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Abstract

The convergence of the physical and digital realms has ushered in a new era of immersive
experiences and seamless interactions. As the boundaries between the real world and virtual
environments blur and result in a "mixed reality," there arises a need for robust and efficient
methods to connect physical objects with their virtual counterparts. In this thesis, we
present a novel approach to bridging this gap through the design, fabrication, and detection
of embedded machine-readable markers.

The vision of mixed reality relies on mobile and wearable devices being aware of the
surroundings to enhance real-world experiences with contextual information. For individual
object identification, machine-readable tags such as barcodes and RFID labels are typically
used. Barcodes, though cost-effective, tend to be obtrusive, less durable, and less secure
than RFID labels. Regardless of their type, such tags are usually added to objects after
fabrication, rather than being integrated into the original design.

This thesis attempts to overcome the shortcomings of traditional post-hoc augmentation
processes by proposing novel tagging approaches that extract hidden, integrated features of
objects and employ them as machine-detectable markers. Our research focuses on the design,
implementation, and evaluation of comprehensive systems for embedding and interacting
with embedded markers. We categorize the proposed tagging approaches into three distinct
categories: natural markers, structural markers, and internal markers. Natural markers,
such as those used in SensiCut, are inherent fingerprints of objects repurposed as machine-
readable identifiers, while structural markers, such as StructCode and G-ID, leverage the
structural artifacts in objects that emerge during the fabrication process itself. Internal
markers, such as InfraredTag and BrightMarker, are embedded inside fabricated objects
using specialized materials. Leveraging a combination of methods from computer vision,
machine learning, computational imaging, and material science, the presented approaches
offer robust and versatile solutions for object identification, tracking, and interaction.

These markers, seamlessly integrated into real-world objects, effectively communicate
an object’s identity, origin, function, and interaction, functioning as gateways to "ubiqui-
tous metadata" – a concept where metadata is embedded into physical objects, similar to
metadata in digital files. Across the different chapters, we demonstrate the applications
of the presented methods in diverse domains, including product design, manufacturing, re-
tail, logistics, education, entertainment, security, and sustainability. Finally, we discuss the
challenges and opportunities associated with deploying embedded machine-readable mark-
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ers at scale, such as integration with mass manufacturing, privacy considerations, consumer
product applications, and novel interactions for AR personalization.

In conclusion, this thesis presents a comprehensive exploration of embedded machine-
readable markers as a means to connect real-world objects to virtual worlds to achieve
ubiquitous metadata. The thesis forges ahead with a future where objects come alive,
environments become interactive, and virtual worlds seamlessly merge with our everyday
lives.

Thesis Supervisor: Stefanie Mueller
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Mobile and wearable devices promise to enrich our daily interactions by providing infor-

mation to us whenever we need it. These devices, especially those intended for augmented

reality (AR), or more broadly, mixed reality (MR) applications, need to constantly identify

what is around us and display relevant digital content. Imagine yourself in a store, browsing

various items, and desiring further information about the ones that caught your attention:

the unit price, calorie information, recipes, or perhaps more affordable options. To facilitate

such interactions, the objects around us need to carry labels that describe what they are and

communicate this information to digital devices. While paper-based labels like QR codes are

cost-effective to manufacture, they often prove visually distracting and lack the durability

and security of electromagnetic alternatives like radio-frequency identification tags (RFID),

which can be discreetly embedded within the object. In this thesis, we study the design, fab-

rication, and detection of novel, low-cost, and durable physical tagging mechanisms

that allow for unobtrusive identification of everyday objects, products, and materials to

overcome these challenges.

We envision that one day, every real-world object in our lives will contain some sort of

metadata that describes its identity, look, origin, function, or instructions on how to use

it — and we will be able to access these just by pointing our phones or augmented reality

glasses at the objects (Figure 1-1). This is familiar to us in the digital ecosystem, where

audio or image files include embedded metadata that helps the user or software seamlessly

identify not just what they are but also when and by whom they were captured or recorded.

We aspire to transfer this paradigm to physical objects – using embedded physical

23



Figure 1-1: My research vision. Reading metadata embedded unobtrusively into objects
and materials in the physical world and reflecting it in the digital world.

markers. We call this "ubiquitous metadata."

Ubiquitous metadata refers to the concept of embedding metadata into physical ob-

jects, allowing them to be identified and augmented with relevant information when viewed

through digital devices. This approach could allow information to weave itself into the

"fabric of everyday life" until it is indistinguishable from it [150]. The implementation of

ubiquitous metadata through physical tagging mechanisms requires robust fabrication and

detection pipelines. If implemented correctly, this can open up new possibilities for im-

mersive spatial computing, where the paradigm will shift from content inside the screen, to

users inside the content, where one will be able to directly and seamlessly interact with and

contribute to the digital content associated with physical objects.

1.1 Design Criteria

As we progress in our exploration of machine-readable markers, we have identified pivotal

design criteria that serve as the guiding principles for to our proposed tagging methods. This

list is derived from the limitations of existing solutions and literature, which we will detail

in Section 2. The criteria consider the practicality, robustness, and widespread adoption of

the markers in real-world applications, and are listed as follows.

1. Embeddedness: We advocate for these markers to be integral components of objects
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right from the fabrication stage, rather than being considered as afterthoughts or

additions. This seamless integration into the physical object’s design ensures both

unobtrusiveness and resistance to tampering. The embedding strategy may be more

opportunistic, implying a reliance on existing features for identification, or more en-

gineered, involving more sophisticated marker embedding processes to achieve specific

design objectives. Some of our methods demonstrate the feasibility of integrating the

marker embedding process into existing manufacturing pipelines, which enables the

creation of the object and its marker in a single, harmonious process, thus preserving

the object’s form and appearance.

2. Uniqueness: Our proposed tagging mechanisms feature a unique identifier (ID) or

metadata for precise object or product identification. A unique ID can come in the

form of a distinctive pattern in each object instance for facilitating straightforward

identification and accurate data retrieval from digital databases. On the other hand,

a unique metadata approach involves embedding more comprehensive information di-

rectly into the object, providing a richer context beyond a mere identifier. The choice

between these two options depends on the specific requirements of the application and

the desired depth of self-contained information associated with each physical entity.

3. Cost-effectiveness: The methods prioritize cost-effectiveness, leveraging readily avail-

able materials and standard manufacturing processes. By operating without an em-

bedded power source, i.e., adopting a passive design, these markers also become more

durable and less susceptible to failure, accommodating diverse usage scenarios and

environmental conditions. Further, this approach reduces the complexity of tag design

and streamlines the object’s fabrication process.

4. Detectability : Regardless of their embedded nature, these markers should be easily

detectable by commonly available sensors, such as RGB and near-infrared cameras

on devices. This not only enhances user experience but also promotes widespread

adoption, as it eliminates the need for specialized equipment. The choice of sensors

should align with the intended application to find a balance between accuracy and

accessibility.

5. Spatiality : Spatial awareness plays a pivotal role in the successful integration of ubiqui-

tous metadata, especially in the context of AR. Some of the markers we will introduce

in this thesis provide spatial information about the objects that they are attached
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to. Knowing the exact position and orientation of the objects is critical for accu-

rately overlaying and anchoring virtual elements in AR applications. Additionally, the

markers should retain their machine-readability from various angles and distances to

accommodate the dynamic interactions characteristic of AR applications.

In summary, the design criteria of the proposed embedded machine-readable markers

encompass important considerations, including the integrated embedding of markers as part

of the object design, the choice between unique ID and metadata, the cost-effectiveness

of passive solutions, detectability through accessible sensors, and spatial anchoring in AR.

Establishing a balance to meet these criteria is essential for creating effective and versatile

systems.

1.2 Categories of Machine-Readable Markers

Aligned with the established design criteria, this thesis centers around the exploration

and development of three distinct categories of embedded machine-detectable markers.

These categories are strategically designed to comprehensively address the identified cri-

teria through different technical methods.

The categories, presented below based on the design criterion of embeddedness, range

from the most opportunistic, implying a reliance on existing features for identification, to

the most engineered, meaning more sophisticated marker embedding processes.

1. Natural markers: Leveraging the inherent fingerprints of objects and materials, this

category explores the use of natural features for identification.

2. Structural markers: Exploiting the structural artifacts that emerge during the fab-

rication process, this category aims to repurpose inherent elements in the object’s

construction as markers.

3. Internal markers: Using specialized materials, this category involves embedding cus-

tom markers seamlessly inside the fabricated items.

In the pursuit of these categories, novel methods were developed and evaluated, optimiz-

ing the design of the markers to have minimal impact on the object’s look and form (i.e.,

unobtrusiveness). The fabrication processes were designed to be compatible with low-cost

tools, such as commonly available fused deposition modeling (FDM) 3D printers. Subse-
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quently, the markers can be detected using readily accessible sensors such as RGB and

near-infrared cameras.

Throughout the following sections, we will study these tagging approaches in detail and

elaborate on the methodologies used to ensure their effectiveness. By combining techniques

from computer vision, machine learning, computational imaging, and material science, our

presented approaches offer robust and versatile solutions for object identification, tracking,

and interaction.

1.3 Natural Markers

Natural markers allow us to leverage objects’ natural properties, such as their micron-scale

surface texture, as identifiers.

To make use of naturally available markers, we can employ optical methods such as laser

speckle imaging, where an image sensor detects how the laser reflects off the object’s raw

surface. In this method, differences in surface structure result in unique speckle patterns

for each material type, which allows us to classify objects. While we can integrate this

technology in any digital device, it comes in handy for tools that already have a laser

source, e.g., laser cutters.

For the project SensiCut [23], we leverage laser speckle imaging to sense material

sheets in laser cutters without any pre-labeled stickers (Figure 1-2). To identify materials in

traditional laser cutting and set the laser power or speed settings accordingly, users either

manually select the type from a database, or an on-board camera takes pictures of material

sheets that come with a QR code. Our imaging method, on the other hand, can automate

this mundane but risky task, and is not subject to the limitations of conventional cameras,

which may confuse visually similar materials, or QR codes, which may be cut off from sheets.

Our technical evaluation shows that SensiCut can accurately sense laser cutting mate-

rials most commonly used by designers under different environmental conditions, such as

illumination and sheet orientation. SensiCut ’s sensing hardware can be attached to existing

laser cutters with our compact sensing hardware add-on, enabling a new workflow for using

laser cutters and applications, e.g., providing user safety alerts when hazardous materials

are detected, facilitating rapid prototyping, and engraving multi-material objects.

While SensiCut focuses on addressing these important laser cutting challenges as iden-
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Figure 1-2: SensiCut. (a) Many laser cutting materials look alike and are hard to distinguish
visually by users or regular cameras. Furthermore, there are many hazardous materials that
are often confused for safe ones. (b) SensiCut instead senses the sheet’s unique surface
structure using speckle imaging and deep learning. This enables us to select the correct
machine settings, which prevents material waste and ensures user safety, as well as (c)
precisely engrave multi-material objects.

tified in recent human-computer interaction literature (Yildirim et al. [160]), our technique

may be used within everyday tools and consumer electronics such as smartphones, many

of which now come with infrared lasers for facial recognition [50]. More recently, research

prototypes have used speckle imaging hardware directly on mixed reality headsets to am-

plify detection capabilities, showing the potential for sensing-enhanced AR interactions in

the future [131].

1.4 Structural Markers

A distinct category within embedded markers closely aligns with the fabrication process

itself. These markers, which we refer to as structural markers, leverage the inherent char-

acteristics and structures that emerge during the fabrication process to create markers. In

this section, we will introduce two methods that utilize different digital fabrication processes

and enable different use cases.

1.4.1 Laser Cutting Artifacts as Machine-Readable Data

StructCode [22] allows users to store machine-readable metadata within laser-cut objects’

structure by harnessing the fabrication artifacts themselves. By selectively modifying the

lengths of laser-burnt finger joints and living hinges, StructCode represents different bits of

information without requiring additional parts or materials. These modifications, inherent

to the fabrication process, enable the integration of meta-information such as labels, instruc-
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Figure 1-3: StructCode embeds data in the fabrication artifacts of laser-cut objects, such as
the patterns of (a) living hinges and (b) finger joints, to augment objects with data. Here,
the embedded StructCodes allow narration for a painting and status updates for a potted
plant, among others.

tions, and narration directly into the physical objects (Figure 1-3). StructCode provides a

reliable and unobtrusive means of capturing information, and can be read with standard

device cameras, such as those available on smartphones and AR/VR headsets.

We present and evaluate a marker decoding pipeline that is robust to various back-

grounds, viewing angles, and wood types. In our mechanical evaluation, we show that

StructCodes preserve the structural integrity of laser-cut objects.

1.4.2 3D Printing Artifacts as Identifiers

Compared to fabrications methods such as laser cutting, 3D printing provides greater flexi-

bility in achieving complex 3D geometries for objects. To integrate identifiers into 3D printed

items, we may exploit the artifacts resulting from the extrusion-based FDM process. By

manipulating the 3D printer’s path through custom CNC machine instructions ("G-code"),

we can obtain unique and subtle surface textures for each instance of the same 3D model.

By strategically adjusting slicing parameters that do not alter the geometry of the object,

our method G-ID [25, 24] creates unobtrusive machine-readable differences. These varia-

tions serve as distinct markers for identifying and distinguishing similar-looking objects from
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Figure 1-4: G-ID. (a) 3D printed objects inherently possess surface patterns due to the
print path. G-ID exploits such features that would normally go unnoticed to identify unique
instances of an object. Our mobile app (b) uses image processing to detect them.

a single photograph captured using a conventional smartphone (Figure 1-4).

We evaluated how finely these texture-related parameter differences can be differentiated

between, and built a mobile application that uses image processing techniques to retrieve

these parameters from photos and their associated labels. This enables low-cost, interactive

applications for user identification.

1.5 Internal Markers

While G-ID is powerful for distinguishing between different copies of 3D printed objects, an

important limitation is that the objects do not carry a large amount of data, but rather a

single, uniquely identifiable texture. This restricts users from embedding larger amounts of

custom information.

On the other hand, internal markers enable users to embed data in the form of 2D

markers directly into 3D printed objects. Previous works in internal markers require the

use of expensive or specialized equipment. For instance, AirCode [80] uses a camera and

projector setup to detect gaps beneath the object surface. InfraStructs [153] uses a terahertz

scanner to detect even deeper holes. Our goal is to develop internal markers that are easy

to fabricate and that can be detected using low-cost scanning tools.

1.5.1 Invisible Markers in 3D Printed Objects

InfraredTags [29, 30] are 2D markers and barcodes imperceptible to the naked eye that

can be 3D printed as part of objects, and detected rapidly by low-cost near-infrared (NIR)

cameras (Figure 1-5). These 2D markers and barcodes consists of multiple bits, as opposed
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Figure 1-5: InfraredTags are 2D markers and barcodes embedded unobtrusively into 3D
printed objects and can be detected using infrared cameras (top-right images). This allows
new applications for (a) identifying and controlling devices in AR interfaces, (b) embedding
metadata such as 3D model URLs into objects, and (c) tracking passive objects for tangible
interactions.

to a single texture demonstrated in G-ID. We achieve this by printing objects from an

infrared-translucent filament, which infrared cameras can see through, and by having air

gaps inside for the tag’s bits, which appear at a different intensity in the infrared image.

By integrating InfraredTags into 3D printed objects during the fabrication process, we

enable interactive applications for identifying and controlling devices in AR interfaces or

embedding metadata such as links to download the object’s 3D model. We also show how

convolutional neural networks can be used in conjunction with data augmentation methods

to improve the detection of these tags from near-infrared camera streams [31].

1.5.2 Increasing the Contrast of Markers

We built on InfraredTag to create markers that have higher contrast. Called Bright-

Marker [27, 26], these markers are are fabricated using NIR-fluorescent filaments to allow

real-time tracking of 3D printed color objects. By using an infrared-fluorescent filament that

"shifts" the wavelength of the incident light, our optical detection setup filters out all the

noise to only have the markers present in the infrared camera image. The high contrast of

the markers allows us to track them robustly regardless of the moving objects’ surface color

(Figure 1-6).

BrightMarker can be used in a variety of applications, such as custom fabricated wear-

ables for motion capture, tangible interfaces for AR/VR, rapid product tracking, and privacy-

preserving night vision. BrightMarker exceeds the detection rate of state-of-the-art invisible
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Figure 1-6: BrightMarkers are embedded into objects using a NIR-fluorescent filament. (a)
When viewed with a NIR camera with the matching filter, the markers appear with high
contrast, which allows them to be tracked even when the objects are in motion, e.g., on a
conveyor belt. (b) BrightMarker can be used to fabricate custom wearables for tracking, or
(c) for transforming physical controls into precise input methods in MR environments.

marking, and even small markers (1"x1") can be tracked at distances exceeding 2m.

The integration of these embedded machine-readable markers into real-world objects

serves as a gateway to virtual worlds, enabling users to access a wealth of multimedia con-

tent, interactive experiences, and valuable contextual information. We will showcase the

applications of our methods across diverse domains, including product design, manufactur-

ing, entertainment, marketing, logistics, security, and sustainability.

1.6 Structure of the Thesis

In the remainder of the thesis, we first introduce the landscape of related work in the iden-

tification, tagging, and digital fabrication domains (Chapter 2). We then explain each of

the previously introduced methods in individual chapters, including natural markers (Sen-

siCut in Chapter 3, and structural markers (StructCodes in Chapter 4, G-ID in Chapter 5),

internal markers (InfraredTags in Chapter 6, BrightMarkers in Chapter 7).

Lastly, we address the challenges and opportunities associated with deploying embedded

machine-readable tags at scale (Chapter 8). These considerations encompass aspects such

as generalization to faster fabrication methods, integration into consumer products, AR

interactions, and privacy concerns. By addressing these challenges, we aim to pave the way

for a future where objects come alive, environments become interactive, and virtual worlds

seamlessly merge with our everyday lives.

In conclusion, this thesis represents a comprehensive exploration of embedded machine-

readable tags as a means to bridge the gap between real-world objects and virtual worlds.

Through our research, we strive to advance a future where ubiquitous metadata enhances
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our interactions, enabling us to effortlessly access information and engage with the physical

and digital realms.
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Chapter 2

Related Work

In the realm of identifying and tagging physical objects, a wide range of approaches has been

explored to bridge the gap between the physical and digital domains. This section provides

an overview of existing methodologies, and highlights their strengths, limitations, as well as

contributions to HCI.

2.1 Computer Vision-Based Approaches

Computer vision, as a powerful and versatile tool, has significantly advanced object recog-

nition capabilities [136] Machine-learning (ML) classifiers, particularly convolutional neural

networks (CNNs) [78], have proven highly capable at assigning general labels to objects

based on visual features [45]. This made various computational solutions possible in the

field of semantic understanding. Techniques like YOLO [106] and SSD [84] provide real-

time object detection by identifying the bounding boxes of objects in the scene. Semantic

segmentation involves classifying each pixel in an image into predefined categories, while in-

stance segmentation takes this a step further by distinguishing between individual instances

of the same object category. These techniques, as employed in popular models such as Mask

R-CNN [54] and U-Net [110], as well as frameworks such as MediaPipe [86], allow for more

precise identification and localization of objects.

While these classifiers excel at recognizing and categorizing objects into broader classes,

they often fall short in capturing fine-grained details necessary for a comprehensive under-

standing of the scene [82, 59]. The incapacity to extract specific metadata – such as the

subtype of an object, detailed product information, origin, or owner – poses a challenge in
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achieving a deeper and more contextually rich comprehension of the environment.

Real-world scenarios often demand more granular information about objects that go

beyond generic labels. For instance, in a retail context, being able to access detailed product

information, including specifications or pricing, enhances the overall user experience. In

industrial settings, knowing the specific model or version of a machine component holds

critical importance. As we explore methods for ubiquitous metadata, we aim to address this

limitation by capturing and associating specific metadata with each object instance, ensuring

a more comprehensive and contextually relevant representation of the physical environment.

2.2 Use Cases for Markers in HCI

Markers have been used to allow instance-level object identification to extend beyond the

capabilities of conventional computer vision [60].

In HCI, visual markers, such as ArUco markers, barcodes, and QR codes have been

used to mark objects and enable different interactive applications with them. For instance,

Printed Paper Markers [162] use different paper structures that conceal and reveal fiducial

markers (i.e., ArUco [109]) to create physical inputs, such as buttons and sliders. Dode-

caPen [154] can transfer users’ handwriting to the digital environment by tracking ArUco

markers attached on a passive stylus. Cooking with Robots [133] uses detachable mark-

ers to label the real-world environment for human-robot collaboration. Position-Correcting

Tools [108] scan QR code-like markers to precisely position CNC tools while users cut sheets.

While traditional barcodes and QR codes offer a cost-effective identification solution,

such markers are visible to the human eye, which impacts object aesthetics and may reduce

the usable area on the object, as depicted in Figure 2-1. Furthermore, practical usage often

sees visually unappealing labels removed by users, and visible codes may be tampered with

by malicious third parties [94]. Conversely, RFID tags, equipped with unique identifiers, can

be attached to physical objects for efficient tracking [129, 62]. While RFID provides non-

line-of-sight identification and finds applications in various environments, it has limitations

in terms of range and scalability [95]. The cost of RFID tags, coupled with the size of RFID

readers, may pose challenges in large-scale deployments and integration with the object’s

geometry while objects during fabrication [151].
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Figure 2-1: An exaggerated portrayal of an urban environment saturated with QR codes,
showing the aesthetic and practical challenges of current object tagging methods. Illustration
used with permission from Michael Sloan.

2.3 Making Markers Less Obtrusive

Researchers have investigated two primary approaches to make markers less obtrusive: mak-

ing existing visible markers more aesthetic [105, 10, 104], or developing unobtrusive markers

that can be part of the objects [89, 80].

To make existing codes more aesthetic, researchers have modified traditional QR codes

(halftoned) to look more like an aesthetic image (e.g., a photo) while still preserving its

detectability [105]. ReacTIVision [10] creates fiducial markers that look like amoeba to

create an organic look.

Specifically for 3D objects, there are more specialized ways to abstract away the marker

component. To achieve this, markers can be embedded inside the objects, or integrated

unobtrusively onto the surface of 3D objects so that users do not perceive them as "markers."

Integrating markers with objects in a seamless and unobtrusive manner can provide

meaningful contextualization and allows for sharing of information [36]. In HCI, the gen-

eral idea has been explored for photographs [138], font characters [155], charts [42], docu-

ments [147, 28], and textiles [165]. In the next sections, we review different types of tags for
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3D physical objects specifically and categorize the approaches based on where the tag is lo-

cated on the object, how much data it can store, and how complex the associated fabrication

and detection processes are.

2.3.1 Marker Location: Inside, Surface, Structure

Researchers have investigated different locations on objects to embed markers [8]. One way

to embed markers is on the inside of objects. For instance, AirCode [80], InfraStructs [153],

and InfoPrint [69] embed markers by adding air gaps inside 3D printed objects. Another

way is to embed tags on the surface of objects instead. For instance, Seedmarkers [44] are

visual markers optimized for aesthetics that can be placed on the surface of either laser-

cut or 3D printed objects. ObjGen [92] engraves Data Matrix cells on the object to store

the vector file it originated from. However, since multiple codes are needed, they typically

occupy the whole object surface, resulting in an unnatural look. Tenmoku et al. place small

visual components (e.g., T-shaped or triangular) on objects to use them as visually elegant

tracking markers for mixed reality, however, these markers do not carry any data [139],

Acoustic barcodes [53] are physical notches that can be etched on the object surface using a

laser cutter and that create unique, identifiable bursts of sound when swiped. LayerCodes

[89] are barcodes on the surface of 3D models printed from an infrared resin and then

detected from smartphone camera images.

2.3.2 Data Complexity: Identifiers, Information

A marker is a label that can be used either to identify items or to store information in

the form of data. Kubo et al. [74] distinguish multiple copies printed with different infill

structures by measuring their vibration characteristics. However, while such methods can

store identifiers, they do not allow users to store information specifically defined by the

user, such as custom texts or metadata, in the tag. AnisoTag [87] increases the tags’ data

capacity by combining different print textures.

To store information, AirCode [80], LayerCode [89], and InfraStructs [153] embed bar-

codes and QR codes in the form of air gaps or lines ("physical bits") within the objects.

Since such codes store arrays of characters or digits, they can be used to embed texts or

metadata within the object.
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2.3.3 Complexity of Tagging Approach: Fabrication, Detection

To embed unobtrusive markers that store information into objects, existing methods re-

quire specialized fabrication equipment or additional post-processing steps. For instance,

LayerCodes [89] require a custom modification to a 3D printer and a special NIR resin.

AirCodes [80] require that objects are printed in two parts and combined manually after

washing away the support material.

Another important consideration is the availability and complexity of the detection

equipment. For example, InfraStructs [153] employs a large and costly terahertz scan-

ner, which is not readily available to consumers. AirCodes [80] use a camera and projector

setup that are calibrated to each other, which takes time to set up and image the tag. Info-

Print [69] uses a thermal camera to capture patterns embedded into objects. AnisoTag [87]

needs the object to be manually swiped using a collimated laser beam and photoresistors,

making it difficult to integrate it with users’ existing devices.

To facilitate the implementation of ubiquitous metadata, the markers should ideally be

detectable using commodity hardware, capturing the tags must follow a simple workflow,

and the detection method needs to work across a variety of different environments.
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Chapter 3

SensiCut: Material-Aware Laser

Cutting Using Speckle Sensing and

Deep Learning

3.1 Introduction

While there have been many support tools for laser cutting that help users with tasks such

as automatically packing parts onto sheets [116, 124], systems that support users with the

different material types available for laser cutting are largely unexplored [8].

For users, working with the various materials available in a workshop comes with several

challenges: First, identifying unlabeled sheets from scrap buckets or material stockpiles in

a shared workshop is challenging since many materials are visually similar [70]. As a result,

users may take the wrong material from the stack and use it with another material’s power

and speed setting. This can lead to wasted material when the power setting is too low,

causing the outline to not be cut through – or worse the material may catch fire when the

power is too high leading to safety risks. Further, there are many materials that are not safe

to laser cut because they release toxic fumes [117]. These hazardous materials may easily

be mistaken for safe materials due to similarity in appearance (e.g., PVC vs. acrylic) [102].

Because of the challenges outlined above, laser cutter users desire smarter machines that

can "identify the materials they [are] working with, so that the system could [...] suggest

settings based on material" as shown in a recent HCI study by Yildirim et al. [160]. One
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naive solution for this is to add a camera to laser cutters to automatically identify the

sheets. However, a conventional camera can be easily fooled by visually similar materials or

materials with printed decorative textures that imitate another material.

To ensure reliable identification, recent laser cutters use sticker tags attached to the

sheets (e.g., QR codes on Glowforge Proofgrade sheets [66]). As can be seen in Figure 3-1b,

these tags can be detected by a camera even when materials look similar or are transparent.

However, scanning the tags to detect the material type has its own issues. First, a new

tag has to be attached onto each new material sheet. Second, laser cutter users need to

be careful to not cut off the tag to ensure that the remaining part of the sheet can later

still be identified. These issues exist because using tags for identification is not inherently

material-aware as the laser cutter does not measure the physical properties of the material.

Figure 3-1: Existing material identification approaches: (a) Manually selecting from a
database (e.g., ULS [135]) or (b) scanning QR code stickers on sheets (Glowforge). (c) Sen-
siCut uses speckle sensing to identify the material based on its surface structure without the
need for additional tags.

