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ABSTRACT

The work presented in this thesis is part of an effort at MIT to develop a 1-MW electric
machine which achieves the specific power necessary for hybrid-electric aviation: 13 kW/kg
[1]. The models for torque and core loss used in the design of the 1-MW machine are
revised and expanded based on experimental results obtained from a partially-manufactured
prototype to guide the design of future high specific-power electric machinery.

To calculate the torque produced by the machine, the air-gap field created by a segmented
Halbach array rotor is derived from Maxwell’s Equations. The closed-form solution for the
air-gap field matches Finite Element Analysis (FEA) to within 1% and experimental data
from the manufactured prototype to within the tolerance of the experiment. A method
for modeling a slotted stator as a smooth cylinder with a surface current is applied to the
stator of the 1-MW machine, and the average torque and torque ripple are calculated using
the Lorentz-Kelvin force density. The analytical torque calculation computes 100,000 times
faster than 2D FEA (0.56 ms vs. 44 s), and matches FEA to within 1.2%, making it ideal
for initial machine design.

An experimental procedure is developed to measure the core loss and B-H curve of an
iron lamination stack. This procedure is applied to various toroid samples and a stack of
slotted stator laminations. A conventional lamination bonding process is found to raise core
loss by 20% for 0.1-mm iron-cobalt laminations. An alternative stator-core manufacturing
process, which results in no impact on core loss, is identified and experimentally verified.
Based on the measured core loss of a stack of stator laminations, the 1-MW prototype is
expected to remain within the thermal limits imposed by the winding insulation.

Thesis supervisor: Jeffrey H. Lang
Title: Vitesse Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Background

Inspired by the success of the electrification of the automotive industry, the commercial

airline industry has identified electrified aircraft as the future of aviation. The largest mo-

tivation behind the transition to electric aviation is to reduce the 1 billion tons of CO2

produced annually by the aviation industry, a number that will compound as the commer-

cial air travel industry continues to grow [2]. Other benefits to electric aviation include

increased reliability, less engine noise, and greater freedom in aircraft design.

Although batteries currently lack the energy density required to power the commercial

airliners responsible for 95% of airplane CO2 emissions, partially-electrified aircraft designs,

such as the NASA STARC-ABL, offer promising improvements in fuel efficiency [1], [3]. In

order to realize large-scale electric aircraft, megawatt-class electric machinery with a specific

power exceeding 13 kW/kg is necessary [1].

The work presented in this thesis is part of collaboration between the MIT Gas Turbine

Laboratory, the MIT Laboratory for Electromagnetic and Electronic Systems, and Innova-

Logic LLC to develop, manufacture, and demonstrate a 1-MW electric machine which is

expected to achieve a specific power of 17 kW/kg.
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(a) Isometric view (b) Front view, without heat sink

Figure 1.1: High specific-power electric machine for aircraft propulsion.

Dr. Aidan Dowdle completed the electromagnetic design of the electric machine, from an

initial integrated prime mover concept to the manufactured demonstrator, shown in Figure

1.1. The full details of the electromagnetic design process of the 1-MW demonstrator are

given in Dowdle (2022) [4]. In this thesis, the models used by Dowdle (2022) for torque

and stator core loss are revised and expanded based on experimental data collected from a

partially-manufactured prototype of the machine in Figure 1.1. The manufactured prototype

is referred to as the "1-MW demonstrator" throughout this thesis.

Dr. Yuankang Chen completed the thermal and mechanical design of the 1-MW demon-

strator, as described in Chen (2023) [5]. Dr. Mohammad Qasim and Mr. David Otten de-

signed the power electronic drive for the 1-MW demonstrator, as described in Qasim (2024)

[6]. Dr. David Gonzales Cuadrado designed the superstructure and laboratory setup used for

testing the 1-MW demonstrator. Full power testing of the 1-MW demonstrator is planned

for later in 2024.
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Metric Value Units
Power 1 MW
Specific Power 17 kW/kg
Speed 12,500 RPM
Shear stress 5.3 PSI
Efficiency 97.3 % -
Slot current density (peak) 13.3 A/mm2

Number of pole pairs / slots 10 / 60 -
Size Stack length 198 mm

Outer diameter 300 mm
Air gap 3 mm

Material Stator core Vacodur 49, 0.1 mm Fe-Co-V
Winding Litz Type 8 Cu
Permanent magnet Recoma® 35E Sm-Co
Retaining sleeve Titanium Ti

Table 1.1: Electric machine design specifications.

1.2 Overview of Electric Machine Design

A brief overview of the electromagnetic design of the 1-MW demonstrator is given in this

section to provide context for the work completed in this thesis.

A trade-space analysis of electric machine architectures found that the outer-rotor, radial-

flux, surface-mounted permanent-magnet synchronous machine (PMSM) achieves the opti-

mal combination of power density and thermal feasibility for aircraft propulsion [4], [5]. The

outer-rotor architecture and air-cooled thermal-management system enable the machine to

be directly integrated inside a turbomachine as a generator. An integrated-prime-mover

concept using this electric machine is proposed in [4]. Fundamental design details such as

geometry, speed, torque, and pole count were co-optimized considering the structural feasi-

bility, weight, and efficiency the electric machine, the thermal management system, and the

power electronics drive [4]–[6].

A structural view of the electric machine is shown in Figure 1.1. The key metrics of the

design are presented in Table 1.1. The Halbach-array rotor eliminates the need for rotor

back iron. Instead, a light-weight titanium rim is used to retain the permanent magnets.
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Figure 1.2: Breakdown of electric machine loss.

Component Mass [kg]
Stator Core 19.7
Windings 6.1
Magnets 14.6
Rim 10.6
Heat sink 6.4
Total 57.4

Table 1.2: Breakdown of electric machine mass.

Within the Halbach array, the use of four directions of magnetization per pole decreases the

harmonic distortion of the air-gap flux density and reduces torque ripple to 1% of the average

torque, as discussed in Chapter 2. 0.1-mm iron-cobalt stator laminations mitigate core loss

and Litz wire mitigates Ohmic loss at the high operational electrical frequency, 2083 Hz. A

modular, single-phase winding pattern improves reliability and enables single-phase inverter

drives. A 3D-printed aluminum heat sink enables air-cooling at full power.

Figure 1.2 shows the predicted loss of the electric machine. Stator core loss is esti-

mated through FEA using experimentally-measured data, collected as discussed in Chap-

ter 3. Permanent-magnet loss is calculated through FEA using material data provided by

the magnet vendor. The Ohmic and windage losses are calculated with models described

18



in Dowdle (2022) and Chen (2023) respectively [4], [5]. The specific power of the electric

machine is calculated using the mass in Table 1.2. The superstructure and bearing system

masses are not included in the specific power calculation because they would change de-

pending on the application of the machine, and therefore they are not optimized for specific

power.

1.3 Related Work

There are many ongoing efforts to build high-specific-power, megawatt-class electric machin-

ery for aircraft propulsion, ranging from projects at large companies such as Airbus, GE, and

Rolls-Royce to projects at smaller companies such as H3x, Hinetics, and Nidec Aerospace

to projects at universities such as University of Illinous, Urbana-Champaign (UIUC), Uni-

versity of Wisconsin, Madison (UW), and MIT. Because only limited information has been

published about the machines under development from the companies listed above, this

section focuses on the ongoing projects at the other two universities, UIUC and UW.

At UIUC, Lee et al. (2023) have manufactured a 300-kW, outer-rotor, Halbach array,

slotless stator prototype of the machine shown in Figure 1.3a. This machine is air-cooled

by a fan embedded in the rotor and a heat sink inside of the stator, and is designed to

operate at 3,600 rpm. The authors plan to use the results from testing this prototype to

manufacture a scaled, higher-speed, 833 kW version of the machine in shown in Figure 1.3a.

The UIUC machine and the MIT machine are similar in many regards, for instance both

have outer-rotor Halbach arrays and air-cooling. However, the largest difference between the

machines is that the UIUC machine has a slotless stator with ceramic-potted windings that

is believed to increase the specific power of the machine, whereas the MIT machine employs

a more conventional slotted stator while still achieving the specific power target of 13 kW/kg

to enable hybrid-electric aviation [1].

At UW, Swanke et al. (2021) have manufactured a 200 kW, inner-rotor, non-Halbach

19



(a) Figure 1 from Lee et al. (2023) [7] (b) Figure 1 from Swanke et al. (2021) [8]

Figure 1.3: Other electric machines for aircraft propulsion under development at (a) UIUC
(b) UW.

array, slotted stator prototype of the machine shown in Figure 1.3b. This machine is liquid-

cooled with a stator cooling jacket, and is designed to operate at 20,000 rpm. The authors

plan to use the results from testing this prototype to manufacture a scaled, 1-MW version of

the machine in shown in Figure 1.3b. The largest differences between the MIT machine and

the UW machine are that the MIT machine is air-cooled and has an external rotor to enable

integration inside of a turbomachine as a generator, whereas the UW machine is liquid-

cooled and has an interior rotor. The more conventional interior rotor of the UW machine

enables higher rotational speeds because the rotor is supported with bearings on both sides

of the machine. To use the UW machine as turbo-electric generator, an additional shaft

connecting the electric machine and the gas turbine engine and an additional liquid-cooling

system would likely be needed, increasing the overall weight of the system. This suggests

that the UW machine is not intended for use as a turbo-electric generator.
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1.4 Contributions

The goal of this thesis is to revise and expand the models for torque and stator core loss

used by Dowdle (2022) to design the 1-MW machine in Figure 1.1, based on experimental

data collected from a partially-manufactured prototype of the machine.

In Chapter 2, the air-gap magnetic field produced by a cylindrical, segmented Halbach-

array rotor is derived from Maxwell’s Equations using the Fourier series representation of

the piece-wise continuous magnetization density, and is shown to match FEA within 1%.

The slotted stator used in the 1-MW demonstrator is modeled as a smooth iron cylinder

and the windings are modeled with a surface current. Then the average torque and torque

ripple produced by the machine are calculated with the Lorentz-Kelvin force density. The

torque calculation in Chapter 2 runs 100,000 times faster than 2D FEA (0.6 ms vs. 44 s)

and matches FEA within 1.2 percent. The models in Chapter 2 allow parameters to be

swept quickly in the initial design of a machine and they provide insight into how different

parameters affect machine performance.

