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Abstract

We consider algorithms for flow control in computer
networks with fixed routing. The goal is to establish input
rates, for each source-destination pair, that satisfy a
particular fairness criterion. We describe several algorithms
in which the input rates are calculated based on controls
established by the links of the network. These controls are
updated iteratively, wusing feedback information from the
network. We show that the rates thus calculated converge to
the desired values when the 1links are assumed to update
synchronously, and without feedback delay. A model for
asynchronous operation with delay is given, and we demonstrate
for this model that the input rates <calculated by the
synchronous algorithms may fail to converge. We show how to
modify the algorithms, by the introduction of an update
protocol and by wusing more of the available feedback
information, so that convergence of the rates is guaranteed.

We extend the model for asynchronous computation
developed by Bertsekas [14] to get some results relating to
general asynchronous distributed algorithms with update
protocols. These results are used to give an alternate proof
of the correct operation of one of the flow control
algorithms.

We develop a computer program to simulate the flow
control algorithms for a voice packet network. The simulation
results indicate that the algorithms behave as expected for a
network with static loads. However, when input loads change
in imitation of real conversations, the control algorithms do
not adapt fast enough to control the flows effectively.

Thesis supervisor: Prof. Pierre A. Humblet Title: Associate
Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Background

Advances 1in packet switching techniques make packet
switching a cost effective method for handling sporadic or
bursty comminications traffic. The sporadic nature of voice
and the desire to integrate voice and data in computer
communication networks [1], [2], makes the idea of packet
voice attractive. 1In this thesis, we consider the problem of

limiting traffic flow in such integrated networks.

In a traditional «circuit switched voice communication
network, a given 2-way conversation is allotted two dedicated
channels. But wusually a wuser spends 650% of his time
listening. In addition, pauses between words and phrases 1in
the speech of the active user represent a source of wasted
channel resources. These smaller units of uninterrupted voice
are called "talk-spurts"™., The random nature of talk-spurts
has long been exploited by the Bell System in their TASI
algorithm, used on intercontinental 1lines [3]. Digital
variations on TASI include Digital Speech Interpolation and

Speech Predictive Encoding [4], [51].




VIn an integrated voice and data communication network, it
is necessary to adopt flow control measures to limit the
amount of information entering the network, and prevent
congestion. While flow control techniques for data-only
networks have reached a high 1level of sophistication [6],»
little is known about flow control for voice. The different
delivery requiréments of voice and data demand a different
approach to the problem of flow control for each. While
considerable delay may be acceptable in a data packet, the
same delay would cause a voice packet to be discarded by the
receiver as "too late™, Conversely, voice may suffer
considerable degradation due to errors and still be
intelligible, while the same errors in a data packet make it

worthless,

Traditional methods of flow control for voice simply
block the initiation of new calls. TASI type systems may even
block new talk-spurts, resulting in clipping of the received
signal. Loss of more than about .5% of the signal by clipping

has proved unacceptable.

The idea of embedded coding, first proposed at the Naval
Research Laboratory [7], provides a new approach to voice flow
control [8]. In embedded coding, speech 1is encoded into
priority ranked packets. The lower priority packets can be
discarded as needed, while the remaining packets still provide

an intelligible, though degraded, signal. Hence, we have
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traded clipping for distortion. The level of network
congestion that results in unacceptable clipping for a call
blocking scheme is much lower than that required to render

embedded coding speech unintelligible.

Low priority packets can be discarded at their point of
entry into the network, as well as at the point of congestion,
resulting in a variable rate encoding scheme. Clearly, it is
better to discard entering packets when possible, to prevent

unnecessary waste of network resources.

An algorithm for voice flow control using embedded coding
has been studied by a group at Lincoln Laboratories, using a
computer simulation [8]. In their model, conversations are
conducted over fixed routes. Low priority packets are
discarded at congested nodes, and terminals report the
received rates to senders, which reduce their input rates
accordingly. Provisions are included for allowing the senders

to increase their rates when the network is lightly loaded.

The primary objectives of this scheme are to maintain
stable operation of the network, while preventing excessive
delays due to congestion and providing the highest 1level of
service possible to each user.

This last criterion gives rise to the question of how to

allocate network resources in a "fair" manner, while giving
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everyone the best possible service. Hayden [9] and Jaffe [10]
simultaneously and independently arrived at a concept of
"fair" rate allocation, which was generalized by Gafni and

Bertsekas [11], [12], and is defined in the next section.

1.2 Problem Model

We will use the following model to study the problem of
voice flow control. Consider a network 72 which consists of a
set of 1links ;f and sessions z; y, Where a session is a
source-destination pair between which a conversation is taking
place. Each link j has an associated capacity cj, where cj20.
Each session is assigned a path through the network, which is
fixed for the duration of the conversation. We denote byCZ?i,
the set of links in the path of session i. We denote by_ézj,

the set of sessions whose path contains link j.

Let r;(t) be the input rate of session i at time t. For
now, We assume instantaneous propogation of data through the
network, so that the component of flow on link j at ﬁime t,
due to session i, is ry(t). (This assumption will be dropped
later, in favor of a more realistic model.) Then we define

the flow on link j at time t as

fi(t)= 2. ry(t). (1.1)
'(636-
We control the flow only by limiting inputs rates, and not by

discarding packets when the links are congested. We wish to
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control the input rate for each session i and the flow on each

link j so that the steady state rate ry= lim rij(t) and steady
A—>c0

state flow £z lim £fj(t) exist, and satisfy the constraints
L=z

for a fair allocation, as outlined below.

We would 1like for a fair rate allocation to be
indifferent to the geographical separation of the
source-destination pair. While priorities may be established
for certain sessions, it should not be on the basis of
distance. Furthermore, two sessions of the Same priority
should be assigned the same rate, if the rate of one can be
traded for the other, without reducing the rate of any other
Session or violating other system constraints. This will make
the network transparent to the session, in the sense that he
cannot tell the length of the assigned path by the assigned

rate.

We also require that each user be assigned the highest
possible rate, while guaranteeing that the steady state flow
on each link does not exceed a given function of the 1link

capacity.

With this motivation, we give the definition of a fair
allocation, first presented by Gafni [11]. First we need the

following two definitions.

A vector x=(x1,...,xn) is said to be 1lexicographically

- 13 =




"~ less than or equal to y:(y1,...,yn) if-xi>y1 implies the

existence of j<i such that xj<Yj- We write this as x £ Y.

Given a vector xé& RR, let % denote a vector whose

coordinates are some permutation of the coordinates of x. If
the coordinates of‘?lhave the property that X1<x0&. . .LXp, We
call Q’ the increasing permutation of x, and we denote this

vector by x. (Note that X £ Qj for any permutation X of x.)

Definition. Let X be any subset of RP. We say that xe X is a
fair allocation over X, if for all yeX, y £ X.

Aoy

We may think of X as a "feasible" set. The fair
allocation vector solves the following set of nested problems.
The first problem is to find a subset X1 of X, such that the
minimum coordinate of a vector x€5X1 is greater than or equal
to the minimum coordinate of any vector in X. Next we find a
subset X, of Xq, such that the second smallest coordinate of

x€X, is maximized over Xy, and so on.
1.3 Previous Work

Hayden [9] gives a distributed algorithm which produces a

rate vector r=(...,ri,,_,) that is a fair allocation over the

set defined by

fi< aje; Vieyx, (1.2)

where a is some constant, 0<a<l. The rationale behind (1.2)
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is simple: we restrict the steady state flow on each link to
some fixed fraction of link capacity, reserving the unused
capacity as a buffer against transient fluctuations in flow.
We call 3jcj the effective capacity, and henceforth, when we
refer to a 1link's capacity it is assumed that we mean the

effective capacity.

Jaffe [10] gives an algorithm such that the vector

(--;1biri,...) is a fair allocation over the set defined by
Pirj<e -1 Vied, VieLi, (1.3)

‘where b; js some positive constant associated with session i.

Hayden offers a distributed algorithm for achieving Jaffe's

desired rate vector.

The rationale behind (1.3) is more subtle than for (1.2).
First, it allows us to establish different priorities among
sessions, as characterized by the constant bi- Second, it
provides a buffer against transient flows which is sufficient

to allow session i on link J to increase its rate by a factor

of (1+bi), while still guaranteeing that ficej.

Alternatively, it permits a new session to be added to the
link, provided its rate is no greater than that of +the most

privileged session already using the link.

Gafni [11] further generalizes the feasible set
considered by Jaffe. For each link jE;C and session ie,S, he

introduces functions gj;Rt4>R+ and bi;Rt_>R+. His objective
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is to generate a rate vector r such that the vector

('°°’bi(ri),...) is a fair allocation over the set defined by

bi(ri)ggjles-£y) Vied Viey; (1.4.1)
and

ri>o Vie& (1.4.2)
and

figej  VYieg (1.4.3)

We will refer to the functions gj(-) and b;(+) as the link
constraint functions and session constraint functions,

respectively. For convenience, we will denote the vector

(eesbi(ry),...) by b(r).

In order to guarantee the existence of a unique fair
allocation vector over this set, the following assumption is

needed [12]:

Assumption 1.1: For all jé;f, gj(-) is monotonically
non-decreasing, and for all ieQ, bi(') is continuous,

monotonically increasing and maps R*¥ onto R*.

We note that this assumption also implies the existence of
p=1(:). Unless otherwise noted, when discussing functions

gj(-) and b;(+), we assume that Assuption 1.1 holds.

Gafni gives an algorithm that produces the desired rate
vector, provided that an additional assumption about the link

and session contraint functions is satisfied.
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Assumption 1.2: For each i€§, j€L;, the function hj;(*),
defined by hy;(f)=b;~1(g;(f)), is convex and differentiable on

R*, and satisfies hij(0)=0.

By allowing the function bi(') to be non-linear, we gain
flexibility in making priority assignments. Gafni also
provides some examples where it is desirable for gj(-) to be

non-linear as well. We summarize one such argument below.

Assume that the bit rate for each session 1 1is a
stochastic process with mean r, and standard deviation diri,

where d;>0, For each link j, define Dj= mﬁg dj. For a given
. . C o A€d4
link j, let k be the session 1nx3-j with the maximum mean rate

r If we assume that fi<cj, then by the independence of the

je
rates of different sessions, the standard deviation Cr(fj) of

the flow fj satisfies

C(f=y 2 a(rp?
Lézé
SDJ. 52‘_8,.12
e d;

1
D5{¢ = ridrk
L(.—.R,J'

<Diycirk - (1.5)

If we choose

bi(r)=r (1.6.1)

and

2 2
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then from (1.4) and (1.5), we have
NASEPR PN
ijJCJgj(CJ-fj)
=cj'fj' (1.7)

Hence, proper selection of the function gj(-) can guarantee

sufficient reserve capacity on each 1link to accomodate
fluctuations in flow at 1least as great as the standard

deviation of the flow.

We note that, while the class of feasible sets considered
by Gafni is more general than the <class of feasible sets
considered by Hayden, the two classes are disjoint, because of

Assumption 1.2.

In addition to seeking fair allocations over different
feasible sets, Hayden and Gafni also use different methods of
controlling the session 1input rates. Both algorithms are
designed for synchronous operation, such that at each unit
interval of time n, each session calculates a néw input rate
ry(n). For both algorithms, the rate vectors r(n) can be
shown to converge as n goes to infinity, and the limit vector

r is a fair allocation over the specified set.

In Hayden's algorithm, each link j calculates a control
value Pj(n+1) at time n+1, according to the equation

Pj(n+1)=pj(n)+(ajcj-fj(n))/W;, (1.8.1)

- 18 -




where Wj is the number of sessions on (or "weight" of) link j,
and 3; is some constant satisfying 0<a;<1. Each session then

adjusts its rate so that

Fi(n)= min py(n). (1.8.2)
J&FL
Hayden's algorithm <c¢an also be modified to give Jaffe's

desired rate vector by changing the control update equation to

Pj(n+1)zpj(n)+(ajcj-fi(n)-pj(n))/(Wj+1). (1.9)

While it has been shown that the rates r,(n) for Hayden's
algorithm converge to the desired fair allocation, the control
values for the links do not necessarily converge. If there
exists a 1link such that all its sessions are controlled by
other links, then the flow on that link will converge to some
constant 1less than the capacity. In the attempt to bring the
flow up to capacity, the link will increase its control at
each wupdate by (c,_fi(n))/Wj, and the control will grow to
infinity. This can create serious problems when a new session

joins the network.

Even though it has been shown that Hayden's algorithm
converges to the desired rate vector, computer simulations of
his algorithm exhibit distressing oscillations in the 1link
flows when inputs are changing. We suspect this is caused by
the failure of Hayden's model to accurately reflect delays in
the network: the delay between the time that a link updates

its control and its sessions learn the new value, and the
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delay between the time that a session changes its rate and the

flow on any of its links reflects that change.

In Gafni's algorithm, at time n, each link j calculates

for each of its sessions i, a control value pij(ﬂ) given by

Pjj(n)=aj(n)(hjj(ej-fj(n))-ri(n)) (1.10.1)
where
35(n)= 1/(1+Z= hyj'(cj-f3(n)) -~ (1.10.2)
ke,

and hij(') is defined as in Assumption 1.2, and h'ij(-) is the
derivative of hij(°)‘ Each session then finds its new rate

according to

Fi(n+1)=rij(n)+ min pj;(n). (1.10.3)
16K
If we define b, (r)=r and gj(f)=f, then the rate vector as

given by (1.4) is the same as Jaffe's, and (1.10.3) becomes

Fi(n+1)=zri(n)+ min (cj-f35(n)-rij(n))/(Wj+1). (1.11)
FeLi
Note the similarity of (1.11) and (1.9).

The essential difference between these two techniques 1is
that, in Hayden's algorithm, memory of the past state résides
with the links, while in Gafni's, past state information is
stored by the sessions. In Hayden's algorithm the links
calculate their new control values in terms of the the past
control values and the past flows (rates), while the sessions
find their rates in terms of the present controls. In Gafni's

algorithm, the sessions calculate their new rates in terms of
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the past rates and the past controls, while the links find

their controls in terms of the present flows (rates).

It is because new rates are calculated in terms of old,
that Gafni's algorithm has the important property that the
flows on the links are always less than or equal to the 1link
capacities, provided that the flows were less than or equal to
the capacities initially. Hayden's algorithm can only
guarantee that flows are less than or equal to cabacities in

the steady state.

While this appears to be a serious flaw in Hayden's
algorithm, it may provide certain advantages. Assume that the
network in question is an integrated voice and data network,
and that the stated capacity of a link cj is not the link's
true capacity but the portion of its capacity allocated for
carrying voice packets. If the voice and data packets are
queued separately, with voice being given priority, the
algorithm could produce a rate assignment which would generate
flows fj in excess of cj, without actually causing any yoice
packets to be queued. At the next iteration of the control
update, the control for such a link would be greatly reduced
and the voice flow fj; would drop below cj, providing the extra
capacity needed to transmit the data packets that were queued
at the last step. Hence, the time average rate assignment for
a given session is likely to be higher for Hayden's algorithm

than for Gafni's.
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Furthermore, Gafni's algorithm has not Dbeen shown to
converge 1if the initial rates are chosen outside the feasible
set. Hence, if random fluctuations in the session rates, or
the initiation of a new session, cause flows to exceed
capacity, there is no guarantee that the rates will return to
values 1inside the feasible set. In the example above, where
gj(-) is given by (1.6.2), when the flows exceed capacity,
the 1link éonstraint function does not even satisfy Assumption
1.1. Because Hayden's algorithm has been shown to converge
from any initial control vector, it must eventually recover

from such disturbances, if they are sufficiently infrequent.

Gafni's algorithm also has the disadvantage that each
link must know the function bi(-) for all of its sessions.
This is not a serious drawback, though, since in practice
there will probably be only a small number of different
priority classes in use. The function bi(-) will be the same
for all members of a given priority class, so that the link

only needs to calculate Pij(n) for each priority class.

As noted previously, both Hayden's and Gafni's algorithms
are designed for synchronous operation, with all sessions
updating their rates simultaneously, making actual
implementation impractical. However, Gafni and Bertsekas [12]
were able to show that Gafni's algorithm will produce a

sequence of rate vectors that converge to the desired fair
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rate allocation, even under certain asynchronous conditions.
Specifically, they consider an algorithm where a single
session rate r; js updated according to (1.10), and the flows
are then updated to reflect the change in ;. This process is
repeated indefinitely, with each session updating in a fi#ed

cyclic order.

1.4 Overview

In Chapter 1 of this thesis, we introduce the problem of
flow control for packetized voice and introduce the idea of a
fair rate allocation over a given feasible set. We describe
previous work by Hayden and Gafni, each of whom developed
distributed flow control algorithms for achieving fair rate
assignments. We identify some problems associated with their

algorithms.

In Chapter 2, we describe a method of categorizing flow
control algorithms 1like Gafni's and Hayden's. We show how
their two approaches can be merged to unite some of the
advantages of each. In particular, we propose two algorithms
which produce a fair rate vector for sets in Gafni's class of
feasible sets (1.4), but without the need for the links to
calculate separate controls for each priority class. We

analyze one of these algorithms in detail.

In Chapter 3, we consider how the model of Chapter 1
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fails to account for network delays, and describe some
resulting difficulties. We then give an extended model which
not only considers delay, but also asynchronous operation of
the flow control algorithms. We introduce the 1idea of an
update protocol, which permits a link to update its control
only when the protocol is satisfied. We use update protocols
to construct some asynchronous flow control algorithms: one
that gives a fair rate vector over Hayden's feasible set and
two that give fair rate vectors over sets in Gafni's class of
feasible sets. For two of these algorithms, we prove that the
generated control sequences converge to produce the
appropriate fair rate vectors, given the assumptions of the

asynchronous model.

In Chapter 4, we build on the work of Bertsekas, et.
al., [131, [14], who have developed results that apply to
general asynchronous algorithms. Bertsekas considers a system
in which N processors find an element of a given solution set
by iteratively computing estimates of the solution. Each
processor receives feedback measurements from the systém, and
uses these measurements to update its chrrent estimate. In
Bertsekas' model, a processor may update its estimate at any
time, asynchronously with respect to the other processors. We
extend the model to include algorithms where updates times are
restricted by update protocols. We give a theorem similar to
Bertsekas', describing a class of such algorithms for which

the estimate sequences converge. We use this result to give
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an alternate proof of the correct operation of one of the flow
control algorithms given in Chapter 3. We also give a theorem
that shows how a synchronous algorithm, taken from a given
class of algorithms, can be implemented asynchronously by the

addition of an appropriate update protocol.

In Chapter 5, we describe a computer program written to
simulate the flow control algorithms of Chapter 3. The
program simulates a network carrying voice traffic only, where
each source-destination pair represents a voice conversation.
At any given time, one member of each such pair is talking,
and the other silent. We study the steady state behavior of
the network by setting the average talk-spurt duration to
infinity. For the static network, the algorithms behave much
as predicted. We also set the average talk-spurt duration to
a value representative of actual speech, to study how the
network behaves under real-life conditions. The results of
these simulations are inconclusive, and indicate that our
model is not detailed enough to let us accurately predict the

behavior of our algorithms in dynamic operation.

In Chapter 6, we summarize our results and give

suggestions for further research.
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Chapter 2
Generalized Synchronous Flow Control Algorithms

2.1 Options for Algorithm Design

As mentioned in‘section 1.3, the essential difference
between Hayden's algorithm, given by (1.8) and Gafni's in
(1.10), is that in Hayden's, state is stored by the links and
in Gafni's, state is stored by the sessions. In addition to
choosing where state memory resides, the algorithm designer
must also consider how to allocate the burden of calculation.
If the feasible set over which a fair allocation is sought 1is
of the form given in (1.4), both the constraint functions
gj(‘) and bi(-) must appear somewhere in the update equations
for the 1link controls or the session rates. Responsibility
for calculations involving gj(-) may be given to either the

sessions or the links, and the same applies to bi(-).