In this project, we investigate how we can identify laser cutting materials by leveraging

one of their inherent properties, i.e., surface structure. A material’s surface structure is

unique even when it is visually similar to another type. To achieve this, we use speckle

sensing. This imaging technique works by pointing a laser onto the material’s surface and

imaging the resulting speckle patterns. We built a hardware add-on consisting of a laser

pointer and a lensless image sensor, which can be attached to the laser cutter head using a

mount. We then use the captured speckle patterns to identify the material type with our

trained neural network. Our user interface uses the material type information to support

users in different ways, i.e. it automatically sets the power and speed settings for the detected

material, it warns the user against hazardous materials, it automatically adjusts the shape

of a design based on the kerf for the detected material, and finally, it automatically splits

designs when engraving onto multi-material objects. We also discuss how speckle sensing
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Figure 3-2: SensiCut augments standard laser cutters with a speckle sensing add-on that
can (a) identify materials often found in workshops, including visually similar ones. (b) Sen-
siCut’s user interface integrates material identification into the laser cutting workflow and
also offers suggestions on how to adjust a design’s geometry based on the identified material
(e.g., adjusting the size of an earring cut from felt since the kerf for felt is larger than for
other materials). (c) Each identified sheet is cut with the correct power and speed settings.

can be used to estimate the thickness of sheets as another material-aware component for

future laser cutters.

In summary, by leveraging speckle sensing as an identification technique, we can improve

the material awareness of existing laser cutters. Our work enables safer and smarter material

usage, addresses common material identification-related challenges users face when laser

cutting, and encourages makers to reuse laser-cut scraps to reduce waste [20, 143]. We note

that this chapter was originally published at ACM UIST 2021 [23]. Our contributions are

the following:

• An end-to-end laser cutting pipeline that helps users identify materials by sensing the ma-

terial’s surface structure using laser speckles to, e.g., automatically set the corresponding

power/speed, warn against hazardous materials, adjust designs based on material-specific

kerf, or split designs when engraving onto multi-material objects.

• A compact (114g) and low-cost material sensing add-on for laser cutters that simplifies

hardware complexity over prior work by using deep learning.

• A speckle pattern dataset of 30 material types (38,232 images), which we used to train

a convolutional neural network for robust laser cutter material classification (98.01% ac-

curacy).

• A technical evaluation showing which visually similar materials speckle sensing can dis-

tinguish under various sheet orientation and illumination conditions.
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3.2 Motivation

SensiCut addresses an important open challenge in the personal fabrication literature. A

recent field study [160] in HCI revealed an unaddressed user need for fabrication tools

concerning the “awareness of material types”. In particular, users wished that the tools

could “identify the materials they were working with [and] suggest settings.” The authors

conclude that “HCI researchers could advance [these tools] by leveraging new sensing [...]

capabilities”.

To further understand what specific challenges exist, we surveyed five additional HCI

publications [4, 65, 12, 100, 72]. We also conducted formative interviews with six expert

users that we recruited by reaching out to makerspaces. Each expert user had several years

of laser cutting experience working with different material types. During the 1-hour semi-

structured interviews, we interviewed them about their experiences using different material

types, difficulties they had identifying materials, and how different material types affected

their designs for laser cutting. Additionally, we performed a study in which we gave 13

novice users, who had used laser cutters at least once but no more than four times, a list

of 30 materials commonly found in workshops (list of materials in Section 3.5.1), and asked

them to match them to 30 unlabeled sheets. For the interview responses, we took a bottom-

up approach in our thematic analysis to identify four main challenges, which we report

below.

Characterizing unlabeled sheets: We found that users have a hard time identifying materials.

In our study, novices were able to label on average only 29.23% (SD=6.41) of the sheets

correctly. The ones that were correctly identified by most users were cardboard and cork.

The top 10 mislabeled sheets were all different types of either plastic or wood. However,

this is not only an issue for novices, but also for experts. One senior maker we interviewed

reported that certain materials are too similar to distinguish by only looking and touching.

He added that he checks if a sheet is acrylic or Delrin by "breaking the sheet and seeing how

brittle it is." Identifying materials by their surface structure eliminates these issues since

even similar types of plastic have different surfaces structures.

Democratizing material knowledge: One way to help novices identify materials is to ensure

sheets are labeled at all times. However, in practice, this is infeasible to do for all sheets.

One expert we interviewed, a manager of a large workshop, said that "there is no way to keep
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track of all the sheets [as] so many people contribute to the scrap piles." Another option if

sheets are unlabeled is that novice makers ask an experienced maker which type of material

it is. However, Annett et al. [4] report that makers with “knowledge [of] material [were]

often difficult to access” and that users need “intelligent sensing [of] materials.” Hudson et

al. [65] show that “early in the casual makers’ learning process motivation appeared to be

very fragile” and “early failures [can] result in them completely giving up.” A smart system

that provides access to reliable material identification would eliminate this issue, thereby

lowering the entry barrier to laser cutting and democratizing its use.

Automating mundane work: Laser cutting requires several steps that are mundane and would

benefit from being automated. For instance, in today’s workflow, users have to identify the

sheet, select the correct material type from the material database, and then verify the

power/speed settings. Yildirim et al. [160] found that professional users want "automated

[fabrication tools] that could pick up menial work, [e.g.] registering materials." They "find

it frustrating when they have to monitor an autonomous [tool]." A material-aware sensing

platform can remove the tedious overhead and allow users to focus on the essential work.

Enhancing safety of all users: Laser cutting poses both safety and health hazards [58, 85].

In our interviews, all experts reported that they experienced multiple fires in the laser

cutter at their workspaces. One of them said that "all of the places [he has] worked at had

a fire" and that it is a "huge safety risk." Concerning health, one of our interviewees, a

class instructor, said someone almost cut a hazardous material that includes chlorine, which

would release toxic fumes and corrode the machine. In addition, not adhering to the rules

would have "revoked all class participants’ access to the workshop." For safety-critical tasks,

HCI researchers have looked into designing interfaces where the role of users is “mediated

by computer technology” [12, 100]. For fabrication tools specifically, Knibbe et al. [72]

found the “implementation [of] safety alerts could provide significant benefits within group

makerspaces.” A smart sensing platform can provide such safety alerts and prevent human

error by determining if hazardous materials are used or when users accidentally select wrong

laser settings, which can cause a fire.
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Figure 3-3: Speckle sensing. (a) Laser rays reflect off the material surface and arrive at
the image sensor. Phase differences between the rays result in mutual interference and thus
dark or bright pixels in the captured image. (b) Different materials viewed by a regular
camera, a scanning electron microscope, and our speckle sensing imaging setup. (c) Our
speckle sensing add-on consists of a laser pointer, lensless image sensor, microprocessor, and
battery.

3.3 Speckle Sensing Hardware Add-On for Laser Cutters

In this section, we first discuss the working principle behind laser speckle imaging. We will

then show how we built a sensing add-on that can be mounted onto existing laser cutters

and highlight the technical contributions of our add-on over prior work.

3.3.1 Speckle Sensing Working Principle

Figure 3-3a illustrates how laser speckle sensing works. It uses a coherent light source,

i.e., a laser, to create the speckles and an image sensor for capturing them. To create the

speckle pattern, the laser light reflects off the material surface, resulting in a reflectance

pattern (speckle) of bright and dark spots that looks different depending on the material’s

surface structure. This occurs because the tiny features of the material surface lead to

small deviations in the optical path of the reflected laser beam. To show this, we provide

additional electron microscope images of different materials in Figure 3-3b. Although the

materials look visually similar to the human eye, the electron microscope images clearly

show different surface structures, resulting in different speckle images that can be used for

material identification.
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3.3.2 Hardware Add-On

To integrate speckle sensing into an existing laser cutter, we consider (1) which light source

and (2) image sensor to use, as well as (3) how to mount all required components on the

platform. We provide additional specifications for each component in the appendix.

Laser Pointer: Our initial idea was to utilize the laser pointer present in our laser cutter

(model: Universal Laser Systems (ULS) PLS6.150D), which conventionally serves as a guide

to align the material sheet. However, we found that laser pointers need to be sufficiently

powerful to create speckles detectable by the image sensor. For this reason, green laser

pointers work best given equal power since most commercial cameras have a Bayer mask

with twice as many green elements as red or blue. Unfortunately, our laser cutter has a red

laser pointer with a power of <1 mW, which according to our experiments was not sufficient

to create detectable speckle patterns. We therefore decided to use an additional green laser

pointer (515nm, <5mW). In the future, this additional laser pointer may not be necessary

if manufacturers increase the power of their existing laser pointers.

Image Sensor: Our goal was to choose a sensing setup that is compact, i.e., uses as few

components as possible, yet provides sufficiently high resolution to detect the speckles. When

surveying the related work, we found that existing setups consist of multiple sensors and/or

LEDs [52, 119]. Each component in these setups helps acquire a unique datapoint related

to high-level statistics, such as the average brightness or overall spectral reflectivity, which

are then input into a classifier as 1D data. We found that we can reduce the hardware

complexity over prior work to only a single image sensor if feed the raw image, in which the

2D spatial data correlates with the materials’ surface structure, directly into a convolutional

deep neural network (see Section 3.5.3). Although the 2D image input requires additional

time to compute the prediction result compared to 1D data, it does cause not a disruption

to the laser cutting workflow (0.21s on a 2GHz Intel Core i5 processor).

For the image sensor, we chose an 8MP module (model: Raspberry Pi [99]. As explained

previously, this image sensor, like most commercial ones, has a higher sensitivity to the green

region of the spectrum [128], which is beneficial for capturing speckle images created by our

green laser pointer. We placed the laser pointer and image sensor as close as possible so

that the speckles’ intensity caused by the laser illumination is high enough when captured

by the image sensor.
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Before mounting the image sensor, we removed the lens of the camera module using a

lens focus adjustment tool. We did this because the laser pointer only illuminates a tiny

area on the material sheet (i.e., size of the laser spot). When imaging the sheet with the

off-the-shelf camera module that has the lens attached, the speckle is present in only a small

portion of the entire image because the lens directs not just the laser light, but all the

available light rays in the scene onto the image sensor. This gives us less speckle data to

work with. When removing the lens from the camera module, however, it is mainly just the

reflected laser light that hits the sensor, causing the speckle pattern to appear across the

entire image (last column in Figure 3-3b). Thus, the camera module with no lens utilizes

all the pixels of the bare image sensor and can capture a higher-resolution pattern.

Microprocessor and Battery: Since commercial laser cutters are closed source, we had to add

a small and lightweight microprocessor and an external battery pack to allow our add-on to

capture images. Since the microprocessor has limited computational capacity, we send the

captured images wirelessly to a computer for further processing. To make speckle sensing

available in future laser cutters, manufacturers do not need to add these components since

laser cutters already include processing hardware and a power supply.

Mounting on Laser Cutter: To make our hardware add-on compact and easy to use, we

designed and 3D printed the lightweight mechanical housing (60g) shown in Figure 3-3c.

The housing snaps onto the laser cutter’s head and can be mounted with a small rod.

Attaching the sensing hardware to the laser head allows us to avoid additional calibration

since because of the mount, the add-on is always located at a fixed offset from the laser. All

together, the add-on weighs 114g.

In summary, our speckle-based hardware add-on consists of a laser pointer, a lensless

image sensor, a microprocessor, and a battery pack. However, to integrate speckle sensing

into future laser cutters, manufacturers only need to add the lensless image sensor – all

other components (power and computing infrastructure, laser pointer) already exist in laser

cutters.
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3.4 User Interface and Applications

In this section, we describe our custom user interface (UI) that integrates laser speckle

sensing into the laser cutting pipeline. In particular, we show how it helps users identify

the material of a single sheet or multiple sheets at once, and supports users with cutting or

engraving multi-material objects. Additionally, SensiCut can offer safety warnings, provide

extra information on materials, and help with kerf-related geometry adjustments. We also

describe how we use the interface and SensiCut’s material sensing capabilities for different

applications.

Similar to the traditional laser cutting pipeline, users first start by loading their design

(i.e., an SVG file) into the SensiCut UI, which subsequently shows it on the canvas (Figure 3-

4a). Next, users place the material sheet they intend to use inside the laser cutter.

Figure 3-4: SensiCut UI. (a) The Pinpoint tool allows users to identify the material at a
desired location on the cutting bed. (b) The user enters the thickness value corresponding
to the detected sheet and starts cutting.

3.4.1 Identifying Single Material Sheets

To identify a single material sheet, users point SensiCut’s laser pointer to a desired location

on the sheet as shown in Figure 3-4a. They can do this by first choosing the Pinpoint tool

(arrow 1) and clicking the point on the canvas that corresponds to the physical location in

the laser cutter (arrow 2). SensiCut then moves the laser over this location to capture the

speckle pattern and classify the material. The resulting material name is then shown to the

user (arrow 3).

After the user clicks Continue, the shapes in the canvas are color-coded to reflect the

material type (e.g., red corresponds to Cast Acrylic). The user then enters the material

thickness in the text field next to the classification result (Figure 3-4b). Once ready for laser
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cutting, they can hit the Start button and SensiCut automatically retrieves the appropriate

laser power, speed, and pulse per inch (PPI) settings from the material settings database.

Using the identified material type, SensiCut can further support users via different func-

tionalities:

Toxic and Flammable Material Warnings: As mentioned in the introduction, there are many

materials that should not be laser cut because they are toxic, flammable, and/or harmful to

the machine. Based on the identified material type, SensiCut displays a warning whenever

the user requests to cut a material that is hazardous and should not be used in the laser

cutter.

Showing Material-Relevant Information: Even though some materials appear similar, they

may exhibit different characteristics, which novice users may not be aware of. To address

this, SensiCut displays additional information on each detected material to inform users

about general characteristics of the material, ideal uses with sample pictures, and han-

dling/care instructions. We referred to the laser cutting service Ponoko [67] to retrieve this

information. Workshop managers can edit and extend this information depending on the

workshop type and its users (architecture vs. engineering).

Kerf Adjustments: Design files can have details that are too intricate for certain material

types, especially when the sheets are thin. Cutting these fine geometries can fuse details

together because of kerf. The kerf, i.e., the amount of the material removed due to the laser,

depends on the type of the material [112, 114]. When details are affected by kerf, SensiCut

shows a warning to the user and then offers three options to address it: SensiCut can either

slightly enlarge the design based on the material type, smooth out too intricate details, or

ask the user to adjust the file manually in the drawing editor (e.g., Adobe Illustrator).

Application: Fabricating a Face Shield From Different Unlabeled Scraps: In this appli-

cation example, we would like to fabricate a face shield and use transparent plastic materials

to ensure clear sight while wearing it. We start by surveying different designs online and

after deciding on one [35], we download the parts, which consist of a visor and a shield. The

design instructions highlight the importance of using the correct material for each part. In

particular, it is recommended to use a transparent rigid material for the visor (e.g., acrylic)

and a transparent flexible material for the face shield (e.g., acetate or PETG).

We start by browsing through the leftover scrap materials from our workshop. However,
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Figure 3-5: Making a face shield. (a) Find flexible sheets from the stockpiles and (b) place
in the cutter. (c) Upon identification, the UI labels all 3 materials and gives relevant
information on, e.g., their handling and safety. (d) After the cut parts are assembled, the
shield can be safely sanitized with alcohol.

while going through the transparent scrap materials, we notice that almost all of them are

unlabeled. To make the visor, we take the first rigid transparent material we find in the

pile that has a sufficient size and place it inside the laser cutter. We then open SensiCut’s

UI (Figure 3-4a) and select Pinpoint to identify the material at a desired location. The

right-hand bar shows the material has been detected as cast acrylic, which is a suitable rigid

material for the visor. Once we confirm, SensiCut automatically retrieves the appropriate

power/speed settings for this job and the laser cutter starts cutting the acrylic.

We repeat the procedure for the shield, which needs to be made from a flexible trans-

parent material. We go back to the scrap materials and find three different flexible sheets

(Figure 3-5a). We read online that acetate and PETG may be more suitable than other

plastics, but are not sure which one is which. We take all three and place them in the laser

cutter. In the UI, we then choose Identify sheets and set the number of sheets to 3. Next,

we click on one point on each sheet to instruct SensiCut to identify the material there. Once

the results are displayed, we realize that one of them is a polycarbonate (Lexan), which Sen-

siCut labels with a "hazardous" warning (Figure 3-5c). The other two sheets are identified

as acetate and (thin) cast acrylic.

To learn more about the difference between the two materials, SensiCut shows infor-

mation from its knowledge database and displays it on the corresponding material. For

example, it shows that acetate has high impact strength and is reasonably flexible, and

that, in contrast to acrylic, it can be wiped down with alcohol, which is important to dis-

infect the shield. We remove the Lexan and acrylic sheets from the laser cutter, choose

acetate in the UI, and start cutting. Now that all parts are cut, we can assemble the final
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Figure 3-6: Rapid material testing for product design. (a) Choosing multiple samples from a
material swatch and (b) inserting in the laser cutter. (c) After sensing, the UI matches each
shape with the corresponding material. It also warns that the kerf for felt will compromise
the design.

face shield (Figure 3-5d).

3.4.2 Identifying Multiple Sheets of Different Materials at Once

SensiCut also allows users to cut multiple sheets of different material types in rapid succes-

sion. The user first loads the design files that contain the shapes they want to cut from the

different sheets. Next, they place the corresponding material sheets inside the laser cutter

and initiate the Scan multiple shapes mode. This causes SensiCut to go to the location of

each shape and capture an image there for material identification. The resulting material

names are then displayed in the Material Detection sidebar and the shapes are similarly

color-coded based on the material types.

Application: Rapid Testing of Multiple Material Types for Product Design: In our

second example, we want to rapidly prototype a new earring design in a white color. We

want to fabricate the earrings to test the look and feel of different materials to determine

which one looks best when worn. To evaluate different material types, we pick a handful of

white samples from a material swatch (Figure 3-6a).

To speed up our prototyping process, we want to cut all the material samples at once.

To do this, we place all our selected material samples on the laser cutter bed as shown in

Figure 3-6b. We then load the earring design. Next, we position a copy of the earring design

in the UI in the location where each material sample is placed. Next, we choose the Scan

multiple shapes option. After the scan, each earring’s shape is color-coded to reflect the

detected material type: felt, foam board, cast acrylic, and leather (Figure 3-6c).

Next, we enter the thickness for each material sheet: 1mm for felt and leather, and 3mm

for the others. For felt, SensiCut shows a notification that our design has details that are too
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Figure 3-7: Adjusting the design for kerf. (a) The user can enlarge the shape to compensate
for the thicker kerf for felt. (b) Without the adjustment, details like the hole and fine blades
of the leaf disappear in the cut felt. (c) The fabricated prototypes.

intricate for a thickness of 1mm and may thus fuse together because of kerf (Figure 3-7b).

We choose the Make shape bigger option and enlarge the felt earring so that the minimum

feature size no longer goes below the kerf limit (Figure 3-7a). Once adjusted, we cut and

engrave all sheets in a single job. The finished earring prototypes are shown in Figure 3-7c.

3.4.3 Engraving onto Multi-Material Objects

Compared to individual material sheets, cutting or engraving designs onto multi-material

objects (e.g., the smartphone case in Figure 3-8a) is a particularly challenging task. It

requires a cumbersome workflow where users first have to split the design into multiple files,

one for each material. More specifically, proper alignment of the shapes in the digital design

with the different parts of the physical object is challenging without knowing where the

material borders are located.

SensiCut facilitates cutting and engraving on multi-material objects by automatically

splitting the design precisely along the border of different materials by sensing the material

type at each point in the design. For this, users start by loading a single file containing

the entire design, insert the multi-material object into the laser cutter, position the design

onto the multi-material object, and select the Scan multi-material objects mode. SensiCut

then samples points along the laser-cut path to identify the material at each point. The

scanning progress is shown in the SensiCut UI by highlighting the scanned trajectory. After

scanning is completed, SensiCut splits the design according to the detected material type

at each point to ensure the correct laser settings will be used.

Application: Personalizing Existing Multi-Material Products: In this example, we want to

engrave a custom design at the center of a smartphone case that consists of two different
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Figure 3-8: Engraving a multi-material phone case, which consists of (a) wood-like rubber
and leather. SensiCut scans (b) the input design’s outline and (c) splits it into two parts
based on the material type detection. (d) Engraved design.

materials across its surface, i.e., leather and wooden parts (Figure 3-8a).

First, we load the design file, position it on top of the phone case, and select Scan multi-

material objects, which then moves the laser head along the design’s engraving path to detect

the material at each point (Figure 3-8b). Once the scan is complete, SensiCut splits the

design into two parts, one for each of the two materials (Figure 3-8c).

Once SensiCut identified the materials, we realize that the part we had thought was

wood is actually made of silicone rubber with a decorative wood pattern. SensiCut is not

deceived by the disguise pattern because it measures surface structure and sets the correct

laser engraving settings. Once we confirm, our design is engraved onto our multi-material

phone case (Figure 3-8c).

Application: Customizing Multi-Material Garments: Figure 3-9a shows another multi-

material item, i.e. a T-shirt, that we want to engrave with a custom seagull design. The

T-shirt has a plastic iron-on material applied on it. To engrave our design, SensiCut detects

which parts are made of textile and which are made of plastic. It then splits the seagull

design into multiple paths accordingly and assigns the correct laser power/speed settings for

each one (Figure 3-9b). If we had instead used only one set of laser power/speed settings

for the entire seagull design, i.e., the settings for either textile or plastic, the lines would

either not be visible on the yellow plastic or the textile would have been burned. Further, it

would be particularly difficult to achieve this without SensiCut: One would have to remove

the iron-on plastic from the fabric itself, engrave the plastic and fabric separately, and put

them back together precisely. This shows how SensiCut could help users further customize

garments that have non-textile parts (e.g., [40]) quickly and on demand.
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Figure 3-9: Engraving a pattern on a T-shirt that has (a) plastic details on it. (b) Sen-
siCut uses the right combination of laser settings after partitioning the design (middle).
Top/bottom shows the outcome for singular settings.

3.5 Classification of Materials

SensiCut can differentiate between 30 different materials relevant to the challenges laser

cutter users face. In the next section, we discuss how we built a dataset of speckle patterns

of these materials using an automated script, and how we trained a convolutional neural

network (CNN) to be able to distinguish between them.

3.5.1 Choosing Material Samples

For our dataset, our goal was to choose materials that are most representative of the materi-

als commonly found in makerspaces and workshops, with a particular focus on the ones that

cause confusion because of their appearances. Figure 3-10a summarizes the list of materials

we compiled by surveying a range of online communities (e.g., Thingiverse [90], Instructa-

bles [6]), educational materials on laser cutting [7], supply vendors [67, 77], as well as the

laser cutter material databases that come with the default laser cutter control software (e.g.,

ULS Universal Control Panel [135]).

The resulting material list includes 30 different materials ranging from different types of

paper, plastic, wood, fabric to (engraved) metal. In the next section, we discuss how these

selected materials are representative of the challenges that laser cutter users face.

Different Laser Cutting Materials with Similar Appearance: As our formative material la-

beling study showed, plastics are particularly challenging to distinguish for users due to

their visual similarity (Figure 3-10b). To represent such cases, we purchased samples of

cast acrylic, extruded acrylic, and Delrin (also known as acetal or POM ) of the same color,

which require different settings to properly cut/engrave a design [7]. We also included sam-
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ples of different transparent sheets, i.e., acrylic, PETG, and acetate. In addition, we included

other materials that have slightly varying appearances, but still are difficult to distinguish

for non-expert users who are not familiar with the specific nuances, such as different types

of wood (e.g., maple, oak, bamboo, or birch) [152].

Hazardous Materials that Look Similar to Safe Ones: To represent cases where some of the

commonly found materials in workshops are hazardous (flammable, toxic, or harmful to

the machine) and cannot be safely laser cut [7, 73], we included polyvinyl chloride (PVC),

Lexan (polycarbonate), acrylonitrile butadiene styrene (ABS), and carbon fiber sheets. PVC

is often mistaken for the common laser-cut material acrylic. However, it is highly toxic

as it releases hydrochloric acid fumes when heated, which also rapidly corrode the laser

system [58]. Lexan and ABS are also hazardous and easily flammable1 but look similar to

safe plastics. However, whether a material is considered safe for laser cutting or not depends

on the specific hardware setup (air filter type and volume, power of laser) as well as local

regulations [49]. For our setup, materials in the ULS material database that comes with our

laser cutter and its UAC 2000 filter (MERV 14, HEPA, 2 Carbon filters) are marked as safe.

For instance, polystyrene is listed as safe for our setup but may not be safe for others. Thus,

we recommend that when deployed in a new workshop, SensiCut’s database be updated

by the workshop manager locally after checking material safety data sheets (MSDS) for

potential laser generated air contaminants (LGAC). Workshop managers should also talk to

their local occupational health institution (e.g., NIOSH 2 in the US).

To make the material composition of our dataset representative of a real-world workshop,

where certain materials like acrylic and cardboard are much more available in terms of

quantity/color options, we included more than 1 sheet for these as seen in Figure 3-10a.

This also allows us to evaluate our system for different colors and transparencies. In total,

we used 59 material samples, the majority of which were purchased from Ponoko [67],

except for the 5 hazardous material sheets (PVC, Lexan, etc.), which we purchased from

other suppliers on Amazon.com. A list of these material samples and the associated vendors

can be found in the appendix.

1https://wiki.aalto.fi/display/AF/Laser+Cutter+Materials
2https://www.cdc.gov/niosh/
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3.5.2 Data Capture and Material Speckle Dataset

After purchasing the different materials, we captured images of each sample to build a

dataset for training our convolutional neural network.

Preliminary Experiment: Before capturing data for all materials, we ran a preliminary exper-

iment to determine two values: (1) the distance between the image sensor and the material

surface at which the speckle pattern is most visible, and (2) the number of images necessary

for training the classifier with high accuracy. For the distance, we empirically found that

11cm between our image sensor and the material surface led to the best results. For the

number of images, we placed material samples below the image sensor at the recommended

distance and took images, moving the sample in the xy plane manually to simulate how the

laser cutter would take images at various points of the sheet. We found empirically that

around 80-100 images are sufficient for each material to train a CNN for classification.

Data Collection: After this manual exploration, we started the data collection of all materi-

als. For this, we wrote a script to automate the laser cutter’s movement and image capture.

For our material samples (6.3cm x 6.3cm), we chose to capture a 9x9 grid of points leading to

81 images, which satisfies our criteria from the preliminary experiment. For consistency, we

kept the image sensor settings, i.e., exposure time, digital/analog gains, and white balance

constant.

Additionally, we captured images at different heights (z-locations) to ensure that the

network can classify materials of different thicknesses. This is necessary since the speckle

pattern changes with the distance between the material surface and the image sensor. We

chose 8 different heights ranging from 0mm (to support paper) to 7mm (thickest material

sheet we were able to buy) spaced at 1mm increments. However, not every sheet has

a thickness of a multiple of 1mm (e.g., some sheets are 2.5mm). We can generate this

additional data using data augmentation methods as explained in Section 3.5.3. Since our

model was trained for materials with a thickness of 0-7mm and the material surface was

11cm away from the image sensor, this leads to an effective detection range of 110-117mm.

To integrate material identification into other cutting-based methods like LaserOrigami [96]

or FoldTronics [158], the model can be trained for larger distances in the future.