In Chapter 3, a method for experimentally characterizing the core-loss and B-H curves

of a sample lamination stack is developed and employed for various samples of iron-cobalt at

different stages of the manufacturing process of the 1-MW demonstrator stator. A conven-

tional lamination bonding process is found to increase the core loss of iron-cobalt laminations

by 20% at the operating point of the 1-MW demonstrator. An alternative stator manufac-

turing process with no impact on core loss is identified and experimentally verified. The core

loss of a stack of full-size stator laminations is found to match the core loss measured on

the smaller samples used previously. Initially, a mechanical resonance of the full-size stator

laminations caused artificially-high core-loss measurements, but the mechanical resonance

was avoided by measuring core loss at a different frequency.

In Chapter 4, the implications of the results in the previous chapters is discussed, and

further work is proposed for improving the generality of the models in Chapter 2 and the
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experimental results in Chapter 3.

22



Chapter 2

Electromagnetic Modeling of an Electric

Machine with a Halbach Array Rotor

and Slotted Stator Iron

2.1 Introduction

This chapter presents a method for analytically calculating the torque produced by an electric

machine with a Halbach-array rotor and slotted stator iron. In Section 2.2, the magnetic field

produced by a cylindrical, segmented, Halbach array is derived from Maxwell’s Equations,

and matches the field calculated numerically with Finite Element Analysis (FEA) within

1%. In Section 2.3.1, a method for modeling a slotted stator as a smooth cylinder with a

surface currents is explained and executed for a concentrated-wound, three-phase stator. In

Section 2.3.2, the average torque and torque ripple produced by an electric machine with

a Halbach array rotor and slotted stator iron are calculated using the models developed in

Section 2.2 and Section 2.3.1, and the Lorentz-Kelvin force density. The torque formula

developed in Section 2.3.2 matches the torque calculated with FEA within 1.2% for a real

stator and computes 100,000 times faster than 2D FEA (0.56 ms vs. 44 s). As discussed in
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Section 2.3, the models presented in this chapter are recommended for the initial design of

electric machines with a Halbach array rotor and slotted stator iron given the advantage in

computation time over FEA and insight provided into the effect of various parameters on

machine performance.

Many of the modeling techniques used in this chapter have been used before to develop

models for other applications. The use of Fourier series to represent the piece-wise continuous

magnetization density of a segmented Halbach array in Section 2.2.1 is a common technique

used to simplify the analysis of segmented Halbach arrays. For example, Song et al. (2020)

used a Fourier series representation of magnetization density to calculate the performance of

a machine with a Halbach array rotor and slotless stator iron [9]. The analysis of the magnetic

field produced by a single harmonic of the segmented Halbach array in Section 2.2.2 follows an

approach similar to that used by Xia et al. (2004) to calculate the field for a non-segmented

Halbach array [10]. The modeling of a slotted stator as a smooth cylinder with a surface

current in Section 2.3.1 is adapted from Dowdle (2022) [4]. However, the combination of

the segmented Halbach array model in Section 2.2 with the slotted stator model in Section

2.3.1 to produce the formula for torque in Section 2.3.2 has not been published previously.

Furthermore, Section 2.3 uses the models presented in this chapter to explain for the first

time why, counter-intuitively, torque ripple can increase as the number of segments in the

Halbach array increases.

2.2 Segmented Halbach Array Model

In this section, a closed form expression for the magnetic field produced by a cylindrical,

segmented Halbach array in cylindrical coordinates is derived from Maxwell’s Equations.

The magnetic field in the air-gap is given in Equation (2.22).

The ideal cylindrical Halbach array has rotating magnetization density given by

M⃗ =Mo cos (pϕ)r̂ ±Mo sin (pϕ)ϕ̂ (2.1)
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Figure 2.1: Segmented, cylindrical Halbach arrays with an increasing number of segments
per pole, Nm.

where p is the number of pole pairs, and Mo is the magnitude of magnetization. In Equa-

tion (2.1), +, or forward rotating magnetization, describes an outer-rotor machine (internal

field) and −, or backward rotating magnetization, describes an inner-rotor machine (external

field) [10]. The ideal rotating magnetization in Equation (2.1) creates a perfectly sinusoidal

magnetic field in the air-gap while cancelling the field outside the array. It is possible to

manufacture a magnet with the ideal rotating magnetization in Equation (2.1) , as shown

in Xia et al. (2004) [10]. However, currently the most practical and economical way to

manufacture a cylindrical Halbach array is with magnet segments, cut into arcs, each with

a uniform direction of magnetization given by sampling the ideal rotating magnetization.

Several examples of cylindrical, segmented Halbach arrays are illustrated in Figure 2.1.

Using more magnet segments in the array allows for higher resolution sampling of the

ideal rotating magnetization density, and thus results in less harmonic distortion in the

air-gap field and less magnetic field outside the air-gap. However, manufacturing cost and

complexity increases with the number of segments in the array, as thinner magnets and
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more directions of magnetization are needed. The model presented in this section describes

how increasing the number of segments per pole, Nm, changes the air-gap field (see Figure

2.8) and the torque produced by the machine (see Figure 2.22), helping to find the optimal

balance between manufacturing complexity and performance.

The key idea behind the model presented in this section is representing the piece-wise

continuous magnetization density of a cylindrical, segmented Halbach array as a Fourier

series. For each harmonic of the magnetization density, Maxwell’s Equations are solved for

the magnetic field in the air-gap. All of the harmonics are superimposed to find the total

magnetic field in the air-gap.

The closed form expression for the magnetic field in the air-gap given in Equation (1)

matches the fields calculated numerically with FEA within 1% over a wide range of test cases

and a field scan of a manufactured Halbach array rotor within the error of the experiment,

as shown in Section 2.2.3.

2.2.1 Fourier Series Representation of M⃗

The uniform magnetization density for a single magnet segment, referred to as the kth seg-

ment, as depicted in Figure 2.2, is defined as

M⃗k =Mo cos(θk)x̂k +Mo sin(θk)ŷk (2.2)

where the axes x̂k and ŷk are defined as parallel and perpendicular, respectively, to the

center-line of the kth magnet segment, and Mo, the amplitude of the magnetization density,

is defined as Mo = Br

µ0
, where Br is the remnant flux density, a material property of the

magnets, and µ0 = 4π ∗ 10−7 H/m is the permeability of free space.

The direction of magnetization for the kth magnet segment is given by sampling the ideal
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Figure 2.2: Magnetization density in the kth magnet segment.

rotating magnetization density at the center-line of the segment:

θk = ±k π

Nm

(2.3)

where +, or forward rotating magnetization, describes an outer-rotor machine (internal field)

and −, or backward rotating magnetization, describes an inner-rotor machine (external field),

and k is the index of the magnet segment in the array, k ∈ {0, 1, ..., 2Nm − 1} over one pole-

pair.

To find the Fourier series representation of M⃗ in cylindrical coordinates, M⃗k in the kth

magnet segment must be transformed to cylindrical coordinates. The tangential axis of the

kth magnet segment, ϕk, is defined by rotating the global tangential axis, ϕ, such that the

origin is at the center of the magnet:

ϕk = ϕ− k∆ϕ (2.4a)

∆ϕ =
π

Nmp
(2.4b)

ϕ̂k = ϕ̂ (2.4c)
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where ∆ϕ is the angular width of a magnet segment. The coordinate transformation,

xk = r cos(ϕk) → ∇xk = x̂k = cos(ϕk)r̂ − sin(ϕk)ϕ̂ (2.5a)

yk = r sin(ϕk) → ∇yk = ŷk = sin(ϕk)r̂ + cos(ϕk)ϕ̂, (2.5b)

applied to Equation (2.2) gives the expression for M⃗k in cylindrical coordinates:

M⃗k =Mo cos(ϕk − θk)r̂ −Mo sin(ϕk − θk)ϕ̂ (2.6a)

M⃗k =Mo cos(ϕ− k
π

pNm

− θk)r̂ −Mo sin(ϕ− k
π

pNm

− θk)ϕ̂. (2.6b)

The piece-wise continuous functions Mr(ϕ) and Mϕ(ϕ) are represented as Fourier series

in order to find a closed form expression for the magnetic field in the air-gap:

M⃗ =Mr(ϕ)r̂ +Mϕ(ϕ)ϕ̂ =
∞∑

n=1,3,5,..

αn cos(npϕ)r̂ + βn sin(npϕ)ϕ̂. (2.7)

Mr(ϕ) is even and Mϕ(ϕ) is odd, thus only cosine and sine functions, respectively, are needed

in the Fourier series. Both Mr(ϕ) and Mϕ(ϕ) are half wave anti-symmetric, therefore only

odd harmonics are needed. The Fourier coefficients αn are evaluated using the formula

αn =
2

T

ˆ T

0

Mr(ϕ) cos(npϕ) dϕ =
4

T

ˆ T/2

0

Mr(ϕ) cos(npϕ) dϕ (2.8a)

T =
2π

p
(2.8b)

where T is the period of the array, taking advantage of the fact that Mr(ϕ) is half-wave

anti-symmetric. The integral in Equation (2.8a) is evaluated separately for each magnet

segment and summed together to find αn:

αn =
2p

π

Nm∑
k=0

ˆ ϕbk

ϕak

Mo cos(ϕ− k
π

pNm

− θk) cos(npϕ) dϕ (2.9a)

28



ϕak = max(0, (k − 1

2
)∆ϕ) = max(0, (k − 1

2
)
π

pNm

) (2.9b)

ϕbk = min(
π

p
, (k +

1

2
)∆ϕ) = min(

π

p
, (k +

1

2
)
π

pNm

). (2.9c)

Evaluating the definite integral for αn gives

αn =Mo
2p

π

Nm∑
k=0

[
sin((np+ 1)ϕ− k π

pNm
− θk)

2(np+ 1)
+

sin((np− 1)ϕ+ k π
pNm

+ θk)

2(np− 1)

]ϕbk

ϕak

. (2.9d)

The Fourier coefficients βn are found by following the same approach as used for αn, resulting

in

βn =Mo
2p

π

Nm∑
k=0

[
sin((np+ 1)ϕ− k π

pNm
− θk)

2(np+ 1)
−

sin((np− 1)ϕ+ k π
pNm

+ θk)

2(np− 1)

]ϕbk

ϕak

. (2.10)

The Fourier series formulation of Mϕ(ϕ) and Mr(ϕ) are computed using the MATLAB

function listed in Appendix A for various numbers of magnet segments per pole, Nm, and

numbers of pole-pairs, p, and plotted in Figure 2.3. As demonstrated in Figure 2.3, Mϕ(ϕ)

lags Mr(ϕ) by 90 degrees for the outer rotor array and leads Mr(ϕ) by 90 degrees for the inner

rotor array, creating forward and backward rotating magnetization, respectively. Mϕ(ϕ) and

Mr(ϕ) are the same shape when Nm is even, but the peak of Mϕ(ϕ) is wider and lower than

Mr(ϕ) when Nm is odd due to way in which the ideal rotating magnetization is sampled.