As an example of what this means, consider the following
algorithm. Let

Pj(n+1)=pj(n)eaj(n)(ej-f3(n)-ps(n)) Vel (2.1.1)

and

Fi(n)= min b;~1(85(p5(n))) Viek (2.1.2)
JEX
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where {aj(n)} is some TMappropriately" chosen  sequence,
designed to ensure the algorithm's convergence, This
algorithm is the reverse of Gafni's: where his algorithm
assigns memory to the sessions and calculation to the links,
this algorithm assigns memory to the links and calculation to

the sessions.

Of the eight possible ways to assign responsibilty for
memory and calculation, two are clearly undesirable., An
algorithm where calculations 1involving the 1link constraint
functions are performed by the sessions, with the links doing
the calculations involving the session constraint functions,

obviously entails excessive overhead.

Ideally, we would like for a given link j to need to know
only its own constraint function gj(-), and for a given
session i to need to know only its own constraint function
bi(-). Such an algorithm, with state memory assigned to the
links, is given by

Pj(n+1)=PJ'(n)+aj(n)(gj(cj-f‘j(n))-pj(n)) VJE/{_ (2.2.1)
and

ri(m)= min b;-'(p5(n))  Viel (2.2.2)
1€ %4
where the sequence {aj(n)} is chosen according to criteria

discussed in section 2.4. We call this the generalized link

memory algorithm.
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Another such algorithm, with state memory assigned to the
sessions, is given by

Pij(m)zgjlej-fj(n)) Vi€l (2.3.1)
and

Fi(ne1)zri(n)+min ai(n)(by™ (Py(n))-ri(n)) Vied (2.3.2)
9€ L2 |

where'{ai(n)} is some appropriately chosen sequence.

For both these algorithms, it is easy to see that if the
rates and controls converge, they converge to values that
satisfy (1.4.1). The problem remains to choose the sequences
{aj(n)} or {aj(n)} in a manner that guarantees that the rates
converge to a unique point, and further to show that that

unique point is fair over the set defined by (1.4)

In general, it 1is not always possible to select a
sequence that guarantees rate convergence. The choice of such
a sequence depends on the 1link and the session constraint

functions, and on which algorithm is being used.

In section 2.4, we give a definition for aj(n) and
conditions on gj(-) and bi(-), such that the rates produced by
the generalized 1link memory algorithm (2.2) can be shown to
converge. We have not yet investigated this problem for the

algorithm proposed in (2.3).
Before showing how to select the sequences {aj(n)} for
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the generalized link memory algorithm, we pause to discuss the
nature of the limit points of the rate and control sequences,

and to prove some theorems about the limit points.

2.2-1hemngimg£mﬂamm2§mmlunmgﬁgmm

Before trying to prove that the control and rate
sequences given by generalized link memory algorithm converge,
we consider whether or not there exist control and rate
vectors that are "fixed points™ of (2.2), that is, we want p#¥
and r¥* such that if p(n)=p¥* and r(n)=r#*, then p(n+1)=p¥* and
r(n+1)=r*, 1In this section, we give a centralized algorithm
for finding the fixed points p* and r* of (2.2), and show that

they are unique.

We will also see that the fixed rate vector [r* is the
same for the algorithms given by (1.10), (2.1), (2.2) and
(2.3). Since each of these algorithms was proposed to find
the fair rate allocations over the same set, it is not

surprising that they have the same ¥,

In the next section, we show that p¥* and b(r¥) are fair
allocations over the appropriate sets for the generalized link

memory algorithm.

If there exist vectors p¥* and r* that are fixed points of

(2.2), then
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pj*zgj(CJ-fj*) VJéX (2.4.1)

énd

ri*= min b;"(Py%)  Vie g (2.4.2)
€L,
where .
fj§= zi_ ri%, (2.4.3)
A€ Ay
Combining these three equations, we get
Fj%= min bi-1(3j(c3'- Z rg¥)) (2.5)
1e24 ked,

It is easy to see that similar manipulations of (1.10), (2.1)

and (2.3), all yield equation (2.5).

We now show how to uniquely construct p¥. For each 1link

J define Xj such that

-1
Xj=gj(ej- = by~ (X)), (2.6)
463%
Assumption 1.1 guarantees that (2.6) has a unique solution.

See Figure 2.1. Let p1= mi;axj, let ;ﬂﬁ.be the set of links j
X=

)
for which xj=p1, and let X1 be the set of all sessions on

links in X1,

Suppose p¥ exists. By (2.4) we have
-1 :
pj*=8j(°j-;il by~ ¢ min py#)). (2.7)
Aeﬂ% el L
Therefore, by Assumption 1.1,

Pj*2gj(cj- > by~ '(py)). (2.8)

&egi
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y=g.(c;- 2 b; '(x))
inej

"
<

XKD

The Fixed Point of gj(cj-' bi-l(x))

Figure 2.1
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and so, from Figure 2.1, we see that Pj¥2Xj, for all j&f.

Bounding Pp* py Xk in (2.7), wWe have,
-1 :
pj‘SgJ(CJ-;Zl bj (‘?1n X))
,Légé‘_ €L
for je 1, and so
Pj*ggj(c:j-z bi_1(xj))
,Le,S?‘
=Xj' (2.9)

Thus if p¥ exists, Pj*= ?é? xk=P1 for all jéitj.

Now we may rewrite (2.7) as

Pi*=gj(cj- Z_ by~ 1(p1)- Z b;=1C min ppxy), (2.10)
Aegn gt redNga ket
Equation (2.10) suggests the following procedure. To find the

next smallest Pj*, construct the reduced network

4/2':(,&',:('), where xﬁi\,ﬁ, g’,'=i\,2,1. and  the

capacities of the links are defined by

- 1
°j'=cj-,Z b;~1(ph). (2.11)
Lég"'ngi
Now find X.' for each link ¥, and pl'= min X.'. Repeat this
J jéxl J

procedure until all the coordinates of p* have been found.

Thus, by construction, p¥* exists and is unique.
2.3 TIhe Rate and Control Fixed Points are Fair Allocations

In this section, we show that p*¥ and %, as found 1in
section 2.2, are fair allocations over the sets specified

below. This and the results of the last section imply the
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existence and wuniqueness of a fair allocation rate over the

set given by (1.4). This last result was also shown in [12].

Theorem 2.1 If p* and r* are the wunique fixed points of,

(2.2), then p* is a fair allocation over the set defined by

Pij<gjlej- = min by~ (py)) Vied (2.12.1)
_Llegj kéf’c
and b(r¥*) is fair over the set defined by
bi(ri)<gjlej-£y) Yied, Vi€l;. (2.12.2)
Proof. As described in chapter 1, the fair allocation vector

over a set X solves a nested hierarchy of problems. The first
problem is to maximize the minimum coordinate of vectors in X.
Next, we maximize the second minimum coordinate over all
vectors which solve the first problem, and so on. Our
algorithm for finding p¥ and r* solves for these vectors by
Jjust such\a nested procedure, finding the minimum coordinate
of each vector, then finding the next smallest coordinates,
and so on. Hence, it is sufficient to show that the first
iteration of the algorithm maximizes the minimum coordinates

of p%* and b(r#®). The "correctness" of the subsequent

iterations follows by induction.

We claim that p1, the minimum coordinate of p¥ is the
maximum minimal coordinate of any vector p in the set given by
(2.12.1). Suppose otherwise. Then there must exist g in the

feasible set with minimum coordinate q1>p1. If that were so,
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we would have, for each link j,
pl<ql

<q .
29

$8j(cj- Z by~ min qp))
LEL: kel s
. ~-1(q1
SgJ(cJ-- 2_ bs~'(al))
4.631'
. =-1(p1
SSJ(cj_ S by (p")). (2.13)
Aedy
But this is a contradiction, since, for each jéatj,
1= -
AEL

1

Now, since b;,-1(.) is strictly increasing, (2.2.2)

implies b;(p;#) = -E£2~ pj*.  Because p! is the minimum
< A

coordinate of p¥*, the minimum coordinate(s) of b(r¥*) must be

bi(ry#)=p!y for each ieX!. We claim that this choice

maximizes the minimum coordinate of b(r¥), since, if it did

not, there must exist b(s) in the set given by (2.11.2) with

minimum coordinate bm(sm)>p1. But if that were so, we would

have for each session i, for each link jEZ,,

1

p <bm(sm)

ﬁb-(si)
ig'(cj- Z Sk)
el
LBi(cs- 24b -1(pt)), (2.15)
3 Kk _

kég%

which is a contradiction. This completes the proof of Theorem

2.1.

- 34 -




Notice that we have not yet shown that b(r¥) is fair over
Gafni's feasible set (1.4), as desired. We cannot show this
without making further restrictions on bi(-) and gj(-), since
r;® might be negative for some i, and b(r¥*) might not even be
an element of the set given by (1.4). This cannot happen when

Assumption 1.2 holds. We give the following corollary.

Corollary  2.1. For  each  ied, j€x,, define

hij(X)=bi'1(Ej(x)). If hij(0)=0, then p¥ is fair over the set
defined by

Pj<gjlcj- = min by~'(Py)) Viet (2.16.1)
.A(%.Q.«ﬂ‘ ket
b;=1(py)20 Vie§, Viets (2.16.2)
and
Z min b.'1(p Y<e 5 Vie \7('6 .
. y VJ (2.16.3)

and b(r*) is fair over the set defined by (1.4).

In order to prove the corollary, we invoke the following
lemma. The lemma 1is stated without proof, since it follows

trivially from the definition of fair allocation.

Lemma 2.1 If a vector x is fair over a set X, and Y 1is a

subset of X, then x is fair over Y, if and only if xe@ Y.

Proof of Corollary. By the lemma, we need only show that p¥%

and r* are elements of the appropriate sets.

- 35 -




Recalling (2.5), r*® is the solution to

F'i®*= min hjj(cj-f;¥), (2.17)
J€L

and hence

fj*: Z min hijg(eg-fi¥*)
Aegé kel

£ 2 bhijlej-fjh). (2.18)
Leg,a;

Now suppose fj'>°j20- Then

fi< Z hji;(0)
xegi
=0, (2.19)
which is a contradiction. Hence f%<ey, for all j. Since
fi#<cj, (2.17) gives us r;*>0. That p* satisfies (2.16)
follows trivially from (2.4) and the fact that r¥* satisfies

(1.4). This completes our proof.

Note that the condition hij(0)=0 is sufficient to show
that r* is in the set defined by (1.4), but it is not

necessary.

These theorems allows us to concentrate on finding a fair

control vector, rather than a fair rate vector.

2.4 The Flow Control Algorithm

The genralized link memory algorithm is not completely
specified wuntil we describe how the sequences {aj(n)} are

chosen., One obvious way to choose the sequences 1is to let
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2j(n)=Aj(p;(n)), where Aj(°) is some real valued function.

In order to establish some conditions that Aj(-) should
satisfy to guarantee the convergence of the controls, we
consider a network consisting of a single link j. For such a
network, (2.2) becomes

p(n+1)=p(n)+A(p(n))(glec- = bi-1(p(n)))-p(n)). (2.20)
Aeg
For convenience, define

G(x)=gle- S b,=1(x)) (2.21)
e

and

H(x)=x+A(x)(G(x)=-x). (2.22)
Then (2.20) becomes

p(n+1)=H(p(n)). (2.23)
It is well know that a sequence defined as in (2.23) will
converge for any intial p(0), if

H' (x) <1 Vx (2.24)

and there exists x¥* such that H(x¥)=x#¥*,

While the condition in (2.24) guarantees that the
controls converge for a single link network, we are not able
to show that (2.24) guarantees convergence for a more general
network. We can, however, prove convergence for a multi-link
network for which similar, but more restrictive, conditions

hold.

Theorem 2.2 Let 77=(X ;f~) be any network. Let gj(°) and
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by(+) satisfy Assumption 1.1. For each i€ly Sslgj, define

Gi(x,c,S)=gj(e= Z by~ (X)) (2.25)
KES,y
1
and
Hj(x.0,3)=X+Aj(x)(Gj(x,c,S)-x), (2.26)

where Aj(x)is a continuous function such that 0<Aj(x)$1 for
all x. Suppose, for each j, gj(-) is uniformly continuous,

and

0g t)%ZH_,-(x,c,S)u, (2.27)

for all x, for any SEQLJ and ¢, 0Lc&cj. Then, for any initial

control vector p(0), the controls p(n) and rates r(n) given by

(2.2), with 35(n)=Aj(pj(n)), converge to fair allocations over

the sets given by (2.11).

The proof of Theorem 2.2 is deferred to Chapter 3, where
we wWill see that it is a special case of a more general

theorem relating to asynchronous flow control algorithms.

The conditions of Theorem 2.2 are somewhat restrictive
and we believe that the controls and rates will converge for
algorithms where Aj(-), gj(-) and r;(*) are less constrained.
Specifically, we conjecture that condition (2.27) can be
replaced by

ﬁiﬂj(x,c,S) <1, | (2.28)

but we have been unable to prove so.

- 38 -




Let us consider the restrictions that (2.27) places on
Ay(eds gj(-) and by(+). While it is difficult to describe the
entire class of functions Hj("') such that Aj(-) may be
chosen to satisfy (2.27), at least one sub-class 1is easily

identifiable.

Consider the class of functions Hj("') such that Aj(-)
may be chosen to be a constant, that is, Aj(X)=Ajp and such
that (2.27) is satisfied. We assume that 0<A.¢q., Then (2.27)

J
becomes

"1£Aj(§;6j(x,c,5)-1)<o. (2.29)

By Assumption 1.1, %Gj(x,c,S) is negative for all x, c and S,
and hence the right inequality of (2.29) is always satisfied.

Rearranging the left inequality, we get

1'1/Aj$ j%cj(x,c’s), (2.30)

Hence, for those functions GJ-(x,c,S) whose partial derivatives

with respect to x are bounded below, the conditions of (2.27)
can always be met for small enough Aj-

While (2.30) may seem a bit restrictive, we make the
following observation. Suppose that we are given two sets of
functions gj(-) and 5j'(') that satisfy Assumption 1.1, and
such that €ij(x)=gj'(x) for x€[0,cjl. Then regardless of how
the functions may differ outside that interval, the fair rate
allocation over the set defined by (1.4) and gj(°) is the same

as the fair rate allocation defined by (1.4) and gj'(').
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Hence, we may "tailor" the functions gj(-) any way we like
outside [Ovcj], in order to satisfy (2.30), without affecting
the point to which the algorithm converges. Even so, there
'may be some functions bi(°) and gj(-) for which (2.30) will
not hold. | \

2.5 An Example

In the last section we described how the functions gj(-)
may be tailored outside the interval [O,Cj] to give a function
which will satisfy the constraints of Theorem 2.2. In this

section, we give an example of this technique.

Suppose we are interested in finding a fair allocation
over the set given by (1.4), using functions b,(+) and gj(-)
as defined by (1.6). Recall that such a fair allocation has
the property that the excess capacity on any 1link is
sufficient to handle a fluctuation in flow as great as the
standard deviation of the flow. For convenience define
kj=1/(chj2)- Then gj(f)=kjf2. This choice of gj(*) is
clearly unsatisfactory, since it 1is neither monotonically
non-decreasing, nor uniformly continuous. We propose,

instead, that gj(-) be defined as

Sj(f)z 0 when f<0
kjfz when 0<f<c, (2.31)
cif-ki:c.:2 . '
2chJf chJ when f>cJ,

Now,
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Hj(xycyS)=X+AJ(EJ(C-WSX)-X),

where Wg is the number of sessions in S.

§;Hj(x,c,s)=1-Aj(wSGj'(c-wsx)+1).

Since
Sj'(f)= 0 when f<O0
2k . .
ka when 0<f<ej
ijcj when f>cj

we have, for all x,
0<g;'(x)<2kjcj.
Combining (2.33) and (2.35), we get

1'Aj(1+2k30jws)$ Hj(x,¢c,S)<1.

Hence, we choose

Aj:1/(1+2ijJWS)

and the conditions of Theorem 2.2 are satisfied.
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Chapter 3
Asynchronous Flow Control Algorithms

As mentioned earlier, the system model given in Chapter 1
fails to accurately describe the operation of flow control
algorithms by ignoring communication delays. In this chapter,
we describe in detail how the model fails, and then give an
improved model which allows for feedback delays and
asynchronous operation. We introduce the idea of an update
protocol and give some examples. We give an improved flow
control algorithm, together with a proof that the rates and
controls it produces converge to the fair allocation over
Haydent's feasible set, under the assumptions of the
asynchronous model. Finally, we modify the algorithm to
pProduce fair rates and controls over the more general feasible

set defined by (2.11).

3.1 Eeedback Delays

In section 1.2 we made the assumption that data
propagates instantaneously through the network, allowing us to
define the flow on a link at time t as

fice)= S rie) VieZ. (3.1)
i€l
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We also assumed that at time t, each session i knows the

current value of

min p(t)
j€de
or

168

as required for the calculation of ri(t).

In practice, however, the concepts of instantaneous flow
and rate are not well defined. The presence of queues
distorts the input rates of the sessions as seen by the links,
and even in the absence of queues, propagation delays prevent
the 1links from knowing the sessions' current input rates.
Hence, we cannot expect these relations to hold at all times
t. However, for the flow «control algorithms previously
discussed, where rate and control updates take place at t

ne

n=0,1,..., we require only that
filtg)s 5 rittn)  Viey, (3.2)
LEL,
and that each session i knows at time t,, the current value of
min p.(t,.)
. J'¥n
1€ 3
or
min p..(t,.).
X ij‘tn
JELL

We outline below a method for guaranteeing that (3.2) holds.
The other condition can be met only by careful synchronization

of the links and sessions, when selecting the update times tn-
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In order to guarantee that (3.2) holds for all L, we
assume that the 1links <calculate their flows by summing the
rates of their sessions, where the rates are communicated to
the 1links by the sessions. While this eliminates the problem
of rate distortion, there will still be delays. Communicating
the rates requires transmittihg additional data between 1links
and sessions, but guarantees that (3.2) holds, provided that

the interval between updates is long enough to allow the

necessary exchange of information.

An alternative to this would be for each link to observe
the amount of traffic it carried over some recent interval of
time, and use that as its flow. Observing the flow has the
advantages of simplicity and 1low overhead, but makes it
impossible to enforce the condition (3.2), because of rate

distortion by the queues.

Hayden's [9] simulation of a network using his flow
control algorithm assumed that flows were observed. We
believe that this contributed to the oscillations in floh that
his simulation displayed. Another contributing factor is the
delay between the time that a link updates its control, and
its sessions learn the new control value,. To see how such

oscillations might arise, we consider the following examples.

Suppose we have a network consisting of a single 1link,
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with capacity c¢=1, serving a single session. If we seek a
fair allocation over the set given in (1.2) with a=1, the
update equations for Hayden's algorithm are

p(n+1)=p(n)+c=-£f(n) (3.3.1)
and

r(n)=p(n). (3.3.2)
Suppose that the delays are such that f(n)=p(n-1), instead of
f(n)=p(n). Then

p{n+1)=p(n)-p(n=1)+1. (3.4)
For p(0)=0 and p(1)=1, the subsequent controls are given in

Table 3.1. Obviously, the controls cycle forever, and do not

converge.

For the same network, suppose we want a fair allocation
over the set in (1.4), with g(f)=f and b(r)=r. VUsing Gafni's
algorithm, the update equations are

p(n)= .5(c=f(n)=-r(n)) (3.5.1)
and

r(n+1)=r(n)+p(n). (3.5.2)
If the flow is communicated, f(n)=r(n). However, feedback
delay can cause the session to learn the link control value
late, so that

r(n+1)=r(n)+p(n-1)

=r(n)+ .5(1-2r(n=1))
=r(n)-r(n-1)+ .5 . (3.6)
For r(0)=0 and r(1)=.5, the subsequent rates are given 1in

Table 3.2. Again we see that the rates cycle, and do not
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n p(n) n r(n)

0 0 0 0

1 1 1 5

2 2 2 1

3 2 3 1

L 1 4 .5

5 0 5 0

6 0 6 0

7 1 7 5

Table 3.1 Table 3.2
Divergent Example for Divergent Example for
Hayden's Algorithm Gafni's Algorithm
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converge.

