts
often write erroneous specifications that fail to encode their true intent, even in a
trivial setting [22]. Second, I study how to support people in inspecting the agent’s
learned behaviors. To do so, I introduce two related Bayesian inference methods
to find examples or environments which invoke particular system behaviors; viewing
these examples and environments is helpful for conceptual model formation and for
system debugging [25, 213]. Third, I study cognitive science theories that govern
how people build conceptual models to explain these observed examples of agent
behaviors. While I find that some foundations of these theories are employed in
typical interventions to support humans in learning about agent behaviors, I also
find there is significant room to build better curricula for interaction—for example,
by showing counterexamples of alternative behaviors [24]. I conclude by speculating
about how these building blocks of human-AI interaction can be combined to enable
people to revise their specifications, and, in doing so, create better aligned agents.

Thesis Supervisor: Julie Shah
Title: H.N. Slater Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

The behaviors of AI systems, including embodied AI systems like robots, should

align with human intents and values [38]. However, exactly what alignment means

and how it should be established and measured is a highly contested topic in the

AI research community [29]. This dissertation reasons about alignment in terms of

key interactions. When writing a specification for AI, the human should be able to

construct a reasonable belief over how the specification will manifest as a behavioral

policy: the probability of the agent taking some action in a given state. Once the AI

system has subsequently learned a policy from the specification, the human should be

able to generally predict how the AI system will act in response to encountered states,

both novel and known. To achieve this, the human must have sufficient insight into

the AI system’s decision-making mechanism to build a useful conceptual model of its

knowledge, capabilities, and limitations—and such insight should allow the human to

determine when and when not to appropriately use and rely on the AI system.

This dissertation focuses on the building blocks necessary to support humans

throughout these alignment-critical interactions: helping humans specify behaviors,

inspect learned behaviors, form conceptual models, and, ultimately, revise their spec-

ifications. How can we better support people in these joint tasks of writing specifica-

tions for AI systems and interpreting these systems’ learned behaviors?
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Specifying Behaviors Reinforcement learning (RL) is a promising approach for

building AI systems. Reward functions are an exceptionally flexible framework for

specifying behaviors, and, as such, there is tremendous optimism about RL’s poten-

tial; some researchers argue that reward functions can specify the nature of intelli-

gence [182]. Nonetheless, RL’s usefulness is significantly impaired by the difficulty of

specifying the reward function, which can be misspecified or underspecified [7]. This

dissertation contributes a study of the human reward design process [22]. First, this

dissertation shows that reward functions can easily be overfit to learning algorithms,

wherein the reward function is overloaded to both encode the desired behavior and

also facilitate fast and successful learning for a specific algorithm or hyperparameter

choice, at the expense of interoperability and generality. Second, this dissertation

includes a user study to assess whether this problem of overfitting equally manifests

with human experts designing the reward functions. While this dissertation confirms

this problem of overfitting is indeed persistent, this dissertation also discovers that—

in a trivial gridworld environment—the majority of expert humans write incorrect

reward functions. This dissertation attributes these failures to the mismatched inter-

pretations of the reward function between the human designers and the goals of RL

algorithms writ large. Humans view reward functions with a myopic lens, as a mech-

anism for encoding the relative goodness of each possible state, but the typical RL

objective is instead to maximize the cumulative discounted return. This first study

raises the questions: how can we enable humans to write better reward functions,

and how can we enable robots to better interpret flawed reward functions?

Inspecting Behaviors After learning a behavioral policy from a specification, how

can a person assess whether the AI has learned behaviors that meets their expecta-

tions (i.e., is aligned to their intent)? The most common practice is to observe ex-

amples of the AI acting in a randomly-selected or hand-curated set of environments.

Without adding structure and discipline to this practice, this observation process is

limited in its usefulness. Instead, this dissertation proposes supporting humans in

searching for examples that communicate specific and targeted behaviors. To this
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end, this dissertation first introduces a method for inspecting the behaviors of neural

network or other classifiers. In Bayes-TrEx [25], a user specifies a prediction target

and a generative model, and uses Bayesian inference to find examples that meet the

prediction target. For instance, the target might be to find examples that are scored

ambiguously across two classes. Bayes-TrEx helps with debugging and understand-

ing neural networks, as it can be used to find ambiguous examples to communicate

class boundaries or highly-confident incorrect classifications to communicate system-

atic failures. This dissertation subsequently adapts this approach to create RoCUS,

a method for debugging and improving robot controller behaviors by finding environ-

ments in which interesting behavior occurs [213]. Moreover, this dissertation finds

RoCUS to be helpful for the successful design of a dynamical system-based robot

controller. RoCUS can also be used to assess the behaviors learned through RL

with a user-designed reward function and can thus be applied to help the human

methodically iterate on the design of a reward function specification.

Building Conceptual Models How do humans come to understand the behav-

ioral patterns encoded in a reward function, or learned by an AI system through this

reward function? More generally, how do humans maintain and mitigate uncertainty

about their own beliefs about AI systems’ capabilities and limitations? This uncer-

tainty relates to the human ability to form conceptual models, which are abstract

models used for reasoning. The storied study of human concept learning from the

learning sciences [135, 62] provides a rough blueprint for how to help people build and

update accurate and flexible conceptual models and can be leveraged for human-AI

interaction (HAI). These human concept learning theories assert that conceptual mod-

els are best formed by experiencing examples that follow highly-structured patterns

of variance and invariance [135], and by experiencing structurally-aligned analogous

examples [62], which support rapid knowledge transfer. When interacting with an AI

system, a person will inevitably develop a conceptual model of the system’s behav-

iors. But, without structure to their learning, the resulting conceptual model may be

incorrect or inflexible. This dissertation studies how these theories of human concept
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Figure 1-1: The vision of this dissertation for aligning AI system behaviors with
human intents, using a robot as an example: A human provides a specification either
in the form of a candidate reward function 𝑟𝑖 or some other signal (e.g., a dataset of
preferences 𝐷𝑖 [39, 106]) that encodes their desired behaviors for the robot. Then,
the robot models the human (𝑀𝐻) and updates its behavioral policy (𝜋𝑖). The robot
presents strategically-selected examples of its learned behavior to the human, perhaps
in the form of example trajectories, environments, or some form of explanation. The
robot may also present counterexamples to support the human’s learning (i.e., drawn
from a counterexample policy, 𝜋¬𝑖). In turn, the human updates their model of the
robot (𝑀𝑅) that represents their understanding of the robot’s knowledge, capabilities,
and limitations. This process is iterative: the human may update their specification
and repeat these interactions until they believe the system is sufficiently well aligned.
This dissertation studies how we can support each of these interactions.

learning should be adapted for human-AI interaction (HAI): the analysis of 35 HAI

works shows ad-hoc incorporation of some of these patterns [24], but that the research

community still has many blind spots. For example, it is still exceedingly rare to show

counterexamples of capabilities, even though these learning theories demonstrate that

counterexamples are essential for establishing the bounds of capabilities. This disser-

tation further provides design guidance for better structuring human observations of

AI systems’ learned behaviors in service of conceptual model formation.

24



Combining These Building Blocks This dissertation studies three building blocks

for human-AI alignment: how to specify, inspect, and model the behaviors of AI sys-

tems. Combining these building blocks can inform the design of an iterative, inter-

active, and interleaved learning system, as presented in Figure 1-1. An AI system

designed in this manner should be better aligned to the interests and values of the

human designer, and the human designer should better understand the capabilities

and limitations of the system such that they are better positioned to determine when

and when not to rely on the AI system; the ultimate goal of alignment!

1.1 Specifying Behaviors: Chapter 3

Chapter 3 studies how experts write reward functions as specifications for AI systems

and is based on Booth et al.’s AAAI 2023 paper, “The Perils of Trial-and-Error Reward

Design: Misdesign through Overfitting and Invalid Task Specifications” [22]. This

study originated from reasoning about the practitioner’s approach to RL, especially

writing specifications in the forms of reward functions. While there is a significant

research thrust to move toward learned reward functions [39], reward functions are

often still hand-crafted by domain experts to great success. For example, the reward

functions used to create a super-human agent in the popular video game Gran Turismo

were hand-engineered [205]. Though trial-and-error reward design is discouraged in

the RL community [190, 177], experts often use it nonetheless [103].

This study of experts’ reward design process was borne from these observations

and explores two questions in reward design. First, do experts overfit the design

of reward functions with respect to their choice of RL algorithm and hyperparame-

ters? Overfitting in this context means that the reward function has been excessively

tailored to a particular RL algorithm, which raises concerns about the generality of

these reward functions as specifications. Moreover, it also calls into question the cor-

rectness of these reward functions when optimized with varying RL algorithms, since

the reward is so tailored to a particular optimizer that changing this optimizer could

result in unexpected learning outcomes or potentially even failures.

25



Second, and perhaps of greater importance for this dissertation: are experts gen-

erally able to write correct hand-designed reward functions, whether by trial-and-

error or any other means? If not, this has significant implications for the design of

the iterative system proposed in Figure 1-1. If experts make systematic errors in

the design of reward functions, this presents an opportunity to inform the design of

helpful interventions to prevent or overcome such errors. If experts make many un-

systematic errors, this suggests that the benefits of hand-coded reward functions may

not outweigh the costs, and supports a competing line of research that pushes for

learned reward functions in place of hand-coded ones. Thus, this inquiry seeks both

to uncover the prevalence of incorrect reward function design and also to explore the

specific types of mistakes that experts commonly make.

To meaningfully study these questions, this dissertation needs to establish the def-

inition of a “correct” reward function. In some settings, the correct reward function is

relatively unambiguous: in a game like Chess, the reward function simply determines

whether the agent wins or loses, and we can all more or less agree about the cor-

rectness of this reward function. In most settings, however, determining the correct

reward function is not possible. This dissertation defines a correct reward function

to be an aligned reward function, but alignment is again an amorphous concept that

is defined by some combination of intuition and desiderata, so this definition is not

pragmatic. To remove this ambiguity, this dissertation provides a groundtruth re-

ward function to experts in the form of natural language for this study on specifying

behaviors. This makes the proposed study tractable: the task is not to write a cor-

rect reward function with respect to an expert’s values; rather, it is to write down a

reward function that encodes the given natural language specification.

The first component of this chapter is an extensive computational study, which

assesses whether reward functions can exhibit the problem of overfitting in principle.

This first component omits the role of a human reward designer. The second com-

ponent introduces the human and all of the associated complexity and noise. This

second component consists of a naturalistic user study to assess whether this problem

of overfitting is not just a concern in principle but also in practice. This naturalistic

26



user study also seeks to uncover common classes of errors these experts make when

writing reward functions, which can be used as an input for reasoning about how to

resolve any such errors.

These studies both use the same domain for analysis: the Hungry Thirsty envi-

ronment, first introduced by Singh et al. [184]. This is a seemingly-trivial gridworld

environment with moderately complicated dynamics; this environment might appear

in an introductory class on reinforcement learning. The objective, stated in natural

language, is to “teach an agent to eat as much as possible. There’s a catch, though; the

agent can only eat when it’s not thirsty.” A reasonable interpretation of this natural

language specification is that the agent achieves some reward 𝑟 > 0 for successfully

eating, and 0 otherwise. While it is tempting to reward the agent for successfully

drinking, it is not necessary. Under this natural language specification, the optimal

policy for an agent is to alternate between traversing to the grid cell that contains

the water and drinking when the agent is thirsty and traversing to the grid cell that

contains the food and eating when not thirsty. Because of the discrete nature of the

environment, a large class of reward functions encode the optimal policy—including

reward functions that are not shaped with a potential function. This property of ad-

mitting many correct reward functions makes Hungry Thirsty a compelling domain

to study the reward design process, both computationally and with human experts.

The computational study explores whether different reward functions achieve more

or less rapid success in approximating the optimal policy derived from the natural

language specification when varying the RL algorithm and hyperparameter choices.

Specifically, for each choice of RL algorithm and hyperparameter selection, this disser-

tation trains 10 agents for each of 5,196 different candidate reward functions. This dis-

sertation scores the performance of these trained agents against the given reasonable

interpretation of the natural language specification. Across these many experiments,

this dissertation finds consistent and strong evidence of overfitting. This dissertation

first finds that the best-performing reward functions are different with the varying

choices of algorithms and hyperparameters. Moreover, this dissertation finds that the

performance of reward functions is uncorrelated across different choices of algorithm
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and hyperparameters. This latter finding particularly indicates that this problem of

overfitting is not an obscure phenomenon, but a common and even expected phe-

nomenon, at least in the studied Hungry Thirsty domain. From these experiments,

this dissertation concludes that overfitting is a concern, at least in principle.

The naturalistic user study explores how experts design reward functions in prac-

tice. 30 experts use a Jupyter code notebook to train RL agents to solve the Hungry

Thirsty domain, and they have flexibility in choosing the reward function as well as

the algorithm and hyperparameters. The order in which they are prompted to fill

in these details is randomized. Similar to the computational setting, this disseration

finds evidence that experts also overfit their reward functions to their choice of algo-

rithm and hyperparameters. Additionally, this dissertation finds that many experts

(53%) design reward functions that do not encode the natural language specification,

despite this domain being largely trivial. This latter finding encourages two inter-

ventions. First, this finding supports the endeavor to learn reward functions instead

of hand-coding them; however, we must also assess whether learned reward functions

successfully encode the desired specification! Second, this finding can be used to

reason about how to improve the hand-coded reward design process. By analyzing

experts’ thought processes, this dissertation finds that temporal discounting is par-

ticularly difficult for people to reason about, so future interventions can be designed

to assist in this specific manner. Additionally, experts in the user study observed the

agent acting in random environment instantiations—but more systematic analysis,

for example using the techniques discussed in Chapters 5 and 6 can more readily

expose the errors in specifications.

Overall, this chapter on specifying behaviors explores the challenges of hand-

designing reward functions and using reward functions as specifications more gen-

erally. Hand-designed reward functions remain desirable, in part because a human

engineer has control and insight into the expected behaviors of the system. This

chapter contributes evidence both of overfitting and of misspecification when experts

hand-design reward functions. While there is cause for pessimism, these findings also

offer insights into how to retool the reward design process to help experts craft better
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specifications, which is cause for optimism. In particular, Chapters 4 and 5 introduce

a mechanism for systematically inspecting an agent’s behaviors—behaviors that may

be the consequence of learning a policy with RL using a hand-designed reward func-

tion. Chapter 6 builds on these two contributions by discussing how experts should

use the tooling from Chapter 5 to diagnose and, hopefully, fix misspecifications.

1.2 Inspecting Behaviors: Chapters 4 and 5

Chapters 4 and 5 study how humans can systematically inspect the behaviors of clas-

sifiers and robot controllers, respectively. Chapter 4 is based on Booth et al.’s AAAI

2021 paper, “Bayes-TrEx: A Bayesian Sampling Approach to Model Transparency by

Example” [25], and Chapter 5 is based on Zhou et al.’s CoRL 2021 paper, “RoCUS:

Robot Controller Understanding via Sampling” [213]. These contributions stem from

initially thinking about how neural networks make decisions, and how these decisions

differ from human decisions. The original conception came from thinking about how,

in the quest for alignment in classification settings, neural networks should perhaps

make the same errors as a human and was inspired, in part, by Scenic [56]. However,

no part of the training procedure directly reinforces this outcome. Thus we imagined

designing a method that would uncover ambiguous examples, where the neural net-

work was uncertain of the correct label. By finding and exposing ambiguous examples

to a human, and asking the person to relabel, we believed the neural network could

be trained to more closely approximate human-like decisions.

In the process of exploring this question of exposing ambiguous examples for

re-labeling, this dissertation established that ambiguity is, of course, only one fron-

tier for alignment in this classification setting. Ambiguous examples are often quite

unlikely in a neural network, since neural networks often exhibit the problem of over-

confidence [71]. For alignment, resolving overconfident misclassifications is equally if

not more important than resolving ambiguities. This dissertation thus contributes

a method that allows the human to specify the prediction target—for example, am-

biguous between two classes or high confidence in a particular class—and the method

29



finds examples that match this given target. This first neural network-focused work

is presented in Chapter 4; the main contribution is a Bayesian inference method for

finding examples for which a classifier gives a user-specified prediction confidence.

Chapter 5 adapts this method to the setting of studying robot controllers, including

those that are learned by using an RL algorithm to optimize a policy based on a given

reward function, which is generally the specification method of choice, as discussed

in Chapters 2, 3, and 6.

The rationale behind this adaptation for robot controllers is that, when design-

ing a controller—whether through RL or other means—the designer typically would

use one of two choices to evaluate their controller. Most likely, they simply watch

the controller act in random environments, and from this, they try to diagnose any

issues. As discussed in Chapter 6, this approach is subject to highly fragile and in-

accurate conceptual model formation. Alternatively, the designer might construct a

suite of tests—undoubtedly a more sensible and systematic approach to testing and

conceptual model formation. However, this approach is driven by the environment

and not the outcome of executing the robot controller in that environment. Hence,

conceptual model formation is still challenging. To address this, the method system-

atically searches for environments that maximize a human designer’s given behavioral

metric—for example, in the Hungry Thirsty setting of Chapter 3, the designer might

search for environments in which the agent drinks the most water, and, in doing so,

uncover the common flaw in their reward function that results in a suboptimal policy

when the water in the environment is located particularly far from the food.

When developing RoCUS to inspect the behaviors of robot controllers, this study

found it to be directly useful for refining the design of these controllers. Specifically,

RoCUS helped inform the design of a dynamical system-based controller for a 7

Degree-of-Freedom (7DoF) robot arm, where the objective was to reach a specific

location in the environment. This objective is slightly complicated because reaching

the target requires reaching around an obstruction, a table in the way. This study used

RoCUS to find environments that led to the robot reaching the target successfully

by bringing its end effector close to the goal. When analyzing these successes, a
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troubling pattern emerged: all of the environments that led to successful outcomes

with minimal end effector distances had the target located in the same half of the

environment. By reasoning about this result, the bug in the controller’s specification

can be identified: the end effector needed additional buffer to prevent it from coming

too close to the obstructions. While this controller improvement concerns a dynamical

system controller, the same principles carry over to RL and reward function design.

Debugging and revising specifications is made easier by systematically analyzing a

system’s learned behaviors.

Amusingly, a similar method for inspecting the behaviors of robot controllers was

developed and published simultaneously at another laboratory [54]. While Chapter 5

uses a Bayesian inference framing for finding environments, Fontaine et al.’s work [54]

instead uses a Quality Diversity sampling approach. Functionally, both works are sim-

ilar: they are both framed as methods for finding environments that improve humans’

conceptual model formation and similarly both require user-provided behavioral met-

rics to do so. This duplicity on the research record should be interpreted as indicating

the importance of finding and exposing the right environments to the system design-

ers, as doing so is necessary both for the designer’s conceptual model development

and also ultimately for attaining the amorphous alignment.

1.3 Building Conceptual Models: Chapter 6

Chapter 6 studies how people who interact with AI systems and robots can and should

build conceptual models of these systems’ capabilities and limitations. This chapter

is based on Booth et al.’s HRI 2022 paper, “Revisiting Human-Robot Teaching and

Learning Through the Lens of Human Concept Learning” [24] and Horter et al.’s

HRI 2023 workshop paper, “Varying How We Teach: Adding Contrast Helps Humans

Learn about Robot Motions” [83]. This chapter of the dissertation is focused on

the cognitive processes in play when writing a behavioral specification or interacting

with an AI system more generally. This line of work has a slightly different original

focus from the other chapters of this dissertation; it was inspired by work on learning
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from human feedback, which pointed out that feedback tends to be both strategy-

dependent [129, 130] and policy-dependent [133]. These works call into question

whether people are easily able to understand a given policy and encourages the design

of interventions to support people in developing this understanding.

This inquiry led to the exploration of cognitive theories of human concept learn-

ing. This dissertation sought to inform the design of better interactive systems that

reinforce people’s abilities to form conceptual models of policies, in the dual tasks of

teaching an agent (i.e., with feedback) and learning from an agent (i.e., forming a

conceptual model of the agent’s policy). This dissertation particularly identifies two

theories of learning that have been widely and successfully used in classroom settings

across varied learning domains—in disciplines ranging from mathematics to language.

These two theories are the Variation Theory of Learning [135], which hinges on the

idea that experiencing variation of both superficial and critical details is the key to

conceptual model formation, and Analogical Transfer Theory [62], which argues that

learning is primarily achieved through analogy from familiar contexts to novel ones.

With these complementary theories in mind, this dissertation contributes a meta-

study that reviews 35 papers from the human-AI interaction (HAI) literature. In this

review, this dissertation assesses which principles of these concept learning theories

the HAI research record engaged, if any, and how these principles improved the core

interactions of alignment. This analysis uncovers some best and worst practices in

the existing literature and provides a roadmap for future development.

While this research sought to help people understand policies so that they could

give higher quality policy-dependent feedback, it is also instrumental for building the

more general conceptual models needed to achieve the interactions described in Fig-

ure 1-1, and for reward design as described in Chapter 3. After designing a candidate

reward function, the human should assess the learned behaviors of the system—which

reflect the combination of the reward function specification and the optimization of

this specification. To assess these learned behaviors, the human will look at exem-

plar behaviors, which can be uncovered with the techniques described in Chapters 4

and 5. But which exemplar behaviors should the human assess? These theories of
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concept learning provide guidance to answer this question, by providing insights into

the selection, sequence, and presentation of AI system behaviors. The most basic in-

sight in this line of study shows that people experience a significant cognitive benefit

from experiencing counterexamples or foils, but that providing such counterexamples

is exceedingly rare in the existing literature. This same approach of using coun-

terexamples for concept development has been prescribed by other researchers when

thinking about how explanations of AI system behaviors should be designed [139].

1.4 Unanswered Questions & Unexplored Directions

Many unanswered questions and unexplored directions remain. This dissertation

assumes an expert is engineering a hand-designed reward function. While this is

common (e.g., [205]), an increasing trend in RL assumes, instead, a reward func-

tion learned from human preferences [39]. Learned reward functions equally require

study to assess their expressivity and humans’ propensities for correct and consistent

preferences; while my colleagues and I have some preliminary work in this direc-

tion [105, 106], this is a ripe direction for future exploration. For both hand-designed

and learned reward functions, mechanisms can be designed to compensate for errors,

particularly when these errors are systematic; such a future research endeavor can

build on the framework of Inverse Reward Design [72]. When exploring the topic

of inspecting behaviors, this dissertation makes a significant assumption: that the

human is able to specify a behavioral target metric that elucidates the agent’s capa-

bilities and limitations. Writing such targets is itself a challenging problem, so future

work should explore how to synthesize or guide the human in designing these queries.

When exploring how humans build conceptual models for interacting with AI systems

and robots, this dissertation primarily relies on data from the existing research liter-

ature. Future work should study how each prescribed intervention materially affects

human cognition, independently and in combination—and future work should assess

this cognition across varying domains, too. These future directions can be read as the

outlines of proposed future doctoral theses, and are discussed at length in Chapter 7.
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1.5 Other Related Works within my Doctoral Study

Through studying this complex topic of human-AI alignment and the requisite inter-

actions, I published several more loosely related works during my doctoral study.

• Evaluating the Interpretability of the Knowledge Compilation Map: Communi-

cating Logical Statements Effectively. Serena Booth, Christian Muise, and Julie

Shah. IJCAI 2019 [23].

An alternative mechanism for inspecting the behaviors of AI systems requires a

simplified form of decision logic, such as through logical statements. We study

how to best present logical formulas to humans for comprehension, and we find

unexpected flexibility in people’s ability to reason about logical statements.

• Do Feature Attribution Methods Correctly Attribute Features? Yilun Zhou, Ser-

ena Booth, Marco Tulio Ribeiro and Julie Shah. AAAI 2022 [214].

Feature attribution methods are a common approach of inspecting AI system

behaviors. Feature attribution methods are designed to identify the salient parts

of an input that most contributed to an AI making a given decision. However,

most evaluations of feature attribution methods are deficient or incorrect. We

provide a protocol for a correct and necessary-but-not-sufficient evaluation of

feature attribution methods, and we find feature attribution methods rarely

meet the posed necessary condition.

• Models of human preference for learning reward functions. W. Bradley Knox,

Stephane Hatgis-Kessell, Serena Booth, Scott Niekum, Peter Stone, and Alessan-

dro Allievi. arXiv preprint 2022 [106], and the follow-up to this work: Learning

Optimal Advantage from Preferences and Mistaking it for Reward. W. Bradley

Knox, Stephane Hatgis-Kessell, Sigurdur Orn Adalgeirsson, Serena Booth, Anca

Dragan, Peter Stone, and Scott Niekum. arXiv preprint 2023 [105].

This dissertation repeatedly refers to the dilemma hand-designing or learning

a reward function. There are arguments for and against each approach. This

contribution discusses how learned reward functions may or may not be able to
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identify the correct reward function, and is thus related to Chapter 3. Chapter 7

discusses this work and its implications for future work in more detail.

Due in part to my work studying how to inspect AI system behaviors, I also

contributed to an IEEE standard for the transparency of automated decision making.

• IEEE Standard for Transparency of Autonomous Systems. Alan Winfield et

al., IEEE 2022 [202], and the companion paper that explains the development

of this standard: IEEE P7001: A proposed standard on transparency, Alan

Winfield et al., Frontiers in Robotics and AI 2021 [203].

This standard defines transparency of autonomous systems as a measurable and

testable property. It outlines criteria against which an autonomous system can

be scored to provide a numerical assessment of its transparency. These criteria

are divided by stakeholders—for example, transparency has different require-

ments for the general public, for bystanders, and for incident investigators.
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Chapter 2

Background

This dissertation draws from and seeks to unify several divergent parts of the re-

search record. Due to this substantive diversity of inputs, there is no single unified

background and set of preliminaries to draw from. Instead, the background and pre-

liminaries needed to engage with each chapter are positioned primarily in situ. This

chapter formally introduces reinforcement learning, which is used in Chapters 3, 5,

and, to some extent, 6. This chapter also briefly discusses a few recurring themes and

grounding ideas on the topics of specifications for AI systems and explainable AI.

2.1 Reinforcement Learning (RL)

This thesis, particularly Chapters 3 and 6, assumes basic knowledge of reinforcement

learning (RL). In the absence of this prior knowledge, we direct the reader to Sutton

and Barto’s [190] and Russell and Norvig’s [177] excellent introductory texts. In RL,

an agent learns a behavioral policy for sequential decision-making based on experience

interacting with its environment. An environment can be modeled by a Markov

decision process (MDP), which is defined by a tuple ⟨𝑆,𝐴, 𝑇, 𝛾,𝐷0, 𝑟⟩. 𝑆 and 𝐴 are

the sets of states and actions, respectively. 𝑇 is a transition function, 𝑇 : 𝑆×𝐴×𝑆 →

[0, 1]. 𝛾 is the discount factor and 𝐷0 is the distribution of start states. Lastly, 𝑟

is a reward function, 𝑟 : 𝑆 × 𝐴 × 𝑆 → R. An MDP∖⟨𝛾, 𝑟⟩ is an MDP with neither

a discount factor nor a reward function; this formulation is used in Chapter 3 for
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studying humans’ reward design processes, wherein humans are asked to select the

discount factor and reward function. Actions in an MDP can be prescribed by a policy

𝜋 : 𝑆×𝐴→ [0, 1], where 𝜏𝜋 = (𝑠0, 𝑎0, 𝑠1, ...) is defined to be a trajectory of states 𝑠𝑖 ∈

𝑆 and actions 𝑎𝑖 ∈ 𝐴 experienced over time by executing 𝜋. Discounted return is the

discounted sum of reward over a trajectory of length 𝑛: 𝐺(𝜏) =
∑︀𝑛

𝑡=0 𝛾
𝑡𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1).

The typical objective in RL is to maximize the expected discounted return, though

there are exceptions (e.g., as in distributional RL [44]).

2.2 Writing Specifications

This dissertation focuses on the challenge of writing reward functions as specifications,

which is the typical specification formulation in reinforcement learning. Although re-

ward is undeniably a compelling form of specification, with some researchers even

arguing that the reward formulation can capture the very nature of intelligence [182],

this is by no means the only choice of specification form for AI or robot systems.

It is equally possible to write specifications in terms of goals or goal states, e.g., as

is typically the case in task and motion planning [59] or dynamical systems mod-

eling approaches [53]. In supervised and unsupervised learning, the specification is

typically defined through the choice of loss function; in specific settings, this form

of optimization can be applied to sequential decision-making problems characteristic

of RL [166]. The choice of specification form and whether it is explicitly defined or

learned has implications for a human’s ability to construct it correctly [122].

Misspecified Reward Functions In principle, a correct reward function should

simply specify “what you want achieved” [190]. At the surface, writing a correct re-

ward function sounds simple, but, in practice, this is exceedingly challenging or even

impossible. Reward functions are easily misspecified [7, 103, 161], wherein the reward

function contains a “bug” which results in a learning algorithm finding a solution that

does not reflect what the reward designer wanted to achieve. Misweighting of a multi-

attribute reward function is one common cause of misspecification [161, 22]. A second
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common cause of misspecification is the use of proxy rewards; for example, an engineer

might provide reward proportional to the average velocity of an autonomous vehicle

as a proxy for the average time spent during a commute [161, 103]. Misspecification is

nuanced in part because the learning system should have freedom to find creative so-

lutions that may not resemble the solution a human would propose [122], and because

reward functions are viewed as a compelling alternative to procedural specification

of behaviors. These concerns over the potential misspecification of reward functions,

coupled with the advent of extremely flexible learning systems with massive compu-

tational power and interconnectivity, has led to increasing concerns over the potential

for catastrophic risk as more AI systems are developed and deployed [176].

Explicit vs. Learned Reward Functions Reward functions can be explicitly-

defined by an expert or learned from an implicit signal, like preferences, feedback,

corrections, or demonstrations. Explicitly-defined reward functions are intuitively

desirable, since the human is assumed to be able to encode their expert knowledge

in this function. Further, the human can be held accountable for the correctness of

a hand-designed reward function and the consequences of its deployment—whether

rightly or wrongly. However, explicitly-designing a reward function is a non-trivial

task [103], so learned reward functions are often favored in practice [39, 159]. However,

learned reward functions introduce new surface area for misspecification and so require

further study. If the existence of a correct latent reward function is assumed, the

learning process should employ inductive biases which are capable of recovering this

latent reward function. However, this is not guaranteed under some common reward

function learning strategies, even, for example, given the unrealistic assumption of

infinite samples of human preferences [106]. Hence, the expressivity of learned reward

functions is a compelling direction for future study. This dissertation primarily focuses

on reward functions which are explicitly-defined, though the methods and analyses

presented in Chapters 5 and 6 equally apply to systems which have learned policies

from learned reward functions.
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2.3 Inspecting & Explaining Learned Behaviors

Deep learning and deep reinforcement learning methods are often criticized for pro-

ducing uninterpretable models: it is extremely hard to scrutinize the decision-making

processes of these models [157, 128, 45]. In response, there is a large schism in

the machine learning community with some researchers calling for the exclusive

use of inherently-interpretable models, especially in high-stakes decision-making set-

tings [175]. Such models are ostensibly scrutable by design: a human should be

capable of analyzing the reasoning mechanism of the AI model, and can thus at least

in principle perfectly understand the knowledge, capabilities, and limitations of the

model. In practice, inherently-interpretable models are often equally uninterpretable,

either because they require cognitive reasoning beyond what is viable to expect of a

person [23] or because they introduce a non-interpretable module or computation as a

component of the larger “inherently-interpretable” model (Prototype Networks [124]

are one such example). Techniques which aim to explain the decisions of uninter-

pretable models are also fraught and often even incorrect [1, 214].

In light of these persistent challenges, both in producing inherently interpretable

models and in explaining the behaviors of uninterpretable models, we focus instead

on simply inspecting the learned behaviors of these models (Chapters 4 and 5),

and supporting people in developing conceptual models to explain these behaviors—

independently of understanding exactly the process of the underlying decision-making

mechanisms (Chapter 6). By supporting people in finding examples which exhibit

interesting behaviors and in analyzing these expressed behaviors, this dissertation

argues that people can be taught to use these models effectively, even if they do not

understand the reasoning mechanisms underlying these models.
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Chapter 3

Specify

Specify Behaviors
e.g., a reward function ri

—or—
dataset Di (possibly for inferring ri)

Figure 3-1: This chapter focuses on specifying behaviors for AI systems and robots.

This chapter explores the challenges of designing reward functions as specifications

where an expert hand-designs the reward function. This exploration focuses on two

questions. First, can reward functions be tailored to the algorithms and hyperparam-

eters which optimize them such that they are overfit? Second, are people able to write

“correct” reward functions—and, if not, do they make systematic errors in their re-

ward designs, or are their errors more haphazard? These explorations are focused on

the first step required in the interactive system described in Figure 1-1; this focused

step is highlighted above in Figure 3-1. The observations uncovered in this chapter

inform the design and requirements of the mechanisms for inspecting behaviors (as

in Chapters 4 and 5) and for building conceptual models (as in Chapter 6).
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3.1 Introduction

In their authoritative text on reinforcement learning, Sutton and Barto ([190]) assert:

“The reward signal is your way of communicating to the agent what you want achieved,

not how you want it achieved.” This statement implies that a reward function should

exclusively encode the true task performance metric. Such metrics are often sparse:

did the agent succeed at the task or not? Sparse reward functions are rarely used in

practice, since it can be hard to learn from sparse signals (for examples, see [208, 9,

103]). As such, the practice of reward design seldom adheres to this adage.1 Instead,

reward functions are typically designed through an ad hoc process of trial and error.

In a survey of 24 expert RL practitioners, we found that 92% reported using trial and

error to design their most recent reward function (Apdx. A.1). This finding echos

the literature: Knox et al. found that, in a survey of RL for autonomous driving,

all of the surveyed publications reported designing reward functions by trial and

error [103]. Despite the prevalence of trial-and-error reward design, the consequences

of this process remain almost completely unexamined by the RL community. It is

urgent and crucial for our community to understand the effects of this widespread

practice and ultimately to craft specific guidance for practical reward design.

When employing trial-and-error, experts often optimize the reward function by

manually searching for a reward function that meets the goals of both maximizing

the task performance metric and enabling an RL algorithm to learn quickly. This

practice raises the question of whether a reward function that is effective with one

algorithm can be ineffective with others: can a reward function be overfit to an

algorithm? This concern of overfitting raises troubling questions about evaluation in

The content of this chapter largely reproduces the text from Booth, Knox, Shah, Niekum, Stone,
Allievi’s AAAI 2023 paper: The perils of trial-and-error reward design: misdesign through overfitting
and invalid task specifications [22].

1Sutton and Barto disregard their own advice when designing a Dyna-Q+ agent. To encourage
exploration, they replace the reward function 𝑟 with 𝑟+𝜅

√
𝜏 , where 𝜅 is a hyperparameter and 𝜏 is

the number of timesteps [190, p. 168].
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RL. Overfitting a reward function to one RL algorithm undermines fair comparisons

to another algorithm using the same reward function, especially since the reward

function is often also used to measure success.