Dataset: Our final data set contains 38,232 images from 59 material samples of 30 unique

materials (14.93 GB, 800x800 pixels each). Each material sample includes 648 images (81
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images/height x 8 heights), which took about 40 minutes to capture with our automated

setup. The majority of this time is spent waiting for the laser head to stabilize after moving

to a new location to ensure that the captured image is not blurry. The dataset is used for

training the CNN and does not need to be stored on the user’s computer. The trained CNN

model that is used at detection time is 120MB. The dataset is publicly available3.

3.5.3 Training the Neural Network

To train the CNN and build a detection model using the captured images, we used transfer

learning with a ResNet-50 model [55] that was pre-trained on the ImageNet dataset [115].

We used the Adam optimizer with a learning rate of 0.003 and a batch size of 64. We used

80% of images for the training set and reserved 20% for the validation set.

Image Size Used for Training: For the input image size, we chose 256x256 pixels. Although

we captured the images in 800x800 pixels, we found that the higher resolution caused lower

accuracy as the model overfit to irrelevant details in the image. The lower resolution input

also saves training time because the model has fewer nodes to compute. Moreover, it speeds

up the detection during use (i.e., average prediction time: 0.21s for 256x256px vs. 0.51s for

400x400px on a 2GHz Intel Core i5 ). We still keep the full-size images in our dataset to

enable future research.

Data Augmentation: To make the model robust to different lighting conditions and inter-

mediate sheet thicknesses (e.g., 2.5mm), we generated additional images during training

using data augmentation. Every time the network starts training on a new batch of images,

a portion of the images is transformed by changing the brightness and the contrast of all

pixels (by up to ±30%), as well as zooming into the image to enlarge the speckles as would

be the case when the thickness of the sheet decreases (by up to ±20%). This allows our

model to generalize better and also saves time by avoiding the capture of more images with

the physical setup.

In the future, new materials can be added to SensiCut by capturing more speckle images

and adding them to the dataset. For this, the neural network needs to be retrained but

the weights from this previous training can be used (transfer learning), which significantly

speeds up the process , i.e., takes only 10-12 minutes vs. 6 hours training from scratch.

3https://hcie.csail.mit.edu/research/sensicut/sensicut.html
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Figure 3-10: Material considerations and evaluation. (a) Most common material types for
laser cutting. (b) Visually similar materials. (c) Confusion matrix from our trained classifier
for 30 material subtypes.

3.6 Evaluation of Material Classification

We conducted a technical evaluation to determine our trained classifier’s accuracy. We also

carried out additional tests to understand how the model generalizes to different physical

conditions (rotation of sheets, illumination variations) and material sheets purchased from

different vendors.

3.6.1 Detection Accuracy Results

The results of the classification accuracy for the 30 different materials in our dataset are

shown as a confusion matrix in Figure 3-10c. Our average identification accuracy is 98.01%

(SD=0.20) across the different materials. This is based on a 5-fold cross-validation, which

we ran to ensure consistency of the classification accuracy across different training and

validation splits. The small standard deviation shows that training our model leads to

similar results independent of how the dataset is split. For this reason and the fact that

cross-validation is a time-consuming procedure (30 hours for 5-fold), the remainder of the

technical evaluation is based on a single run.

We further analyzed the results to understand which of the materials outlined in Sec-

tion 3.5.1 are confused for each other most. For instance, given a specific color (either white,
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black, or red), we evaluated the identification accuracy across cast acrylic, felt, paper, and

laminated MDF. The accuracy was 100% for white and red, and 92% (SD=12.72) for black,

on average. The latter is likely due to the fact that black reflects less light. Since the image

sensor’s exposure is the same for all photos, this causes the reduced accuracy for black ma-

terials. Enabling adaptive exposure when capturing images could eliminate this difference

in the future [159].

Figure 3-10c also shows materials that were mistaken for each other. For instance, leather

and silicone were confused with each other at a relatively high rate compared to other pairs.

We believe this is because our full-grain leather piece is hot stuffed, i.e., conditioned with

unrefined oils and greases, which likely makes its surface structure closer to that of silicone.

One can also observe some confusion between walnut and paper-based materials, such as

cardstock. Thesimilarity in their surfaces may be due to the fact that paper is produced

using cellulose fibres derived from wood.

We also evaluated the accuracy of materials within the same material groups. We got

a mean accuracy of 98.92% across woods (SD=1.66), 98.84% across plastics (SD=2.36),

97.25% across textiles (SD=2.50), 95.90% (SD=2.94) across paper-based materials, and

97.00% (SD=2.16) across metals. The fact that paper-based sheets had the lowest rate

is expected as they share the most similarities in their surface structures among different

subtypes (e.g., cardstock vs. cardboard have a similar surface texture).

3.6.2 Effect of Illumination and Sheet Orientation on Detection

To understand how detection accuracy is affected under different illumination (ambient light)

conditions and sheet orientations, we ran additional tests.

Figure 3-11: Effect of (a) varying illumination and (b) sheet orientation on detection.

Ambient Light: When we captured the images for our main dataset, we kept illumination in

the workshop low (i.e., all lights turned off). To evaluate if the trained model can distinguish

between materials even when the ambient light varies, we created an additional test set of
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images under different lighting conditions. For this, we used two lamps, one on the left and

one on the right corner of the room, resulting in three conditions (light1 on, light2 on, both

lights on) that cover an illumination range of up to 80 lux, in addition to the initial data

with all lights off. We tested this on different black and white sheets, representing the two

ends of the light reflectance spectrum, as well as clear (transparent) sheets. We compare

the accuracy in the following three scenarios: 8 white and 8 black sheets (for each color 2

sheets per type: plastic, paper, textile, wood), and 6 transparent sheets (all plastic).

The results are shown in Figure 3-11a. We found that the increased brightness did

not have a major impact on the detection of white and black sheets. For clear sheets,

however, the mean accuracy was lower (66.67%). The reason for this is that while opaque

sheets benefit from data augmentation, this is not the case for clear sheets. We found

that the illumination increase in the room was not realistically simulated in the digitally

generated images of clear sheets because such materials allow light to pass through in all

directions. This can be overcome by capturing additional images of clear materials under the

varying light conditions and then retraining the model. Indeed, such retraining resulted in

an increased accuracy of 88.10% (shown in the last bar). We also found that retraining the

model on this augmented dataset did not have a major impact on other materials’ detection

(only by 0.41% on average).

Orientation of the Sheets: The images we captured for our main dataset were all taken in a

specific sheet orientation. We thus evaluated if the classifier is still accurate when the sheets

are arbitrarily rotated for materials with uniform (e.g., acrylic) or non-uniform/irregular

surface structure (e.g., wood). For this, we created an additional test set by capturing

speckle images while rotating the material sheets at 45∘ increments. For materials with

uniform surface (plastic, textile, paper, metal), we picked two subtypes each (cast acrylic,

Delrin, cardboard, matboard, felt, leather, aluminium, carbon steel). For materials with

non-uniform surface, we tested eight subtypes of wood (oak, maple, walnut, birch, MDF,

veneer, bamboo, laminated).

The results are shown in Figure 3-11b. The lowest average detection accuracy was for

wood sheets (70.31%), which also had a high standard deviation among the wood subtypes

(24.94%). This is due to the fact that wood sheets included both artificial ones with regu-

lar surface structure (e.g., MDF), which resulted in 100% detection accuracy, and natural

woods with irregular surface structure (e.g., oak), which resulted in lower accuracies. The
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misidentified images for those materials were all captured at the odd degrees (45∘, 135∘,

etc.). We believe this is due to the cellular 3D microstructure of natural wood that has a

90∘ rotational symmetry at the microscopic level [5]. We can increase detection accuracy

for natural woods by augmenting the training dataset with more pictures taken at different

angles, at the expense of longer capture time.

3.6.3 Generalization to Different Material Batches and Manufacturers

In our main dataset, each set of samples came from one manufacturer. To ensure that our

trained model can work robustly for sheets from different batches of the same manufacturer

or different manufacturers, we conducted the following two tests.

New sheets from the same manufacturer: Two months after we purchased our samples, we

ordered a second batch of sheets from Ponoko (two subtypes per material: oak, maple,

cast acrylic, Delrin, felt, leather, cardboard, cardstock) and placed them inside the laser

cutter to test if our trained model can still identify them. We found that only the maple

sheet was incorrectly classified. As explained in Section 3.6.2, this is likely due to unique

microstructural orientation of natural wooden sheets.

New sheets from different manufacturers: To test if sheets from different manufacturers can

be reliably identified, we ordered 8 different sheets from various vendors on Amazon.com (two

subtypes per material: birch, cork, cast acrylic, Lexan, leather, felt, cardboard, matboard).

Only one of them, leather, was incorrectly classified. We later found out that the new sample

was synthetic leather, whereas the classifier was trained on natural leather.

While the above evaluation demonstrated that our classification model can detect mate-

rial types across various conditions, more longitudinal tests are needed to further verify its

applicability across various workshop settings.

3.7 Software Implementation

Our user interface is Web-based and implemented using JavaScript and the Paper.js library.

When users request a material identification, our system automatically moves the laser cutter

head to the corresponding xy-coordinates on the physical cutting bed. These coordinates are

offset by the distance between SensiCut’s laser pointer and the cutting laser. For the z-value,
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Figure 3-12: Our detection pipeline takes the user’s drawing as input and turns it into target
points to capture speckle patterns. The captured images at those points are passed to the
CNN to retrieve the material label.

a fixed distance to the sheet is used for capturing the speckles (Section 3.5.2). To input the

coordinates and initiate the movement, our system uses the PyAutoGUI library to interface

with the ULS Universal Control Panel (UCP). It then detects if the laser head stopped

moving, i.e., is stable enough to take a picture, by checking if the laser is in idle mode.

This is indicated via a color change in UCP, which our system can detect via PyAutoGUI ’s

screenshot() and getcolors() functions.

Next, the captured image is wirelessly sent from the hardware add-on’s Raspberry Pi

board to the main server, which runs on an external computer. This Python server uses

the image as input to the trained CNN model, which was implemented using PyTorch and

fast.ai [61]. The CNN returns the classification results, which are then displayed in the UI.

The communication between the JavaScript front-end and the Python back-end is handled

by the Socket.IO framework. The complete pipeline is shown in Figure 3-12.

After the user confirms the results, the laser power, speed, and PPI (pulses per inch)

settings are retrieved from the ULS database based on the detected material. Because the

UCP interface does not have an API, we extracted these values from the its back-end using

a Firebird server and Database Workbench 5 Pro to create an interim datasheet from which

we can look up values as needed.

To detect kerf-related issues, we first dilate the drawing with a kernel of the size of the

material-specific kerf. We check if two curves overlap or if the dilation results in extra blobs,

i.e., the cut may lead to an undesired shape. The materials’ kerf values are based on the

"Minimum feature size" values listed on Ponoko.

For the multi-material object mode, our system samples points uniformly along the cut-

ting path and processes the captured images according to the pipeline described previously.

Our system then assigns the respective identified material to each part of the users’ drawings.
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3.8 Discussion

In the next section, we discuss insights gained from our work, acknowledge the limitations

of our approach, and propose future research.

Avoiding Dust on the Sensor: In conventional cameras, lenses help prevent dust particles

from landing on the sensor. Although we use a lensless image sensor to capture the speckle

patterns, over the course of our research we did not observe the lack of the lens to interfere

with classification results. We hypothesize that this is the case because (1) the sensor is

facing down, which prevents dust particles from reaching the surface of the sensor due to

gravity, and (2) the ventilation in the laser cutter bed sucks away particles from the image

sensor.

Confidence Scores for Misidentified and/or Unknown Materials: The neural network’s final

layer outputs a vector for the confidence score of each material type. If multiple types have

similar scores, the material is either misclassified or not included in the original training

dataset. As part of our future work, we will extend the user interface to show bars to

visualize the confidence scores and inform the user to act with caution when confidence scores

of multiple materials are similar. Additionally, a confidence threshold for when a material

is safely classified could be set by the workshop manager for all users of the workshop.

Effect of Scratches on Sheets: Scratches on sheets are often local, i.e., they occur when a

sheet’s sharp corner abrades a spot on another sheet’s surface. We picked 2 cast acrylic, 2

birch, 2 cardboard sheets with the most scratches from the material pile in our workshop

and captured speckle patterns at 30 uniformly distributed points across the surface of each

material sample. We found that the majority of points were correctly classified, i.e. 90% for

acrylic, 91.7% for birch, 86.7% for cardboard. In future work, to make material detection

robust to local scratches, SensiCut could take more than one image and cross-check the

classification result at the expense of longer detection times.

Materials with Protective Cover: Some material sheets come with a protective plastic/paper

cover to avoid scratches during transportation and some users may prefer to leave it on

during laser cutting. Since SensiCut needs access to the material’s surface, users can peel a

small section from the corner and use our interface’s Pinpoint function to detect the material

type from that corner.
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Estimating the Sheet Thickness from Speckles: As the distance between the image sensor and

the material surface increases, the speckles appear larger in the image [127]. If the pictures

are taken at a fixed height (i.e., a fixed distance of the laser head to the cutting bed), then

the surface of thicker sheets is closer to the laser head, which results in smaller speckles,

while thinner sheets are further away from the laser head, resulting in larger speckles. We

tested if this can be used to detect the sheet thickness by using the same dataset and CNN

structure as the material type classifier (ResNet). However, as this is a regression problem,

we used mean squared error instead of cross-entropy as our loss function. An initial test

across 14 material sheets gave us a mean error of 0.55mm (SD=0.68mm). For the ULS laser

lens we have, the depth of focus (i.e., tolerance to deviations from the laser’s focus) is 2.54

mm, which is larger than this detection rate. Thus, for future versions of SensiCut, we can

also include thickness detection.

Labeling Workflows: While some users may prefer to keep material sheets unlabelled and

launch SensiCut every time they use the laser cutter, SensiCut can also support hybrid work-

flows, such as printing a sticker tag after identifying a sheet, which can then subsequently

be attached to the material sheet. Similarly, the software interface could remind users to

label the material sheet with a pen after use as a courtesy to the next maker.

Material Identification for Other Fabrication Tools: For future work, we plan to explore

how SensiCut’s material identification method can be used for other personal fabrication

machines as well. For example, in 3D printing, some manufacturers, such as Ultimaker,

add NFC chips into filament spools to allow the chip reader integrated in the 3D printer

to automatically detect them. However, not all spools come with such chips. To address

this issue, we plan to investigate how speckle sensing can be integrated into filament feeder

systems to detect the filament type when a new spool is loaded onto the 3D printer.

3.9 Conclusion

In this chapter, we presented SensiCut, a material sensing platform that helps laser cutter

users to identify visually similar materials commonly found in workshops. We demonstrated

how this can be achieved with speckle sensing by adding a compact and low-cost hardware

add-on to existing laser cutters. We showed how the material type detection can be used to

create a user interface that can warn users of hazardous materials, show material-relevant
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information, and suggest kerf adjustments. Our applications demonstrated how SensiCut

can help users identify unlabeled sheets, test various materials at once, and engrave onto

multi-material objects. We discussed how we chose the materials in our dataset and how

we trained the convolutional neural network for their classification. We reported on the

detection accuracy for different material types and evaluated the impact of varying the room

illumination, rotating the sheets, and using sheets purchased from different manufacturers.

We then highlighted how our system can be extended to also detect the thickness of sheets.

For future work, we plan to investigate how speckle sensing can be used to detect materials in

other fabrication tools. Furthermore, we plan to collaborate with laser cutter manufacturers

to integrate our material sensing approach into future commercial products, which only

requires adding the lensless image sensor and adjusting the power of the existing visible

laser pointer.
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Chapter 4

StructCodes: Leveraging Fabrication

Artifacts to Store Data in Laser-Cut

Objects

4.1 Introduction

To achieve unobtrusive passive tags that do not require object modification, researchers

investigated ways to use the inherent characteristics of objects, which may manifest in

the form of either naturally occurring or engineered features. As an example of natural

unobtrusive tags, SensiCut [23] senses the micron-scale surface structure of materials using

speckle sensing to identify the material’s type. Similarly, Verifiable Smart Packaging [146]

uses radio-frequency signals that penetrate through an object’s exterior to identify the object

by its internal structure. The second approach, engineered unobtrusive tags, offers more

flexibility to define how the tag should by embedded with the object. For example, in

agriculture, researchers developed tamper-evident tags using biodegradable silk particles,

allowing for seed traceability and anti-counterfeiting [134].

In this project, the question that prompted our research was: Can we make use of

existing fabrication artifacts of objects to store metadata in them? Our goal is two-fold: (1)

not introducing additional materials, parts, or features to the object, but simply make use

of its existing visual structures that arise as a byproduct of the fabrication process. (2) The

added data should be decoded from regular camera images so the meta-information can be

67



Figure 4-1: StructCode embeds data in the fabrication artifacts of laser-cut objects, such as
the patterns of (a) finger joints and (b) living hinges, to augment objects with data. Here,
the embedded StructCodes allow narration for a painting and status updates for a potted
plant, among others.

easily used to augment the objects, e.g., in augmented reality (AR) applications.

Our proposed solution, StructCode, slightly varies fabrication artifacts, i.e., the patterns

resulting from joints, which does not change the main object geometry, but can still be

detected from camera images. Thus, StructCode does not add any new features to the

object, but instead exploits the structures that are inevitable artifacts of the fabrication

process. While this idea can be applied using many different manufacturing processes and

materials that allow for the customization of individual tangibles (to embed individual tags),

for the scope of this project we focus on laser cutting. Laser cutting is particularly suitable

because it allows the rapid fabrication of sturdy, functional, and large-scale objects [9, 23].

These typically contain many visual artifacts across their surfaces due to their finger joints

and living hinges. StructCode subtly changes the widths of these elements to represent
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machine-readable information. The StructCodes can be read as part of existing AR pipelines

to augment the user’s view with information relevant to the tangible objects that they are

interacting with.

Figure 4-1 shows how laser-cut objects use their existing joints to store meta-information,

such as labels (e.g., used to retrieve watering updates for the plant), context (e.g., to access

the digital model of the chair), disassembly instructions (e.g., to recycle the bookshelf), and

narration (e.g., explanatory video for the artwork on the wall). StructCode achieves this by

modifying the lengths of laser-cut finger joints and living hinges, which are inherent artifacts

of commonly laser-cut objects. The modified lengths represent different bits while ensuring

the codes are easy to capture with a mobile camera. Because StructCodes are an inherent

part of the objects, they cannot be easily removed without causing damage to the object.

Compared to other unobtrusive tagging methods in HCI, which use additional equipment

such as infrared cameras [29, 153], StructCode only requires a conventional RGB camera for

detection, and thus can be used on off-the-shelf mobile devices and headsets.

While this project demonstrates the idea of opportunistic data embedding for the ex-

ample of laser-cut objects, we discuss how it can be generalized to other types of fabricated

objects in the future in Section 4.8. We note that this chapter was originally published at

ACM SCF 2023 [22]. Our contributions can be listed as follows:

• An unobtrusive and integrated tagging method that embeds data in the existing fabrica-

tion artifacts of objects, as demonstrated for laser cutting, and only requires a standard

camera for detection.

• A tag decoding pipeline that is robust to various backgrounds, viewing angles, and wood

types.

• A set of applications showing how this opportunistic embedding can enrich tangible

interactions with laser-cut objects.

• A mechanical evaluation illustrating that the addition of StructCodes maintains the over-

all integrity of objects.

4.2 Method: Embedding Data in StructCodes

In this section, we discuss how to physically embed the code into existing laser-cut structures

and which encoding scheme we use for StructCodes. Our goal is to be able to store custom
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text (e.g., sentences or website URLs).

4.2.1 Identifying Features Suitable for StructCodes

To better understand how to embed information in laser-cut objects’ artifacts, we surveyed

what joints are used in their structure and which of these are suitable to be leveraged

as a StructCode. We considered the top 100 laser cutting projects on the popular online

repository Instructables1 and classified the identified joints in objects. If an object contained

more than one joint type, we took into account all of them.

In total, 58% of projects had at least one type of joint. We found four main types of

joints contained in the laser-cut objects: finger joints (26%), mortise and tenon joints (16%),

slot joints (8%), and living hinges (8%). We count living hinges as a type of joint because

under joints, we consider any connection between two planes in the laser-cut model. These

joint types can also be commonly found in the research community, e.g., finger joints in

Enclosed [149], CutCAD [57], and Fresh Press Modeler [17], slot joints in FlatFitFab [93],

SketchChair [120], and Planar Pieces [122].

Out of these four joint types, we identify finger joints and living hinges as most

suitable for illustrating the concept of StructCodes. Both contain repeating elements, i.e.,

finger joints have individual fingers repeated along the edges of a plate and living hinges are

made up of repeated individual lines. They are both on the outside surface of the object,

i.e., visible to the camera. Living hinges form a well-defined shape that can be tightly

enclosed by a bounding rectangle. While finger joints can also be applied to non-rectangular

parts, they are most common on rectangular shapes (73.1% of the joint projects had joints

on rectangular plates). Both structures offer large encoding capacity; particularly, living

hinges have many line cuts that could be used as bits.

4.2.2 Structural Embedding of Data Bits

As shown in Figure 4-2, the identified structures typically contain material interleaved with

cuts, i.e., gaps. For instance, in finger joints, the fingers are interleaved with cut outs that

match the fingers of the neighboring plate, and in living hinges, the sheet is cut at specific

distances to make the material bendable.

1https://www.instructables.com/
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Figure 4-2: General design of (a) finger joints and (b) living hinges. To embed bits, we
resize both the fingers and gaps in the finger joints, but only the links in the living hinges.

To encode a message, we can either vary the length of the material (fingers of joints or

links of hinges) or the length of the gaps between the fingers or between the links. Below

we outline how we embed the codes for each of the two structural element types.

Finger joints To embed StructCodes into finger joints, we modify both the widths of the

individual fingers and the widths of the gaps between the fingers, as labeled in Figure 4-2a

(i.e., 𝑑1, 𝑑2, 𝑑3, ...). We did not consider modifying the depth of the fingers because the

depth has to be the same as the sheet thickness to ensure properly interlocking plates. To

maintain the structural integrity of the joints, modifications to the widths of the elements

(i.e., fingers or gaps) should be minimized to be as close to the original width as possible

while being distinguishable by the camera and distributing evenly over the plate length (see

Section 4.5.1).

Living hinges There are two ways to embed StructCodes into living hinges, either by

modifying the size of the individual links, the widths of the hinge gaps (i.e., the vertical

cuts between the links), or both as shown in Figure 4-2b. To ensure that the hinge can be

bent into the desired curved configuration after laser cutting, the links have to be vertically

aligned. Therefore, we only modify the lengths of the links. Furthermore, since the links

are typically shorter than the gaps, they are less prone to warping when comparing the

lengths against each other and thus more suitable for our purposes. This is because the

links are situated in a smaller local region, which allows the projection to the image plane

to maintain the ratio of distances [89]. To ensure the structural integrity, we chose lengths

that are as close to the original as possible while being distinguishable by the camera (see

Section 4.5.2).
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4.2.3 Encoding Scheme

StructCode employs a base 3 (ternary) encoding scheme2, i.e., it uses the bits 0, 1, and 2.

This is represented in the physical code as a narrower element ("0"), a medium element

("1"), and a wider element ("2"). Four elements, i.e., four bits, represent one character.

The different combinations of element widths that make up the four bits can generate up

to 81 different variations, which allows to embed 81 different character types, including 62

alphanumeric characters and 18 special characters for strings that can include URLs. The

remaining bit combination is used as the start/end sequence, which is asymmetric ("0120").

This allows us to identify where the code starts and thus helps to find the location in the

captured image where we need to begin decoding. In addition, since the start/end sequence

contains the 0, 1, and 2 bits, it makes it easier for us to detect the widths of the narrow,

medium, and wide elements. We chose the base 3 encoding scheme rather than a base 2

scheme (only 0 and 1, such as in conventional barcodes) as it allows us to increase the

amount of information we can embed in the same number of elements. We did not go up to

base 4 or higher in order not to sacrifice subtlety (Section 4.8). If a bit string is relatively

short and the plate or hinge has a large area, our tool automatically repeats the string

throughout the structure to achieve a more even look.

Finger joints The bit sequence is encoded in a circular fashion beginning at one of the

four corners of a rectangular plate so that it covers its whole perimeter. When investigating

the average number of joints used in rectangular plates on Instructables, we found that

the ones that have joints on all four sides had on average a total of 50.3 fingers and gaps

(std=33.6). By varying both the finger and the gap, this allows us to embed 7 characters

with a base 2 scheme, or 12 characters with a base 3 scheme, a capacity sufficient to store

longer URLs using shortened URLs (similar to regular QR codes). For instance, t.ly/aNPf

with 9 characters is the shorted version of a 39-character kyub link to a 3D model.

Living hinges A row of columns is encoded from left to right, and an individual column

goes top to bottom. As an example, in Figure 4-2b, the first column is read from top to

bottom (𝑑1,1, 𝑑1,2, 𝑑1,3), and then the second column is read (𝑑2,1, 𝑑2,2, ...). We found

that the average number of links in two-dimensional hinges from the Instructables dataset
2In ternary logic, the digits are called trits (trinary digit). However, for familiarity, we use the term bits

in this chapter although it is normally used for the binary system.
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is 85.7 (std=43.1), excluding the hinges that are completely circular and thus would not fit

in a single camera frame. This allows for a data capacity of 21 characters using our base 3

scheme. Thus, we conclude that compared to finger joints, living hinges usually fit longer

StructCodes because they have more repeating elements.

4.3 End-to-End Workflow

We next describe how a user can embed StructCodes into their laser cut object. Our workflow

is designed to work with laser-cut objects made in the 3D editor kyub [9] or 2D models (.svg)

from other sources imported into kyub using assembler3 [113]. Users import the project from

kyub as a 2D file into our Web-based tool to embed StructCodes in it. After fabricating the

object in the laser cutter, the user can detect the code using our mobile application.

4.3.1 User Interface for Embedding StructCodes

Once the user has imported their kyub object into our tool, they click on the Identify

compatible structures button in the tool (Figure 6-3), which marks the jointed plates and

hinges that allow embedding codes. In our walkthrough, the user is making a box and the

StructCode tool shows that the two rectangular plates of the box and the one with the living

hinge can be used to embed a code. It also reminds the designer to choose a structure that

is facing towards the user when they take a photo of it. Since the hinge pattern on the top

part of the object is most visible, the designer chooses it for the StructCode.

Figure 4-3: Workflow for encoding and decoding information. (a) After the tool highlights
the compatible structures, the user selects the hinge and encodes "Red Oak". (b) They use
the StructCode mobile application to decode the message.

Once we select one of the structures, the tool shows how many characters can be embed-

ded in it based on its number of joints or lines in the hinge pattern, e.g., that the selected
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hinge can embed up to 15 characters in it. In this example, we want to embed a StructCode

that can later help us identify which material the object was laser cut from, i.e., red oak

plywood. We type in "Red Oak" which is within our character limit (Figure 6-3a) and as a

result, the tool modifies the hinge cuts. After embedding this code, users have the option to

also add more codes into the other structural elements of the object. In our case, we do not

need to embed additional messages, so we leave all other structural elements as they are.

Finally, the user exports the laser-cut design with the embedded StructCodes as an SVG

file and send it to the laser cutter’s software. After fabrication, the user assembles the parts

using the instructions generated by kyub. Our tool preserves the plate numbers from kyub

to facilitate the assembly process.