The plots of the magnitudes of the spatial harmonics of the magnetization density in

Figure 2.4 illustrate that each harmonic is either rotating forward (αn = βn) or backward

(αn = −βn) because of the way in which the ideal rotating magnetization is sampled in this

section.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.3: The Fourier series representations of Mr(ϕ) and Mϕ(ϕ) plotted for various dif-
ferent Halbach arrays.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.4: The magnitudes of the spatial harmonic of Mr(ϕ) and Mϕ(ϕ) for various different
Halbach arrays.
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Figure 2.5: General machine architecture used for finding the air-gap field.

2.2.2 Air-gap Fields

In this section, the Fourier series formulations of Mr(ϕ) and Mϕ(ϕ) described in Section 2.2.1

are used to solve Maxwell’s Equations for the magnetic field in the air-gap. There are eight

common architectures of radial-flux, Halbach array machines given by the permutations of

the following three parameters:

• outer rotor (external field) or inner rotor (external field);

• include stator back iron or not;

• include rotor back iron or not.

Instead of finding the air-gap field for all eight architectures separately, the magnetic field

solution for the general machine shown in Figure 2.5 can be adapted to each permutation

by adjusting the radii, R1, R2, R3, R4. The idea for the generalized machine architecture

comes from Xia et al. (2004) [10].
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Several assumptions are made for the analysis presented in this subsection.

1. The ∂D⃗
∂t

term is small enough to be ignored in Ampere’s law,

∇× H⃗ = J⃗f +
∂D⃗

∂t
= J⃗f . (2.11)

2. The permeability of iron is infinite, µ → ∞, and therefore H⃗ = 0 and the magnetic

scalar potential ψ is constant in the iron.

3. The magnet region has the relative permeability µr = 1.

4. The stator iron is smooth, and the effect of stator slots is ignored.

Assumption 1 is valid as long as the active region of the machine is much smaller than

the wavelength of light at the electrical frequency of the machine. Assumption 2 is valid if

the iron in the machine does not saturate. In Section 2.2.4, Assumption 3 is shown to be

acceptable for magnets when µr = 1.05, but when µr = 1.2 there is an 8% percent error

between the model and FEA. Assumption 4 will not impact the torque calculation in Section

2.3.2 as long as the stator slot openings are small enough to be ignored at some point in the

air-gap, not necessarily at the stator surface, as explained in Section 2.2.4.

The magnetic fields in the air-gaps of the machine in Figure 2.5 are found using the

magnetic scalar potential, ψ. The magnetic fields sourced by each harmonic of M⃗ are found

separately and then superimposed to get the total magnetic field. The fields from each

harmonic can be superimposed because the iron is assumed to be linear, µ→ ∞.

The stator currents are ignored in this section, and in Section 2.3 the stator currents

are superimposed on the magnetic field found in this section to find the torque produced

by the machine. Ampere’s law under Assumption 1 (commonly referred to as the magneto-

quasistatic approximation), given that J⃗f = 0 in every region in Figure 2.5, takes the form

∇× H⃗ = 0, (2.12a)
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and is satisfied if

H⃗ = −∇ψ (2.12b)

where ψ is any scalar valued function. ψ is referred to as the magnetic scalar potential.

Substituting the constitutive law for magnetization,

B⃗ = µ0

(
H⃗ + M⃗

)
(2.13)

where B⃗ is the magnetic flux density, H⃗ is the magnetic field, and M⃗ is the magnetization

density, into Gauss’s law for magnetic fields,

∇ · B⃗ = 0, (2.14)

results in Laplace’s Equation in Region A and Region C in Figure 2.5, where M⃗ = 0,

∇2ψA = ∇2ψC = ∇ · M⃗ = 0, (2.15)

and Possion’s Equation in Region B,

∇2ψB = ∇ · M⃗n =
1

r

∂(rMnr)

∂r
+

1

r

∂Mnϕ

∂ϕ
= (αn + npβn)

1

r
cos(npϕ). (2.16)

Although the scalar potentials, ψA, ψB, and ψC are unique for every harmonic, the n subscript

is omitted to simplify notation.

The method of particular and homogeneous solutions is used to find the function ψB that

satisfies Poisson’s Equation (2.16) and the boundary conditions in Equation (2.18):

ψB = ψBp + ψBh (2.17a)
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where ψBp is any particular solution that satisfies Poisson’s Equation (2.16), such as

ψBp =
(αn + npβn)

1− (np)2
r cos(npϕ), (2.17b)

which was obtained by guessing and checking the solution, and ψBh is any homogeneous

solution that satisfies Laplace’s equation,

∇2ψBh = 0 (2.17c)

and helps ψB satisfy the boundary conditions in Equation (2.18).

The boundary conditions for the generalized machine in Figure 2.5 are

1. Ampere’s Law at r = R1:

r̂ ×
[
H⃗A − 0

]
= K⃗f = 0 (2.18a)

2. Gauss’s Law at r = R2:

r̂ ·
[
H⃗B − H⃗A

]
= −r̂ ·

[
M⃗B − M⃗A

]
= −αn cos(npϕ) (2.18b)

3. Ampere’s Law at r = R2:

r̂ ×
[
H⃗B − H⃗A

]
= K⃗f = 0 (2.18c)

4. Gauss’s Law at r = R3:

r̂ ·
[
H⃗C − H⃗B

]
= −r̂ ·

[
M⃗C − M⃗B

]
= αn cos(npϕ) (2.18d)

5. Ampere’s Law at r = R3:

r̂ ×
[
H⃗C − H⃗B

]
= K⃗f = 0 (2.18e)
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6. Ampere’s Law at r = R4:

r̂ ×
[
0− H⃗C

]
= K⃗f = 0 (2.18f)

To satisfy Boundary Condition 1 and Laplace’s Equation (2.15), let

ψA = A
(
rnp −R2np

1 r−np
)
cos(npϕ) (2.19a)

where A is a constant found by satisfying the remaining boundary conditions.

To satisfy Boundary Condition 6 and Laplace’s Equation (2.15), let

ψC = C
(
r−np −R−2np

4 rnp
)
cos(npϕ) (2.19b)

where C is a constant found by satisfying the remaining boundary conditions.

To satisfy Boundary Condition 2 through Boundary Condition 5 and Poisson’s Equation

(2.16), let

ψB =
(
B1r

np +B2r
−np
)
cos(npϕ) +

(αn + npβn)

1− (np)2
r cos(npϕ) (2.19c)

where B1 and B2 are constants found by satisfying the remaining boundary conditions.

Substituting Equation (2.19) into the boundary conditions in Equation (2.18) results in

four equations with four unknown constants, A, B1, B2, and C as follows.

1. Boundary Condition 2 (Gauss’s Law at r = R2):

A
(
Rnp−1

2 +R2np
1 R−np−1

2

)
−B1R

np−1
2 +B2R

−np−1
2 =

(npαn + βn)

1− (np)2
(2.20a)

2. Boundary Condition 3 (Faraday’s Law at r = R2):

A
(
Rnp−1

2 −R2np
1 R−np−1

2

)
−B1R

np−1
2 −B2R

−np−1
2 =

(npαn + βn)

1− (np)2
(2.20b)
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3. Boundary Condition 4 (Gauss’s Law at r = R3):

C
(
R−np−1

3 +R−2np
4 Rnp−1

3

)
+B1R

np−1
3 −B2R

−np−1
3 = −(npαn + βn)

1− (np)2
(2.20c)

4. Boundary Condition 5 (Faraday’s Law at r = R3):

−C
(
R−np−1

3 −R−2np
4 Rnp−1

3

)
+B1R

np−1
3 +B2R

−np−1
3 = −(npαn + βn)

1− (np)2
(2.20d)

Solving the system in Equation (2.20) for A, B1, B2, and C gives

A =
1

1−
(

R1

R4

)2np
[
1

2

(αn + βn)

(1− np)

(
R1−np

2 −R1−np
3

)

+
1

2

(−αn + βn)

(1 + np)

((
R3

R4

)2np

R1−np
3 −

(
R2

R4

)2np

R1−np
2

)]
(2.21a)

B1 =
1

1−
(

R1

R4

)2np
[
1

2

(αn + βn)

(1− np)

((
R1

R4

)2np

R1−np
2 −R1−np

3

)

+
1

2

(−αn + βn)

(1 + np)

((
R3

R4

)2np

R1−np
3 −

(
R2

R4

)2np

R1−np
2

)]
(2.21b)

B2 =
1

1−
(

R1

R4

)2np
[
1

2

(−αn + βn)

(1 + np)

(
R1+np

2 −
(
R1

R4

)2np

R1+np
3

)

+
1

2

(αn + βn)

(1− np)

((
R1

R3

)2np

R1+np
3 −

(
R1

R2

)2np

R1+np
2

)]
(2.21c)
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C =
1

1−
(

R1

R4

)2np
[
1

2

(−αn + βn)

(1 + np)

(
R1+np

2 −R1+np
3

)

+
1

2

(αn + βn)

(1− np)

((
R1

R3

)2np

R1+np
3 −

(
R1

R2

)2np

R1+np
2

)]
. (2.21d)

Applying the definition of the scalar potential, Equation (2.12b), to Equation (2.19) and

superimposing all of the harmonics together results in the magnetic fields in the air-gaps as

follows.