These simple examples show how important it is to account

for feedback delay in our system model.
3.2 The Asynchronous System Model

In this section, we give a model for studying systems
with feedback delay which wuse asynchronous flow control
algorithms. The model assumes that flows are communicated and
that state memory is assigned to the links. The model can be

easily changed to allow algorithms with link memory.

At a given time t, each link j has a control value Pj(t)

and a flow fy(t), and each session i has rate rj(t). We

assume that the system begins operation at t=0, that is,

Pj(t)=0 and r;(t)=0 for t<0. At t=0, the links and sessions

choose some arbitrary initial controls pj(o) and rates r;(0).

For each link j, session iegfj has an apparent rate
rij(t), which is the most recent rate communicated to link j
by session i at time t. The apparent rate rij(t) may differ
from r;(t) because of communication delays. Hence we have

rij(t)=ri(t-dij(t)), (3.7)
where dij(t) is the delay described above. We will call

dij(t) the propagation delay. With this definition of rate,

flow is defined as
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fi(t)= ;E: rij(t). | (3.8)

Aégi

When the system has been running 1long enough for a
session i to have received feedback from each of the links in
its path, the rate r;(¢) at which a session sends is chosen as
the minimum of the <control values of the 1links. Agaih,
because of communication delays, the most recent values of the

control for 1link jJ known Dby session i may not be current.

Hence,

Fi(t)=|min pj(t-Dij(t)) when t2D;;(t) VjeYs

e
ri(0) when 0<t<Djj(t) for some jé;ii
0 when t<0. (3.9)

We will call D, (t) the feedback delay.

We make two assumptions about the processes dij(t) and
Dij(t). First, for tq<t>

L1-djj(t1)<t2-dij(t2) (3.10.1)

and

€4-Dj j(£1)<t2-Dj i (t2). | (3.10.2)

This guarantees that new information is not replaced by old.

Second, for any times tijo and Tijo, there must exist

t..1>t..0 and Ti-12Ti.° such that

1 =°1) J J
t..0<t. . 1-4d. 1) (3.11.1)

ij =Fij 9350ty
and
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T350%T3 51Dy jry3M)- (3.11.2)
This assumption guarantees that the links and sessions will
never stop receiving new information about the rates and
controls current in the network. That is, if a 1link j has
control Pj(t) at some time t, then each of its sessions will
eventually learn the value of the link's control at t or some
later time. Similarly, the apparent rate of session i on link

J must eventually reflect the changes in the session's input

rate ry(t).

Together, these two assumptions guarantee that the system
eventually changes from its initial conditions. If we let

Tij0=o, then (3.11.2) guarantees the existence of a time to>o

such that Dij(to)Sto. Furthermore, by (3.10.2),
Oﬁto-Dij(to)

for all t2t;. Hence Djj(t)St for tdtg. Thus, for large

enough t, (3.9) becomes

ri(t)= min py(t-D;(t)) (3.13)
jE€X
and (3.7) becomes
r'j_‘j(t',): min Pk(t-dij(t)-Dik(t-diJ(t)))- (3.14)

The controls formthe links are updated as follows. For
each 1link Jj, we are given a monotonic increasing sequence
{tjn} for n>0, with tjogo. We define pjn=pj(tjn) and

'n= j n * S = N - .0 .O.
fJ fJ(tJ ) We assume that Pj(t)=pj(0)=pj for 0<t5tJ
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Then tjn is the time of (n+1)st control update for link j, and

Py l=Py(pyMilryj(e™1€8 51, 05,u;) (3.15)

where Pj is the control update funetion for link Jy
Bjn=(pjn,pjn-1’,,.,pj0)’ Cj and Wj are the capacity and weight
of 1link Jj, respectively. The control for link j at time ¢,

for tjn-1<t5tjn, is Pj(t)=p;. See Figure 3.1.

Note that Hayden's algorithm is a special case of this

model, obtained by letting dij(t)=Dij(t)=0 for all t, and

tjnzn for all n, for each j, and defining

Pj(gjn,{rij(tjn):iéélj}’cj,wj)=pjn+(cj_‘zérij(tjn))/wj
AEL S

=pjn+(cj-fjn)/wj- (3.16)

Since, in general, d; (t)#0 and Dj j(t)#0, and because it

is difficult to synchronize 1links such that tjnzn, it is

useful to ask for what values of dij(t)r Djj(t) and tjn we can

expect the rates r;(¢) to converge to some desired set of

values,

3.3 Update Protocols for Asynchronous Flow Control Algorithms

In this section we consider asynchronous flow control
algorithms such that the system can select the times tjn
according to some established criteria. Such a set of
criteria 1s called an update protocol. We examine some

possible wupdate protocols, in <conjunction with different
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update functions.

Let us consider an algorithm using Hayden's control
update function, but with dij(t)ﬁos Dij(t)fo and tqun. If
upper bounds are known for dij(t) and Dij(t)v it might be
possible to eliminate the effects of these delays on the
controls and rates by waiting "long enough" between control
updates. That is, we would like to choose tjn such that

rlJ(tJn)::rl(tJn):kméin pk(tJn)- (3-17)

A
In this case, the rates and controls would be identical to

those for a system in which dij(t)=Dij(t)=0-

Since the proof of convergence for Hayden's algorithm
relies very 1little on the synchronous properties of his
algorithm, his proof is easily modified to show convergence

for an asynchronous algorithm where (3.17) holds.

Unfortunately, the condition given in (3.17) is difficult
to meet, since it requires that
rij(tjn)=ri(tjn'dij(tjn))

l:ll:nf Pyt 37=03 5t 5™ =Dy (e M3 5(t5™)))
ety
= min py(¢3M). (3.18)

k‘éfA

Necessary conditions for (3.18) to hold are complicated, but

it is clearly sufficient that

pk(tjn)zpk(tjn_dij(tjn)-Dik(tjn_dij(tjn))) (3.19)
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for each k€L, I we choose tj such that

E3R-t3n=1>d; (g 3m)+Dy j(t3P=dy 5(e ™)) (3.20)

then (3.19) is satisfied for k=j. But to guarantee (3.19) for
kZj, it is necessary that there be no updates to the control
for 1link Kk between the time that session i learns the latest
value of pkn and the time that the flow on link j reflects any
possible change in ri(t) due to a change in p,n. This could
be accomplished by making the links and sessions update during
alternating intervals. That is, during a link update interval
all 1links will update their controls, while sessions may not
update their rates. The reverse is true for a session wupdate
interval. This scheme has the disadvantages of being slow and
requiring additional communications to inform sessions and

links of the ends of the update intervals.

Another approach would be to perform updates only when
all the sessions on a 1link are either aware of the link's
current control, or are being controlled by another link whose
control is smaller, That is, choose tjn such that

rij(tjn)spj(tj“). (3.21)
If the links are able to observe the rates of their individual
sessions, then the condition of (3.21) 1is easy to enforce,
provided that a sequence of times {tj“} satisfying (3.21)
actually exists. Fortunately, the delay conditions (3.10) and

(3.11) guarantee the existence of such a sequence.
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We want to show that for each link j and any time tq,

there exists 1ty>t; such that rj;(tp)<pj(tp), for each i&{j.

We will need the following theorem:

Theorem 3.1. If d;;(t) and Djj(t) satisfy (3.10) and (3.11),
then for any t0 there exists t12t0 such that for all tzt‘,

t=d; j(£)=Djp(t-djj(t))2t0. (3.22)
for all j&f, i€8,, ke/;.

The proof of Theorem 3.1 is given in Appendix A.

Now suppose that no such t> existed. Then no 1link
updates could take place after L. Now Pj(t1)=Pjn for some n,
and 50 Py(t)=py" for all 2ty = But by Theorem 3.1, there must
exist t'2t; such that for all t2t!'

-d;5(t)=Dj (t-djj(t)))2tq. (3.23)
By (3.14), for large enough t,

Fij(t)= min pp(t-dij(t)-Dik(t-dij(t)))
ket

S Pj(t-djj(t)-Djj(t=di;j(t)))

= Pj(tq)

= Pj(t), (3.24)
which is a contradiction. Hence, an infinite sequence of

times {tjn} must exist such that (3.21) is satisfied.

Unfortunately, it is not possible to guarantee

convergence of the rates for a network using the control

- 54 -



update function in (3.16) and the update protocol in (3.21).
A counter example 1is easily constructed using the following

argument. Suppose that for some 1link j at time t.Nn, (3.21) is

J
satisfied and f;N<c;,  Then Pjn+1 = PPl g MI/W; 5 pyl.
Now at tjn+e, pjn+1>pjn, and if e is taken small enough, the

rates will not have had sufficient time to change and
s s .n = . . . . 1, i

rijltj +e) rlJ(tJn)< pJn< pJn+ Hence the link may update

again "immediately?™". By wupdating the control arbitrarily

often, the control can be increased to any desired value.

An obvious approach to fixing this problem is to require
that

tjn+1 - t50 2 x (3.25)
for some positive x, for all jégf, for all n. Another
approach would be to put an upper bound on the value of pjn.
While it seems likely that either of these conditions would
guarantee convergence of the rates, we have not been able to

prove this.

3.4 Apn Asynchronous Flow Control Algorithm

Fortunately, it is possible to prove convergence of the
rates for a network using this update function:

pjn+1 = max rij(tjn) + (cj-fj")/Wj (3.26)
1634

along with the update protocol given in (3.21), but without

any additional requirements.
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The new update function has the further advantage over
Hayden's that it guarantees convergence of the controls as
well as the rates. For Hayden's algorithm the controls may
diverge, since the algorithm finds the fair control allocation

over the set defined by

> min p ¢c. V ; (3.27.1)
A8 kely k<€) R 3
Thus, if a link controls none of its session, the fair control
for that link is infinity. Our algorithm finds the fair
allocation over the set defined by
j%; ﬂg;&pk+wj(pj' max min py)<cj V. (3.27.2)
It is easy to see that the fair rate vector produced by either
(3.27.1) or (3.27.2) is the same, for if a link j controls any
of its sessions, Pj-max min py, and the two conditions are

equivalent. Otherwise, it does not matter what control link J

is assigned, since it does not affect the rates.

We can find the fair control vector over the set defined
by‘ (3.27.2) by a global procedure almost identical to
Hayden's. We Dbegin by finding the bottleneck link Jy
assigning it pj*:Cj/Wj and assigning its sessions rates equal
to Pj%#, We then form a reduced network by deleting that 1link
and 1its sessions from the original network, and reducing the
capacity of the remaining links by the appropriate amount. We
repeat this procedufe, finding the new bottleneck 1link and
reducing the network, until all links have controls assigned.

However, we may eventually find that our reduced network
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contains a 1link that has no users., The fair allocation over
(3.27.1) sets the control for such a link to infinity, whereas

the fair allocation over (3.27.2) sets it to

Pj*z= max min py+(cj-2 ri%)/Wj. (3.27.3)
4685 kef, e 33-

We may interpret (3.26) as follows. Hayden's algorithm
fails to produce controls that converge for two reasons. In
the absence of any update protocol a 1link may wupdate 1its
control Dbefore all of its sessions have learned the current
control value, thereby producing oscillations in the control.
Furthermore, when a 1link controls none of its sessions, it
increases its control without ©bound. The update protocol
overcomes the first problem by letting the link pretend that
all its sessions know its most recent value. The link simply
assumes that those sessions that are sending at a lower rate
are being controlled by some other link. The update function
overcomes the second problem by making the link pretend that
its current control 1is actually the rate of its fastest
session. Thus, whenever an update takes place, the link is

effectively controlling at least one of its sessions.

Next we prove that the algorithm given by (3.21) and
(3.26) produces input rates and link controls that converge to

the desired values. We give the following theorem:

Theorem 3.2. Let P(=(J,¥) be any netuork. Let Pj(t),

n n 0y -
fj(t), ri(t), rij(t)v Pj and fj be given according to the
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asynchronous flow control model, where the control update
function is given by (3.26), the control update times tjn
satisfy (3.21), and the delay functions dij(t) and Djj(t)
satisfy (3.10) and (3.11). Then, for any initial control
vector pO@ and initial rate vector LO, lim p(t)=p* and
A=oo
A}im r(t)=r#*, where b* is the fair allocation over the set
)
defined by (3.27.2) and r* is fair over the set defined by

(1.2).

In order to prove Theorem 3.2, we will need the
following lemma. The lemma says that the control for a
"bottle-neck" link j€y¥ 1 converges to P;*, in a network where
the flows are perturbed from their true values, provided that
the perturbations eventually go to zero. This implies that
the control for JEL] of a network with no perturbations must
converge, and the rates of its sessions must also converge.
To the other links, this network is indistinguishable from a

reduced network obtained by deleting 1link j and all its

sessions from the original network, decreasing the capacity of

each remaining 1link k by‘%gg 'i*, and perturbing the flow
A €840
fre) by.tzs:n(ri*-ri(t)). Since the perturbations in the
AE 3NN B

flows go to zero, by the lemma, the controls for the
bottle-neck links of the reduced network must also converge.
By induction, we may then show that the controls for all the

links converge.

Lemma 3.2. Let 7{:(8,3&) be any network. For each jé;ﬁ, let
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0 A
wj be some constant satisfying wj>wj, let {ej“} be some

sequence that converges to 0, and let {tjn} be a sequence that

A
satisfies the conditions given below. Let 3(t)=Q and r(t)=0

A
for t<0 and choose any initial vectors '3(0) and r(0). Let

A
Pj(t)—f%(o)-gs for 0<t$t 0 and deflne

A
p.n+lz max r;.(t )+(c _f h-e n)/w (3.28)
J L€ SRR J=1J
¥
A A

A
where fj"v ij(t), ri(t) are defined as in (3.7) - (3.9), and

A A

satisfy (3.10) and (3.11). Further suppose that the sequence

{t.n} is chosen so that

J
A A \- . . )
rij(tjn)ﬁpj(tjn) VJéQf’xflajj, n20, (3.29.1)
and that the sequence {ejn} is chosen so that
Bym0 Vo1, Vief. (3.29.2)

Let pl= %ln c. AR Define 2.1 and K§\1 in the obvious
+EX
manner, Then ‘iim p (t)= p and /élm rlJ(t) p for all jext£1,
i €51, Furthermore,

lim inf p (t)zz (3.29.3)
A >
and
1 f‘«
im inf r
o lJ(t)>Eér:1tAzk (3.29.4)

for all jeY, 1633-, where

A
Zji:p1+(°j/Wj-p1)wj/(ZWj). (3.29.5)
Proof of Lemma 3.2.

We Dbegin by showing that lim inf p (t)>z

> oo J and
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e N

lim inf F'ij(t)2 min z ¥, We do this by constructing monotonic
L= Ke X’A'

increasing sequences of lower bounds zjn;,zji for each link j,

and a single monotonic increasing sequence of times {T"}, such
A A
that for all t)Th, pj(t)>zjn and rij(t)> min z, M, for each

. ke,
Je%f’ 162Lj. We invoke the following lemma. ~

Lemma 3.2.1. For each i€, let zj0=0 and define

A A
zjn+1 = (1-wj/2wj) Ein an + Cj/zwj_ (3.30)
cx
Then Zjn4>ZJ* and 2jn<°j/WJ for all n.

The proof is given in Appendix B.

Let zjn be defined as in (3.30). We now show how to

construct the sequence {TRN}. By Theorem 3.1, we may choose TO
so that for all t>T0

min[t,t-dij(t)-Dik(t-dij(t))]> max tlo (3.31)

, Leg
S A
for all jey, 1é-£,J.’ keli. Now if t>T0, then pj(t)=/l;jn for
some n21. Hence, by (3.29.2),’6}(t)>zJ0=0. Furthermore,

-~ A
Fij(t)= min Pk(t-djj(t)=-Dik(t-djij(t)))
I(é}%
> min zko. (3.32)
e ‘ft
Now suppose there exists TN such that for all t2Tn,
A A . X
Pj(t)>zjn and rij(t)> m;n.zknv for all Jé}f, 1éu23, Since

k€fa

Zjn<cjle, we may choose M large enough such that, for all

m n _myTn ;
m>M, lej ‘<(°j'wjzj )/2 and t;M>TR, for each JEJZ. Now choose

- 60 -



Tn+1 such that, for all t)Tn+1,

min[t,t- =dj 5(t)-Dy (¢t~ -di3(t))1> max £ M (3.33)

L
. . A A
for all Jér, 16"-2'3', k €Zi. If t>TM*!, then pj(t)=ij+1 for

some m2M. Hence,

3&m+1_ max‘p 1j(t;j o) + (c 2: rlj(t M)-e. m)/w
A 8& &éJ‘
N\
2 max rlJ(tJ ) + (c. j-W;j max rlJ(tJ m)- jm)/wj
46.3} /.Cgé:
PN
A
(l-wj/Wj) mj; ?}J(tjm) + (°j - ejm)/Wj
# A
> (1=~ WJ/WJ) ml;zzkn+CJ/WJ (cJ.szJ )/(ZWJ)
KE
(- WJ/'?WJ)KmmZZk" * CJ/ZWJ
=
= zjn+1' (3.38)

A
Thus, P-(t))z-"+1- Furthermore

/'\

)=<ce;z‘,L

2 min zkn+1. (3.35)
ke Z:

By 1induction, we have constructed the sequence {TRP} as

desired.

Next we show that, for each e>0, there exists T such that

for all t>T, ﬁj(t)<p1¥ﬁé and ?ij(t)<p1+ﬁé for all jerf1,

iell, where W= max WJ. Since we already have
4eLt
1 .‘1 .G‘I .
ljg%jnf p j(t)2p and 1if€:nf rlJ(t)Jp for jer', icd!, this

will <complete the proof that Pj(t)—9p1 and ;Ej(t)%>p1 for

jegfl, iegl.
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Let j be a link in 1 and let i be a session on Jj.

A —
Choose N large enough that ri.(tJn)>p1-e and e P<(W-W,,1)e/2
for all n>N. Suppose that max rl (t n)2p1+We for some n2>N.

AEX,
Then 3

A
fan(W -1)(pl-e)+ max A n)

(t
ERARN
&
A é#
z(wj_1)(p1-e)+P1+We |
:wjp1+(w-wj+1 Je. (3.36)

Hence,

1 A 9
pJn+ < max rlJ(tJ )+(°'-(wJp +(W=W j+1)e)-ej )/Wj
AC
<p;n (dw W ’ A n/CJ\
_29 =\in- j+1)e/wj‘ej j
- A

fpjn'(w'wj+1)e/(2WJ)

<';3‘J.n, (3.37)
where the first step follows from the update protocol (3.29.1)
and the fact that p1=°j/wj for jeyl. So as 1long as
max F, (t; n)>pleWe, P.N  must decrease by at least
A€, 1iJ J
(W- WJ+1)e/(2W ) until max rlJ(tJ")<P1+We for some t;n,

AEL
d
Now suppose max ?lJ(tJn)<p1+We. Then
n+1 n P n n
pJ ﬁmaﬁ rlJ(tJ )+[cJ -(W3-1)(p 1-e)-max rijt; )- -e; ]/w
AELS LEL S
G.A [ A
<(1 1/W, ) max rl (t ny + (p1+(w -1)e- n)/W-
AR/ J
&CJ

<(1-1/1. )(p +We) + (ple(W, j-1)e+(W- wJ+1)e/2)/w
<(1-1/4, )(p1+We) + (p1+(W+w .1)e/2)/wJ
<(1-1/1, )(p +We) + (p1+We)/W

-p1+We. (3038)
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— A
So once max’?.-(t-n) falls below pl+We, so does p.n+1, and
ey, I J

hence both must remain below p1+ﬁ;.