Consider an ablation study which assesses whether an algorithmic component

improves learning. If the reward function is overfit to the algorithm when the com-

ponent is unablated, observing that learning performance decreases in the absence

of the component may merely reflect that the reward function is overfit, giving no

clear signal about whether the component is an improvement. Concerns about fair

evaluation are already pervasive in RL, and are thought to limit RL’s applicability

outside of the laboratory [88]. Most such concerns focus on hyperparameters, network

architectures, and observed high variance, coupled with the high costs of experimen-

tation [78]. This paper adds an additional perspective: that the oft-overlooked design

process behind the reward function must also be considered for fair comparisons.

To assess reward function overfitting, we first conduct computational experiments

to test whether certain reward functions enable different RL algorithms and hyperpa-

rameters to perform better with respect to the true task performance metric. From

these experiments, we find evidence that reward functions can indeed be overfit to

a particular discount factor, learning rate, or algorithm: in such cases, changing the

discount factor, learning rate, or algorithm significantly diminishes the task metric

performance. Across numerous experiments, we find that when we rank reward func-

tions by the learned policies’ resultant task metric scores, these rankings are largely

uncorrelated across experiment variations. Though the idea of reward function over-

fitting may be unsurprising to seasoned RL experts, the extent of this overfitting

problem is nonetheless remarkable.

To learn about the implications of trial-and-error reward design, we also con-

ducted a user study. One goal of this user study was to confirm that our computa-

tional experiments’ findings correspond to practical effects in realistic RL settings.

Specifically, we challenged 30 expert RL practitioners to choose an RL algorithm,

hyperparameters, and a reward function to train the best agent they could, as mea-

sured by the cumulative task performance metric. The majority of experts overfit
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their reward functions to their choice of algorithms or hyperparameters (68%). More

alarmingly, many experts also constructed reward functions which failed to encode

the task (53%)—meaning these reward functions encoded optimal policies which sig-

nificantly deviate from the experts’ intent, despite these tests being conducted in a

simple gridworld environment. We then applied thematic analysis to qualitatively

analyze experts’ reward-design process, and we discovered that some reward misde-

signs stem from mismatched perspectives of what the reward function communicates.

For the RL algorithm, reward is an additive component that is used to calculate

discounted return—the evaluation metric. Experts instead typically view reward as

a direct evaluation of the relative goodness of each state-action pair. This disparity

contributes to misdesign as a consequence of trial-and-error reward design.

3.2 Related Work

Reward Shaping

One of the known, common consequences of ad hoc reward design is reward shap-

ing. In reward shaping, the reward function is overloaded to both communicate

the underlying performance metric and guide an agent’s learning toward a desired

policy. Reward shaping can be designed in such a way that the optimal policy is

unchanged [151]. However, ad hoc reward shaping is known to be typically unsafe—

meaning that a shaped reward function is likely to change the optimal solution to a

given reinforcement learning task [7, 103]. Our work affirms that ad hoc reward design

amplifies this type of misdesign: the resulting optimal policies are often unrecogniz-

able from the expert’s known intent. Our work also contributes a new perspective

on how trial-and-error reward design results in reward function overfitting, in which

reward functions are unintentionally over-engineered for use with a specific algorithm.

Designing Rewards for Fast Learning

Singh et al. asked the philosophical question: where do rewards come from [184]?

They established a computational framework for quantifying the performance of re-
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ward functions, in which they assess whether ‘intrinsic’ motivation is helpful—i.e.,

whether reward functions benefit from rewarding subgoals. We build off of this work,

especially the computational framework for assessing reward functions.

Similarly, Sowerby et al. observe that certain reward functions result in faster

learning, and they put forth principles of reward design in accordance with this ob-

servation [187]. To find fast-learning reward functions, they use linear programming

to construct reward functions which meet a correctness criteria of encoding the opti-

mal policy. To test the fastness of learning from these reward functions, they assess

how many training steps are needed for a Q-learning agent to converge to the optimal

policy. The authors note this work is preliminary and has mostly been tested with

a single Q-learning algorithm with fixed hyperparameters. Our work contributes a

related perspective: fast learning may not be an intrinsic property of a good reward

function, but also a consequence of the paired choice of algorithm and hyperparame-

ters that were used to test that reward function.

AutoRL is another approach, which is gaining increasing traction [155, 52, 37,

212, 204, 162]. AutoRL frames RL as a meta-learning problem, in which the reward

function should be learned, perhaps using an evolutionary method. Our work has

interesting implications for AutoRL. Currently, these methods usually first optimize

a reward function and then fix this function to optimize other RL design choices, such

as the neural network architecture. Our work suggests this method—of first fixing

the reward function and then optimizing other design choices—may be suboptimal

relative to employing a joint optimization strategy.

Inferring Reward Functions

Since specifying reward functions is both known to be hard and requires expertise,

many research threads explore how to learn reward functions from intuitive signals

like demonstrations [152, 216], preferences [39, 106], and feedback [107, 133]. Inverse

reward design is an approach that requires experts to specify reward functions but

recognizes that these designed reward functions are only observations about the true

goal. As such, inverse reward design works try to infer a true reward function based on
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these observations [72, 170]. Our work provides empirical support for this approach,

as we find evidence that this assumed human behavior—of designing reward functions

as observations and not as true problem specifications—is common in practice. He et

al. similarly view reward design is an iterative process [77]. Their work contributes

a mechanism for surfacing environments where the reward incentivizes the wrong

behavior to the human expert to support them in revising their reward function. Our

work reinforces the importance of these types of debugging tools.

3.3 Preliminaries

Reward Function Overfitting

Let 𝑀 : 𝜏 → R be the true task performance metric. For example, this metric might

encode whether the agent reached a goal state or not. Let a learning context be

a tuple of an RL algorithm, hyperparameter values, and an MDP∖𝑟; given a reward

function, a learning context can be used to train a policy. We claim a reward function

𝑟1 is overfit with respect to one or more learning contexts, 𝐷1 ∼ 𝒟, if there exists

an alternative reward function 𝑟2 such that the task performance metric is optimized

over 𝐷1 but not over the larger distribution, 𝒟:

E
𝜏∼𝜋𝑟1,𝐷1

[𝑀(𝜏)] > E
𝜏∼𝜋𝑟2,𝐷1

[𝑀(𝜏)]

E
𝜏∼𝜋𝑟1,𝒟

[𝑀(𝜏)] < E
𝜏∼𝜋𝑟2,𝒟

[𝑀(𝜏)]
(3.1)

where 𝐷1 is a set of one or more learning contexts, 𝐷1 = {𝑑1, 𝑑2, . . . , 𝑑𝑛}. This defini-

tion is adapted from supervised learning overfitting: the hypothesis space corresponds

to the space of possible reward functions and the training and test sets correspond to

potential RL algorithms, hyperparameters, and environments [142].

Optimal Reward Functions

Optimal reward functions are related to overfitting: these reward functions are the

best performing in a given a learning context. A reward function 𝑟*𝒟 is optimal under

46



Figure 3-2: An example of the Hungry Thirsty domain (4× 4 grid). Food and water
are each located in a random corner. Red walls are impassable. The current state is
abbreviated as H ∧ ¬T, which corresponds to the agent being hungry and not thirsty.
The 6×6 grid Hungry Thirsty is depicted in [184]. Under the sparse reward function,
the optimal policy is for the agent to alternate between traveling to the water and
drinking when thirsty, and traveling to the water and eating when not thirsty.

some distribution 𝒟 of learning contexts if it maximizes the expected value of learned

policies, i.e., 𝑟*𝒟 = argmax𝑟 E𝜏∼𝜋𝑟,𝒟 [𝑀(𝜏)].

Hungry Thirsty Domain

We use a modified Hungry Thirsty domain [184] as a testbed. This gridworld domain

has a fixed time horizon of 200 steps. Food is located in one randomly-selected corner;

water in another. Some transitions are blocked by walls (Fig. 3-2). At each timestep,

the agent can choose one of six actions: move in a cardinal direction, eat, or drink.

The agent’s goal is to have sated hunger for as many timesteps as possible. The agent

is hungry if and only if it did not eat in the last timestep. However, the agent can

only successfully eat if it is co-located with the food and has quenched thirst. On

each timestep, the agent stochastically becomes thirsty with 0.1 probability, and only

becomes not thirsty if it drinks while co-located with the water. The agent’s state is

described by its location, as well as two boolean predicates: H and T, corresponding

to hunger and thirst. Time remaining is omitted.

For this task, the performance metric is simply the number of timesteps the agent
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has sated hunger: 𝑀(𝜏) =
∑︀200

𝑡=1 1(¬H ∈ 𝑠𝑡). This specific metric can be formulated

as a sparse Markovian reward function, 𝑟(𝑠, 𝑎, 𝑠′) = 1(¬H ∈ 𝑠).2 Under the optimal

policy for this reward function, the agent alternates between navigating to the water

or drinking when thirsty, and navigating to the food or eating when not thirsty.

While it is often possible for RL algorithms to learn with this sparse reward function,

shaped reward functions that reward the not thirsty (¬T) subgoal or punish time

spent hungry (H) let many RL algorithms solve this domain faster and more easily.

These properties make this domain an interesting testbed for studying reward design.

For our experiments, all reward functions take the form:

𝑟(H ∧ T) = 𝑎 𝑟(H ∧ ¬T) = 𝑏

𝑟(¬H ∧ T) = 𝑐 𝑟(¬H ∧ ¬T) = 𝑑

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ R. Since there are no reward components for location, oppor-

tunities for shaping—and, thereby, overfitting—are limited but still possible. For

shorthand, we write reward functions as [𝑎, 𝑏, 𝑐, 𝑑]. We say reward functions encode

the task when the optimal policy matches the optimal policy derived from the sparse

reward function. Singh et al. found the highest-performing reward function to be

[−0.05,−0.01, 1.0, 0.5] for a continuing version of this domain [184]; this reward func-

tion is dense and notably rewards drinking water as a subgoal.

When conducting large experiments, we assign each of 𝑎, 𝑏, 𝑐, and 𝑑 to a value

from the set: {±1,±0.5,±0.1,±0.05, 0}, the same values used in prior art [184].

Reward functions that meet the following criteria trivially do not encode the task

and are thus excluded: 𝑟(H ∧ ¬T) ≥ 𝑟(¬H ∧ T) and 𝑟(H ∧ ¬T) ≥ 𝑟(¬H ∧ ¬T). Such

reward functions encode an incorrect optimal policy of navigating to the water and

consistently drinking. This filtering leaves 5,196 reward functions.

2Such reformulation as a Markovian reward function is not universally possible across all task
performance metrics.
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3.4 Computational Experiments

We first assess overfitting in reward functions by conducting large-scale performance

comparisons, in which we measure a learning context’s ability to optimize the task

performance metric given a reward function. As an intuitive example, we speculate

that when using an RL algorithm with a high learning rate, a high magnitude reward

function might be less likely to lead to convergence within a fixed training duration

than a lower magnitude reward function.

To study this relationship between reward function design and hyperparameters

empirically, we assess the mean task performance metric accumulated over all 200-

timestep episodes of training achieved by learning with different reward functions

across varied Q-learning hyperparameters: 𝛾 (the environment discount factor) and

𝛼 (the learning rate). While 𝛾 is formally defined as a parameter of the environment,

and not the learning algorithm, it is typically selected to construct a viable horizon for

applying an RL algorithm [92] and can thus be equally considered a hyperparameter

of the learning algorithm. We additionally study whether the reward functions are

overfit to the learning algorithm itself by comparing performance metrics with several

deep RL methods: A2C [143], DDQN [144], and PPO [180] in the 6×6 Hungry Thirsty

domain. Unless otherwise specified, we train 10 agents per experimental setting.

H1: Reward functions that are effective in one learning context can be

ineffective in another. There exist two different learning context samples (𝐷1 and

𝐷2) and a reward function 𝑟1 such that 𝑟1 achieves high cumulative performance (as

measured by the true performance metric) when tested with 𝐷1 but low cumulative

performance with 𝐷2. In formal terms, there exists a reward function 𝑟1 such that

E
𝜏∼𝜋𝑟1,𝐷1

[𝑀(𝜏)] > 𝛽1 and E
𝜏∼𝜋𝑟1,𝐷2

[𝑀(𝜏)] < 𝛽2,

where 𝛽1 is some high threshold (e.g., performing among the top 25% of reward

functions when tested with 𝐷1) and 𝛽2 is some low threshold (e.g., performing among

the bottom 25% of reward functions when tested with 𝐷1).
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H1 tests whether some reward functions enable successful learning in some learn-

ing contexts but not in others. In other words, this hypothesis assesses whether

reward function overfitting can occur. Although the learning contexts in 𝐷2 could

be chosen adversarially—i.e., to include an RL algorithm incapable of learning—we

assume all learning contexts in 𝐷2 aim to maximize expected return and are generally

capable of doing so.

H2: Reward functions that are optimal in one learning context can be

suboptimal in another. Given a reward function 𝑟*𝐷1
that is optimal with respect

to 𝐷1, a different reward function 𝑟*𝐷2
may be optimal with respect to 𝐷2. In formal

terms, there exist two learning context samples 𝐷1 and 𝐷2 such that 𝑟*𝐷1
̸= 𝑟*𝐷2

.

H2 tests tests whether the reward functions which are found to be best-performing

are consistently best-performing across multiple learning contexts. As in H1, we

assume that all considered learning contexts aim to maximize expected return and

are generally capable of doing so.

H3: The performances of different reward functions are uncorrelated

across learning contexts. If reward functions are ranked by their average cumula-

tive performance metric scores (e.g., 𝑟𝑎 > 𝑟𝑏 > 𝑟𝑐 > ... for a learning context sample

𝐷1), the ranked reward functions from 𝐷1 will be uncorrelated with the ranked re-

ward functions from a different sample, 𝐷2. In formal terms, for some set of reward

functions 𝑟1, 𝑟2, . . . , 𝑟𝑛, E𝜏∼𝜋𝑟𝑖,𝐷1
[𝑀(𝜏)] will be uncorrelated with E𝜏∼𝜋𝑟𝑖,𝐷2

[𝑀(𝜏)] for

1 ≤ 𝑖 ≤ 𝑛.

H3 examines the commonality of reward function overfitting. If this phenomenon

is rare, correlation across learning contexts should be high. If it is common, correlation

should be low. Of these hypotheses, confirmation of H3 is most concerning as it

indicates extensive reward function overfitting.

3.4.1 Overfitting to Hyperparameters

We first assess whether reward functions can be overfit to either the discount factor,

𝛾, or the learning rate, 𝛼. For this experiment, we use a Q-learning agent trained over

50



=0.99 =0.8
0

20000

40000

60000

80000

100000

120000

Cu
m

ul
at

iv
e 

Tr
ue

 R
ew

ar
d

Relative Reward Function Performance
for =0.99 and =0.8

H  T:   -1.00; H  ¬T:   -0.50; ¬H  T:    1.00, ¬H  ¬T:    0.00
H  T:   -1.00; H  ¬T:   -1.00; ¬H  T:   -1.00, ¬H  ¬T:    0.10

Figure 3-3: A parallel coordinate plot showing the paired rankings of reward func-
tions. Each line corresponds to a reward function, with cumulative performance
averaged over 10 independently-trained agents. The many intersections portray the
uncorrelated nature of these rankings. The two reward functions with the largest
cumulative difference in performance are highlighted. These reward functions result
in low cumulative performance when 𝛾 = 0.99, but high performance when 𝛾 = 0.8.
See Apdx. A.3 for more examples.

2000 episodes. For evaluating overfitting to the discount factor, we vary 𝛾 for each

learning context: 𝛾 = 0.99, 𝛾 = 0.8, and 𝛾 = 0.5. For evaluating overfitting to the

learning rate, we consider 𝛼 = 0.05 and 𝛼 = 0.25. The standard hyperparameters are

described in Apdx. A.4. We average performance, as measured by the cumulative true

reward, over 10 trials to account for stochasticity stemming from the environment or

from the learning process (i.e., randomized weights).

H1: Reward functions that are effective in one learning context can be inef-

fective in another. For all experiments, we find some reward functions which result

in policies which achieve high task performance scores when trained with one learn-

ing context but low task performance scores when trained with a different learning

context. Some such reward functions are highlighted in Fig. 3-3 and Apdx. Fig. A-1.

To assess whether these differences are not just a consequence of stochastic policy
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Reward Function Experiment Hoeffding Bound 𝑝-value

[-1.0, -1.0, -1.0, 0.1] 𝛾 = 0.99 [4,965; 20,234]
< 0.01

𝛾 = 0.8 [86,653; 101,922]

[-0.1, 0.2, 0.5, 1.0] DDQN [94,790; 182,944]
< 0.01A2C [-29,040; 59,114]

Table 3.1: A comparison of reward function performance assessed over 1000 trials (Q-
learning) or 30 trials (deep RL methods). Performance is assessed with the Hoeffding
Bound, which is akin to a confidence interval, and a Mann Whitney U-test. This data
confirms that the same reward function can lead to very different performance with
different hyperparameters or algorithms.

learning, we re-ran these experiments with the reward functions which resulted in

maximally different true performance for 1000 additional trials. We then computed

the 90% Hoeffding Bound [80], which bounds the average cumulative task performance

metric across trials with 90% probability, and we separately performed a Mann Whit-

ney U-test [148] to assess whether the mean cumulative true task performance values

were drawn from the same underlying distribution. We find, in all cases, we can reject

the null hypothesis that these underlying distributions are the same as the observed

differences are all statistically significant (𝑝 < 0.05). We conclude that, across varied

hyperparameters, reward functions that are effective in one learning context can be

ineffective in another. See Tab. 3.1 and Apdx. Tab. A.1.

H2: Reward functions that are optimal in one learning context can be

suboptimal in another. Across each pair of tested learning contexts, we find that

the best-performing reward function differs (Apdx, Fig. A-2). We further confirm this

finding by fixing an experimental learning context and assessing whether the best-

performing reward function for that learning context outperforms the top-3 reward

functions from a different experimental learning context, testing the cumulative task

performance metric for each reward function over 1000 trials. For example, the best-

performing reward function function for 𝛾 = 0.99 was [−0.05,−0.05, 0.5, 0.5], which

outperformed the best-performing reward function for 𝛾 = 0.5, [−1.0,−1.0, 0.0, 1.0].

We then compute the 90% Hoeffding Bound for the mean cumulative task perfor-

mance metric, and we separately conduct a Mann Whitney U-test to assess whether
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# of Reward Fns 𝐷1 𝐷2 𝜏𝑏 𝑝-value

5196

𝛾 = 0.99 𝛾 = 0.8 0.07 < 0.01
𝛾 = 0.99 𝛾 = 0.5 0.04 0.07
𝛾 = 0.8 𝛾 = 0.5 0.12 < 0.01
𝛼 = 0.25 𝛼 = 0.05 0.11 < 0.01

107

PPO A2C 0.25 0.01
PPO DDQN −0.04 0.62
PPO QLearn 0.13 0.08
A2C QLearn −0.08 0.29
A2C DDQN −0.01 0.87

DDQN QLearn −0.06 0.41

Table 3.2: Kendall’s 𝜏𝑏 correlation over the 5196 tested reward functions for hyper-
parameter experiments and 107 tested reward functions for algorithm experiments.
𝜏𝑏 ∈ [−1, 1]. |𝜏𝑏| < 0.1 indicates the variables are uncorrelated; |𝜏𝑏| < 0.2 indicates a
weak correlation. In our experiments, H3 is supported with low 𝜏𝑏 values (even with
high 𝑝-values). Almost all comparisons are either uncorrelated or weakly correlated;
H3 is supported for all experiments except PPO vs. A2C. This data confirms that
the choice of reward function is highly sensitive for RL algorithm performance.

the distribution of the best-performing reward function’s performance is greater than

that of the alternative tested reward function (which is best-performing for a dif-

ferent experimental condition). We find that we can reject the null hypothesis that

these reward functions result in equal performance distributions in 16 of 18 experi-

ments (𝑝 < 0.05). In general, the best-performing reward function for one learning

context outperforms the top-3 reward functions for another learning context. See

Apdx. Tab. A.2.

H3: The performances of different reward functions are uncorrelated across

learning contexts. We compute Kendall’s tau rank correlation to assess H3. This

measures the strength and direction of the monotonic association between rankings,

without considering the difference in magnitude of the performance metric since some

learning contexts may be consistently ‘better’ or ‘worse’ in terms of raw performance.

We used a nonparametric test, since the cumulative scores were not found to be nor-

mally distributed over many trials. In this setting, the null hypothesis is that two

random variables are independent (i.e., 𝜏𝑏 = 0). H3 is supported with low 𝜏𝑏 val-

ues, even with high 𝑝 values. Generally, the closer 𝜏𝑏 is to 0, the more samples are
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needed to show significance. We find that reward function performance is uncorre-

lated (|𝜏𝑏| < 0.1) or weakly correlated (|𝜏𝑏| < 0.2, see Table 3.2) in all discount

factor and learning rate experiments. We conclude that performance across varying

hyperparameters is sensitive to reward function choice.

From these experiments, we find consistent evidence that reward functions can be

overfit to RL hyperparameters.

3.4.2 Overfitting to RL Algorithms

For the Section 3.4.1 Q-learning experiments with varied hyperparameters, we trained

5196 agents, 10 times each. The protocol for generating these reward functions is de-

scribed in Section 3.3. In the deep RL setting, this scale of training is infeasible

because training each agent takes between 3 and 11 minutes (Apdx. A.6). To test

overfitting in this setting, we instead consider a restricted set of reward functions to

reduce the computational burden. We source these reward functions from the user

study; specifically, we consider the set of unique reward functions that experts hand-

crafted at any point during their sessions and that also encode the desired optimal

policy in easy environment configurations (Section 3.5). In total, we analyze 107

reward functions in this deep RL setting. For each reward function, we train A2C,

DDQN, PPO, and Q-learning agents. We train each agent over 5000 episodes, and

average performance over 10 trials.

H1: Reward functions that are effective in one learning context can be

ineffective in another. We again find that every experiment variation uncovers re-

ward functions which enable successful learning in one experimental learning context,

but not the other. For example, the reward function [−0.1, 0.2, 0.5, 1] achieved a high

mean cumulative performance metric score of 232055 for DDQN, but a low mean

cumulative score of 107—indicative of never learning the optimal policy—for A2C.

We then ran this specific test an additional 30 times, and found evidence that we can

again reject the null hypothesis that these true task performances were drawn from

the same underlying distribution (𝑝 < 0.05). See Table 3.1 and Appendix Fig. A-3,
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in which the reward functions that achieve maximally different performance metric

measures are highlighted.

H2: Reward functions that are optimal in one learning context can be

suboptimal in another. In 5 of 6 experiments varying the RL algorithm, the

optimal reward functions differ. This was only not true is in the PPO and A2C

comparisons. In this case, the true performance metric function itself ([0, 0, 1, 1]) is

the optimal reward function for both algorithms. See Appendix Fig. A-3.

H3: The performances of different reward functions are uncorrelated across

learning contexts. Again using Kendall’s 𝜏𝑏 for assessment, we mostly find evidence

that reward functions’ cumulative true performance metric scores are uncorrelated

when varying the RL algorithm (|𝜏𝑏| < 0.1, see Table 3.2). Specifically, we find the

PPO vs. DDQN, A2C vs. Q-learning, A2C vs. DDQN, and DDQN vs. Q-learning

agents to be mutually uncorrelated. We find evidence of weak correlation between

PPO and Q-learning (|𝜏𝑏| < 0.2). Lastly, we find evidence of some correlation

(𝜏𝑏 = 0.25) for the PPO vs. A2C comparison. Statistical significance—which allows

us to reject the null hypothesis that the two random variables are independent—is

generally not established due to the reduced sample size.

From these experiments, we find evidence that reward functions can be overfit to RL

algorithms.

3.5 Expert Human Subject Experiments

To assess how experts design reward functions and whether this problem of reward

function overfitting caries over to realistic settings, we conduct a controlled observa-

tion study.

Study Population

We conducted 2 pilot studies, followed by 30 studies with expert participants drawn

from four US research universities (R1). To qualify as an expert, participants were
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required to meet one or more of the following criteria: (1) have experience conducting

research on RL methods; (2) have used RL methods in research; or (3) have passed

a class which covered reinforcement learning in depth. Of the 30 participants, 1

was a post-doctoral scholar, 17 were PhD students, 5 were research-based master’s

students, and 7 were advanced undergraduates. Participants are each assigned a

study ID, ranging from P0 to P29.

Study Protocol

The study session took one hour and was primarily conducted in-person (19 of 30 ses-

sions). Participants were compensated $40 USD in the form of an Amazon giftcard.

The study used a Jupyter notebook, in which participants were required to select

a reward function, algorithm, and hyperparameters to train an agent to solve the

Hungry Thirsty task (Apdx. A.2). Participants were asked to speak aloud as they

worked, and the experimenter took detailed notes. The experimenter occasionally

asked open-ended questions (such as “what are you trying to do now?”) to prompt

the participant to continue speaking. Five minutes before the end of the session,

participants were asked to submit their best configuration consisting of some reward

function 𝑟𝑖 and some algorithm and hyperparameter selection, 𝐷𝑖. Afterwards, par-

ticipants were asked to answer five structured questions (Apdx. A.2.3).

The participants were informed that the research team would independently train

an agent using their submitted reward function, algorithm, and hyperparameters,

and that if this trained agent performed in the top ten across all participants’ agents

in terms of cumulative performance, they would receive a $10 USD bonus, again in

the form of an Amazon giftcard. Participants were required to train at least three

different agents—though the experimenter explicitly noted that they could simply

re-train the same agent three times to meet this requirement.

The first 12 participants used a 6× 6 grid for the Hungry Thirsty domain. After

observing participants struggling to solve this task, we reduced the size of the grid to

4× 4 for the remaining 18 participants. The study was approved by the IRB.
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Experts Often Design Invalid Reward Functions

The Hungry Thirsty domain has harder and easier environment configurations. In

total, there are 12 different configurations, which correspond to different placements

of the food and water. In a 6 × 6 grid, the food and water can either be located 5

steps apart in the best case or 16 steps apart in the worst case. In a 4× 4 grid, these

distances are 3 and 9 steps in the best and worst cases, respectively. As in the original

version of Hungry Thirsty [184], the locations of the food and water are randomly

resampled each time the user trains a new agent, but remain consistent throughout

the lifetime of the agent. In this study, the user is tasked with designing a reward

function which is invariant to any choice of environment configuration.

To determine whether a reward function is valid for a given task configuration (i.e.,

for fixed food and water positions), we empirically assess whether a policy—learned

with value iteration—is the same as the optimal policy under the sparse reward

function. Specifically, we use value iteration (with 𝜃 = 0.01 as the end criteria)

to solve for an approximately optimal policy using the sparse reward function and

𝛾 = 0.99. We then use value iteration to solve for a policy using the user’s submitted

reward function and choice of 𝛾. We run 100 test episodes for each agent with a

fixed random seed, and use the average cumulative undiscounted task performance

metric for comparison. If the policy learned with the user’s reward function has

the same cumulative undiscounted task performance as the policy learned with the

sparse reward function, we consider it valid. If the user’s reward function is valid for

all environment configurations, we say it encodes the task.

The majority of participants (83%) successfully selected reward functions which

were valid with the easier placements of the food and water on adjacent corners (10

of 12 in the 6 × 6 setting; 15 of 18 in the 4 × 4 setting). However, only 47% of

participants selected reward functions which were valid when the food and water are

maximally distant, at opposite corners (4 of 12 in the 6 × 6 setting; 10 of 18 in the

4× 4 setting). For example, P23’s reward function [−0.05, 0.5, 0.5, 1.0] is valid in the

easier adjacent case but not the opposite-corners case, because when the food and
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water are maximally distant the optimal policy causes the agent to remain in the

state H ∧ ¬T. Finding this form of misdesign, where reward functions are only valid

in some environment configurations, adds support to the research pursuit of inverse

reward design methods [72], which is built upon the perspective that reward functions

should be considered an observation about the expert’s intended reward function and

not as a perfect specification.

Experts Overfit Reward Functions to Algorithms

Even when experts wrote reward functions which encode the task, they typically con-

tinued to edit their reward functions. Each expert tried a sequence of reward functions

𝑟1, 𝑟2, . . . , 𝑟𝑛 and finally settled on some reward function 𝑟𝑖 where 𝑖 ∈ [1, 𝑛]. The user

evaluated each of these reward functions alongside potentially-changing algorithms

and hyperparameters, 𝐷1, 𝐷2, . . . , 𝐷𝑛 and settled on some choice 𝐷𝑖. Because every

aspect of the user’s solution may be changing simultaneously, this setting is messier

and harder to evaluate than the purely-computational setting. To evaluate overfit-

ting, we test all of the user’s reward functions with standard implementations for

DDQN, PPO, and A2C and fixed hyperparameters (Apdx. A.4). We discard the

user’s algorithms (i.e., 𝐷𝑖) and exclusively test the user’s reward functions.

In this setting, we define overfitting to have occurred if one or more of the user’s

tested reward functions (𝑟𝑗, where 𝑗 ∈ [1, 𝑛] and 𝑟𝑗 ̸= 𝑟𝑖) significantly outperforms

their final selection with respect to one or more of the three tested RL algorithms.

We define this performance difference threshold to be 20000, accumulated over 5000

training episodes and averaged over 10 trials. This overfitting assessment is differ-

ent from the computational setting, which requires comparing the rankings and not

absolute performance between different reward functions. Since each user tried only

a small handful of reward functions (on average, 4.1 unique reward functions), these

rankings are less meaningful.

Of the users who tried multiple reward functions and submitted a best-case-valid

reward function, 68% (15 of 22) overfit their reward functions. For example, par-

ticipant P20 tried the reward function [−0.1, 0.1,−0.1, 1], which achieved a mean
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cumulative performance of 138,092 using DDQN. In their final selection, this user

instead chose the reward function [−5, 15, 5, 100], which achieved a mean cumulative

performance of 1,031 using DDQN. We include an alternative metric for overfitting

in the user study in Apdx. A.5.

Assessing the Design Process with Thematic Analysis

To analyze not just experts’ reward design outcomes, but also their design process,

we applied qualitative analysis in the form of thematic analysis [27, 82]. Thematic

analysis is a system for extracting patterns from qualitative data by systematically

coding and analyzing transcripts. To perform thematic analysis, every statement of

each transcript is first assigned a summary (also known as a code). Each of these

summaries is then further distilled into a detailed, low-level theme. These low-level

themes are finally distilled into high-level themes. Thematic analysis is generally

considered successful if the resulting themes are consistent and coherent, and describe

the data they incorporate well. In such cases, the extracted themes provide insight

into the unstructured data. In our application of thematic analysis, the first summary

step of this process generated 990 codes. The second step generated 212 low-level

themes. And, finally, the third step resulted in the extraction of 10 high-level themes.

We include the full analysis in the supplementary material. Here, we discuss these

themes and their implications for reward design.

Experts’ Approaches to RL and Reward Design

Thematic analysis showed that experts use one or more of the following strategies

when tasked with crafting and solving an RL task: folklore-based, intuition-based,

trial-and-error-based, hypothesis-based, random-based, or reason-based. For exam-

ple, P25 declared, “I’ve heard that reward scaling is pretty important”, and this

quote is an example of using a folklore-based process. Concerning this same parame-

ter choice, P27 declared, “The reward scaling factor must be very large, I think, since

you might only see little food,” and this quote is an example of using a reason-based

process. Experts often switched between two or more strategies.
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Trial-and-Error Reward Design is Typical

This user study was designed to be naturalistic; participants could choose to focus

primarily on any combination of the three axes of choice, between specifying the re-

ward function, algorithm, and hyperparameters. Conventional reward design wisdom

suggests that experts should try to align a reward function as closely as possible with

the task completion criteria, and should only adjust the reward function if it is found

to not encode correct measurements of task outcomes.

93% of experts tried at least two reward functions (only P2 and P4 stuck to a

single reward function). Experts tried 4.1 unique reward functions on average. In this

study setting, shaping was unnecessary: any of the available algorithms could learn

from the sparse reward function. Despite this, and almost all users (97%) shaped

their reward functions. This finding is compelling: even in the absence of a need to

shape, experts gravitate towards doing so.

Analyzing study transcripts, we find that half of experts (P5-13, P15-17, P20,

P23, P27-28) explicitly noted a perceived error at least once before modifying their

reward function (thus employing a reason-based process). For example, P5 stated:

“I realized I’m penalizing the H ∧ T state too much, because the agent knows it will

be penalized on the way back [to the water].” In contrast, some experts indicated

they were relying on trial and error: P28 stated, “The worst possible state to be in

is H∧ T, so I’m going to assign -1. The best possible state to be in is ¬H∧¬T, so I’m

assigning that to 1. H∧¬T is not particularly as bad as H∧ T... Setting that to -0.25.

Reward for ¬H ∧ T: not too close to -1; I’ll just assign some arbitrary small value.”

A Common Misdesign Cause: Weighing State Goodness

Weighing state goodness to design a reward function was a recurring low-level theme.

Most experts (83%) stated something to the effect of: “It’s best to be ¬H∧¬T, so I’ll

set that to the max, 1. Being ¬T is better than being ¬H. Worst is at H ∧ T; setting

that to -1” (P25; this statement corresponded to their invalid reward function [-1.0,

0.3, -0.35, 1.0], for which the optimal policy is to remain drinking water indefinitely).
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This reward design practice—of using the reward function to rank the goodness of

immediate states and/or actions, applying a myopic design strategy without assessing

how the reward function will be used as an optimization target for computing expected

discounted return—often led to reward misdesign, as it did for P25.

Though less often, some experts did recognize the importance of reward accumula-

tion and state visitation frequency (another recurring low-level theme). For example,

P23 stated “A positive reward for H ∧ ¬T is not the way to go. A combination with

a negative reward for H∧ T makes it worse, since it would rather accumulate positive

rewards at the water instead of searching for food.” This design process—of consider-

ing summed reward, which aligns with the RL optimization objective—was relatively

rare (i.e., 30% of experts noted something to this effect). From this qualitative anal-

ysis, we found this lack of emphasis on reward accumulation and expected discounted

return to be the main cause of explicit reward misdesign, wherein reward functions

were invalid and did not correctly encode the task.

This observation—that humans assume a myopic interpretation of reward func-

tions, in which reward accumulation is largely ignored—has previously been observed

in another setting of reinforcement learning from human feedback. [108] discovered

that when learning a reward function from non-expert human feedback, humans adopt

a similarly myopic teaching strategy. Finding that this myopic interpretation is echoed

across both non-expert and expert users can inform future efforts to support humans

in designing reward functions, and can help reinterpret how humans’ reward functions

should be used for optimization.