1. For outer rotor machines (internal field):

HAr(r, ϕ) =
∞∑
n=1

1
2
np

1−
(

R1

R4

)2np
[
(αn + βn)

(1− np)

((
r

R2

)np−1

−
(
r

R3

)np−1
)

+
(αn − βn)

(1 + np)

((
R2

R4

)2np(
r

R2

)np−1

−
(
R3

R4

)2np(
r

R3

)np−1
)][

1 +

(
R1

r

)2np
]
cos(npϕ)

(2.22a)

HAϕ(r, ϕ) =
∞∑
n=1

1
2
np

1−
(

R1

R4

)2np
[
(αn + βn)

(1− np)

((
r

R2

)np−1

−
(
r

R3

)np−1
)

+
(αn − βn)

(1 + np)

((
R2

R4

)2np(
r

R2

)np−1

−
(
R3

R4

)2np(
r

R3

)np−1
)][

1−
(
R1

r

)2np
]
sin(npϕ)

(2.22b)
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2. For inner rotor machines (external field):

HCr(r, ϕ) =
∞∑
n=1

1
2
np

1−
(

R1

R4

)2np
[
(αn − βn)

(1 + np)

((
R3

r

)1+np

−
(
R2

r

)1+np
)

+
(αn + βn)

(1− np)

((
R1

R3

)2np(
R3

r

)1+np

−
(
R1

R2

)2np(
R2

r

)1+np
)][

1 +

(
r

R4

)2np
]
cos(npϕ)

(2.22c)

HCϕ(r, ϕ) =
∞∑
n=1

1
2
np

1−
(

R1

R4

)2np
[
(αn − βn)

(1 + np)

((
R3

r

)1+np

−
(
R2

r

)1+np
)

+
(αn + βn)

(1− np)

((
R1

R3

)2np(
R3

r

)1+np

−
(
R1

R2

)2np(
R2

r

)1+np
)][

1−
(
r

R4

)2np
]
sin(npϕ)

(2.22d)

where αn is defined in Equation (2.9d) and βn is defined in Equation (2.10).

In the absence of rotor back iron (R1 = 0 for inner rotor machines and R4 = ∞ for outer

rotor machines), Equation (2.22) reveals that forward rotating harmonics of magnetization

density (αn = βn) create sinusoidal fields internally and no field externally, whereas backward

rotating harmonics of magnetization density (αn = −βn) create sinusoidal fields externally

and no field internally.

The presence of rotor back iron has two effects, as seen in Equation (2.22) and illustrated

in Figure 2.7 and Figure 2.8.

1. If stator back iron is present, then rotor back iron increases the strength of every

harmonic of the air-gap field.

2. For outer rotor machines, rotor back iron causes backward rotating harmonics of the

magnetization density (αn = −βn) to contribute to the internal field, and for inner

rotor machines, rotor back iron causes forward rotating harmonics of the magnetization
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density (αn = βn) to contribute to the external field.

Section 2.3.2 shows that the average torque of a machine is proportional to the funda-

mental component of the rotor field and that higher harmonics of the rotor field cause torque

ripple. Therefore, effect 1 causes an increase in both average torque and torque ripple, and

effect 2 can only cause an increase in torque ripple.

The presence of stator iron (R1 ̸= 0 for outer-rotor machines and R4 ̸= ∞ for inner-rotor

machines) causes the radially-directed component of the magnetic field in the air-gap to

increase while causing the tangentially-directed field to decrease, as seen in Equation (2.22)

and illustrated in Figure 2.7 and Figure 2.8. Intuitively, this effect is explained by the stator

iron guiding the magnetic flux sourced by the Halbach array. Section 2.3.2 shows that the

torque of a machine is proportional to the radially-directed component of the rotor field and

independent of the tangentially-directed component of the rotor field, thus the presence of

stator iron increases the torque the machine.

Equation (2.22) reveals that the presence of stator iron has a larger effect for slower

rotating fields (when n and p are small), and a smaller effect on faster rotating fields (when

n and p are large). This trend matches intuition, since stator iron contributes less effective

steel to the magnetic circuit as the field rotates faster in space.

2.2.3 Model Validation

The fields calculated with Equation (2.22), using the MATLAB function in Appendix A,

were plotted against the fields calculated numerically with FEA in Figure 2.7 and 2.8. The

fields calculated with Equation (2.22) match the fields calculated with FEA to within 1%.

The four different machines used to compare the model with FEA are shown in Figure 2.6.

The magnets used to calculate the fields in FEA have a low relative permeability, µr = 1.05.

The fields are calculated with FEA for a higher relative permeability magnet, µr = 1.2, and

compared with Equation (2.22) in Section 2.2.4.

The mesh used to calculate the fields in FEA is shown in Figure 2.9. Reducing the element
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size to half of those shown in Figure 2.9 has a negligible impact on the fields, therefore the

mesh size is sufficiently small.

As discussed in Section 2.4, a Halbach array rotor with four magnet segments per pole,

Nm = 4, ten pole-pairs, p = 10, and no rotor back iron was selected for use in the 1-

MW demonstrator machine based on the results from the models described in this chapter.

A titanium rim is used to retain the magnets, due to the high centrifugal forces at the

operational speed, 12,500 rpm.

The Halbach array rotor for the 1-MW demonstrator was successfully manufactured, as

seen in Figure 2.10. Recoma 35E SmCo magnets (Br = 1.19 T, µr = 1.05) were selected

for their superior performance at high temperature over comparable NdFeB magnets [11].

The magnets in the rotor in Figure 2.10 are laminated axially using 64 pieces to reduce eddy

current loss [4].

The rotor manufacturer performed a scan of the radial magnetic flux density with a

Gauss-meter for the two manufactured rotors used in the two prototype machines. The field

scan data is consistent to within 5% over all 360 degrees, measured at five different axial

locations (referred to as rows) for each rotor, as shown in Figure 2.11. The 5% error could be

caused by movement of the Gauss-meter probe, movement of the rotor, variation in magnet

strength, or error in the Gauss-meter. The field calculated with Equation (2.22) matches the

field scan measurements to within the 5% error of the measurement data, as demonstrated

in Figure 2.12.
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(a) Inner rotor, p = 2, Nm = 2, R1 =
R2 = 10 mm, R3 = 11 mm, R4 = 11.5
mm

(b) Inner rotor, p = 2, Nm = 3, R1 =
R2 = 10 mm, R3 = 11 mm, R4 = 11.5
mm

(c) Outer rotor, p = 10, Nm = 4, R1 = 128.5 mm, R3 = 131.5 mm,
R3 = R4 = 141.8 mm

(d) Outer rotor, p = 10, Nm = 5, R1 = 128.5 mm, R3 = 131.5 mm, R3 = R4 =
141.8 mm

Figure 2.6: The four different Halbach array machines used to compare the model with FEA.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.7: Model matches FEA to within 1% for an inner-rotor machine with two pole
pairs and two and three segments per pole (R2 = 10 mm, R3 = 11 mm, R4 = 11.5 mm,
Rmeasured = 11.25 mm, Br = 1.19 T).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.8: Model matches FEA within 1% for an outer-rotor machine with ten pole pairs
and four and five segments per pole (R1 = 128.5 mm, R2 = 131.5 mm, R3 = 141.8 mm,
Rmeasured = 130 mm, Br = 1.19 T).
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(a) Inner rotor, p = 2, Nm = 2&3, R1 =
R2 = 10 mm, R3 = 11 mm, R4 = 11.5 mm (b) Zoomed in view of (a) at the air-gap

(c) Outer rotor, p = 10, Nm = 4&5, R1 = 128.5 mm, R3 = 131.5
mm, R3 = R4 = 141.8 mm

(d) Zoomed in view of (c)
at the air-gap

Figure 2.9: Mesh element size used to calculate rotor fields with FEA.
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Figure 2.10: Manufactured Halbach array rotor with titanium rim to retain magnets instead
of rotor back iron.

(a) Rotor 1 radial B-field scan data (b) Rotor 2 radial B-Field scan data

Figure 2.11: Radial B-field scan data of the two manufactured rotors is consistent within 5%
across all 10 pole pairs and 5 different axial locations.
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Figure 2.12: Model matches Gauss-meter field scan of manufactured rotors within 5% error
of experimental setup (R2 = 131.5 mm, R3 = 141.8 mm, no stator iron or rotor back iron,
Br = 1.19 T).

2.2.4 Model Assumptions

The analysis performed in Section 2.2.2 assumes that the magnet region has the relative

permeability µr = 1. The fields labeled "FEA" in Figure 2.7 and Figure 2.8 are calculated

using magnets with µr = 1.05, and they match the model to within 1%. However, the fields

labeled "FEA" in Figure 2.13 are calculated using magnets with µr = 1.2, and there is an

8% error between the model the numerically calculated fields. These results suggest that the

assumption, µr = 1 in the magnet array, is accurate for magnets where µr ≈ 1.05, but for

magnets where µr ≥ 1.2, the permeability of the magnet region should be considered in the

analysis in Section 2.2.2.

Considering the relative permeability of the magnet region as a variable, the air-gap fields

are calculated for a single harmonic of the magnetization density in Xia et al. (2004) [10].

This solution could be adapted to the analysis in Section 2.2.2.

The analysis performed in Section 2.2.2 assumes that the stator iron is a smooth circle,

whereas, for the 1-MW demonstrator and many other machines, the stator iron has a winding

embedded in slot sections. Slot sections in the stator can significantly impact the magnetic

field in the air-gap near the stator iron. However, the shear force on the rotor, and thus the
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(a) (b)

Figure 2.13: Model deviates from FEA by up to 8% for magnets with high relative permeabil-
ity, µr = 1.2 (Outer rotor, R1 = 128.5 mm, R2 = 131.5 mm, R3 = 141.8 mm, Rmeasured = 130
mm, Br = 0.75 T).

torque of the machine, can be evaluated using the stress tensor at any radius in the air-gap,

fϕ =

‹
µ0HϕHr da. (2.23)

Therefore, as long as the magnetic field is not significantly impacted by the stator slot sections

at some radius in the air-gap, the slotted stator can be modeled as a smooth cylinder without

affecting the torque calculation performed in Section 2.3.2.

The air-gap field of the machine with the slotted stator shown in Figure 2.14d, calculated

with FEA, matches the model to within 1% when measured far from the stator iron slots,

as shown in Figure 2.14. As a result, the torque calculated in Section 2.3.2, which uses the

rotor fields calculated in Section 2.2.2 assuming the stator iron is a smooth cylinder, matches

with the torque calculated with FEA for the machine with the slotted stator in Figure 2.14d

as shown in Section 2.3.3.
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(a) (b)

(c) Vector plot of B⃗ for smooth stator (d) Vector plot of B⃗ for slotted stator

Figure 2.14: Air-gap field from model matches field calculated with FEA using a slotted
stator to within 1%, far from slot sections: Rmeasured = 131.3 mm (width of slot opening:
2.5 mm).

2.3 Slotted Stator Model and Torque Calculation

In order to calculate the torque of an electric machine using the expression for the Halbach

array rotor field developed in Section 2.2, a method of modeling a slotted stator as a smooth

steel cylinder with a surface current is presented and executed for a concentrated-wound,

three-phase stator in Section 2.3.1. The torque on the stator surface current from the rotor

field is calculated with the Lorentz force density in Section 2.3.2. In Section 2.3.3, the torque
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calculated in Section 2.3.2 is shown to match FEA to within 1.2% percent.