So for each e>0, there exists N such that for all n2>N
p1-e<5}(tjn)<p1¥§é and p1-e<Pij(tjn)<p1¥ﬁé for all jex1,
iéél1. Hence, there must also exist T such that for all t2T,
p1-e<S}(t)<p1;ﬁé and p1-e<?}j(t)<p1;ﬁ; for all jef1, ic 31,

This completes the proof of Lemma 3.2.
We are now ready to prove Theorem 3.2.

Proof.  Partition the 1links in X  into sets X 1,
éfz, o o o ,;LF, with the property that for each set‘ilk there
exists pK such that pj*=pk for each j&f K and pj*#pk for
jqjik. Define_é:k as the set of sessions i such that r;*=pk.
Number the sets so that p1<p2<...<pL. The proof is by
induction on the sets of the partition. First we show that
the sequences {p;(n)} for each j in ! and {r;(n)} for each i
in 2&\1 converge to p1. Then we show that if the sequences
{Pj(n)} for j in ;ﬁk and {ri(n)} for i in glf converge to pK
for all k<K, then the sequences {Pj(n)} for j 1n'zig+1 and

{ri(n)} for i in 4L5+1 converge to pK+1,

In order to prove the induction step, we will also need

to show that if

lim inf rij(t)>PK (3.39)
A > o0
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for JGUJih 1C(U‘d.h)(),_&‘] then (3.39) holds for j& (' 2£h,

A>K 1> Kk+)
ieC /.5 h qA.
4> KH
First note that pl= ﬂig Pj*= mlgicJ/wJ. Now, let

A
p(0)=p(0) and f(0)=£(0). For each jcy, let wJ =Wj and let

A A
ejn=0 for all n. Then pj(t)zpj(t) and rij(t)zrij(t) for all

t. Therefore, by the lemma, lim p (t)= p =p.# and
. /?m J
lim rij(t)=p1=ri* for jé{h ie (1.

X~

We must also show that (3.39) holds for K=1. Now for

1%U<8—l ri#>pl and hence kg1 for each kéfi_ Therefore
4>

lim inf r. J(t) > min zk
A > o0 /KC;;'

> pl, (3.40.1)

since, by definition, z #3pl for k?ﬂ

Next we show that if the controls and rates converge to
pX for the links and sessions in Rik and élk, k<K, and (3.39)
holds for K, then the controls and rates converge to pK+1 rfor
the 1links and sessions in ;fK+1 and/fi§+1, and (3.39) holds
for K+1.

We begln by defining a new network 7% '-(:g :ﬁ ) where

;f" v ;f and ﬁi" (/ . Assign the links in Q:'

-é>'< g>K

capacities ch-cJ Sikglrl . Let the weights of the links in
4 ¢
;ij be denoted by WJ'. Define pj'(t), fj'(t), rj'(t),

rij'r(t), pj"' and fjn' in the obvious manner. Note that
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K+1. . . - ] . .
pK+1- ;EQICJ'/WJ'=91" Define Y 1' and 41' in the obvious

manner. Note that 1'-)fK+1 and éLl"AL§+1

For each jéi', either erzo, or Wj'>0. If Wj'=0, then
each of link j's sessions is in g;k, for some k<K. So, by the

induction hypothesis,

lim p.n+1z 1im [max r. (.o S pyi(tsM)/W,]
P N> (€8 15" J,;c;a” 3
! 4]

= max min p, = (0'-§r'*)/W'
A k™+ _ri
LQ'X.J' KG;O‘ J e8] J
A 4 6
=pj’. (3.”0.2)

The last step follows from the construction of the fair

control vector (3.27.3).

For each j€ L' such that W10, let {;\J.=wj and define

:Z; (r. J(tJ J-ris)

Leg\jjf
+W, ( max rlJ(tJ“) - max rlJ(t ny. (3.41)
. ) ,LCQJ édj
if .g j= gj', the sum is  empty and ej“=0. Let
g&'(O)=PJ'(O)-pj(O) for each j&/ ' and ?-'(0)-ri'(o)-ri(o) for

. 2
each i€ J'. Define p H(t), T;'(t), rl (t), le (t), §3nl and

fJn' as described in Lemma 3.2. We will show that pjn'=pJ.n

and';‘\ijﬂ'=rijn for all n. We will then show that (3.29.1) and

(3.29.2) are satisfied and that ejn—;o. We may then apply the
lemma.
A

We show that 3 Ntzp.N and r. . N'=r. . N by induction First
J 7] ij 7 ij :

note that if j is the.first link to perform a control update,
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then for tﬁtjo

kéci" 1é8_k|.

A A
v Pp'(t)=py(t) and rig'(t)=rjg(t) for each

Now suppose there exists some tkn such that, for tStkn,

A A 4 7
Pj'(t)=Pj(t) and rjj'(t)=rij(t) for each i€l iéﬁij'. Let

tlm be the time of the next control update after tkn. For
. A A

JEk, Pj'(tlm) = pjv(tkn) = pj(tk") = Pj(tlm)f Furthermore,
for j=k,

A A
pk' (tlm):pkn+1 4
A A .
= max rypr(gMele i f 0 -e M) /W .
LEY
= max ryp (M +le ) M)/W,
A €k
=pkn+1
=P (£ ™). (3.42)

The second step follows from the defintion of ekn. Hence,
A ul -
pj'(t)=Pj(t) for each Jj&¢y', when t<t;™. This last remark

. . A Y
also implies that rij'(t)=rij(t) for Jé]i" iééﬂ" when
t<t,m.

A
Because Fij'(t)=rijj(t), (3.29.1) is satisfied. Since
A
. 1': . 1
pyn+ pyn+
> gaﬁ rij(tqn)+(°j-Wj(‘max rij(tjn>)/wj
Aéég‘ AG,‘;&*
=°j/wj
>0, (3.43)
(3.29.1) is also satisfied.
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Now we show that ejn.?o. By the induction hypothesis

Fij(t)-ri®50 for IELNL T, iéjj\;&i'. Also by hypothesis,

lim inf K ' icy . ;
E>oo 13(t)>p% for JEr', 1€X 1, Hence, there exists some

N such that for n)>N

c.(t <D K '
rijCe3M>p (3.44)
for jey', iéﬁi-'. Therefore, for n2N,
maf rlJ(tJn)>pK
< €8
J

2 max r;s
,(_f‘J_d-\,g_ﬂ./
= lim max
h=> o 4.63 \‘3 /
for jéii' Thus, for large enough n,

rijtes™) (3.45)

max ry.(t:0)> max r;.(¢.n) (3.46)
i i
AC)%, ity Ab’ Yy 3¢
and
max r;s(¢;N)= max r..(¢.n), (3.47)
ceg, W ceg.s W
3 il
So
lim [ max r, (t37)= max ry.(y;M)1=0 (3.48)
N0 'é&j 1] ,LE.-Aa AR

and ejnJ>0, as desired.

A
Now, by Lemma 3.2 we have p, l(t)ﬁ;p1' for jeflt.  But

p '(t)=p;(t) and L'' is the set of links j with p. #-p11=pKel,
J J

So Pj(t)%pj* for JC-T\K""I- Similarly, rij(t)-—?ri for iéé_K+1.

Finally, to complete the induction, we must show that
(3.39) holds for K+1. But for iGi}féLl, ri!>pK and hence,
k+

k ¢ U L1 for each kei_,_ Therefore, by the lemma,
L(K
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A

lim inf r;.(t) = 1lim inf rj;'(t)
ij 1]

oo P e =)

Z min Z ¥
.Kézzi'
> ph

pk+1, (3.49)

as desired. This completes the proof of Theorem 3.2.

3.5 Asynchronous Algorithms for More General Feasible Sets

In this section we give two asynchronous algorithms that
produce fair controls and rates over the more general feasible
sets defined by (2.11). The algorithms are obtained by
modifying the synchronous algorithm given by (2.2) in much the
same way that Hayden's algorithm 1is modified to give the

asynchronous algorithm of the preceeding section.

First we change the asynchronous system model so that

ri(t)i{%in bi'1(Pj(t-Dij(t))) when t2Djj(t) szegii

JEdL
rij(0) when 0£t<Dj;j(t) for some JEL
0 when t<O0. (3.50)

The new update protocol requires that link j performs updates

only when

bi(rij(tjn))ﬁpj(tjn) \‘f ié.ﬁj. (3.51)

Unfortunately,‘when the flows are observed this wupdate

protocol 1is not as easy to implement as the one given by
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(3.21). Since the link enforces (3.51) by monitoring its
sessions' rates, it must know how to calculate bi(rij(t)) for
each of its sessions. But this defeats the intent of the
original algorithm to distribute calculation reasonably
between the 1links and the sessions. When flows are

communicated, this is not a problem, since the sessions can

simply inform the links of both rij(t) and bi(rij(t))-

The update function (3.26) was obtained by replacing all
occurences of p,M in (1.8.1) with max r,.(t.N). Hence,
\] /(.eé- ~ 1\] J
(2.2.1) suggests the new update function 4

pymei= 1T mAx Bilryg(egteaNeyege™ (30521
where 3
ajn=AJ(gax bi(rij(t;™))) (3.52.2)
< E

where Aj(-) is some appropriately chosen function. This new
update function does produce an algorithm that behaves as
desired, but in fact, with the update protocol, it is not

necessary to modify the update function of (2.2.1) at alll

To see why this is so, consider the case where Sj(x)zx,

Dij(x)z=x and ajn=1/(wj+1) for each jégf, iéfi. Then (2.2.1)

becomes

n+l_py . n ._¢.Nep.n .
P; P; +(cJ £57=P; )/(wJ+1). (3.53)
This algorithm gives Jaffe's fair rate vector [10]. We
interpret this update function as follows. Consider Hayden's

algorithm in the case where each 1link J has a ‘'"phantom"
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Session that experiences no feedback or propagation delays,
and whose path consists only of link j. Let fjn denote the
aggregate flow of all other sessions and let Wj be the number
of all other sessions on j. Then at all times, each 1link is
controlling at least one of its sessions. But the reason for
replacing pJ.n in (1.8.1) with max rij(tjn) in (3.26) was so
that each 1ink could pretend to be controlling one of its
sessions, and thereby prevent unlimited increases in its
control value. Since each 1link is already controlling a

"phantom" session, it is not necessary to modify the update

equation at all.

We give the following theorem.

Theorem 3,3. Let 77:(2g,g() be any network. Let gj(-) and
b,(*) satisfy Assumption 1.1. Let fj(t), ri(t), and rjj(t) be
given according to (3.7), (3.8) and (3.50). Let PiR=P;(t;™)

J
(3.51), and the delay functions dij(t) and Dj;(t) satisfy

and f.n:fj(tjn) where the control update times tjn satisfy

(3.10) and (3.11). Let the control update function be given

by (2.2.1), with ajn=Aj(Pjn)' Let 85(x), Aj(x), Gj(x,c,S) and

Hj(x,c,S) be as in Theorem 2.2. Then, for any initial control

vector 20 and 1initial rate vector LO, lim p(t)=p* and
>0

lim r(t)=r#*, where p* and r* are the fair allocations over

Z oo
the set det'ined by (2.12).

Before proceeding with the proof of this theorem, we
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prove the following useful lemma,

Lemma 3.3. Let f?:(cg,;i) be any network. Let bi(+), gj(-)
and  A;(x) be as in Theorem 2.2. For each j, let {ej"} be any
Sequence that converges to 0, and let {tjn} be a sequence that
satisfies the conditions given below. Let 3(t)=g and '2(t)=Q
for t<0 and choose any intial vectors'ﬁ(O) and E&O). Let
é;(t)=3j(0)=§}0 for 0<t$tj0 and define
33n+1=(1_an)pjn+§}ngj(cj_§}n_ejn) (3.54)
where f%n, }ij(t),'?i(t) are defined as in (3.7), (3.8) and

N no A \ A - :
(3.50), “ayn=A;pym), and bj(t):pj(tjn) for t,n 1<t$tjn._

Assume that d;;(t) and Djj(t) satisfy (3.10) and (3.11).
Further suppose that the sequence {tjn} is chosen so that
bi(?ij(tjn))_(aj(tjn) \"Iiétj-j, n20, (3.55.1)
and that the sequence {ejn} is chosen so that pjn is bounded
below. That is,
an>zj0 Vo1, ¥j€7, (3.55.2)

for some zjo.

Let pl= q;;_pjl. Define cii1 and .2L1 in the obvious
manner.  Then }iﬂgﬁ}(t)=p1 and /&éﬂobi(?ij(t))=p1 for all
jexl, ief1, Furthermore, 1§E>£:f f}(t)zzji and
ljg%i:f bi(;}j(t))ngig-zk” for all jézf, iéngj, where
2t=hyplicg, b,

Proof of Lemma 3.3.
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A
p

First, we will show lim inf j(t)zzj! and

A T oo
1;? Inf b;(r;5(t))2 min z,*.  Then we show that for each e>0,

there exists T such that for all t>T, Pj(t)<p1+Ej(e) for each
J€Y T, where

Ej(e)=2(Gj(p1‘ev°j+e,,&j)-p1)- (3.56)
This is sufficient to show the convergence of the controls,

since ijp1 for jE€f1, and because Ej(') has the properties
that it is monotonically non-decreasing, and EJ(O):O. The
convergence of the rates follows directly from the convergence

of the controls.

We show 1im inf D\(t)>z+% and 1im inf bs (fs1(t))> min zu#
; 2 im in i (ris in z

A=> o j(r)2z 3% an PR ALY i _‘2‘:’1’/{ K
by constructing monotonic increasing sequences of lower bounds

zjn_?zj* and a single monotonic increasing sequence of times
{Tn}, such that for all t2Th, 'ﬁj(t)>zjn and
b, (F. - : n i€, i€y . 0 i
i(rij(e))> ﬂégkzk , for each j¢rt, i 5. Let z;0 be as in
(3.55.2) and define zJ.n by

ket

First we show how to construct the sequence {TR}, Then we

show that zjn,azji_

By Theorem 3.1, we may choose TO such that for all t>TO

minlt,t-d; ;(£)-Djp(t-d;;(t))1> max t;0 (3.58)
CEL
. : .o C . A
for all JC—;(, 16‘}3-, KEX;. Now if t>T0, then Pj(t)=f)\3" for
some n>1. Hence, by (3.55.2), pj(t)>zj0. Furthermore,
A
b; (5(t))= min Py(t-djj(t)-Dy,(t=d;;(£)))
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> min zjg. (3.59)
ke,

Now suppose there exists TN such that for all t2Tn,
A A ) o c0
pj(t’)>zjn and bi(rij(t))>kmél1;g zkl'l, for all JCI, 162_3.
Choose M large enough such that, for all m>M, Iejm{<:ejni and
tjm>Tn, for each jé;ﬁ. Now choose Tn+1 such that, for all
tzTn+1,

min[t,t-dij(t)_pik(t_dij(t))]> max tiM, (3.60)

Lex

for all Jéz, 16:8-3', k{xi' If an+1’ then pj(t)=ij+1 for
some m2M. The update protocol (3.55.1) guarantees that

me< > b, -1(p m), (3.61)
&eé?
Hence, we have
A
’QJm+1>(1 a. m)p m+aJ g (CJ > b1'1(me)-.e i)
/Léia

A
Hj(pjmyc‘j-lejn:ng-j)

> By( min zpMei-te ™y £ 5)
kex. J J J

zjn+1, (3.62)

where the next to 1last step follows from (2.27). Thus,

A
Pj(t)>z-n+1. Furthermore

1(rm(t)). min (Py(t=djj(t)=Djp(t=d;j;(£))))
ket

2 min zkn+1. (3.63)
ké‘;[:{-
By 1induction, we have constructed the sequence {TR} as

desired.
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Now we show that zjngyzj*. To do this we invoke the

following theorem.

Theorem 3.4. Let S be a linear space with norm |}-}}! such
]
]

that {x: |i{x{i<e} is compact for all ec. Let f:S2 S and

fn:S——'?S be functions such that f —>f uniformly, and such that

If(x) = £(y)1ikiix - yii for all «x,y€Ss. Suppose there
exists x* such that x¥*=f(x¥). Define X ,1=fn(xn). Then
xn?)(*'

The proof of this theorem in given in Appendix C.

Let an(z)=Hj(mlin zk,cj-ejn!g.j) and
Fj(g)zﬂj(mén zk’cj!é—'j)' Let Fn(Z.):(...,FJ-n(Z),...) and

F(_z-)z(...’Fj(i)"")' Since ej(n),_'?o’ F“(.Z)"?F(Z.).

~

Let lizil=2§x izj;. Then, since gj(-) is uniformly
continuous, for any & >0, we can find 8 such that
LiFR(2)-F(z) {1

=T;x =Hj(?&n zk,cj-iejnivﬁ¥j)-Hj(mi? zk,CJ,}gj)i

=max A;(min zy)
3

1

lGj(mli<n zk,cj-lejnlvéij)-Gj(ﬂin zk,cj,ggj)i
max igj(cj-tej(n)i- 2. b;~(min z))
g, .LL‘A&
-gj(cj'?—— bi-1(mg_n 2K
edr
4
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< g ) (3.64)

whenever Eej(n)}<€5. Hence, the convergence of Fn(z) to F(z)

is uniform.

Furthermore, by (2.27)

L IF(x)-F(y){i= max =Hj(mi_n xk,CJ,gij)-Hj(min yk,CJ,;;j){
P N
< max imin X,__pin !

Imin X -min y :
K k i< k

I A

ﬁ:f ‘xk‘yki

= lix=xii. (3.65)

Finally we show that z¥* is a fixed point of F(+) Let h
satisfy z, #- mip z ¥, Then

Zp*=zHp(zp*,cp, § p)

=Xh’ ‘ (3.66)
where X, is defined by (2.6). Now for any j, zj%>zp %=X, and
so

Z3%=Hj(Xn, 05,4 5)
2X,. (3.67)
Therefore
;
=xj-Hj(xj,Cj;é-j)s (3.68)
which implies Xp<X;. Hence xh;ﬂin Xg=p' and
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F(.z’)H(p:C ' j)=z*.

Hence, by Theorem 2.3, zhs z¥,

Next we show that, for each e>0, there exists T such that

A
for all t>T, Pj(t)<p1+Ej(e) and bi(¢ij(t))<p1+Ej(e) for all

jegf1, i€,

Let j be a link in 1 and let i be a session on j.
A
Choose N 1large enough that bi(rij(tjn))291'e and }ejn{<e for
all n>N. Now suppose that PjnZP1+EJ(e) for some n>N. Since
A

£50> 2> b;-1(pl-e), (3.69)
LEL:

we have

v ﬁ

pJn+‘l< pJn.,.a n(g. (CJ_eJn S b, -1(p1-e)) p n)

L(:ég,
A A
fpjn+ajn(8j(CJ+e-Z§t&'1(P1'e))'(P1+EJ(e)))

AER:

s
A

=PJn+a n(G. (p -e,cJ._,_e JLJ)-(p1+Ej(e)))
:3 n-(1/72)A; ( n)EJ(e)
<3Jn. (3.70)

So as long as p.N>pleE P8+l will be less tn p.n
o g PJ- 2p '+ J-(e), Pj e ess an pj .
Furthermore, the amount by which Sjn decreases is at least

(1/2)E. (e) min {A s(x): xe[p1+E (e),p;l ]]’ (3.71)

where M is any time for which §}M2P1+Ej(e). The minimum in
(3.71) must exist because Aj(x) is continuous and positive for

all x. Therefore, 63" must eventually be less than p1+EJ(e),
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J
A A A v A
pjn+1$pjn+ajn(Gj(p1-e,Cj-ejnng j)-Pjn)

A
Now suppose p-n<P1+Fj(e). Then

A A A
§(1-ajn)pjn+ajncj(p1+e,cj_e,ng)
<1350 (pT+E ()48 ;30 (p1+(1/2)E 5 (e))

P+Ej(e).  (3.72)

Hence, the controls Sjn converge to pl, for jex 1.