3.6 Limitations

While we studied the Hungry Thirsty domain in depth in this work, we only eval-

uated reward design practice in this one domain. Hungry Thirsty is a rich testbed

for assessing reward design practice, but understanding this practice across multiple

domains with diverse properties equally deserves attention. This domain in partic-

ular allows us to assume the existence and specification of a true task performance
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metric, but in many circumstances, specifying such a metric is itself a challenging

problem. In such cases, the methodology we use to study reward design would not

readily reapply.

Another limitation of this work concerns the definition of reward function over-

fitting. Our definition omits a temporal aspect to the distribution (𝒟, consisting of

algorithms, hyperparameters, and tasks) that makes samples from 𝒟 dependent (i.e.,

not i.i.d.). For example, if an expert has tested a reward function 𝑟 with one RL

algorithm and a set of hyperparameter values, we suspect such an expert is more

likely to next test the reward function 𝑟 with the same algorithm and different hyper-

parameter values than with a different RL algorithm. This temporal component is

omitted from our overfitting definition—as it similarly tends to be in the supervised

learning setting—and future work could explore the consequences of this omission.

3.7 Discussion

Despite the prevalence of trial-and-error reward design, the implications of this prac-

tice remain underexplored. In this first analysis of the consequences of this practice,

we identify two problems: reward function overfitting and the frequent design of in-

valid task specifications. In overfitting, reward functions are designed with respect

to a fixed algorithm or hyperparameter set, and the resulting reward functions bias

toward better learning given these design choices. This finding contributes to con-

cerns around reproducibility in RL: we find the performance of the reward function

is often dependent on the choice of algorithm. For RL practitioners, one takeaway

from this work is that the reward function—like the discount factor [92]—should be

defined twice: once to specify the true problem as part of the MDP, and once as a

form of hyperparameter for the RL algorithm to facilitate learning. This separation

accommodates the need to design a reward function for successful learning while also

supporting fair evaluations.

In addition to overfitting, we find that ad hoc trial-and-error reward design leads to

misdesign as invalid task specifications, wherein experts design reward functions which
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fail to encode the desired task even in a simple gridworld domain. One candidate cause

for this misdesign is that experts typically adopt a myopic interpretation of reward,

and this interpretation is at odds with the RL objective of optimizing cumulative

and perhaps discounted rewards. Given this finding, one direction for future work

would assess the systemic errors humans make when designing reward functions, and

try to construct better mechanisms for inferring the humans’ true intent given these

systemic errors. Such a mechanism could build off of inverse reward design [72].

While there is great optimism around the flexibility of reward as the optimization

target for learning [182], this paper contributes to mounting evidence that most peo-

ple are ineffective reward designers in current practice [7, 111, 103]. As future work,

we assert that the community should also explore mechanisms to support humans—

including experts!—in this reward design endeavor. Specifically, one could develop

guidance for the human reward designer’s process such that it more directly reflects

the RL optimization target of expected discounted return. Additionally, it is worth

exploring whether incorporating explanation mechanisms can improve reward design

outcomes (for example, by assisting experts in assessing the contributions of decom-

posed reward components [94]).

Alternative models of reward should also be considered and evaluated both for

their propensity for overfitting and for their propensity for other forms of misdesign.

Reward machines [89] and hybrid reward architectures [200] are two such compelling

candidates. In reward machines, reward functions are described as a type of finite

state machine instead of directly as a function. While reward machines may elicit

feature engineering and are thus taboo in RL, humans may be better able to design

reward functions which correctly encode a task if they use sufficient structure for

guiding the design process. In hybrid reward architectures, the reward function is

decomposed into 𝑛 different reward functions, each of which is then used to optimize

a policy. These policies are subsequently aggregated into a single policy. These

methods both induce supporting structures for designing reward functions, and this

support may help humans write better reward functions with lowered propensity for

overfitting or other forms of misdesign.
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Chapter 4

Inspect: Classifiers

Inspect Behaviors
example trajectories 𝛕𝛕

showing policy πi or π ¬i

Figure 4-1: This chapter focuses on inspecting behaviors, particularly for neural

networks and classifiers. This technique is adapted for robot controllers in Chapter 5.

Inspecting the behaviors of AI systems is critical for supporting humans in finding the

flaws in their specifications. Inspecting behaviors is the second interaction component

of the interactive system described in Figure 1-1 and highlighted above in Figure 4-1.

To begin designing methods in service of inspecting AI system behaviors, this dis-

sertation temporarily suspends the focus on sequential decision-making systems, and

focuses first on inspecting the learned behaviors of classification models such as neural

networks. This setting is simpler, since classifiers are not subject to the temporal and

spatial constraints of sequential decision-making settings. This chapter introduces

a method for inspecting the learned behaviors of classifiers; Chapter 5 modifies this

method to inspect the learned behaviors of RL and other robot controllers.
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Figure 4-2: Given a neural network which classifies images as either “Corgi” or
“Bread,” we generate prediction level sets, or sets of examples which trigger a tar-
get prediction confidence (e.g., 𝑝Corgi = 𝑝Bread = 0.5). Perturbing an arbitrary image
to trigger the target confidence is one way of finding such examples, as shown in (A).
However, such examples give little insight into the typical model behavior because
they are unrealistic and unlikely. For more insight, Bayes-TrEx explicitly considers
a data distribution (gray shading on the bottom plots) and finds in-distribution exam-
ples in a particular level set (e.g., likely Corgi (B), likely Bread (D), or ambiguous be-
tween Corgi and Bread (C)). Bottom left: the classifier level set of 𝑝Corgi = 𝑝Bread = 0.5
overlaid on the data distribution. Example (A) is unlikely to be sampled by Bayes-
TrEx due to near-zero density under the distribution, while example (C) is likely
to be sampled. Bottom right: Sampling directly from the true posterior is infeasible,
so we relax the formulation by “widening” the level set. By using different data dis-
tributions and confidences, Bayes-TrEx can uncover examples that invoke various
model behaviors to improve model transparency.

4.1 Introduction

Debugging, interpreting, and understanding neural networks can be challenging [45,

128, 156]. Existing interpretability methods include visualizing filters [210], saliency

This chapter’s content largely reproduces the text from Booth, Zhou, Shah, and Shah’s AAAI
2021 paper: Bayes-TrEx: a Bayesian sampling approach to model transparency by example [22].
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maps [183], input perturbations [172, 131], prototype anchoring [124, 36], tracing

with influence functions [110], and concept quantification [63]. While some methods

analyze intermediary network components such as convolutional layers [17, 157], most

methods instead explain decisions based on specific inputs. These inputs are typically

selected from the test set, which may lack examples that lead to highly confident

misclassifications or ambiguous predictions. Thus, it may be challenging to extract

meaningful insights and attain a holistic understanding of model behaviors by using

only test set inputs. Finding and analyzing inputs that invoke the gamut of model

behaviors would improve model transparency by example.

To create new examples beyond the scope of the test set, Bayes-TrEx takes a

data distribution—either manually defined or learned with generative models—and

finds in-distribution examples that trigger various model behaviors. Bayes-TrEx

finds examples with target prediction confidences 𝑝 by applying Markov-Chain Monte-

Carlo (MCMC) methods on the posterior of a hierarchical Bayesian model. For

example, Fig. 4-2 shows a Corgi/Bread classifier. For different 𝑝-level set targets

(e.g., 𝑝Corgi = 𝑝Bread = 0.5), Bayes-TrEx can find examples where the model is

highly confident in the Corgi class, in the Bread class, or ambiguous between the two.

We use Bayes-TrEx to analyze classifiers trained on CLEVR [93] with a manually

defined data distribution, as well as MNIST [119] and Fashion-MNIST [206] with

data distributions learned by variational autoencoders (VAEs) [101] or generative

adversarial networks (GANs) [66].

Bayes-TrEx can aid model transparency by example across several contexts.

Each context requires a different data distribution and a specified prediction con-

fidence target. For example, Bayes-TrEx can generate ambiguous examples to

visualize class boundaries; high-confidence misclassification examples to understand

failure modes; novel class examples to study model extrapolation behaviors; and high-

confidence examples to reveal model overconfidence (e.g., in domain-adaptation). In

all of these use cases, the discovered examples can be further assessed with existing

local explanation techniques such as saliency maps (Fig. 4-3).

The main current alternative to Bayes-TrEx is to inspect a model by using
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Figure 4-3: Bayes-TrEx finds a CLEVR scene which is incorrectly classified as
containing a sphere. The generated example (left) is composed of only cylinders
and cubes, but the classifier is 97.1% confident this scene contains one sphere. The
SmoothGrad [186] saliency map highlights the small red cylinder as the object that
is confused for a sphere. When we remove it, the classifier’s confidence that the scene
contains one sphere drops to 0.1%.

test set examples. As a baseline comparison, we search for highly confident mis-

classifications and ambiguous examples in the (Fashion-)MNIST and CLEVR test

sets. We find few such test set examples meet these constraints, and the majority of

these can be attributed to mislabeling in the dataset collection pipeline rather than

misclassification by the model. In contrast, Bayes-TrEx consistently finds more

highly confident misclassified and ambiguous examples, which enables more flexible

and comprehensive model inspection and understanding.

4.2 Related Work

4.2.1 Model Transparency

Broadly, transparency is achieved when a user can develop a correct understanding

and expectation of model behavior. One common technique for developing trans-

parency is the test set confusion matrix: this matrix expresses the classifier’s ten-

dency of mistaking one class for another. Other transparency methods try to “open”

black-box models—for example, by visualizing convolutional filters through optimiza-

tion [50, 157] or image patches [17]. Like Bayes-TrEx, other transparency methods

communicate model behaviors through examples—for example, with counterfactu-

als [10, 96] or with student-teacher learning examples [164].

Some transparency methods aim to explain a model’s response to an individual
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input. For example, saliency maps compute a heat map over the input that repre-

sents the importance of each pixel [183, 210]. Importantly, these input-based methods

require a two-stage pipeline: finding interesting inputs → explaining the model re-

sponses (e.g., with saliency maps). Current efforts are focused on the second stage

with inputs simply retrieved from the test set. To the best of our knowledge, Bayes-

TrEx is the first work dedicated to the first stage of finding interesting inputs. The

examples uncovered by Bayes-TrEx can be used with any input-based method for

further analysis (Fig. 4-3 and App. B.11).

4.2.2 Model Testing

TensorFuzz [156] is a fuzzing test framework for neural networks which finds inputs

that achieve a wide coverage of user-specified constraints. TensorFuzz is similar to

Bayes-TrEx in that both methods aim to find examples that elicit certain model

behaviors. While TensorFuzz is designed to find rare inputs that trigger edge cases

such as numerical errors, Bayes-TrEx finds common, in-distribution examples. As

such, Bayes-TrEx is more suitable to help humans develop a correct mental model

of the classifier. Scenic [56] is a domain-specific language for model testing by

generating failure-inducing examples. While Bayes-TrEx is in part inspired by

Scenic, its formulation is more flexible since it is not a constrained domain-specific

language.

4.2.3 Natural Adversarial Examples

One Bayes-TrEx use case is uncovering high-confidence classification failures in

the data distribution. This idea is related to, but different from, natural adversarial

attacks [211]. Most adversarial attacks inject crafted high-frequency information to

mislead a trained model [191, 67, 153], but such artifacts are non-existent in natural

images. Zhao et al. [211] instead proposed a method to find natural adversarial

examples by performing the perturbation in the latent space of a GAN. While this

method finds an example which looks like a specific input, Bayes-TrEx finds high-
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confidence misclassifications in the entire data distribution.

4.2.4 Confidence in Neural Networks

Bayes-TrEx can also be used to detect overconfidence in neural networks. An

overconfident neural network [71] makes many mistakes with disproportionately high

confidence. While many approaches aim to address this network overconfidence prob-

lem [20, 58, 121, 194], Bayes-TrEx is complementary to these efforts. Rather than

altering the confidence of a neural network, it instead infers examples of a particular

confidence. If the model is overconfident, it may return few, if any, samples with am-

biguous predictions. At the same time, it may find many misclassifications with high

confidence. In our experiments (Sec. 4.4.8), we discover that the popular adversarial

discriminative domain adaptation (ADDA) technique produces a more overconfident

model than the baseline.

4.3 Methodology

Given a classifier 𝑓 : 𝑋 → ∆𝐾 which maps a data point to the probability simplex of

𝐾 classes, the goal is to find an input �⃗� ∈ 𝑋 in a given data distribution 𝑝(�⃗�) such

that 𝑓(�⃗�) = 𝑝 for some prediction confidence 𝑝 ∈ ∆𝐾 . We consider the problem of

sampling from the posterior

𝑝(�⃗�|𝑓(�⃗�) = 𝑝) ∝ 𝑝(�⃗�) 𝑝(𝑓(�⃗�) = 𝑝|�⃗�). (4.1)

A common approach to posterior sampling is to use Markov Chain Monte-Carlo

(MCMC) methods [28]. However, when the measure of the level set {�⃗� : 𝑓(�⃗�) = 𝑝}

is small or even zero, sampling directly from this posterior is infeasible: the posterior

being zero everywhere outside of the level set makes it unlikely for a random-walk

Metropolis sampler to land on �⃗� with non-zero posterior [73], and the gradient be-

ing zero everywhere outside of the level set means that a Hamiltonian Monte Carlo

sampler does not have the necessary gradient guidance toward the level set [149].
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To enable efficient sampling, we relax the formulation by “widening” the level set

and accepting �⃗� when 𝑓(�⃗�) is close to the target 𝑝 (Fig. 1-1). Specifically, we introduce

a random vector �⃗� = [𝑢1, . . . , 𝑢𝐾 ]
𝑇 , distributed as

𝑢𝑖|�⃗� ∼ 𝒩
(︀
𝑓(�⃗�)𝑖, 𝜎

2
)︀
, (4.2)

where 𝜎 is a hyper-parameter.

Instead of directly sampling from Eqn. 4.1, we can now sample from the new

posterior:

𝑝(�⃗�|�⃗� = �⃗�*) ∝ 𝑝(�⃗�)𝑝(�⃗� = �⃗�*|�⃗�), (4.3)

�⃗�* = 𝑝. (4.4)

The hyper-parameter 𝜎 controls the peakiness of the relaxed posterior. A smaller

𝛼 makes it closer to the true posterior and makes the distribution peakier and harder

to sample, while a larger 𝛼 makes it closer to the data distribution 𝑝(�⃗�) and easier to

sample. As 𝜎 goes to 0, it approaches the true posterior. Formally,

lim
𝜎→0

𝑝(�⃗�|�⃗� = �⃗�*) = 𝑝(�⃗�|𝑓(�⃗�) = 𝑝). (4.5)

While the formulation in Eqn. 4.2 is applicable to arbitrary confidence 𝑝, the

dimension of �⃗� is equal to the number of classes, which poses scalability issues for

large numbers of classes. However, for a wide range of interesting use cases of Bayes-

TrEx, we can use the following reductions:

1. Highly confident in class 𝑖: 𝑝𝑖 = 1, 𝑝¬𝑖 = 0. We have

𝑢|�⃗� ∼ 𝒩
(︀
𝑓(�⃗�)𝑖, 𝜎

2
)︀
, 𝑢* = 1. (4.6)
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�⃗� �⃗� 𝑝 𝑝 *

Figure 4-4: The graphical model for the inference problem of finding latent codes �⃗�
which map to images 𝑔(�⃗�) = �⃗� which exhibit specific prediction confidence 𝑓(�⃗�) = 𝑝.
The dashed box indicates the relaxed formulation, where 𝑝 is relaxed to 𝑝 *.

2. Ambiguous between class 𝑖 and 𝑗: 𝑝𝑖 = 𝑝𝑗 = 0.5, 𝑝¬𝑖,𝑗 = 0. We have

𝑢1|�⃗� ∼ 𝒩
(︀
|𝑓(�⃗�)𝑖 − 𝑓(�⃗�)𝑗|, 𝜎2

1

)︀
, (4.7)

𝑢2|�⃗� ∼ 𝒩 (min(𝑓(�⃗�)𝑖, 𝑓(�⃗�)𝑗)−max
𝑘 ̸=𝑖,𝑗

𝑓(�⃗�)𝑘, 𝜎
2
2), (4.8)

𝑢*
1 = 0, 𝑢*

2 = 0.5. (4.9)

𝜎1 and 𝜎2 are hyperparameters.

In addition, most high dimensional data distributions, such as those for images,

are implicitly defined by a transformation 𝑔 : 𝑍 → 𝑋 from a latent distribution 𝑝(�⃗�).

Consequently, given

�⃗� = 𝑔(�⃗�), (4.10)

�⃗�|�⃗� ∼ 𝒩 (𝑓(�⃗�), 𝜎2), (4.11)

𝑝(�⃗�|�⃗� = �⃗�*) ∝ 𝑝(�⃗�)𝑝(�⃗� = �⃗�*|�⃗�), (4.12)

Bayes-TrEx samples �⃗� according to Eqn. 4.12 and reconstruct the example �⃗� = 𝑔(�⃗�)

for model inspection.

4.4 Experiments

4.4.1 Overview

A key strength of Bayes-TrEx is the ability to evaluate a classifier on any data

distribution P𝐷, independent of its training distribution P𝐶 . We demonstrate the

versatility of Bayes-TrEx on four relationships between P𝐷 and P𝐶 (Fig. 4-5). With
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P𝐶 = P𝐷 (Fig. 4-5(a)), Sec. 4.4.3 and 4.4.4 present examples that trigger high and

ambiguous model confidence and Sec. 4.4.5 presents examples that interpolate be-

tween two classes. In Sec. 4.4.6, we consider P𝐷 with narrower support than P𝐶

(Fig. 4-5(b)), where the support of P𝐷 excludes examples from a particular class.

In this case, high-confidence examples—as judged by the classifier—correspond to

high-confidence misclassifications. In Sec. 4.4.7 and 4.4.8, we analyze the classifier

𝐶 for novel class extrapolation and domain adaptation behaviors with overlapping

or disjoint supports of P𝐶 and P𝐷 (Fig. 4-5(c, d)). Representative results are in the

main text; further results are in the appendix.

4.4.2 Datasets and Inference Details

We evaluate Bayes-TrEx on rendered images (CLEVR) and organic datasets (MNIST

and Fashion-MNIST). For all CLEVR experiments, we use the pre-trained classifier

distributed by the original authors1. The transition kernel uses a Gaussian proposal

for the continuous variables (e.g., 𝑥-position) and categorical proposal for the dis-

crete variables (e.g., color), both centered around and peaked at the current value.

For (Fashion-)MNIST experiments, architectures and training details are described

in Appx. B.1. For domain adaptation analysis, we train ADDA and baseline models

using the code provided by the authors2.

CLEVR images are rendered from scene graphs, on which we define the latent

1https://github.com/facebookresearch/clevr-iep
2https://github.com/erictzeng/adda

Figure 4-5: Different relations between the classifier training distribution (P𝐶 , red)
and Bayes-TrEx data distribution (P𝐷, yellow). (a) P𝐶 and P𝐷 are equal. (b) The
support of P𝐷 is a subset of that of P𝐶 . (c) P𝐷 and P𝐶 have overlapping supports.
(d) Supports of P𝐶 and P𝐷 are disjoint.
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Model Dataset FID

VAE MNIST 72.33
Fashion-MNIST 87.89

GAN MNIST 11.83
Fashion-MNIST 29.44

Table 4.1: Fréchet Inception Distance (FID) for VAE and GAN models trained on
the entire dataset. A lower value indicates higher quality. Appx. B.2 presents the
statistics for all models.

distribution 𝑝(�⃗�). Since the (Fashion-)MNIST groundtruth data distribution is un-

known, we estimate it using a VAE or GAN with unit Gaussian 𝑝(�⃗�). These learned

data distribution representations have known limitations, which may affect sample

quality [12]. Table 4.1 lists the Fréchet Inception Distance (FID) [79] for two VAE

and GAN models, with the full table in Appx. B.2. The FID scores show the GANs

generate more representative samples than the VAEs.

We consider two MCMC samplers: random-walk Metropolis (RWM) and Hamilto-

nian Monte Carlo (HMC). We use the former in CLEVR where the rendering function

is non-differentiable, and the latter for (Fashion-)MNIST. For HMC, we use the No-

U-Turn sampler [81, 149] implemented in the probabilistic programming language

Pyro [18]. We choose 𝜎 = 0.05 for all experiments. Alternatively, 𝜎 can be annealed

to gradually reduce the relaxation.

Selecting appropriate stopping criteria for MCMC methods is an open problem.

State-of-the-art approaches require a gold standard inference algorithm [43] or spe-

cific posterior distribution properties, such as log-concavity [68]. As neither of these

requirements are met for our domains, we select stopping criteria based on heuris-

tic performance and cost of compute (Appx. B.9). CLEVR requires GPU-intensive

rendering, so we stop after 500 samples. (Fashion-)MNIST samples are cheaper to

generate, so we stop after 2,000 samples. Empirically, we find each sampling step

takes 3.75 seconds for CLEVR, 1.18s for MNIST, and 1.96s for Fashion-MNIST, all

on a single NVIDIA GeForce 1080 GPU.
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(a) 𝑝5 Spheres = 95.7% (b) 𝑝2 Blue Sph. = 91.1%

(c) MNIST (d) Fashion-MNIST

Figure 4-6: High-confidence samples, which pass the smoke test for CLEVR, MNIST,
and Fashion-MNIST T-shirt, trousers, pullover, and dress. All of these examples
appear to belong to their expected classes and meet the high-confidence behavior
target. More examples in Appx. B.3.

4.4.3 High Confidence

As an initial smoke test, we evaluate Bayes-TrEx by finding highly confident ex-

amples. (Fashion-)MNIST data distributions are learned by GAN. Fig. 4-6 depicts

samples on the three datasets. Additional examples are in Appx. B.3.

4.4.4 Ambiguous Confidence

Next, we find ambiguous (Fashion-)MNIST examples for which the classifier has sim-

ilar prediction confidence between two classes, using data distributions learned by a

VAE. Fig. 4-7 shows ambiguous examples from each pair of classes (e.g. 0v1, 0v2, ...,

8v9). Note the examples presented are ambiguous from the classifier’s perspective,

though some may be readily classified by a human. Not all pairs result in successful

sampling: for example, we were unable to find an ambiguous example with equal pre-

diction confidence between the visually dissimilar classes 0 and 7. These ambiguous

examples are useful for visualizing and understanding class boundaries; Appx. B.4

presents a supporting class boundary latent space visualization. Blended ambigu-
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Figure 4-7: Each entry of the matrix is an ambiguous MNIST or Fashion-MNIST
example for the classes on its row and column. Blacked-out cells indicate sampling
failures. Examples on the outermost edges of the matrix are representative examples
from each class (e.g., 0-9 for MNIST).

ous examples have previously been shown to be useful for data augmentation [195].

While these generated ambiguous examples may be similarly useful, we leave this

exploration to future work.

Bayes-TrEx can also find examples which are ambiguous across more than two

classes; Fig. 4-8 presents samples that are equally ambiguous across all 10 MNIST

classes. All these images appear to be very blurry and not very realistic. This is

intuitive: even for a human, it would be hard to write a digit in such a way that it is

equally unrecognizable across all 10 classes. Details about the sampling formulation

and visualizations are presented in Appx. B.4.

In general, for ambiguous examples, we observed only rare successes with data

distributions learned by a GAN, which generates sharper and more visually realistic

images than a VAE. There are two potential explanations:

1. GAN-distributions prevent efficient MCMC sampling.

2. The classifier rarely makes ambiguous predictions on sharp and realistic images.
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Figure 4-8: Samples of uniformly ambiguous predictions. The violin plot (below)
shows that these samples successfully meet this criteria. The samples appear non-
descript, though this failure is dissimilar from human failures in classification tasks.

To experimentally evaluate the second explanation, we train a classifier to be consis-

tently ambiguous between class 𝑖 and 𝑖+ 1 for an image of digit 𝑖 (wrapping around

at 10 = 0) using the following KL-divergence loss:

𝑙(𝑦, 𝑓(�⃗�)) = KL(𝑝𝑦, 𝑓(�⃗�)), (4.13)

𝑝𝑦,𝑖 =

⎧⎪⎨⎪⎩0.5 𝑖 = 𝑦 or 𝑖 = (𝑦 + 1) mod 10,

0 otherwise.
(4.14)

Using this classifier, we sample ambiguous examples for 0v1, 1v2, ..., 9v0. Sampling

succeeds for all ten pairs, even when using the same GAN model that rarely succeeded

in the prior experiment. Fig. 4-9 presents the 0v1 samples and predicted confidence

by this modified classifier, and the remaining pairs are visualized in Appx. B.5. Given

this sampling success, we conclude that the second explanation is correct.

Bayes-TrEx is also unable to generate ambiguous examples for CLEVR with the

manually defined data distribution. Given that the pre-trained classifier only achieves

≈60% accuracy, the result suggests that the model is likely overconfident. Indeed,

this has previously been observed in similar settings [99].

4.4.5 Confidence Interpolation

Bayes-TrEx can find examples that interpolate between classes. In Fig. 4-10, we

show MNIST samples which interpolate from (𝑃8 = 1.0, 𝑃9 = 0.0) to (𝑃8 = 0.0, 𝑃9 =
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Figure 4-9: Samples which are scored ambiguously between the 0 and 1 classes, and
the confidence plot with the GAN distribution and always ambiguous classifier. This
shows successful sampling and supports hypothesis 2.

1.0) and Fashion-MNIST samples from (𝑃T-shirt = 1.0, 𝑃Trousers = 0.0) to (𝑃T-shirt =

0.0, 𝑃Trousers = 1.0) over intervals of 0.1, with a VAE-learned data distribution.

The interpolation between two very different classes reveal insights into the model

behavior. For example, the interpolation from 8 to 9 generally shrinks the bot-

tom circle toward a stroke, which is the key difference between digits 8 and 9. For

Fashion-MNIST, the presence of two legs is important for trousers classification, even

appearing in samples with (𝑝T-shirt = 0.9, 𝑝Trousers = 0.1) (second column). By con-

trast, a wider top and the appearance of sleeves are important properties for T-shirt

classification. These two trends result in most of the interpolated samples having a

short sleeve on the top and two distinct legs on the bottom.

4.4.6 High-Confidence Failures

With neural networks being increasingly used for high-stakes decision making, high-

confidence failures are one area of concern, as these failures may go unnoticed. Bayes-

TrEx can find such failures. Specifically, if the data distribution (Fig. 4-5(b)) does

not include a particular class, then the resulting high-confidence examples correspond

to high-confidence misclassifications for that class. For example, in Fig. 4-11(a), the

CLEVR classifier is highly confident that there is one cube though there is no cube

in the image. In App. B.11, the saliency map for Fig. 4-11(a) reveals that classifier

mistakes the front shiny red cylinder for a cube. Removing this cylinder causes the
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Figure 4-10: Confidence interpolation between digit 8 and 9 for MNIST and between
T-shirt and trousers for Fashion-MNIST. Each of the 11 columns show samples of
confidence ranging from [𝑝class a = 1.0, 𝑝class b = 0.0] (left) to [𝑝class a = 0.0, 𝑝class b =
1.0] (right), with an interval of 0.1. Selected confidence plots that demonstrate the
sampling successes for MNIST predictions are shown in the middle.

confidence to drop to 29.0%. In addition, such high-confidence failures can also be

used for data augmentation to increase network reliability [56].

For (Fashion-)MNIST, a GAN is trained on all data sans a single class, resulting

in the learned data distribution excluding the given class. Figs. 4-11(c) and 4-11(d)

depict high-confidence misclassifications for digits 0-4 in MNIST and sandal, shirt,

sneaker, bag, and ankle boot in Fashion-MNIST, respectively. By evaluating these

examples, we can assess how well human-aligned a classifier is. For example, for

MNIST, some thin 8s are classified as 1s and particular styles of 6s and 9s are classified

as 4s. These results seem intuitive, as a human might make these same mistakes.
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(a) 𝑝1 Cube = 93.5% (b) 𝑝2 Cylinders = 90.2%

(c) MNIST (d) Fashion-MNIST

Figure 4-11: High confidence classification failures. (a): CLEVR, 1 Cube. Note that
no cube is present in the sample. (b): CLEVR, 2 Cylinders—again, containing no
cylinders. (c) MNIST failures for digits 0-4. 0s are composed of 6s; 1s of 8s; 2s of
0s, and so on. (d) Fashion-MNIST failures for sandal, shirt, sneaker, bag, and ankle
boot. Additional examples are presented in Appx. B.6.

Likewise, for Fashion-MNIST, most failures come from semantically similar classes,

e.g. sneaker ←→ ankle boot. Less intuitively, however, chunky shoes are likely to be

classified as bags. Additional visualizations are presented in Appx. B.6.

4.4.7 Novel Class Extrapolation

It is important to understand the novel class extrapolation behavior of a model before

deployment. During training an autonomous vehicle might learn to safely operate

around cyclists and cars. But can we predict how the vehicle will behave when it

encounters a novel class, like a tandem bicycle? Bayes-TrEx can be used to under-

stand such behaviors by sampling high-confidence examples with a data distribution

that contains novel classes, while excluding the true target classes, Fig. 4-5(c, d).

For CLEVR, we add a novel cone object to the data distribution and remove the

existing cube from it. We sample images that the classifier is confident to include

cubes, shown in Fig. 4-12 (a, b). A saliency map analysis in Appx. B.11 confirms
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(a) 𝑝1 Cube = 98.5% (b) 𝑝5 Cubes = 92.5%

(c) MNIST (d) Fashion-MNIST

Figure 4-12: Novel class extrapolation examples. (a, b): For CLEVR, the novel cone
objects are mistaken for cubes. (c, d): For (Fashion-)MNIST, we train classifiers on
subsets of the data (digits 0, 1, 3, 6, 9 and pullover, dress, sandal, shirt, and ankle
boot), and train GANs with the excluded data. Samples for which the classifier is
highly confident (≈ 99%) in several target classes are shown (e.g., targets 0, 1, and 9
for MNIST). Additional examples are presented in Appx. B.7.

that the classifier indeed mistakes these cones for cubes. In Appx. B.7, we assess

CLEVR’s novel class extrapolation for cylinders and spheres, and similarly show the

model readily confuses cones for these classes as well.

For MNIST and Fashion-MNIST, we train the respective classifiers on digits 0, 1,

3, 6, 9 and pullover, dress, sandal, shirt and ankle boot classes. We train GANs using

only the excluded classes (e.g., digits 2, 4, 5, 7, 8 for MNIST). Using these GANs, we

find examples where the classifier has high prediction confidence, as shown in Fig. 4-12

(c, d). For MNIST, there are few reasonable extrapolation behaviors, most likely due

to the visual distinctiveness between digits. By comparison, some Fashion-MNIST

extrapolations are expected, such as confusing the unseen sneaker class for sandals

and ankle boots. However, the classifier also confidently mistakes various styles of

bags as sandals, shirts, and ankle boots. App. B.7 contains additional visualizations.
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4.4.8 Domain Adaptation

Finally, we use Bayes-TrEx to analyze domain adaptation behaviors. We reproduce

the SVHN [150] → MNIST experiment studied by Tzeng, et al. [197]. We train two

classifiers, a baseline classifier on labeled SVHN data only, and the ADDA classifier on

labeled SVHN data and unlabeled MNIST data. Indeed, domain adaptation improves

classification accuracy: 61% for the baseline classifier on MNIST vs. 71% for the

ADDA classifier.

But is this the whole story? To study model performance in the high-confidence

range, we use Bayes-TrEx to generate high-confidence examples for both classifiers

with the MNIST data distribution learned by GAN, as shown Fig. 4-13. It appears

the ADDA model makes more mistakes in these images—for example, in the 2nd

column in Fig. 4-13(b), all images where the classifier is highly confident to be 1 are

actually 0s. To further study this, we hand-label 10 images per class and compute the

classifier accuracy on them. Table 4.3 shows the accuracy per digit class, as well as

the overall accuracy. This analysis confirms the baseline model is more accurate than

the ADDA model on these samples, suggesting that ADDA is more overconfident

than the baseline. While this result does not contradict the higher overall accuracy

of ADDA, it does caution against deploying such domain adaptation models without

further inspection and confidence calibration assessment.

4.4.9 Quantitative Evaluation

We quantitatively evaluate the quality of Bayes-TrEx samples by assessing whether

the classifier’s prediction confidence matches the specified target on the generated

examples. Table 4.2 presents the mean and standard deviation of the confidence on a

selection of representative settings, and Appx. B.9 lists the full set of such evaluations.

The prediction confidences are tightly concentrated around the targets, demonstrating

sampler success.
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Test Data Target Prediction Confidence

A
M 𝑝4 = 1 1.00 ± .01
F 𝑝Coat = 1 0.98 ± .02
C 𝑝2 Blue Sph. = 1 0.89 ± .25

B M 𝑝1 = 𝑝7 = 0.5 0.49, 0.49± .02, .03
F 𝑝0 = 𝑝3 = 0.5 0.48, 0.48± .02, .02

C M 𝑝8, 𝑝9 = 0.6, 0.4 0.58, 0.37± .04, .04
F 𝑝0, 𝑝1 = 0.2, 0.8 0.17, 0.79± .04, .04

D
M 𝑝8 = 1 0.98 ± .02
F 𝑝Bag = 1 0.97 ± .03
C 𝑝1 Cube = 1 0.93 ± .06

E
M 𝑝6 = 1 1.00 ± .01
F 𝑝Sandal = 1 1.00 ± .01
C 𝑝1 Cylinder = 1 0.96 ± .03

F M 𝑝5 = 1 1.00 ± .01

Table 4.2: Mean and standard deviation of the sample prediction confidences. Tests
are A: high confidence, B: ambiguous, C: interpolation, D: misclassifications, E: novel
classes, and F: domain adaptation. Data are M: MNIST, F: Fashion, C: CLEVR.
Fashion-MNIST classes 0-9 correspond to T-shirt, trousers, pullover, dress, coat, san-
dal, shirt, sneaker, bag and ankle boot. See Appx. B.9 for full statistics.

0 1 2 3 4 5 6 7 8 9 All
Base 1 .6 1 .7 .5 .9 .9 .7 1 .7 .8
DA .9 0 .8 .9 .2 1 .8 1 1 .6 .72

Table 4.3: Per-digit and overall accuracy among high-confidence MNIST samples
for the baseline and domain adaptation (DA) models. While DA has higher overall
accuracy (0.71 vs. 0.61), it performs worse on high-confidence samples (0.72 vs. 0.80).
This suggests overconfidence.

4.4.10 Test-Set Comparison

Standard model evaluations are typically performed on the test set. While inspecting

test set examples is not an apples-to-apples comparison for all Bayes-TrEx use cases

(e.g. domain adaptation), we study the comparable ones.