4.3.2 Mobile Interface for Reading StructCodes

The StructCode mobile application is used for decoding data embedded in objects. To do so,

the user points their phone at the structure as shown in Figure 6-3b. The mobile application

automatically starts capturing images and processes them to decode the message. After

enough images are taken to ensure correct decoding, the app displays the encoded message,

i.e., in our case "Red Oak". The decoded information can be used to augment various mobile

experiences, which are illustrated in Section 4.4.

4.4 Applications

We demonstrate how StructCodes enriches object interactions with data, including iden-

tifiers for labels, object context, such as instructions, as well as overlaid media, such as

narration.

4.4.1 Embedding Identifiers for Static or Dynamic Labels

Users can add identifiers to objects which allow static or dynamic labels for the specific use

cases of the objects.

Static labels As shown in Figure 4-4a, a set of office folders contain various personal

documents (e.g., personal finances or visa documentation) that the owner would rather not

have visibly shown. The user embeds a StructCode into the finger joints of the folder’s front
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Figure 4-4: (a) Document folders with encoded personal labels, which the user views in AR
to retrieve the right one. (b, c) Status updates inform the user about when the plant needs
watering.

plates. Thus, the information is only visible to the user in AR and otherwise the folder looks

unlabeled. For the most sensitive tags, the mapping of code to label can be encrypted and

available to that user only.

Dynamic labels The embedded identifiers can be also used for dynamic labels, i.e., status

updates. In the example shown in Figure 4-4b, the designer is creating a plant pot that

lets the user pull up an online dashboard to keep track of the plant’s health (i.e., watering,

trimming the branches, fertilizing). The pot has an identifier embedded into its living hinges

as StructCodes. When the designer leaves for vacation, they ask their friends to take care of

the plants. StructCode allows the friend to identify the plant and retrieve its recent status,

e.g., that it needs to be watered today.

4.4.2 Embedding Context: Resources and Instructions

StructCodes allow embedding references to the object’s context, such as accessing the digital

model, on-demand renewal, and (dis)-assembly instructions.

Accessing the digital model As shown in Figure 4-5a, the laser-cut chair contains a

shortened link to its kyub page. Users who see the chair and like the design can scan the

StructCode to download its files online and make a copy for themselves.

On-demand renewal As shown in Figure 4-5b, the user reorders cookies by simply cap-

turing its container, which has the reorder link encoded as a StructCode. This allows users

to access and renew supplies whenever needed.
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Figure 4-5: Providing context. (a) The user can access the fabrication files of the furniture.
(b) Running low on cookies, the user adds a new batch to the online shopping cart through
the embedded reorder link.

Assembly / disassembly instructions Furniture manufacturers such as IKEA provide

not only the assembly instructions for their products, but also the disassembly instructions to

improve recycling for better sustainability [3]. However, users frequently misplace instruction

manuals over time. Similarly, for fabricated objects, users may struggle to locate the related

instructions that originally came with the digital file. As shown in Figure 4-6, the owner

retrieves the disassembly manual through the StructCode when they need to discard of the

piece, or transport and reconstruct it elsewhere.

Figure 4-6: Disassembly instructions are linked to the shelf in case the user needs to take it
apart for recycling or transport.

While we showed the use case of StructCodes for linking disassembly instructions, our

method can also be integrated into existing systems for helping users with the assembly of

laser-cut objects [2, 101]. For instance, the part numbers could be embedded into individual

plates so that our app guides the user to pick the right one in each step.
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4.4.3 Embedding Overlaid Media

StructCodes enable users to overlay objects with related media such as narrative videos or

illustrations using AR.

Narrative media As shown in Figure 4-7a, StructCode links a video of the original artist

narrating their artwork. Using StructCode, students quickly set up a temporary gallery by

laser cutting wooden frames for their own works. Visitors can use their phones to view the

art in AR, which overlays the video on the related artwork. The app can tailor the content

and duration to the individual viewer’s level of interest.

Figure 4-7: Overlaying media. (a) In an exhibit, visitors use an AR app to view narrative
videos by the artists. (b) The crocodile has StructCodes that describe what part they are
located on, which is used for educational applications.

Illustrative sublabels Individual parts of an object can have different functions. Struct-

Codes are used to associate relevant information with each part using illustrative sublabels.

One example of this is the educational toy model shown in Figure 4-7b that has different

sublabels embedded into different limbs of the crocodile. Thus, users access educational

materials for each limb. This allows teachers to interactively introduce new concepts in

classrooms. For such use cases, we expect that users are made aware of the existence of

StructCodes through the toy description or manual.

4.5 Detection of StructCodes

The image processing pipeline of StructCodes is implemented using OpenCV [15]. As shown

in Figure 7-6, StructCodes are detected by locating the structure of interest, detecting the

modifications in it to extract the bits, and finally decoding the message.

This section describes the decoding pipeline for finger joints and living hinges, which

use slightly different image processing techniques. If the user selects what type of feature
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Figure 4-8: Image processing steps for (a) finger joints and (b) living hinges.

to decode when launching the application, StructCodes can run the corresponding pipeline

directly on the phone’s processor. However, running both pipelines at the same time re-

quires higher processing power and is thus recommended to run on a server, which in our

applications takes less than a second. We implemented both standalone phone detection for

simpler applications and the server-based approach for other use cases for which joints and

hinges are expected to be identified at the same time.

4.5.1 Detection of Finger Joints

We explain the steps to read the code from the raw image of the finger joints as shown in

Figure 7-6a.

Isolate the plate of interest StructCode’s finger joint detection pipeline starts by group-

ing the pixels using k-means based on each pixel’s HSV values. This creates multiple black

and white masks such that a plate of interest is white in at least one of the masks. It

runs this process for k=3, 6, 10. It creates a different mask for each k, k (i.e., a total of

3+6+10 masks). The algorithm then applies a morphological opening on each mask to dis-

connect the plates from the background. It takes the larger rectangles found over all masks

(with a padding of 25% to account for any error margin) and applies a 4-point perspective

transformation to isolate the plate.

Correct for perspective The next step in the pipeline applies Gaussian blur to reduce

noise and use Otsu’s thresholding to turn the gaps between fingers into contours. For each
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edge of a plate, it samples points on the gaps’ contours, and draws a line of best fit through

the points closest to the center, rather than using the details closer to the sides. This allows

the the algorithm to segment the interior plate even if the background has a similar color.

It uses these four fitted lines to find the bounding quadrilateral for the plate interior. It

then applies another perspective warp that maps the four corners of the quadrilateral to an

axis-aligned rectangle. And finally, it slightly extends the bounding rectangle to include the

fingers but exclude the background.

Decode the message The gaps of interest are the white rectangles in the final image, and

the width of the fingers can be calculated by the distance between consecutive gaps along

each edge. The pipeline then runs k-means with k=3 to classify the gap and finger lengths

as 0, 1, or 2 bits. It converts the entire ternary string into characters by grouping bits into

blocks of 4. To identify the correct reading direction irrespective of the plate orientation,

the start/end sequence, which has an asymmetric order (i.e., "0120", see Section 4.2) is

detected from one of the corners and used as an anchor.

4.5.2 Detection of Living Hinges

We next explain the pipeline to detect living hinges, as demonstrated in Figure 7-6b.

Identify individual hinge gaps The first step of the pipeline uses adaptive thresholding

to turn the image into black and white. A morphological opening and closing are applied

to eliminate small isolated patches of black pixel noise. Because the living hinge consists of

many thin and long gaps (i.e., the cuts between links) that are parallel and close together,

the algorithm first searches for thin rectangles. It measures each contour’s similarity to a

rectangle by comparing its enclosed area to the minimum-area rectangle that contains it.

Group gaps to isolate the hinge The next step groups rectangles based on proximity, as

living hinges consist of many parallel nearby gaps with similar dimensions and orientation.

For this, it creates a graph with edges between similar rectangles and find the bounding

boxes around the largest connected components. For each bounding box, it applies a 4-

point perspective transform and crop out the rest so that the hinge is axis-aligned and takes

up the whole image.
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Sort the gaps This step removes noise due to the side joints via morphological opening,

resizes the image to thicken the rectangular gaps, and iterates through the gaps to assign

them to rows and columns by their coordinates.

Decode the message Since every row of gaps is determined, the final step calculates the

position and lengths of the links (i.e., the bits) by measuring the distances between the gaps

within each row. It scans the links from top to bottom, where it groups each link together

with the previous link that has approximately equal x-coordinate. StructCode runs k-means

with k=3 to classify each link length as a 0, 1, or 2 bit. The entire ternary string is then

converted into characters by grouping bits into blocks of 4. The correct reading direction is

determined by identifying the start/end sequence “0120”.

4.5.3 Evaluation of the Detection Pipelines

We evaluated what the smallest detectable length difference ∆𝑑 is between individual bit

categories (0, 1, or 2) when processing the camera images with our detection pipeline. If

0 is represented by distance 𝑑, then 1 is represented by 𝑑 + ∆𝑑, and 2 is represented by

𝑑+ 2∆𝑑. Our goal is to only use the smallest possible length difference ∆𝑑 to maintain the

mechanical integrity of the object.

The smallest possible length difference ∆𝑑 is related to the length of the captured joint

plate 𝑤𝑝𝑙𝑎𝑡𝑒 and the camera distance since larger plates require the the camera to be held

further to capture all features (joints or hinge links), which results in them appearing smaller

in the image. Further, in certain applications, the user may want to identify more than one

object at the same time and hold the phone further away, thus differences may become even

subtler. We formalize this relationship as ∆𝑑𝑚𝑖𝑛 =
𝑤𝑝𝑙𝑎𝑡𝑒

𝛼 , where 𝛼 is the camera distance

scaling factor and 𝑤𝑝𝑙𝑎𝑡𝑒 is the longest plate dimension or the longest dimension in the

bounding box around living hinge regions.

To obtain a conservative bound for 𝛼, we conduct the following test in our workshop (80-

150 lux), which is in line with regular indoor lighting conditions [98]. We first cut multiple

joint plates of a fixed size (15cm x 10cm, from the folder application in Section 4.4.1) with

6 different 𝛼 values with increments of 5 (from 𝛼 = 75 to 𝛼 = 100), which corresponds to a

range of 1.5-2mm for ∆𝑑. Next, we captured the plate with a phone (12.2MP on Pixel 2 )

and downscaled the images to 2048x1536 for fast processing. To ensure that at least two
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objects can be identified from a single image as shown in the use cases, we held the camera

far enough (45cm) so that at least three plates can fit into the frame.

We then ran our image processing pipeline on the resulting images and found that it was

able to distinguish between bits with 𝛼 <= 80. Thus, with the given 𝛼, a 15x10 cm plate

requires a difference ∆𝑑 = 1.88 mm, allowing up to 26 fingers, which can store up to 14

characters. By contrast, a larger plate of 20x20 cm (60 fingers) can store up to 31 characters

but requires a larger difference ∆𝑑 = 2.5 mm since the camera has to be held further away.

We repeated this experiment for living hinges. We first cut multiple copies of a hinge

(5cm x 3.7cm, the model from Section 6.3.1), with 6 different 𝛼 values with increments

of 5 (from 𝛼 = 25 to 𝛼 = 50), which corresponds to a range of 1-2mm for ∆𝑑. We held

the camera at a distance far enough (20.7cm) so that at least three of these hinges can be

detected from the captured shot.

The processing pipeline managed to distinguish between bits with 𝛼 <= 45. Thus, with

the given 𝛼, a hinge of a size of 5 cm x 3.7 cm requires a difference ∆𝑑 = 1.11 mm, resulting

in 72 hinge cuts in the area, which can store up to 9 characters. In contrast, a larger hinge

of 10 cm x 7.4 cm (193 cuts) can store up to 36 characters but requires a larger difference

∆𝑑 = 2.22 mm since the camera has to be held further away.

Evaluation of the viewing angle Using the above results, we evaluated the maximum

camera capture angle at which the message can still be decoded relative to the plate normal.

To do this, we fixed the model with finger joints on a surface and rotated the camera

around the plate of interest until the code is no longer detectable, while keeping track of

the angle using a protractor attached onto the surface. We did this for three different codes

(Figure 4-4) and three different backgrounds (black, white, wood). The maximum viewing

angle was 25.28∘ (std=2.81) across the nine resulting conditions. When repeated with the

living hinge samples, we found that the maximum angle was 37.19∘ (std=4.52) around the

axis perpendicular to the hinge gaps (y-axis in Figure 7-6b), and 19.08∘ (std=2.95) around

the axis along the gaps (x-axis) across the nine conditions. The reason the second value is

smaller is that due to the curvature, the outermost gaps become more easily occluded with

deviations away from the center.
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Evaluation of hinge curvature For reliable detection, we need to ensure that different

bits can be correctly distinguished even though their lengths may be distorted as a result

of hinge curvature. For instance, the more curved an (outward) hinge is, the more likely

it is that a 0 bit at the center of the hinge appears longer than a 0 bit at the edge of

the hinge. Figure 4-9a shows an exaggerated case of this where the camera is very close

the the hinge (4cm). As length is the differentiating factor between bits, this distortion

creates a risk of incorrect detection (i.e., mistaking a 0 bit for a 1 bit as a result of length

distortion). Based on the pinhole camera model [132], we formalize the condition to avoid

this risk using the expression ∆𝑑 > 𝑑
[︁

𝑑𝑖𝑠𝑡𝑒𝑑𝑔𝑒
𝑑𝑖𝑠𝑡𝑐𝑒𝑛𝑡𝑒𝑟

− 1
]︁
, where 𝑑𝑖𝑠𝑡𝑐𝑒𝑛𝑡𝑒𝑟 is the camera distance

from the bit at the center and 𝑑𝑖𝑠𝑡𝑒𝑑𝑔𝑒 is the camera distance from the bit at the edge. The

difference between these distance values is proportional to the curvature. However, since the

camera is sufficiently far from the object, we have 𝑑𝑖𝑠𝑡𝑐𝑒𝑛𝑡𝑒𝑟 ≈ 𝑑𝑖𝑠𝑡𝑒𝑑𝑔𝑒. Thus, in practice

the right-hand term is smaller than the ∆𝑑 values used.

Figure 4-9: Curvature of living hinges. (a) As bit lengths may be distorted due to curvature,
StructCode encodes them with sufficient tolerance to ensure correct detection. (b) Struct-
Codes can be encoded on various shapes, e.g., conical hinges.

For instance, for the typical viewing distance of the model evaluated in Section 4.5.3, we

need ∆𝑑 > 2.1𝑚𝑚
[︀
21.3𝑐𝑚
20.7𝑐𝑚 − 1

]︀
≈ 0.06𝑚𝑚, which is satisfied since the ∆𝑑 used is 1.11 mm.

This gives enough legroom to ensure correct detection in various conditions, such as different

angles as mentioned in the earlier section. Another example is conical hinges (Figure 4-9b),

here the lines on which the hinge cuts lie have different angles. The legroom allows the

detection of the correct measurements, however, the maximum viewing angles reported in

Section 4.5.3 are reduced by the angle difference between �⃗�𝑐𝑒𝑛𝑡𝑒𝑟 and �⃗�𝑒𝑑𝑔𝑒 on which the

central and the edge cuts lie.
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4.6 Mechanical Evaluation

When embedding StructCodes, the individual elements of mechanical structures are slightly

modified, i.e., the width of the finger joints and the distance between the living hinge cuts

are adjusted by multiples of ∆𝑑. To evaluate how much this change affects the mechanical

integrity, we conducted several tests with modified finger joints and living hinges.

4.6.1 Compression Evaluation of Finger Joints

To compare how the addition of StructCodes affects sturdiness, we compared the ultimate

compressive strength of box structures before and after embedding the code (i.e., unmodified

vs. modified).

Experiment setup We evaluated two different box sizes because each size results in a

different resizing difference ∆𝑑 based on the camera scaling factor 𝛼 = 80 for finger joints

as explained in Section 4.5.3. The smaller box, which can carry up to 5 characters, had a

plate size of 5cm x 5cm and required a ∆𝑑 of 0.625mm. The larger box, which can carry

up to 10 characters, had a plate size of 12cm x 12cm and required a ∆𝑑 of 1.5mm. The

dimensions for the large box were chosen since they represent the largest size that can fit

into the measurement machine. We laser cut 4 unmodified and 4 modified boxes of each

box size (total of 16 boxes) from 3mm birch plywood sheets. The messages embedded in

the modified boxes were produced using a random string generator. Similar to the technical

evaluation for kyub [9], we used a common low-cost material to obtain a conservative lower

bound for the sturdiness of the tested objects. All boxes were held together solely press

fitting their joints together, i.e., without glue.

Figure 4-10: Mechanical evaluation of StructCodes: (a) Compressive strength of finger joints
and (b) bending of hinges.
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Experiment procedure We used an Instron universal testing machine (UTM) as shown

in Figure 4-10a. We placed the modified boxes such that the side with the StructCode

faced upward. The Instron increased the compression force on the box and we measured the

ultimate compression strength to the point where the box failed under crush loading. The

ultimate compression strength represents the maximum stress the structure can sustain.

Results We found that the width modification of joints required to embed StructCodes

did not strongly affect the sturdiness when compared to the values reported in previous

literature. In their tests with kyub objects, Baudisch et al. [9] have reported that (unmod-

ified) objects were still intact when they exceeded the 500kg (4,903 N) value range of their

measuring device. We were able to confirm this as shown in Table 4.1. Both unmodified

and modified objects go well beyond the reported 4,903 N value. Even though the peak

load the box can handle decreased on average by 14.5% for the 5cm box and increased on

average by 0.16% for the 12cm box after modifying the joints, the force that each of these

boxes can withstand is still larger than what is required of most objects used in daily life.

The high standard deviation, specifically for the large boxes, is likely due to the fact that

there is a large variation in the composition of plywood sheets even though they all came

from the same batch.

Unmodified
Modified with
StructCode

Relative change

5 cm 15,939.7 N
(std=621)

13,630.6 N
(std=641)

Decrease by 14.5%

12 cm 12,578.6 N
(std=2,020)

12,599.3 N
(std=1,760)

Increase by 0.16%

Table 4.1: Average peak load comparison of the finger joints.

4.6.2 Bending Evaluation of Living Hinges

To evaluate if the introduction of StructCodes into living hinges changes their flexibility, we

measured up to what angle the living hinge can bend before fracturing and compared the

results for both modified and unmodified living hinges.

Experiment setup Similar to the setup from Section 4.6.1, we created 4 pairs of hinges

based on the camera scaling factor for living hinges 𝛼 = 45, which was explained in Sec-
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tion 4.5.3. We repeated this for hinges of two sizes: a smaller one that can carry 10 characters

(4.7cm x 3.64cm, ∆𝑑 = 1.04mm) and a larger one that can carry 50 characters (12.2cm x

9.6cm, ∆𝑑 = 2.71mm). We laser cut the 4 unmodified and 4 modified hinges of each size (16

hinges in total) from 3mm birch plywood sheets. The messages embedded in the modified

ones were produced using a random string generator. While different hinge designs may

exhibit different flexibility [39], we use the default pattern generated by kyub as this is the

tool we used for fabricating our application samples.

Experiment procedure To evaluate the bending angle, we bent the living hinge pattern

either up to 180∘ (maximum) or up to the point where it started cracking, and then read

the corresponding maximum angle from a protractor as shown in Figure 4-10b.

Results For the larger hinge, we found that both the unmodified and modified hinge were

able to bend to 180∘ (Table 4.2). Thus, the change did not impact the performance. This

is likely because the cut distance is not a main factor impacting the maximum hinge bend

angle, which is rather directly linked to the the sheet thickness and the number of links

in series [39]. For the smaller hinge, the unmodified hinge was also able to bend to the

maximum of 180∘, whereas the modified hinge was still able to bend to 175∘ (i.e., a decrease

only 2.8% after the insertion of the code). We believe this should not affect the use of hinges

as they are typically bent to 90∘ for most objects (see Section 4.8).

Unmodified
Modified with
StructCode

Relative change

smaller 180∘ 175∘ (std=5) Decrease by 2.8%
larger 180∘ 180∘ No change

Table 4.2: Average bend angle of the living hinges.

The above evaluation demonstrated that the addition of StructCodes preserves the large

compression strength of laser-cut objects held together with joints and curvatures achieved

via hinges. However, more longitudinal tests might be needed to further examine the joints’

usage in diverse applications where, for instance, the effect of shearing (i.e., when the di-

rection of the force is parallel to the plane of the object) is more important than the effect

of compression. Similarly, while the hinge applications presented were for static objects,

further analysis could be conducted to determine the long-term impact of repeated bending

on hinges with StructCodes.
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4.7 Software Implementation

Our software tool for embedding StructCodes is Web-based and uses JavaScript as well as

the Paper.js canvas library.

Extracting laser-cut plates from SVG To extract the laser-cut structures from the

user’s kyub design file (.svg), our software first parses through its layers that contain the

individual path segments of the drawing. For each plate, our tool utilizes the annotations

in the kyub file to create a data structure instance that contains the ID of the plate and the

IDs of interlocking plates on the plate’s sides.

Identifying structures in each plate Once the plates are extracted from the SVG file,

the software interface identifies the finger joints and living hinges in each plate using our

algorithm and adds the line segments that represent them to the data structure. To identify

joints, it detects parallel line segments whose endpoints match in either the x- or y-axis and

stores these segments in an array inside the data structure. To identify hinges, it detects

groups of adjacent parallel lines with tiny distances between them. For hinges, once the last

line is found, a bounding box is created to encompass all segments within that hinge.

Converting text into bit sequences The user-inputted characters are transformed into

4-bit, base 3 sequences to form a bit string according to a pre-defined dictionary.

Modifying structures to embed bits The fingers joints and living hinges are then

manipulated to encode the computed bit sequence in the following manner:

For finger joints, we first compute ∆𝑑𝑚𝑖𝑛 based on the formula described in Section 4.5.3

(∆𝑑𝑚𝑖𝑛 =
𝑤𝑝𝑙𝑎𝑡𝑒

𝛼 ) for the selected plate. While modifying the fingers and gaps of the joints,

we readjust their widths to ensure that the joints cover the whole side of the plate based on

the computed ∆𝑑𝑚𝑖𝑛 value as well as the number of 0s, 1s, and 2s needed for the specific

message. We modify the widths by shifting each parallel line from the line before it by

the required calculated difference, and this shifting continues along each of the sides in a

counter-clockwise manner until complete. When a side is done, the neighboring plate and

its side are also shifted with the corresponding bit subarray to ensure interlocking.

For living hinges, we similarly first compute ∆𝑑𝑚𝑖𝑛 based on the formula described in
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Section 4.5.3 (∆𝑑𝑚𝑖𝑛 =
𝑤ℎ𝑖𝑛𝑔𝑒

𝛼 ) for the hinge selected by the user, and use this value to find

the lengths corresponding to the different bits. These length values are used to modify the

endpoints of the two adjacent line segments that represent a gap between hinge cuts.

4.8 Discussion

In the next section, we discuss insights gained from our work, acknowledge its limitations,

and propose future research.

Aesthetics vs. code capacity Even though varying structural elements keeps the sur-

face and the main geometry of the object intact, the varying patterns may come across as

unfamiliar or less smooth to users that are used to the standard joint or hinge patterns.

Thus, similar to FoolProofJoint [101], which varies the joints to facilitate assembly, the use

of StructCodes comes at an aesthetic cost based on the user’s familiarity and experience

with these patterns. StructCode aims to minimize this by choosing ∆𝑑 values as small as

possible while also ensuring machine-readability. Future work can explore how to optimize

the look of joints for being completely unnoticeable to humans by aiming to go under the

Just Noticeable Difference, i.e., the minimum level a stimulus that needs to be changed for

humans to perceive it [56]. Psychologists show this difference is proportional to the original

length [14]. Therefore, distinguishing between two rectangles (e.g., joints) with different

lengths is more difficult when their average length increases while the difference between

them is kept constant [144].

The current version of StructCode uses a base 3 encoding scheme, which allows us to

embed a variety of characters sufficient to represent, e.g., a URL. Other numeral systems

(e.g., base 5) can embed more characters with fewer bits, but they require more variation

in the joint lengths. Thus, the difference between individual joints may be more visible and

have a stronger impact on the object integrity and look. A future version of StructCode

can offer multiple encoding schemes and allow users to decide on the best trade-off between

data capacity, subtlety, and mechanical performance.

Error correction Error correction codes (ECCs) such as Reed-Solomon [107] or Hamming

code [51] could be added to StructCodes to further increase detection robustness. By adding

redundancy, these may help detect and correct errors that may occur in particularly noisy
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or blurry images. However, this comes at the expense of reduced code capacity.

The effect of post-hoc polishing After laser cutting an object, some users prefer

smoothing the finger joints depending on intended use and time availability. However,

sanding finger joints may impact the size of the detected joints. We evaluated how much

sanding our image processing pipeline can endure for different wood materials, i.e., birch

plywood, walnut, and medium-density fiberboard (MDF). We cut the same sample with

these materials and sanded them with sandpaper of grit sizes 1000, 600, 220, and 110 (fine

to coarse), 30 passes for each. We could decode each sample before sanding. For birch ply-

wood and walnut, we found that sanding with grit size 1000 and 600 preserved decodability.

For MDF, only grit size 1000 preserved decodability. This is likely because plywood sheets

consist of multiple stacks of veneers, one of which naturally has a darker color that remains

intact even after sanding. In the future, our detection algorithm could be further optimized

to increase recognition under tougher conditions by enhancing contrast using methods such

as CLAHE [156]. Future research may also consider using specialized cameras [29] for cases

where fabrication artifacts like joints are intentionally occluded by the designer.

Extending StructCode to other types of shapes and objects Our initial survey

showed that finger joints and living hinges are most suitable for StructCodes. We therefore

optimized our image processing pipeline to detect these structures. However, the StructCode

concept is not limited to these. We plan to embed codes into more freeform shapes in the

future, such as joints placed along circular plates. Future work can investigate ways to embed

StructCodes into joints used in other fabrication processes, e.g., stitching in Joinery [161],

3D printing textiles in DefeXtiles [40] or joints in Hybrid Carpentry [88], and machining

traditional or modern woodworking joints in Tsugite [76], JigFab [79] and MatchSticks [140].

4.9 Conclusion

In this chapter, we presented StructCode, a technique to embed data into laser-cut fab-

rication artifacts. By modifying the patterns of laser-cut joints while maintaining their

functionality, StructCode enables the embedding of data that can be decoded using a mo-

bile phone camera. We explained the encoding scheme used to embed data into finger joints

and living hinges. We then presented a software tool for embedding codes into existing 3D
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models, and a mobile application to decode them. Our applications illustrated how fab-

rication artifacts can be leveraged to augment laser-cut objects with data such as labels,

instructions, and narration. We explained our image processing pipeline which extracts the

data from camera images. Finally, we evaluated the mechanical integrity of the fabricated

objects to ensure that they are stable after StructCodes are embedded, and discussed how

StructCodes can be further developed to make them fully inconspicuous to humans and

more robust using error correction codes.