So for each e>0, there exists N such that for all n2N

A A
P1-e<b;(1;M)<PI+Ej(e) and pl-e<di(r;j(t;M))<PT+Es(e) for all
JELT, i€81. Hence, there must also exist T such that for

A
all 2T, pl-e<pj(t)<p'+Ej(e) and pl-e<b;(Fy;(£))<p1+E (e) for
all j€;§1, i€X1. This completes the proof of Lemma 3.3.

We are now ready to prove Theorem 3.3.
Proof. Partition the links in &i as described in the proof of
Theorem 3.2. The proof is by induction on the sets of the

partition, and is analogous to the proof of Theorem 3.2.

A A ' a
Let p(0)=p(0), r(0)=r(0), and ejn=0 for each Jj&£, for

A A
all  n.  Then Dy(t)=pj(t) and rij(t)=rij(t) for all t.

im p.(t)=pl=p;
Therefore, by the lemma, }iEKPJ(t)-p pj¥ and
lim bi(l"ij(t))=P1=ri* for j6i1’ 16&10
AX=>c0

Next we show that if the controls and rates converge to

pk for the links and sessions in Efk andti,k, k<K, and (3.72)
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holds for K, then the controls and rates converge to pK+1 for
the 1links and sessions in X K+1 and £ K+1, and (3.72) nolds
for K+1. We begin by defining a new network Nr=(4 "W X"

exactly as described in the proof of Theorem 3.2.

For each jé@i', let

ejh= > (’ij(tj">'”i*). (3.73)
LCS, \8‘3

If g_ 23 ,let e;"=0. By the induction hypothesis, ey 0.
Let p '(0)=p;'(0)=p;(0) for each j€{ ' and rl'(O) ri*(o)= rl(O)

A A N\ \n
for each i€X', Define p "(t), £3'(t), ri'(t), rijr(e), pjn

and fJﬂ' as described in Lemma 3.2. By an argument analogous

to that given in the proof of Theorem 3.2, we claim that

A
pjn':pjn and ﬁljn'-r .0 for all n,.

Next we show that (3.54) is satisfied. Because

>

ij(t)=rj;(t), (3.54.1) is satisfied.

~

Let zy¢min( mé&;pJ 0,p1) and 1let t,0 be the time of the
J
first link update, Then Pj(t)>zg for t<t;9. Now suppose

Pj(t)>zg for t<t;". Then

n+1 n .
Pj"*I2H5(psMey, 4 )

>Hj(zo,cj,§Lj)
The last step follows because zo<p1<xJ. Therefore, pj(t)>zg

for t<tkm, where tkm is the time of the next link update after

t;P.  So, by induction, Pj(t)>zg for all t. Hence (3.54.2) is
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satisfied.

Now, by Lemma 3.2 we have Pj'(t)ﬁ?p1' for j€§i1'. But
Pj'(t)=pj(t) and L1t is the set of links j with pj-=p1'=pKf1.
So Pj(t)>pj* for jeyxK+1.  similarly, rij(t):>ri* for
i€5 k¥l Tpis completes the proof of Theorem 3.3.

A similar theorem can be proved for an algorithm using
the update equation (3.52). The proof is essentially the same

as for Theorem 3.4, except that in the lemma we define pjn+1

by
N A A
p.n+1=(1-3a.n)(max b:(rss(t:N))+E.N)
J J RS RS NALR J
,Lé—dj
+ Q_ng_( . t,‘\-“-e-") (3.75)
J Pitei=ti T

where {Ejn} is any sequence that converges to 0, and Ejnzo for

all n.

Note that Theorem 2.2 follows directly from Theorem 3.4,

. ) ) _ n. .
by letting dij(t)-Dij(t)-O and choosing t;fzn for each j&Z,

Il

ied,,
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Chapter 4

General Asynchronous Distributed Angr_Lthm_s

Bertsekas and others [13] have developed some broadly
applicable results pertaining to general asynchronous
distributed algorithms. 1In this chapter, we discuss these
results and show how they can be modified to include the

algorithms presented in Chapter 3.

4.1 A General Convergence Theorenm

In this section we present Bertsekas' main result,

slightly reformulated to match our model.

For a given feasible set XCRN, we are interested in
finding an element of the solution set X¥<X. Sueh an element
is called a solution. We consider a system in which a network
of N processors iteratively computes estimates of the
selution. Each processor i maintains at all times t an
estimate of the solution Xj(t)€X, and a vector of mj
measurements zi(t)=(zi1(t),...,zimi(t)), as communicated to

the processor by the network. The estimates and measurements

are updated as follows.

Without loss of generality, we index the times at which
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the events of interest take place (such as a processor
updating its estimate or receiving a measurement) by an
integer variable t. We also assume that for any integer t
only one event of interest occurs in the system. Suppose

processor i receives at time t a new value of the measurement

A
23j(t). We call the received value QEJ(t) to distinguish it
from the value Z;j(t) currently stored by the processor. Then

A
zij(t+1)=zij(t). Furthermore, the processor updates its

estimate according to
X A
i(t+1):Mij(xi(t),zi1(t),...,zij(t),...,zimi(t)) (4.1)

where Mij(') is a given function. We call this a measurement
update. If no new measurement is received then
23j(t+1)=253(t). Each processor also updates x;(t) from time
to time, according to

X (e+1)=F(x3(t),z3(t)) (4.2)
where F.,(-) is a given function. We call this a
self-generated update. When no new measurement is received,
and the processor does not update its estimate, xi(t+1)=xi(t),

A
The measurement 2;j(t) received by processsor i at time t is

related to the processor estimates X1,X2ye00yXy by

A
zij(t)=Gij(x1(Tij1(t))’""xN(TijN(t)))' (4.3)

(Bertsekas also includes as an argument to Gij(') a random
variable v . We omit this for simplicity, since the systems
we are studying are deterministic.) We make the following
assumptions about the times at which measurements are received

or updates take place.
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Assumption 4.0. For all 1<iLN, 1<3<m; | 1<k<N, Tijk(t)st-

Assumption H.1. If ti3¢,  then

ERMCIPIC PLICH | e
for all 1<i«N, 1<3<m s, 1<kgN,

Assumption 4.2. For each i and J, and any ty, there exists
t1>to at which processor i receives a measurement z2;j(tq) of
the form (4.3), with Tijk(t1)2to for each 1<k&N.  Also, for

each 1 and any t; tphere exists t2>tg at which processor i

updates its estimate according to (4.2).

Assumption 4.0 says that delays must be positive, that
is, we cannot predict the future. We call this the causality
assumption. Assumption 4.1 is essentially equivalent to
(3.10). Assumption 4.2 is equivalent to the result of Theorem
3.1, the consequence Jf (3.10) and (3.11). Bertsekas calls it
the continuing update assumption. The new assumptions are

required because we no longer assume that the measurements

2;j(t) are updated continuously.

Bertsekas gives the following theorem.

Theorem 4.1. Let Assumptions 4.0 - 4.2 hold. Suppose there
exists a sequence of sets {X(k)} with the following

properties:
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X¥CX(k+1) X(kK)CT ... <X (4.5.1)
and

OO
x*= /) x(x). (4.5.2)
B

For 1<i<N, 1<J<m;, and k>0, define

Z35(k)={G13(x1,...,xy) IxpeX(k) for 1<h<N} (4.6.1)
X (k)= {F i (x;,25) ix1€X(k), 2162 (k) } (4.6.2)
—E;j(k)={Gij(x1,...,xN)ixheia(k) for 1<hgN}, (4.6.3)

where Zi(k)=Z1j(k)x...xZimi(k). Let Zi(k)=2—1j(k)x...x?imi(k).

Suppose that the sets X(k) and the mappings Fi(e), Gij(')
and Mij(°) are such that, for all i, j, Kk,

X, (k)< X(k) (4.7.1)
Mij(xi,z1)eX(k) when xjeX(k), zjicZ;(k) (4.7.2)
Mij(x1,21)€X;(k)  when x;CX;(k), zj€Z;(k) (4.7.3)
Mij(xi,25)€X(k+1) when x;eX;(k), 2;€Z4(k) (4.7.4)
Fi(xj,25)eX(k+1). when xjeX(k+1), 2z€Z;(k) (4.7.5)

Then, if all initial processor estimates xi(o) are in X(0),

and all initial measurements 2;(0) are in Z;(0), the limit

points of {xi(t)} are solutions for each i=1,...,N.

We interpret the theorem as follows. Condition (4.7)
ensures that if all estimates X;(t) are in Xj (k) and all
measurements z;(t) are in Z;(t), then eventually, x;(t) and

z;(t) will enter X;(k+1) and Z;(k+1), respectively, and remain

there. So for any k>0, x(t)EX(k) for large enough t. Thus,
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as k 1increases, x(t)E€X(k) gets arbitrarily close to the
solution set. To see how (4.7) guarantees this, consider the

following argument.

Let us assume that Xi(t)EXj(k) and zj(t)EZi(k) for all i.

Condition (4.7.1) says that after processor i performs a
self-generated update, the new estimate will still be in

xi(k). Similarly, (4.7.2) says that after a measurement
update, the estimate is still in X (k).

After a self-generated update, processor i's estimate is

in .?}(k). We may regard the membership of x;(t) in-fi(k) as

progress toward the goal that X;(t) eventually be in X (k+1).
Condition (4.7.3) says that that progress is not undone by any

subsequent measurement updates.

Condition (4.7.4) says that after all the processors have
made self-generated updates, and enough time has passed for
the measurements to relfect this, then processor i's next
measurement update will drive Xj(t) into Xj(k+1). Finally,
(4.7.5) ensures that after Xj(t) is in Xj(k+1), additional

self-generated updates will not push Xi(t) out of Xj(k+1).

Theorem 4.1 is sufficiently general that we are tempted
to try to reformulate the asynchronous flow control algorithms
in terms that would allow us to apply the theorem. The

theorem as given, however, does not apply to the algorithms
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described in Chapter 3 for two reasons.

Theorem 4.1 states that if an asynchronous algorithm
meets certain conditions, the sequence of processor estimates
it generates must converge to a solution, regardless of ﬁhe
manner in which the estimates are wupdated. But the flow
control algorithms in Chapter 3 require that updates only
occur at specified times, that is, when the update protocol is

satisfied.

Furthermore, Theorem 4.1 states that each processor i
computes a complete estimate of a solution x*, whereas the
flow control algorithms only require each link j to compute an

estimate of the jth coordinate of the solution p*¥.

Both of these difficulties can be overcome by slight
reformulations of the theorem, as described in the following

~

sections.

h.2 Awmmmm@m

In this section we show how to modify Bertsekas' model to
describe algorithms in which each processor estimates only a
partial solution. In an earlier paper, Bertsekas [14] gives a
result similar to Theorem 4.1 for algorithms where processors
compute only partial solutions, but that result 1is less

general than Theorem 4.1, in that the form of the measurements
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is more constrained.

In general, the dimensionality of the solution may exceed
the number of processors. 1In that case we would need some
processors to calculate estimates of several solution
coordinates. However, we may consider the Ni coordinates that
processor i estimates as an Nj-vector, and then consider that
vector as a single coordinate of an N-vector. So, without
loss of generality, we assume that each processor i calculates
only the ith coordinate of the solution, Indeed, we may
consider that in the general algorithm of section 4.1, the
limit points that each processor i calculates are the
(n-dimensional) ith coordinates of solutions in

(X#)NC XN cRrnN,

We may still describe the algorithm using (4.1) - (4.3)
by simply reinterpreting X;(t) as processor i's estimate at ¢t
of the ith coordinate of the solution. We write
x(t):(x1(t),...,xN(t)), where x;j(t)cX; for each i=1,...,N and
x(t)€x=x1x...xXN. We call x(t) the complete estimate and

Xj(t) the ith partial estimate.

We might now state a theorem similar to Theorem 4.1 for
this model, but for one remaining difficulty. Even when the
processor estimates converge, Theorem 4.1 does not promise
that the different processor estimates converge to the same

solution. An algorithm where the processors each calculate
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one coordinate of different solutions is of dubious value.
For example, we might have X1(t)->x1¥SX1#* and X2 (t)—>xp%=Xo¥,
but (X1*,x2!)¢x*. Additional restrictions are needed to
guarantee that if the partial estimates converge, they
converge to coordinates of the same solution. While more
general results may be possible, we choose to avoid the
problem by assuming that the solution set X¥ is the Cartesian
product of sets Xil’ i=1,...,N,

X*=Xq#x, . xXy*. (4.8)

Rather than restate Theorem 4.1 for this model, we expand
the model 1in the following section to include update

protocols, and so get a more general result.

4.3 General Asynchronous Algorithms with Update Protocols

In Chapter 3, we introduced the idea of an update
protocol as a way of restricting when the processors could
update their estimates. In this section, we revise our
interpretation of an update protocol so that the processors
may update at any time, but only when the protocol is

satisfied does the update actually affect the estimate.

An update protocol for processor i can be expressed in
terms of a protocol function Pi;xixzi_;{o,1}, where Z; is the
set of all possible measurements Zj. If Pj(xj,zi)=1, we say

that the measurements Z; are consistent with the estimate Xj
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Thus, P;(+) is the indicator fuction of some subset of XixZy,

and we call this set the consistent set Ci- Define

A
Fi(xi,zi)= Fi(xi,z4) when Pj(xj,z4)=1
X5 otherwise (4.9)
and
A
Mij(xi,zi)z Mij(xi,zji) when Pj(xj,z4)=1
X otherwise. (4.10)

i
A v
We call Fy(-) and ﬁ}j(') the constrained update functions, and
Fy(+) and Mij(') the wunconstrained update functions. We
rewrite (4.1) and (4.2) as

N
xi(t+1)=Mij(xi(t),zi1(t),...,z/\ij(t),...,zimi(t)) (4.11)

and

A
Xj(e+1)=F3(x5(t),2z1(t)). (4.12)
Hence, we restrain the processor from changing its estimate

unless the processor's current measurements are consistent

with its estimate.

We make the fbllowing assumption about the update

protocol.
Assumption 4.3. For each processor i, there exists an
infinite sequence of times for which Pi(xi(t);zi(t))=1 and the

processor updates according to (4.12).

One way to ensure that Assumption 4.3 holds is to require

ms
Pi(xi’(Gi1(x1)""’Gimi(x )= (4.13)
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for all  xJEXix...{xj)...xXy, 1<i<mj, for all  x; X;.

Essentially, (4.13) says that if each of the measurements 23
could have been generated using the current estimate Xi, then

they are consistent with that estimate.

To see how (4.13) implies Assumption 4.3, suppose there

exists some time t; such that P;(x;(t),z;(t))=0 for all t2tg.
Then Xj(t)=x3(tg) for all t2tg. But by Assumption (4.2),
there exists t1>t0 such that

zij(t1)=GiJ(X1(Tij1(t)))---’xi(to),...,

xN(TijN(t))). (4.14)

for each 1<j<m;,  But (4.13) and (4.14) imply
Pi(xi(t1),25(t)1)=1 (4.15)
which 1is a contradiction. Hence (4.13) guarantees the

existence of an infinite sequence of times for which

Pi(xi(e),zi(t))=1.
We give the folléwing theorem.

Iheorem 4.2. Let Assumptions (4.0) = (4.3) hold and let X* be
of the form (4.8). Let the processor estimates X;(t) be

updated according to (4.11) and (4.12). Suppose there exist

sequences of sets {Xi(k)] for 1<iKN with the following

properties:

X*CX(k+1) X(K)< ... CX (4.16.1)
and 0o
X*= [} X(k), (4.16.2)
ol |
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where X(k)=x1(k)x...xXN(k)-

For 1<iN, 1<J<m;, and k>0, define

233(k)=1G35(x) {xeX(k)} (4.17.1)
xi(k)={Fi(xi,zi)ixiéxi(k),ziezi(k),Pi(xi,zi)=1} (4.17.2)
23500216 5(x) 1x<X() b, (4.17.3)

where Z,(k) and X(k) are defined in the obvious manner.

Suppose that the sets X(k) and the mappings F;(-), Gij(')

and Mij(') are such that, for all i, j, k,

Xi (K)< X4 (k) (4.18.1)

Mij(x1,21)€X1(k)  when xi€Xi(k), z4e&Zi(k), Pi(xj,zi)=1

- (4.18.2)
Mij(xi,zi)éxi(k) when xjeXj(k), zjeZj(k), Pj(xj,z4)=1

. . (4.18.3)
Mij(xi,zi)éxi(k+1) when xjeXj(k), 2zi€Zi(k), Pi(xj,24)=1

(4.18.4)
Fi(xi,zi)exi(k+17 when xjcXj(k+1), zjezZi(k), Pi(xi,zi)=1

(4.18.5)
Then, if all initial processor estimates Xj(0) are in Xj(0),
and all initial measurements 2;(0) are in Zi(0), the limit

points of {x(t)} are solutions.

Proof. We will show, by induction, that there exists a

-

monotonic increasing sequence of times {tk} such that

X3 (t)eX (k) for 1<igN (4.19)
for all t2t,. Therefore, by (4.16) and (4.8), the 1limit
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points of {x(t)} are solutions.

We begin by showing that

X;(t)ex;(0) for 1<igN (4,20)
for all t>ty-0. By assumption, (4.20) holds for t=0. Now
suppose there exists t'>0 such that (4.20) holds for all

0<t<t'. Our model assumes there is exactly one processor i
that performs an update according to either (4.11) or (4.12)
at time t'. So for each processor j=i, xj(t'+1)=Xj(t'). If
Pi(xi4(t'),z4(t'))=0, then xj(t'+1)=x5(t') and (4.20) holds for

t'+1. If Pi(x;(t'),zi(t'))=1, we consider two cases.

Suppose processor i receives a measurement'?ij(tt) at t!
and updates according to (4.11). By the causality assumption,
Xp(Ty3P(t1))€X;(0) for each 1<h<N. Thus (4.3) and (4.17.1)
imply that z;(t')ez;;(0).  Similarly, zjp(t')eZjp(0) for
1<h<m;, Hence, by (4.18.2), x;(t'+1)eX;(0).

~

Now suppose processor i updates according to (4.12) at

tr. As above, we argue that Zip(t')EZ,(0) for 1<h<mj.

Hence, by (4.17.2) and (4.18.1), xi(t""‘l)é-x—i(O)-C-xi(o)-

Thus, (4.20) is satisfied for t'+1, and by induction,

(4.20) holds for all t>0.

Now suppose there exists k and tk such that (4.19) holds

for all t2t,, We will show that there exists t, ,>t, such
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that (4.19) holds for all t>t, .. We do this by constructing,

for each i, an intermediate sequence of times,

tk<Q7ki<tki$tk’<1fki'<tki'$tk", such that

Zi(t)¥Z;i(k) for t>Ty (4.21.1)
X3 (£)€X; (k) for tdtyy (4.21.2)
X5 (£)EX; (k) for t>ty', for all j (4.21.3)
25 (£)X2; (k) for t>%, ¢ (4.21.4)
X (£)EX  (k+1) for tit" (4.21.5)
X5(8)eXj(k+1) for t>ty'', for all j (4.21.6)

By the induction hypothesis and the causality assumption,

there exists ?%ki for each processor i such that (4.21.1)

holds.

We claim that (4.21.2) holds when t . is the time of
processor i's first update after’?‘ki according to (4.12) with
Pi(xi(t),zj(t))=1. Clearly (4.21.2) holds for t=tp;+1. Now

suppose (4.21.2) holds for some t>t,.,1, If processor i does

not update at t, or Py(x;(t),zj(t))=0, then xj(t+1)=x;(t) and
(4.21.2) holds for t+1. If processor i updates by (4.11) with

P.(xi(t),2zi(t))=1, then by (4.18.3),  x;(t+1)EX; (k). If
processor i updates by (4.12) with Pi(x3(t),z4(t))=1, then

X;(t+1)€X; (k) by (4.17.2). Hence, (4.21.2) holds for all
£t .