Ambiguous Confidence

We find ambiguous examples in the (Fashion-)MNIST datasets where the classifier has

confidence in [40%, 60%] for two classes. Out of 10,000 test examples on each dataset,

we find only 12 MNIST examples across 10 class pairings, and 162 Fashion-MNIST

examples across 12 pairings, as shown in Fig. 4-14. By comparison, Bayes-TrEx
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(a) Baseline examples

(b) ADDA examples

Figure 4-13: High confidence examples for baseline and ADDA models, classes 0 to 9,
showing more misclassifications for the ADDA model. More examples in Appx. B.8.

found ambiguous examples for 38 MNIST pairings and 28 Fashion-MNIST pairings

(cf. Fig. 4-7).

High-Confidence Failures

We collect and inspect highly confident test set misclassifications (confidence ≥ 85%).

For CLEVR, out of 15, 000 test images, the baseline discovers between 0 and 15

examples for each target. Notably, there are no 2-cylinder misclassifications in the

test set, but Bayes-TrEx successful generated some (Fig. 4-11(b)).

From the 10,000 test examples in (Fashion-)MNIST, 84 MNIST images and 802

Fashion-MNIST images were confidently misclassified. Upon closer inspection, how-

ever, we find that the a large fraction of the failures are actually due to mislabeling,

rather than misclassification. We manually relabel all 84 MNIST misclassifications

and ten Fashion-MNIST misclassifications per class, except for the trousers class

which only has 3 misclassifiations. We find that the 60 out of 84 MNIST images 42

out of 93 Fashion-MNIST images are mislabeled, rather than misclassified.
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Figure 4-14: Ambiguous examples from the (Fashion-)MNIST test sets. Compared
to those found by Bayes-TrEx in Fig. 4-7, test set examples have much poorer
coverage.

Table 4.4 gives detailed statistics of the number of genuinely misclassified ex-

amples. Given the scene graph data representation, all CLEVR misclassifications are

genuine. Table 4.5 visualizes some misclassified vs. mislabeled images, with additional

classes in Appx. B.10. Identifying mislabeled examples may be useful for correcting

the dataset, but is not for our task of model understanding.

CLEVR Cls. 1 Sph. 1 Cube 1 Cyl. 2 Cyl.
5 8 15 028/28 #

MNIST Cls. 0 1 2 3 4 5 6 7 8 9
3 3 0 5 3 1 3 4 0 2
0 1 2 3 4 5 6 7 8 9
2 0 9 4 9 1 3 2 1 10

24/84 #

Fashion Cls.
51/93 #

Table 4.4: Number of genuine high-confidence misclassifications from test sets.
Counts for CLEVR and MNIST are for the entire test set; counts for Fashion-MNIST
are for ten random high-confidence misclassifications per class, except for trousers
which only has 3 total misclassifications.
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Class Cause Images

0
Misclass.

Mislabeled

1
Misclass.

Mislabeled

2
Misclass. ∅

Mislabeled

Trouser
Misclass. ∅

Mislabeled

Bag
Misclass.

Mislabeled

Table 4.5: High confidence misclassifications from the test set. The majority are due
to incorrect ground truth labels, not classifier failures. Full table of all classes in
Appx. B.10.

Novel Class Extrapolation

In Sec. 4.4.7 analysis, we find that the model mistakes some bags for ankle boots.

Interestingly, this propensity is not evident from test set evaluations: the test set

confusion matrix in Appx. B.10 shows that no bags are misclassified as ankle boots.

This provides further evidence of the value of holistic evaluations with Bayes-TrEx,

beyond standard test set evaluations.

4.5 Discussion

Bayes-TrEx is a Bayesian inference approach for generating examples that trigger

specified target predictions and so provide insight into model behaviors. These exam-

ples can be further analyzed with downstream interpretability methods (Fig. 4-3 and

Appx. B.11). To make Bayes-TrEx easier for model designers to use, future work

should develop methods to cluster and visualize trends in the generated examples, as

well as to estimate coverage of the level set.

For organic data, the underlying data distributions can be learned with VAEs

or GANs or other generative model. These have known limitations in sample diver-
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sity [12] and are computationally expensive to train, especially for high resolution

images. In principle, Bayes-TrEx is agnostic to the distribution learner form and

can benefit from future research in this area. In practice, Bayes-TrEx is currently

limited to low dimensional latent spaces, as applying MCMC sampling to high di-

mensional latent spaces is an open problem.

Finally, while we analyzed only classification models with Bayes-TrEx, it also

has the potential for analyzing structured prediction models such as machine trans-

lation or robotic control. For these domains, dependency among outputs would need

to be explicitly taken into account. We plan to extend Bayes-TrEx to these areas

in the future.
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Chapter 5

Inspect: RL & Robot Controllers

Inspect Behaviors
example trajectories 𝛕𝛕

showing policy πi or π ¬i

Figure 5-1: This chapter adapts the method introduced in Chapter 4 to inspect robot

controllers behaviors instead of classifier behaviors.

This chapter presents an adaptation to the method introduced in Chapter 4 for in-

specting classifier behaviors to inspect RL and robot controller behaviors instead.

In Chapter 4, the inference goal was to find images �⃗� such that a classifier 𝑓 has a

prediction confidence score of 𝑝 that is relaxed to make inference feasible. Through

exposure to these images, people are better able to inspect the learned behaviors of

classifiers. In this chapter, the inference goal is adapted to instead find environments

or tasks such that robot controllers exhibit specific behaviors; this chapter shows that

people are better able to inspect the learned behaviors of robot controllers through

exposure to these examples. This chapter further demonstrates that this technique is

useful for designing specifications by expressly studying how to construct and debug

the specification for a dynamical system-based robot controller.
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5.1 Introduction

In 2018, after a confluence of failures, an autonomous vehicle (AV) struck and killed a

pedestrian for the first time. In the run-up to this fateful event, the responsible com-

pany had reportedly been trying to improve the AV “ride experience” by emphasizing

non-critical behaviors—such as the smoothness of the ride [26]. This event reflects

the long-standing challenge in robotics: designing an appropriate objective which

considers both safety-critical and non-critical behaviors. When crafting an objective,

it is virtually impossible to proactively account for all potential controller behaviors,

and some priorities may even be in conflict with one another [168]. In practice, any

given robot behaviors may be specified, unspecified, or even misspecified [21], so ex-

tensive testing and evaluation is a critical component of designing and assessing robot

controllers—especially those using black-box models such as deep neural networks.

A common testing procedure focuses on finding extreme and edge cases of con-

troller failure. For example, a tester might use this procedure to find that the AV

swerves very badly when encountering a farm animal while traveling at 60mph. Find-

ing such extreme and edge cases is well-studied within both traditional software test-

ing paradigms [147] and more recent adversarial perturbation testing methods [67].

However, we argue that an equally, if not more, important form of testing should fo-

cus on representative scenarios, which considers the likelihood of encountering these

scenarios. For example, if this AV is going to be deployed exclusively in New York

City, the above example is largely unhelpful: cars rarely travel at 60mph in the city,

and are very unlikely to encounter farm animals. Instead, the tester may prefer to

know that the car swerves—though not as substantively—at lower speeds when a

pedestrian steps toward it. Finding representative scenarios is often overlooked, but

is especially useful for robotics. This is the focus of this paper.

The content of this chapter largely reproduces the text from Zhou, Booth, Figueroa, and Shah’s
CoRL 2021 paper: RoCUS: Robot controller understanding via sampling [213].
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Figure 5-2: Two use case demonstrations of RoCUS: 2D navigation (left) and 7DoF
arm reaching (right). In the 2D navigation environment, the robot must navigate
from the bottom left corner to the top right corner; the position, count, and shapes
of the obstacles vary. In the 7DoF arm reaching environment, the robot must reach a
target (the red dot). The position of this target varies, and is either positioned under
the left or right sides of the T-shaped divider.

Explicit mathematical analysis of robot controllers is implausible given the high

dimensionality of the configuration space and the potential black-box representa-

tion of a learned controller. With access to an environment simulator, though, a

straightforward testing approach is to roll out the robotic controller on various en-

vironments (e.g. road conditions under different weather and congestion, with or

without farm animals or pedestrians, etc.), and analyze those rollouts that exhibit a

specified behavior—like excessive swerving. However, with too few environments, we

risk missing the condition(s) that triggers the target behavior most saliently. With

too many environments, all the most salient rollouts would be close to the global

maximum at the expense of diversity and coverage. For example, if a farm animal

causes the most swerving, followed by a pedestrian and a dangling tree branch, using

too few environments may only find the pedestrian and the tree branch while using

too many would result in an exclusive focus on the farm animal. Neither case helps

the human develop a correct mental model of the AV’s behavior.

To address this, we introduce Robot Controller Understanding via Sampling (RoCUS),

a method to enable systematic behavior inspection. RoCUS finds scenarios that are

both inherently likely and elicit specified behaviors by formulating the problem as

one of Bayesian posterior inference. Analyzing these scenarios and the resulting tra-
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jectories can help developers better understand the robot behaviors, and allow them

to iterate on algorithm development if undesirable ones are revealed.

We use RoCUS to analyze three controllers on two common robotics tasks (Fig. 5-

2). For a 2D navigation problem, we consider imitation learning (IL) [11], dynamical

system (DS) [86], and rapidly-exploring random tree (RRT) [118]. For a 7DoF arm

reaching problem, we consider reinforcement learning (RL) [190], as well as the same

DS and RRT controllers. For each problem and controller, we specify several behav-

iors and visualize representative scenarios and trajectories that elicit those behaviors.

Through this analysis, we uncover insights that would be hard to derive analytically

and thus complement our mathematical understanding of the controllers. Moreover,

we include a case study on how to improve a controller based on new insights from

RoCUS. As such, RoCUS is a step towards the broader goal of building more accu-

rate human mental models and enabling holistic evaluation of robot behaviors.

5.2 Related Work

RoCUS sits at the intersection of efforts to understand complex model behaviors and

those to benchmark robot performance. Methods to understand, interpret, and ex-

plain model behaviors are commonplace in the machine learning community. Mitchell

et al. introduced Model Cards, a model analysis mechanism which breaks down model

performance for data subsets [141]. Model cards have been widely adopted and

adapted for new settings, like reinforcement learning [65]. In natural language pro-

cessing, Ribeiro et al. introduced a checklist for the evaluation of model capabilities

and test case generation [173]. In robotics, Fan et al. introduced a verification frame-

work for assessing machine behavior by sampling parameter spaces to find temporal

logic-satisfying behaviors [51]. Other efforts aim to summarize robot policies, trading

off factors like brevity, diversity and completeness [76, 114]. All of these works have a

shared underlying theme: treating the black box as immutable and performing down-

stream analyses of machine behavior [167]. RoCUS shares this theme and searches

for instances which exhibit target behaviors to inform conceptual model formation.
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𝑡 𝜏 𝑏 �̂�

Figure 5-3: The graphical model for the inference problem of finding tasks 𝑡 and
trajectories 𝜏 which exhibit specific behaviors 𝑏. The dashed box indicates the relaxed
formulation (Eq. 5.2). Note the similarities to Figure 4-4 in Chapter 4 from the
classification setting.

While the need for benchmarking robot performance is often expressed [134, 146,

91], these efforts usually operate on distributions of trajectories or randomly selected

trajectories, and the accompanying metrics are typically task-completion based with-

out consideration of implicit performance factors. Anderson et al. put forth a rec-

ommendation of using success weighted by path length for navigation tasks—a task-

completion metric [8]. Cohen et al. [40] and Moll et al. [145] introduced suites of

metrics for comparing motion planning approaches, and Lagriffoul et al. [115] pre-

sented a set of task and motion planning scenarios and metrics. Again, all of these

proposed metrics are based solely on task completion. Lemme et al. [123] proposed

a set of performance measures for reaching tasks, which are either task-completion

based or require a costly human motion ground truth. Our contribution is distinct

in two ways. First, we propose to sample specific trajectories which communicate

controller behaviors instead of reporting metrics averaged over distributions of tra-

jectories. Second, we introduce metrics which draw on these prior works while also

including essential alternative and typically emergent quality factors, like motion

jerkiness and legibility [47].

5.3 RoCUS

At a high level, RoCUS helps users understand robotic controllers via representative

scenarios that exhibit various specified behaviors. It solves this by directly incorpo-

rating the distribution of scenarios, formally called tasks, into a Bayesian inference

framework as shown in Fig. 5-3. A robotic problem is represented by a distribution
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𝜋(𝑡) of individual tasks 𝑡. For example, a navigation problem may have 𝜋(𝑡) rep-

resenting the distribution over target locations and obstacle configurations. Given

a specific task 𝑡, the controller under study induces a distribution 𝑝(𝜏 |𝑡) of possible

trajectories 𝜏 . If both the controller and the transition dynamics are deterministic,

𝑝(𝜏 |𝑡) reduces to a 𝛿-function at the induced trajectory 𝜏 . Stochasticity in either the

controller (e.g., RRT) or the dynamics (e.g., uncertain outcome from an action) can

result in 𝜏 being random. Finally, a behavior function 𝑏(𝜏, 𝑡) computes the behavior

value of the trajectory—for example, the motion jerkiness. Some behaviors only de-

pend on the trajectory and not the task, but we use 𝑏(𝜏, 𝑡) for consistency. Sec. 5.4

presents a list of behaviors.

The discussion on behavior in Sec. 5.1 is informal and implicitly combines two

related but different concepts. The first concept is the behavior function 𝑏(𝜏, 𝑡) dis-

cussed above. The second is the specified target: for the swerving example, we are

particularly interested in maximal behavior values. Thus, the target value can be

thought of as +∞. This inference problem uses the maximal mode of RoCUS. In

other cases, we are also interested in tasks and trajectories whose behaviors matches

a target. For example, we want to find road conditions that lead to a daily commute

time of an hour, where the behavior is the travel time. This inference problem uses

the matching mode. Since matching mode is conceptually simpler, we present it first,

followed by maximal mode. The sampling procedure is the same for both modes and

is presented last in Algorithm 1.

5.3.1 Matching Mode

The objective is to find tasks and trajectories that exhibit user-specified behaviors 𝑏*:

𝑡, 𝜏 ∼ 𝑝(𝑡, 𝜏 |𝑏 = 𝑏*) ∝ 𝑝(𝑏 = 𝑏*|𝑡, 𝜏)𝑝(𝜏 |𝑡)𝜋(𝑡). (5.1)

In most cases this posterior does not admit direct sampling, and an envelope distri-

bution is not available for rejection sampling. Markov-Chain Monte-Carlo (MCMC)

sampling does not work either: since the posterior is only non-zero on a very small or
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even measure-zero set, a Metropolis-Hastings (MH) sampler [73] can get stuck in the

zero-density region. Similar to the Bayes-TrEx formulation [25], we relax it using

a normal distribution formulation as shown in Fig. 5-3:

̂︀𝑏|𝑏 ∼ 𝒩 (𝑏, 𝜎2) 𝑡, 𝜏 ∼ 𝑝(𝑡, 𝜏 |̂︀𝑏 = 𝑏*) ∝ 𝑝(̂︀𝑏 = 𝑏*|𝑡, 𝜏)𝑝(𝜏 |𝑡)𝜋(𝑡). (5.2)

This relaxed posterior is non-zero everywhere 𝜋(𝑡) is non-zero and provides useful

guidance to an MH sampler. While 𝜎 is a hyper-parameter in Bayes-TrEx [25], we

instead choose 𝜎 such that

∫︁ 𝑏*+
√
3𝜎

𝑏*−
√
3𝜎

𝑝(𝑏) 𝑑𝑏 = 𝛼, with 𝑝(𝑏) =

∫︁
𝑡

∫︁
𝜏

𝑝(𝜏 |𝑡)𝜋(𝑡)1𝑏(𝜏,𝑡)=𝑏 𝑑𝜏 𝑑𝑡 (5.3)

being the marginal distribution of 𝑏(𝜏, 𝑡), which can be estimated by trajectory roll-

outs. This formulation has two desirable properties. First, it is scale-invariant with

respect to 𝑏(𝜏, 𝑡) such that this factor can be measured with different units like meters

or centimeters. Second, the hyper-parameter 𝛼 ∈ [0, 1] has the intuitive interpreta-

tion of the approximate “volume” of posterior samples 𝑡, 𝜏 | ̂︀𝑏 = 𝑏* under the marginal

𝑝(𝑡, 𝜏) = 𝑝(𝜏 |𝑡)𝜋(𝑡), a notion of their representativeness. The details of this derivation

are described in Appendix C.1.

5.3.2 Maximal Mode

In maximal mode, RoCUS finds trajectories that lead to maximal behavior values:

𝑏* → ±∞. It can also be used for finding minimal behavior values by negating the

behavior. The posterior formulation is:

𝑏0 =
𝑏− E[𝑏]√︀

V[𝑏]
, 𝛽 =

1

1 + 𝑒−𝑏0
, ̂︀𝛽 ∼ 𝒩 (︀

𝛽, 𝜎2
)︀
, 𝑡, 𝜏 ∼ 𝑝(𝑡, 𝜏 |̂︀𝛽 = 1), (5.4)

where E[𝑏] and V[𝑏] are the mean and variance of the marginal 𝑝(𝑏).
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Algorithm 1: MH Sampling Procedure
Input: “Posterior volume” 𝛼, number of samples 𝑁 , optional burn-in 𝑁𝐵

and thinning period 𝑁𝑇 .
1 samples ← [ ];
2 Get 𝜎 from 𝛼 by Eq. 5.3 (matching) or 5.5 (maximal);
3 Randomly initialize 𝑡;
4 for 𝑖 = 1, ..., 𝑁 do
5 𝑡new, 𝑝for, 𝑝rev = propose(𝑡)
6 Get 𝑝 from 𝑡 by Eq. 5.2 (match) or Eq. 5.4 (max)
7 Get 𝑝new from 𝑡new by Eq. 5.2 or Eq. 5.4;
8 𝑎← (𝑝new · 𝑝rev)/(𝑝 · 𝑝for);
9 Sample 𝑢 ∼ 𝒰 [0, 1];

10 if 𝑢 < 𝑎 then
11 𝑡← 𝑡new;
12 Append 𝑡 to samples;
13 Optionally, discard the first 𝑁𝐵 burn-in samples and thin the samples by

only keeping every 𝑁𝑇 samples;
14 return samples

𝜎 is chosen such that:

∫︁ 1

1−
√
3𝜎

𝑝(𝛽)𝑑𝛽 = 𝛼, (5.5)

where 𝑝(𝛽) is the marginal distribution similar to Eq. 5.3. If 𝑝(𝑏) is normal, 𝑝(𝛽)

is logit-normal. This formulation is again scale-invariant and has the same “volume”

interpretation for 𝛼 (Appendix C.1).

5.3.3 Posterior Sampling

The posterior sampling mechanism depends on the stochasticity of both the controller

and the environment dynamics.

Deterministic Controller & Dynamics: When both the controller and the dy-

namics are deterministic, so is 𝜏 |𝑡, denoted as 𝜏(𝑡). Eq. 5.2 reduces to 𝑡 ∼ 𝑝(𝑡|̂︀𝑏 =

𝑏*) ∝ 𝑝(̂︀𝑏 = 𝑏*|𝑡, 𝜏(𝑡))𝜋(𝑡), and similarly for Eq. 5.4.

Alg. 1 presents the MH sampling procedure. First, 𝜎 is computed from 𝛼 (Line 2).

Then we start with an initial task 𝑡 (Line 3). For each of the 𝑁 iterations, we propose
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𝑡 𝜏 𝑏 �̂�

𝑢

Figure 5-4: The same graphical model as in Fig. 5-3, but with the addition of stochas-
ticity 𝑢 in the controller such that 𝜏 |𝑡, 𝑢 is now deterministic.

a new task 𝑡new according to a transition kernel and compute the forward and reverse

transition probabilities 𝑝for, 𝑝rev (Line 5). We evaluate the posteriors under 𝑡 and 𝑡new

(Line 6 and 7) and calculate the acceptance probability using the MH detailed balance

principle (Line 8). Finally, we accept or reject accordingly (Line 9 – 11). Note that if

the proposal is rejected, the current 𝑡 is left unchanged and appended to the samples.

We can discard the first 𝑁𝐵 samples as burn-in, and/or thin the samples by a factor

of 𝑁𝑇 to reduce auto-correlation.

Stochastic Controller: When the controller and 𝑝(𝜏 |𝑡) are stochastic, the controller

can usually be implemented by sampling a random variable 𝑢 (independent from 𝑡),

and then producing the action based on the realization of 𝑢, as shown in Fig. 5-4.

For instance, a Normal stochastic policy 𝜋(𝑠) ∼ 𝒩 (𝜇(𝑠), 𝜎(𝑠)2) can be implemented

by first sampling 𝑢 ∼ 𝒩 (0, 1) and then computing 𝜋(𝑠) = 𝜇(𝑠) + 𝑢 · 𝜎(𝑠). In this

case, we sample in the combined (𝑡, 𝜏)-space, with Eq. 5.2 being 𝑝(𝑡, 𝜏 |̂︀𝑏 = 𝑏*) ∝

𝑝(̂︀𝑏 = 𝑏*|𝑡, 𝜏(𝑡, 𝑢))𝑝(𝑢)𝜋(𝑡), where we overload 𝜏(𝑡, 𝑢) to refer to the deterministic

trajectory given the task 𝑡 and controller randomness 𝑢. It is crucial that for any 𝑢,

we can evaluate 𝑝(𝑢). Concretely, modifying Algorithm 1, 𝑢new is proposed alongside

with 𝑡new (Line 5), the detailed balancing factor (Line 8) is multiplied by 𝑝𝑢,rev/𝑝𝑢,for,

and 𝑡new, 𝑢new are accepted or rejected together (Line 10 – 12).

Stochastic Dynamics: Using the same logic, RoCUS can also accommodate dy-

namics stochasticity, as long as it can be captured in a random variable 𝑣 and 𝑝(𝑣) can

be evaluated. We leave the details to Appendix C.2 and use deterministic dynamics

in our experiments.
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5.3.4 The Bayesian Posterior Sampling Interpretation

RoCUS uses Bayesian sampling concepts of prior, likelihood, and posterior quite

liberally. Specifically, the task distribution is defined as the prior, and thus the

notion of a task being likely in the deployment context refers to high probability

under the prior. Likelihood refers to the behavior saliency: how much the exhibited

behavior matches the behavior specification. The act of posterior sampling then finds

tasks that strike a balance between these two objectives. The choice of explicitly

modeling the task distribution is intentional, as it is not unlikely that the deployment

environment will be different than the development environment. Such a domain

mismatch may cause catastrophic failures, especially for learned controllers whose

extrapolation behaviors are typically undefined. With a suitable task distribution,

RoCUS allows more failures to surface during this testing procedure.

5.4 Behavior Taxonomy

Robot behaviors broadly belong to one of two classes: intentional and emergent.

Intentional behaviors are those that the controller explicitly optimize with objective

functions. For example, the controller for a reaching task likely optimizes to move the

end-effector to the target, by setting the target as an attractor in DS, using a target-

reaching objective configuration in RRT, or rewarding proximity in RL. Thus, the

final distance between the end-effector and the target is an intentional behavior for

all three controllers. By contrast, emergent behaviors are not explicitly specified in

the objective. For the same reaching problem, an RL policy with reward based solely

on distance may exhibit smooth trajectories for some target locations and jerky ones

for others. Such behaviors may emerge due to robot kinematic structure, training

stochasticity, or model inductive bias.

For trajectory 𝜏 , many behavior metrics 𝑏(𝜏, 𝑡) can be expressed as a line integral∫︀
𝜏
𝑉 (�⃗�)𝑑𝑠 of a scalar field 𝑉 (�⃗�) along 𝜏 or its length-normalized version 1

||𝜏 ||

∫︀
𝜏
𝑉 (�⃗�)𝑑𝑠,

where 𝑑𝑠 is the infinitesimal segment on 𝜏 at �⃗� and ||𝜏 || is the trajectory length. �⃗� and

𝜏 can be in either joint space or task space. We introduce six behaviors: length, time
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derivatives (velocity, acceleration and jerk), straight-line deviation, obstacle clearance,

near-obstacle velocity and motion legibility, whose mathematical expressions are in

Appendix C.3. In addition, custom behaviors can also be used with RoCUS.

5.5 RoCUS Use Case Demos

In this section, we demonstrate how RoCUS can find “hidden” properties of various

controllers for two common tasks, navigation and reaching. We also uncover a subop-

timal controller design due to bad hyper-parameter choices, which is improved based

on RoCUS insights.

5.5.1 Controller Algorithms

We consider four classes of robot controllers. The imitation learning (IL) controller

uses expert demonstrations to learn a neural network policy which maps observations

to deterministic actions. The reinforcement learning (RL) controller implements

proximal policy gradient (PPO) [180]. While a mean and a variance is used to param-

eterize a PPO policy during training, the policy deterministically outputs the mean

action during evaluation. The dynamical system (DS) controller modulates the

linear controller �⃗�(�⃗�) = �⃗�* − �⃗�, for the task-space target �⃗�*, into �⃗�𝑀(�⃗�) = 𝑀 · �⃗�(�⃗�)

using the modulation matrix 𝑀 derived from obstacle configuration, as proposed by

[86]. We give a self-contained review in Appendix C.4. The rapidly-exploring ran-

dom tree (RRT) controller finds a configuration-space trajectory via RRT and then

controls the robot through descretized segments. Notably, RRT is stochastic, and

we discuss the use of controller stochasticity 𝑢 (c.f. Fig. 5-4) in Appendix C.5. The

MCMC sampling uses a Gaussian drift kernel, as detailed in Appendix C.6.

5.5.2 2D Navigation Task Experiments

Setup In a rectangular arena with irregularly shaped obstacles, a point mass robot

needs to move from the lower left to the upper right corner (Fig. 5-2 left). Ap-
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Figure 5-5: RRT, IL and DS controllers on 2D navigation domain. Left: the RRT
controller tree. Middle: smoothed RRT trajectory and lidar sensor (orange lines) for
IL controller training. Right: the modulation by the DS controller.

pendix C.7 details the obstacle generation and robot simulation procedures and con-

tains more environment visualizations.

We consider three controllers for this environment: an RRT planner, a deep learn-

ing IL policy, and a DS (Fig. 5-5). The RRT planner implements Algorithm 2 and

discretizes the path to small segments as control signals at each time step. The IL

controller uses smoothed RRT trajectories as expert demonstrations, and learns to

predict heading angle from its current position and lidar readings. The DS controller

finds an interior reference point for each obstacle, and converts each obstacle in the

environment to be star-shaped. Γ-functions are then defined for these obstacles and

used to compute the modulation matrix 𝑀 . Appendix C.8 contains additional im-

plementation details.

Straight-Line Deviation In most cases, the robot cannot navigate directly

to the target in a straight line. Thus, the collision-avoidance behavior is a crucial

aspect for navigation robots. To understand it, we sample obstacles that lead to

trajectories minimally deviating from the straight line path. Since the deviation is

always non-negative, we use the matching mode in Equation 5.2 with target 𝑏* = 0.

In Fig. 5-6, the top row plots posterior trajectories in orange, with prior trajecto-

ries in blue. The bottom row plots the obstacle distributions compared to the prior,

with red regions being more likely to be occupied by obstacles and blue ones less

likely to be obstructed.

For DS and RRT, the posterior trajectories and obstacle configurations are mostly
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Figure 5-6: Top: Posterior trajectories in orange vs. prior in blue for minimal straight-
line deviation behavior for three controllers. Bottom: Posterior obstacle distribution
relative to the prior. Higher obstacle density regions are painted in red and lower
ones in blue.

symmetric with respect to the straight-line connection, as expected since both meth-

ods are formulated symmetrically with respect to the 𝑥- and 𝑦-coordinates. The

obstacle distribution under RRT is also expected, since it seeks straight-line connec-

tions whenever possible and thus favor a “diagonal corridor” with obstacles on either

side. For DS, however, obstacles are slightly more likely to exist at the two ends of

the above-mentioned corridor. This behavior is an artifact of the DS tail effect, which

drags the robot around the obstacle (details in Appendix C.4). By taking advan-

tage of anchor-like obstacles at the ends of the corridor, the modulation can reliably

minimize the straight-line deviation.

By comparison, the IL controller saliently exhibits trajectory asymmetry: it mostly

takes paths on the left. It is possible that the asymmetry is due to “unlucky” samples

by the MH sampler, but many independent restarts all confirm its presence, indicat-

ing that the asymmetry is inherent in the learned model. Since the neural network

architecture is symmetric, we conclude that the stochasticity in the dataset genera-

tion and training procedure (e.g. initialization) leads to such imbalanced behaviors.
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Furthermore, the obstacle map suggests that obstacles are distributed very close to

the robot path. Why does the robot seem to drive into obstacles? The answer lies

in dataset generation: the smoothing procedure (Fig. 5-5 middle) results in most

demonstrated paths navigating tightly around obstacles, and it is thus expected that

the learned IL controller displays the same behavior.

Takeaways RoCUS reveals two unexpected phenomena. First, IL trajectories

are asymmetric toward the left of the obstacle due to dataset and the training imbal-

ance. Second, both DS and IL models exhibit certain “obstacle-seeking” behaviors,

the former due to the “tail-effect” and the latter due the dataset generation process.

In both cases, such behavior may be undesirable in deployment due to possibly impre-

cise actuation, and the controller design may need to be modified. Additional studies

on legibility and obstacle clearance behaviors are presented in Appendix C.9.

5.5.3 7DoF Arm Reaching Task Experiments

Setup A 7DoF Franka Panda arm is mounted on the side of a table with a T-

shaped divider (Figure 5-2 right). Starting from the same initial configuration on top

of the table, it needs to reach a random location on either side under the divider. We

simulate this task in PyBullet [41]. We consider three controllers: an RRT planner,

a deep RL PPO agent, and a DS formulation.

RRT again implements Algorithm 2, but uses inverse kinematics (IK) to first find

the joint configuration corresponding to the target location. The RL controller is a

multi-layer perceptron (MLP) network trained using the PPO algorithm. The DS

model outputs the end-effector trajectory in the task space, which is converted to

joint space via IK, with SVM-learned obstacle definitions. Appendix C.10 contains

additional implementation details for each method. Overall, RRT and RL are quite

successful in reaching the target while the DS is not due to the bulky robot structure,

close proximity to the divider, and the task-space only modulation.

End-Effector Movement We find configurations that minimize the total travel

distance of the end-effector for RRT and RL (DS omitted due to high failure rate).

Figure 5-7 (left two) shows the posterior target locations and trajectories. Notably,
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RRT Min EE Movement RL Min EE Movement Original DS Final Distance Improved DS Final Distance

RRT Min EE Movement RL Min EE Movement Original DS Final Distance Improved DS Final Distance

Figure 5-7: Left: Minimal end-effector movement samples for RRT and RL. Right:
Posterior samples for minimal distance from end-effector to target for the original and
improved DS controllers. Top: posterior targets locations, with tabletop + divider
in green and target region in orange. Bottom: posterior trajectories in red, prior
trajectories in blue. Robot is mounted on the near long edge.

unlike RL, RRT trajectories are highly asymmetric, since there are straight-line con-

nections in the configuration space from the initial pose to some target regions on the

left, while every right-side goal requires at least an intermediate node.

DS Improvement with RoCUS Our initial DS implementation frequently

fails to reach the target. This is understandable, as the DS convergence guarantee [86]

is only valid in task space, in which the modulation is defined. When the full-arm

motion is solved via IK, it is possible that some body parts may collide and get stuck

because of the table divider. To understand the DS behaviors, we use RoCUS to

sample target locations that result in minimal final distance from the end-effector

to the target (i.e., most successful executions, Figure 5-7 center-right). Similar to

the RRT case, the samples show strong lateral asymmetry, with all posterior target

locations on the left, due to the same cause of asymmetric kinematic structure. The

result points to a clear path to improve the DS controller such that it can succeed

with right-side targets: increase the collision clearance of the divider so that the end-

effector navigates farther away from the divider, thus also bringing the whole arm to

be farther away. As detailed in Appendix C.11, this modification greatly improves the

controller performance as confirmed by the new symmetry in Figure 5-7 (rightmost).

In addition, since the issue with DS controller mainly lies in obstacle avoidance in
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joint-space or on the body of the robot, additional techniques [98, 169, 140, 199] could

be used and we leave them to future directions.

Takeaway The set of studies reveal an important implication of the robot’s

kinematic structure: the left side is much less “congested” with obstacles than the

right side in the configuration space. While the RL controller is able to learn efficient

policies for both sides, the design of certain controllers may need to explicitly consider

such factors. AppendixC.11 includes an additional study on legibility.

5.5.4 Quantitative Summary

We studied other additional behaviors on both tasks, and Tab. 5.1 summarizes prior

vs. posterior mean behavior values and shows that RoCUS consistently finds samples

salient in the target behavior.

Domain Behavior Target Prior (DS) Post. (DS) Prior (IL/RL) Post. (IL/RL) Prior (RRT) Post. (RRT)

2D Nav

Avg. Jerk 0 1.84e-3 1.46e-3 6.95e-4 3.19e-4 4.24e-4 2.79e-4
Straight 0 0.256 0.084 0.378 0.301 0.470 0.162
Legibility min 0.819 0.650 0.877 0.784 0.798 0.669
Obstacle 0 0.309 0.229 0.262 0.218 0.312 0.241
Obstacle max 0.309 0.611 0.262 0.387 0.312 0.442

Arm Straight 0 0.980 0.913 0.858 0.762 1.223 0.897
EE Dist 0 0.934 0.623 0.958 0.691 3.741 1.192

Table 5.1: Quantitative results on additional behavioral targets for the two domains.

5.6 MCMC Sampling Evaluation

After confirming that RoCUS can indeed uncover significant and actionable controller

insights, we turn our attention to evaluating the sampling procedure itself using the

tasks described above as motivating examples.

Mixing Property One potential downside of using the MCMC sampler is

the slow mixing time, which causes the chain to take a long time to converge from

initialization and causes consecutive samples to be highly correlated. We ask: does

this phenomenon present in our sampling efforts with RoCUS? Figure 5-8 plots

the behavior along the MCMC iterations for the DS minimal straight-line deviation
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Figure 5-8: 2D navigation DS minimized straight-line deviation samples.

behavior, showing that the chain mixes well quite fast (additional ones in Figure C-2

of Appendix C.6). Thus, a modest amount of samples, such as several thousand, is

typically sufficient to model the target posterior distribution well.

Baseline: Top-𝑘 Selection To the best of our knowledge, RoCUS is the first

work that applies the transparency-by-example formulation [25] to robotic tasks, and

we are not aware of existing methods for the same purpose. Notably, adversarial per-

turbation algorithms [67] are not feasible, since stepping in simulator (or real world)

is not typically differentiable. Section 5.1 discusses a straightforward alternative that

runs the controller on 𝑁 different scenarios and pick the top-𝑘 with respect to the

target behavior. We demonstrate its shortcomings on the minimal straight-line devi-

ation behavior for the 2D navigation DS controller. Specifically, RoCUS samples are

shown in Figure 5-6, left.