This work aims to bring us one step closer to the vision of embedding data for augmented

objects as an inherent part of the fabrication process [21].
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Chapter 5

G-ID: Identifying 3D Prints Using

Slicing Parameters

5.1 Introduction

As identified in the earlier chapters, a key challenge when using machine-readable tags is how

to make them unobtrusive. For this purpose, researchers have investigated methods to leave

the surface intact and instead change the inside geometry of a model. InfraStructs [153], for

instance, scans the object’s interior with a terahertz scanner, while AirCode [80] requires a

projector and camera setup to detect internal air pockets using subsurface scattering. Even

though these approaches leave the object’s surface intact, both need large equipment, which

prevents these solutions from being used in everyday scenarios.

To be able to use regular scanning equipment, such as a mobile phone camera, researchers

proposed to analyze small imprecisions on the object’s surface that are created during the

fabrication process. Those imprecisions are unobtrusive yet machine readable and can there-

fore be used as tags. Such imperfections make it possible to identify which fused deposition

modeling (FDM) printer was used to create an object [81].

In this work, we propose a different approach to identification. When a 3D model is

prepared for 3D printing, it first undergoes slicing, a computational process which converts

a 3D model into layers and their corresponding print path (a G-code file), which the extruder

then follows to create the 3D object. The parameters for the slicing process can be modified

for each individual instance, which allows G-ID to create unique textures on the surface of
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Figure 5-1: Different ways to embed tags into 3D models while leaving the surface intact:
(a) changing the internal geometry (InfraStructs), (b) varying slicing parameters (G-ID),
(c) relying on fabrication imprecisions (PrinTracker).

objects that can be detected with a commodity camera, such as those available on a mobile

phone. Since our approach allows us to be in control over which printed instance has been

modified with which slicer settings, we can identify each instance and retrieve associated

labels previously assigned by a user. We note that this chapter was originally published at

ACM CHI 2020 [25].

The contributions of G-ID can be summarized as follows:

• A method to utilize the subtle patterns left as an inevitable byproduct of the conventional

3D printing process to identify objects without the need to embed an additional tag.

• A tool for users who want to create multiple instances of an object but intend to give

each one a unique identifier.

• A mobile app that helps users take pictures of objects to be identified, as well as a

stationary setup to detect finer variations in slicing parameters using image processing.

• An evaluation of the space of slicing parameters that can be varied to generate unique

instances of a 3D model and the corresponding detection accuracy under different envi-

ronmental and hardware-related conditions.

We demonstrate these contributions with a diverse set of interactive applications.

5.2 Method: Labeling and Identifying Objects By Their Slic-

ing Parameters

The main contribution of G-ID is a framework to label and identify 3D printed objects by

their distinct slicer settings.

G-ID labels 3D printed objects by intentionally varying the slicing settings of an un-
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Figure 5-2: 3D printed objects inherently possess surface patterns due to the angle of the
print path and the thickness of the trace the 3D printer lays down. G-ID exploits such
features to identify unique instances of an object without the need to embed an obtrusive,
additional tag. G-ID provides (a) a user interface for slicing individual instances of the same
object with different settings and assigning labels to them. After (b) 3D printing, users can
(c) identify each instance using the G-ID mobile app that uses image processing techniques
to detect the slicing parameters and retrieve the associated labels.

modified 3D model which determine the path the extruder will follow. This allows G-ID

to produce multiple instances that all have a unique artifact, e.g., the small grooves on the

surfaces of the object that can be shaped differently when the print path is laid down.

G-ID then identifies the 3D printed object by such textures, i.e. after users take a

picture of the object with a commodity camera, G-ID applies image processing techniques

to first extract and then correlate the features with their initial slicing settings to retrieve

the identifying label.

5.2.1 Main Benefits of Using Different Slicing Parameters

Slicing parameters reveal themselves on any printed object as a fabrication byproduct that

is normally ignored. One may make use of these inevitable textures that come for free due

to 3D printing. G-ID combines a wide range of slicing parameters to create a sufficiently

large parameter space. For each slicing parameter for surface and infill, there is a variety

of values available (see section “Spacing of Slicing Parameters”). The use of so many values

is enabled by G-ID’s recognition algorithm, which uses a Fourier-based method for precise

measurements. Detecting these values precisely in turn enables new applications such as

“Finding optimal print settings” (see “Application Scenarios”).

5.2.2 G-ID Workflow for an Identification Application

In the following section, we describe how we use (1) the G-ID labeling interface to assign

each instance of a 3D printed object a unique tag prior to 3D printing, and how we use (2)
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Figure 5-3: G-ID labeling interface: load a 3D model and enter number of unique instances
needed.

the G-ID identification app that runs on a mobile device to detect each object’s tag after

3D printing.

We explain the workflow of G-ID using an application scenario, in which we will create

a set of forty key covers—each with an unobtrusive feature that identifies its owner. We use

these key covers in our research lab: At the end of the semester when members depart, we

often forget to write down who has returned their keys. Using G-ID, we can quickly identify

whom the previously returned keys used to belong to and then send a reminder to those

who have outstanding keys.

5.2.3 Labeling Interface (Slicer)

To assign each key cover a unique tag, we open G-ID’s labeling interface (Figure 5-3) on our

computer and load the 3D model of the key cover by dragging it onto the canvas. Since we

want to create 40 key covers, we enter 40 instances into the left-hand panel of the interface.

#1 Generate Instances: We select “Mobile phone” as the desired detection setup. Next,

we click the “Generate previews” button, which slices each instance of the key cover with

a unique set of slicing settings. In this case, since we only request 40 instances, G-ID only

varies the slicing parameters initial bottom line angle and initial bottom line width (more

on this in section “Slicing parameters used for labeling”). After slicing is completed, G-ID

previews each instance as shown in Figure 5-2a.

#2 Enter Labels: We can now enter a label in the form of a text, an image, or a URL

next to the preview of each instance. Since we want to give each key cover the name of one
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Figure 5-4: G-ID mobile app for identifying instances: (a) select model from library, (b)
face the object, (c) once outlines are aligned, the app automatically takes the image.

of our lab members, we enter one name per instance. We can update these labels later any

time, for instance, when a new team member joins our lab and we need to reassign the key.

#3 3D Printing: Upon clicking the “Export” button, each instance’s G-code file is saved,

as well as a digital file (XML) that stores the object information and the entered label

corresponding to each instance. We can now send the G-code files to our FDM printer

to obtain the printed instances. We also transfer the digital file that stores the object

information to our smartphone to be used later for identification.

5.2.4 Identification Interface (Mobile App with Object Alignment)

At the end of the semester when we update our key inventory, we use the G-ID mobile app

on our phone to identify which of the returned keys belonged to whom. After launching the

app, we first select the model we would like to scan, i.e., the key cover, from our object library

(Figure 5-4a). The app then helps us to align the camera image with the object by showing

an outline of the object on the screen, similar to how check cashing or document scanning

apps work (Figure 5-4b). When the outlines are aligned in this human-in-the-loop setting,

the app automatically captures and processes the image (Figure 5-4c). It then identifies the

features in the photo associated with the surface-related slicing parameter settings, retrieves

the user-assigned label, and shows it on the screen (Figure 5-2c). We check off the lab

members who returned their keys and send a reminder to everyone else.

5.2.5 Surface and Interior: Detecting Infill Using a Light Source

In the above described scenario, G-ID was able to successfully label each instance using only

slicing parameters that affect the object’s surface, such as the initial bottom line width and

angle because the number of instances was small. However, for scenarios requiring more
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Figure 5-5: By adding a small light source, we can also detect variations in infill, such as
different infill angles, patterns, and densities, which allow for a larger number of instances.
Here, the coffee maker recognizes the mug’s infill and pours the user’s preferred drink.

instances, G-ID can also sense the interior of objects (infill) at the expense of adding a small

light source as described in the next scenario.

For our department’s annual celebration, we are asked to print a set of 300 coffee mugs as

a giveaway. Each coffee mug, when inserted into a smart coffee machine (camera and light

source below the tray table), automatically fills the mug with the user’s preferred drink.

Similar to the previous scenario, we use G-ID’s labeling interface to generate the instances,

but this time G-ID also varies the parameters infill angle, infill pattern, and infill density

once it used up the parameter combinations available for the surface. As users insert their

mug into the smart coffee machine, which has a stationary setup, the integrated light makes

the infill visible due to the translucent nature of regular PLA 3D printing filament (Figure 5-

5). G-ID takes a picture, extracts the infill angle, pattern, and density in addition to the

previously mentioned bottom surface parameters, and after identification, pours the user’s

favorite drink.

5.3 Slicing Parameters Used for Labeling

In the next section, we report on the types of slicing parameters for surface and infill that

can be used for creating unique identifiers.

5.3.1 Surface Parameters

Bottom Surface: Resolution and Angle When the bottom layer is printed by moving the

print head along a path, two parameters influence how the path on this first layer is laid out.
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Initial bottom line width defines the width of a single line on the bottom surface and thus

the resulting resolution. Initial bottom line angle sets the direction when drawing the lines

to construct the surface. Combinations of these two parameters are shown in Figure 5-6.

Figure 5-6: Combinations of different line widths and angles.

Intermediate Layers: Resolution and Angle It is possible to vary the slicing parameters

for the intermediate layers in the same way as for the bottom surface. Layer height when

varied leads to different layer thicknesses across the printed object and thus affects the overall

print resolution. Rotating the 3D model on the build plate leads to different layer angles

across the side surface. Combinations of these two parameters can be seen in Figure 5-7.

Figure 5-7: Different layer angles achieved by rotating the model at the expense of additional
support material and print time (a vs. b), and various print qualities (b vs. c).

However, using the slicing parameters for layers comes at several drawbacks. As can

be seen, changing the layer orientation results in a significant increase in print time due to

the extra support material required. Further, changing the layer resolution can result in

a notable difference in print quality across different instances. We still include it here to

provide a complete overview of all available parameters.

5.3.2 Infill Parameters

Next, we review slicing parameters that change an object’s internal print path.

Infill: Resolution, Angle, and Pattern: Three parameters influence how the infill is laid

out. Infill line distance determines how much the lines of the infill are spaced out and thus

determines the internal resolution. The denser the infill lines, the higher the infill density.
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Figure 5-8: Cross-sections of the mug model show (a) different infill angles and densities,
(b) different infill patterns.

Infill angle rotates the infill lines according to the direction specified in degrees. Different

combinations of these two parameters are shown in Figure 5-8a. Infill pattern allows for

different layouts of the print path (Figure 5-8b), such as grid or triangle shapes.

5.3.3 Selecting Parameters that Minimize Print Time and Material

When the user enters the number of instances, G-ID varies those slicing settings first that

have the least amount of impact on print time and required material. For instance, the

bottom line angle does not add any print time, does not change the resolution, and does

not require additional material, whereas changing the bottom width changes the resolution

slightly. Infill parameters are varied afterwards since they affect most layers of the model,

starting with the infill angle, followed by infill pattern and width.

5.4 Detecting and Identifying Slicing Parameters

To detect these slicing parameters on a 3D print, we apply common image processing tech-

niques. Our pipeline is implemented using OpenCV and uses SimpleElastix, a state-of-the-

art image registration library [25].

5.4.1 Aligning the Object’s Base in Handheld Camera Images

In the first processing step, G-ID needs to further refine the position and orientation of the

object in the photo the user has taken to match the outline of the 3D model that was shown

on the screen. For such alignment, most existing tagging approaches include specific shapes

with the tags. For example, QR codes [17] have three square finder patterns and AirCodes
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Figure 5-9: Image registration & processing pipeline. (a) The captured outline is registered
with that of the 3D model model for (b) improved alignment. (c) Its Fourier transform is
used to infer line angle 𝛿 and width 𝑑. (d) The distance ∆𝑥 between intensity peaks on the
inclined line is inversely proportional to 𝑑.

[22] have four circles that are used to align the image. We did not want to add such markers

and therefore decided to infer the position and orientation of the object based on the contour

of its surface, which G-ID can extract from the 3D model.

Images Used for Alignment : When the user processes the 3D model in the G-ID labeling

interface, it automatically saves the outline of its base in the XML file as a binary image

(stored as a Base64 string). When the user loads the XML file in the app, the object

appears in the user’s model library. After choosing the desired model, the app shows the

user the stored outline to assist them with facing the object from the right angle. The app

automatically captures the image when the contours are matched (i.e., the bitwise XOR

error between the detected contour and target contour is below an acceptable value). G-

ID then applies several pre-processing steps, such as applying a bilateral filter to smooth

different color and shade regions without blurring their boundaries.

Removing Overhangs: In the next processing step, G-ID removes overhangs, i.e., filters

out object geometry that is not part of the bottom surface but appears in the image due to

the camera angle. G-ID filters these parts out based on their shading in the camera image:

Since the bottom surface is flat and located at a different height than an overhang, the two

surfaces have different reflection properties, and thus appear brighter or darker in the image

(Figure 5-9a). To find the shading of the bottom surface, G-ID samples a small region of

interest to extract the HSV values to get the corresponding threshold range. G-ID then uses

the threshold to mask the contour.

Reducing Perspective from the Image (Undistorting): After extracting the contour, G-ID

applies an affine transformation (translation, rotation, scaling, shearing) to compute the

deformation field required for alignment. As input to this image registration, we use the
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masked image from the previous step (converted to a binary outline) as the moving image.

The fixed image is the outline of the 3D model at a constant scale. While a projective

transformation would best rectify the perspective, it can be approximated by an affine

transform since the perspective deviation is minimized due to human-in-the-loop camera

image capturing.

To find the best affine transformation, we use adaptive stochastic gradient descent as

the optimizer. As the objective function, we use mean squares since we work with binary

images, which have little gradient information. The computed parameter map of the affine

transformation is then applied to the image the user has taken to align it with the digital

3D model outline (Figure 5-9b).

5.4.2 Detecting Bottom Line Angle and Width

Since the traces of the 3D printed surface have a periodic layout, we are able to detect their

orientation and widths by looking at the frequency spectrum, i.e., we take the 2D Fourier

transform of the image. From this spectrum, we can determine the bottom line angle 𝜃 by

extracting the slope of the line on which the periodic peaks lie (peaks are marked yellow in

Figure 5-9c). We can determine the bottom line width d by casting the intensity values on

this inclined line into a 1D array and computing the distance ∆𝑥 between the maxima, which

is inversely proportional to d. This approach is more robust than looking at the original

image itself because in case the lines have irregularities, their distances may be inconsistent,

whereas the Fourier transform acts as a smoothing filter and provides an averaged value.

5.4.3 Error Checking

If the picture the user has taken is of poor quality (i.e., out of focus, poor lighting, or

accidental shaking of camera), the lines on the object surface will not be clear enough to

extract correct measurements of parameters. Fortunately, these false readings can be avoided

due to the nature of the 2D Fourier transform. In the Fourier spectra of digital photos, there

is a strong intensity along the x and y-axis since real-world objects have many horizontal

or vertical features and symmetries [38, 48]. If surface lines are not distinguishable, peak

intensities appear onthe x and y-axis and therefore erroneously result in detection of 0° or

90°. Thus, the detection of either of these two angles indicates a false reading. Therefore, we

exclude these two values from our allowed slicing parameter space. Whenever our algorithm
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Figure 5-10: Image processing to extract the components of the infill pattern: (a) photo,
(b) contrast increased, (c) blurred, (d) binarized, and (e) matched to the template of the
respective infill type: grid, triangles, trihexagon from top to bottom.

detects these two angles, we notify the user that the image has to be retaken for correct

measurement.

5.4.4 Detecting Infill Angle, Width, and Pattern

To detect the infill parameters, we first remove noise from the image that is caused by the

bottom lines on the surface (Figure 5-10). We remove them by (a) increasing the contrast

of the image, (b) blurring the image with a 2D Gaussian smoothing kernel, and (c) applying

adaptive thresholding.

To detect the infill pattern, we compare the resulting shapes after thresholding to the

known infill pattern templates shown in Figure 5-10d/e. To determine infill density, we

compare the infill templates at different scales to the size of the shapes in the image, the

matching template then indicates the size of the pattern. Similarly, the infill angle is detected

by rotating the template and finding the angle that gives the smallest sum of squared

difference to shapes in the image. Since infill is detected in the stationary setup, alignment

of the base is less of a concern and image registration can either be simplified or ignored for

shorter processing times.

5.5 Spacing of Slicing Parameters

We conducted an experiment to determine which parameter spacing can be reliably identified

using our detection method. For the experiment, we printed a number of instances with

different slicing settings and used our detection method to identify each pattern. Table 1

summarizes the results of this experiment under regular office light conditions. We focus
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Min Max Spacing Variations
Bottom:
Angle (°) 0° 180° 5° 36-2=34*
Width (mm) 0.35 0.6 0.05 6
Bottom Total: = 204
Infill:
Angle (°) 0° 60°/90° 5° 12 / 18
Width (mm) 2.6 3.2 0.6 2
Pattern (type) - - - 3
Infill Total: = 84
Total: = 17,136

Table 5.1: Each slicing parameter’s range (min, max) and incremental spacing values as
determined by our experiments. The last column shows the number of variations that can
be realized. (*2 angles reserved for error checking).

this analysis on the parameters related to bottom surface and infill, which are seen from the

object’s base, and do not consider those related to the side (intermediate layers).

Using the object’s base for identification has many advantages: (1) it is easier for users

to take aligned pictures of the base since it is flat, (2) it is more time and material efficient to

manipulate base-related features since they only affect a single layer and have no influence

on the print quality of the main surface of the object, (3) there are more combinations of

identifiable features since both bottom surface and infill can be seen just from the base, (4)

it is convenient to computationally process a flat surface. We therefore decided to first focus

on the bottom layer and infill parameters, however, further analysis can be done concerning

side surfaces by repeating our experiment.

5.5.1 Selecting 3D Models to Evaluate Parameter Spacings

How finely differences in slicing parameters can be detected depends on the size of the area of

the bottom surface. The larger the surface, the more features can be used by the algorithm

for classification. To determine a spacing of parameters that works well across different 3D

models, we used objects with varying surface areas for our experiment.

To select these objects, we downloaded the top 50 3D models from Thingiverse [48] and

ranked them by their bottom surface area (i.e., the largest square one may inscribe in the

contour of the first slice, determined by an automated MATLAB script). We found that 25

models had a large surface area (>6cm2), 7 models had a medium surface area (1.2-6cm2),

and 18 models had small surface areas (<1.2cm2). These ranges were determined empirically
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based on our initial tests. We randomly picked one object representing each of these three

categories and printed multiple instances using the parameters below.

5.5.2 Determining the Range for Each Slicer Setting

Before slicing each of the models with different settings, we first determined the min and

max values for each setting.

Bottom: For the bottom angle, we can use 0°-180°. Going beyond 180° would cause

instances to be non-distinguishable (i.e., 90° looks the same as 270°). We took the min value

for initial bottom line width as 0.35mm, the default value recommended in the slicer Cura.

Although this parameter can be as large as twice the nozzle size (2*0.4mm), we limit the

max value to 0.6mm to avoid disconnected lines. For the pattern settings, which do not

have min and max values, we considered the “line” pattern for the bottom surface.

Infill: As for the infill angle, we can use a range of 0°-60° for the trihexagon and triangular

patterns, and 0°-90° for the grid pattern, as their layouts are periodic with period 60° and

90°, respectively. For infill line distance (density), we determined that having infill units

smaller than 2.6mm makes the pattern unrecognizable — we thus used it as the min value.

The max value is 3.2mm for objects with medium base area but may go up to 8.0mm for

larger objects. Going beyond this value would imply an infill density of less than 10%, and

thus fragile, less stable objects. The three infill pattern (type) settings do not have min or

max values.

5.5.3 Slicing with Different Spacings and Capturing Photos

Next, we used our three selected objects (small, medium, large), and printed them with

different slicing settings. Our goal was to determine how finely we can subdivide the given

parameter ranges for accurate detection. To find the optimal spacing for each parameter,

we made pairwise comparisons of two values (e.g., for angles, instance #1: 8° - instance #2:

5°; difference: 3°), while keeping all other parameters constant. Based on 16 pictures taken

for each pairwise comparison, we report the accuracy at which we can distinguish the two

instances. For the prints with infill variations, we held a small light source (Nitecore Tini

[34]) against the side of the 3D printed object before taking the image.

103



Figure 5-11: Detection accuracies vs. parameter spacing between pairs of instances for the
four slicing parameters (bottom line angle and width, as well as infill angle and width). All
plots have the same y-range.

5.5.4 Results of the Experiments

As expected, objects from the “small” category did not have sufficient base area to fit in

enough infill units and thus not give satisfactory results. We therefore conclude that G-ID

cannot be used for very small bases and excluded them from the rest of the analysis. We

next discuss the results for each slicing parameter for the medium and large object category.

Bottom Line Angle and Width: The dashed lines in Figure 5-11a,b indicate that a spacing

of 5° and 0.05mm provides a classification accuracy of 100% for both the medium and large

base area categories, respectively. Thus, a range of 0°-180° would give us 36 variations for

the angle. However, we exclude the two degrees 0° and 90° from the bottom line angle

range since these are reserved for error checking (as described in section “Detecting Slicing

Parameters”), therefore we have 34 variations. A range of 0.35-0.6mm allows 36 variations

for the width.

Infill Angle and Line Distance (Width): The dashed lines in Figure 5-11c,d show that

a spacing of 5° and 0.6mm provides a 100% detection accuracy for the two categories,

respectively. Thus, for the ranges of 0°-60° and 0°-90°, we can use 12 or 18 variations,

respectively. For the width, we can use, for medium objects, a range of 2.6-3.2mm (2

variations); and for large objects 2.6-8.0mm (10 variations). We report the smaller number

in Table 5.1.

Infill Pattern: The confusion matrix in Figure 5-12 shows that the “grid” and “trihexagon”

work for both medium and large classes. For large objects, we can also use all three different

patterns.
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Figure 5-12: Detection accuracies vs. parameter spacing between pairs of instances for the
four slicing parameters (bottom line angle & width, as well as infill angle & width). All
plots have the same y-range.

5.5.5 Total Number of Instances Possible

Based on the results, using a parameter spacing that works for both medium and large

objects, we can achieve a total of 204 instances if we only use the camera, or 17,136 instances

if we use both the camera and light (see Table 5.1). In comparison to other types of tags,

we can say that these parameter spaces have a larger code capacity than a 1D barcode with

7 or 14 bits, respectively.

5.5.6 Cross-Validation

To cross-validate our parameter spacing, we printed another random set of 16 objects (10

large, 6 medium) from the same top 50 model list from Thingiverse (excluding the ones

we used in the previous experiment) with white filament. Before printing, we randomly

assigned each model a combination of slicing settings from the available parameter space

and then tested if G-ID can identify them. Our second goal was to see if the parameter

spacing still applies when multiple parameters are varied at the same time (our previous

experiment only varied one slicing parameter per instance at a time). Among the 10 objects

with large bottom area, all slicing parameters were correctly identified. Among the 6 objects

from the medium category, 5 were correctly identified. In total, the detection accuracy is

93.75%. The falsely identified model had the smallest bottom surface area (1.4cm2), which

confirms the fact that objects without sufficient surface area cannot be recognized.

5.6 System Implementation

An overview of the system is shown in Figure 5-13. G-ID’s labeling interface for creating

multiple instances runs on the browser and is based on WebGL. Once the user drags a
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Figure 5-13: System overview.

3D model (.stl) onto the canvas and enters the number of instances, the interface calls its

backend written in Python, which is responsible for the distribution of the slicing parameters.

Once the slicing parameters are determined for each individual instance, the backend calls

the slicer CuraEngine [43] to compute the G-code for each instance.

After the instances are sliced with their individual slicer settings, the user is shown the

2D sliced layers as well as the 3D model. For rendering these previews, we use the JavaScript

library Three.js. Finally, G-ID saves an .XML file with the slicing parameters, labels and

the contour of the object’s base as an image (created using an automated MATLAB script)

for future identification with the G-ID mobile app.

5.7 Evaluation

5.7.1 Different Materials, Lighting Conditions, Thicknesses

Surface: To see how the filament’s color and different lighting affect the detection of surface

parameters, we printed six instances of the key cover with eight different colors of Ultimaker

PLA filaments (total of 48 instances) and using a dimmable LED lamp varied the light in the

room from 0 – 500 lux (measured with lux meter Tacklife LM01 ). We picked the filament

colors to be the primary and secondary colors of the RYB model, as well as white and black

filament. We selected the light intensities to represent different low-light conditions. For

slicing, we used surface parameters distributed evenly along bottom line angle and width

within the allowed range from Table 5.1. The results are shown in Figure 5-14. All colors
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Figure 5-14: Different filament colors vs. minimum illuminance required to correctly detect
the traces on the bottom surface.

worked well for lighting conditions above 250 lux. This shows that our approach works well

in classrooms (recommended light level: 250 lux) and laboratories (recommended light level:

500 lux) [98]. The results also show that the camera needs more light to resolve the lines for

lighter colors (i.e., white and yellow) than for darker colors. Since we used white filament for

our parameter spacing evaluation, the results in Table 5.1 work even for worst-case scenarios.

This also means that for other filament colors, an even smaller surface area would suffice for

correct detection since the surface details can be better resolved.

Infill: We were able to detect the patterns for all of the aforementioned filament colors

except for black due to its opaque nature. Further, the brighter the light, the thicker the

object base may be: 145 lumens suffice for a base of 1mm (suggested thickness in Cura),

380 lumens suffice for 1.75 mm.

5.7.2 Different 3D Printers

Since G-ID takes as input universal units like millimeters (width) and degrees (angle), our

method extends to FDM printers other than the one we used for the experiments. To confirm

this, we fabricated six test prints on the 3D printers Prusa i3 MK3S and Creality CR-10S

Pro in addition to the Ultimaker 3 that we used for our experiments, and inspected the

traces laid down with a microscope. The line widths of the prints had an average deviation

of 9.6𝜇m (Prusa) and 10.7𝜇m (Creality) from the Ultimaker 3 prints. The line angles had

an average deviation of 0.5° (Prusa) and 0.25° (Creality). These deviations are insignificant

for our detection method since the spacing values chosen for the parameters are much larger

than these values. To verify this, we used our mobile app to take pictures of these samples

and ran our algorithm, which correctly detected the unique identifiers.
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Camera angle 𝜃 4° 6° 8° 10° 12°
Accuracy 98.50% 94.50% 86.67% 75.00% 64.50%

Table 5.2: Polar angle 𝜃 vs. the percentage of identified objects.

5.7.3 Camera Distance and Angle

Distance: If the phone is held too far away from the object, the camera cannot detect the

detailed grooves on the surface. To determine how far the camera can be held from the

object, we took pictures with smartphones of different camera resolutions. We found that

the iPhone 5s (8MP) can resolve the slicing parameter features up to 26cm, Pixel 2 (12.2MP)

up to 36cm, and OnePlus 6 (16MP) up to 40cm. Taking into account the cameras’ field of

view, this means that users can fit in an object with one dimension as large as 29cm, 45cm,

and 52cm, respectively. G-ID guides users into the correct camera distance by varying the

size of the object outline displayed on the user’s phone for alignment.

Angle: Since our image registration technique uses affine transformation, it is not able

to fully remove the perspective distortion if the camera angle varies strongly. However,

since our app guides users to align the object, the distortion is negligible. To show our

algorithm can robustly read bottom surface parameters on a variety of shapes, we created

a virtual dataset similar to [28]. We downloaded the first 600 models from the Thingi10K

database [57] that have a rotationally non-symmetric base of appropriate size, sliced them

with a random set of slicing settings, and rendered the G-codes using 3D editor Blender. We

placed the virtual camera at points located on a spherical cap above the object base, with

8 evenly sampled azimuthal angles for each of the 5 polar angles. The percentage of shapes

read correctly for each polar angle value 𝜃 is given in Table 5.2. The spacing values chosen

for the parameters act as a buffer to prevent false readings. The objects for which detection

failed at small angles had rather rounded bases, which makes alignment challenging.