2.3.1 Slotted Stator Model

In a slotted stator, the magnetic flux is guided through the stator steel, around the winding,

as demonstrated in Figure 2.14d. As a result, the current-carrying winding could be anywhere

in the slot without changing the flow of magnetic flux in the stator iron or the magnetic field

in the air-gap. The slot sections in Figure 2.15 have undefined boundaries to illustrate this

point. Utilizing this observation, the winding is modeled as a surface current on the surface

of the stator, where the rotor fields are known from Section 2.2. The slotted stator iron is

modeled as a smooth circle of steel, which, as explained in Section 2.2.4, does not impact

the torque calculation as long as the slots are small enough to be ignored at some point in

the air-gap.

Figure 2.15: Concentrated-wound, three-phase slotted stator modeled as a smooth steel
cylinder with a surface currents.

50



The winding in a slotless or air-cored stator cannot be modeled as a surface current

because the air-gap field is dependent on the position of the winding. Song et al. (2020)

demonstrates one way to determine the air-gap field and torque of a slotless Halbach array

machine [9].

The following equations in this section are applied specifically for the concentrated-

wound, three-phase stator illustrated in Figure 2.15. However, the same approach works

for modelling distributed-wound stators, as well as stators with any number of phases. The

stator in Figure 2.15 could belong to an inner or outer rotor machine.

The three magnetic axes of the stator, labeled as B⃗A, B⃗B, and B⃗C in Figure 2.15, are

equally spaced apart. B⃗B is 2π
3p

radians after B⃗A, and B⃗C is 2π
3p

radians after B⃗B. To

create a rotating magnetic field in the air-gap, the three-phase winding is driven with three

cosinusoidal currents, equally spaced apart in time:

iA(t) = Ipk cos(ωet) (2.24a)

iB(t) = Ipk cos

(
ωet−

2π

3

)
(2.24b)

iC(t) = Ipk cos

(
ωet+

2π

3

)
(2.24c)

where Ipk is the peak current through the winding, and ωe is the electrical angular frequency,

defined as the mechanical angular frequency multiplied by the number of pole-pairs, ωe =

pωm. Intuitively, B⃗A peaks at t = 0, B⃗B peaks at t = 2π
3ωe

, rotating the field by 2π
3p

radians,

B⃗C peaks at t = 4π
3ωe

, rotating the field by 2π
3p

radians again, and the cycle repeats to create

a rotating magnetic field.

As justified above, the three-phase stator winding is modeled as a surface current,

Kz(ϕ, t) = KAz(ϕ, t) +KBz(ϕ, t) +KCz(ϕ, t). (2.25)
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Figure 2.16: Surface current from the phase A winding over one spatial period

KAz(ϕ, t) is the piece-wise continuous function depicted in Figure 2.16:

KAz(ϕ, t) =


−NiA(t)

wso
−ϕso

2
≤ ϕ ≤ ϕso

2

NiA(t)
wso

π
2p

− ϕso

2
≤ ϕ ≤ π

2p
+ ϕso

2

(2.26)

where N is the number of turns per slot, wso is width of the slot opening, and ϕso is the

angular width of the slot opening given by

ϕso =
wso

Rs

(2.27)

where Rs is the radius of the stator iron surface. Similarly,

KBz(ϕ, t) = KAz(ϕ− 2π

3p
, t− 2π

3
) (2.28a)

KCz(ϕ, t) = KAz(ϕ+
2π

3p
, t+

2π

3
). (2.28b)

The piece-wise continuous, periodic function KAz(ϕ, t) can be represented as a Fourier

series:

KAz(ϕ, t) =
∞∑

n=1,3,5,...

Kan(t) cos(npϕ). (2.29)
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Only cosine functions are needed to represent Kaz(ϕ, t) because it is an odd function, and

only odd harmonics are necessary because Kaz(ϕ, t) is halfwave anti-symmetric.

The Fourier coefficients KAn(t) are given by the formula,

Kan(t) =
2

T

ˆ T
2

−T
2

Kaz(t, ϕ) cos(npϕ) dϕ =
4

T

ˆ T
4

−T
4

Kaz(t, ϕ) cos(npϕ) dϕ (2.30a)

T =
2π

p
(2.30b)

where T is the spatial period of Kaz(ϕ, t), taking advantage of half-wave anti-symmetry.

Substituting the definition of KAz(ϕ, t) in Equation (2.26) into Equation (2.30a) results in

KAn(t) = −2p

π

ˆ ϕso
2

−ϕso
2

Nia(t)

wso

cos(npϕ) dϕ = − 4

nπwso

sin

(
np
ϕso

2

)
NIpk cos(ωet). (2.31a)

Abbreviating Equation (2.31a) gives

KAn(t) = Kn cos(ωet) (2.31b)

where

Kn = −4NIpk
nπwso

sin

(
np
ϕso

2

)
. (2.31c)

Substituting the Fourier coefficients, Equation (2.31b), into Equation (2.29) gives

KAz(ϕ, t) =
∞∑

n=1,3,5,...

Kn cos(ωet) cos(npϕ). (2.32)

Applying the cosine addition formula,

cos(α + β) = cos(α) cos(β)− sin(α) sin(β), (2.33)

to Equation (2.32) allows each harmonic of KAz(ϕ, t) to be written as the sum of a forward
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and backward travelling wave according to

KAz(ϕ, t) =
∞∑

n=1,3,5,...

Kn

2

[
cos(ωet− npϕ) + cos(ωet+ npϕ)

]
. (2.34a)

Similarly, KBz(ϕ, t) and KCz(ϕ, t) are given by rotating KAz(ϕ, t) forward and backward 2π
3p

in space and 2π
3ωe

in time, respectively, resulting in

KBz(ϕ, t) =
∞∑

n=1,3,5,...

Kn

2

[
cos

((
ωet−

2π

3

)
− np

(
ϕ− 2π

3p

))

+ cos

((
ωet−

2π

3

)
+ np

(
ϕ− 2π

3p

))]
(2.34b)

KCz(ϕ, t) =
∞∑

n=1,3,5,...

Kn

2

[
cos

((
ωet+

2π

3

)
− np

(
ϕ+

2π

3p

))

+ cos

((
ωet+

2π

3

)
+ np

(
ϕ+

2π

3p

))]
. (2.34c)

Summing all of the forward travelling components of Kz(ϕ, t) together gives

Kz,forward(ϕ, t) =
∞∑

n=1,3,5,...

Kn

2

[
cos (ωet− npϕ)

+ cos

(
ωet− npϕ− 2π

3
(n− 1)

)
+ cos

(
ωet− npϕ+

2π

3
(n− 1)

)]
. (2.35)

The three components of Kz,forward(ϕ, t) are in phase if n− 1 is a multiple of 3,

n = 3k + 1, k ∈ Z+, (2.36)

otherwise, they form a balanced three phase set and sum to zero. Therefore, Kz,forward(ϕ, t)
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can be written as

Kz,forward(ϕ, t) =
∞∑

n=1,7,13,...

3Kn

2
cos(ωet− npϕ) (2.37)

where the even harmonics are excluded because Kz,forward(ϕ, t) is odd.

Summing all of the backward travelling components of Kz(ϕ, t) together gives

Kz,backward(ϕ, t) =
∞∑

n=1,3,5,...

Kn

2

[
cos (ωet+ npϕ)

+ cos

(
ωet+ npϕ− 2π

3
(n+ 1)

)
+ cos

(
ωet+ npϕ+

2π

3
(n+ 1)

)]
. (2.38)

The three components of Kz,backward(ϕ, t) are in phase if n+ 1 is a multiple of 3,

n = 3k − 1, k ∈ Z+, (2.39)

otherwise, they form a balanced three phase set and sum to zero. Therefore, Kz,backward(ϕ, t)

can be written as

Kz,backward(ϕ, t) =
∞∑

n=5,11,19...

3Kn

2
cos(ωet+ npϕ) (2.40)

where the even harmonics are excluded because Kz,backward(ϕ, t) is odd.

Adding Kz,forward(ϕ, t) and Kz,backward(ϕ, t) together gives the total surface current den-

sity:

Kz(ϕ, t) =
∞∑

n=1,7,13,...

3Kn

2
cos(ωet− npϕ) +

∞∑
n=5,11,19...

3Kn

2
cos(ωet+ npϕ). (2.41)

The surface current expressed in Equation (2.41) is used, along with the Halbach array rotor

field from Section 2.2, to calculate the torque produced by a machine with a slotted stator

and a Halbach array rotor in Section 2.3.2.
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2.3.2 Torque Calculation

The torque produced by a machine with a Halbach array rotor, with air-gap fields given in

Section 2.2, and a slotted stator, modeled as a smooth iron cylinder with a surface current

given by Equation (2.41), is calculated using the Lorentz-Kelvin force density, given by

FLK = J⃗f × µ0H⃗ + µ0M⃗ · ∇H⃗. (2.42)

This force density describes the force per unit volume in a magneto-quasistatic system.

Integrating FLK over the stator gives the total shear force experienced by the stator as

fϕ(t) = L

ˆ 2π

0

Kz(ϕ, t)µ0Hr(Rs, ϕ, t)Rsdϕ (2.43)

where L is the active length of the machine, Kz(ϕ, t) is defined in Equation (2.41), and Hr is

the radial directed component of the magnetic field at the surface of the stator, Rs. Because

the stator alone will not produce a shear force on itself, Hr in Equation (2.43) only needs

to include the magnetic field caused by the rotor. The radial component of the rotor field is

given in Equation (2.22) and is repeated here, evaluated at r = Rs, in the abbreviated form

Hr(Rs, ϕ
′) =

∞∑
n=1

Hrn(Rs) cos(npϕ
′) (2.44)

where the coefficient Hrn(Rs) is found by evaluating Equation (2.22) at r = Rs, and ϕ′ is the

tangential axis of the rotating reference frame, defined with respect to the tangential axis of

the stationary reference frame as

ϕ′ = ϕ− ωet

p
. (2.45)

ϕ′ could be shifted by an additional constant phase shift, but with Equation (2.41) and

Equation (2.44), the stator and rotor fields are π
2p

apart, resulting in maximum torque, so

the additional phase shift is omitted.
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The stator surface current in Equation (2.41) transformed to the rotating reference frame

is given by

Kz(ϕ
′, t) =

∞∑
n=1,7,13,...

3Kn

2
cos (npϕ′ + ωet(n− 1))

+
∞∑

n=5,11,19...