Figure 5-9 (left) shows the trajectories of different values of 𝑘 for the same fixed 𝑁 ,

and vice versa. While a bigger 𝑁/𝑘 ratio leads to more salient behaviors in the top-𝑘

samples, these examples become more concentrated around the global maximum and

less diverse, making this approach especially myopic. Further, it is not easy to find

the optimal 𝑁 to trade off between diversity and saliency of the top-𝑘 samples. By

contrast, RoCUS offers the intuitive 𝛼 hyper-parameter. Figure 5-9 (middle) shows

that a smaller 𝑁 fails to highlight the “corridor” pattern while a larger 𝑁 makes it

completely open and misses the “tail-effect anchors” at the two ends.

In addition, the hard cut-off at the 𝑘-th salient behavior threshold has two un-

desirable implications: first, every trajectory more salient than the threshold is kept
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Figure 5-9: Top-𝑘 selection baseline. Left two: trajectory distribution; middle two:
obstacle distribution; right one: probability density function of behavior values.

but is given equal importance; second, a trajectory even slightly under the threshold

is strictly discarded. By comparison, RoCUS gives more importance to more salient

samples in a progressive manner, as shown in Figure 5-9 right.

Finally, top-𝑘 selection is very computationally inefficient. It discards all of the

unselected 𝑁 − 𝑘 samples, while RoCUS is much more efficient in that all samples

after the burn-in up to the thinning factor can be kept since the posterior concentrated

on the salient behavior is directly sampled.

5.7 Discussion and Future Work

RoCUS enables humans to build better mental models of robot controllers. Com-

pared to existing evaluations on task-completion metrics for hand-designed tasks,

RoCUS generates tasks and trajectories that highlight any given behavior in a prin-

cipled way. We used it to uncover non-obvious insights in two domains and help with

debugging and improving a controller.

While RoCUS is mainly a tool to analyze robot controllers in simulation as part

of comprehensive testing before deployment, it can help understanding (anomalous)

real world behaviors as well. When an anomaly is observed, RoCUS can find more

samples with the anomaly for developers to identify patterns of systematic failures.

Furthermore, RoCUS is not inherently limited to simulation: it only requires tra-

jectory roll-out on specific tasks. For the arm reaching task, this is easy in the real

world. For autonomous driving, recreating a traffic condition that involves other ve-

hicles may be hard. However, a key feature of RoCUS is the decoupling of the task
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and the controller algorithm, which allows testing on simpler task variants (e.g. with

props instead of real cars).

There are multiple directions for future work, including evaluation of model up-

dates [16] by defining behavior functions on two controllers, better understanding the

samples with explainable artificial intelligence (XAI) methods, and an appropriate

interface to facilitate the two-way communication between RoCUS and end-users, as

discussed in detail in Appendix C.12.

RoCUS is a framework for systematic discovery and inspection of robotic con-

troller behaviors. We hope that the demonstrated utility of RoCUS sparks further

efforts towards the development of other tools for more holistic understanding of

robot controllers, and for refining the specifications used to learn or otherwise con-

struct these controllers.
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Chapter 6

Model
Concept 
Learning
model MR

Figure 6-1: This chapter focuses on helping humans build the conceptual models

needed to both diagnose specification errors and choose which behaviors to inspect.

This chapter discusses how to assist humans in forming conceptual models to ex-

plain the capabilities, limitations, and knowledge of AI systems. Conceptual models

interface with both the interactions of specifying behaviors and of inspecting AI sys-

tem behaviors. In particular, this chapter discusses the processes of “teaching” and

“learning” when interacting with an AI system. This language is used to demonstrate

the duality: to achieve the fluid interactions described in Figure 1-1 and Figure 6-1,

both the human and AI system must learn about each other’s reasoning, and both the

human and the AI system must equally teach the other to comprehend this reasoning.

This chapter largely reproduces the text from Booth et al.’s HRI 2022 paper Revisiting Human-
Robot Teaching and Learning Through the Lens of Human Concept Learning [24] and Horter et al.’s
HRI 2023 HIRL Workshop paper Varying How We Teach: Adding Contrast Helps Humans Learn
About Robot Motions [83]
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6.1 Introduction

Humans should be able to teach robots new skills, norms, or preferences [88, 3],

whether through reward function specifications or other means, but challenges abound.

Before teaching, the human can benefit from learning about the robot’s current behav-

iors. Appropriately selecting robot behaviors to show to the human is challenging:

observing a robot perform well or poorly biases the human’s understanding of its

competency [181]. Another challenge arises if the human cannot draw on preexisting

mental models for robot behaviors. For example, the human may struggle to learn to

predict robot motions if those motions are not human- or animal-like [46]. To assess

the impact of their teaching, the human has to compare the robot’s current behaviors

to its past behaviors—a comparison which is not always straightforward. Bıyık et

al. [19] found that humans are unable to provide preferences when robot behavior

changes are imperceptible or of roughly equal utility, while Amitai and Amir found

that independently selected behaviors are hard to compare [6]. In short, humans find

it non-trivial to learn useful conceptual models of robot capabilities and limitations.

We review 35 papers from the human-robot teaching and learning literature, and

we contextualize these works by analyzing whether and how they incorporate prin-

ciples from cognitive theories of human concept learning. Applying these theories

supports humans in developing conceptual models of robot capabilities and limita-

tions faster, more accurately, and more flexibly, which in turn can help resolve the

aforementioned interaction challenges. Specifically, we look to Analogical Transfer

Theory [62, 61], which informs how humans use analogy to transfer prior knowl-

edge to unfamiliar domains, and the Variation Theory of Learning [135, 136], which

informs how humans learn to separate superficial details from core knowledge. To-

gether, these complementary theories explain how humans come to understand com-

plex, high-dimensional phenomena and make predictions about unrevealed facts and

futures—as such, these theories can be applied to help humans understand robot be-

haviors. While the HRI community has not previously consulted these theories, each

of the works we review inadvertently uses some of their guiding principles.
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Figure 6-2: Analogical Transfer Theory asserts that analogy is the fundamental pro-
cess behind conceptual model development. In analogy, people use their knowledge
of how a robot acts in one environment to reason about how they might expect the
robot to act in a new target environment. Moreover, people use analogy by drawing
on past experiences, even with non-robots, to inform their initial beliefs about how
the robot might act in any environment. The design challenge when invoking analog-
ical transfer is to guide humans to invoke a correct and useful analogy.

Going forward, humans need interfaces and algorithms that mediate human-robot

teaching and learning by systematically guiding the human’s learning about the

robot’s behaviors and how they change in response to human input. These inter-

faces can help humans to (1) learn about the robot’s capabilities and limitations,

(2) teach the robot by providing a response (e.g., feedback), and (3) learn about the

capabilities and limitations of updated robot behavior candidates, and compare these

to prior behaviors. Human concept learning theories provide design guidance, i.e.,

about the selection, sequence, and presentation of robot behaviors, for these inter-

faces and algorithms. Notably, Variation Theory prescribes an ordered sequence of

variance and invariance to help humans distinguish core behaviors from superficial or

incidental details, and Analogical Transfer Theory prescribes knowledge transfer by

supporting the human’s recall with a familiar entity or context.

6.2 Human Concept Learning Theories

Cognitive theories of human concept learning have been refined by testing curriculum

interventions. We look to two complementary theories, Analogical Transfer Theory
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Figure 6-3: The Variation Theory of learning asserts that variation—where people
experience structured patterns of differences in both critical and non-critical aspects—
is core to conceptual model formation. Variation Theory suggests that people need
to experience contrast, where they observe alternative robot policies acting in the
environment, to learn about a robot’s expected behaviors. The design challenge
when invoking variation for concept learning is to identify the critical and non-critical
aspects of a learning task and to assess what counterexamples should be used to
highlight similarities and differences.

and the Variation Theory of Learning, to inform how interfaces can best mediate

the practice of humans learning about robot behaviors. Analogical Transfer Theory

explains how humans transfer knowledge to new situations and domains, while the

Variation Theory of Learning explains how particular patterns of variation and invari-

ance can help humans discern the difference between superficial details and critical

features and aspects. These processes are key to helping humans understand robots.

Figures 6-2 and 6-3 summarize these learning theories graphically.

Analogical Transfer Theory

Studies in cognitive psychology have shown that the parallel presentation of exam-

ples helps students attain knowledge gains. For example, simultaneous rather than

sequential comparison has been shown to help mathematics students achieve greater

gains in both procedural and conceptual knowledge [174]. When analogical encoding,

or learning by drawing comparisons across examples, was incorporated in a negotia-

tion strategy curriculum, Gentner et al. [60] found that comparing two parallel cases
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rather than studying the cases separately improved schema abstraction and transfer

among novices, and that asking learners to describe the commonalities between these

cases had the biggest positive impact. These controlled studies are examples of the

body of work that collectively informs Analogical Transfer Theory.

Analogical Transfer Theory asserts that analogy, or finding and using relational

commonalities, is a building block of human concept learning [62, 112, 61]. In anal-

ogy, a familiar base domain informs inferences about an unfamiliar target domain.

First, a person identifies a candidate base. The person then maps the analogy by

structurally aligning the base and target; this alignment should highlight relational

similarities. Lastly, the person must evaluate the analogy by assessing any inferences

drawn from it. Structural alignment and analogy allow people to form new inferences

about novel targets (inference projection), construct new schemas or mental mod-

els by mapping relations (schema abstraction), detect differences between bases

and targets (difference detection), and re-represent bases and targets at alternate

levels of abstraction, making the analogy more applicable (re-representation).

Analogical Transfer Theory can inform HRI interface design. When faced with

a novel domain, people implicitly seek a comparison base domain from memory and

search for commonalities between the target and base. When forming an analogy,

the person’s understanding of the target is bolstered by these commonalities. There

are two notable opportunities for interfaces to assist in analogy formation. First,

humans are bad at recalling analogous base cases from memory [64], so an interface

has an opportunity to prompt the human to recall a relationally-similar base. Second,

analogies rely on structural alignment, which highlights the relational commonalities

between the target and the base: an interface can present data in an aligned manner

such that humans are more readily able to draw inferences about the target or to

detect differences.

Variation Theory of Learning

Controlled studies in cognitive psychology have shown that presenting strategically

varied examples improves learning outcomes. Students studying high-variability ge-
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ometry problems required less mental effort than those studying low-variability ex-

amples, and their transfer performance was better and less effortful [160]. When

tasked with solving statistical word problems and given either one or three examples

with varying or constant superficial details, students with multiple parallel examples

that emphasized structural commonalities by varying superficial details did best [165].

This variation positively impacted students’ schema construction; interestingly, the

impact was greatest for those with the least prior mathematical knowledge. Strategic

variation illuminates otherwise difficult-to-discern latent structure of concepts [196].

These studies support the potential for variation to help end-users understand feasible

robot behaviors.

Variation Theory argues that a person must first discern critical aspects and fea-

tures to comprehend some object of learning. Aspects are parameters (e.g., color)

while features in this context are instantiations of aspects (e.g., the color red). As-

pects are critical when strictly necessary to understand the concept. To achieve

robust discernment and learning, the person must experience variation across critical

and non-critical (or superficial) aspects. To apply Variation Theory, we designate

some aspect(s) as the focused object of conceptual learning. Variation learning then

follows an ordered sequence of structured patterns of variance and invariance. These

patterns support inductive reasoning to help humans more accurately infer how fo-

cused aspects contribute to the object of learning, e.g., a particular robot behavioral

policy. For each focused aspect, Variation Theory prescribes the following sequence:

1. Repetition. All aspects are held constant. E.g., to learn about a robot’s

behaviors, the human sees the robot repeatedly act in the same environment.

2. Contrast. The focused aspect varies while other aspects are held constant.

E.g., Fig. 6-3, the policy varies while the robot operates in a fixed environment.

3. Generalization. The focused aspect is held constant, while other aspects vary.

E.g., Fig. 6-3, the human sees how the robot’s policy varies in new environments

using the selected value of the focused aspect.

4. Fusion. All aspects vary to mimic “real world” variation.
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Variation Theory has been used effectively in many domains, including story com-

prehension [196], learning vocabulary words [48], Chinese characters [116], the color

of light [126], mathematics education [138], chemistry education [31], and computing

education [188]. Books have discussed how Variation Theory can improve teaching

and learning in schools [127, 137]. In HRI, Variation Theory has immediate appli-

cation: many interfaces solicit human feedback as reflections on single executions of

robot behaviors. But this fails to accommodate the backbone of Variation Theory: to

provide high quality feedback, the person needs to understand the robot’s behavior—

which means they need to understand the underlying critical aspects of the robot’s

behaviors by first experiencing variation of the underlying critical features—before

providing preferences or feedback over these behaviors.

Concept Learning for Hypothetical Robot Applications

In HRI, human concept learning occurs whenever the human must learn about robot

behaviors. We consider two hypothetical robotics applications for exposition.

Consider collaborative assembly. Traditionally, robots halt whenever a human en-

ters a shared work region. Modern approaches let robots predict human behavior and

optimize their plans to increase system uptime [198]. For successful collaboration, the

human should also learn about the robot’s behaviors, both to increase their comfort

in proximity and to help optimize robot uptime. For this, the human benefits from

understanding both the robot’s workspace and motion planner. A naive approach

might show a human the limits of the robot’s workspace or an example motion. In

practice, however, the effective working patterns of the robot seldom reach these lim-

its, and the human’s learned conceptual model would be too conservative. By instead

applying Variation Theory and experiencing variation in the robot’s positioning and

motions, the human can learn a conceptual model of the robot’s effective workspace.

With this, the human can feel safer (by predicting how the robot will move), and

work to increase the robot’s uptime (by avoiding interfering with the robot’s plan).

In other robotics applications, the robot may have frequent, fleeting interactions

with non-expert users—for example, a delivery robot needs to navigate alongside
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(a) Side-by-side [4, 181] (b) Axis aligned [6]
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"I inspect the 
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(c) Predicates [76] (d) Critical states [84, 158] (e) Overlaid [213]

Figure 6-4: Policy summarization. (6-4(a)) uses contrast through side-by-side video
summaries of varied policies [4, 181]. (6-4(b)) better aligns differences with videos of
two varied policies—the red and blue agents—in an axis-aligned, shared state [6]. (6-
4(c)) presents logical statements with states grouped by Boolean predicates [76]. (6-
4(d)) presents varied critical states [84, 158]. (6-4(e)) overlays visuals to structurally-
align both varied environment configurations (above) and trajectories (below) [213].

pedestrians and others. In such applications, particularly when humans have only

brief encounters with robots, Analogical Transfer Theory can assist. One challenge

with delivery robots is their potential use of omni-directional wheels: while these

wheels provide flexibility to a large range of motions, humans experience discomfort

when interacting with such a robot, since the motions these wheel structures exhibit

are hard to predict [102]. One way to apply Analogical Transfer Theory is for the

robot designer to leverage physical analogies: if the robot closely resembles a car

(as is common in such applications), humans who interact with the system would

anticipate car-like motions, which are dissimilar from many omni-directional wheel

motions. Styling such robots after humans encompasses a larger range of acceptable

omnidirectional motions, but challenges remain in aligning these motions to human

expectations [102].
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6.3 Concept Learning in HRI

We review 35 papers from the literature on human-robot teaching and learning. We

study how these works benefit from human concept learning principles, and how bet-

ter curriculum design could support more effective interaction. Though these roles

are inherently fluid, we focus on works in which the human is primarily the “teacher”

and the robot the “learner”; i.e., we exclude robot tutoring. We selected works which

have the following goals: policy summarization, updating human beliefs, or teaching

with feedback, preferences, and/or corrections. The first two goals implicitly build

curricula for informing conceptual models of robot behaviors; the latter three help

humans teach robots with seemingly intuitive signals. We selected papers primarily

from premier venues (e.g., HRI, NeurIPS, AAAI), which are highly topical or influen-

tial in these niches (e.g., #citations≥50). See the supplementary material for further

analysis and the appendix for a definition of “objects of learning” in these settings.

6.3.1 Policy Summarization

Policy summarizations aim to help a human understand the robot’s expected behav-

iors [5], allowing the human to determine an apt level of autonomy to afford the robot.

Fig. 6-4 shows example policy summary interfaces.

Implementations

Several policy summarization methods [84, 4, 6, 181] use𝒬-values to select informative

states; these quantify the benefit of taking action 𝑎 in state 𝑠. One approach selects

states with the largest delta in 𝒬-values across actions [84, 4]. Huang et al. [84]

call these critical states as they support learning about the robot’s capabilities and

limitations. In concept learning, critical states are critical features : a person cannot

learn about the policy without understanding the robot’s behaviors in these states.

Another method requires shared Boolean predicates between human and robot [76].

This method takes predicate-annotated trajectories, and solves a set cover problem

over these traces to answer questions like, “When does the robot do 𝑎?” with answers
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like, “The robot does 𝑎 when p or q.” Another approach presents counterfactuals by

finding similar states which elicit different actions [158], and a final method applies

Bayesian inference to find environments where the policy expresses a specific property,

like maximal directness [213].

Analogical Transfer Theory

Policy summarization approaches make extensive use of structural alignment, the

backbone of Analogical Transfer Theory. These works all facilitate schema abstrac-

tion, wherein the human assesses how the policy would apply in new target envi-

ronments. Several approaches use structural alignment by visualizing shared states

with different policies side-by-side [4, 181, 84] or overlaid [6]. Hayes and Shah [76]

use shared predicates, and present textual summaries of these groupings to a user

for both schema abstraction and inference projection, wherein a user learns how the

agent will behave in a new state with shared properties. Countering this, Zhou et

al. [213] instead structurally align environments and trajectories (but not individual

states) by overlaying semitransparent visualizations to support schema abstraction

for policy failure modes.

Several approaches also support difference detection, though to differing levels of

success. Some compare multiple candidate policies [6, 4, 181, 84]; the goal is to assist

a user in selecting the best policy. Most such methods find interesting states for two

or three policies independently, and present these states or behavior samples for each

policy side-by-side [4, 181, 84]. However, this independent search does not maximally

find differences between these candidate policies. As such, these policy candidates are

not well structurally aligned, and these side-by-side comparisons may be difficult or

impossible for the user to assess. Amitai and Amir [6] propose a counter approach:

instead of generating interesting states for each policy independently, they simulate

both policies in parallel, and find policy disagreements, where the respective policies

choose different actions in a shared state. They then show these two different policies

in an axis-aligned manner, such that the user is more readily able to detect differences

and select the more appropriate policy for their intended context.
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Variation Theory

Using Variation Theory’s contrast, Hayes and Shah [76] group states (through Boolean

predicates) while maintaining a fixed policy and a fixed action. Zhou et al. [213]

simultaneously present varied environments and trajectories, again for a fixed policy.

Huang et al. [84] and Olson et al. [158] similarly present varied states as focused

aspects, while maintaining a fixed policy. For fusion, Huang et al. [84] additionally

compare policies; in this, every aspect is varied. Similarly, several other approaches [4,

6, 181] present a varied set of states alongside two [4, 6] or three [181] candidate

policies. While none of these works use the language of Variation Theory, these

incorporated patterns of variance and invariance help these works achieve their goals

of supporting the human in learning about the robot’s policy.

Takeaways and Frontiers

Sequeira and Gervasio [181] found that users often anchor their perceptions of a

robot’s capabilities on their initial experiences [57]; as such, they found the impor-

tance of “appropriate” variation, and they employed Variation Theory’s fusion as a

learning strategy. Nonetheless, they do not define an “appropriate” amount of vari-

ation. Variation Theory can help: it can guide the design of strategic and sufficient

variation to support the human’s innate learning abilities. A more structured expo-

sure with Variation Theory’s prescribed sequence of contrast→generalization→fusion

could improve the human’s learning. Fusion isn’t all we need. Learning to discern

the limits of robot behaviors, through contrast and generalization, is needed, too.

6.3.2 Prompting Human Belief Updates

Many methods explore how to prompt humans to update their beliefs. These in-

clude generating expressive motions [192, 113, 46] or state/action pairs [84, 114], or

constructing “patches” to reconcile divergent models [34]. See Fig. 6-5.
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(a) Animation [192] (b) Familiarization [46]

(c) Annotations [34] (d) Examples [85, 114]

Figure 6-5: Interfaces for updating human beliefs methods. 6-5(a): [192] uses re-
representation by using animation principles to induce legibility through anthropo-
morphized familiarity. 6-5(b): [46] incorporates generalization by showing a curricu-
lum of varied motions. 6-5(c): [35] uses difference detection, wherein robots provide
annotations to correct a human’s model—here, as a map. 6-5(d): [85] and [114] use
generalization: they show varied trajectories while holding the policy constant.

Implementations

Takayama et al. [192] observed that robots require time for planning, but the tran-

sition between “thinking” and acting often catches humans off guard. To address

this, they used animation principles of anticipation and reaction for more expressive

motion. Kwon et al. [113] observed that robot failures are not expressive—typically,

the robot just stops. They generate expressive trajectories which mimic successful

trajectories in spite of failure. Lastly, Dragan and Srinivasa [46] studied whether hu-

mans could learn a robot’s motions through familiarization. They optimized motions

with two cost functions: one which enables human-like motion; another which enables

unnatural motion by prioritizing shoulder motion over wrist motion. They discovered

users were more adept at predicting natural motions in new settings.

Huang et al. [85] and Lage et al. [114] seek expressive states which allow a person

to update their beliefs about the robot’s objective. Huang et al. [85] assumed the
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human uses inverse reinforcement learning (IRL) to model the robot’s objective, and

then used Bayesian inference to find environments which are maximally informative

to the human’s beliefs. Lage et al. [114] compared IRL with imitation learning. Both

assess the human’s learning by testing their knowledge in unfamiliar contexts. Finally,

Chakraborti et al. [34] considered a search-and-rescue task, where the human has an

outdated mental model of the environment while the robot acquires knowledge of how

a disaster changed the environment. To update the human’s beliefs, the robot explains

model differences by providing a patch expressing why its new plan is acceptable.

Analogical Transfer Theory

Takayama et al.’s work [192] is unusual and interesting in its use of re-representation

from Analogical Transfer Theory. In re-representation, a base and/or target is re-

represented at a higher level of abstraction so a user is more readily able to perform

analogical reasoning. They use animation to re-represent the robot as a more familiar

entity to communicate robots switching from planning to acting. In using anticipa-

tion and reaction animations, they structurally align the robot’s motions to those

of anthropomorphic characters. This draws on humans’ intuitive understanding and

helps the human extrapolate their understanding to the robot by analogy.

The other human belief update works only lightly use Analogical Transfer The-

ory. Kwon et al. [113] used difference detection by structurally aligning—as much

as possible—a failed trajectory to an imagined successful trajectory. From this, the

human learns about the delta between these trajectories, which helps them compre-

hend the robot’s failure. Chakraborti et al. [34] also drew on difference detection by

assuming that the human and robot have divergent but partially-aligned models of

the environment and aligning differences with model patches, which aim to recon-

cile the human’s model to match the robot’s. Lastly, several methods [46, 85, 114]

employed both inference projection and schema abstraction, though with minimal

structural alignment: they presented similar training environments before assessing

the humans’ abilities to project in a slightly unfamiliar environment.
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Variation Theory

For generalization, Dragan and Srinivasa [46] discretized a robot’s goal space and

generate motions for each goal. The human learned through familiarization: they

showed the human examples of the robot’s motions with varied goals while fixing the

underlying policy. They report that familiarization—using generalization—improves

the human’s accuracy in predicting the robot’s motion, but not as substantially as

anticipated. To test humans’ accuracy, this study asks users to select a motion tra-

jectory from three different choices, each generated by a different policy. This choice

relates to the principle of contrast, though it is used only to test the human and not

to teach the human about the robot’s behaviors. Variation Theory shows contrast

should precede generalization: to learn about the robot’s policy, the human might

benefit from seeing the results of varied policies as focused aspects before seeing the

results of varied environments.

Huang et al. [85] and Lage et al. [114] incorporated generalization when teaching

the human about a robot’s objective. Both methods hold the policy, the focused

aspect, constant while varying the environment. Lage et al. [114] additionally in-

corporated fusion by showing multiple varied policies side-by-side. Countering this,

Chakraborti et al. [34] primarily used contrast. In their approach, the object of

learning is not the policy, as is typical; instead, their object of learning is the true

environment. They assume the human and the robot have different models of the

environment—effectively, varying the environment. They reconcile these differences

by updating the human’s model with patches which explain the robot’s model.

A Follow-Up Familiarization Study: Adding Contrast

In a follow-up study [83], we reimplemented a similar protocol to Dragan and Srini-

vasa [46]. Specifically, we assessed the effects of adding contrast, where users see both

correct and incorrect robot motions, to the training procedure for learning about robot

motions. We implemented this study on a Franka Panda robot arm.

In both the generalization and contrast study arms, participants watched 14 videos
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of robot motions. With generalization, each video corresponded to the robot moving

from a fixed start location to a different target location (i.e., 14 target locations). With

contrast, the human saw side-by-side videos of both unnatural motion controllers with

one indicated as correct. Since each contrast target consists of two videos, we showed

only 7 target locations in the contrast condition.

In our reimplementation of Dragan and Srinivasa’s generalization (or, familiariza-

tion) protocol, users were 52.4% accurate in predicting robot motions. With added

contrast, users’ accuracy rate increased to 70.2%. A two-sample T-Test indicates we

cannot reject the null hypothesis that the mean accuracies between generalization and

contrast are the same: 𝑡(38)=−1.43, 𝑝=0.08. While not statistically significant, the

large accuracy improvement suggests the contrast intervention has promise. More-

over, adding contrast did result in a statistically significant improvement in novel

settings, wherein the user had not seen the particular target during training. For

novel settings, the contrast users exhibited higher accuracy (72.4%) than general-

ization users (50.0%). A two-sample T-Test indicates that we can reject the null

hypothesis: 𝑡(78)=−2.35, 𝑝=0.01. This accuracy improvement may be a consequence

of participants using contrast to establish concept boundaries, improving their ability

to infer constraints of motion in unseen dimensions of variation.

Variation Theory asserts that contrast should be experienced before generaliza-

tion, but that the combination of these steps should result in the greatest learning

gains. Studying how these interventions can best be combined in many domains is a

compelling direction for future work.

Takeaways and Frontiers

Analogical reasoning is an especially useful tool for assisting in the task of guiding

humans to update their beliefs about a robot, especially in new encounters. The

goal in such settings is to push the human to establish correct assumptions; analogy

can rapidly accomplish this. Takayama et al.’s [192] approach of using animation

principles to change how the human understands the robot is compelling, as this

uses re-representation through anthropomorphic characteristics. Other works have
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reward

(a) Feedback (e.g., [107]) (b) Preferences [90] (c) Corrections [2]

Figure 6-6: Teaching with reward (6-6(a)), preferences (6-6(b)), and corrections (6-
6(c)). With reward (6-6(a)), the person observes the robot and rewards it for past
actions, e.g., with a ±1 signal. With preferences (6-6(b)), the person selects be-
tween two or more candidate trajectories; the example in 6-6(b) structurally aligns
three trajectories, supporting difference detection. Finally, with corrections (6-6(c)),
a person modifies past trajectories—either through a GUI [2, 55] or physical manip-
ulation [15, 14].

explored the related question of how robots can benefit (or suffer) from playing to

stereotypes [193]. This presents a frontier for efforts to support humans in learning

about robots: designing and structurally aligning robots to appropriate analogical

bases—whether through animation, stereotype play, visual design, or other means—

can support the humans’ belief update process and human-robot teaching and learning

interactions in general.

6.3.3 Teaching with Feedback

Fig. 6-6 shows interfaces for intuitive teaching. When teaching with feedback, a

human gives feedback as they watch an agent act. These works are motivated by the

idea that “you know it when you see it.” This assumption seemingly undermines the

need for human concept learning: if a human knows it just by seeing, why should

the human first need to learn about the robot’s capabilities and limitations? For

some tasks, a human is able to provide feedback with little learning. For example,

if giving feedback to a simulated car, a human might say “Good robot!” when on

the road, or “Bad robot!” otherwise [171]. For other tasks, though, a human might

lack intuition for the constraints of a robotic platform, and give poor feedback due

to malformed expectations, e.g., they might believe the robot can learn a behavior
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which its morphology cannot accommodate [35, 113]. Or, the robot might be making

progress toward a satisfactory-but-unexpected policy (as seen in, e.g., [33]). In these

cases, the human must learn about the robot’s capabilities and limitations before

providing feedback.

Implementations

In TAMER, a human-supplied reward signal is used to train a supervised learning

module, which approximates the human’s reward [107]. TAMER was first tested

in simulated Tetris and Mountain Car environments [107], and later evaluated in

robotics settings [109]. A modification to TAMER biases the agent toward taking

non-optimal actions for the sake of stimulating human engagement [104].

The Advise method instead interprets feedback as a commentary on actions: re-

ward is determined by the environment, and feedback is used to guide action ex-

ploration. Griffith et al. [70] demonstrated Advise on simulated game environments

with simulated teachers, while Cederborg et al. [33] demonstrated Advise in a user

study. Curiously, the real users outperformed the simulated users as real users were

able to adapt to different but equally good strategies, while simulated users provided

negative feedback if the behavior did not match their pre-planned strategy. The real

human might also have preferred a different policy; nonetheless, they learn about the

agent’s policy and adapt to its learning trajectory.

TAMER and Advise do not consider the teacher’s strategy. Loftin et al. [129]

conducted a user study showing that some users bias toward giving positive feedback

while others are more balanced. They introduced SABL: a method which numer-

ically manipulates human feedback based on the teacher’s strategy; this strategy

is learned during interaction. A similar approach, COACH, uses the insight that

human feedback depends on the robot’s current aptitude [133]. Accounting for this

policy-dependency in feedback, COACH interprets feedback as an advantage function.

COACH assumes that the human teacher is learning over time: to give feedback, the

human must first learn about the current policy.
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Analogical Transfer Theory

None of these works extensively use structural alignment—instead, these all require

prolonged observation to learn about a policy. Nonetheless, COACH uses difference

detection [133], though without the structural alignment recommended by Analogical

Transfer Theory. COACH assumes that human feedback is policy-dependent, varying

as the policy improves or degrades over time, and difference detection is needed to

assess how the policy changes. This presents an opportunity for the application of

Analogical Transfer Theory. Instead of tasking the human with watching the robot

repeatedly attempt a task, and hope that the human identifies the differences or sim-

ilarities over different trials, applying structural alignment would help. After policy

updates, a supporting communication and intervention interface could provide high-

lighting or other means of identifying differences to support the human’s assessment.

Variation Theory

In feedback user studies [107, 42, 125, 33, 129, 133], variation is implicitly present,

though not espoused as a core principle to support human learning. These works

assume that a human is able to watch the agent act and give appropriate feedback

in response. As the human observes, they are presented with varied environments,

states, and actions in all cases. For several of these approaches [107, 42, 125, 129,

133], the policy is updated in real-time in response to the human’s feedback, and is

therefore also varied simultaneously. All of these examples use fusion. Countering

this, Cederborg et al. [33] hold the policy constant during feedback collection, and

thus supports generalization, instead. They do so to support different experiment

conditions, but this may coincidentally increase the human’s aptitude for teaching, as

they are better able to learn about the effects of the policy. To better support human

concept learning, future assessments and algorithms should present this variation with

a deliberate and managed approach. This is an opportunity for future research.
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Takeaways and Frontiers

While none of these feedback-based approaches extensively incorporate principles

from either theory of human concept learning, “you know it when you see it” isn’t

enough to support human-robot teaching and learning in the forseeable future. Both

SABL [129] and COACH [133] observe that learning from feedback cannot be for-

mulated as a person- or policy-independent algorithm; nonetheless, the tasks tested

in all of these feedback works conform to the expectation that the human can give

good feedback after short periods of unstructured observation. As these techniques

accommodate increasingly complex tasks, and as the features used to complete a task

further diverge between humans and robots, this assumption will ring hollow. Using

human concept learning theories—particularly by using variation to communicate the

behaviors of the current and future policies—can mitigate these challenges.

6.3.4 Teaching with Preferences

Implicitly, preferences mandate that interfaces present multiple options: does the

human prefer A or B? In this manner, preferences naturally rely on concepts of

variation, and the requisite structural alignment supports the human in teaching.

Implementations

Sadigh et al. [178] take an active learning approach to selecting trajectory pairs for

soliciting human preferences. They formulate this as volume removal over the distri-

bution of potential reward functions, wherein each preference should maximize the

volume removed from this hypothesis space. Their interface asks humans to compare

trajectories generated by different policies in the same scenario. Bıyık et al. [19] ob-

serve that volume removal can fail to support human teaching as the robot can ask

the human to compare two trajectories with imperceptible differences. They instead

introduce an information gain approach for trajectory selection; this approach selects

queries by maximizing both the robot’s uncertainty over the human’s response and

the human’s uncertainty in providing a preference.
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Instead of generating trajectories from different policies, Christiano et al. [39] roll

out the same policy numerous times in slightly varied environments. Stochasticity in

the policy, transition dynamics, and environment introduce variation. They similarly

use active learning to select trajectory clips which are maximally uncertain under

their reward model. Ibarz et al. [87] uses this same method, but, instead of learning

from tabula rasa, they initialize their agent through imitation learning and then

use preferences for policy refinement. Curiously, they found active querying did not

increase the agent’s learning performance, while slowing down sampling. They thus

opted to adopt random sampling for trajectory clips instead.

Jain et al. [90] formulate learning from preferences as an iterative process. They

observe that humans are typically unable to provide optimal demonstrations, but

can re-rank trajectories iteratively. For this, they learn a model of a user’s scores

for trajectories. To generate trajectories for comparison, they fix the starting and

ending states, and use a rapidly-exploring random tree planner with heuristics to

encourage diversity. Lastly, Wilson et al. [201] approximate a policy distribution using

a Bayesian likelihood function. Using this distribution, they sample two policies and

generate two trajectories for comparison. They compare two active approaches for

selecting policies for comparison. First, they consider policies which generate different

behaviors when rolled out. Second, they consider the expected belief change in the

hypothesis space.

Analogical Transfer Theory

Preferences naturally incorporate structural alignment. If two choices are not struc-

turally aligned, it can be challenging or impossible to discern differences—a prerequi-

site for providing preferences. While most of these works engage structural alignment

and difference detection by presenting trajectories side-by-side [178, 39, 87, 19], they

do not take full advantage of Analogical Transfer Theory. Christiano et al. [39] and

Ibarz et al. [87] present side-by-side trajectory snippets with differing start and end

states; these differences make the snippets are hard to compare. Most notably, Jain

et al. [90] present figures which show structurally-aligned, overlaid trajectories with
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shared start and end states (Fig. 6-6(b)), but, in their experiments, humans watched

a robot perform trajectories sequentially, and were then asked to rank them. These

authors cite this as a limitation of their work: they note that making users memorize

these trajectories and not aligning them hinders the efficacy of their approach.

Variation Theory

In all of these works, variation in trajectories is a prerequisite for robot learning.