Now choose t tzmax ty; and (4.21.3) is satisfied.
A
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By the induction hypothesis and the causality assumption,

there exists 2’ .1 for each processor i such that (4.21.4)

holds.

By the continuing update assumption and (4.18.4) there

exists tp;' such that (4.21.5) holds for tst,i'+1. Now

suppose (4.21.5) holds for some tZtki'+1- If processor i does

not update at t, or P;(x;(t),zj(t))=0, then x;(t+1)=xj(t) and
(4.21.5) holds for t+1. If processor i updates by (4.11) with

Pi(xj(t),zi(t))=1, then by (4.18.4), xj(t+1)EXi(k+1). If
processor i updates by (4.12) with Pi(xi(t),zi(t))=1, then

Xj(t+1)eXj(k+1) by (4.18.5). Hence, (4.21.5) holds for all
t>t

ki'.
Hence, we may choose tk"=ﬂgx tgi' and  tp,q=ty' '+l We

have constructed the sequence {tk} as desired. This completes

the proof of Theorem 4.2.
Note that Theorem 4.1 can be considered a special case of
Theorem 4.2, by using the protocol functions Pi(xi'zi)=1 for

all x;eX;, zj€Zj, and by letting X;(k) in (4.16) equal X(k) in
(4.5), for each i.

While we could use Theorem 4.2 to prove the results of
Chapter 3, it 1is more convenient to apply the following
corollary. The corollary is just a simplified form of Theorem

4.2, for the case where there are no measurement updates, only
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self-generated updates.

Corollary 4.1. ‘Let the processor estimates X;(t) be updated

i
Assumptions 4.0 - 4,3 hold and let X¥,  {X(k)}, {fkk)},

accdrding to (4.11) and (4.12) with M-j(xi,zi):xi. - Let

{Zij(k)} and '{zlj(k)} be as in the statement of Theorem 4.2.

Suppose
XS X(k+1). (4.22)

Then, if x;(0)€X;(0) and z;(0)Z1(0) for all i, the 1limit

points of {x(t)} are solutions.

Proof. We prove the corollary by the application of Theorem
4.2. Since Mi(xi,zi)=xi, the conditions (4.18.2) and (4.18.3)
are trivially satisfied. The condition (4.22) implies

(4.18.4) and (4.18.1). Furthermore, (4.18.1) implies

Z33(k)=1G1;(x) ixeX(k)}
é.{GiJ-(x) lxeX(k)}
=25 5(k) (4.23)
and so
F3(x1,25) 1x4€X;1 (ke1) 2275 (k) , Py (xq,21)=1)
SUFy(x3,21) Ixg€ X3 (k) ,21€Z5(k),Pi(xi,21)=1}
=xi(k)
EX; (k+1). (4.214)
Hence (4.18.5) is satisfied.
We have shown that the conditions of Theorem 4.2 are

satisfied and therefore, the 1limit points of ({x(t)} are
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solutions., This completes the proof of Corollary 4,1,
In the next section, we use this corollary to obtain a

result that shows how some synchronous algorithms can be made

to work asynchronously,

4.4 Update Protocols for Synchronous Algorithms

In this section we describe how, starting with a

synchronous distributed algorithm taken from a given class of

‘algorithms, we can design an update protocol that allows us to

implement the algorithm in an asynchronous manner.
Unfortunately, it is not always possible to implement the
deéired protocol, and so, the result has limited application.
We present it mainly for the insight it provides about why
such update protocols work.

We model a synchronous algorithm as follows. As in
section 4.2, each processor i at time t has an estimate
X;j(t)eX; of the ith coordinate of a solution x¥X*  where X#
is of the form (4.8). All the processors update thei}

estimate simultaneously at each t, according to

Xi (t+1)=F;(x3(t),z5(t)) (4.25)
where

215(t)=G4;(x(t)) , (4.26.1)
and

Z2i(t)=Counyzi5(8),..0). (4.26.2)
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Note that there are no measurement wupdates, since all
measurements are "received" simultaneously. Combining (4.25)

and (4.26) we get

x(t+1)=(Hy (x(£)), ..., Hy(x(£)))
“H(x(t)) (4.27)

where Hy(x)=F;(xi,Gj(x)).

We give the following theorem.

Iheorem 4,3. For each i, let {X(k)} be a sequence such that
X¥CX(k+1)T X(k)C ... <X (4.28.1)
<o .
x#= /| X(k) (4.28.3)
=
and
H(X(k))< X(k+1), (4.28.3)

where X(1“)=x1(k)x...xXN(l.c) and H(X(k)) is the 1image of X(k)

under the mapping H(.).

Let {x(t)} be generated by (4.3) and (4.9) - (4.12) with
x(0)eX(0) and 2;(0)eZi(0) for each i. Let Assumptions 4.1 and
4.2 hold. If it is possible to define Pi(xiyzi) such that

{Fi(xi,zi)Ixiéxi(k),ZiGZi(k),Pi(xi,zi)=1}

C{F (x4,G4(x)))ix X(k)}, (4.29)
and such that Assumption 4,3 holds, then the limit pdinfs of

{x(t)} are solutions.
Proof. We prove Theorem 4.3 by the application of Corollary
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4.1, Since there are no measurement updates, we take

Mij(xi,zi)zxi. Combining (4.17.1), (4.17.2) and (4.29) we get
X (k)= {F1(x1,25) |x1€K;5 (), 2462 (k) Pi(x1,25)=1])
SlF; (x4,65(x)) 1xeX(k)}
={H; (x) 1xex(k)}
=H; (x(k))

SX;i(k+1). (4.30)
Hence, (4.22) holds and the conditions of Corollary 4.2 are

satisfied. This completes the proof Theorem 4.3,

The first part of the theorem simply states conditions on
the manner of convergence of the estimates generated by the
synchronous algorithm., Clearly, if x(0)€X(0), the sequence
{x(t)} generated by the synchronous algorithm (4.27) is such
that x(k)EX(k) for all k, and hence its limit points are

solutions.

Now consider an "~ asynchronous algorithm that satisfies
Corgllary 4.1. The estimate sequence {xi(t)} behaves as
desired because (4.22) guarantees that, with X;(t)€Xi(k) and
Z2ij(t)&Zi(k), wupdating will never cause x5(t) to go back to
xi(k-1), and because Assumption 4.3 guarantees that x;(t) will

eventually enter X;(k+1). Now take an algorithm for which

(4,22) does not hold. If we choose a protocol such that
updating is forbidden whenever updating would cause X;(t) to

go back to X,(k-1), then (4.22) will be satisfied.
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Equation (4.29) tells us how to design that update
protocol. We do this by comparing the image of xi(k)xzi(k)
under F; () with the image of X;(k)xGj(X(k)) under Fsj(-). The
set X, (k)xGj(X(k)) consists of all estimate and measurement
pairs for processor i such that each of the measurements could

have been generated from the same element x&X(k). Hence,

X{(k)xGi(X(k)) is a subset of X;(k)xZi(k). Now choose the
consistent set Ci such that Fi(.) maps xi(k)xzi(k)ﬂci to the
image of X;(k)xGi(X(k)) under Fj(+). Then, with the protocol
function equal to the indicator function on Ci, (4.29) holds.

The idea behind (4.29) is that updates are permitted only when

updating will not push x;(t)€X;(k) back into X;(k=1).

While we can always select the consistent set so that
(4.29) holds for any given k, it may not be possible to choose
the set so that (4.29) holds for all k. Even if (4.29) holds
for all k, the update protocol may not satisfy Assumption 4.3.
Furthermore, it may not be possible to implement the resulting
update protocol, since doing so might require the processors

to know the exact form of the measurement generation fﬁnctions

Gij(').

Though these 1limitations restrict the wusefulness of
Theorem 4.3, it still provides a starting point for someone

trying to design an update protocol.

4.5 The Flow Control Algorithm as an Example
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In this section, we give an alternate proof of Theorem
3.2, using Corollary 4.1, In fact, we prove a somewhat
stronger result than Theorem 3.2, since we will show that the
update protocol is not needed for the controls to converge.
We note, however, than in order to apply Corollary 4.1, we
must make the causality assumption, which was not required for
the proof of Theorem 3.2. The update protocol is required,
even with causality, for the algorithm of Theorem 3.3, as a

simple example will show.

We begin by showing how the elements of the flow control
model fit the general model of sections 4.2 and 4.3. The
feasible set X is taken to be RN, where N is the number of
links in the network, and the solution set is X*¥={p*}, where
p¥ is the fair allocation over Hayden's feasible set (3.27.1).
The prbcessors are the links and the estimates they compute
are the coordinates of the control vector P. The measurements
24i received by link j are just the rates rjj of its sessions.
Since the links receive new measurements continuously, but do
not update each time new measurements are received, the only
events of interest are the control updates which take place at

times tjn, for jézz, n20. In the notation of Chapter 4, we

have
Mij(pj,rj)=py (4.31.1)
Fj(pj,rj)z‘max. rij+(cj-2 rij)/wj (4.31.2)
and *63 kﬁ%’
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G.:(p)= min p for iéél-. ’ (4.31.3)
lJ KeLf. ¥ J :

A
The original protocol function is given by
Pj(pj,rj)z 1 if 2?§'rij$pj
- 4- -~
+
0 otherwise. (4.32)

However, we will show that the conditions of Corollary 4.1 can

be met using Pj(pj,r‘j)=1 for all pj,rj€R.

To apply the corollary, we must construct the sequences

{xj(n)} such that

Xi(ne1) SXj(n)< ... €X500). (4.33.1)

(>

RARSICIRIENL) (4.33.2)
and

Fj(pj,rj)é-}(j(nH) (4.33.3)

when pjéxj(n), rjezj(n).

Even though we have shown in Chapter 3 that the controls
of the flow control algorithm converge for any initial
controls P;(0)R and rates rjj(0)ER, there exist networks for
which it is not possible to construct a chain of sets X(n) as
in (4.33) with X(0)=RN. This is because, with X(0)=RN,
X(0)=RN which implies X(1)=RN. So, by induction X(n)=RN for
all n. Instead, for any initial pj(o) and rij(O), we take

X5(0)=[-43,B;1, (4.34)

for suitably large Aj, Bj.
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Now partition the links X into sets X T,..., 2L and the
sessions ,éi into sets 221,...,21L as in the proof of Theorem
3.2. We will construct {X(n)} by finding sequences {eK(n)}
and {EK(n)} for each k=1,...,L, such that

X;(n)=[pK-eK(n), pksEK(n)] for jerk (4.35)

and {xj(n)} satisfies (4.33).

Before defining {eK(n)} and {EK(n)}, we describe the idea
behind their construction. We begin by taking el(n)=0 for n)>1
and finding {E'(n)} that is monotonically decreasing and
converges to 0. As long as El(n) is greater than some
threshold less than p2, we keep EK(n) fixed at some large
number E and let pK-ek(n)zpl-el(n), for all k>2. Wnhen El(n)
drops below the threshold at some time Ny, we 1let p2-e2(n)
rise above pl! and E2(n) begins to fall. We still keep EK(n)
fixed at E and let pkK-eK(n)zp2-e2(n) for k>3. This process is

repeated until {eK(n)} and {EK(n)} have been found for all k.

We formally construct the sequences {ek(m)}, {EK(m)} as
follows. First define, for k=1,...,L,

eK(0)= aE (4.36.1)
and |

EK(0)= E (4.36.2)
where a= min 1/Wj and E is some suitably large constant such
that E>pl/a. Now 1let

el(n)=0 (4.37.1)

and
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E'(n+1)=(1-3)E (4.37.2)
for all n21, Suppose that we are given a sequence
Ni<Np<...<Np such that Nq=1 and, for k>1,

ek=1(n)+EX=1(n)<(pk-pk=-1)a/(1-a) (4.38)
for all n>N, . Now define, for n>Ny

ek(n+1)=(1-a)(ek(n)+EK=1(n)) (4.39.1)

EK(n+1)=(1-a)(ekK(n)+Ek(n)) (4.39.2)
and for N, <nd<Ny,q, K>k,

eK(n+1)= pK-pkiek(n+1) (4.40.1)

EK(n+1)=E. (4.40.2)
In Appendix D, we show by induction that the sequence
N1<N2<...<NL satisfying (4.38) exists, and that the sequences
{ek(n)} and {EK(n)} are monotonically non-increasing and
converge to 0, for all k. Hence, (4.33.1) and (4.33.2) are

satisfied.

Furthermore, we show that the sequences have the

properties that for k<K, for all n,

pK-eK(n)<pK-eK(n) (4.81.1)

ek(n)<eK(n) (4.41.2)
and

EK(n)<EK(n). (4.41.3)

These properties will be needed to show that (4.33.3) holds.

We show that (4.33.3) is satisfied for n=0. Note that
k_
(Wj-1)(p aX)+ €?§'rij$ éiﬁrij KWj max rjj, (4.42)
AL 33 "65- -

j 2
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for r'_-iéZJ'(O). Therefore,

LEY:

R f
_cj/Wj

>p! (4.43)

Fj(pj,rj)g max rjj+(cj-Wj max rij)/vj
ey,

Also,

Fj(Pj,rj)S max rij+(CJ-(Hj-1)(pk'ax)'\maf rij)/wj
4 AEY

4
£(1'1/wj)(_ma§ Pij-pk+aX)+cj/Wj
AEY"

LO-17W5) (B+aBdwe j/u

L(1-a)(1+a)E+pk

<pK+E. (4.44)

Hence,

Fipy,ryelplsPkeEl=X (1), (4.45)

as desired,.

Before showing that (4.33) holds for n21, we make the
following observations. If session i on link j is in‘g_k,
then every link in its path is in‘;iK for some K)k. Thus,
(4.31.3) and (4.41.1) imply

rijl min pK-eK(n)
K>z

:pk_ek(n) (4.46)

for iéélk, Fijézij(n). Furthermore,

rj j<pK+EK(n) (4.47)
for i€y K, Fij€Zij(n).

Now we show that (4.33) holds for n21. First we show
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that ‘

Fj(pj,rj).(pK+EK(n+1) (4.48)
for jéiiK, Pjéxj(n), rjézj(n). We consider two cases: n<Ng
and n2Np.  If n<Ng, by (4.44)

Fj(pj,rj)<pK+E=pK+EK(n+1). (4.49)
Now suppose nmXN, et wjk be the number of sessions on link j
in éﬁk Then, by (4.46)

1J><?'w K(pk-ek(n))+max ri _(pk-ek(n))

h=) LES;
K- 3
=¢;-> W; kek(n) +max r, ij-(p k-ek(n)). (4.50)
Re) ég
Therefore,
F; K
J(pJ’rJ)<max rlJ+ [<__ Jkek(n)- max r J.',p "e (n)]/w
,Lé.% £2= 63
=(1- -1/W;)max F13+[§i Wj kek(n)+pK-eK(n)]/W
Aé(?a, /\"l

5(1-1/wj)(pK+EK(n))+eK(n)+[pK-eK(n)]/wj

=pK+(1-1/Wj)(EK(n))+eK(n))

<pK+(1-a) (EK(n)+eK(n))

=pK+EK(n+1), (4.50)
as desired. The third step follows from (4.47) and (4.41.2).

Next we show that
Fi(pj,rj)apK-eK(n+1) (4.52)

for jeZ¥, pyex;(n), rjezj(n).

First we derive some preliminary results. For
convenience, define

— K
K_ k
w‘j -wj-gwj . (4-53.1)
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and
ajksukruy, (4.53.2)
Then-WjK is the number of sessions on 1link j that are
controlled by 1links at a higher level than K, that is, the
number of sessions that are in (/4 k.
k>K
Let J be the largest number for which that ic§J, i€,

For any H<J, (4.47) implies

A-1 .
P riJSj;-wjk(pk+Ek(n))+WJH-Tﬁz$~rij' (4.54)
4 = 4
Therefore
H-1 —
Fj(pj,rj)zmax rij+[cj-§i_wik(Pk+Ek("))'WJH'1W3¥_rij]/wj
k:, L&-ga

-g . H=-1
201 aj )m§§.rij
< €5
1=

H-l —
H=1(¢. kpk H=1_ KEk, .
+a (cJ-ézan p )/wJ é%aJ E (4.55)
By the construction of the fazir control vector
H- _
PHS(CJ_EZ:wjkpk)/WJH'1. (4.56)
=1
By (4.41.3) K
H-l H~1
> a.kek(n)¢S aJ.kEZH‘1 (n)

K=t I K=

=(1-ajH‘1)EH'1(n), (4.57)
and by the choice of J and (4.41.1)

-ed
max rijng ed(n)
Af.xa‘ »
>pH-eH(n). (4.58)
Hence,

Fj(pj,rj))(1-ajﬂ'1)(pH-eH(n)-EH'1(n))+ajH-1pH
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=pH-(1-2;H-1) (eHsEf-1(n))
>pH=(1-a) (el (n)+EH-1(n)). (4

We are ready to show that (4.52) holds. We consider
cases: J=K and J<KK. Suppose J=K. If n>Ny then (4
implies

Fi(pj,rj)apK-(1-a) (eK(n)+EK-1(n))

=pK-eK(n+1). (4

If n<Ng, let H be the largest number such that n>Ny. Then

=pK-eK(n+1). (4

Now suppose J<K. Then (4.61) also holds for n<N

Finally, suppose nzNJ+1' By (4.47)

T
<
= rij< ijk(pk+Ek(n))+m?§ rij-(pd+EJ(n)). (4
AEX, K= A&y,
) J
Thus,
Fj(pkj,rj)2(1-1/wj)max rij
1634
+(c.. S w.K(pk+EK(n))-pJd-Ed(n)) /W,
J P J J
= |
J Re kpk
2(1'1/wj)(max rij-EJ(n))-P /wj+(cj-iz_wj pX)

2(1-1/WJ)(pJ-eJ(n)-EJ(n))-pJ/wj+(°j-

3
2pdale.. S w.kpK)/W._(1-2) (e (n)+EJI(n))
Tz J

=pK-(1-a)(ed(n)+EJ(n)), (4
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where the last step follows from the construction of the fair
control vector. But, since nzNJ+1,

(1-a)(ed(n)+EJ(n))<(1-a)(ed+1 (n)+EI(n))

zed+1(n+1)
<eK(n+1) (4.64)
and so
Fj(pj,rj)épx‘ex(n+1)' (4.65)

We have shown that,
Fi(pj,rj)erpK-eKne1), pKeEK(ne1) ]
“Hynen) (4.66)
for jexX, Pj€Xj(n), rj€Zj(n). The conditions of Corollary

4.1 are satisfied, and therefore, the controls generated by
the asynchronous flow control algorithm of Theorem 3.2

converge to p* without the update protocol.

It is instructive to consider why the proof in Chapter 3
requires the wupdate protocol while this proof does not. 1In
both cases we must show that, for any e>0, the control Pj(t)

eventually drops below Pj¥se, A necessary step in showing

this is demonstrating that

n+l¢p n-m e N .
Pj SPJ +(CJ-fJ )/wJ (4.67)
for some non-negative m. With the causality assumption,
. .(+ .0 .n-m .
ﬁfx rijlty )SPJ (4.68)
€3,

for some m>0, and so (4.67) is satisfied. With the update

protocol, (4.68) holds for m=0 and the causality assumption is
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not needed.

This leads us to question whether the update protocol is
required for the generalized algorithm, as given in Theorem
3.3, if we assume causality. In fact, the protocol is needed,

" as the following example shows.

Consider a network of one link with capacity ¢ and W
sessions. Let g(x)=x and b;(x)=x, for all i. Then

p(n+1)=(1-a)p(n)+a(c=-£f(n)), (4.69)
where a=1/(W+1). Note that p*zac. Now suppose that f(0)=c,
and the 1link updates many times in rapid succession, so that
f(0) does not have time to change from one update to the next.