5.8 Applications

Below, we outline three further application examples in addition to the two previously

explained use cases.

Finding Optimal Print Settings: G-ID can be used to identify which slicing parameters

a particular 3D print was created with. In Figure 5-15, a maker is trying to find the best
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angle for optimizing mechanical strength, and prints the model multiple times with varying

settings. Rather than carefully writing down which settings were used for which one, the

maker can retrieve a particular setting from a print simply by taking a picture of it. It is

unlikely that they users estimate these settings by eye correctly as seeing tiny differences is

not trivial.

Figure 5-15: Identifying particular print settings with G-ID: (a) exploring different slicing
parameters and (b) printing them, (c) retrieving the best settings using G-ID.

User Identification: G-ID can be used to create identifiable objects that belong to a

specific user cheaply and rapidly as it doesn’t require the user to embed, e.g., an RFID or

NFC tag in a separate step. For instance, in toys-to-life video games, physical character

figurines that carry a G-ID label can be used to load a player’s identity and score. When

users insert their figurine into the G-ID reader, it communicates the user’s ID to the game

to display their name and score (Figure 5-16).

Figure 5-16: Toys-to-life figurines are used to identify the player and display their info in
the video game.

Labeling a Commercial 3D Print for Anti-Counterfeiting: Online 3D printing services

such as 3D Hubs [64] or makexyz [91] ensure to refund customers if they can show a 3D

model was not printed according to the user’s specifications. By slicing a model using

certain settings and storing this information, they can verify that a returned object was

indeed fabricated by them before a refund is approved. Let us assume a 3D model is leaked
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and frauds attempt to print a copy themselves and then return that to get a refund (although

they never bought it in the first place). Businesses can use G-ID to cross-verify the print

setting used to create the original.

5.9 Discussion and Limitations

Next, we discuss limitations and future work for labeling and identifying objects by their

slicing parameters.

5.9.1 Other Slicing Parameters

In this work, we focused on surface and infill parameters, which offer a large number of

unique identifiable features. Other slicing parameters, such as those that create geometry

that is removed after fabrication (e.g., those related to support material or build plate

adhesion) are less suitable.

However, for special materials, such as wood filaments, the shade of the object’s color can

be altered by varying the speed and temperature, which could be used to create differences

among instances: the hotter or slower the extruder, the more the wood particles burn and

the darker the resulting surface (Figure 5-17). However, since the changes affect the objects

appearance, we do not consider them for our work.

Figure 5-17: The hotter the nozzle, the darker the print’s finish.

5.9.2 Rotational Symmetry of Outlines

Since we use the outline of objects to extract the orientation of features, objects whose

bases are rotationally symmetric are less suitable for our approach. Thus, the number of

identifiable angles is reduced for certain shapes, e.g., for a square base, the range narrows

down from 0°-180° to 0°-90°.
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5.9.3 Non-Flat Side Surfaces

When a camera’s optical axis is parallel to the object’s axis of rotation on the build plate,

the layer traces on a curved surface appear as straight, parallel lines and the features can be

extracted similarly using Fourier transforms. For that, we instruct the user to take a picture

from the correct viewpoint (as shown in Figure 5-18) by generating a silhouette guide of the

object taking into account the camera’s focal length.

Figure 5-18: (a) Model’s axis of rotation is orthogonal to the image plane of the virtual
camera, (b) rendered target outline for the user to align model, (c) image has parallel
traces.

5.9.4 Applicability Beyond FDM Printing

FDM and SLA printing have been the most accessible consumer techniques for the last

decade. Although SLA achieves better resolutions, individual layers on objects can still

be distinct (Figure 5-19). As for DLP printing, the projected pattern creates rectangular

voxels that cause the edges to look stepped; different voxel sizes thus lead to different

appearances [41]. Most printing methods use infill, so the general idea of varying infill still

applies. We thus think our method will stay relevant. Even if printing imperfections become

smaller in the future, there are two factors to consider: As 3D printers improve in resolution,

camera resolution improves over time (see Samsung ’s latest 200MP sensor [118]). Computer

vision gets better too: Neural networks can now pick up details beyond what the human eye

or traditional image processing can detect, e.g., they have been used to identify tiny defects

in solar cells [16] or dents in cars [164].

Figure 5-19: A sample from a Formlabs SLA printer captured by a conventional mobile
phone camera.
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5.10 Conclusion

We presented G-ID, a method that utilizes the subtle patterns left by the 3D printing process

to identify objects and that provides both a labeling and identification interface for creating

and detecting surface and infill parameters using only a commodity camera. We reported

on the code capacity enabled by an off-the-shelf slicer. In the future, this can be scaled up

by building a custom slicer for creating unique print paths that go beyond what current

slicers offer, e.g., spatial pattern tiling could expand the number of encodings [87]. Also,

our current implementation uses optimization-based image registration, which takes a few

seconds. In the future, we can enable continuous detection for faster image capturing using

optimization-free contour matching methods [32, 33].
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Chapter 6

InfraredTags: Embedding Invisible

Markers Using Infrared-Translucent

3D Printing Filaments

6.1 Introduction

In the last decade, researchers have investigated several ways to embed tags inside 3D

objects to make them unobtrusive. One method to accomplish this is to leave air gaps

inside the object that represent the bits of a tag. For instance, AirCode [80] embeds air

gaps underneath the surface of 3D printed objects and uses scattering of projected structured

light through the material to detect where the air gaps are located. InfraStructs [153] also

embeds air gaps into the object but scans it in 3D using terahertz imaging, which can

penetrate better through material than visible light.

While both of these methods can embed tags inside 3D objects, they require complex

hardware setups (e.g., a projector-camera setup as in AirCode), expensive equipment (e.g.,

a terahertz scanner as in InfraStructs), and long imaging time on the order of minutes. To

address these issues, we propose a new method that combines air gaps inside the 3D printed

structure with infrared transmitting filament. This makes the object semitransparent, and

the air gaps are detectable when viewed with an infrared camera. Thus, our method only

requires a low-cost infrared imaging module, and because the tag is detected from a single

frame, scanning can be achieved much faster.
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One method that has used infrared-based 3D printing materials is LayerCode [89], which

creates 1D barcodes by printing objects from regular resin and resin mixed with near-infrared

dye. Thus, while the printed objects look unmodified to humans, infrared cameras can read

the codes. However, this method required a modified SLA printer with two tanks, custom

firmware, and custom printing material. In contrast, our method uses more readily available

low-cost materials.

In this chapter, we present InfraredTags, a method to embed markers and barcodes in

the geometry of the object that does not require complex fabrication or high-cost imaging

equipment. We accomplish this by using off-the-shelf fused deposition modeling (FDM) 3D

printers and a commercially available infrared (IR) transmitting filament [75] for fabrication,

and an off-the-shelf near-infrared camera for detection. The main geometry of the object

is 3D printed using the IR filament, while the tag itself is created by leaving air gaps for

the bits. Because the main geometry is semitransparent in the IR region, the near-infrared

camera can see through it and capture the air gaps, i.e., the marker, which shows up at

a different intensity in the image. The contrast in the image can be further improved by

dual-material 3D printing the bits from an infrared-opaque filament instead of leaving them

as air gaps. Our method can embed 2D tags, such as QR codes and ArUco markers, and

can embed multiple tags within the object, which allows for scanning from multiple angles

while tolerating partial occlusion. To be able to detect InfraredTags with conventional

smartphones, we added near-infrared imaging functionality by building a compact module

that can be attached to existing mobile devices.

To enable users to embed the tags into 3D objects, we created a user interface that

allows users to load tags into the editor and position them at the desired location. The ed-

itor then projects the tags into the 3D geometry to embed them with the object geometry.

After fabrication, when the user is taking a photo with our imaging module, our custom

image processing pipeline detects the tag by increasing the contrast to binarize it accurately.

This enables new applications for interacting with 3D objects, such as remotely controlling

appliances and devices in an augmented reality (AR) environment, as well as using exist-

ing passive objects as tangible game controllers. We note that this chapter was originally

published at ACM CHI 2022 [29].

In summary, our contributions are as follows:
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• A method for embedding invisible tags into physical objects by 3D printing them on an

off-the-shelf FDM 3D printer using an infrared transmitting filament.

• A user interface that allows users to embed the tags into the interior geometry of the

object.

• An image processing pipeline for identifying the tags embedded inside 3D prints.

• A low-cost and compact infrared imaging module that augments existing mobile devices.

• An evaluation of InfraredTags detection accuracy based on 3D printing and imaging

constraints.

6.2 The InfraredTags System

InfraredTags are embedded such that the objects appear opaque and unmodified under

visible light but reveal the tag under near-infrared light. We accomplish this by 3D printing

the main geometry of the object using an infrared-transmitting filament, while the tag itself

is created by leaving air gaps for the bits. Because the main geometry is semitransparent

in the infrared region, the near-infrared camera can see through it and capture the air gaps,

i.e., tag, which shows up at a different intensity in the image. We refer to the infrared-

transmitting filament as infrared filament or IR filament in the remainder of the chapter.

In the next sections, we describe the properties of the IR filament and the appropriate

infrared camera, and then discuss how the IR filament can be used either as a standalone

single-material print or together with another filament to create markers inside the object.

6.2.1 Infrared Filament

We acquired the IR filament from manufacturer 3dk.berlin [75] (ca. $5.86/100g). It is made

out of polylactic acid (PLA), the most common FDM printing filament, and can be used at

regular 3D printing extrusion temperatures. To the naked eye, the filament has a slightly

translucent black color, however, when 3D printed in multiple layers it looks opaque.

IR Translucency: Since the manufacturer does not provide data on the light transmission

characteristics for different wavelengths, we manually measured it using a UV/VIS/NIR

spectrophotometer (PerkinElmer Lambda 1050 ). The transmission spectra for both the IR

PLA and comparable regular black PLA filament are given in Figure 6-1c. Both spectra are

for 1mm thick 3D printed samples. Because the regular PLA has close to 0% transmission
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in both visible and near-infrared regions, it always appears opaque. In contrast, the IR PLA

transmits near-infrared at a much higher rate (∼45%) compared to visible light (0%-15%),

and thus appears translucent in the IR region and mostly opaque in the visible light region.

Figure 6-1: Material composition of the tags for a sample ArUco marker. We modify the
interior of the object to embed the tag based on (a) single- or (b) multi-material printing.
(c) The transmission spectrum of the IR PLA and regular PLA.

6.2.2 Choosing an Infrared Camera

To choose the image sensor and filter that can see infrared light and thus can read the tag,

we considered the following:

Filter: Almost all commercial cameras have an infrared cut-off filter to make camera images

look similar to human vision. This filter thus prevents near-infrared light from reaching the

image sensor. Since for our purposes, we want to capture the infrared light, we can either

buy a camera that has this filter already removed, e.g., the Raspberry Pi NoIR camera

module, or remove the embedded filter from a camera manually.

Image Sensor: Different cameras’ sensors have different sensitivity for different parts of

the light spectrum. To best detect the markers, the sensor should have a high sensitivity in

the maximum peak of the material’s near-infrared transmission. However, as can be seen

in Figure 2c, since the transmission is similar across the entire infrared-region, all cameras

that can detect light in the IR region would work for our purposes. For instance, off-the-

shelf cheap cameras, such as the Raspberry Pi NoIR ($20), can detect up to 800-850nm
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in the near-infrared range according to several vendors1. More expensive IR cameras that

have sensitivity beyond the near-infrared range, such as FLIR ONE Pro2, can detect up

to 14,000nm but may cost more than $400. However, since the infrared transmission does

not increase much with higher infrared wavelengths, the low-cost camera is sufficient for our

purposes.

6.2.3 Composition of the Tags and Materials

To create InfraredTags, we need to create two geometries with different IR transmission

properties that form the object. The different IR transmission properties will cause the two

geometries to appear with different intensities in the resulting infrared image. We found

that there are two ways to accomplish this.

Single-Material Print (IR PLA): Our first method uses the IR filament for the main

geometry of the object, air gaps for the outside bits of the marker, and IR filament for

the inside bits of the marker as shown in Figure 6-1a. The contrast between the bits

arises from the fact that the IR light transmission reduces by ∼45% per mm of IR filament

(Section 6.2.1). Under IR illumination, the light rays first penetrate the IR filament walls

of the 3D printed object and then hit the air gap inside the object or the filled interior

area. When the object is imaged by an IR camera, the light intensity reduces for each pixel

differently depending on whether it is located on an air gap or not. The rays that go through

the air gaps lead to brighter pixels since they penetrate through less material than the other

rays. This intensity difference in the resulting image is sufficient to convert the detected air

gaps and filled areas into the original tag.

Multi-Material Print (IR PLA + Regular PLA): We explored multi-material 3D

printing to further improve the contrast of the marker in the image. This second approach

uses IR PLA for the main geometry of the object, regular PLA for the outside bits of the

marker, and air gaps for the inside bits of the marker as shown in Figure 6-1b. When the

user takes an image, the IR rays penetrate the IR filament walls of the 3D printed object,

and then either hit the air gap inside the object or the regular PLA. The air gaps will appear

as brighter pixels since they transmit IR light, whereas the regular PLA filament will appear

1This module has an Omnivision 5647 sensor. https://www.arducam.com/product/
arducam-ov5647-noir-m12x0-5-mount-camera-board-w-raspberry-pi/
https://lilliputdirect.com/pinoir-raspberry-pi-infrared-camera

2https://www.flir.com/products/flir-one-pro/
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as darker pixels since it is nearly completely opaque in the IR region (Figure 6-1c). This

leads to a higher contrast than the previously discussed single-material prints.

We also considered filling the air gaps with IR filament to avoid empty spaces inside the

object geometry. However, this requires frequent switches between the two material nozzles

for regular PLA and IR filament within short time frames, which can lead to smearing.

We therefore kept the air gaps for objects that we printed with the dual-material approach

(Figure 6-1b).

Code Geometry: When embedding the code (i.e., the 2D tag) into the geometry of the

object, the code and the geometry surrounding it (i.e., the shell) need to have a certain

thickness.

Shell Thickness: The shell thickness 𝑡𝑠ℎ𝑒𝑙𝑙 should be large enough to create sufficient opaque-

ness so that the user cannot see the code with their eyes, but small enough to ensure de-

tectability of the code with the IR camera.

Since the IR filament is slightly translucent to the naked eye, with small 𝑡𝑠ℎ𝑒𝑙𝑙, it becomes

possible for the user to see the code inside the object (Figure 6-2a). Thus, for the lower

bound of 𝑡𝑠ℎ𝑒𝑙𝑙, our goal is to find a value that achieves a contrast in the image smaller than

5% when the image is taken with a regular camera (i.e., with an IR cut-off filter). The image

taken with regular camera represents the visible light region sensitivity, i.e., that of human

vision. We chose 5% because this is the contrast value at which humans cannot differentiate

contrast anymore [11].

On the opposite side, the larger 𝑡𝑠ℎ𝑒𝑙𝑙 is, the more IR light it absorbs and thus the darker

the overall image becomes, reducing the contrast of the code in the IR region (Figure 6-2b).

Thus, for the upper bound for 𝑡𝑠ℎ𝑒𝑙𝑙, our goal is to find the value at which the code is no

longer detectable in the IR camera image.

To determine these bounds, we 3D printed a checkerboard pattern as an InfraredTag with

a shell of varying thickness (range: 0mm-6mm). As shown in Figure 6-2, we captured the 3D

print with both a visible light camera and an IR camera. In Figure 6-2d, we plot the contrast

between the "white" and "black" parts of the checkerboard as a function of shell thickness in

the visible light camera image. We see that the visible light camera contrast drops to 5% at

approximately 1.32mm thickness, which defines the lower bound, i.e., the minimum thickness

needed so that the tag is invisible to humans. On the other hand, Figure 6-2c shows the
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binarized version of the IR camera image (Figure 6-2b). In Figure 6-2e, we show how the

binarization of the checkerboard deteriorates as shell thickness increases. The graph shows

that a shell thickness of up to 3.5mm could be used to achieve 90% binarization accuracy,

which defines the upper bound. However, for the sake of maximum detectability, we use the

lower bound values when fabricating the objects.

Figure 6-2: Determining the shell thickness for a multi-material print with white PLA. As
𝑡𝑠ℎ𝑒𝑙𝑙 increases, the checkerboard pattern becomes less visible in both (a) the visible camera
and (b) IR camera image. Thus, it gets more challenging to (d) identify the contrast in the
pattern for humans, and to (c, e) binarize it correctly from the IR view.

For multi-material 3D printing, different filament colors can be used for the regular PLA

part (i.e., the code). Each color requires a different shell thickness to prevent users from

seeing the code. For instance, because the IR filament appears black in the visible light

region, it blends more easily with black or blue PLA, thus requiring a thinner top layer to

hide the resulting code than when the code is printed in white PLA. Table 6.1 shows the

minimum shell thickness needed to make codes fabricated from different colors unobtrusive.

Code Thickness: While the shell thickness affects the overall contrast of the image in the

visible region, the code thickness 𝑡𝑐𝑜𝑑𝑒 determines the contrast between the individual bits of

the embedded code in the IR region. If the code layer is too thin, there might not be enough
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contrast between the "white" and "black" bits and thus the code will not be detectable.

We conducted a test similar to the one shown in Figure 6-2, where we, instead of varying

the shell thickness, varied the code thickness to determine which values provide enough

contrast. The values are summarized in Table 6.1. Going below the values listed makes the

material too thin such that the IR light starts going through the code bits, which reduces

the contrast in IR view and thus detectability. Going above this value is possible but does

not improve the contrast further.

Shell thickness 𝑡𝑠ℎ𝑒𝑙𝑙 Code thickness 𝑡𝑐𝑜𝑑𝑒

Single-material
(IR PLA)

1.08 mm 2.00 mm

Multi-material
(IR PLA + white PLA)

1.32 mm 0.50 mm

Multi-material
(IR PLA + black PLA)

1.08 mm 0.50 mm

Multi-material
(IR PLA + blue PLA)

1.20 mm 0.50 mm

Table 6.1: Thickness values for the shell and code layers.

Lastly, an important observation we made is that IR filament spools ordered from the

same manufacturer [75] at different times showed slightly different transmission character-

istics. This is likely linked to the possibility that the manufacturer might have adjusted

the amount of IR-translucent dye used to make the spools. We suggest that users conduct

similar analysis with a test print as shown in Figure 6-2 to determine the optimal values for

each new IR spool.

6.3 Embedding and Reading InfraredTags

We next explain how users can embed codes into 3D objects using our user interface and

then discuss our custom add-on for mobile devices and the corresponding image processing

pipeline for tag detection.

6.3.1 User Interface for Encoding InfraredTags

Import and Position Tags: The user starts by loading the 3D model (.stl file) into our

user interface, which is a custom add-on to an existing 3D editor (Rhinoceros 3D). Next,

users import the tag as a 2D drawing (.svg) into the editor, which loads the marker into
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Figure 6-3: InfraredTags embedding interface.

the 3D viewport. The marker is then automatically projected onto the surface of the 3D

geometry (Figure 1a). Users can move the code around in the viewport and scale it to place

it in the desired location on the 3D object.

Select Printing Method: In the user interface, users can then select the printing method,

i.e., if they want to fabricate the object with single material (IR-PLA only) or dual-material

printing (IR-PLA + regular PLA). As a result, the user interface generates the geometry

to accommodate the selected printing method. For example, for dual-material printing, it

generates two .stl files, one for the main geometry and one for the embedded tag. The UI

ensures that the tag is accurately spaced from the surface of the object (Table 6.1). The

user can then slice both files with the 3D printer’s slicing software and print the object.

6.3.2 IR Imaging Module for Reading the Tags

InfraredTags can be read with digital devices that have an infrared camera attached to them.

Even conventional USB webcams for personal computers can be used for this purpose by

manually removing their infrared cut-off filter3.

Today, several recent smartphones already come with an IR camera either on the front

(iPhone X and newer models) or the rear (OnePlus 8 Pro), however, the phones’ APIs may

3A sample tutorial can be found on https://publiclab.org/wiki/webcam-filter-removal.
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not allow developers to access these for non-native applications. Furthermore, not all mobile

phones contain such a camera at the moment. To make our method compatible independent

of the platform, we built an additional imaging add-on that can easily be attached to existing

mobile phones.

Attaching the IR camera module: As shown in Figure 6-4, our add-on contains an

infrared camera (model: Raspberry Pi NoIR). This camera can see infrared light since it has

the IR cut-off filter removed that normally blocks IR light in regular cameras. Additionally,

to remove the noise from visible light and improve detection, we added a visible light cut-off

filter4, as well as 2 IR LEDs (940nm) which illuminate the object when it is dark. This

add-on has two 3D printed parts: a smartphone case from flexible TPU filament that can be

reprinted based on the user’s phone model, and the imaging module from rigid PLA filament

that can be slid into this case. The imaging module has a Raspberry Pi Zero board and a

battery and weighs 132g.

Figure 6-4: Infrared imaging module. (a) The module is attached onto a flexible case that can
be 3D printed based on the user’s mobile device. (b) The module’s hardware components.

Detecting the Tag: To detect the tag, users open the InfraredTags detection application on

their mobile phones and point the camera to their object. The application shows the phone

camera’s view, which is what the user sees with their eyes instead of the IR view. This way,

more information can be overlaid on top of the regular view for AR applications. Under

the hood, the imaging module continuously streams the images to our image processing

server. If the server detects any tags, it sends the location and the encoded message to the

smartphone app to show to the user.

4https://www.edmundoptics.com/p/1quot-x-1quot-optical-cast-plastic-ir-longpass-filter/5421/
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6.4 Software Implementation

In this section, we explain how we implemented the code embedding user interface, as well

as our infrared imaging module and image processing pipeline.

6.4.1 UI Implementation

Our embedding user interface is based on Rhinoceros 3D CAD software5 (referred to as

Rhino) and Grasshopper6 which is a visual programming language that runs within Rhino.

Importing the Tag and the 3D Model: After the user loads an STL file representing

the 3D object, our software converts it into a mesh utilizing a Python subprocess function

call. The script then centers the mesh along its center of mass. When the user imports a

tag as an SVG file, it creates a plane that contains the paths that represent its bits, i.e., the

air gaps. While the user is positioning the code, our software always orients the plane of the

code to face the mesh’s surface. For this, it uses the normal on the mesh that is closest to

the plane that holds the code.

Embedding the Tag into the Object: Depending on the type of embedding selected

(i.e., single-material or multi-material 3D printing), the tag is projected into the object in

one of two ways:

Single-Material: Our software first projects the tag onto the curved surface of the mesh and

then translates it along the inverted closest mesh normal (i.e., pointing it towards the mesh)

by the shell thickness (𝑡𝑠ℎ𝑒𝑙𝑙, see Table 6.1). We then extrude the tag along the inverted

normal by the code thickness (𝑡𝑐𝑜𝑑𝑒), which creates a new mesh inside the object representing

the air gaps inside the 3D geometry. To subtract the geometry that represents the air gaps

from the overall geometry of the 3D object, we first invert the normals of the air gap mesh

and then use a Boolean join mesh function to add the holes to the overall object geometry.

This results in the completed mesh with the code, i.e., air gaps, embedded that the user can

export as a single printable STL file.

Multi-Material: For multi-material prints, our software generates two meshes as illustrated

in Figure 6-1b: one for the tag (printed in regular PLA) and one for the shell (printed in

IR PLA). We start by following the steps described for the single-material approach, i.e.,
5https://www.rhino3d.com/
6https://www.grasshopper3d.com/
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project the path representing the tag’s bits onto the curved surface, translate it inwards,

and extrude it to generate the tag mesh. Next, we find the bounding box of the this mesh,

invert its normals, and join it with the main object’s mesh. This creates a new mesh (i.e.,

the IR PLA shell), which once printed will have space inside where the regular PLA tag can

sit.

6.4.2 Mobile IR Imaging

The mobile application used for capturing the tags is Web-based and has been developed

using JavaScript. It uses Socket.IO7 to communicate with a server that runs the image

processing pipeline for tag detection explained in Section 7.2.3.

The image processing server receives the images from the live stream shared by the

microprocessor (Raspberry Pi Zero W ) on the imaging module and constantly runs the

detection algorithm. If a tag is detected, the server sends the tag’s location and the decoded

message to the Web application, and shows it subsequently to the user. Because the imaging

module does not use the resources of the user’s personal device and is Web-based, it is

platform-independent and can be used with different mobile devices.

6.4.3 Image Processing Pipeline

InfraredTags are identified from the images captured by the IR camera on the mobile phone

or attached imaging module. Although the tags are visible in the captured images, they

need further processing to increase the contrast to be robustly read. We use OpenCV [15]

to perform these image processing steps as shown in Figure 7-6.

Figure 6-5: Image processing to read the tags. (a) Infrared camera view. (b) Individual
processing steps needed to decode the QR code message: "HCI_IR_TEST".

7https://socket.io/
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Pre-processing the Image: We first convert the image to grayscale and apply a contrast

limited adaptive histogram equalization (CLAHE) filter [103] to improve the local contrast

(clipLimit=20, tileGridSize=(8,8)). For our pipeline, CLAHE is more appropriate than

a standard histogram equalization as it redistributes the pixel intensity values based on

distinct sections of the image [43]. To reduce the high-frequency noise that arises due

to CLAHE, we smooth the image with a Gaussian blur filter. We then binarize the image

using Gaussian adaptive thresholding to obtain black-and-white pixels that contain the code

(constantSubtracted=4).

Code Extraction: Once the binary image is generated, it can be used to detect the

respective code using existing libraries, such as ZBar8. On average, it takes 6ms to decode

a 4x4 ArUco marker and 14ms to decode a 21x21 QR code from a single original frame. The

images we use as input are 512x288 pixels; in the future, the detection could be made even

faster by downsampling the image to a dimension optimal for both readability and speed.

The Effect of Tag Distance: The readability of the binarized tag depends on the parame-

ters used for the pre-processing filters. More specifically, we found that a different Gaussian

kernel for the blur (ksize) and block size for the adaptive threshold (blockSize) need to

be used depending on the size of the tag in the captured image, i.e., the distance between

the tag and the camera. This is especially important for QR codes since they generally have

more and smaller bits that need to be correctly segmented.

One strategy to increase detection accuracy is to iterate through different combinations of

the filter parameters. To identify the effect of the number of filter parameter combinations

on detection accuracy, we ran the following experiment: We captured 124 images of a

21x21 QR code from different distances (15-80cm from the camera). We then generated 200

different filter parameter combinations and used them separately to process the captured

images. We then evaluated which filter parameters correctly binarized the QR code. We

found that even with a small number of filter combinations, we can have sufficient detection

results comparable to existing QR code detection algorithms. For instance, three different

filter combinations (Table 6.2) achieve an accuracy up to 79.03% (existing QR code readers

achieve <57% for blurred tags9). It is possible to further increase the number of filter

8http://zbar.sourceforge.net/
9Peter Abeles. 2019. Study of QR Code Scanning Performance in Different Environments. V3. https://boofcv.

org/index.php?title=Performance:QrCode
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Filter combinations Accuracy
(ksize=3, blockSize=23) 56.45%
(ksize=3, blockSize=23), (ksize=1, blockSize=37) 70.97%
(ksize=3, blockSize=23), (ksize=1, blockSize=37), (ksize=3, blockSize=21) 79.03%

Table 6.2: Filter combinations and QR code detection accuracy

parameter combinations to improve the accuracy further at the expense of detection time.