Through experiencing this variation, the human is also better equipped to under-

stand the robot’s policy. These works all incorporate contrast [178, 19, 90, 201]

or generalization [39, 87]. They support contrast by varying the underlying pol-

icy [178, 19, 90, 201]—whether by varying their parameterizations (e.g., [178]) or by

using an alternative for comparison (e.g., [90]). To support comparisons between

policies, these works hold all other aspects invariant—e.g., the starting state, and

sometimes the end state [90]. These works incorporate generalization by requesting

preferences over multiple trajectory segments from the same policy [39, 87]. The

same policy may also present different trajectories for comparison, as the policies and

transition dynamics may be stochastic.

Takeaways and Frontiers

Teaching a robot with preferences naturally incorporates principles from both Vari-

ation and Analogical Transfer Theory. Variation is implicitly present, as the person

is tasked with choosing between two or more options. Analogical Transfer Theory is

also incorporated through the use of structural alignment, either presenting choices

side-by-side or overlaid to support difference detection. In these settings, structural

alignment is often still hard to comprehend, and could be improved through by max-

imizing this alignment—starting by presenting trajectories with shared start and/or

end states. Despite this natural proclivity for engaging human concept learning, pref-

erences approaches again commonly assume that the human either learns about the

robot’s policy from observation or is able to give feedback without any context. This

is a missed opportunity.
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6.3.5 Teaching with Corrections

Lastly, we consider teaching with corrections. A robot starts with an initial policy, and

the human is tasked with correcting it—e.g., by teaching the robot about preferred

action choices.

Implementations

Alexandrova et al. [2] introduced a corrections interface where a user first provides a

demonstration to a robot and subsequently corrects its policy. This interface is gnarly

and complex: after providing demonstrations, users can modify past demonstrations

by changing frames of reference or by deleting intermediary poses and/or landmarks—

all from the robot’s point of view. They found that visualizing the robot’s learning

was extremely useful, and deleting poses was also helpful. Using the same interface,

Forbes et al. [55] sourced corrections from a crowd.

Bajcsy et al. [15] reframed corrections from the perspective of physical HRI. Hu-

mans often physically engage with robots—for example, by pushing it out of the way.

These interactions are typically regarded as disturbances, but Bajcsy et al. noted

some useful information. They introduced an optimization approach to update the

robot’s trajectory to align with the human’s physically-corrected trajectory. In sub-

sequent work, Bajcsy et al. [14] introduced a method where instead of using the full,

corrected trajectory as the optimization target, they allow only one feature to vary

at a time.

Analogical Transfer Theory

Correction-based systems naturally incorporate difference detection. In all of these

approaches, the robot starts with some trajectory which needs to be corrected. To

support difference detection, this trajectory is structurally-aligned with a corrected

trajectory—either through a visualization to teach the human about what to teach [15,

14] or through an omnipresent interface used for supporting the user to correct the

robot’s behaviors and evaluate progress [2, 55]. In the former, the difference is only
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shown at the beginning of the interaction. While this assists the human in learning

about the task expectations, it requires them to recall the behavior. A better interface

supports and maintains this visualization throughout the interaction.

Variation Theory

Alexandrova et al. [2] found that repetition is remarkably beneficial for corrections-

based teaching: in their system, a human trains a robot through demonstration and

subsequent corrections in a GUI. They find the mere presence of these visualizations

and the ability to repeatedly observe actions to be the greatest benefit to humans’

teaching. The repetition step of Variation Theory is often overlooked or skipped—but

this result suggests it can be an effective supporting methodology. Bajcsy et al. [15]

incorporated fusion in their first approach: they tasked a human with physically

manipulating a robot to correct its expressed trajectories, where the robot learns

from these corrections. Bajcsy et al. [14] instead use contrast, wherein the robot

isolates updates to the single feature which changed most in the human’s corrections.

They compare their fusion and contrast implementations, and find the latter to be

more effective for the robot’s learning.

Takeaways and Frontiers

Corrections are a powerful teaching tool. Intuitively, we might expect humans would

prefer to correct every aspect of a robot’s behavior simultaneously; after all, that is

efficient! In practice, Bajcsy et al. [14] demonstrate that this assumption is flawed—

and their implementation reflects Variation Theory’s insights. They find that humans

are in fact more adept at correcting a trajectory by varying one feature at a time.

Although this work is framed from the perspective of robot learning, Variation Theory

suggests its implications will also hold for the inverse, the human’s learning. By

iteratively changing one feature at a time, both the human and robot learn from a

varied critical aspect, while holding all else invariant. This approach supports the

human in discerning the impact of that individual change.
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6.4 Design Guidance & Future Directions

Human concept learning provides a new lens for human-robot teaching and learning.

Without explicitly consulting these theories, past approaches have incorporated a

number of their insights. Still, many gaps and opportunities remain.

Supporting Analogical Transfer

When teaching a robot, humans are likely to employ analogy to inform their beliefs

about the robot, as well as their beliefs over how the robot will use their teaching

signal to change its behaviors [16]. Humans might use any number of bases to inform

their interactions: human or animal behaviors, virtual character behaviors, or past

experiences with other robots. Only three systems we analyzed considered base case

retrieval as a design input [192, 46, 113] by using exaggerated, anthropomorphic,

and/or animated behaviors. Future efforts in human-robot teaching and learning

should build on these ideas, and provide further support for base anchoring: instead

of giving the person independence in selecting their own base, the presentation of the

robot should guide the person to select an appropriate and desirable base.

Analogy’s backbone is structural alignment. This is used throughout many of the

human-robot teaching and learning systems we analyzed, usually to support differ-

ence detection. These prior works often assess whether a human is able to perceive

some difference or provide some teaching signal [19]; nonetheless, these works rarely

considered how to maximally-align information such that the human is best posi-

tioned to make these assessments. For example, in asking users to compare trajectory

snippets, some works showed trajectories to users that both started and ended in dif-

ferent states, while also expressing variation in the interim [39, 87]. Such tasks ignore

structural alignment, and are unduly challenging. Designing for maximal structural

alignment is a promising path forward.
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Supporting Structured Variation

Variation Theory informs how humans learn to discern the latent structure of new

concepts, and to understand the bounds of their applicability. This theory does not,

however, inform us of exactly how it should be applied in HRI settings. Specifically,

Variation Theory requires the designation of an object of learning and a number of

aspects related to that object of learning. These can be inferred, to some extent,

from the task structure (e.g., see the appendix). Even so, identifying exactly how to

group and present aspects to facilitate human concept learning is a design task, and

requires substantial experimentation and prototyping.

Variation Theory then proposes a strict sequence for efficient concept learning:

repetition, then contrast, then generalization, then fusion. Despite this, none of the

35 works we looked at followed this prescribed sequence. In policy summarization,

Sequeira and Gervasio [181] noted that finding an appropriate amount of variation

when using fusion was challenging: too much and users were confused about an agent’s

capabilities and limitations; too little and users believed agents to be either more

competent or less competent than they really are. Using the prescribed structured

presentation of variation is uncharted territory in human-robot teaching and learning

systems, but it offers a potential resolution to this challenge and may additionally

elevate human ability to learn about robots.

In this review, the focus is implicitly on helping the robot learn from human

teaching, and not on helping the human be a better teacher. The human is treated as

an oracle—able to provide a perfect assessment of behavior at any time. Nonetheless,

when variation is used as a tool to guide the robot’s learning, the human inadvertently

learns too (e.g., [14]). Future algorithms and interfaces should consider this more

directly: structured variation can support both the human and the robot in discerning

critical aspects, even if these aspects are not the same for both entities. A symbiotic

approach to human-robot teaching and learning could optimize the data requirements

to satisfy the variation needs of both human and robot.
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Explainability

In AI and HRI, explanations aim to support debugging, to calibrate end user trust,

and to moderate model reliance; these goals make explanations promising for human-

robot teaching and learning. Despite the introduction of many methods (of some-

times dubious quality [1, 214]), explanations often do not help people achieve these

goals [189, 30]. Engaging human concept learning can help humans use generated

explanations effectively. Onboarding for these methods is important [32] but often

overlooked [82]. Onboarding can use Variation Theory to help users understand the

bounds and limitations of explanations, and Analogical Transfer to help users boot-

strap prior knowledge onto these new methods.
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Chapter 7

Discussion & Future Work

In this last chapter, this dissertation discusses opportunities for future work to con-

tribute to the joint tasks of assisting people in writing specifications for AI systems

and in interpreting these systems’ learned behaviors. These ideas are seedlings that,

with sufficient care and thought, could flourish into future doctoral theses.

7.1 Revising Specifications

The most obvious directions for future work is to combine the three interaction com-

ponents discussed at length in this dissertation—on specifying, inspecting, and mod-

eling AI system behaviors—and evaluate whether the tools and insights presented are

confirmed to be beneficial for ultimately revising specifications. Setting up an appro-

priate evaluation of this larger interactive system is itself a non-trivial research task,

in part because there are not yet standardized tests or metrics to assess alignment—

though some have been proposed [29, 179]. One simplifying proposal is to omit the

requirement that people revise their specifications, and instead provide them with

specifications with known errors. Like the work presented in Chapter 3, this simplifi-

cation removes ambiguity about whether the drafted specification is correct or aligned.

In this simplified proposal, the research question is whether people can use the tools

presented in this dissertation to identify the known flaws in the given specification.

To validate this claim of improved alignment more generally, this assessment
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should be studied across many domains, and some of these domains will unearth re-

search challenges that need to be addressed through substantive modification. Some

challenges are predictable; for example, the work on inspecting behaviors—in Chap-

ters 4 and 5—make assumptions that will be difficult to remove. Both Chapters 4 and

5 assume the existence of generative models or simulators with sufficiently compact

latent spaces such that these latent spaces can be efficiently sampled using MCMC

methods. While generative modeling techniques are becoming ever-increasingly rich,

these models are nonetheless still imperfect and will inevitably lead to failures in some

domains. Chapter 5 is additionally stressed by concerns of sim-to-real translation, a

notoriously hard problem in robotics [163]. Solving these challenges may require the

design of alternative protocols for inspecting behaviors for some domains.

7.2 Building Conceptual Models

This dissertation conducts a meta-study to assess how Human-AI interaction works

integrate principles from human concept learning theories, as presented in Chapter 6.

This is a rich study because it considers a vast landscape of research. However, it is

also limited because seemingly none of these studies directly sought to incorporate

human concept learning. This dissertation also contributes a preliminary study, in a

single domain, of the benefit of adding a single component of the Variation Theory

of Learning: contrast. This leaves low-hanging fruit for future research: we should

study how the addition of each component of each concept learning theory affects a

person’s ability to write specifications—both independently, and in combination. By

conducting this study directly, we can isolate the contribution of each component.

However, this research endeavor is necessarily challenging: while these theories of

human concept learning and this dissertation’s analysis of them provides guidelines

for interaction design, implementing these recommendations nonetheless requires sig-

nificant creativity, and the design space of possible implementations is vast.
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7.3 Inspecting “Interesting” Behaviors

The work on inspecting behaviors in Chapters 4 and 5 asks the human to craft a

query in the form of a metric for behaviors. For example, for neural network settings,

these metrics consist of a prediction probability as well as constraints over the latent

space of the accompanying generative model. For robot controller settings, these

metrics consist of numerical scores of behaviors—like how indirect the controller is

in its motion. These chapters demonstrate many such metrics and show how these

selected metrics can be useful for conceptual model formation and system debugging.

Nonetheless, choosing these metrics is itself a design challenge and research question.

What behavior is expected to be interesting, and why? Future work could seek to

automate these queries, or to guide the human in designing queries that are likely to

expose interesting behaviors. Chapter 6 provides some insights on how to approach

this problem—for example, by using coupled, contrastive metrics and grouping sam-

ples to better expose system behaviors. The broader meaning of “interesting” in the

context of AI system behaviors is again a research question.

7.4 Learned Reward Functions

This dissertation, and particularly Chapter 3, is largely predicated on the idea that

a human is hand-crafting a reward function as a specification. This setting has many

nice properties: because an expert is designing the reward function, there is implic-

itly an expectation that the reward function will be scrutable and that the expert

can be held accountable for the actions of their designed system, at least to some

extent. While hand-designed reward functions are widely used (e.g., [205]), with the

rapid success and growth of ChatGPT, which uses a reward function learned from

human preferences to assess the relative goodness of potential text outputs, there is

an increasing push for their replacement with learned reward functions [159].

Learned reward functions are sometimes seen as a catch-all shortcut solution to the

challenges of writing high-quality specifications—but, of course, this is not the case.

137



First, learned reward functions compromise on scrutability, which is a significant loss.

Second, my coauthors Knox et al. and I [106, 105] showed that the question of whether

the underlying correct reward functions can be recovered by common reward function

learning paradigms depends on the input assumptions about how human preferences

are generated. This dissertation encourages further study on this topic: how do the

findings of Chapter 3 carry over to learned reward functions? In particular, are learned

reward functions generally correct, or do they too propagate systematic errors? And,

are learned reward functions equally subject to the problem of overfitting? These

questions are compelling directions for future study!

7.4.1 Adding Intuitive Teaching Signals

One significant adaptation to the iterative vision described in Figure 1-1 concerns

the form of specification revisions over iterations. Perhaps the first specification is

a hand-designed reward function, or a reward function learned from a dataset of

preferences. On a future iteration, it might be sensible for the human to provide

an intuitive teaching signal—like corrections, feedback, or preferences—to update

the specification. Should this modification affect how we reason about alignment, or

about the processes of specifying, inspecting, and modeling the AI system’s behaviors?

Equally, we have thus far discussed a single human as part of the iterative system, but

this human could be replaced—for example, by someone with less expertise, like an

end user of the system. The human could instead be replaced with a plurality of end

users, as in a deployed system. These modifications require extensive future study to

reason about how to create aligned AI systems, and answers to these questions are

critical in the pathway of human-AI alignment.

7.5 Re-Interpreting Incorrect Reward Functions

Alongside the effort to support humans in writing better reward functions, a comple-

mentary approach is to assume their ability to write reward functions will always be

imperfect, no matter how good the tooling for specifying, inspecting, and modeling
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behaviors. Given this assumption, it is possible to study the types of errors that peo-

ple make, and extract patterns in those errors—such as our previous observation that

people commonly fail to reason about temporal discounting, as discussed in Chap-

ter 3. If we can predict human errors, can we leverage that information to inform

beliefs over candidate correct reward functions and better infer an approximation of

the human’s intended reward function?

This proposed study would build on Inverse Reward Design methods [72]; these

methods assume that each candidate reward function a human designs 𝑟𝑖 is an obser-

vation about the correct reward function, based mostly on the “training” environments

the human designer has experienced or considered thus far, which may be different

from the set of “test” environments the agent will inevitably encounter. In our pro-

posal, where an Inverse Reward Design method is adapted for the task of reconciling

common errors in reward design, one of the main challenges is in designing a sensible

prior for inference. We would need to modify the model of the human expert to

incorporate these known failure proclivities as part of the prior instead of assuming

that the human is approximately optimal, as in the original Inverse Reward Design

work. As a consequence of this reinterpretation of the reward design problem, the

inferred reward functions should better align with humans’ true intent.

This proposal invites some criticism, which must be considered and addressed to

contribute useful future research. By designing an inference mechanism to address

errors in specifications, we necessarily assume that human capabilities are both fixed

and stagnant—which is patently false, particularly when one considers that humans

learn through experience when designing and interacting with specifications (i.e., as

discussed in Chapter 6). Given that humans are forming conceptual models, learning,

and adapting all the time, is this approach of modeling errors as a prior viable?

A second criticism of this approach is perhaps more fundamental, and is equally

true of learned reward functions more generally (Section 7.4). One of the benefits

of using hand-designed reward functions is that, at least in principle, these reward

functions are designed to be read and understood, and the reward designer can be

held somewhat accountable for the consequences of using their reward function. When
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instead the reward function is being re-interpreted through Inverse Reward Design, it

becomes harder to hold the expert accountable to system failures, as their specification

is dynamically interpreted. This can be addressed in part by asking the expert to

assess and confirm the proposed changes to their hand-designed reward function, but

some of the potential attribution of fault is still lost.
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Appendix A

Specify

A.1 RL Practitioner Survey

We invited RL practitioners from 2 Fortune 500 company’s AI research divisions and
from 2 US Research Universities (R1) to participate in this survey. Practitioners were
entered into a raffle for a $15 USD gift card in exchange for participating. Practi-
tioners were screened based on whether or not they had designed a reward function
in the past year. Only those who affirmed this were able to proceed with the survey.
Multiple options may be selected for any given question. 24 practitioners completed
the survey. The survey questions are as follows, and the number of respondents for
each option are indicated:

• What domain have you designed a reward function for *most recently*? (Mark
all that apply, but only for your most recent domain)

– A gridworld task: 8 respondents

– A classic RL task – like CartPole or Mountain Car: 2 respondents

– A robotics task: 12 respondents

– A multi-agent task (e.g., Hanabi): 5 respondents

– An Atari game or other game: 5 respondents

– Other: please specify: 3 respondents: A continuous control task, a racing
game, and a command and control task

• How did you write an initial reward function? (Mark all that apply.)

– By applying intuition and considering how the agent would learn: 15 re-
spondents

– By embedding domain knowledge of how the agent should behave: 13
respondents

– Using a reward function someone else had written (e.g., from a publication
or shared implementation): 15 respondents
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– By specifying a performance objective for the task: 10 respondents
– By inverse reinforcement learning, or some other demonstration-based ap-

proach: 6 respondents
– Other: please specify: 1 respondent: By defining a goal region

• Did you shape your reward function?

– Yes: 15 respondents
– No: 6 respondents
– I don’t know: 1 respondent
– Other: please specify: 2 respondents: Tried, but didn’t have much success;

Using human feedback to shape

• Did you use trial-and-error to refine your reward function?

– Yes: 22 respondents
– No: 2 respondents
– Other: please specify: 0 respondents

• During trial-and-error reward design, how did you evaluate your reward func-
tion(s)?

– By viewing the agent’s behavior after it has finished training (and would
not be trained further): 18 respondents

– By viewing the agent’s behavior during a training session (that was con-
tinued further): 12 respondents

– By plotting some performance metric against time or learning iterations:
15 respondents

– By plotting return from the changing reward function against time or learn-
ing iterations: 6 respondents

– By scoring example trajectories: 2 respondents
– Other: please specify: 0 respondents

• Did you observe suboptimal behavior after training your agent?

– Yes - I observed the agent taking advantage of a loophole in the reward
function, so I changed the function to remove the loophole: 7 respondents

– Yes - I observed the agent’s behavior plateauing at unsatisfactory per-
formance, so I changed the reward function to help it learn beyond the
plateau: 13 respondents

– Yes - I observed the agent’s behavior plateauing at unsatisfactory per-
formance, so I changed the learning algorithm or hyperparameter. : 11
respondents

– No: 4 respondents
– Other: please specify: 0 respondents
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A.2 User Study Details

A.2.1 Expert Participant Recruitment

To recruit study participants, we sent recruitment emails to relevant listservs of com-
puter science researchers and to faculty at four US research universities (R1). These
faculty members passed the recruitment email along to their research groups.

A.2.2 User Study Protocol

The next five pages contain a screenshot of the Jupyter notebook used for the first
55 minutes of the study.
The expert participants first read a description of the problem, as follows:

• The goal of the hungry-thirsty domain is to teach an agent to eat as much as
possible. There’s a catch, though: the agent can only eat when it’s not thirsty.
Thus, the agent cannot just “hang out” at the food location and keep eating
because at some point it will become thirsty and eating will fail.

• The agent always exists for 200 timesteps.

• The grid is 4×41. Food is located in one randomly-selected corner, while water
is located in a different (random) corner.

• At each timestep, the agent may take one of the following actions: move (up,
down, left, right), eat, or drink.

• But actions can fail:

– The drink action fails if the agent is not at the water location.

– The eat action fails if the agent is thirsty, or if the agent is not at the food
location.

– The move action fails if the agent tries to move through one of the red
barriers (depicted below).

• If the agent eats, it becomes not-hungry for one timestep.

• If the agent drinks, it becomes not-thirsty.

• When the agent is not-thirsty, it becomes thirsty again with 10% probability
on each successive timestep.

The experts then run a cell which shows a GIF of a Hungry Thirsty agent.

The experts are then tasked with specifying the reward function, learning al-
gorithm, and hyperparameters, as shown in the following pages. To avoid biasing

1For the first 12 participants, the grid was instead 6× 6
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participants toward trial-and-error reward design, the order in which they were asked
to select the reward function or the algorithm choice was randomized.

For the reward function, the experts set the rewards for each state H ∧ T, H ∧
¬T,¬H ∧ T,¬H ∧ ¬T from the range [−1, 1] in 0.05 increments. The hyperparame-
ters vary slightly across algorithms — for example, DDQN uses an 𝜖-greedy action
selection strategy, while PPO and A2C instead use an entropy term for exploration.
Specifically, PPO and A2C use this entropy term in their loss functions, and this
requires the user to set an entropy coefficient for regularization.

After selecting their choice of reward function, learning algorithm, and hyperpa-
rameters, the expert can start training the agent. As it trains, the Jupyter notebook
plots three graphs. The first is the true metric performance for each episode, which
corresponds to the stated goal: “The goal of the hungry-thirsty domain is to teach an
agent to eat as much as possible.” The second graph corresponds to the undiscounted
return for each episode, which is based on the expert’s own reward function. The
third and final graph consists of a state visitation distribution heatmap, which shows
where the agent is spending its time. Darker red means more state visits, and lighter
red means fewer visits.

After training an agent (or cutting training short), the expert could then review
training in three different ways. They could select_run_and_show_agent(), which
allows them to see any trained agent’s performance for a single, randomly-initialized
episode. They could instead view_training_runs(), which allows them to review
the training graphs for any agent. Or they could review_past_run(), which allows
them to review their reward function, algorithm choice, and hyperparameter selections
for any past agent.

Finally, 55 minutes into the study, experts were asked to submit their final, best
configuration. They could choose from any of the configurations they tried during
the study.

A.2.3 Follow Up Questions

After 55 minutes, participants submitted their best attempt at training an agent
to solve Hungry Thirsty. In the remaining 5 minutes, we asked participants five
structured questions:

1. Please describe your approach to training RL agents.

2. How well does this process mimic your past experience of training RL agents?

3. Is there some missing information from this interface which you wished you had
access to?

4. Does your submitted agent meet your expectations?

5. Did you shape your reward function?
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A.3 Computational Experiments

In this section, we include supporting analysis for the computational experiments.
Table A.1, Fig. A-1, and Fig. A-3 correspond to H1: Reward functions are not
universally effective.

• Table A.1 presents the Hoeffding Bound and Mann Whitney U-test 𝑝-values to
compare the average cumulative mean performances achieved by policies learned
with reward functions across varied hyperparameters (e.g., 𝛾 = 0.99 vs 𝛾 = 0.8).

• Fig. A-1 presents parallel coordinate plots, highlighting the reward functions
which resulted in the largest absolute difference in true cumulative performance
across varied hyperparameters (e.g., 𝛾 = 0.99 vs 𝛾 = 0.8).

• Fig. A-3 presents parallel coordinate plots, highlighting the reward functions
which resulted in the largest absolute difference in true cumulative performance
across varied algorithm choices (e.g., PPO vs. DDQN).

Table A.2, Fig. A-2, and Fig. A-4 correspond to H2: Reward functions are not
universally optimal.

• Table A.2 presents the Hoeffding Bound and Mann Whitney U-test 𝑝-values
to compare the average cumulative mean performances achieved by the best-
performing policies learned with reward functions across varied hyperparameters
(e.g., 𝛾 = 0.99 vs 𝛾 = 0.8).

• Fig. A-2 presents parallel coordinate plots, highlighting the reward functions
which result in the highest true cumulative performance for each hyperparam-
eter (e.g., 𝛾 = 0.99).

• Fig. A-4 presents parallel coordinate plots, highlighting the reward functions
which result in the highest true cumulative performance for each algorithm
(e.g., DDQN).

A.4 Deep RL Implementation Details & Hyperpa-
rameters

Alongside this paper, we release all of the code for our experiments—including the
implementations of the RL algorithms we use: Q-Learning, A2C, DDQN, and PPO.
It is known that these algorithms are not only sensitive to hyperparameters, but also
potentially to details of the implementation [49]. Unless specified elsewhere in the
text, we use the hyperparameters presented in Table A.3.
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Table A.1: H1: Reward functions are not universally effective. For each large-
scale computational comparison experiment (e.g., 𝛾 = 0.99 vs. 𝛾 = 0.5), we find the
3 reward functions which result in the maximal difference in the cumulative true
performance metric. To confirm that these differences are not simply simply due to
sampling bias, we retrain agents using each of these reward functions 1000 additional
times. We then compute the 90% Hoeffding bound as well as a Mann Whitney U-test
over this larger set of data. In all cases, we find that the 90% Hoeffding bounds are
non-overlapping, and that the difference in underlying distributions are statistically
significant. In sum, these reward functions all result in high performance for one
experiment variation, and low performance for another variation.

Reward Function Experiment Hoeffding Bound 𝑝-value

[-1.0, -1.0, 0.5, -0.5] 𝛾 = 0.99 [-2,471; 12,798]
< 0.01

𝛾 = 0.5 [85,830; 101,099]

[-0.05, -0.1, 1.0, 0.5] 𝛾 = 0.99 [91,486; 106,754]
< 0.01

𝛾 = 0.5 [2,312; 17,580]

[-0.5, -0.5, -0.1, -0.05] 𝛾 = 0.99 [968; 16,237]
< 0.01

𝛾 = 0.5 [88,656; 103,925]

[-1.0, -0.5, 1.0, 0.0] 𝛾 = 0.99 [13,800; 29,068]
< 0.01

𝛾 = 0.8 [45,594; 60,863]

[-1.0, -1.0, -1.0, 0.1] 𝛾 = 0.99 [4,965; 20,234]
< 0.01

𝛾 = 0.8 [86,653; 101,922]

[-0.5, -0.5, 0.0, 0.1] 𝛾 = 0.99 [14837, 30105]
< 0.01

𝛾 = 0.8 [88,180; 103,449]

[-0.5, -0.05, 0.5, 0.5] 𝛼 = 0.25 [20,034; 35,303]
< 0.01

𝛼 = 0.05 [70,224; 85,493]

[-1.0, -0.1, -0.1, 1.0] 𝛼 = 0.25 [15,061; 30,330]
< 0.01

𝛼 = 0.05 [53,716; 68,985]

-0.1, -0.5, -1.0, 1.0] 𝛼 = 0.25 [23,954, 39,223]
< 0.01

𝛼 = 0.05 [68,009; 83,278]
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Table A.2: H2: Reward functions are not universally optimal. Comparisons
of reward function optimality. For each experiment (i.e., 𝛾 = 0.99), we find the
3 best-performing reward functions where each reward function is tested 10 times.
As shown in Figure A-2, none of the ‘optimal’ reward functions are shared across
experiment variations. To assess whether these relationships are not simply due to
sampling bias, we re-run these experiments with these top reward functions for 1000
trials each, and report the results here for each top-3 reward function combinations.
Specifically, we fix an experimental test condition (i.e., 𝛾 = 0.99), and assess whether
the top reward function for that experiment (i.e., [−0.05,−0.05, 0.5, 0.5]) outperforms
the top reward functions for alternative test conditions (i.e., [-1.0, -1.0, 0.0, 1.0], which
is optimal for 𝛾 = 0.5). To make this assessment, we compute the 90% Hoeffding
Bound of the average cumulative reward. With 90% probability, the true mean lies
within this bound. Second, we compute a Mann Whitney U-test to assess whether
the distribution of performance means corresponding to the optimal reward function
is greater than that of its comparison, and we report the 𝑝-values from these tests.
In this table, all but two comparisons show statistical significance.

Test Reward Function Selection Hoeffding Bound 𝑝-value

𝛾 = 0.99
[-0.05, -0.05, 0.5, 0.5] #1 for 𝛾 = 0.99 [90442, 105710]

< 0.01[-1.0, -1.0, 0.0, 1.0] #1 for 𝛾 = 0.5 [52436, 67704]

𝛾 = 0.99
[-0.05, -0.05, 0.5, 0.5] #1 for 𝛾 = 0.99 [90442, 105710]

< 0.01[-0.05, -0.05, 0.0, 1.0] #2 for 𝛾 = 0.5 [85587, 100856]

𝛾 = 0.99
[-0.05, -0.05, 0.5, 0.5] #1 for 𝛾 = 0.99 [90442, 105710]

< 0.01[-1.0, -1.0, 0.1, 0.1] #3 for 𝛾 = 0.5 [9998, 25266]

𝛾 = 0.5
[-1.0, -1.0, 0.0, 1.0] #1 for 𝛾 = 0.5 [91071, 106339]

0.99[-0.05, -0.05, 0.5, 0.5] #1 for 𝛾 = 0.99 [93017, 108286]

𝛾 = 0.5
[-1.0, -1.0, 0.0, 1.0] #1 for 𝛾 = 0.5 [91071, 106339]

< 0.01[-0.05, -0.1, 1.0, 0.5] #2 for 𝛾 = 0.99 [2311, 17580]

𝛾 = 0.5
[-1.0, -1.0, 0.0, 1.0] #1 for 𝛾 = 0.5 [91071, 106339]

< 0.01[-0.5, -0.1, 1.0, 0.5] #3 for 𝛾 = 0.99 [15209, 30478]

𝛾 = 0.99
[-0.05, -0.05, 0.5, 0.5] #1 for 𝛾 = 0.99 [90442, 105710]

< 0.01[-0.05, 0.0, 0.05, 0.5] #1 for 𝛾 = 0.8 [73526, 88795]

𝛾 = 0.99
[-0.05, -0.05, 0.5, 0.5] #1 for 𝛾 = 0.99 [90442, 105710]

< 0.01[-0.05, 0.0, 0.5, 0.5] #2 for 𝛾 = 0.8 [77842, 93111]

𝛾 = 0.99
[-0.05, -0.05, 0.5, 0.5] #1 for 𝛾 = 0.99 [90442, 105710]

< 0.01[-1.0, -1.0, 0.1, 1.0] #3 for 𝛾 = 0.8 [53252, 68520]

𝛾 = 0.8
[-0.05, 0.0, 0.05, 0.5] #1 for 𝛾 = 0.8 [80029, 95298]

1.0[-0.05, -0.05, 0.5, 0.5] #1 for 𝛾 = 0.99 [99649, 114917]

𝛾 = 0.8
[-0.05, 0.0, 0.05, 0.5] #1 for 𝛾 = 0.8 [80029, 95298]

< 0.01[-0.05, -0.1, 1.0, 0.5] #2 for 𝛾 = 0.99 [73935, 89204]

𝛾 = 0.8
[-0.05, 0.0, 0.05, 0.5] #1 for 𝛾 = 0.8 [80029, 95298]

< 0.01[-0.5, -0.1, 1.0, 0.5] #3 for 𝛾 = 0.99 [56372, 71641]

𝛼 = 0.25
[-0.1, -0.1, 1.0, 0.05] #1 for 𝛼 = 0.25 [69028, 84297]

< 0.01[-0.05, -0.05, 0.5, 0.5] #1 for 𝛼 = 0.05 [46150, 61419]

𝛼 = 0.25
[-0.1, -0.1, 1.0, 0.05] #1 for 𝛼 = 0.25 [69028, 84297]

< 0.01[-0.05, -0.1, 1.0, 0.5] #2 for 𝛼 = 0.05 [53966, 69235]

𝛼 = 0.25
[-0.1, -0.1, 1.0, 0.05] #1 for 𝛼 = 0.25 [69028, 84297]

< 0.01[-0.5, -0.1, 1.0, 0.5] #3 for 𝛼 = 0.05 [29049, 44318]

𝛼 = 0.05
[-0.05, -0.05, 0.5, 0.5] #1 for 𝛼 = 0.05 [90442, 105710] 0.01[-0.1, -0.1, 1.0, 0.05] #1 for 𝛼 = 0.25 [79718, 94987]

𝛼 = 0.05
[-0.05, -0.05, 0.5, 0.5] #1 for 𝛼 = 0.05 [90442, 105710]

< 0.01[-0.05, 0.0, 1.0, 0.1] #2 for 𝛼 = 0.25 [69325, 84594]

𝛼 = 0.05
[-0.05, -0.05, 0.5, 0.5] #1 for 𝛼 = 0.05 [90442, 105710]

< 0.01[-0.05, -0.05, 0.5, 0.0] #3 for 𝛼 = 0.25 [64327, 79596]
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Figure A-1: Parallel coordinate plots which correspond to H1: Reward functions
are not universally effective. This figure shows plots for 𝛼 = 0.25 vs. 𝛼 = 0.05,
𝛾 = 0.99 vs. 𝛾 = 0.5, and 𝛾 = 0.99 vs. 𝛾 = 0.8. Each line represents a reward func-
tion’s performance, as measured by the true cumulative performance metric achieved
by an average policy trained with the hyperparameter shown on the 𝑥−axis. The
reward functions which result in the highest absolute difference in performance are
highlighted. For example, [−0.05,−0.05, 0.05, 1.0] resulted in a cumulative perfor-
mance of approximately 40, 000 when 𝛼 = 0.25, but instead resulted in a cumulative
performance of approximately 100, 000 when 𝛼 = 0.05.
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Figure A-2: Parallel coordinate plots which correspond to H2: Reward functions
are not universally optimal. This figure shows plots for 𝛼 = 0.25 vs. 𝛼 = 0.05, 𝛾 =
0.99 vs. 𝛾 = 0.5, and 𝛾 = 0.99 vs. 𝛾 = 0.8. Each line represents a reward function’s
performance, as measured by the true cumulative performance metric achieved by
an average policy trained with the hyperparameter shown on the 𝑥−axis. In the top
row, the reward functions which result in the best cumulative performance for the first
condition—i.e., 𝛼 = 0.25, 𝛾 = 0.99, and 𝛾 = 0.99 respectively—are highlighted. In the
bottom row, the reward functions which result in the best cumulative performance
for the second condition—i.e., 𝛼 = 0.05, 𝛾 = 0.5, and 𝛾 = 0.8 respectively—are
highlighted.
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Figure A-3: Parallel coordinate plots which correspond to H1: Reward functions
are not universally effective. This figure shows plots for A2C vs. Q-learning,
DDQN vs. Q-learning, PPO vs. Q-learning, A2C vs. DDQN, PPO vs. DDQN, and
PPO vs. A2C. Each line represents a reward function’s performance, as measured
by the true cumulative performance metric achieved by an average policy trained
with algorithm shown on the 𝑥−axis, using the standard hyperparameters as de-
scribed in reward-design-Apdx. Section A.4. The reward functions which result
in the highest absolute difference in performance are highlighted. For example,
[−0.50,−0.50, 10.00, 10.00] resulted in a cumulative performance of approximately
60, 000 when trained with A2C, but instead resulted in a cumulative performance of
approximately 300, 000 with Q-learning. Note that these algorithms are each trained
for 5000 episodes (instead of the 2000 used for comparing performance across hyper-
parameter changes).
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Figure A-4: Parallel coordinate plots which correspond to H2: Reward functions
are not universally optimal. This figure shows plots for A2C vs. DDQN, PPO
vs. A2C, and PPO vs. DDQN. Each line represents a reward function’s performance,
as measured by the true cumulative performance metric achieved by an average policy
trained with the algorithm shown on the 𝑥−axis. In the top row, the reward functions
which result in the best cumulative performance for the first condition—i.e., A2C,
PPO, and PPO respectively—are highlighted. In the bottom row, the reward func-
tions which result in the best cumulative performance for the second condition—i.e.,
DDQN, A2C, and DDQN respectively—are highlighted. The best-performing reward
functions are different for A2C vs. DDQN and PPO vs. DDQN, but not for PPO
vs. A2C. In this last case, the optimal reward function corresponds to the sparse
reward function [0, 0, 1, 1].
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Table A.3: Summary of the standard hyperparameters and related implementation
details used with each RL algorithm.