3Kn

2
cos (npϕ′ + ωet(n+ 1)) . (2.46)

The shear force on the stator, Equation (2.43), evaluated in the rotating reference frame is

given by

fϕ(t) = µ0LRs

ˆ 2π

0

Kz(ϕ
′, t)Hr(Rs, ϕ

′) dϕ′. (2.47a)

Substituting Kz(ϕ
′, t) from Equation (2.46) and Hr(Rs, ϕ

′) from Equation (2.44) results in

fϕ(t) =
3

2
πµ0LRs

[
∞∑

n=1,7,13,...

KnHrn(Rs) cos(ωet(n− 1))

+
∞∑

n=5,11,19,...

KnHrn(Rs) cos(ωet(n+ 1))

]
. (2.47b)

The coefficients Kn are negative, whereas the rest of the constants in Equation (2.47b) are

positive, so the shear force pulls the stator field against the direction of motion, ϕ̂. Intuitively,

the stator field, which is π
2p

ahead of the rotor field, is pulled backward because the fields

want to align with each other.

Torque is defined as the cross product of lever arm and force;

T = l × f. (2.48)

Substituting the shear force on the stator given in Equation (2.47b) into Equation (2.48)

gives the torque on the stator. The torque on the rotor is equal to the opposite of the torque

57



on the stator. The torque on the rotor is given by

T = −3

2
πµ0LR

2
s

[
∞∑

n=1,7,13,...

KnHrn(Rs) cos(ωet(n− 1))

+
∞∑

n=5,11,19,...

KnHrn(Rs) cos(ωet(n+ 1))

]
ẑ. (2.49)

Equation (2.49) reveals that the fundamental components of the radial rotor field and

the stator surface current create a constant, average torque, and the higher harmonics are

responsible for torque ripple.

2.3.3 Model Validation

The expression for torque in Equation (2.49) matches the torque calculated numerically with

FEA to within 1.2% for an outer rotor machine, as seen in Figure 2.17. The FEA calculated

torque in Figure 2.17 was obtained using the slotted stator geometry in Figure 2.18c, the

mesh in Figure 2.20a, and linear steel.

The torque produced by the ideal stator geometry shown in Figure 2.18b, with smooth

circular stator iron and surface currents, calculated with FEA, matches the torque produced

by the practical stator with deep slot sections, shown in Figure 2.18c, calculated with FEA

to within 0.1%, as seen in Figure 2.18a. This demonstrates that the slotted stator can be

accurately modeled as a smooth circular iron supporting a surface current.

The torque produced by the practical stator geometry, shown in Figure 2.18c, calculated

using FEA with the realistic, saturation-prone stator iron, Vacoflux 48, matches the torque

produced with linear steel to within 0.1%, as seen in Figure 2.19. The vector plot in Figure

2.18c shows that the flux density in the stator iron is below the 2.3 T saturation limit for

Vacoflux 48 [12]. This demonstrates that the stator iron can be accurately modeled as

infinitely permeable, as is done in Section 2.2, when the iron does not saturate.

The torque produced by the practical stator geometry, shown in Figure 2.18c, calculated
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(a) (b)

Figure 2.17: Torque calculated with model matches FEA to within 1.2% over one electrical
period for an outer rotor, ten-pole-pair Halbach array machine with four and five of segments
per pole (R1 = 128.5 mm, R2 = 131.5 mm, R3 = 141.8 mm, Ipeak = 1040 A, wso = 2.5 mm,
Br = 1.19 T, ωe = 13087 rad/s).

with 3D FEA, using the mesh in Figure 2.20b and Figure 2.20c, matches the torque calculated

with 2D FEA, using the mesh in Figure 2.20a, within 0.1%, as shown in Figure 2.21. 3D

FEA produces more accurate results than 2D FEA by modeling 3D effects such as eddy

currents. Because 3D and 2D match to within 0.1%, 2D FEA was used to test the model

throughout this chapter to save calculation time and memory.
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(a)

(b) (c)

Figure 2.18: Torque found with model matches FEA to within 1% for (b) ideal stator and
(c) practical stator (Outer rotor, ten pole-pair, Nm = 4, R1 = 128.5 mm, R2 = 131.5 mm,
R3 = 141.8 mm, Ipeak = 1040 A, wso = 2.5 mm, Br = 1.19 T, ωe = 13087 rad/s).
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Figure 2.19: Torque found with model matches FEA to within 1% for practical stator with
realistic stator steel (Vacoflux 48) and linear steel (Outer rotor, ten-pole-pair, Nm = 4,
R1 = 128.5 mm, R2 = 131.5 mm, R3 = 141.8 mm, Ipeak = 1040 A, wso = 2.5 mm, Br = 1.19
T, ωe = 13087 rad/s).

(a) (b)

(c)

Figure 2.20: (a) Mesh used for 2D FEA (b) Mesh used for 3D FEA, top view (c) Mesh used
for 3D FEA, side view.
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Figure 2.21: Torque found with model matches 2D FEA and 3D FEA to within 1% for
practical stator (Outer rotor, ten-pole-pair, Nm = 4, R1 = 128.5 mm, R2 = 131.5 mm,
R3 = 141.8 mm, Ipeak = 1040 A, wso = 2.5 mm, Br = 1.19 T, ωe = 13087 rad/s).

Model 2D FEA 3D FEA

Computation time [s] 5.6 ∗ 10−4 44 820

Table 2.1: Torque calculation time for model, 2D FEA, and 3D FEA.

2.4 Discussion

As illustrated in Table 2.1, the torque in Equation (2.49) was calculated using the MATLAB

function in Appendix A in 1/100,000 of the time that it took to calculate with 2D FEA,

with 200 time steps per electrical period, and in 1/1,500,000 of the time that it took to

calculate with 3D FEA, with 75 time steps per electrical period. Although the calculation

time for FEA could be decreased by using a mesh with larger elements than those in 2.20

and fewer time steps, calculating the torque using Equation (2.49) will always be several

orders of magnitude faster than using FEA.

Due to the advantage in computational time, the torque calculation in Section 2.3.3 is
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recommended for sweeping parameters like machine radii, number of magnet segments of per

pole, etc, in the initial design of a Halbach array rotor, slotted stator electric machine. Once

an initial design candidate is found which satisfies all constraints and maximizes performance,

FEA is recommended for the detailed design of the parameters which were simplified in this

model, such as stator slot section geometry, stator back iron width, and rotor back iron width.

Figure 2.17 shows that a practical machine design, shown in Figure 2.18c, can achieve the

torque calculated by the idealized model within 1.2%. The machine shown in Figure 2.18c

is currently in manufacture, with testing planned this year.

Additionally, the models presented in this chapter are useful for describing how, and

explaining why, individual parameters of the electric machine affect the torque. For example,

the number of magnet segments per pole in the Halbach array rotor, Nm, is varied for an

outer rotor, ten-pole-pair machine, while all other parameters are held constant, and the

torque, calculated using Equation (2.49), is plotted over one electrical period in Figure 2.22.

Generally, the average torque produced by the machine increases and the torque ripple

decreases as the number of segments increases. However, the torque ripple increases when

increasing Nm from 1 to 2 and from 4 to 5, and the average torque decreases when increasing

Nm from 1 to 2 when rotor back iron is included, as seen in Figure 2.22.

Intuitively, increasing Nm, which increases the sampling frequency of the ideal rotating

magnetization density and thus decreases the harmonic distortion of M⃗ , should lead to

less torque ripple and higher average torque. Therefore, one might suspect an error with

the numerical simulation setup if only given the results obtained with FEA in Figure 2.17.

However, the torque in Equation (2.49) shows that every harmonic of the Halbach array

rotor field does not contribute equally to torque ripple. Instead, torque ripple is produced

at a certain harmonic only when both radial rotor field and stator surface are nonzero.

Comparing the harmonics of the radial rotor field in Figure 2.23 to the harmonics of the

concentrated-wound, three-phase stator surface current in Figure 2.23e explains why torque

ripple increases as Nm increases from 1 to 2 and 4 to 5. Furthermore, comparing the first
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(a)

(b)

Figure 2.22: Torque produced by an outer rotor, 10 pole-pair Halbach array machine with
an increasing number of segments per pole (a) without rotor back iron and (b) with rotor
back iron.

harmonics of the radial rotor fields in Figure 2.23b explains why the average torque decreases

as Nm increases from 1 to 2 when including rotor back iron.

A Halbach array rotor with four magnet segments per pole and no back iron was selected

for use in the 1-MW demonstrator, as the optimal balance between performance and man-

ufacturing complexity, based on the model described in this chapter and feedback from the

rotor manufacturer. As seen in Figure 2.22, for an outer-rotor, ten-pole-pair Halbach array

rotor machine with a concentrated-wound, three-phase, slotted stator, the relative increase
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(a) (b)

(c) (d)

(e)

Figure 2.23: (a), (b), (c), (d) Harmonics of the radial Halbach array rotor field at the
stator radius, Hrn(Rs), and (e) Harmonics of concentrated-wound, three-phase stator surface
current, Kn, explain why torque ripple increases as Nm increases from 1 to 2 and 4 to 5.

in average torque and decrease in torque ripple diminishes when increasing Nm above four.

A titanium rim was used to retain the magnets instead of rotor back iron. The improved me-

chanical strength and reduced mass of the titanium rim outweighed the benefit of increased

torque given from rotor back iron, as seen in Figure 2.22 [4].

In summary, the models described in this chapter can be used to calculate the torque of

a machine with a Halbach array rotor and slotted stator 100,000 times faster than 2D FEA

while remaining accurate to within 1.2% of 2D FEA, to describe how individual parame-
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ters affect machine performance, and to explain counter-intuitive trends in machine torque.

Therefore, these models are recommended for use in the initial design of other Halbach array

rotor, slotted stator machines.

Although the models presented in this chapter are specific to machines with Halbach

array rotors and slotted stator, the techniques behind these models,

• representing a stator winding as a surface current,

• representing a slotted stator as a smooth iron cylinder, and

• using Fourier series representations of piece-wise continuous functions to simplify equa-

tions,

can be used to construct analytical models for other types of electric machines.
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Chapter 3

Characterizing the Effect of Stress on

the Magnetic Properties of Iron-Cobalt

3.1 Introduction

In this chapter, samples of iron-cobalt stator material are experimentally characterized at

various stages of the stator-core manufacturing process. The objective is to understand how

the stress applied during the stator manufacturing process affects the magnetic performance

of the stator material and the electric machine. The details of the experimental setup are

described in Section 3.3. In Section 3.4, a conventional lamination bonding process is shown

to increase core loss by 20% at the operating point of the 1-MW electric machine. Two

manufacturing processes for iron-cobalt stators are compared in Section 3.5. In Section 3.6,

the magnetic properties of a 0.5-inch tall stack of full-size stator laminations are measured.