6.5 Applications

We demonstrate how InfraredTags enable different use cases for interactions with objects

and devices, storing data in them, and tracking them for sensing user input.

6.5.1 Distant Augmented Reality (AR) Interactions with Physical De-

vices

InfraredTags can be embedded into physical devices and appliances to identify them indi-

vidually through the embedded unique IDs and show the corresponding device controls that

can be directly manipulated by the user.

In the application shown in Figure 6-6a and b, a user points their smartphone camera

at the room and smart home appliances are identified through their InfraredTags, which are

imperceptible to the human eye. A control menu is shown in the AR view, where the user can

adjust the volume of the speaker or set a temperature for the thermostat. InfraredTags could

also allow multiple appliances of the same model (e.g., multiple smart speakers or lamps)

in the room to be identified individually, which is not possible with standard computer

vision-based object classification approaches.

Multiple tags on a single object for spatial awareness: Furthermore, InfraredTags enable

multiple tags to be embedded in the same object. This enables different applications. For

instance, when an object is partially occluded, multiple tags in the object can allow the

capture of tags from different angles. Another application is to enable spatially aware AR

controls where different settings appear at different locations within the same object. For

example, Figure 6-6c illustrates how the front, side, and top faces of a WiFi router only

have its network name (SSID) information, whereas its bottom also shows the password

information, which can automatically pair the router to the phone. This enables quick
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Figure 6-6: Controlling appliances using a mobile AR application. The user points at (a)
the home speakers to adjust its volume, and the (b) thermostat to adjust the temperature.
The infrared camera in the phone’s case identifies the appliances by reading the embedded
QR codes. (c) Pairing a phone with a WiFi router, whose SSID is visible from all sides but
the password is visible only from its bottom.

pairing and authentication with devices without users having to type out complex character

strings, while maintaining the physical use metaphors, such as the paper slip containing

the password typically attached to the base of the router. While we demonstrate this

application for mobile AR, InfraredTags could also enable lower friction, distant interactions

with physical devices for head-mounted AR glasses.

6.5.2 Embedding Metadata about Objects

Spatially embedding metadata or documentation information within the object itself can

provide richer contextualization and allow information sharing [36]. For example, we can

embed the object’s fabrication/origin link (e.g., a shortened Thingiverse URL) as an In-

fraredTag for users to look up in case they would like to get more information from its

creator or 3D print it themselves as shown in Figure 6-7. Other types of metadata that

could be embedded include user manuals, expiry dates, date of fabrication, materials used

to fabricate the object, weight, or size information.

6.5.3 Tangible Interactions: Use Anything as a Game Controller

Because fiducial markers can be embedded as InfraredTags, they can be used to track the

object’s movement. Thus, any passive object can be used as a controller that can be held

by users when playing video games.

Figure 6-8 shows a 3D printed wheel with no electronics, being used as a game controller.
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Figure 6-7: Embedded metadata about the object itself: The user is redirected to the
Thingiverse model that was used to fabricate the object.

The wheel contains an ArUco marker InfraredTag which is used to track the wheel’s location

and orientation. Even though the wheel is rotationally symmetric, the infrared camera can

see the square marker inside and infer the wheel’s position and orientation. Our method

does not require any electronics as opposed to other approaches [158].

While we demonstrate an application where the user faces a screen with a camera behind

it, this could be used to enable passive objects to serve as controllers for AR/VR headsets

with egocentric cameras. Such an application scenario could be particularly suitable for

headsets like HoloLens 2, which comes with an integrated infrared camera [142] that could

be utilized for InfraredTag detection in the future. Even though the tag would be facing the

user, it would not be visible to the user but can still be identified by the headset.

Figure 6-8: Using passive objects (a) as a game controller. (b) This wheel is black under
visible light and has no electronic components. (c) The fiducial marker embedded inside is
only visible to an infrared camera.
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6.6 Evaluation of the Detection

In this section, we evaluate how InfraredTag detection is affected by fabrication- and environment-

related factors.

Marker size: By following a test procedure similar to the one shown in Figure 6-2, we

determined that the smallest detectable 4x4 ArUco marker printable is 9mm wide for single-

material prints and 6mm wide for multi-material prints. The resolution for multi-material

prints is better than single-material ones because the large transmission difference between

the two distinct materials makes it easier for the image sensor to resolve the border between

the marker bits. On the other hand, in single-material prints, the luminosity of an air

gap resembles a 2D Gaussian distribution, i.e., the intensity gets higher towards the center.

Thus, larger bits are needed to discern the borders between a single-material marker’s bits.

Distance: To test the limits of our detection method, we measured the maximum

distance tags of different sizes can be detected. This was done for both single-material (IR

PLA) and multi-material (IR PLA + regular black PLA) prints. The marker size range

we evaluated was 10-80mm for 4x4 ArUco markers, which would translate to a range for

42-336mm for 21x21 QR codes (can store up to 25 numeric characters). The results are

given in Figure 6-9a, which shows that multi-material codes can be detected from further

away than single single-material ones. The results are given for the filter parameters with

the best detection outcome (Section 7.2.3).

Figure 6-9: Detection evaluation. (a) Maximum detection distance for single- and multi-
material ArUco markers. (b) Cases where the IR LED and the visible cut-off filter improve
detection.

Lighting conditions: For InfraredTags to be discernible in NIR camera images, there

has to be enough NIR illumination in the scene. We measured the minimum NIR intensity
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needed to detect 4x4 ArUco markers using a lux meter which had a visible light cut-off filter

(720nm) attached. We found that just a tiny amount of NIR is sufficient for this, i.e., that

at least 1.1 lux is needed for single-material prints, and 0.2 lux for multi-material prints.

Because sunlight also contains NIR wavelengths, the tags are detectable outdoors and

also in an indoor areas that have windows during daytime. We also noticed that many lamps

used for indoor lighting emit enough NIR to detect the codes at nighttime (e.g., 1.5 lux in

our office). Furthermore, the IR LEDs on our imaging module (Section 6.3.2) provide high

enough intensity to sufficiently illuminate multi-material markers even in complete darkness

(Figure 6-9b). In the future, brighter LEDs can be added to support single-material prints

in such difficult detection scenarios.

The visible light-cut off filter used on our IR imaging module also improves detection in

spite of challenging lighting conditions. For instance, the last two columns in Figure 6-9b

shows how certain print artifacts on the object’s surface might create noise in the IR camera

image, which is reduced when the cut-off filter is added. This is particularly helpful for

single-material prints, which are more challenging to identify.

6.7 Discussion

In this section, we discuss the limitations of our approach and how it could be further

developed in future research.

Print Resolution: In this project, we used FDM printers, whose printing resolution is

restricted by the size of its nozzle that extrudes the material, and a low-cost camera that has

an 8MP resolution. In the future, even smaller InfraredTags can be fabricated by applying

our method to printing technologies with higher resolution, such as stereolithography (SLA).

Correspondingly, higher-resolution cameras with better aperture can be used to identify

these smaller details (e.g., Samsung ’s latest 200MP smartphone camera sensor [118]). This

would allow embedding more information in the same area.

Discoverability vs. Unobtrusiveness: For InfraredTags to be detected, the user should

orient the near-infrared camera such that the embedded marker is in the frame. However,

similar to related projects such as AirCode [80] and InfraStructs [153], this might be chal-

lenging since the marker is invisible to users and thus they might not know where exactly on

the object to point the camera at. For objects with flat surfaces, this can be compensated
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for by embedding a marker on each face (e.g., on the six faces of a cube). This way, at

least one marker will always be visible to the camera. Similar to how a QR code printed

on a sheet of paper is detectable from different angles, the flat InfraredTag will maintain its

shape when viewed from different angles (e.g., the router Section 6.5.1c).

However, detection of codes on curved objects poses a bigger challenge. This is because

a 2D code projected onto a curved surface (e.g., the mug in Section 6.5.2) has a warped

outline when viewed from an angle far away from its center. As a solution, we plan to

pad the whole object surface with the same code, similar to ChArUco (a combination of

ArUcos and chessboard patterns) [63], so that at least one of the codes appears undistorted

in the captured image. Also, for curved objects, other tag types that are more robust to

deformations could be used [157] in the future. Alternatively, a small visible or tactile marker

in the form of a notch could be added to the surface of the object (corresponding to where

the code is embedded) to help guide the user to the marker.

Other Color and Materials: While we only used black IR PLA in this project, manufac-

turers could produce filaments of other colors that have similar transmission characteristics

to create more customized or multi-material prints in rigid or flexible forms [40]. In the fu-

ture, we also plan to combine the IR PLA filament with IR retro-reflective printing filaments

to increase the marker contrast even more.

6.8 Conclusion

In this chapter, we presented InfraredTags, a low-cost method to integrate commonly used

2D tags into 3D objects by using infrared transmitting filaments. We explained how this

filament can be used by adding air gaps inside the object or by combining it with regular,

opaque filaments, which increases the tag contrast even more. We discussed what kind of

camera is appropriate for detecting InfraredTags and what kind of code geometry should be

used for best detection, while ensuring unobtrusiveness to the naked eye. After introducing

our tag embedding user interface and mobile infrared imaging module, we presented a wide

range of applications for identifying devices and interacting with them in AR, storing infor-

mation in physical objects, and tracking them for interactive, tangible games. Finally, we

evaluated our method in terms of marker size, detection distance, and lighting conditions.
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Chapter 7

BrightMarkers: 3D Printed

Fluorescent Markers for Object

Tracking

Existing methods for invisible object tagging and tracking have several limitations that

impede their widespread adoption. One significant limitation is their low signal-to-noise

(SNR) ratio, i.e., the poor resolution and clarity of the imaged marker. Because invisible

markers are embedded in the interior of objects, the markers are imaged from a weak signal,

which needs to be amplified by optical and digital processes [80, 153]. These processes result

in long capture or decoding times, typically ranging from seconds to minutes per frame. This

deteriorates further when objects are in motion, i.e., the captured markers appear blurrier

and are thus unidentified in most frames. In addition, existing invisible tags are often limited

in terms of the variety of object colors they can be used with. For example, InfraredTags [29]

embedded 3D printed codes in black objects, and AirCode [80] in white objects.

To address these limitations, we present BrightMarker, a fabrication method for passive

invisible tags using fluorescent filaments that emit light in a specific near-infrared (NIR)

wavelength, which NIR cameras can robustly detect. By isolating the markers from the

rest of the scene using the matching filter, we are able to robustly track markers even when

objects are in motion. Our work builds on InfraredTags and addresses the limitations in

regard to marker resolution and object colors by enhancing detection. We were inspired

by the motion capture system OptiTrack, which uses passive retro-reflective markers that
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Figure 7-1: Ways to add tracking capabilities to objects as used in previous HCI projects.
External tags rely on adding retro-reflective beads [123, 38], sensor modules [166, 37], or
fiducial markers [125], but may result in bulky or visually obtrusive objects. To address
this, BrightMarker (rightmost) embeds high-contrast markers using a fluorescent material.

reflect the shined IR to the camera.

We demonstrate the potential of BrightMarker by showcasing various applications, in-

cluding product tracking on conveyor belts, flexible wearables for motion capture, tangible

and haptic interfaces for AR/VR, and privacy-preserving night vision. Our technical evalua-

tion shows that the markers embedded in a variety of surface colors can be detected robustly

and in real time as they move.

We believe that BrightMarker is a promising approach that could significantly improve

the performance and versatility of invisible object tagging and have a wide range of potential

HCI applications. The ability to track objects without the markers having a bulky form

factor or being in the user’s direct view allows for a more natural and immersive experience

for users, and opens up new possibilities for tracking objects in real-life scenarios where

visible markers would be impractical and obtrusive (Figure 7-1). We note that this chapter

was originally published at ACM UIST 2023 [27].

In summary, we make the following contributions:

• A novel method that uses fluorescent filaments and imaging to integrate invisible and

passive tracking markers into 3D printed objects of different colors.

• A software interface that uniformly distributes markers onto 3D models based on their

geometry.

• A detection hardware module for real-time fluorescence tracking that can be attached to

existing AR/VR headsets.

• An image processing pipeline that allows real-time tracking of the integrated markers.

• The evaluation of the design space, including object colors, under various distance and

lighting conditions.

• A demonstration of the potential applications of our approach, including custom-fabricated
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motion capture wearables, AR/VR tangibles, and privacy-preserving night vision.

7.1 Method: High-Contrast Markers Using Fluorescent Fila-

ments

BrightMarker has the benefit of using fluorescent filaments, which allow us to achieve high

marker contrast in the filtered infrared images. Fluorescence is the physical phenomenon in

which a material absorbs light at one wavelength and emits it at a longer wavelength [48].

This occurs when a molecule absorbs the energy of light and temporarily enters an excited

state, before releasing the energy as a lower-energy photon. The difference between these two

wavelengths is called Stokes shift [111]. By shifting the illumination from shorter wavelengths

to longer ones, the fluorescent color can appear more saturated than it would by reflection

alone, which enhances its detectability [121]. For this reason, fluorescent materials are

particularly useful for imaging and sensing applications.

In this work, we utilize fluorescence as a material property to create objects with easily

trackable markers via multi-material 3D printing. The key material we use is a fluorescent

3D printing filament which contains uniformly distributed fluorescent dye. The filament

emits light in a specific wavelength when excited by an IR light source. By using an optical

filter of the appropriate wavelength for the camera, we are able to capture exclusively the

light emitted by the filament and thus the parts fabricated from it.

7.1.1 Fluorescent Filament

We utilize an ABS (acrylonitrile butadiene styrene) filament developed by DIC Corpora-

tion [19] and Silapasuphakornwong et al. [126]. This filament contains a NIR-fluorescent

dye, which reacts to the NIR light source by fluorescing as explained earlier. The fluoresced

light can penetrate the exterior material of the object and thus be captured from the outside

(Figure 7-2a).

Fluorescence behavior: To understand the fluorescence characteristics of this material

and optimize our system for it, we measured its excitation and reaction using a fluorimeter

(HORIBA Jobin Yvon Fluorolog-3 ). The top graph in Figure 7-2b shows both the excitation

(absorption, plotted in red) and emission (fluorescence, plotted in purple) spectra of the

material. As can be seen in these unfiltered spectra, the emitted fluorescence has a longer
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Figure 7-2: Fluorescence and our imaging approach. (a) BrightMarker embeds tracking
markers with fluorescent filaments, which "shift" the wavelength of IR radiation. (b) Al-
though the excitation and emission spectra of the filament overlap (top), they can be sepa-
rated in practice using optical tools (bottom). (c) Our imaging setup filters for the marker’s
fluorescence.

wavelength than the absorbed light: While the material is most excited at wavelength 763nm,

the peak of the emitted light is at 775nm. This Stokes shift of 12nm between the two spectra

allows us to separate the excitation and emission signals for the IR image capture. However,

due to the spectral overlap highlighted in the graph, the excitation and emission signals first

need to be filtered using optical methods, which we explain in the imaging section.

Multi-material 3D printing: The NIR-fluorescent filament is used in one of the print

heads of a multi-material FDM printer. We used Ultimaker 3 and S5 for our prints. The

printing method builds on InfraredTags’ multi-material printing approach in terms of the

high-level CAD modifications. When embedding a BrightMarker, however, the main object

geometry is printed using the filament of the user’s choice, while the fluorescent filament

is used to print the marker placed in the interior of the object (Figure 7-2a). Because the

fluorescent filament’s main polymer is ABS, it can be printed at standard ABS printing

temperatures (∼250∘C).

As shown in the cross-section in Figure 7-2a, we denote the thickness of the marker by

𝑡𝑚𝑎𝑟𝑘𝑒𝑟, and the shell between the marker and the object surface by 𝑡𝑠ℎ𝑒𝑙𝑙. If 𝑡𝑚𝑎𝑟𝑘𝑒𝑟 is too

small, the fluorescence will be weak for robust marker capture. We found that one printed

layer of the filament, i.e., 𝑡𝑚𝑎𝑟𝑘𝑒𝑟= 0.15mm, is sufficient for our applications. On the other

hand, the value of 𝑡𝑠ℎ𝑒𝑙𝑙 depends on the material used for the main object geometry, which

we explain next.
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Figure 7-3: The design space of possible material colors. Each test slab was printed increas-
ing shell thickness. The left image of each pair shows the visible camera capture, while the
right image shows the NIR capture.

Main object material and color: Compared to InfraredTags [29] which only allows

embedding into black objects, BrightMarker is compatible with multiple color options for

the main object geometry (including object surface). Due to the high intensity of the

fluoresced light, the emitted light can penetrate the shell above the fluorescent marker and

reach the camera’s image sensor.

We observed that the fluorescent marker can be combined with both PLA and ABS

materials. This makes it possible to have a variety of colors for our fabricated objects. Since

the fluorescent filament is ABS, we strive to use ABS for the main object geometry when

possible, as it ensures similar printing parameters (e.g., temperature) among the two parts.

The only ABS color we determined that does not pass the fluoresced light is black. This is

because the carbon black used in the conventional filament absorbs most wavelengths [13].

Thus, for producing black objects, we use the IR-PLA filament [1] used in InfraredTags,

which passes IR light.

Figure 7-3 shows the design space of material colors. As shown in the NIR camera

images, a fluorescent checkerboard pattern is embedded in each test slab to determine 𝑡𝑠ℎ𝑒𝑙𝑙

for the different colors. The pattern is covered with increasing shell thickness, from 𝑡𝑠ℎ𝑒𝑙𝑙=

0mm to 𝑡𝑠ℎ𝑒𝑙𝑙= 3mm, thus the pattern contrast in the camera images gradually decreases.

We choose 𝑡𝑠ℎ𝑒𝑙𝑙 such that at this value, the pattern is no longer in the visible camera image,

i.e., its contrast is less than 5% [11]. Further, if the shell is too thin, this can result in a

poor surface finish, as observed in the lower end of the slabs.

We found that colors closer to infrared, i.e., red, yellow, and orange, tend to be less

opaque than other colors due to their dye composition. Thus, we use 𝑡𝑠ℎ𝑒𝑙𝑙 = 1.2mm for

these colors. For other colors printed with ABS, we use 𝑡𝑠ℎ𝑒𝑙𝑙=0.3mm For the IR-PLA
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(rightmost), we use 𝑡𝑠ℎ𝑒𝑙𝑙= 0.8mm, which has a tinted appearance due to its translucent

property. These values are marked in the figure with a small triangle to the left of the slabs.

Larger thicknesses are also possible, but to ensure the detectability of the markers in IR, we

recommend using values that maintain the bit binarization accuracy above 90% [29].

We note that these values also depend on the specific filament vendor and that vari-

ations might exist even among different batches from the same vendor. Thus, users are

recommended to determine the optimal values for their filaments by first printing test slabs

as illustrated in this section.

7.1.2 Infrared Imaging of Fluorescence

When coupled with wavelength-specific optical components, the light emitted by the fluo-

rescent filament results in high contrast between the marker and the rest of the IR image.

This allows us to robustly detect and track the objects in which the markers are embedded.

Our imaging system consists of three key components: (1) a light source for exciting the

marker, (2) an optical filter for isolating marker fluorescence, and (3) a high-speed infrared

camera. We explain the role of these components in the next sections.

Light source for excitation: Excitation of the NIR fluorescent material within the 3D

printed object is necessary to read the embedded pattern. There are two considerations that

an appropriate light source should meet for this purpose. First, the light emitted by the

light source should be invisible to the user, i.e., there should be no emission below 700nm.

Second, the light should excite the fluorescent material as much as possible. To achieve this,

the light source should have high power, and its peak wavelength should be as close to the

material’s peak excitation wavelength (i.e., 763nm as explained in Section 7.1.1) as possible.

To satisfy these criteria in practice, we use LEDs that peak at 760nm and deliver high

power. The bottom graph in Figure 7-2b shows the spectrum of the LED used in our high-

speed imaging module (Section 7.2.2), marked red and labeled "selected light source." We

note that the intensity reaches zero at approximately 800nm.

Optical filter for marker isolation: Through a wavelength-specific filter, we can enhance

the recognition of fluorescent markers by minimizing interference from other wavelengths.

Due to the natural characteristics of fluorescence, there is an overlap between the higher

wavelength end of the excitation spectrum and the lower wavelength end of the emission
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spectrum. This overlap, which is shown in the top graph of Figure 7-2b, must be eliminated

to avoid overwhelming the weaker emitted fluorescence light with the brighter excitation

light, which would significantly reduce marker contrast.

To separate these signals, we use a longpass filter with a cut-on wavelength of 830nm,

which blocks any wavelength under this value from entering the camera. As shown in

Figure 7-2c, it blocks the excitation light emitted by the LED (marked red) and the visible

environmental light (marked yellow) from reaching the camera. The only wavelength range

that can enter the camera corresponds to the fluorescence from the marker itself (marked

purple). Therefore, as shown in the top graph of Figure 7-2b, there is no longer an overlap

between the excitation and emission spectra: Our selected light source cuts the emission

at ∼810nm, while the filtered fluorescence that enters the camera starts at ∼820nm. This

separation allows the high intensity of the markers in captured images.

High-speed NIR camera: A high-speed camera allows the observation of the fluorescence

emitted from the moving objects.

To capture images at a high frame rate and minimize motion blur, we use a 60-frames-

per-second (fps) monochrome camera with a global shutter rather than a rolling shutter.

Rolling shutters, which are commonly used in consumer-grade cameras, scan the image

sensor line by line from top to bottom, resulting in a time delay between the capture of each

row [47]. This can lead to motion blur in fast-moving scenes, which makes it difficult to

detect the BrightMarker accurately.

In contrast, a global shutter captures the entire image simultaneously, resulting in no

time delay between rows. This is crucial for real-time tracking where every frame counts.

Additionally, a monochrome camera achieves higher spatial resolution than color cameras,

and eliminates the need for a color filter array, which reduces the amount of light reaching

the image sensor and decreases the camera’s sensitivity to NIR fluorescence [148].

Together, these properties allow us to create a real-time video representation of the

object with high temporal resolution.

7.2 Fabricating, Capturing, and Tracking BrightMarkers

In this section, we first describe the workflow in which BrightMarkers are added to objects

for fabrication. We then explain the hardware and software we use for their detection once
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Figure 7-4: Marker embedding process. (a) Our tool allows users to (b) uniformly distribute
markers based on the object geometry.

printed.

7.2.1 Adding Markers for Fabrication

Users start by importing a 3D model into the CAD editor (Blender). Next, the user specifies

how the fluorescent marker(s) should be implanted using our plugin, which offers a variety

of options as shown in Figure 7-4a.

Determining marker locations: In tracking applications, it is important to pad the object

surface with numerous markers, rather than a single one, to ensure the object can be tracked

independently of the object orientation. The user can either manually pick exact target

points on the object for the marker embedding, or use an automatic distribution mode.

This mode uniformly distributes points on the object geometry based on a fixed inter-

marker distance or a total number of desired markers. The user can specify whether the

target points should be distributed on the whole object, the areas other than the base, or a

specific area selected by the user.

Determining marker content : The plugin allows users to embed ArUco markers with the

same ID ("Use fixed ArUco ID") or increasing IDs ("Use sequential ArUco IDs") based

on the desired use case. Unique sequential IDs can help identify an object’s location and

orientation. It is also possible to load a custom marker, such as a QR code or a Micro QR

code, by selecting an image file.

Determining marker depth and dimensions: Next, the user specifies how deep the marker

should be embedded under the object’s surface. For this, the user can enter a custom value or

simply select the desired object color from a dropdown, after which the plugin automatically
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retrieves the corresponding 𝑡𝑠ℎ𝑒𝑙𝑙 value from Section 7.1.1. Next the user can specify the

dimensions of the marker. The marker thickness is set to the recommended 𝑡𝑚𝑎𝑟𝑘𝑒𝑟 value

by default, and the user can specify a desired side length of the marker.

Finally, the user can specify whether the marker’s bottom edge should be parallel to

a certain plane. This helps users to align codes in the 3D printing direction, which can

lower print time and avoid print failures that might occur due to frequent nozzle switching.

After setting up the parameters, users can start the embedding by clicking "OK". Once the

markers are embedded, users can export the resulting STL files for 3D printing.

3D printing : The user imports the resulting STL files into the slicer software of the printer.

For the popular slicer Cura1, we recommend disabling the "combing" parameter to ensure

that the printer does not move over the already extruded pieces of fluorescent filament. This

prevents the fluorescent filament from getting mixed into the outer surface layers and thus

becoming visible.

Implementation: The automatic uniform distribution of the markers is created by first

determining the areas on the model that are large enough and close to being flat to accom-

modate a marker of the user’s specified size. This is done by comparing the angles between

the normals of adjacent faces with the method faces_select_ linked_flat(), grouping the

ones with an angle difference smaller than 0.1 rad, and ensuring that the contained surface

area is greater than that of the marker. This threshold can be adjusted based on the user’s

preference and application if desired. As shown in Figure 7-4b for the lightsaber model from

Section 7.3.3, this gives the subregions on the object geometry that are not too curvy or

sharp.

Next, to uniformly sample points, each subregion is temporarily duplicated, flattened,

and its shape is approximated to a high degree of accuracy in an array of 1s and 0s created

with repeated calls of the function ray_cast(). The array is analyzed row by row, choosing

rows that are a distance of half the marker side length apart. Points in each row are picked

if they are sufficiently far from each other and the edges of the subregion. Finally, using the

specifications set by the user, a knife projection is used to project the marker so it has the

same curvature as the object at the sampled point. The projected marker is extruded to

form a 3D model, which is exported separately.

1https://ultimaker.com/software/ultimaker-cura
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7.2.2 Detection Using Imaging Modules

As shown in Figure 7-5a, we built two hardware modules that fulfill the requirements of the

fluorescence imaging principles explained in Section 7.1.2.

Figure 7-5: Hardware modules for tracking BrightMarkers.

Smartphone attachment : The module can be directly plugged into existing phones using a

USB-C connection. It includes eight LEDs that correspond to the excitation wavelength of

our filament. To ensure objects fit in the phone’s field of view, half of the LEDs have a

viewing angle of 60∘ and the other half 120∘ (Stanley FWR1107MS-TR and FWR1108MS-

TR, $2.5 each). The attachment weighs 47 grams, and consumes 1.6W during operation.

We use it with a OnePlus 8 Pro that comes with an embedded NIR camera (GalaxyCore

GC5035 2), which we coupled with the appropriate longpass filter for fluorescence (MaxMax,

$30).

Stand-alone module: The module is built for high-speed fluorescence imaging and can be

attached to existing AR/VR headsets. It consists of a 60-fps NIR camera (ArduCam with

OV2311 3, $98) coupled with the above-mentioned longpass filter, a 10W LED grid (Na-

galugu, $18), and a small battery (generic 9V, $2). A custom PCB utilizes a pulse-width

modulated (PWM) signal to deliver battery power to the LEDs. It uses a timer IC (LM555)

and an n-channel MOSFET to modulate the LED power via a constant current regulator

(LM317), which can be adjusted using a potentiometer. In total, the module costs $148 and

weighs 118g. For prototyping purposes, we did not include a processing component on the

module itself but connected its camera to an external computer using a cable. In the future,

the module can be augmented with a small microprocessor to run the compute on-the-go,
2https://en.gcoreinc.com/products/index?cid=2&subcid=5
3https://www.ovt.com/products/ov2311/
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considering that our approach does not use compute-heavy ML models.