Standard Hyperparameter Value Q-Learning A2C DDQN PPO
𝛾, discount factor 0.99 0.99 0.99 0.99
𝛼, learning rate 0.05 0.001 0.001 0.005
number of training episodes 2000 5000 5000 5000
neural net hidden layer size — 144 144 144
neural net structure — Actor/Critic Q-Network/Q-Network Actor/Critic
neural net activation function — ReLU ReLU ReLU
entropy coefficient — 0.01 — 0.01
𝜖-greedy coefficient 0.15 — 0.15 —
𝜖-decay rate — — 10000 —
𝑛-step network updates — 20 — —
experience replay buffer size — — 5000 —
update steps — — 128 800
batch size — — 128 80
𝜖 clipping coefficient (trust region) — — — 0.2

A.5 User Study Overfitting

Say a user selects reward function 𝑟𝑖, but tested several other reward functions,
𝑟1, 𝑟2, . . . , 𝑟𝑛. In the main text, we assess whether users overfit their reward func-
tions to their selected algorithms and hyperparameters by assessing whether any of
the user’s tested reward functions 𝑟𝑗, where 𝑗 ∈ [1, 𝑛] and 𝑟𝑖 ̸= 𝑟𝑗, outperformed the
user’s final reward function significantly using any of the studied algorithms (DDQN,
PPO, and A2C with fixed hyperparameters). Here we propose an alternative metric
for overfitting in this context. If the average performance of the user’s selected re-
ward function over all three tested algorithms is significantly worse than the average
performance of one of the user’s alternative reward functions, we claim it is overfit.
As in the former evaluation, we again define the performance difference threshold to
be 20000, accumulated over 5000 training episodes and averaged over 10 trials.

Using this alternative metric, we find 11 of 24 users (46%) overfit their reward
functions. Note that 6 users are excluded from this evaluation, as their final reward
functions were invalid even in the best-case environment configuration. For example,
user P28 submitted the reward function [−1.0,−0.05,−0.25, 1.0], which achieved
an average cumulative performance of 8793 across the implementations of DDQN,
PPO, and A2C. This same user tested but did not select the alternative reward
function [−1.0,−0.1, 0.0, 1.0], which achieved an average cumulative performance of
35367 across the three tested algorithms. Since the performance difference is more
than the selected threshold of 20000, we say this user overfit their reward function.
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A.6 Compute
We ran these experiments on a combination of local compute and cloud services. Our
local compute consists of a machine with 64GB DDR4, a 12-core AMD Ryzen 9 5900
CPU, and a single NVIDIA GeForce RTX 3080 Ti GPU. We used a cloud service
which has 480 nodes with Intel Xeon Platinum 8260 CPUs and 4 GB of RAM per
core, with no GPUs available. All computers use Ubuntu as the OS. The description
of all packages and the specific versions needed to run the code (e.g., NumPy) is
included in the released codebase.

A.6.1 Deep RL Agents: Time to Train

Without any parallelization, training a DDQN agent for 5000 episodes on local com-
pute with the standard hyperparameters took on average 186 seconds; training a PPO
agent took 415 seconds; and, finally, training an A2C agent took 511 seconds.
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B.1 Network Architecture for MNIST & Fashion-
MNIST

For all experiments on MNIST and Fashion-MNIST, the VAE architecture is shown
in Table B.1 (left), and the GAN architecture is shown in Table B.1 (right). For
all experiments on MNIST and Fashion-MNIST except for the domain adaptation
analysis, the classifier architecture is shown in Table B.2 (left). The classifier used
in the domain adaptation analysis is the LeNet architecture, following the original
source code released by the authors, shown in Table B.2 (right). VAEs and GANs
are trained with binary cross entropy loss. Classifiers are trained with negative log
likelihood loss.

Table B.1: Left: VAE architecture; right: GAN architecture.
Encoder input: 28× 28× 1

Flatten

Fully-connected 784× 400

ReLU

Mean: Fully-connected 400× 5

Log-variance: Fully-connected 400× 5

Decoder input: 5 (latent dimension)

Fully-connected 5× 400

ReLU

Fully-connected 400× 784

Reshape 28× 28× 1

Sigmoid

Input: 5 (latent dimension)

Reshape 1× 1× 5

Conv-transpose: 512 filters, size=4× 4, stride = 1

Batch-norm, ReLU

Conv-transpose: 256 filters, size=4× 4, stride = 2

Batch-norm, ReLU

Conv-transpose: 128 filters, size=4× 4, stride = 2

Batch-norm, ReLU

Conv-transpose: 64 filters, size=4× 4, stride = 2

Batch-norm, ReLU

Conv-transpose: 1 filters, size=1× 1, stride = 1

Sigmoid
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Table B.2: Left: classifier architecture in all experiments except domain adaptation
analysis; right: LeNet classifier architecture in domain adaptation analysis (used in
code released by ADDA authors).

Input: 28× 28× 1

Conv: 32 filters, size = 3× 3, stride = 1

ReLU

Conv: 64 filters, size = 3× 3, stride = 1

Drop-out, prob = 0.25

Max-pool, size = 2× 2

Flatten

Fully-connected 9216× 128

ReLU

Drop-out, prob = 0.5

Fully-connected 128× 10

Soft-max

Input: 28× 28× 1

Conv: 20 filters, size = 5× 5, stride = 1

ReLU

Max-pool, size = 2× 2

Conv: 50 filters, size = 5× 5, stride = 1

ReLU

Max-pool, size = 2× 2

Flatten

Fully-connected 800× 500

ReLU

Fully-connected 500× 10

Soft-max
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B.2 Fréchet Inception Distance (FID) for VAE and
GAN

Table B.3 extends Table 4.1 in Sec. 4.4.2 and lists the FID scores for all VAE and GAN
models that we use. These FID scores reveal the GANs are better approximations
of the underlying data distributions. Models trained on “all” data are used for high
confidence, ambiguous confidence, confidence interpolation and domain adaptation
settings. Models trained on data “without [class]” are used for high-confidence failure
settings. Models trained on select classes ({2, 4, 5, 7, 8} and {0, 1, 4, 7, 8}) are used
for the novel class extrapolation settings.

Table B.3: Fréchet Inception Distance (FID) scores for all learned data distributions;
a lower score indicates a better distribution fit. Results are computed across 1000
samples. Classes 0 to 9 for Fashion-MNIST correspond to 0: T-shirt, 1: Trouser, 2:
Pullover, 3: Dress, 4: Coat, 5: Sandal, 6: Shirt, 7: Sneaker, 8: Bag, and 9: Ankle
boot.
Model Dataset Data Source FID

GAN

MNIST

All 11.83
Without 0 12.10
Without 1 12.08
Without 2 13.57
Without 3 12.71
Without 4 12.25
Without 5 12.21
Without 6 11.86
Without 7 11.64
Without 8 12.31
Without 9 12.34
{2, 4, 5, 7, 8} 13.45

Fashion

All 29.44
Without 0 28.91
Without 1 31.18
Without 2 30.11
Without 3 28.95
Without 4 30.43
Without 5 27.67
Without 6 29.68
Without 7 28.56
Without 8 30.87
Without 9 29.22
{0, 1, 4, 7, 8} 33.11

Model Dataset Data Source FID

VAE

MNIST

All 72.33
Without 0 71.28
Without 1 75.36
Without 2 64.77
Without 3 63.66
Without 4 66.96
Without 5 63.31
Without 6 67.64
Without 7 62.45
Without 8 64.14
Without 9 66.57
—– —–

Fashion

All 87.89
Without 0 89.21
Without 1 92.02
Without 2 91.20
Without 3 85.51
Without 4 88.38
Without 5 84.17
Without 6 85.58
Without 7 84.93
Without 8 83.66
Without 9 81.48
— —
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B.3 High-Confidence Examples
Figure B-1 presents additional high-confidence CLEVR examples and the classifier’s
predictions.

(a) 𝑃5 Sph. = 94.8% (b) 𝑃5 Sph. = 94.5% (c) 𝑃5 Sph. = 94.6% (d) 𝑃5 Sph. = 95.2% (e) 𝑃5 Sph. = 92.0%

(f) 𝑃2 Blue = 96.3% (g) 𝑃2 Blue = 96.1% (h) 𝑃2 Blue = 94.9% (i) 𝑃2 Blue = 96.8% (j) 𝑃2 Blue = 97.8%

Figure B-1: Above, B-1(a)–B-1(e): selected examples classified as containing 5
spheres with high confidence. Below, B-1(f)–B-1(j): selected examples classified as
containing 2 blue spheres with high confidence.

Figure B-2 presents additional high-confidence examples for MNIST and Fashion-
MNIST.

(a) MNIST

(b) Fashion-MNIST

Figure B-2: High-confidence examples from MNIST and Fashion-MNIST. There are
no misclassifications. MNIST columns represent digit 0 to 9, respectively. Fashion-
MNIST columns represent T-shirt, trousers, pullover, dress, coat, sandal, shirt,
sneaker, bag, and ankle boot, respectively.
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B.4 Ambiguous Confidence Examples
Figure B-3 presents additional visualizations for two pairs, Digit 1 vs. Digit 7 from
MNIST and T-shirt vs. Pullover from Fashion-MNIST. The confidence plots in the
middle confirm that the neural network is indeed making the ambiguous predictions.
The 𝑡-SNE [132] latent space visualizations at the bottom indicate that the samples lie
around the class boundaries and are also in-distribution (i.e., having close proximity
to those sampled from the prior).

Figure B-3: Left: ambiguous samples for digit 1 vs. 7 in MNIST. Right: ambiguous
samples for pullover vs. shirt in Fashion-MNIST. Top: 30 sampled images. Middle:
classifier confidence plots on the samples. Bottom: 𝑡-SNE latent space visualization:
green dots represent ambiguous samples from the posterior, red and blue dots rep-
resents samples from the prior that are predicted by the classifier to be either class
of interest, and gray dots represents other samples from the prior. The ambiguous
samples are on the class boundaries.

In addition, we also sampled for uniformly ambiguous examples (i.e. images that
receive around 10% confidence for each class) using the following formulation:

𝑢|�⃗� ∼ No(max
𝑖

𝑓(�⃗�)𝑖 −min
𝑗

𝑓(�⃗�)𝑗, 𝜎
2), (B.1)

𝑢* = 0. (B.2)

Fig. B-4 shows these samples and their confidence plot.
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Figure B-4: Uniformly ambiguous images and the confidence plot.
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B.5 Ambiguous Confidence with GAN and Modified
Classifier

Fig. B-5 shows the ambiguous confidence samples for 0v1, 1v2, ..., 9v0 using the GAN-
learned distribution when the classifier is trained with the custom KL loss described
in Eq. 4.13.

Figure B-5: Sampling results with an explicitly ambivalent classifier and a GAN-
learned distribution. Top 2 rows: digit 𝑖 vs. 𝑖 + 1 for 𝑖 ∈ {0, 1, 2, 3, 4}. Bottom 2
rows: digit 𝑖 vs. 𝑖+ 1 (mod 10) for 𝑖 ∈ {5, 6, 7, 8, 9}.
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B.6 High-Confidence Failure Analysis
Fig. B-6 shows such examples for CLEVR. For each target inference (e.g. “1 Cube”),
we exclude objects belonging to the target class from the data distribution.

(a) 𝑝1 Cube =
96.0%

(b) 𝑝1 Cube =
97.2%

(c) 𝑝1 Cube = 93.5% (d) 𝑝1 Cube =
67.3%

(e) 𝑝1 Cube = 94.5%

(f) 𝑝1 Sphere =
95.6%

(g) 𝑝1 Sphere =
96.6%

(h) 𝑝1 Sphere =
89.8%

(i) 𝑝1 Sphere =
99.1%

(j) 𝑝1 Sphere =
96.5%

(k) 𝑝1 Cyl. = 90.4% (l) 𝑝1 Cyl. = 98.6% (m) 𝑝1 Cyl. = 94.5% (n) 𝑝1 Cyl. = 96.5% (o) 𝑝1 Cyl. = 98.5%

(p) 𝑝2 Cyl. = 85.9% (q) 𝑝2 Cyl. = 60.2% (r) 𝑝2 Cyl. = 79.4% (s) 𝑝2 Cyl. = 48.4% (t) 𝑝2 Cyl. = 60.5%

Figure B-6: Sampled high confidence misclassified examples and their associated
prediction confidences. For each target constraint (e.g., “1 Cube”), objects from the
target class (e.g., cubes) are excluded from the data distribution. The resultant images
are composed entirely of non-target-class objects, (e.g., cylinders and spheres).
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Fig. B-7 presents high-confidence misclassifications for each classes of MNIST,
with digit 0-4 on the top two rows and digit 5-9 on the bottom two rows.

Figure B-7: Examples and violin plots for high confidence misclassified examples.
Top two rows: 0-4; bottom two rows: 5-9.
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Fig. B-8 presents high-confidence misclassifications for each classes of Fashion-
MNIST, with T-shirt, trousers pullover, dress and coat on the top two rows and
sandal, shirt, sneaker, bag and ankle boot on the bottom two rows. The confidence
plot for the trousers samples indicates that the sampling is not successful.

Figure B-8: Samples and violin plots for high confidence misclassified examples. Top
row: T-shirt, trousers (sample failure), pullover, dress, coat. Bottom row: sandal,
shirt, sneaker, bag, ankle boot.
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B.7 Novel Class Extrapolation Analysis
Figure B-9 shows novel class extrapolation examples for CLEVR.

(a) 𝑝1 Sph. = 99.3% (b) 𝑝1 Sph. = 95.9% (c) 𝑝1 Sph. = 99.3% (d) 𝑝1 Sph. = 97.7% (e) 𝑝1 Sph. = 97.3%

(f) 𝑝1 Cube = 99.2% (g) 𝑝1 Cube = 97.5% (h) 𝑝1 Cube = 98.7% (i) 𝑝1 Cube = 99.0% (j) 𝑝1 Cube = 98.7%

(k) 𝑝1 Cyl. = 96.9% (l) 𝑝1 Cyl. = 99.1% (m) 𝑝1 Cyl. = 96.5% (n) 𝑝1 Cyl. = 97.2% (o) 𝑝1 Cyl. = 99.0%

(p) 𝑝5 Cubes = 74.6% (q) 𝑝5 Cubes = 89.5% (r) 𝑝5 Cubes = 93.3% (s) 𝑝5 Cubes = 91.6% (t) 𝑝5 Cubes = 89.9%

Figure B-9: Sampled novel class extrapolation examples and their associated predic-
tion confidences. Similar to high confidence misclassified examples, for each target
constraint (e.g., “1 Cube”), we remove examples of the target class (e.g., cubes) from
the data distribution, but add to the cone object to it, a novel class not present in the
training distribution. B-9(n) is the only example which by chance does not include a
novel class object.
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Fig. B-10 shows examples for novel-class extrapolation on MNIST. The classifier
is trained on digit 0, 1, 3, 6 and 9, and tested on images generated by a GAN trained
on digit 2, 4, 5, 7 and 8.

Figure B-10: Samples and confidence plots for MNIST novel class extrapolation for
digits 0, 1, 3, 6 and 9, in that order.

Fig. B-11 shows examples for novel-class extrapolation on Fashion-MNIST. The
classifier is trained on pullover, dress, sandal, shirt and ankle boot, and tested on
images generated by a GAN trained on T-shirt, trousers, coat, sneaker and bag.

Figure B-11: Samples and confidence plots for Fashion-MNIST novel class extrapo-
lation for pullover, dress, sandal, shirt and ankle boot, in that order.
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B.8 Domain Adaptation Analysis
Fig. B-12 and B-13 show additional samples and confidence plots for the baseline and
ADDA model, respectively. Top two rows are for digit 0-4, and bottom two rows are
for digit 5-9.

Figure B-12: High confident MNIST samples generated for each class as predicted by
the baseline model.

Figure B-13: High confident MNIST samples generated for each class as predicted by
the ADDA model.
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B.9 Quantitative Prediction Confidence Summary
Tables B.4, B.5, and B.6 present the extension of Table 4.2 in Sec. 4.4.9. These
results show that the inferred samples have predicted confidence closely matching
the specified confidence targets. This indicates the MCMC methods used by Bayes-
TrEx are successful for the tested domains and scenarios. Queries for 5 Cubes in
the novel class extrapolation CLEVR experiments use a stopping criterion of 1500
samples instead of the standard 500 (Fig. B-14). Averages reported across 10 inference
runs. Fig. B-15 presents the prediction confidence for pairwise ambiguous samples
for MNIST and Fashion-MNIST.

Table B.4: Prediction confidence for samples on high-confidence examples (left) and
high confidence misclassifications (right).

Target Prediction Confidence

𝑝0 = 1 0.999 ± 0.006
𝑝1 = 1 0.999 ± 0.003
𝑝2 = 1 0.999 ± 0.006
𝑝3 = 1 0.999 ± 0.005
𝑝4 = 1 0.998 ± 0.008
𝑝5 = 1 0.999 ± 0.006
𝑝6 = 1 0.998 ± 0.007
𝑝7 = 1 0.998 ± 0.007
𝑝8 = 1 0.999 ± 0.004
𝑝9 = 1 0.998 ± 0.007

𝑝T-Shirt = 1 0.991 ± 0.016
𝑝Trouser = 1 0.999 ± 0.006
𝑝Pullover = 1 0.984 ± 0.019
𝑝Dress = 1 0.993 ± 0.008
𝑝Coat = 1 0.983 ± 0.021
𝑝Sandal = 1 0.998 ± 0.008
𝑝Shirt = 1 0.987 ± 0.020
𝑝Sneaker = 1 0.994 ± 0.016
𝑝Bag = 1 0.999 ± 0.006
𝑝Ankle Boot = 1 0.996 ± 0.012

𝑝5 Spheres = 1 0.943 ± 0.020
𝑝2 Blue Spheres = 1 0.892 ± 0.245

Target Prediction Confidence

𝑝0 = 1 0.981 ± 0.027
𝑝1 = 1 0.953 ± 0.028
𝑝2 = 1 0.968 ± 0.028
𝑝3 = 1 0.969 ± 0.027
𝑝4 = 1 0.955 ± 0.030
𝑝5 = 1 0.990 ± 0.018
𝑝6 = 1 0.970 ± 0.026
𝑝7 = 1 0.968 ± 0.029
𝑝8 = 1 0.982 ± 0.024
𝑝9 = 1 0.983 ± 0.022

𝑝T-Shirt = 1 0.964 ± 0.029
𝑝Trouser = 1 (sample failure)
𝑝Pullover = 1 0.886 ± 0.027
𝑝Dress = 1 0.970 ± 0.026
𝑝Coat = 1 0.938 ± 0.030
𝑝Sandal = 1 0.968 ± 0.030
𝑝Shirt = 1 0.938 ± 0.032
𝑝Sneaker = 1 0.969 ± 0.028
𝑝Bag = 1 0.967 ± 0.026
𝑝Ankle Boot = 1 0.971 ± 0.027

𝑝1 Cube = 1 0.929 ± 0.062
𝑝1 Cylinder = 1 0.972 ± 0.021
𝑝1 Sphere = 1 0.843 ± 0.266
𝑝2 Cylinders = 1 0.545 ± 0.230
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Table B.5: (Fashion-)MNIST confidence interpolation.
Target Prediction Confidence

𝑝8 = 0.0, 𝑝9 = 1.0 (0.002± 0.006, 0.990± 0.016)
𝑝8 = 0.1, 𝑝9 = 0.9 (0.030± 0.039, 0.936± 0.051)
𝑝8 = 0.2, 𝑝9 = 0.8 (0.170± 0.039, 0.788± 0.040)
𝑝8 = 0.3, 𝑝9 = 0.7 (0.275± 0.041, 0.682± 0.040)
𝑝8 = 0.4, 𝑝9 = 0.6 (0.378± 0.040, 0.578± 0.040)
𝑝8 = 0.5, 𝑝9 = 0.5 (0.477± 0.039, 0.477± 0.039)
𝑝8 = 0.6, 𝑝9 = 0.4 (0.581± 0.038, 0.374± 0.039)
𝑝8 = 0.7, 𝑝9 = 0.3 (0.680± 0.041, 0.275± 0.039)
𝑝8 = 0.8, 𝑝9 = 0.2 (0.788± 0.040, 0.167± 0.041)
𝑝8 = 0.9, 𝑝9 = 0.1 (0.926± 0.050, 0.039± 0.040)
𝑝8 = 1.0, 𝑝9 = 0.0 (0.989± 0.016, 0.002± 0.007)

Target Prediction Confidence

𝑝T-Shirt = 0.0, 𝑝Trousers = 1.0 (0.001± 0.004, 0.995± 0.012)
𝑝T-Shirt = 0.1, 𝑝Trousers = 0.9 (0.026± 0.035, 0.950± 0.050)
𝑝T-Shirt = 0.2, 𝑝Trousers = 0.8 (0.166± 0.040, 0.791± 0.041)
𝑝T-Shirt = 0.3, 𝑝Trousers = 0.7 (0.275± 0.037, 0.686± 0.038)
𝑝T-Shirt = 0.4, 𝑝Trousers = 0.6 (0.379± 0.038, 0.586± 0.038)
𝑝T-Shirt = 0.5, 𝑝Trousers = 0.5 (0.436± 0.040, 0.459± 0.040)
𝑝T-Shirt = 0.6, 𝑝Trousers = 0.4 (0.583± 0.038, 0.382± 0.037)
𝑝T-Shirt = 0.7, 𝑝Trousers = 0.3 (0.685± 0.039, 0.281± 0.040)
𝑝T-Shirt = 0.8, 𝑝Trousers = 0.2 (0.790± 0.037, 0.177± 0.037)
𝑝T-Shirt = 0.9, 𝑝Trousers = 0.1 (0.936± 0.045, 0.029± 0.041)
𝑝T-Shirt = 1.0, 𝑝Trousers = 0.0 (0.985± 0.019, 0.000± 0.003)

Table B.6: Prediction confidence for novel class extrapolation (left) and domain adap-
tation (right).

Target Prediction Confidence

𝑝0 = 1 0.976 ± 0.025
𝑝1 = 1 0.988 ± 0.186
𝑝3 = 1 0.987 ± 0.020
𝑝6 = 1 0.989 ± 0.018
𝑝9 = 1 0.995 ± 0.013

𝑝Pullover = 1 0.991 ± 0.016
𝑝Dress = 1 0.994 ± 0.013
𝑝Sandal = 1 0.995 ± 0.013
𝑝Shirt = 1 0.994 ± 0.012
𝑝Ankle Boot = 1 0.993 ± 0.015

𝑝1 Cube = 1 0.983 ± 0.014
𝑝1 Cylinder = 1 0.959 ± 0.031
𝑝1 Sphere = 1 0.969 ± 0.022
𝑝5 Cubes = 1 0.921 ± 0.029

Target Prediction Confidence

𝑝0 = 1 0.996 ± 0.011
𝑝1 = 1 0.994 ± 0.014
𝑝2 = 1 0.998 ± 0.008
𝑝3 = 1 0.994 ± 0.015
𝑝4 = 1 0.997 ± 0.010
𝑝5 = 1 0.998 ± 0.007
𝑝6 = 1 0.996 ± 0.011
𝑝7 = 1 0.996 ± 0.011
𝑝8 = 1 0.995 ± 0.013
𝑝9 = 1 0.996 ± 0.012
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CLEVR, 5 Cubes Novel Class Experiment:
Sampling Efficacy

Figure B-14: We assess sample efficacy which enables us to approximate the prediction
target while minimizing compute utilization. For this experiment, the target is a novel
class extrapolation CLEVR scene classified as containing 5 cubes with high confidence
(𝑝5 Cubes = 1), but which consists of only spheres, cylinders, and cones. For each
evaluated number of samples, we conduct 5 independent Bayes-TrEx runs. This
evaluation shows that 1250 or more samples are needed for this trial.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

0.437 0.487 0.447 0.481 0.473 0.490 0.482 0.474

0.433 0.490 0.485 0.485 0.455 0.489 0.489 0.483 0.463

0.487 0.489 0.487 0.469 0.481 0.483 0.482 0.303

0.448 0.485 0.486 0.489 0.463 0.483 0.486

0.481 0.484 0.469 0.484 0.484 0.488

0.471 0.456 0.491 0.481 0.458 0.488 0.467

0.492 0.488 0.484 0.463 0.484 0.481 0.476 0.435

0.490 0.486 0.482 0.486 0.457 0.478 0.488

0.482 0.485 0.479 0.487 0.487 0.476 0.477 0.481

0.477 0.464 0.314 0.486 0.467 0.436 0.490 0.484

MNIST

T-shirt
Trousers

Pullover

Dress
Coat

Sandal

Shirt
Sneaker

Bag
Ankle boot

T-shirt
TrousersPulloverDress
Coat
SandalShirt
SneakerBag
Ankle boot

0.487 0.475 0.482 0.486 0.460 0.400

0.488 0.461 0.487 0.472 0.477 0.462 0.459

0.475 0.459 0.483 0.476 0.478 0.436

0.480 0.488 0.476 0.485 0.457

0.475 0.484 0.476 0.479 0.475

0.479 0.476 0.485 0.472 0.496

0.490 0.479 0.477 0.457

0.485 0.478 0.494

0.461 0.467 0.434 0.486 0.473 0.475 0.455 0.480 0.487

0.401 0.460 0.456 0.493 0.494 0.488

Fashion-MNIST

Figure B-15: Prediction confidence for (Fashion-)MNIST ambiguous samples. For
each class combination, the lower left triangle shows the the confidence for the digit
denoted on the horizontal axis, and the upper right triangle shows the confidence for
the digit on the vertical axis. For example, for the MNIST class combination 9v0, the
classifier confidence in class 0 is 0.477 (bottom left) while the classifier confidence in
class 9 is 0.474 (top right). Diagonal entries are blank since they have the same class
on row and column. Off-diagonal blank entries indicate that Bayes-TrEx sampling
failed for that class pair.
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B.10 Test Set Evaluation
Tab. B.7 extends Tab. 4.5 in Sec. 4.4.10 and includes misclassified vs. mislabeled
images of all (Fashion-)MNIST classes.

Table B.7: An alternative to using Bayes-TrEx for finding highly confident clas-
sification failures is to evaluate the high confidence example confusion matrix and
associated images from the test set. Here, we show all ‘misclassified’ examples where
the classifier failed to predict the given label for the MNIST and Fashion-MNIST
datasets. For MNIST, we observe that the majority (60/84) of these images are mis-
labeled: for example, all of the labeled 2s clearly belong to other classes (8, 7, 7, 3, 1,
7, 7, 7, respectively). While MNIST had 84 total misclassifications, Fashion-MNIST
had 802 total misclassifications. We randomly select 10 misclassifications from each
class for analysis (with the exception of the “trousers” class, as there were 3 total
misclassifications for this label). While Fashion-MNIST is more balanced, we again
observe a majority of examples to be mislabeled ground truth (52/93) instead of mis-
classifications.
Class Misclassified Mislabeled

0
1
2 ∅
3
4
5
6
7
8 ∅
9

Tshirt
Trouser ∅
Pullover
Dress
Coat
Sandal
Shirt
Sneaker
Bag
Boot ∅
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Figure B-16 shows the confusion matrix of the MNIST (left) and Fashion-MNIST
(right) classifiers.
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850 0 4 26 1 7 97 0 15 0

5 943 0 42 1 2 5 0 2 0

34 1 723 12 101 8 112 0 9 0

26 0 1 907 11 2 39 0 14 0

6 1 45 73 758 10 94 0 13 0

0 0 0 0 0 986 0 5 5 4

141 1 34 23 48 13 713 0 27 0

0 0 0 0 0 37 0 905 6 52

1 1 0 2 1 3 7 2 983 0

0 0 0 0 0 15 0 16 0 969

Fashion-MNIST

Figure B-16: Confusion matrices for MNIST (left) and Fashion-MNIST (right) clas-
sifiers. Note that these matrices include all test set examples, not just those which
evoke high confidence responses from the classifier.
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B.11 Bayes-TrEx with Saliency Maps
We demonstrate a simple use case of combining with Bayes-TrEx samples with
downstream interpretability methods. Fig. B-17 (left) shows an image for which the
classifier mistakes it to contain one cube with 93.5% accuracy. Fig. B-17 (middle)
presents its SmoothGrad [186] saliency map and Fig. B-17 (right) overlays it on top
of the image. We can see that the most salient part contributing to the 1-cube
decision is the front red cylinder. Indeed, as we confirm in Fig. B-18, among all
single object removals, removing this object has the biggest effect to the classifier
confidence, decreasing it to 29.0%.

Figure B-17: Left: the original image, preprocessed for classification by resizing and
normalizing. The classifier is 93.5% confident this scene contains 1 cube, when in
fact it is composed of 3 cylinders and 2 spheres. Middle: the SmoothGrad saliency
map for this input. Right: the saliency map overlaid upon the original image. This
saliency map most strongly highlights the red metal cylinder, indicating that this
cylinder is likely the cause of the misclassification.

(a) 𝑝1 Cube =
29.0%

(b) 𝑝1 Cube =
68.5%

(c) 𝑝1 Cube = 81.2% (d) 𝑝1 Cube =
99.0%

(e) 𝑝1 Cube =
99.4%

Figure B-18: Prediction confidence for 1-cube after every single object is removed in
turn. As suggested by the saliency map, the removal of the red metal cylinder most
prominently reduces the classification confidence, from 93.5% to 29.0%.

196



Fig. B-19 presents additional case studies with the same setup. Note that Fig. B-
19(e) shows a failure of SmoothGrad.
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(a) Original image: 𝑝1 Cube = 85.5%. Purple cylinder removed:
𝑝1 Cube = 1.9%

(b) Original image: 𝑝1 Sphere = 97.9%. Yellow cylinder removed:
𝑝1 Sphere = 5.2%

(c) Original image: 𝑝1 Cylinder = 85.4%. Red sphere removed:
𝑝1 Cylinder = 0.9%

(d) Original image: 𝑝1 Cube = 99.7%. Cone removed: 𝑝1 Cube = 0.4%

(e) Original image: 𝑝1 Sphere = 98.0%. Gray cone removed: 𝑝1 Sphere =
0.3%

Figure B-19: Images sampled with Bayes-TrEx and their saliency maps. B-19(a)-
B-19(c) are high confidence misclassified examples; B-19(d)-B-19(e) are novel class
extrapolation examples. In B-19(e), the saliency map primarily highlights two objects:
the red cone and the blue cylinder. Removing either of these objects does not result
in a change of prediction. Instead, the misclassification of 1 Sphere is due to the
marginally-highlighted gray cone.
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B.12 Ethics Statement
Bayes-TrEx has potential to allow humans to build more accurate mental models
of how neural networks make decisions. Further, Bayes-TrEx can be useful for
debugging, interpreting, and understanding networks—all of which can help us build
better, less biased, increasingly human-aligned models.

However, Bayes-TrEx is subject to the same caveats as typical software test-
ing approaches: the absence of exposed bad samples does not mean the system is
free from defects. One concern is how system designers and users will interact with
Bayes-TrEx in practice. If Bayes-TrEx does not reveal degenerate examples,
these stakeholders might develop inordinate trust [120] in their models.

Additionally, one Bayes-TrEx use case is to generate examples to be used as
inputs to downstream local explanation methods. As a community, we know that
many of these local explanations can be challenging to understand [157, 154], mis-
leading [1, 100, 175], or susceptible to adversarial attacks [185]. In human-human
interaction, even nonsensical explanations can increase compliance [117]. As we build
post-hoc explanation techniques, we must evaluate whether the produced explana-
tions help humans moderate trust and act appropriately—for example, by overriding
the model’s decisions.
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Appendix C

Inspect: Robot Controllers

C.1 Scale-Invariance and the Volume Interpretation
of 𝛼

We show that Eq. 5.3 results in the formulation being scale-invariant with respect to
𝑏. Consider the same behavior under two different units 𝑏1 and 𝑏2 with 𝑏1 = 𝑐 · 𝑏2. For
example, 𝑏1 can be the trajectory length in centimeters and 𝑏2 is the same quantity
but in meters, and 𝑐 = 100. Thus, 𝑝(𝑐 · 𝑏1) = 𝑝(𝑏2) and 𝑏*1 = 𝑐 · 𝑏*2. To maintain the
same 𝛼 level in Eq. 5.3, we need to have 𝜎1 = 𝑐 · 𝜎2. This implies that

𝑝(𝑡, 𝜏 |�̂�1 = 𝑏*1) =
𝒩 (𝑏*1; 𝑏(𝜏, 𝑡), 𝜎

2
1)𝑝(𝜏 |𝑡)𝜋(𝑡)

𝑝(�̂�1 = 𝑏*1)
(C.1)

=
𝒩 (𝑏*2; 𝑏(𝜏, 𝑡), 𝜎

2
2)𝑝(𝜏 |𝑒)𝜋(𝑡)

𝑝(�̂�2 = 𝑏*2)
= 𝑝(𝑡|�̂�2 = 𝑏*2) (C.2)

because 𝒩 (𝑏*1; 𝑏(𝜏, 𝑡), 𝜎
2
1) = 𝒩 (𝑏*2; 𝑏(𝜏, 𝑡), 𝜎

2
2) due to the same scaling of 𝑏1 ∼ 𝑏2 and

𝜎1 ∼ 𝜎2, and 𝑝(�̂�1 = 𝑏*1) = 𝑝(�̂�2 = 𝑏*2) as they are the same event. We conclude that
the posterior distribution is scale-invariant with respect to 𝑏(𝜏, 𝑡).