The partial stator measurements show good alignment with the smaller toroid samples used

in Sections 3.4 and 3.5. Lastly, the implications of the effect of the manufacturing process

on stator performance are discussed in Section 3.7.
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3.2 Background

Grain-oriented iron-cobalt alloys, commonly referred to by the trade name Super-Permendur

(Supermendur), are popular for high-performance applications because they offer the highest

saturation flux density (2.4 T) and lowest core loss of any material available. However, due

to the high levels of Cobalt in the alloy, the core loss and permeability are exceptionally

susceptible to the mechanical stress applied [13].

The electric machine’s ability to achieve the full rated power of 1-MW relies heavily on

minimized stator core loss, as it is expected to be the dominant loss [4]. To attain the most

accurate prediction for stator core loss, the magnetic properties of the iron-cobalt stator

material were measured after each step in the manufacturing process.

3.3 Experiment Setup

The specific core loss and B-H curve data presented in Sections 3.4 and 3.5 are collected

using 40-mm diameter toroid samples (see Figure 3.1). The samples are wound with 90

primary turns and 30 secondary turns. A sinusoidal voltage amplifier drives the primary

winding. An oscilloscope measures the open-circuit voltage on the secondary winding and

the current in the primary winding (see Figure 3.2). The voltage on the secondary winding

is caused only by induction, because no current flows through the secondary winding.

The magnetic field strength (H), flux density (B), and specific core loss ( Pc

mc
) are calcu-

lated using Ampere’s law,

H =
N1I1
lc

, (3.1)

Faraday’s law,

B =
1

N2Ac

ˆ
V2(t) dt, (3.2)
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(a) (b)

Figure 3.1: (a) Toroid sample of iron-cobalt material (b) Toroid sample in 3-D printed case
with winding.

Figure 3.2: Experiment setup for characterizing soft-magnetic materials.

69



and integrating the electrical energy put into the system over a cycle,

Pc

mc

=
1

mcT

ˆ T

0

I1
N1

N2

V2(t) dt (3.3)

where I1 is primary current, V2 is secondary voltage, N1 and N2 are number of primary and

secondary turns respectively, Ac is cross sectional area of core, lc is mean core length, mc is

mass of core, and T is period.

3.4 Effect of a Conventional Stator Lamination Bonding

Process

The stator laminations for the 1-MW demonstrator were bonded together to facilitate wind-

ing the stator core. In a conventional lamination bonding process, an adhesive is applied to

the individual laminations, the laminations are stacked on top of each other, and pressure

(usually around 150 psi) is applied to the lamination stack while the adhesive cures [14].

To understand the impact of the bonding process on the magnetic properties of the

iron-cobalt stator material, two samples of loose laminations and two samples of bonded

laminations were experimentally characterized. The samples contained 32 toroid laminations

each of 0.1-mm Vacoflux-48 material (49% Co, 49% Fe, 2% V).

As seen in Figure 3.3a, the bonding process significantly increased the core loss of the

iron-cobalt stator material. Specifically, the bonding process increased the core loss of the

stator material by 20% at the operating point of the electric machine stator (2.2 T, 2000

Hz).

Furthermore, the bonding process caused the B-H curve of the stator material to depreci-

ate, as seen in Figure 3.3b. However, when the electric machine was simulated in FEA using

the B-H curve from the bonded material, there was a negligible impact on performance. This

is attributed to the fact that the machine operates near below the deep saturation regime
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(a) Specific core loss at 2000 Hz (b) Flux density as a function of field strength

Figure 3.3: Magnetic properties of 0.1 mm Vacoflux-48 (Fe-Co-V) laminations before and
after bonding.

(>2.2 T) for both the B-H curves.

3.5 Comparing Stator Manufacturing Processes

An original stator manufacturing process was developed for the 1-MW demonstrator to

minimize the stress on the laminations (referred to as Process #1, Figure 3.4). While

pursuing the original process, an alternative stator manufacturing process became available

under the product name "VACSTACK" (referred to as Process #2, Figure 3.4). Stator cores

manufactured with both Process #1 and Process #2 were acquired (see Figure 3.5).

To determine which manufacturing process resulted in better magnetic performance, two

toroid samples from both processes were experimentally characterized. The toroids from

Process #1 did not undergo ID grinding. The results of the experimental characterization

are shown in Figure 3.6.

The stator manufactured with Process #2 was only available with Vacodur 49, a variant

of Vacoflux 48 with slightly lower magnetic performance and higher mechanical strength [12].

The specific core loss data provided by the manufacturer for Vacodur 49 is slightly higher

than Vacoflux 48.

71



Figure 3.4: Two alternative manufacturing processes for stator cores.

As seen in Figure 3.6a, the specific core loss data measured on the samples from Process

#1 are significantly higher than the catalog data for Vacoflux 48. In contrast, the specific

core loss data measured on the samples from Process #2 closely match the catalog data for

Vacodur 49. The catalog data for both alloys were measured on loose, unbonded laminations.

Similarly, the B-H curve measured on the samples from Process #2 is superior to that

measured on the samples from Process #1, as shown in Figure 3.6b. When the electric

machine was simulated with FEA using the B-H curve from Process #1, the torque was 1%

lower and the peak flux density was 0.1 T lower than it was when simulated with the B-H

curve from Process #2, as illustrated in Figure 3.7. The fact that the machine performance

is similar with both B-H curves is attributed to the fact that the machine operates near

below the deep saturation regime (>2.2 T) for both the B-H curves.

Manufacturing Process #2 is recommended for building future stators as it imparts less

stress on the laminations and thus results in better magnetic performance.

72



Figure 3.5: Two stator cores manufactured with different processes (courtesy of Marc Amato,
Innova Logic LLC).

(a) Specific core loss at 2000 Hz (b) Flux density as a function of field strength

Figure 3.6: Magnetic properties of Fe-Co-V alloys "Vacoflux 48" and "Vacodur 49" with
different manufacturing processes.
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Figure 3.7: Torque of the machine via FEA using experimental data from different manu-
facturing processes.

3.6 Partial Stator Experiment

To verify that the data collected on the toroid samples in the Sections 3.4 and 3.5 accurately

represents the electric machine, the magnetic properties of full-size stator laminations were

measured. However, amplifiers capable of supplying enough power to drive the entire stator

core were unavailable because they too were under development. Instead, specific core loss

data from a 0.5-inch tall stack of bonded stator laminations, shown in Figure 3.8, were

collected.

When the partial stator stack is wound in the same fashion as the toroid samples, as

shown in 3.8b, the magnetic flux travels only through the back iron, since it offers the lowest

reluctance path. This approximation was validated by simulating the partial stator stack

with FEA, as shown in Figure 3.9. Therefore, the stator teeth can be ignored when analyzing

the data presented here.

When measuring the core loss of the partial stator stack at 2,000 Hz (the electrical

frequency of the machine), a natural frequency of the shortened stator shape was excited.
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(a) (b)

Figure 3.8: (a) Partial stator stack (b) Partial stator stack in plastic case with winding.

The mechanical resonance caused excessive vibration, leading to higher than expected core

loss measurements. When vibrating, magnetic energy is converted into mechanical energy

and motion, and therefore the core-loss calculated by Equation (3.3), which assumes that

all of the electrical energy input into the system is dissipated in core loss, is inaccurate. To

avoid the natural frequency, the core loss of the partial stator was measured at 2,500 Hz.

As shown in Figure 3.10, the specific core loss measured on the partial stator stack closely

matches that measured on the toroid samples. Therefore, the data from the toroid samples

provides an accurate estimate for the full-size stator.
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Figure 3.9: Flux density in partial stator experiment via FEA.

Figure 3.10: Specific core loss of the 200-mm-diameter partial stator matches that of the
40-mm-diameter toroid.
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3.7 Discussion

Mitigating stator core loss is critical for building electric machines for aircraft propulsion,

as achieving high specific power requires operating at high rotational speeds and electrical

frequencies. As shown in Sections 3.4 and 3.5, the catalog core loss data can vary significantly

from the actual stator core loss due to stress applied during the manufacturing process.

In the design of the electric machine, a safety factor of two was applied to the stator

core loss estimate, which used "Vacoflux 48" catalog data measured on loose laminations.

Including the safety factor lowered the rotational speed of the optimized machine by 20% [4].

The data shown in Sections 3.4 and 3.5 suggest that the stator core loss of the actual machine

may be only 20% higher than the loose-lamination, "Vacoflux 48" catalog data. Therefore,

the electric machine may be able to achieve higher rotational speeds and electrical frequencies

within the thermal limit of the test setup.

However, other factors such as the effect of rotating magnetic fields and the stator to

heat-sink interference fit may raise the stator core loss beyond what was measured in this

chapter [15], [16]. The core loss measured on the 1-MW demonstrator, when available,

should be used to recommend a new safety factor to apply to the catalag core loss data for

iron-cobalt stator-cores manufactured with each of the two processes documented in Section

3.5.

For the design of future electric machines, obtaining measurements of the stator core

material under the same stress as the actual stator is recommended to ensure the most

accurate core loss estimate. If core loss data for the material under similar stress is not

attainable, applying a safety factor to the catalog data measured on loose laminations is

essential.
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Chapter 4

Summary, Conclusion, and Suggestions

for Future Work

4.1 Summary

In Chapter 2, the magnetic field produced by a cylindrical, segmented Halbach array was

derived from Maxwell’s Equations using the Fourier series representation of the magneti-

zation density. A technique for modeling a slotted stator as a smooth iron cylinder with a

surface current was applied to the concentrated-wound, three-phase stator used in the 1-MW

demonstrator, and the torque was calculated using the Lorentz-Kelvin force density. The

torque equation matches FEA to within 1.2% and computes 100,000 faster than 2D FEA,

making it ideal for the initial machine design.