To be able to attach and detach the stand-alone module to existing AR/VR headsets, we

designed and 3D printed an enclosure that encompasses all the parts. Figure 7-5b,c shows

how the module is mounted on the headsets.

7.2.3 Image Processing for Marker Detection

We developed an image processing pipeline to detect the markers in real time. The process

of tracking and decoding the markers is shown in Figure 7-6, and is explained below.

Figure 7-6: BrightMarker’s image processing pipeline. (a) The objects are tracked using (b)
the outlines in IR capture. (c, d) The localized markers are decoded using a set of filters.

Tracking the marker : To keep the detection script as lightweight as possible for fast tracking,

we intend to apply a small number of processing steps on the main image frame when

localizing the markers. Thus, the grayscale input image is simply binarized using Otsu’s

thresholding method. The binarization results in multiple identified contours. We then

approximate each contour as a polygon. The polygons with four sides are our target markers

(Figure 7-6b).

This approach keeps track of all markers irrespective of the data encoded in them (i.e.,

ID/string). This keeps the detection lightweight if the encoded data is not relevant to the

application, e.g., when all markers are known to have the same ID.

Decoding the marker : For data-relevant applications, the second part of the pipeline, marker

decoding, is enabled. In this part, we use each marker’s bounding box from the previous

step to crop out a smaller patch from the original frame (Figure 7-6c). While cropping, we

add a small padding around the marker, i.e., 1/8 of the detected bounding box length. We
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then resize the patch to a certain size, i.e., 50px height. We invert the image such that the

markers are dark to follow the ArUco convention. We apply a Gaussian blur to remove the

noise, and apply an adaptive threshold with a block size of 15. Next, we use the ArUco

detection library to decode the marker ID from the binarized patch.

The patch resizing in this part ensures that the applied block size is appropriate re-

gardless of marker location and distance. To determine this, we applied different filtering

operations to a test recording consisting of 600 frames, where the marker is moved constantly

(distance: 10-80cm). When the adaptive threshold was applied to an uncropped frame, the

markers could be decoded from only 85.2% of the frames. On the other hand, applying the

threshold after cropping and resizing allows 98.2% of the frames to be decoded.

If no ArUco marker is found in the patch, the script checks if there is a QR code or

a Data Matrix. For this, we follow the same steps, except for two differences: Because

the codes have more bits than ArUcos, we use a rescaling height of 100px and an adaptive

threshold block size of 9. We then use a standard library to decode the codes. An example

is shown in Figure 7-6d.

If an ArUco or a QR code is found in the patch, the script records its data and corners

in an array.

Tracking decoded markers across frames: We also added a "caching" feature to our detection

pipeline that helps track of marker data across frames, without having to run the decoding

script in every new frame. When caching is enabled, we attempt to match the newly local-

ized markers to already decoded markers from the prior frame by comparing their corner

coordinates. If a new marker is found to be similar to a previous marker, we retrieve the

marker data from the previous frame. Otherwise, we run the remaining decoding script.

This is especially useful for QR codes, which traditionally take several frames to be de-

coded, whereas the fluorescent outline can already be tracked in all frames. However, to be

conservative, we did not enable this feature during our evaluations (Section 7.4).

Implementation: We use OpenCV [15] for the implementation of our system and the

Dynamsoft4 library for the detection of the 2D barcodes (i.e., QR, Micro QR, and Data

Matrix). For rapid prototyping purposes, we ran the detection script on our laptop during

the development of this project. The processing of a single 640x360px frame takes 3.7 ms

4https://www.dynamsoft.com/
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on average, corresponding to a 270fps on a 2020 MacBook Pro with a 2GHz Quad-Core

Intel Core i5 processor. Since our high-speed camera has a limit of 60fps, the detection in

our applications was constrained to this rate, but our software pipeline can support higher

rates as well. In our AR/VR applications, after running OpenCV ’s ArUco pose estimation,

we use Unity ’s coordinate transform features to convert the marker’s location to a common

local coordinate frame.

7.3 Applications

In this section, we show several applications of BrightMarker, in which the tracking of object

locations is an integral part of a process.

7.3.1 Rapid Product Tracking

Because BrightMarkers can localize and track embedded objects, it can be used for industrial

or commercial applications in which items need to be processed in a swift manner. This can

be especially useful for product and packaging logging where, although the external labels

may be intentionally or unintentionally removed, it is still crucial to keep track of the item

origin and other supply chain or inventory-related data.

Tracing products on conveyor belts: In manufacturing and packaging industries, fluorescent

markers could be integrated to enable product or part tracing as part of assembly lines

(Figure 4-1a).

On-the-fly inventory logging : Users can use the smartphone attachment described in Sec-

tion 7.2.2 to activate the fluorescence of BrightMarker, and scan a batch of products by

moving the phone to quickly capture all codes.

We note that currently, our approach is more suitable for products that are already being

3D printed (e.g. shoes [141]), and could be extended to those that will be printed in the

future.

7.3.2 Wearables for Tracking Human Motion

One of the applications of BrightMarker is 3D printing custom wearables for tracking human

motion. Figure 7-7a shows rigid and flexible wristbands printed with embedded markers.
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Figure 7-7: Wearable for hand tracking. (a) Rigid and flexible bracelet designs with embed-
ded markers. (b) Fluorescence imaging is used to detect the unique tracking IDs. (c) The
user’s motion is digitized.

Embedding unique markers allows us to digitize the user’s motion and distinguish between

right and left hands (Figure 7-7b). In our setup, the detection module is mounted above

the user’s desk (Figure 7-7c).

Such tracking wearables can allow various use cases unobtrusively, such as creating dig-

ital twins and animations, increasing safety in human-machine collaborations, posture cor-

rection warnings, or device control. Compared to existing tracking methods, the use of

BrightMarker preserves the user’s privacy since the camera only captures the marker, not

the user’s face or environment. Furthermore, current methods, especially those based on

machine learning, are usually tuned for able-bodied people’s hands. Wearables with Bright-

Marker could support applications for people with limb differences or hand impairments. In

our current implementation, we produced the black wristband using PLA and the red one

using ABS. Both wristbands have a small thickness, thus allowing them to be bent. In the

future, more custom wearables could be printed using more flexible materials such as TPU

or by utilizing FDM-based textile fabrication methods [40, 137].

7.3.3 Tangible Interfaces for MR Experiences

BrightMarkers can be embedded into objects to turn them into tangibles with more pre-

cise tracking capabilities for mixed reality (MR) [21]. For instance, opportunistic tangible

interfaces could enhance AR interactions [34], or serve as haptic placeholders in VR.

Appropriating physical parts as precise AR input tools: Figure 4-1c shows a loudspeaker

that has been unused in an office. The user wants to make use of the unplugged speaker

by transforming it into a passive tangible interface for controlling the volume and bass of
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his AR glasses. This allows him to have a more natural and tangible input method, while

touching small buttons on the glasses can be cumbersome.

BrightMarker has the benefit that the marker objects also include the part’s identifier,

i.e., the top and bottom knobs can be distinguished and assigned unique functionalities.

Further, since the knobs have a uniform color and shape, it would be difficult to precisely

track their rotation without the embedded BrightMarkers.

Real-life objects as VR haptic props: BrightMarker allows users to make use of the physical

shape of existing real-world objects (e.g., toys, gadgets, sports gear) as haptic proxies in

VR. For example, a "lightsaber" toy could come with integrated BrightMarkers, so it can be

used as a different object in games. As shown in Figure 7-8, the lightsaber’s hilt is used as a

haptic placeholder for a sword to slice fruits in a game. Another benefit is that the objects

are fully passive, while typical VR game controllers contain infrared LEDs that need to be

powered up.

Figure 7-8: Using a lightsaber as a prop to slice fruits in a game.

7.3.4 Privacy-Preserving Night Vision

Traditional security cameras use infrared LEDs to monitor environments at night. However,

these cameras might not be optimal for use in private environments, such as one’s bedroom,

although users may still want an alternative method to ensure the security of their valuable

belongings. BrightMarker’s imaging system removes all details in the camera stream except

for the marked objects. In Figure 7-9, a box that stores valuables was tagged with a

BrightMarker, and the rest of the object surface was uniformly inlaid with the fluorescent

filament so it can be captured from afar. The camera detects the shiny outline of the object,

it triggers an alarm. While doing this, it preserves the user’s privacy. This fluorescence-based

monitoring approach could be enabled by modifying existing home security cameras, i.e., by

147



Figure 7-9: Privacy-preserving night vision. (a) Regular CCTVs help monitor important
objects but may intrude on users’ privacy. (b) Our detection setup allows tracking of solely
the fluorescent objects.

attaching the appropriate filter on the camera and an IR source next to it as described in

Section 7.1.2.

7.4 Evaluation

In this section, we evaluate our system’s performance under a variety of conditions, including

detection distance, illumination, shell color, and speed.

7.4.1 Detection Distance, Excitation Intensity, and Surface Color

Because the embedded filament fluoresces more when exposed to a greater amount of IR

excitation, the maximum distance at which a marker can be detected depends on the amount

of excitation it receives. To evaluate how the IR intensity affects detection, we conducted an

experiment determining the minimum amount of IR required to track vs. decode markers

at varying distances from the camera. We consider tracking to be when the program finds

the bounds of the BrightMarker; in contrast, decoding occurs when it is also able to extract

the data of the marker (Section 7.2.3).

Procedure: We printed three square BrightMarkers with a 4x4 ArUco pattern of size 1"x1"

(2.54cm x 2.54cm). Each BrightMarker was printed using shell material of a different color

(blue ABS, red ABS, and black IR-PLA). We picked these to represent the variety in ma-

terials and fluorescence strength. We placed a 220cm tape measure along a table in a dark

room (3lux ambient light). The NIR camera was aligned at the 0cm mark. As a baseline,

we also recorded the maximum distance that a (visible) paper ArUco marker of the same

size could be decoded using solely the off-the-shelf ArUco detection library.
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Figure 7-10: Excitation intensity required with increasing marker distance from the camera.

For each trial, we started by placing a BrightMarker 10cm away from the camera. Then,

we moved the excitation light as far away from the marker as possible until the marker

is just able to be tracked. Keeping the light at this position, we measured the amount of

illumination reaching the marker surface using a Tacklife LM01 digital luxmeter. We then

repeated this, but for the amount of illumination required for decoding rather than tracking.

The minimum illumination needed to track and to decode the BrightMarker was recorded

for each interval of 10cm until 220cm.

Since different shell colors allow for varying levels of fluorescence, we conducted trials

for the different color prints. The chosen colors represent a wider range of fluorescence,

including those which only allow minimal fluorescence (e.g., blue) and those with substantial

fluorescence (e.g., red). We repeated the procedure three times for each color and plotted

the average results in Figure 7-10.

Results: The tracking and decoding results are plotted separately for each color in Figure 7-

10. The dashed lines represent the intensity needed to track the marker at each distance.

The solid lines, however, represent the intensity to decode the marker at each distance.

As a baseline, the dashed green line shows the maximum distance at which a standard

paper marker can be tracked and decoded (i.e., 122cm). We found that since the NIR capture

filters out wavelengths lower than the BrightMarker emission, markers are able to be tracked

at distances far greater than a paper marker. On the other hand, BrightMarker decoding

distances were not expected to exceed this value, but were expected to be relatively close to

it. While the red and black samples exhibited this behavior, the blue sample exceeded the
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expectation and could be decoded just past the point where a paper code can be detected.

We believe this is because the filtered capture allows the decoding algorithm to ignore the

noise that is in the unfiltered capture; thus, allowing it to decode the marker at a further

distance. However, this does not occur for other colors because unlike blue, which allows

lower levels of fluorescence, the emitted light in the red and black markers slightly bleed

into the shell of the markers.

The plots also indicate a correlation between material color and the intensity of light

required for detection. Overall, lower curves indicate easier detection than higher curves,

since a low curve in this plot means that less light is needed given a marker distance. The

more fluorescence that the shell lets through, the less excitation is required to detect the

marker, e.g., less light is required for red prints than blue prints. This is expected since the

NIR camera is capturing the emitted light, so the materials that allow for more emission

require less overall excitation. For this reason, we recommend using shell materials such as

red ABS for tracking from far distances using weaker excitation sources.

7.4.2 Detection Rate and Marker Speed

Because the fluorescence of BrightMarkers is imaged using a longpass filter, our detection

setup eliminates non-marker elements from the scene, thus reducing the chance of undetected

frames. We conducted an experiment to compare how the fluorescence-based detection

approach improves the detection rate compared to regular InfraredTags [29] as the tags are

being moved.

Procedure: We printed a red and blue BrightMarker with a 4x4 ArUco pattern (size: 2.54cm

x 2.54cm) to represent high and low fluorescence. We then used the printer as a CNC tool:

We attached each marker separately on the printhead of an Ultimaker 3, and placed our

detection module on the printbed, with its camera looking upward at the marker. We moved

the printhead in an upward conical helix trajectory to cover the remaining printer volume

(21.6x21.6x130cm), while also staying in the camera’s field of view. We repeated this for

12 different head speeds (range: 20mm/s - 240mm/s). We computed the detection rate

throughout the trajectory from the resulting 60-fps videos.

Results: Across the 12 speed values, the InfraredTag could be tracked and decoded in only

60.73% of the frames on average (std=2.26). For BrightMarkers, the red and blue sample
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could be tracked in 100% of the frames. The red sample could be decoded in 99.41% of the

frames (std=0.48) and the blue sample 99.83% (std=0.19). The small standard deviation

values across the different speeds show that the high-speed camera employed in our imaging

module successfully avoids motion blur due to its global shutter (Section 7.1.2).

7.4.3 Marker Size

To test what the smallest detectable BrightMarker size is, we printed samples in 1mm

dimension increments (range: 5-10mm) separately for red and blue ABS surface materials.

For both colors, the smallest decodable marker was 6mm wide. However, the camera had to

be 2cm close to the blue marker to decode it, while the red marker could be decoded from

as far as 7cm. This is likely due to the higher IR absorbance of the blue shell material.

7.5 Discussion

In this section, we discuss the limitations of BrightMarker and potential directions for future

research.

7.5.1 Concentration of Fluorescent Dye

The concentration of the fluorescent dye used in the filament of BrightMarkers is an impor-

tant factor in its detectability.

To test how the dye concentration affects the marker intensity, we obtained two small

test plates from the filament manufacturer, since a high-concentration filament is not readily

available yet. Each plate was doped with fluorochrome, one with the same concentration

as our filament, and another one with eight times the standard concentration. Given the

same level of excitation, we measured the intensity of the emitted light when the plates are

uncovered. We repeated this after covering both samples with a 1.2mm sheet made from

regular red ABS filament, mimicking BrightMarker’s 𝑡𝑠ℎ𝑒𝑙𝑙.

In the uncovered comparison, we observed that the highly doped sample resulted in 33%

more IR intensity than the regular sample. In the covered comparison, which represents the

conditions for BrightMarker, the intensity of the highly doped sample was 20% higher than

the regular sample. Thus, to further increase detection performance, further research and
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optimization could lead to the production of filaments with higher fluorochrome concentra-

tions.

7.5.2 Mass Production

In the future, the BrightMarker approach may be adapted for mass-market manufactur-

ing. For instance, instead of 3D printing, plastic overmolding could be utilized to include

fluorescent materials in mass-manufactured products without any post-processing steps.

7.5.3 NIR Power

While the LED component we used in the AR/VR attachment module (Section 7.2.2) is

rated 10W, we did not use it at full power for the headset. The potentiometer in the PCB

allows us to adjust the power from 1.8W up to 3.5W. At the lowest power, a black IR PLA-

covered sample can be tracked from up to 50cm away. At max power, it can be tracked at

90cm away. While, as far as we know, there are no longitudinal studies yet on NIR and

eye safety, commonly used examples of NIR light include iPhone FaceID, Microsoft Kinect,

and Intel RealSense depth cameras. For instance, RealSense D400’s IR projector [68] can

consume up to 4.25W.

7.5.4 Embedding Circular Markers

In this project, we embedded ArUco markers for tracking purposes. Another way to add

trackers would be to use the fluorescent filament insert small circular markers, similar to

OptiTrack ’s retro-reflective beads, underneath the object surface. Such triangulation-based

tracking systems are typically deemed more robust than square marker-based methods.

However, since triangulation-based methods require multiple cameras to be set up, a costly

and cumbersome process, we chose to use ArUco markers for their simplicity which suits our

everyday applications. Interested researchers can use our embedded fabrication approach

for other tracking methods based on their needs and constraints. In the future, this could

also be used to improve detection for more intricate objects, i.e., those with high-frequency

surface details that would lead to local occlusion of the markers based on the viewing angle.
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7.5.5 Occlusion

Object occlusion is a typical problem for most tracking methods. Similarly, BrightMarker

could be occluded by the user’s hands and other objects. One way to overcome this is to

couple the optical tracking with magnetic tracking methods (i.e., hybrid tracking) [130]. A

magnetic material could be embedded in the printed object using magnetic filaments, which

would enhance the tracking when the object is occluded by utilizing magnetic sensors.

7.6 Conclusion

We presented BrightMarker, a novel method for embedding and tracking hidden high-

contrast markers using fluorescent 3D printing filaments. Our approach offers an easy-to-use

solution for marker-based tracking without affecting the object’s look or shape. We showed

that BrightMarkers can be embedded in various object colors, and can be easily localized

using a light source and camera filter that match the fluorescence characteristics of the

material. Our CAD tool allows users to add markers to their 3D models before printing,

and our optical detection hardware can be attached to existing AR/VR headsets for marker

tracking. BrightMarker’s image processing pipeline uses the captured images to robustly

localize the markers.

Our applications demonstrate rapid product tracking, custom-fabricated wearables, tan-

gible interfaces in AR/VR, and privacy-preserving night vision. Our evaluation shows that

markers of different colors can be detected from afar and at various object speeds. We

believe that our work demonstrates the potential of using fluorescence as an effective and

versatile method for embedding invisible markers, and we hope it fosters further exploration

and innovation in this area by the HCI and fabrication community.

153



154



Chapter 8

Discussion

Together, the presented tagging approaches (natural, structural, and internal) provide effec-

tive ways of how to include identifiers and markers in objects without disrupting their look,

feel, and functionality. This is especially true for natural markers as they, by definition, do

not alter any feature of the object. However, for structural and internal markers, the design

needs a more meticulous thought process so as to not impact these aspects.

While our presented approaches align with the design criteria outlined in Section 1.1,

they also represent a targeted exploration of the broader design space for embedded markers.

The precise dimensions of this design space have not been the primary focus of this thesis.

Nonetheless, future investigations could extend their scope to provide a more thorough

exploration of the specific dimension axes.

These embedded markers contribute to the bigger vision of enabling users to more seam-

lessly identify products, devices, and other items in their surroundings and access more

information related to them rapidly. Further, these techniques can be used in various in-

dustries that inherently rely on tags, such as retail, packaging, shipping, robotics, and

manufacturing.

The following sections explore various aspects and implications of the embedded markers

and the vision of ubiquitous metadata. We explore key topics related to scaling up for mass

production, privacy considerations, the markers’ use in consumer products, and interaction

and personalization in AR. Through these discussions, we aim to gain deeper insights into

the challenges and potential solutions that arise in the context of digital fabrication, mixed

reality, and ubiquitous metadata.
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8.1 Scaling Up and Mass Production

The successful implementation of embedded machine-readable markers extends beyond 3D

printing and requires consideration for generalization to more common and scalable manu-

facturing methods. In this section, we discuss the challenges and opportunities associated

with extending the use of embedded tags to diverse manufacturing processes to allow for

broader adoption and mass-scale production.

Scalability is a key aspect to consider when generalizing embedded markers to more com-

monly used manufacturing methods. While 3D printing offers flexibility and customization,

its relatively slow production speed makes it less suitable for large-scale manufacturing.

Therefore, it is necessary to explore and adopt faster and more scalable methods, such as

injection molding, casting, and CNC machining, to meet an increasing demand for tagged

objects. To ensure compatibility with these scalable fabrication methods, the design of

embedded tags should be adaptable and compatible with the specific constraints, material

properties, and production workflows associated with each technique. This requires careful

consideration of factors such as the choice of materials and geometric design optimizations.

Standardization also plays a vital role in the generalization of embedded markers to more

common manufacturing methods. Developing industry-wide standards for tag designs and

integration processes fosters interoperability and facilitates seamless adoption across differ-

ent manufacturers and industries. Standardization efforts should consider aspects such as

tag specifications and encoding formats. By establishing common practices, manufacturers

could more easily incorporate embedded markers into their existing production workflows.

Cost considerations are another important factor for scalable manufacturing. Exploring

cost-efficient materials, optimizing fabrication processes, and identifying opportunities for

economies of scale are essential to make embedded markers economically viable. Finding

a balance between cost and functionality ensures that manufacturers can adopt embedded

markers without significant financial barriers while still reaping the benefits of enhanced

object identification, tracking, and interaction.

8.2 Privacy

The widespread adoption of embedded machine-readable markers entails important privacy

implications for end users [18]. In this section, we discuss the privacy challenges and potential
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solutions related to embedded markers.

One of the primary privacy concerns is the unauthorized access or misuse of data encoded

in the markers. As embedded markers become more prevalent in various domains, including

retail, robotics, and smart homes, the potential risks associated with data breaches and

unauthorized tracking of individuals become more significant. It is crucial to implement ro-

bust encryption and authentication mechanisms to protect the integrity and confidentiality

of the information stored in the markers. This includes techniques such as data anonymiza-

tion, secure key management, and access control protocols [46, 163] to prevent unauthorized

access and ensure data privacy.

Another privacy consideration is the potential for tracking and profiling of individuals

based on the information collected through embedded markers. In certain contexts, such as

retail or marketing, embedded markers may be used to track user behavior, preferences, and

interactions. To address this concern, privacy-enhancing technologies and techniques should

be utilized, such as data minimization, privacy-preserving algorithms, and user consent

mechanisms [97]. By allowing individuals to have control over their data and providing

transparent information about data collection and usage, privacy risks can be mitigated.

To address the privacy implications of embedded tags, interdisciplinary collaborations

between researchers, policymakers, and industry experts are essential. Establishing privacy

guidelines, standards, and best practices specific to embedded tags can help ensure respon-

sible and privacy-preserving deployment.

8.3 Embedded Markers in Consumer Products

One of the main applications of embedded machine-readable markers is the concept of Digital

Product Passports (DPP). DPPs serve as comprehensive digital records that accompany

physical consumer products throughout their lifecycle, providing valuable information and

insights to various stakeholders, including manufacturers, retailers, and consumers [71, 145].

By embedding machine-readable markers into products during the manufacturing pro-

cess, a wealth of information can be captured and associated with each item. This informa-

tion can include details about the product’s origin, materials used, manufacturing processes,

quality certifications, and sustainability attributes. Thus, DPPs could allow the metadata

to be securely stored and accessed throughout the product’s journey.
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For manufacturers, DPPs could enable enhanced traceability, supply chain management,

and quality control. Manufacturers could monitor the entire lifecycle of their products, en-

suring compliance with regulations, identifying potential issues, and tracking product per-

formance. This comprehensive data could enable manufacturers to make informed decisions,

optimize processes, and improve sustainability practices.

Retailers and distributors could also benefit from DPPs. By accessing the embedded

metadata, retailers can verify product authenticity, ensure compliance with standards, and

provide consumers with detailed information about the products they offer. This trans-

parency builds trust and enables consumers to make more informed purchasing decisions

based on their preferences and values.

Consumers may make sustainable and ethical choices, supporting brands that align

with their values, using the information from the embedded markers. Additionally, DPPs

can facilitate after-sales services, such as warranty registration, maintenance guides, and

product recalls, enhancing the overall user experience.

However, the implementation of DPPs faces certain challenges. Data privacy and se-

curity are key concerns, as sensitive information is associated with each product. Robust

measures must be in place to ensure the secure and controlled access to this information,

protecting both the integrity of the data and the privacy of individuals. Additionally, the

standardization and interoperability of metadata formats and protocols are essential to en-

able seamless exchange of information across different stakeholders and systems.

8.4 Interaction and Personalization in AR

Enabling the detection of physical objects’ metadata on AR headsets, such as smart glasses,

holds great potential for advancing personalized AR experiences. By incorporating sensing

capabilities into these headsets, users can effortlessly interact with their surroundings and

receive additional context and information about tagged objects. The continuous scanning

of the environment using always-on sensors would eliminate the need for users to point their

mobile devices in specific directions to read the tags.

However, it is essential to display the information from the marker only when it is relevant

and beneficial to the user. Avoiding information overload is crucial to prevent distractions

and maintain focus. Inspired by previous research [83], an optimization-based approach
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Figure 8-1: Adaptive display of related information acquired from unobtrusive tags could
be utilized to create a more personalized and assistive mixed reality environment.

could be pursued to determine which tags should be visible in the AR view. Factors such

as the user’s gaze, attention level, and current activity will be taken into consideration.

Leveraging tools and sensors already present in AR headsets, such as eye tracking, will

aid in the computational determination of information visibility in the AR environment.

This personalized approach ensures that users receive the most relevant and contextually

appropriate information.

Moreover, the AR content displayed can be tailored to the user’s daily tasks and goals,

further enhancing personalization [28]. For instance, a tagged artwork in a museum can

trigger personalized information about the artist, the painting’s history, or related artworks,

providing a more engaging and informative experience for each visitor. When shopping, the

embedded tags on product packaging can be spatially displayed and filtered based on the

user’s predetermined shopping list and fitness goals (Figure 8-1). This tailored approach

would provide users with targeted recommendations and relevant information that aligns

with their specific needs and preferences. Throughout these interactions, ensuring privacy

and obtaining user consent should be prioritized (Section 8.2).
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Chapter 9

Conclusion

In this thesis, we have explored the design, fabrication, and detection of embedded machine-

readable markers that serve as a bridge between the physical and virtual worlds. These

tags offer a means to identify, track, and interact with real-world objects in mixed reality

and spatial computing. Our research explores three distinct approaches: natural markers,

structural markers, and internal markers.

Natural markers utilize the inherent fingerprints of objects and materials. Structural

markers leverage the structural artifacts that emerge during the fabrication process for

unique identification. Internal markers are intentionally engineered within the interior of

objects and are made from specialized materials. These approaches have been optimized

for minimal impact on the object’s appearance, cost-effective fabrication using commonly

available tools like 3D printers and laser cutters, and detection using readily accessible

sensors such as RGB and near-infrared cameras.

Our research envisions a future where every real-world object carries metadata that can

be accessed effortlessly using mobile devices or augmented reality glasses, a concept we

refer to as "ubiquitous metadata." By combining techniques from computer vision, machine

learning, computational imaging, and material science, our approaches provide robust and

versatile solutions toward this vision.

In conclusion, our work brings us closer to a future where real-world objects are seam-

lessly integrated into virtual worlds. By embedding embedded machine-readable markers

into real-world objects, we empower users with a wealth of multimedia content, interactive

experiences, and contextual information. The implications and applications of our research
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span a wide range of domains, including product design, manufacturing, entertainment,

marketing, logistics, security, and sustainability. With responsible implementation, we can

revolutionize object identification and interaction, paving the way for an interconnected and

intelligent future.
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