Then, after N1 updates,

N N
P(N,)=(1-2) 'P(0)+(1-a" 1) (e=£(0))
=c-f(0)-e(N1). (4.70)
We can make e(N,) as smpall as we like by taking large enough
N1. Now the link waits until the flow reflects this control,
that is,
f(N1)=W(e-£(0)-e(N7)). (4.71)
Once again, the link updates rapidly, without waiting for the
flow to change, so that
P(Ny)zc-f(Nj)-e(Np)
zc-W(c-£(0)-e(Ny))-e(Ny). (4.72)
In this manner, we can construct a sequence of times {Nk} such

that the flows are given by
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F(N 1) =W(c-W(c-f(Ny)-e(N))-e(Ngy1)). (4.73)
For appropriately chosen {e(N )}, this sequence of flows will

never converge,

Let us see where the conditions of Corollary 4.1 fail ‘to
hold for this example. Suppose we have
X(n)=[p*-e(n),p*+E(n)]. Then Z.(n)=X(n) for each i. Now
suppose that p(n)zp#¥-e(n) and ri(n)=p*+E(n). Then

p(n+1)=(1-a)(p*-e(n))+a(c-W(p*+E(n))

=p¥-(1-a)(e(n)+E(n)). (4.74)
Hence, we cannot guarantee that F(p,r)éX(n) when peX(n),
r Z(n). Thus, for this algorithm, the update protocol is
required to ensure that the controls get above a given
threshold. Examining the proof of Theorem 3.3, we see that

the update protocol was invoked for that very reason.

We conclude this chapter by remarking that these results
are not obvious. Without applying Theorem 4.2 to the flow
control algorithms, we would probably have never discovered
that one algorithm requires the update protocol and the other

does not.
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Chapter 5

Simulation and Results

‘In this chapter we describe a computer program designed
to simulate a voice packet network using a flow control
algorithm, such as one of those described in Chapter 3. The
program was written in Lisp on the Symbolics 3600, by Allan
Wechsler and myself. The program listing is given in Appendix
E. After describing the program model and the program, we
introduce a specific network model and discuss the results of

the simulation using that model.
5.1 The Simulation Model

The simulation model is substantially the same as that

used by Hayden [9], with some minor differences.

The program allows the user to define a network with an
arbitrary topology. The network is specified by two global
bvariables: a list of its users (sessions) and a 1list of its

links.

A user is a data object that has, among other attributes,
a rate, a partner (the other user that it talks to) and a

route (the 1list of the links that are in its path). If user
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i's partner is user k, then user k's partner is user 1i. At
any given time a wuser is either active (talking) and its

partner is inactive (silent), or vice versa.

When a user is active, i£ generates a variable 1length
voice packet approximately every 20 msec. The actual time
between packet generations is a random variable wuniformly
distributed between 18 and 22 msec. The length of a voice
packet in bits is given by

PACKET-LENGTH:iﬁSER-RATE/Bd]. (5.1)
The rate is a floating point number, but the 1length 1is an

integer.

After generating a voice packet, an active wuser will
generate another voice packet with probability (1-p).
Otherwise, the packet generated is the last in its talk-spurt.
If the packet is designated last, the wuser becomes iﬁactive
after the packet is transmitted and the partner becomes active
when the packet is received. We use p=1/60, and hence, the
number of packets per talk-spurt is a geqmetric random
variable with mean 60. This conforms with experimental values
measured by Brady [15], who found actual talk-spurt durations
to be approximately exponentially distributed, with mean 1.2
sec., This is not a completely accurate representation of real
speech, however, since brief periods of silence usually occur
between talk-spurts, and talk-spurts do not always alternate

strictly between two members of a conversation. Nevertheless,
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it 1is an acceptable approximation for our purposes. We also
have the option of setting the talk-spurt length to infinity.

This lets us study the steady state behavior of the system.

When a user 1is inactive, 1t generates fixed 1length
control packets at regular intervals, for the purpose of
passing feedback information to its partner. The 1length of
the control packets is 10 bits, and the time between the

generation of successive control packets is 100 msec.

A link is a data object that has a control value, a flow,
a list of its currently active users and a queue of packets

waiting to be transmitted on the link.

A link's list of its active users also includes, for each
user, the user's rate, as determined by examining the most
recently received packet from that user. This rate list is
used to determine whether the update protocol 1is satisfied,
and to calculate the flow of the link. This is the main
difference between our simulation and Hayden's. In Hayden's
program, a link determines its flow by observing the number of
bits arriving in the queue over a given period of time. This
affects the value of the flow in three ways notraccounted for
by the theoretical model. First, the observed flow includes
control packet traffic. Also, the observed flow for a link is
limited by the capacity of the neighboring links that feed its

queue. Finally, the observed flow may represent the rates of
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the 1link's different users in unequal proportions. For these
reasons, we prefer to calculate a link's flow by summing the

rates of the link's active users.

Each link attempts to update its control periodically, by
first checking whether the specified update protocol is
satisfied. If it is, the 1link updates according to the
specified update function, If not, the 1link waits a given
interval and tries again., There are two update interval
parameters that can be adjusted: the time between a succesful
update and the next update attempt, and the time between an
unsuccessful attempt and the next attempt. They are called
the UPDATE-INTERVAL and the UPDATE-ATTEMPT-INTERVAL. In
section 5.4 we will see that the choice of these parameters is

critical to the performance of the sy stem.

One of two update protocols can be selected: MOSELY or
HAYDEN. The MOSELY protocol is given by (3.21) and the HAYDEN

protocol always permits updates.

Three different update functions can be selected. The

HAYDEN-UPDATE-FUNCTION is given by

pj(t+1)=maX[CJ/WJ,min[cj,pj(t)+(ci-fj(t))/Wj]]. (5.2.1)

The MOSELY-UPDATE-FUNCTION is given by
Pj(t+1)=max[cj/wj,

minle;,max rij(e)+Cey=f3(t)) /W 11, (5.2.2)
#€3;
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The JAFFE-UPDATE-FUNCTION is given by

Pj(t+1)=max[cj/(WJ+1),
minley,pj(t)+(e;-£3(t)-pj(t))/(Ws+1)]).  (5.2.3)
The variable ¢y in these equations represents the effective
link capacity and not the true capacity. For the simulation
we used cj=.8Cj, where Cj is the actual capacity. These
update functions differ slightly from those given earlier, in
that we restrict the range of the controls. Since we Kknow
that the fair control allocation can never result in a control
for link j outside the interval [cj/Wj,Cj] for Hayden's

feasible set or [Cj/(WJ+1),cJ] for Jaffe's feasible set, these

are reasonable modifications.

A packet is an object, created by a user, that has a
source and destination (two users), a route (a list of links),
forward control and feedback information, and a variety of
statisties, such as its length, time of generation, and the

rate of its source.

When a packet is created, its forward control is set to
infinity. Each time a packet is transmitted across a link,

its forward control is reset to the minimum of its current

forward control and the control of the link. Hence, when a

packet arrives at its destination, its forward control 1is
equal to the minimum control of the links in its path. This

number is stored by the destination and used as the feedback
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value in the next packet <created by the destination to be
returned to the source. When the source receives the returned

packet, it changes its rate to equal the feedback value.

Note that a packet contains its source's rate. This 'is
desirable for two reasons. A link could calculate a given
user's rate by multiplying the length of one of that user's
packets by 50, but this produces serious round-off errors.
Also, a user might sometimes want to transmit at a rate lower
than that assigned, while still reserving for itself the
option to send at the higher rate later. Hence, we prefer the
users to communicate their rates to the links, rather than let

the links measure the rates.

This completes the description of the simulation model.

5.2 The Simulation Program

In this section we describe the event driven program that

was written to simulate the model of section 5.1.

The program works by scheduling and performing events 1in
an event table. An EVENT consists of a TIME, a FUNCTION and
ARGUMENTS. When an event is created, it is added to the
®EVENT-TABLE®*, which is implemented as a heap. The heap is
sorted so that the event at the top of the heap is always the

one whose TIME is earliest. An event "takes place™ when it is
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removed from the top of the heap and its FUNCTION is applied
to its ARGUMENTS. When this happens the global variable
*TIME#® is set to the TIME of the EVENT being performed.

The program begins by intializing the network, creating
’ﬁhe start-up vevent and adding it to the heap. The program
then enters a loop which repeatedly removes events from the
top of the heap and performs them, until the global variable
®TIME* exceeds the given time limit. Since most events, when
performed, create one or more new events with times later than

®TIME*, the heap never becomes empty.

There are ten different types of events that occur, as

described below.

SIMULATION-STARTUP

This is the first event performed. It schedules the
first VOICE-PACKET-GENERATIONs for all intially active users
and the first CONTROL-PACKET-GENERATIONs for all initially
silent users. While the first group of
VOICE-PACKET-GENERATIONs are synchronized, subsequent
VOICE-PACKET-GENERATIONSs will rapidly fall out of
synchronization. The same is true of the
CONTROL-PACKET-GENERATIONs. This event also schedules the
first UPDATEs and LINK-STATISTICS-COLLECTIONs for each 1link,
and the first USER-STATISTICS-COLLECTIONs for each user. The

times of the first link UPDATEs are randomized, since these
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events would not fall out of synchronization otherwise,

CE-PACKET-GENERATION

When a voice packet is generated, its FORWARD-CONTROL,
FEEDBACK-CONTROL and LENGTH are set, as described in the
previous section. The route of the packet is set to the route
of its source, its GENERATION-TIME is set to *TIME®, and TYPE
is set to VOICE. The LAST-IN-TALK-SPURT? flag is set to T or
NIL, according to the outcome of a random "coin toss". The
entire packet is scheduled to arrive at the first link in its
route at *TIME® + *PACKET-GENERATION-DELAY¥, This 1is
accomplished by adding the events PACKET-ARRIVAL and
PACKET-TAIL-ARRIVAL to the event-table. If
LAST-IN-TALK-SPURT? 1is NIL, another VOICE-PACKET-GENERATION
is scheduled for the appropriate future time, otherwise, a

CONTROL-PACKET-GENERATION is scheduled.

-PACKET-GENERATION

When this event is performed, the user first checks to
see 1if it is active or not. If the user is active, then it
started talking since the time at which the
CONTROL-PACKET-GENERATION was scheduled, and no further action
is performed. Otherwise, a control packet is generated, and
its FORWARD-CONTROL, FEEDBACK-CONTROL and LENGTH are set, as
described in the previous section. The route of the packet is
set to the route of its source, its GENERATION-TIME is set to
®*TIME®, and TYPE is set to CONTROL. The packet is scheduled
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to arrive at the first 1link of its route at *TIME* +
*PACKET-GENERATION-DELAY®, by adding the event PACKET-ARRIVAL
to the event-table. Another CONTROL-PACKET-GENERATION is

scheduled for the appropriate future time.

PACKET-ARRIVAL

When the head of a packet arrives at a 1link, its
ARRIVAL-TIME is set to *TIME®, the packet is placed at the end
of ﬁhe queue, and link queue statistics are updated. If the
link is idle when the packet arrives, a PACKET-TRANSMISSION is
scheduled at *TIME* + ¥PACKET-TRANSMISSION-DELAY#¥,

CKET-TAIL-ARRIVAL
When the tail of a voice packet arrives at a link, the
link checks whether the packet's source is on its list of
active users. If not, the link adds the source to its 1list.
Then the 1link updates its stored value of the source's rate,
which it reads from the packet. When the tail of a control

packet arrives, PACKET-TAIL-ARRIVAL does nothing.

PACKET-TRANSMISSION

This event occurs either when the link transmits the tail
of a packet, or when the head of a packet arrives at an empty
queue, If the link is transmitting the tail of a packet when
this event is performed, it will update its records of the
number of bits transmitfed. If the packet just transmitted

was a voice packet and the last in its talk-spurt, the 1link
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will remove the packet's source from its list of active users.

Next, whether or not the link Jjust finished a
transmission, it checks its queue. If the queue is empty, the
event is finished. Otherwise, the link gets the first packet
in its queue and changes the packet's forward control value as
described in the previous section. Then the 1link schedules
the transmission of the packet's tail at

ETIME¥* 4 (PACKET-LENGTH/LINK-CAPACITY)

+ *PACKET-TRANSMISSION-DELAY. (5.3)
Next the link updates relevant statistics, Finally, the 1link
removes itself from the head of the packet's route list, and
checks for the packet's next destination. If the packet's
route is empty, its next destination is its source's partner,
where a PACKET-ABSORPTION is scheduled for

*TIME® + LINK-PROPAGATION-DELAY

+ ¥PACKET-ABSORPTION-DELAY®, (5.4)
Otherwise, the head of the packet is scheduled to »arrive at
the next link in its route at

¥*TIME® + LINK-PROPAGATION-DELAY

+ ¥PACKET-ARRIVAL-DELAY# (5.5)
and the tail of the packet is scheduled to arrive at

®TIME# . LINK-PROPAGATION-DELAY + ¥PACKET-ARRIVAL-DELAY®

+ (PACKET-LENGTH/LINK-CAPACITY). (5.6)

PACKET-ABSORPTION

This event represents the arrival of a packet at its
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destination. First, the packet's net delayvis calculated by
DELAY=#*TIME® + ¥PACKET-ABSORPTION-DELAY#

- PACKET-GENERATION-TIME. (5.7)
If it is a voice packet, the wuser's voice packet delay
statistics are updated. Otherwise, the user's control packet
delay statistics are updated. The user then sets its rate
from the feedback information, and stores the forward control
value for use as described earlier. If the packet is the last
in its talk-spurt, a VOICE-PACKET-GENERATION is scheduled for

the packet's destination.

UPDATE

When an UPDATE is performed for a link, the 1link first
checks whether the update protocol is satisfied. 1If it is,
the new CONTROL is calculated using the specified update
function, and another UPDATE is scheduled for *TIME® .
®UPDATE-INTERVAL®, Otherwise, another UPDATE is scheduled for
¥TIME* + ®UPDATE-ATTEMPT-INTERVAL*¥,.

LINK-STATISTICS-COLLECTION

This event collects link statistics, and adds them to the
®LINK-STAT-STREAM¥, which is output to a file. It then =zeros
the statistics and schedules the next
LINK-STATISTICS=-COLLECTION at *TIME® +
®LINK-STATISTICS-INTERVAL®,

USER-STATISTICS-COLLECTION
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This event collects user statistics, and adds them to the
¥USER-STAT-STREAM*, which is output to a file. It then =zeros
the statistics and schedules the next
USER-STATISTICS-COLLECTION at *TIME® +
®USER-STATISTICS-INTERVAL¥,

This completes the description of the simulation program.

5.3 The Network Model

In order to have a basis for comparison, we chose the
Same network model used by Hayden. This network is a scaled
down version of a network simulated at Lincoln Laboratories
[16]. The network consists of 80 users and 8 links, and its
topology is illustrated in Figure 5.0. The original network
model considered traffic flow in only one direction, but in
order to model the effects of feedback delay we must consider
two-way traffic flow. In order to use this model for two-way
traffic without incorporating additional links, we view all

the sources as being at the same location.

We make the same user-partner assignment as Hayden, where
each user i has as its partner user (81-i), for i=1,...,40.
Ideally, there should be no correlation between the set of
links in a user's path and the set of links in its partner's
path, as would be the case if we had incorporated extra links

to handle the two-way traffic. However, the user pairs
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(32,49), (31,50), (30,51) and (29,52) all share link 7. But,
Ssince they constitute only 8 out of 24 users, this should not

be a serious problem.

The program as described in the previous section contains
many Variables related to the actual performance of a physical
network. The values of these variables are given in Table
5.1, and have been chosen to be consistent with current

technology.

5.4 Simulation Results

In this section we describe the results of the
simulation. The theory of the preceding chapters addresses
only the the behavior of networks with fixed configuration.
In practice, however, the network configuration will change
rapidly as users initiate and end conversations. The ability
of an algorithm to control the 1link flows in a changing
network depends upon the rate of convergence of flows in a
static network. If the time required for the controls to
converge in a static network is short compared to the rate of
change of the dynamic network, the algorithm will work for the
dynamic network. Hence, we divide our results into two

subsections: static results and dynamic results.

5.4.1 Static Results
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Jariable Value

LINK-CAPACITY 40000 bits/sec
LINK-PROPAGATION-DELAY .003 sec
¥PACKET-ABSORPTION-DELAY® .0005 sec
¥PACKET-ARRIVAL-DELAY® .0005 sec

#PACKET-TRANSMISSION-DELAY#* .0001 sec
*PACKET-GENERATION-DELAY® .0005 sec

Network Constants

Table 5.2
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In all of the experiments described in this section, we

- studied a static network in which all even numbered users were

active for the entire simulation. For this network,'Hayden's

fair control vector is

(8000,8000,8000,8000,8000,4000,2667,2000) and Jaffe's fair
control vector is (4987,4987,4987,4987,12050,3555,2461,1882).

Two important parameters to adjust are the update
inferval and the update attempt interval. Preliminary results
indicated that the update attempt interval should be kept as
small as possible. While we could set the update attempt
interval so that each 1link tries to update each time it
receives a packet, this would slow down the simulation
considerably. Instead, we set the update attempt interval to
20 msec., so that each link tries to update after receiving a

new packet from each of its users.

Hayden observed, in his simulations, that setting the
update interval to 20 msec. produced severe oscillations in
the link flows. With an update interval of 100 msec., these
oscillations were greatly reduced. For comparison, we ran our

simulation using each of these values.

We have identified three parameters to adjust. We may

choose between the HAYDEN, JAFFE or MOSELY update functions,
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the update protocol or no update protocol, and fast (every 20
msec.) or slow (every 100 msec.) updates. We ran the

simulation for each of the twelve combinations.

For the sake of brevity, we have chosen to display the
results for 1links 2 and 5 only: link 2 because it is typical
of the others, and link 5 because it is atypical. Link 5
differs from the rest in’that, when the rest of the links!
controls' correspond to Hayden's fair allocation, 1link 5
controls none of its users. Thus Hayden's algorithm will

assign link 5 a control equal to its capacity..

Figures 5.1 - 5.3 show link 2 controls versus time for
all possible combinations of update function, update protocol
and rate of update. Figures 5.4 - 5,6 show the same data for
link 5. Inspecting these figures, we make the following

observations.

Both the HAYDEN and JAFFE update functions work
moderately well with slow updates on link 2. The JAFFE update
function can also control link 5 with slow updates, but the
HAYDEN function cannot. Both functions seem to work
marginally better with update protocols than without. Neither
function works at all well with fast updates, with or without
the protocol, although the protocol tends to damp the
oscillations for the JAFFE function. These results are

largely what we expected, based on Hayden's simulations. It
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is a 1little surprising, however, in view of the theory of
Chapter 3, that the JAFFE function performs so poorly with
fast updates and the update protocol. These results do not
contradict the theory, though, since the theory makes no
claims about the rate of convergence, and the controls do

converge.

The MOSELY update function is capable of controlling both
links well wunder all circumstances. Convergence of the
controls with slow wupdates is slightly faster without the
update protocol than with. Since the update protocol is not
necessary for the controls to converge, it 1s not surprising
that the protocol slows convergence down, as the protocol must

occasionally prevent a possibly beneficial update.

When updates are fast, there is almost no noticeable
difference between the performance of the algorithm with or
without the protocol. For link 2, it might be argued that,
because the controls converge to the fair controls from below,
the wupdate protocol is nearly always satisfied, and hence the
performance is the same with or without the protocol. In
order to test this theory, we ran the simulation with the
initial controls and rates set high (4000 bits/sec.) to try to
produce a control sequence that converged from above. The
results of that simulation are shown in Figures 5.7 - 5.8.
The controls still converge from below, since after starting

high, the 1link cuts 1its control sharply to limit the flow.
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There is more difference between the performance with and
without the protocol in this case, but the difference is still

small.