To motivate the bound of [𝑏* −
√
3𝜎, 𝑏* +

√
3𝜎] in Eq. 5.3, we consider a uniform

approximation to 𝒩 (𝑏*, 𝜎2). To match the mean 𝑏* and standard deviation 𝜎, 𝒰(𝑏*−√
3𝜎, 𝑏*+

√
3𝜎) is needed. If we use this uniform distribution in Eq. 5.2 in lieu of the

normal distribution, the posterior can be instantiated by sampling from the prior and
rejecting tasks for which the trajectory behavior 𝑏(𝜏, 𝑡) falls outside of this bound.
Thus, Eq. 5.3 specifies that the “volume” of (𝛼 · 100)% under 𝑝(𝑡, 𝜏) is maintained.

The same invariance and “volume” interpretation holds for Eq. 5.5 as well. The
former stems from the standardization on 𝑏 performed in Eq. 5.4. The latter uses the
same uniform approximation but the bound is one-sided since 𝛽 ∈ (0, 1) by nature of
the sigmoid transformation.
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C.2 MCMC Sampling with Stochastic Dynamics

Using the same logic as the case of stochastic controller, RoCUS can also accom-
modate stochasticity in transition dynamics (e.g. object position uncertainty after it
is pushed), as long as such stochasticity can be captured in a random variable 𝑣 and
𝑝(𝑣|𝑡) can be evaluated. This is typically possible in simulation, and the modification
to Alg. 1 is similar to the case of stochastic controllers. In the real world, we can
• treat a sampled trajectory as the deterministic one;
• restart multiple times to estimate E𝜏 [𝑏(𝜏, 𝑡)]; or
• use likelihood-free MCMC methods [28].
We leave these investigations to future work, and use deterministic dynamics in our
experiments.

C.3 Mathematical Definitions of Behaviors

A versatile and general form of a behavior is the (normalized or unnormalized) line
integral of some scalar field along the trajectory. Specifically, we have

𝑏 =

∫︁
𝜏

𝑉 (�⃗�)𝑑𝑠 or 𝑏 =
1

||𝜏 ||

∫︁
𝜏

𝑉 (�⃗�)𝑑𝑠. (C.3)

Using this general definition, we define a list of behaviors in Tab. C.1.

Name Definition Name Definition

Trajectory Length 𝑏 =

∫︁
𝜏

1𝑑𝑠 Straight-Line Deviation 𝑏 =
1

||𝜏 ||

∫︁
𝜏

||�⃗�− proj�⃗�𝑓−�⃗�𝑖
�⃗�||𝑑𝑠

Average Velocity 𝑏 =
1

||𝜏 ||

∫︁
𝜏

|| ˙⃗𝑥||𝑑𝑠 Obstacle Clearance 𝑏 =
1

||𝜏 ||

∫︁
𝜏

min
�⃗�𝑜∈𝒪
||�⃗�− �⃗�𝑜||𝑑𝑠

Average Acceleration 𝑏 =
1

||𝜏 ||

∫︁
𝜏

||¨⃗𝑥||𝑑𝑠 Near-Obstacle Velocity 𝑏 =

∫︀
𝜏
|| ˙⃗𝑥||/min�⃗�𝑜∈𝒪 ||�⃗�− �⃗�𝑜||𝑑𝑠∫︀
𝜏
1/min�⃗�𝑜∈𝒪 ||�⃗�− �⃗�𝑜||𝑑𝑠

Average Jerk 𝑏 =
1

||𝜏 ||

∫︁
𝜏

||
...
�⃗� ||𝑑𝑠 Motion Legibility 𝑏 =

1

||𝜏 ||

∫︁
𝜏

𝑝(𝑔|�⃗�)𝑑𝑠

Table C.1: A list of behavior definitions.

Trajectory length simply measures how long the trajectory is. In most of the
behaviors below, the normalizing factor is also length to decorrelate the behavior
value from it.

Average velocity, acceleration and jerk are useful for a general understanding
about how fast and abruptly the robot moves, which is an important factor to its
safety.

Straight-line deviation measures how much the robot trajectory deviates from
the straight-line path, in either the task space or the state space. A specific task
instance in which the straight-line path is feasible (e.g. with no obstacles) is typically
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considered easy. Thus, we can find tasks of varying difficulty level on the spectrum
of deviation values. In the definition, �⃗�𝑖 is the initial state, �⃗�𝑓 is the final state, and
proj is the projection operator.

Obstacle clearance measures the average distance to the closest obstacle. Find-
ing situations in which the robot moves very close to obstacles is crucial to under-
standing the collision risk level. In the definition, 𝒪 represents the obstacle space.

Near-obstacle velocity calculates how fast the robot moves around obstacles.
We define it as the average velocity on the trajectory weighted by the inverse distance
to the closest obstacle. Other weighting method can be used, as long as it is non-
negative and monotonically decreasing with distance. This behavior is correlated
with the damage of a potential collision, as high-speed collisions are usually far more
dangerous and costly. Since we want the value to represent the average velocity, we
normalize by the integral of weights along the trajectory.

Motion legibility measures how well the goal can be predicted over the course
of the exhibited trajectory. In our definition, we use 𝑝(𝑔|�⃗�), or the conditional prob-
ability of the goal 𝑔 given at the current robot state �⃗�, but there may be better
application-specific definitions.

C.4 Dynamical System Modulation

We review the DS formulation proposed by [86], and present our problem-specific
adaptations for 2D Navigation in App. C.8.2 and 7DoF arm reaching in App. C.10.3.
A reader familiar with DS motion controllers may skip this review.

Given a target �⃗�* and the robot’s current state �⃗�, a linear controller �⃗�(𝑥) = �⃗�*− �⃗�
will guarantee convergence of �⃗� to �⃗�* if there are no obstacles. However, it can
easily get stuck in the presence of obstacles. [86] proposes a method to calcu-
late a modulation matrix 𝑀(�⃗�) at every �⃗� such that if the new controller follows
�⃗�𝑀(�⃗�) = 𝑀(�⃗�) · �⃗�(�⃗�), then �⃗� still converges to �⃗�* but never gets stuck, as long as
�⃗�* is in free space. In short, the objective of the DS modulation is to preserve the
linear controller’s convergence guarantee while also ensuring that the robot is never
in collision.

The modulation matrix 𝑀(�⃗�) is computed from a list of obstacles, each of which is
represented by a Γ-function. For the 𝑖-th obstacle 𝒪𝑖, its associated gamma function
Γ𝑖 must satisfy the following properties:
• Γ𝑖(�⃗�) ≤ 1 ⇐⇒ �⃗� ∈ 𝒪𝑖,

• Γ𝑖(�⃗�) = 1 ⇐⇒ �⃗� ∈ 𝜕𝒪𝑖,

• ∃ �⃗�𝑖, s.t.∀ 𝑡1 ≥ 𝑡2 ≥ 0, ∀ �⃗�,Γ𝑖(�⃗�𝑖 + 𝑡1�⃗�) ≥ Γ𝑖(�⃗�𝑖 + 𝑡2�⃗�).
In words, the Γ-function value needs to be less than 1 when inside the obstacle,
equal to 1 on the boundary, greater than 1 when outside. This function must also
be monotonically increasing radially outward from a specific point �⃗�𝑖. This point
is dubbed the reference point. From this formulation, �⃗�𝑖 ∈ 𝒪𝑖 and any ray from �⃗�𝑖
intersects with the obstacle boundary 𝜕𝒪𝑖 exactly once. The latter property is also
the definition that 𝒪𝑖 is “star-shaped” (Fig. C-4). For most common (2D) geometric
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shape such as rectangles, circles, ellipses, regular polygons and regular stars, �⃗�𝑖 can
be chosen as the geometric center.

We first consider the case of a single obstacle 𝒪, represented by Γ with reference
point �⃗�. Use 𝑑 to denote the dimension of the space. We define

𝑀(�⃗�) = 𝐸(�⃗�)𝐷(�⃗�)𝐸−1(�⃗�). (C.4)

We have

𝐸(𝑥) = [�⃗�(�⃗�), �⃗�1(�⃗�), ..., �⃗�𝑑−1(�⃗�)], (C.5)

where

�⃗�(�⃗�) =
�⃗�− �⃗�

||�⃗�− �⃗�||
(C.6)

is the unit vector in the direction of �⃗� from �⃗�, and �⃗�1(�⃗�), ..., �⃗�𝑑−1(�⃗�) form a 𝑑 − 1
orthonormal basis to the gradient of the Γ-function, ∇Γ(�⃗�) representing the nor-
mal to the obstacle surface. 𝐷(�⃗�) is a diagonal matrix whose diagonal entries are
𝜆𝑠, 𝜆1, ..., 𝜆𝑑−1, with

𝜆𝑠 = 1− 1

Γ(�⃗�)
, (C.7)

𝜆1, ..., 𝜆𝑑−1 = 1 +
1

Γ(�⃗�)
. (C.8)

each eigenvalue determines the scaling of each direction. Conceptually, as the robot
approaches the obstacle, this modulation decreases the velocity for the component
in the reference point direction (i.e. toward obstacles) while increases velocity for
perpendicular components. The combined effect results in the robot being deflected
away tangent to the obstacle surface.

With 𝑁 obstacles, we compute the modulation matrix 𝑀𝑖(�⃗�) for every obstacle
using the procedure above and the individual controllers �⃗�𝑀𝑖

(�⃗�) = 𝑀𝑖(�⃗�) · �⃗�(�⃗�). The
final modulation is the aggregate of all the individual modulations. However, a simple
average is insufficient since closer obstacles should have higher influence to prevent
collisions.

[86] proposed the following aggregation procedure. Let �⃗�𝑖 denote the individual
modulations, with norms 𝑛𝑖. The final aggregate modulation �⃗� is calculated as

�⃗� = 𝑛𝑎�⃗�𝑎, (C.9)

where 𝑛𝑎 and �⃗�𝑎 are the aggregate norm and direction.
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The aggregate norm is computed as

𝑛𝑎 =
𝑁∑︁
𝑖=1

𝑤𝑖𝑛𝑖, (C.10)

𝑤𝑖 =
𝑏𝑖∑︀𝑁
𝑗=1 𝑏𝑗

, (C.11)

𝑏𝑖 =
∏︁

1≤𝑗≤𝑁,𝑗 ̸=𝑖

Γ𝑗(�⃗�). (C.12)

The above definition ensures that
∑︀𝑁

𝑖=1 𝑤𝑖 = 1, and 𝑤𝑖 → 1 when �⃗� approaches 𝒪𝑖

(and only 𝒪𝑖, which holds as long as obstacles are disjoint).
�⃗�𝑎 is instead computed using what [86] calls “𝜅-space interpolation.” First, similar

to the basis vector matrix 𝐸(�⃗�) introduced above, we construct another such matrix,
but with respect to the original controller �⃗�* − �⃗�. We denote it as 𝑅 = [(�⃗�* −
�⃗�)/||�⃗�*− �⃗�||, �⃗�1, ..., �⃗�𝑑−1], where �⃗�1, ..., �⃗�𝑑−1 are again orthonomal vectors spanning the
null space.

For each �⃗�𝑖, we compute its coordinate in this new 𝑅-frame as ˆ⃗𝑢𝑖 = 𝑅−1�⃗�𝑖. Its
𝜅-space representation is

𝜅𝑖 =
arccos(ˆ⃗𝑢

(1)
𝑖 )∑︀𝑑

𝑚=2
ˆ⃗𝑢
(𝑚)
𝑖

[︁
ˆ⃗𝑢
(2)
𝑖 , ..., ˆ⃗𝑢

(𝑑)
𝑖

]︁𝑇
∈ R𝑑−1, (C.13)

where the superscript (𝑚) refers to the 𝑚-th entry. 𝜅𝑖 is a scaled version of the ˆ⃗𝑢𝑖

with the first entry removed. We perform the aggregation in this 𝜅-space using the
weights 𝑤𝑖 calculated above (C.14), transform it back to the 𝑅-frame (C.15), and
finally transform it back to the original frame (C.16):

𝜅𝑎 =
𝑁∑︁
𝑖=1

𝑤𝑖𝜅𝑖 (C.14)

ˆ⃗𝑢𝑎 =

[︂
cos(||𝜅𝑎||),

sin(||𝜅𝑎||)
||𝜅𝑎||

𝜅𝑇
𝑎

]︂𝑇
(C.15)

�⃗�𝑎 = 𝑅ˆ⃗𝑢𝑎. (C.16)

As mentioned in Eq. C.9, the final modulation is �⃗� = 𝑛𝑎�⃗�𝑎.

C.4.1 Tail-Effect

An artifact of the above formulation is the “tail-effect,” where the robot is modulated
to go around the obstacle even when it has passed by the obstacle and the remaining
trajectory has no chance of collision under the non-modulated controller. This effect
has been observed by [97] for a related but different type of modulation. Fig. C-1,
reproduced from the paper by [97] (Fig. 7), shows the tail effect on the left and its
removal on the right. This tail effect induces the placement of obstacles at the end
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of the “diagonal corridor” as seen in our straight-line deviation experiments (Fig. 5-6,
left). If desired, the DS formulation can be modified to remove this effect.

Figure C-1: Tail effect (left) and its removal (right), reproduced from Fig. 7 by [97].
The target is on the far right side.

C.5 RRT Algorithm Description and Sampling

There are many RRT variants with subtle differences. For clarity, Algorithm 2
presents the version that we use.

Algorithm 2: The explicit RRT algorithm used with RoCUS.
Input: Start configuration 𝑠0, target configuration 𝑠*.

1 𝒯 ← tree(root = 𝑠0);
2 success ← attempt-grow(𝒯 , from = 𝑠0, to = 𝑠*);
3 while not success do
4 𝑠 ← sample-configuration( );
5 𝑠𝑛 ← nearest-neighbor(𝒯 , 𝑠);
6 success ← attempt-grow(𝒯 , from = 𝑠𝑛, to = 𝑠);
7 if success then
8 success ← attempt-grow(𝒯 , from = 𝑠, to = 𝑠*);
9 return path(𝒯 , from = 𝑠0, to = 𝑠*)

While RRT is stochastic (unlike DS, IL and RL), the entire randomness is captured
by the sequence of C-space samples used to grow the tree, including failed ones. We
call this a growth 𝑔 = [𝑠1, 𝑠2, 𝑠3, ...]. The probabilistic completeness property of RRT
generally assures that the algorithm will terminate in finite time with probability 1
if a path to the target exists [118]. Thus, hypothetically, given an infinitely long
tape containing every entry of 𝑔, we can compute a deterministic trajectory 𝜏 =
RRT(𝑠0, 𝑠

*, 𝑔) with a finite number of nodes with probability 1.
To enable MH inference, we take inspiration from Bayesian nonparametrics: we

instantiate 𝑔 on an as-needed basis. We start with an empty vector of 𝑔 = [ ]. When
calculating RRT(𝑠0, 𝑠

*, 𝑔), if a new point beyond existing entries of 𝑔 needs to be
sampled, we append it to 𝑔. During MH inference, we use a transition kernel that
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operates element-wise on instantiated entries of 𝑔 (i.e. independently perturbing each
entry of 𝑔). If the transition kernel does not depend on the current 𝑔 (e.g. drawing
uniformly from the C-space), then past instantiated entries do not even need to be
kept.

Note that RRT trajectories are often smoothed post hoc. Since our main focus is
to evaluate and identify problems for an existing one, we use the original formulation.
Moreover, it is easy to use RoCUS to evaluate model updates (e.g. original vs
smoothed RRT) as discussed in Sec. 5.7.

C.6 MCMC Sampling Details
We used a truncated Gaussian transition kernel for all experiments. For the RBF-
defined 2D environment, we initialize 15 obstacle points with coordinates sampled
uniformly in [−0.7, 0.7]. The transition kernel operates independently on each ob-
stacle coordinate: given the current value of 𝑥, the kernel samples a proposal from
𝒩 (𝜇 = 𝑥, 𝜎2 = 0.12) truncated to [−0.7, 0.7] (and also appropriately scaled). For
the arm reaching task, the target is sampled uniformly from two disjoint boxes,
with the left box at [−0.5,−0.05] × [−0.3, 0.2] × [0.65, 1.0] and the right box at
[0.05, 0.5] × [−0.3, 0.2] × [0.65, 1.0]. Again, we use the same transition kernel with
𝜎𝑥 = 0.1, 𝜎𝑦 = 0.03, 𝜎𝑧 = 0.035 in three directions. Again, the distribution is trun-
cated to the valid target region (𝑥 ∈ [−0.5,−0.05] ∪ [0.05, 0.5], 𝑦 ∈ [−0.3, 0.2], 𝑧 ∈
[0.65, 1.0]). In other words, the transition kernel implicitly allows for the jump across
two box regions.

In addition, the stochastic RRT controller also requires a transition kernel. As
discussed in Sec. 5.5.1, we initialize its values on an as-needed basis. When necessary,
we sample a configuration uniformly between the lower- and upper-limit (i.e. [𝑥𝐿, 𝑥𝑈 ]).
For each configuration, the same Gaussian kernel truncated to [𝑥𝐿, 𝑥𝑈 ], and 𝜎 =
0.1(𝑥𝑈 − 𝑥𝐿) is used.

Each sampling run collected 10,000 samples, with the first 5,000 discarded as
burn-in. On a consumer-grade computer with a single GeForce GTX 1080 GPU
card (for neural network-based controllers), the sampling generally takes around 1
to 3 hours. The number of samples and burn-ins are selected fairly conservatively
to ensure representativeness, as Fig. C-2 plots the sampled behavior values in the
chain for three analyses and confirms that these numbers are more than sufficient to
ensure proper mixing. Note that RoCUS is designed to be an offline analysis tool
as opposed to be used for real-time sample generation, and therefore several hours
of runtime would be acceptable in most cases. Furthermore, MCMC sampling is
embarrassingly parallel by simply using multiple chains concurrently, with the only
overhead cost being the discarded burn-in samples.

C.7 2D Environment Details
In this domain, the environment is the area defined as [𝑥min, 𝑥max]× [𝑦min, 𝑦max]. The
goal is to navigate from [𝑥start, 𝑦start] to [𝑥goal, 𝑦goal]. We define a flexible environment
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Figure C-2: The sampled behavior values for three MCMC chains. From left to right,
the three panels show DS min straight-line deviation on 2D navigation, RRT min
straight-line deviation on 2D navigation and RL min end-effector movement on 7DoF
arm reaching. The visualization confirms that 10,000 iterations with 5,000 burn-ins
are more than sufficient to find representative samples.

representation as a summation of radial basis function (RBF) kernels centered at so-
called obstacle points. Specifically, given 𝑁𝑂 obstacle points 𝑝1, 𝑝2, ..., 𝑝𝑁𝑂

∈ R2, the
environment is defined as

𝑒(𝑝) =

𝑁𝑂∑︁
𝑖=1

exp
(︀
−𝛾||𝑝− 𝑝𝑖||22

)︀
, (C.17)

and each point 𝑝 is an obstacle if 𝑒(𝑝) > 𝜂, for 𝜂 < 1 to ensure each obstacle point 𝑝𝑖
is exposed as an obstacle. Our environments are bounded by [−1.2, 1.2]× [−1.2, 1.2],
and the goal is to navigate from [−1,−1] to [1, 1]. 𝑁𝑂 = 15 and 𝑝𝑖 coordinates are
sampled uniformly in 𝑥𝑖, 𝑦𝑖 ∈ [−0.7, 0.7]. A smaller 𝛾 and 𝜂 makes the obstacles
larger and more likely to be connected; we choose 𝛾 = 25 and 𝜂 = 0.9. Fig. C-3 shows
random obstacle configurations demonstrating high diversity in this environment.
We also implement a simple simulator: given the current robot position [𝑥, 𝑦] and the
action [∆𝑥,∆𝑦], the simulator clamps ∆𝑥,∆𝑦 to the range of [-0.03, 0.03], and then
moves the robot to [𝑥+∆𝑥, 𝑦+∆𝑦] if there is no collision, and otherwise simulates a
frictionless inelastic collision (i.e. compliant sliding) that moves the robot tangent to
the obstacle. Fig. C-3 depicts a randomly selected assortment of 2D environments.
These environments demonstrate the flexibility and diversity of the RBF environment
definition.

C.8 Implementation Details of 2D Navigation Con-
trollers

C.8.1 IL Controller

The imitation learning controller is a memoryless policy implemented as a fully con-
nected neural network with two hidden layers of 200 neurons each and ReLU activa-
tions. The input is 18 dimensional, with two dimensions for the current (𝑥, 𝑦) position
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Figure C-3: An assortment of randomly generated RBF 2D environments, providing
a sense of the diversity generated with this formulation. The green dots are the
environment starting points and the red stars are navigation targets. We show DS
modulation for the first three environments in Fig. C-5.

of the robot, and 16 dimensions for a lidar sensor in 16 equally-spaced directions, with
a maximum range of 1. The network predicts the heading angle 𝜃, and the controller
operates on the action of [∆𝑥,∆𝑦] = [0.03 cos 𝜃, 0.03 sin 𝜃].

The network is trained on smoothed RRT trajectories. Specifically, we use the
RRT controller to find and discretize a trajectory. Then the smoothing procedure
repeatedly replaces each point by the mid-point of its two neighbors, absent collisions.
When this process converges, each point on the trajectory becomes one training data
point.

Since only local observations are available and the policy is memoryless, the robot
may get stuck in obstacles, which happens in approximately 10% of the runs. In
addition, while the output target is continuous, a regression formulation with mean-
squared error (MSE) loss is inappropriate, due to multimodality of the output. For
example, when the robot is facing an obstacle, moving to either left or right would
avoid it, but if both directions appear in the dataset, the MSE loss would drive the
prediction to be the average, resulting in a head-on collision. This problem has been
recognized in other robotic scenarios such as grasping [215] and autonomous driving
[207]. We follow the latter to treat this problem as classification with 100 bins in the
[0, 2𝜋] range.

C.8.2 DS Controller

For the DS controller, there are two technical challenges in using the modulation
[86] on our RBF-defined environment. First, we need to identify and isolate each
individual obstacle, and second, we need to define a Γ-function for each obstacle.

To find all obstacles, we discretize the environment into an occupancy grid of res-
olution 150×150 covering the area of [−1.2, 1.2]× [−1.2, 1.2]. Then we find connected
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components using flood fill, and each connected component is taken to be an obstacle.
To define a Γ-function for each obstacle, we first choose the reference point as the

center of mass of the connected component. Then we cast 50 rays in 50 equally spaced
directions from the reference point and find the intersection point of each ray with
the boundary of the connected component. Finally, we connected those intersections
in sequence and get a polygon. In case of multiple intersection points, we take the
farthest point as vertex of the polygon, essentially completing the non-star-shaped
obstacle to be star-shaped, as shown in Fig. C-4.

Figure C-4: Left: an obstacle which is not star-shaped. Some radial lines extending
from the obstacle’s reference point cross the boundary of the obstacle twice. Right:
the same obstacle, modified to instead be star-shaped.

Given an arbitrary point �⃗�, we define

Γ(�⃗�) =
||�⃗�− �⃗�||
||⃗𝑖− �⃗�||

, (C.18)

where �⃗� is the reference point and �⃗� is the intersection point with the polygon of the
ray from �⃗� in �⃗�− �⃗� direction. It is easy to see that this Γ definition satisfies all three
requirements for Γ-functions listed in App. C.4.

Finally, to compensate for numerical errors in the process (e.g. approximating
obstacles with polygons), we define the control inside obstacle to be the outward
direction, which helps preventing the robot from getting stuck at obstacle boundaries
in practice. Three examples of DS modulation of the 2D navigation environment are
shown in Fig. C-5.

C.9 Additional Results for 2D Navigation

Legibility We define the instantaneous legibility as the cosine similarity between
the current robot direction and the direction to target �⃗�*, 𝑉 (�⃗�) = ˙⃗𝑥 · (�⃗�* − �⃗�)/(|| ˙⃗𝑥|| ·
||�⃗�* − �⃗�||), with the intuition that a particular run may be confusing to users if the
robot does not often align to the target. Though this quantity is bounded by [−1, 1],
a general legibility definition may not be. Thus, we use the maximal mode of RoCUS
to find DS trajectories and obstacle configurations that achieve minimal legibility, by
negating 𝑉 (�⃗�) first. The left two panels of Fig. C-6 present the samples. As expected,
most trajectories take large detours due to the presence of obstacles in the center.
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Figure C-5: Streamlines showing the modulation effect of the dynamical system for
three 2D navigation tasks. The environments correspond to the first three examples
of Fig. C-3. Green dots are starting positions and red stars are navigation targets.

DS Min Legibility DS Min Clear. DS Max Clear.

Figure C-6: Left: trajectories and obstacle configurations from sampling minimal DS
legibility. Right: obstacle configurations for minimizing and maximizing DS obstacle
clearance. These examples show how obstacle positions affect the legibility and clear-
ance behaviors.

Obstacle Clearance We take 𝑉 (�⃗�) = min�⃗�𝑜∈𝒪 ||�⃗� − �⃗�𝑜||. For the DS, we sample
two posteriors to maximize and minimize this behavior. As shown in the right two
panels of Fig. C-6, when minimizing obstacle clearance, we see clusters of obstacles in
close proximity to the starting and target positions, such that the robot is forced to
navigate around them. When maximizing obstacle clearance, we instead see central
clusters of obstacles, such that the robot can avoid them by bearing hard left or right.

C.10 Implementation Details of 7DoF Arm Reach-
ing Controllers

C.10.1 RRT Controller

Since the target location is specified in the task space, we first find the target joint
space configuration using inverse kinematics (IK). The initial configuration starts
with the arm positioned down on the same side as the target. If the IK solution is in
collision, we simulate the arm moving to it using position control, and redefine the final
configuration at equilibrium as the target (i.e. its best effort reaching configuration).
We solve the IK using Klamp’t [74].
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C.10.2 RL Controller

The RL controller implements the proximal policy gradient (PPO) algorithm [180].
The state space is 22-dimensional and consists of the following:
• 7D joint configuration of the robot,
• 3D position of the end-effector,
• 3D roll-pitch-yaw of the end effector,
• 3D velocity of the end-effector,
• 3D position of the target,
• 3D relative position from the end-effector to the target.
The action is 7-dimensional for movement in each joint, which is capped at [−0.05, 0.05].

Both the actor and the critic are implemented with fully connected networks
with two hidden layers of 200 neurons each, and ReLU activations. The action is
parametrized as Gaussian where the actor network predicts the mean, and 7 stan-
dalone parameters learns the log variance for each of the 7 action dimensions. At test
time, the policy deterministically outputs the mean action given a state.

C.10.3 DS Controller

For the DS controller in 7DoF arm reaching, we face the same challenges as in 2D
navigation: defining an appropriate Γ-function for the obstacle configuration that
holds the three properties introduced by [86] (listed in App. C.4). Additionally,
the DS modulation technique does not consider the robot’s morphology, end-effector
shape, or workspace limits because it only modulates the state of a point-mass. Thus,
we implement several adaptations. First, we modulate the 3D position of the tip of
the end-effector. The desired velocity of the end-effector tip, given by the modulated
linear controller, is then tracked by the 7DoF arm via the same position-level IK
solver as the RRT controller.

Second, we used a support vector machine (SVM) to learn the obstacle boundary
from a list of points in the obstacle and free spaces, an approach originally proposed
by [140]. Then the decision function of the SVM is used as the Γ-function. As shown
in Fig. C-7, we discretize the 3D workspace of the robot and generate a dataset of
points in the obstacle space as negative class and those in the free space as positive
class.

Using the radial basis function (RBF) kernel 𝐾(�⃗�1, �⃗�2) = 𝑒−𝛾||�⃗�1−�⃗�2||2 , with kernel
width 𝛾, the SVM decision function Γ(�⃗�) has the following form:

Γ(�⃗�) =
𝑁𝑠𝑣∑︁
𝑖=1

𝛼𝑖𝑦𝑖𝐾(�⃗�, �⃗�𝑖) + 𝑏 =
𝑁𝑠𝑣∑︁
𝑖=1

𝛼𝑖𝑦𝑖𝑒
−𝛾||�⃗�−�⃗�𝑖||2 + 𝑏, (C.19)

and the equation for ∇Γ(�⃗�) is naturally derived as follows:

∇Γ(�⃗�) =
𝑁𝑠𝑣∑︁
𝑖=1

𝛼𝑖𝑦𝑖
𝜕𝐾(�⃗�, �⃗�𝑖)

𝜕�⃗�
= −𝛾

𝑁𝑠𝑣∑︁
𝑖=1

𝛼𝑖𝑦𝑖𝑒
−𝛾||�⃗�−�⃗�𝑖||2(�⃗�− �⃗�𝑖). (C.20)
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Figure C-7: Left: the division of 3D space as either containing an obstacle or free
space. This data is used to train an SVM, which acts as an interpolator. The
classification scores of the SVM are used as the Γ function for this 7DoF arm reaching
task. Right: a 2D slice showing the smoothed Γ scores.

In Eq. C.19 and C.20, �⃗�𝑖 (𝑖 = 1, ..., 𝑁𝑠𝑣) are the support vectors from the training
dataset, 𝑦𝑖 are corresponding collision labels (−1 if position is collided, +1 otherwise),
0 ≤ 𝛼𝑖 ≤ 𝐶 are the weights for support vectors and 𝑏 ∈ R is decision rule bias.
Parameter 𝐶 ∈ R is a penalty factor used to trade-off between errors minimization and
margin maximization. We empirically set the hyper-parameters of the SVM to 𝐶 = 20
and 𝛾 = 20. Parameters 𝛼𝑖 and 𝑏 and the support vectors �⃗�𝑖 are estimated by solving
the optimization problem for the soft-margin kernel SVM using scikit-learn. Using
this learned Γ-function, Fig. C-8 shows two examples of the modulated trajectory.

Figure C-8: Cross-sections showing streamlines of the dynamical system modulation
effect for two distinct targets in the 7DoF arm reaching task. Red crosses indicate
reference points. Green diamond is the initial position of the end-effector for all
experiments.

Finally, given a desired modulated 3D velocity for the end-effector tip, ˙⃗𝑥𝑀 =
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�⃗�𝑀(�⃗�), we compute the next desired 3D position by numerical integration:

�⃗�𝑡+1 = �⃗�𝑡 + �⃗�𝑀(�⃗�𝑡)∆𝑡 (C.21)

where �⃗�𝑡, �⃗�𝑡+1 ∈ R3 are the current and next desired 3D position of the tip of the
end-effector and ∆𝑡 = 0.03 is the control loop time step. �⃗�𝑡+1 is then the target in
Cartesian world space coordinates that defines the objective of the position-based IK
solver implemented in Klamp’t [74].

C.11 Additional Results for 7DoF Arm Reaching

Details on the DS Improvement The DS controller provides guarantees of con-
vergence to a target in the space where modulation is applied (i.e. task-space in our
experiments). To adopt this controller for obstacle avoidance with a robot manipu-
lator, [86] simplifies the robot to a spherical shape with center at the end-effector of
a 7DOF arm. This translates to considering the robot as a zero-mass point in 3D
space but with the boundaries of the obstacles (described by Γ-functions) expanded
by a margin with the size of the radius of the sphere.

Since the shape of the Franka robotic hand is rectangular (6.3 × 20.7 × 14cm)
fitting a sphere with the radius of the longest axis will over-constrain the controller and
drastically reduce the target regions inside the table dividers. We thus implemented
the obstacle clearances by extruding the edges of the top table divider by half of the
length of the robot’s end-effector (10cm) and the width of the divider by half of the
height (7cm). Intuitively, this should be enough clearance to avoid the robot’s end-
effector colliding with the table dividers. However, when coupling the DS controller
with the IK solver to control the 7DoF arm, we noticed that the success rate was
below 15%, whereas the success rate is 100% when controlling the end-effector only.
We then sampled, via RoCUS, the target locations for the minimal final end-effector
distance to target and noticed that all of the successful runs were located on the
left-side of the partition (Fig. 5-7 center right).

Since the DS controller approach does not consider collision avoidance in joint-
space, in a constrained environment, the robot’s forearm or elbow might get stuck
on the edges of the table divider—even though the end-effector is avoiding collision.
Due to the asymmetric kinematic structure of the robot arm, it is more prone to
these situations on the right side of the table divider. Such an insight is not easy to
discover as one must understand how the robot will behave in joint space based on
its kinematic structure and the low-level controller used (position-based IK). We thus
extended the edge extrusions to 20cm. This change improved the controller success
rate and behavior drastically as shown in (Fig. 5-7 rightmost).

Legibility We define legibility of reaching to the target on one side of the vertical
divider as the average negative distance that the end effector moves in the other
direction, 𝑉 (�⃗�) = −max(˜⃗𝑥1, 0), where ˜⃗𝑥1 = �⃗�1 if target is on the left, or ˜⃗𝑥1 = −�⃗�1

otherwise, and �⃗�1 is the 𝑥-coordinate of the robot end effector with right in the
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Modified DS RRT Min Legibility

Figure C-9: Posterior samples showing minimal legibility behavior for RRT. RRT is
known to exhibit highly illegible behaviors due to its highly stochastic nature, and
these samples fit with that expected behavior.

positive direction. We find target locations that are minimally legible and apply the
maximal inference mode on the maximum distance measure.

We did not find any illegible motions from RL controllers for 2,000 targets, which
is mostly expected since the RL reward is distance to the target. For RRT, however,
since we do not use an optimal formulation (e.g., [95, 75]) or perform post-hoc smooth-
ing, the controller is expected to frequently exhibit low legibility. Fig. C-9 plots the
posterior target locations and trajectories. The target locations leading to illegible
motions are spread out mostly uniformly on the right, but concentrated in far-back
area on the left, consistent with our findings on the asymmetry of configuration space.
The trajectory plot confirms the illegibility.

C.12 Future Work

There are multiple directions to extend and complement RoCUS for better usability
and more comprehensive functionality. First, while we only used RoCUS on indi-
vidual controllers, future work can readily extend it to compare two controllers by
defining behavior functions that take in the task and two trajectories, one from each
controller, and compute differential statistics. For example, this could be used to find
road conditions that lead to increased swerving behavior of a new AV controller, com-
pared to the existing one. Such testing is important to gain a better understanding
of model updates [16], and is particularly necessary for ensuring that these updates
do not unintentionally introduce new problems.

In addition, sometimes it is important to understand particular trajectories sam-
pled by RoCUS. For example, which sensor input (e.g. lidar or camera) is most
important to the current action (e.g. swerving)? Why does the controller take one
action rather than another (e.g. swerving rather than braking)? Preliminary inves-
tigation into this explainable artificial intelligence (XAI) problem in the context of
temporally extended decision making has been undertaken [69, 209], but various is-
sues with existing approaches have been raised [13, 214] and future research is needed
to address them.

Finally, an important step before actual deployment is to design appropriate user
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interfaces to facilitate the two-way communication between RoCUS and end-users.
In one direction, the user needs to specify the behavior of interest, and it would
be desirable for it to involve as little programming as possible, especially for non-
technical stakeholders. In the other direction, RoCUS needs to present the sample
visualization, and potentially model explanations as described above, for users to
inspect. Here, it is important for the information to be accurate but at the same time
not overwhelming.
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