In Chapter 3, the stator core loss produced by the iron-cobalt laminations used in the

1-MW demonstrator was characterized using 1.5-inch diameter toroid samples and full-size,

10-inch diameter stator laminations. A conventional lamination bonding process was found

to increase the core loss by 20% over loose, unbonded laminations. An alternative stator-core

manufacturing process which results in no impact on core loss was identified and experimen-

tally verified.
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4.2 Conclusion

The model for the torque produced by a machine with a Halbach array rotor and slotted

stator in Chapter 2 is recommend for the initial design of future machines. The reduced

computation time of this model allows parameters, such as the number of segments in the

Halbach array, the stator/rotor radii, and the stator current strength, to be swept in a

fraction of the time that it would take using 2D FEA. Once an initial machine design is

obtained, FEA is recommend for designing the parameters that were simplified in the models

in Chapter 2, such as the stator slot geometry, the width of the stator back iron, and the

width of the rotor back iron. The torque produced by the 1-MW demonstrator, calculated

with FEA, matches the torque calculated with the simplified model within 1.2%.

Additionally, the models in Chapter 2 are useful for describing how, and explaining why,

individual parameters of the machine affect performance. For example, the model was used

to explain why increasing the number of magnet segments in a Halbach array machine can

actually cause the torque ripple to increase.

Torque ripple is caused by the interaction of the harmonics of the stator field with the

rotor field. Although increasing the number of magnet segments causes the harmonic dis-

tortion of the rotor field to decrease, it can also cause a harmonic of the rotor field to begin

interacting with the stator field, leading to higher torque ripple.

For the concentrated-wound, three-phase stator in the 1-MW demonstrator, a Halbach

array with four magnet segments per pole results in low torque ripple and high average

torque while remaining within the manufacturing ability of the magnet vendor. Increasing

the number of magnets segments per pole beyond four does not decrease the torque ripple

by much, if it does at all. However, for machines with a different stator winding, the optimal

number of magnet segments per pole may be very different.

The first attempt at analyzing the air-gap field produced by a cylindrical Halbach array

for this thesis involved adapting a technique previously used to analyze linear Halbach arrays.
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The tangential magnetization density was replaced with free surface currents, and the scalar

potential in the magnet region satisfied Laplace’s Equation. This method led to a 10% error

between the model and FEA. Although this technique works for linear arrays, for cylindrical

arrays, ∇·M⃗ ̸= 0 in the magnet region, even when the tangential component is replaced with

surface currents. Therefore, the scalar potential in the magnet region must satisfy Poisson’s

Equation instead of Laplace’s Equation. When the scalar potential in the magnet region

satisfies Poisson’s Equation, the model matches FEA to within 1%. This illustrates that

models for linear machines do not always apply for cylindrical machines.

Although the models presented in Chapter 2 are specific to machines with Halbach array

rotors and slotted stator, the techniques behind these models,

• representing a stator winding as a surface current,

• representing a slotted stator as a smooth iron cylinder, and

• using Fourier series representations of piece-wise continuous functions to simplify equa-

tions,

can be used to construct analytical models for other types of electric machines.

The experimental results in Chapter 3 demonstrate that the core loss of iron-cobalt lami-

nations can rise by as much as 20% depending on the stress applied during the manufacturing

process. However, when the stator-core was manufactured by one company from start to

finish, there was no observed rise in core loss. Therefore, reducing the number of steps and

companies involved in the stator manufacturing process is recommended to reduce stator core

loss. Otherwise, a safety factor should be applied to the catalog core loss data to account

for the stress of the manufacturing process.

The core loss measured on a stack of full-size, slotted stator laminations was found to

match the core loss measured on a smaller, smooth, toroid sample within the error of the

experiment in Chapter 3. This demonstrates that stator core loss can be accurately measured

using the real stator, even if it has slots, if toroid samples are not available. On the other
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hand, if the real stator cannot be measured directly, then measuring toroid samples should

result in an accurate core loss estimate.

4.3 Suggestions for Future Work

The 1-MW demonstrator is planned for full power testing in 2024. The torque produced

by the real machine should be compared with the torque calculated in Chapter 2 and FEA

to gauge how accurately the model predicts the torque produced by real electric machinery.

Given that the fields on the real rotor match the model to within the 5% error of the

experimental setup, the average torque should also match the model to within around 5%,

and the torque ripple should not exceed more than 2% of the average torque.

The equation for the rotor fields in Chapter 2, Equation (2.22), results in infinity for

machines with a single pole-pair, p = 1. The model can be extended to apply for machines

with a one pole-pair by starting the equations in Section 2.2 with p = 1 and avoiding division

by zero.

As the slot width goes to zero, the surface current becomes infinitely large, while the area

that it is integrated over goes to zero. Ideally, these two extremes counteract each other, and

the torque does not go to infinity. However, the Fourier series used to represent the stator

surface current cannot accurately represent the impulse function, so the torque calculated in

Chapter 2 goes to infinity as the slot width goes to zero. The torque expression in Chapter

2 could be compared with FEA over a range of different slot widths to determine at what

point the model is no longer accurate.

In Chapter 3, the stress applied during a conventional lamination bonding process was

found to increase the core loss of the iron-cobalt laminations by 20%. The interference fit

between the heat sink and the stator core may also apply significant stress to the laminations.

The core loss of the 1-MW demonstrator can be separated from the other losses during

testing, and used to estimate the impact of the interference fit on core loss. Furthermore,
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the core loss of the 1-MW demonstrator can be used to recommend a general safety factor

to apply to catalog core loss data for iron-cobalt laminations.
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Appendix A

MATLAB Code listing

Function for calculating αn ("M_r_n_cos") and βn ("M_phi_n_sin") using equation (2.9d)

and equation (2.10):

1 function [M_r_n_cos , M_phi_n_sin] = get_mag_FS_coeffs(N_m ,

inner_rotor , M_o , p, num_harmonics)

2 del_phi = pi/(p*N_m); % angular width of one magnet segment

3 T = 2*pi/p; % period of array

4 n_array = 1: num_harmonics;

5 M_r_n_cos = zeros(1, num_harmonics);

6 M_phi_n_sin = zeros(1, num_harmonics);

7 for k = 0:N_m

8 phi_a_k = max((k-0.5)*del_phi ,0);

9 phi_b_k = min((k+0.5)*del_phi ,T/2);

10 if inner_rotor

11 phi_k = k*del_phi - k*pi/N_m;

12 else

13 phi_k = k*del_phi + k*pi/N_m;

14 end
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15 M_r_n_cos = M_r_n_cos + sin(( n_array*p+1)*phi_b_k - phi_k).

/(2*( n_array*p+1)) + sin(( n_array*p-1)*phi_b_k + phi_k).

/(2*( n_array*p-1));

16 M_r_n_cos = M_r_n_cos - sin(( n_array*p+1)*phi_a_k - phi_k).

/(2*( n_array*p+1)) - sin(( n_array*p-1)*phi_a_k + phi_k).

/(2*( n_array*p-1));

17 M_phi_n_sin = M_phi_n_sin + sin(( n_array*p+1)*phi_b_k - phi_k

)./(2*( n_array*p+1)) - sin(( n_array*p-1)*phi_b_k + phi_k).

/(2*( n_array*p-1));

18 M_phi_n_sin = M_phi_n_sin - sin(( n_array*p+1)*phi_a_k - phi_k

)./(2*( n_array*p+1)) + sin(( n_array*p-1)*phi_a_k + phi_k).

/(2*( n_array*p-1));

19 end

20 M_r_n_cos = M_r_n_cos * M_o*2*p/pi;

21 M_phi_n_sin = M_phi_n_sin * M_o*2*p/pi;

22 end

Function for calculating the harmonics of the rotor field using equation (2.22):

1 function [H_r_n , H_phi_n] = get_H_coefficients(inner_rotor , p, R1, R2

, R3, R4, a_n , b_n , R_meas)

2 n_array = 1: length(a_n);

3 if inner_rotor

4 x = 0.5*n_array*p./(1-(R1/R4).^(2* n_array*p)).*((a_n+b_n).

/(1- n_array*p).*((R1/R3).^(2* n_array*p).*(R3/R_meas).^(

n_array*p+1) -(R1/R2).^(2* n_array*p).*(R2/R_meas).^( n_array

*p+1)) + ...

5 (a_n - b_n)./(1+ n_array*p).*((R3/R_meas).^( n_array*p+1) -(

R2/R_meas).^( n_array*p+1)));

6 H_r_n = x.*(1+( R_meas/R4).^(2* n_array*p));
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7 H_phi_n = x.*(1-( R_meas/R4).^(2* n_array*p));

8 else

9 x = 0.5*n_array*p./(1-(R1/R4).^(2* n_array*p)).*((a_n+b_n).

/(1- n_array*p).*(( R_meas/R2).^( n_array*p-1) -(R_meas/R3).^(

n_array*p-1)) + (-a_n+b_n)./(1+ n_array*p).* ...

10 ((R3/R4).^(2* n_array*p).*( R_meas/R3).^( n_array*p-1) -(R2/

R4).^(2* n_array*p).*( R_meas/R2).^( n_array*p-1)));

11 H_r_n = -x.*(1+(R1/R_meas).^(2* n_array*p));

12 H_phi_n = x.*(1-(R1/R_meas).^(2* n_array*p));

13 end

14 end

Function for plotting the rotor field using the harmonic coefficients calculated previously:

1 function [x, y] = get_plot_from_fourier_coefs(odd , coefs , p,

num_points)

2 T = 2*pi/p;

3 x = 0:T/num_points:T;

4 y = zeros(1, num_points +1);

5 for i = 1: length(coefs)

6 if odd

7 y = y + coefs(i) * sin(i*p*x);

8 else

9 y = y + coefs(i) * cos(i*p*x);

10 end

11 end

12 end

Function for calculating the torque produced by a machine with a Halbach array rotor and

slotted stator with a concentrated, three-phase winding using equation (2.49):

1 function [time , torque] = get_torque(H_R_n , R, w_e , I_peak , w_so , p,
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Length)

2 u_o = 4*pi*10^ -7;

3 num_harmonics = length(H_R_n);

4 n_array = 1: num_harmonics;

5 phi_a = w_so / (2*R);

6 T = 2*pi/w_e;

7 num_points = 400;

8 time = 0:T/num_points:T;

9 torque = zeros(1, num_points +1);

10 k_n = -4*I_peak*sin(n_array*p*phi_a)./( n_array*pi*w_so);

11 for n = 1: num_harmonics

12 if mod(n-1,6) == 0

13 % Forward rotating

14 torque = torque + H_R_n(n)*k_n(n)*cos(w_e*time*(n-1));

15 elseif mod(n+1,6) == 0

16 % Backward rotating

17 torque = torque + H_R_n(n)*k_n(n)*cos(w_e*time*(n+1));

18 end

19 end

20 torque = -torque * 3/2 * u_o * Length * R^2 * pi;

21 end
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