From these figures we conclude that the HAYDEN and JAFFE
update functions work best with slow updates, and the MOSELY
function works best with fast updates. In Figures 5.9 - 5.12,
we compare the performances of the three functions. Since the
JAFFE update function is designed to converge to a different
fair allocation than the others, it is difficult to assess how
well it does this relative to the other two functions. From
Figures 5.9 and 5.10, we might conclude that the MOSELY
function performs no better than the HAYDEN or JAFFE
functions. But Figures 5.11 and 5.12 show that this is not
so. Collectively, these figures seem to indicate that under
best case conditions, the functions work approximately equally
well, but for unusual conditions, the MOSELY function works

better.

As further evidence of this conclusion, consider Figures
5.13 and 5.14, These figures show the 1link 2 controls
produced by the HAYDEN and MOSELY functions, for four
different sample simulation runs for each. The HAYDEN update
function gives varying results for each run, while the
different control sequences produced by the MOSELY function
are indistinguishable. The variability of the HAYDEN function

is more surprising than the consistency of the MOSELY
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function, when we consider how little difference there is in
the loads offered to the network for each sample run. For the
Static simulations, the pattern of conversations does not
change, only the order of arrival of the packets in the gueues
and the order of link updates differ from one run to the next.

The static simulation results seem to indicate that the
MOSELY wupdate function is slightly superior to the others.
However, the real test is how well the functions perform for a

dynamic network.

5.4.2 Dynamic Results

In this section we describe the results of the dynamic
simulation experiments. We preface this discussion by
remarking that the simulation results are sufficiently
unexpected that we suspect an error in the program, and we

feel that additionaly testing is called for.

For all the simulation runs described in this section, we
used an average talk-spurt length of 60 packets, corresponding
to a 1.2 second talk-spurt duration. Thus, the 1link 1loads
change rapidly, as one user stops talking and its partner
begins. We ran the simulation for six different algorithms,
using each of the three update functions with and without the
update protocol. The MOSELY function was simulated only for

fast updates, and the HAYDEN and JAFFE functions only for slow
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updates, since we found from our static experiments that that
is how these functions perform best. In each case, Wwe

simulated the network for a 30 second interval.

For the sake of brevity, we show results only for links 2
and 8. By the symmetry of the network, links 1 - 4 are all
essentially equivalent, and we choose link 2 as representative
of the others. Link 8 is the most heavily loaded link, and we
choose it for worst case behavior. Figures 5.15 - 5.26 show,
for these two links and six algorithms, the number of bits
transmitted over a 0.10 second interval, along with the number
of active users and the maximum queue size, as a function of
time. So that these three quantities may all be displayed on
the same graph, we have scaled the number of users up by a

factor of 100, and the maximum queue size by a factor of 10.

In Figure 5.15 we notice that for times between 20 and 25
seconds, the flow appears to exceed the link's capacityl It
only appears this way, however, because of the way that the
links count the bits transmitted. After each packet is
transmitted, the 1link increments its bit count by the length
of the packet. This count is zeroed at the end of each 0.10
second interval. Thus a packet which begins transmission in
one statistics collection interval, and finishes in another,
will count as having been wholly tranmitted in the second
interval. This is why we see a sequence of intervals where

the flow fluctuates above and below link capacity.
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From examining these figures we see that the HAYDEN and
MOSELY update functions produce totally unacceptable queues.
The queues for the JAFFE function are much smaller. These
results are unexpected and we cannot explain them. We find
the size of the queues somewhat surprising, since Hayden's
simulations rarely showed queues exceeding 50 packets. One
possible explanation for this difference is that Hayden never
ran his simulation for more than a 10 second interval. We
notice that the really severe queues don't generally occur
till after 10 seconds. This could be due to the fact that the
simulation starts with all rates and controls relatively low,
and only the even numbered users active. Hence, it may take
several seconds for these effects to die out and steady state
behavior to dominate. Also, Hayden wused measured flows to
calculate the controls while we calculate controls using a
theoretical flow based on the sum of the users' rates. Since
these calculated flows do not reflect the presence of control
packets in the network, the resulting controls will be
somewhat conservative. This seems like it should be a second

order effect, however.

In general, the queues build up 1in response to sudden
large changes in the number of active users. We see from the
static results that it takes all of the algorithms around 2 -
3 seconds to converge to the correct flow, so, when the number

of users changes rapidly, the algorithm cannot cope with the
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change. We also observe that the queues are much worse for
the algorithm with protocol than without. This 1is not
surprising, since the protocol prevents a link from lowering
its control until all its users are sending at a rate lower

than its control.

It is interesting to note that, for the JAFFE function,
the flows seems to oscillate more in response to the changes
in the number of active users. These oscillations are similar

to the oscillations observed for the static simulations.

Observing that the JAFFE function produced more stable
queues than the other functions, and that the MOSELY function
tended to result in higher flows, we ran the simulation for a
seventh, hybrid algorithm. The update function for the
algorithms is obtained by replacing the value of the 1link
control wherever it appears in the JAFFE function with the
value of the maximum user rate. The hybrid algorithm was
implemented without protocol and with fast updates. The
results are shown in Figures 5.27 and 5.28. Unfortunately,
there is no distinct improvement in performance for this

algorithm.

One possible explanation for the difference in queue
sizes for these algorithms, is that the fair flows for the
JAFFE function are smaller than the fair flows for the other

functions. Hence, we expect smaller queues. To examine this
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effect, in Figures 5.27 and 5.28, we plot average delay versus
average flow for each of the seven algorithms. The averages
are computed over the entire 30 second interval. While the
average flows are indeed smaller for the JAFFE and HYBRID
functions, they are only slightly smaller. The difference in
average delays, however, is very great, and we are forced to
conclude that the JAFFE function gives inherently better delay

performance.

We believe that the intrinsic problem with all the
algorithms thus far proposed 1is that convergence of the
controls under static network conditions 1is too slow when
compared with the rate of change we may expect in a dynamic
network. One reason for this 1is the 1long feedback delay
between the links and the sessions. Two things could be done
to remedy this. Control packets <could be generated more
often, though this would increase overhead, and control

packets could be given priority in the queues.

Another reason that convergence 1is slow 1is that the
changes that a 1link makes 1in 1its controls are always
conservative. Essentially, the links assume that all of their
users will be affected equally by changes 1in controls. But
this assumption is clearly erroneous. For example, if a link
decides to lower its control from Py to pp, none of its users
that are currently sending at rates lower than P> will be

affected. Similarly, if a link raises its control when most
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of 1its wusers are sending at much 1less than the current
control, it is unlikely that any of those users will be
affected by the change. With the HAYDEN update function, the
links ignore potential feedbaék information from the users by
taking note of only the sum of the rates. The MOSELY update
function makes only slightly more use of the available
information, by observing the sum of the rates and the maximum
rates. Perhabs a really effective update function could be

devised, where the links make use of the entire rate vector.

- 134 -



1°'G 34nbi4

(q10Mm}8U 21)e}S)
uondurny Qumeb QOU\AQI 404 9L "SA JO4)UOD g YuI
(99s) awyy
w. N @ S |4 g (4 3 0
Salepdrn #0jS/1020)0.d ousuaphey ------
~ 7 Se18pdn mojs/j030i01d paphey e

sajepdn isey/|020j04d ou/uaphey - - - -

’ ]
. —
sajepdn jse}/1020j0.d suapieH \ ‘.
] )

1 {oo0s

0000t

| 000S#

. 100002

T
]
]
(]
1
]
1
]
]
]
]
[}
]
L[]
]
]
]
]
]
\
]
)
1
]

000se

-
-
-e="
-
A

1q) 104}u02 yui}

10000¢ =

(09s/S]

000s¢

- 135 -



(o9s) awy
8 L 9

2'G ainb14

(yiomjau ajjejs)
uonouny ajepdn ajjer 10§ aWi] “SA JOJJUOD) Z YUl

S 4 £ Z

e

— \d

§318pdn M0|6/|020)0.1d Ou/3jB
sajepdn mo|s/|02030.d/3)er

s3jepdn |se}/1020104d Ouysajjer -

salepdn jsey/j020104d /9 )er

0002

ocoor

0009

0008

0000}

000¢c}

(99s/511q) |04)U0I KUY

- 136 -



£'G ainbi4

(¥iomjau 211e}s)
uorpouny ajepdn A)asoyy 10§ W] "SA [04JU0D) Z Hui]
(23s) awry
8 yi 9 S r £ z

.1‘-

r T Y T - T

sajepdn mois/|020104d ou/zAjRSON =~
sajepdn mo|S/|020)0sd/Aj@SOy oo
sajepdnse)/102010ud oushi@sopy - ~ - -
§3;8pdn 15€)/)030)010/A13S0N

000!}

0002

ooog

ooor

000S

0009

0004

0008

(995 /511q) j04]U02 Bu}|

- 137 -



p'G 8inbi4

(’14om}au o1je)s)
uorjouny ajepdn uapAel 404 dWi] "SA |04JUOD G YUIT

(03s) awy)
8 4 9 S | 4 [ c ) 0
sajepdn mois/]020104d ousuaphey) —-=---
sa1epdn Mmo(S/)|030Y0id/ulpley e
sajepdn 1sej/|0%0j0ud Qu/usphey = --- 1000S
s3lepdn )sey/1020)01d s uepie
........... _, s -" “
)
: —— ' 1 100004
' ! v
! f
\ ' '
\ __ ]
]
_. " \{ 10006+
' ' 3
t ) | _
“ A
[}
' ' M {ooooz
! ' il
1 f - n
" A
' 4
" v/ /| looose
! 1 ! '
! ' ! '
" 1 .... \ ._
) s
\ Lid \ {0000E
Lo’

000Ss¢€

(93s/s11q) |041u02 NuUI|

- 138 -




G°G ainbi4

(1iom}au oje)s)
uoljouny ajepdn aj4ef 10§ B "SA J01JUCD) G NUIT
(29s) awy)
8 2 9 g v £ Z [

r T L4 Y T v

S31epdn Mm0|$/)020}04d OU/BYB[ =~
$alepdn mo|S/|000}01d /a8 oo
salepdn isej/(02010.d ousaper -~ -
saiepdn jsey/j020j0.d/ayef ————

bl Bl e

000S¢ ™

o

000s

0000}

000St =
=
b
0
op
=]
3

0000Z =
g
@
N
[7]
(1]
e

- 139 -



9°G a4nbi4

(>14om}au a1jejs)
uoljounj ajepdn A|9SON 104 dWI] "SA [04}U0D G MUl

(23s) aumn ,
8 L 9 S 14 [y 4 (] (¢]
r - - v v Y - v v 000.
se)epdn m0|§/]090105d OU/AI3SO === 100cL
sa1epdn mojs/1020j0sd sAj@sopy oo
sajepdn jsey/1020}01d QU/AIISOYy == = - 10092
sajepdn |sey/1030)0id /A joS0opy ———
10094
10084

- 140 -

-t -
e G -
Sleiniag

ey

100ce

=
3
x
0
o
3
2
3
Q
T
”
(2]
N
7]
®
e

ioor8

10098

10088

3
O
[~}



L'G ainbi4

(y1i0M}au a13e)Ss)
uonauny ajepdn Ajasoyy 404 WL "SA [04}U0D Z YUl
(93s) aw _
8 2 9 g 4 £ z s o

r ™ Al T T Y A\l

10004
#OOON

1000€

sa)8pdn 158}/1020104d OU/A|3SON - - - -
sajepdn Jsgy/1020)01d /741850

(0 010} 4

000S

0009

0004

o
g

- 141 -

(995/511q) 1043U0D XUy



8°G @4nb14

(X40mM}au 213e)}s)
volouny ajepdn A1asoyy 104 Wi “SA |043U0D G XuUI]

(o9s) awy}

8

L 9 S |4 £ 1 i

T - Y \J Y v m

sajepdn Jsey/j020j04d Oou/AjlasoNy -~ -
sajepdn jSe}/1020301d/A|@S0N

-l

000}

0002

(0]e0}

ooor

000s

0009

0004

0008

0006

00004

(29S/511q) (04]UOD NUI|

- 142 -



6°Gainbi4

(’140Mm}au d13e)S)
suoljouny sjepdn 831y 104 dWiy “SA 01}UCD g NI

(09s) awy}
8 Z 9 S v e z o
10001
10002
sajepdn mojs/1000)0id 0P e {1000¢g

salepdn moys/j0o0)0.d/uaphe - - -
s5jepdn i58)/)000}0:d /Aj9S0py

jooor

8
3

0009

0004

S

(998 /511q) 104)u02 YUYy

- 143 -



OL°G dinbi4

(%410M}3U D1je)S)
suoyjouny ajepdn 8a.y | 10 dWl] "SA [043U0D Z 3uIT

(93s) awy)

8 L 9 G | 4 >y [4 /4 0
10004
1000¢e

$8jepdn MO|5/;020}0,d Qu/ayBp - joc0e

€31epdn m0jS/1020101d Ousudphey - - - ~
§3jepdn 1sey}/1020)0.d ou/Ajasopy

cooy
................................................................................................................................................................................................... o g 0008
0009
0004
0008

N

(295/511q) 104}u0d 3u

- 144 -



L1°G @4nbi4

(}jiomjau d1jejs)
suoouny 3jepdn 834y 10§ dWI] “SA [043U0D) G YUIT

(23s) awy)
8 p 9 S 4 £ [4 } o
! sajepdn mo|s/{0d0j01d /BBl oo ) i ) 0 ¥
ssjepdn mois/|000)0ud/uaple - - -
sajepdn 1sTj/1020}0.d sAjas0p
10008
o
/1100001
.......................................................................................................................................................................... ._
.................... !
.......................... ! 100061
5\
4
/ looooz .
\ ”
. g
N 000S¢ 3
/ 3
! -
/ -~
, 10000€ <
' (%]
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| - /
v
o
‘ooose ~

- 145 -



Z2)'Sa4nbi4

(140Mm}au o1je)s)
suonouny ajepdn 834y 104 dWIL "SA |0JJUOD G YUl

(29s) awyy
8 L 9 S 4 [ b4 [} (o]
" solepdn m0jS/10201010 OU/BKBL oo Y T ~ T T
saiepdn mo|s/|02010:d Ou uaphey - - - -
sojepdn isej/j0o0)04d ouyzh|psoyy ——
1000S
1400004
................. _- < ooomﬁ
[}
100002
1000582
{0000¢

-000Ss¢

\

1q) 1043U0D yuly

.

(23s/58)

- 146 -



€1°Gainbiy

(11om}au oneys)

(suni 1noy) uonouny aepdn usphey 104 Wiy "SA jou0Y 2 yuI]

(99s) awy
8 4 9 S 4 £ I4 (4]
10004
10002
1000¢
: 10009
000§ 5
P
9
§918pdn M0|§/|020J04d OU/UBPARH ==~ - i 3
831epdn M0|6/|03010.0 U /uBpARH ----.--... 0009 °
§812pdn M0]S/|02010.d Ou/uaphey - - - - WI
§512pdn m0|S/1020}04d QU /uapAR ~—— <.
pd IS/ 104 /UdpAeM 0002 3
o
0
J L

:

147 -



(99s) awy)

8

p1°6 8inbi4

(141o0m}au 21je)s)
(Suns 1noj) uonouny ayepdn A|asojy 104 WL "SA [01]U0D Z Yul]

L 9 S 14 £ 4 i

— T ™ L L4 ¥

sajepdn 1S8)/1020}01d ou/Aj@soyy ===
sajepdn ise)/1000j0id 0u/A[3SO oo
salepdn se;/1000104d OUsAl3SOy - - -

S3alepadn 1Se}/|020)04d OU/A|@SON

0001

000¢e

000¢

ooov

000s

0009

0004

8
8

(095 /511Q) j04}U0OD MUY

- 148 -



G1°G ainbi4

(11om}au d1weudp) g yu!l
m&mbqa mojs/jooojoid ou/uspAeH 10§ dnanY "XeN/SI3S() A /MO|d

(29s) dwn
Qﬁ. sZ oc _ S 0
- J. ...u . ¥
. _ : Pow,
.r -\. -_ .- :. 9
._.... (O1LX) 9215 @nenb wnwixeyy - N _. RO O
S(opsn siasnanioe jo ;equiny - - <! \ .-.w.. i \
— L} ] m. ) 1
praolul 205 LY «ws pajwsuBl Sig .“.. Y ... s -{oo01
\ Y y i i
; ~ ." ) m—
' v i i
\ W P H
[ ) )
-.. ~|_ . a—\lﬂ fgm-
A . : :
- .....____.n.. .l... )
V= !
! 10002
_ 100S82
|
4000n
ﬁ ; 100S€
D L

- 149 -



91°G ainbi4

(>1410m}au 2jWweuAp) 8 quIg
sajepdn mo|s/j020j0.d ousuaphel{ 10§ dNaNY "Xey/S48SN A /MO|4

(29s) awy}
o % 2 O S 0
8_..5 apis ananb wnwpeyy - : : i P ;|
(001X} S1ASN BANIEJO JAQUINN, = - = -
ol _~ -

LIVEAT] owm“..p w._w>o uo:_E.m_”.i._:m.gm ...I.,.__... .. voon
.. : .. _.~ = !
- ' u_. ._ _.

"\ ' X

[T I\ 10051

" é_

000c

> {oosz

{000€

ﬁ(é {00s¢€

“000or

- 150 -




L14°G 94nb14

(diomjou diweudp) g yury
sojepdn \so\m\\ooouoa\cmbamt 40j @nanp ‘XeW/s18sN 4t /mo)4

(03s) swyy
o¢ SC (014 -1 01l
...u.-\ z -l- ~ a. _lu . . . . .. ....... m .
QLT TV i
3 .|. u..n..
' N - “ 3 4 i, i joog
: At cuaaaozu DUIXBY -vevveere L " vy :
' o u Kﬂz = oo HUERA] : " H
(R I | . i H o Y
(obrx) Ewm:.oa.uu ‘ouue.c:z - P A H i W o
BAIB)UI D36 |'() J9AO PRNILSUES S)ig | ——r I HUE) a WS
I ) (Y] pall ] _m. HE " ..... ". N .._.... ........ - 0001}
' : [H J
™ ATE .
“ o, RN B K
', .' ' : " K
= v .. l 0085}

10002

100SZ

1000€

il i, Ll
Q.s_.__: il R Iooos

»

é%s._,_s

- 151 -

8w meews s e ee

J—



g81°69inbi4

(40M)}BU JjWRUAP) 8 Ui
sajepdn mojs /j020)04d/uaphe 405 ananpd "Xey,/siv8sM) i /MoOj4
(o9s) swy)
o¢ GZ oz St o- . 0
" i 1008
(O1x) @21S 3nanb wnwixgyy - ; T
(001 X) 519SN 3\4JV JO JAQWNN = = == -
[BAJB}UI D35 |'() JOAO PAJIWSURY) Si —— : 000}
(A :u:.:r .““
.J_ ...l - -. ) ..... . l.. ) t 00S}
...- ) ... ;.. ...
v _._ .. oooz
_.. . .. - .—. . .;. SmN
000€
100s¢€
~__,< d_,g,__]__g My _};\;}T’s ;._g_,__.._ Al ..,_5_,_ % i

Jooor

- 152 -



61°G ainbi4

(ydomjau drweudp) g quil
sajepdn mo|s/1000j04d ou /3 jer 10§ dNANY "XeN/SI8S() X /MO|d

(99s) oW .
oe sz oz St ot S 0
._.. z 00s
e Ao-xvru.ﬁoso:m.E:E_qu .......... ’ \. \ ' "
- "loovysietfennoelosequon - 4 A N Do T \ o
4. _GIZO—C_ 23¥ 1'0 1980 Uz_FIWCG: w& L.ll [} “ .r .{l .l v s. ] -.. [} ' - _.. .‘ .— .._ -_-—
....—. _........,. " ..1 TS ..m I8 "... ..._.. .... .._.. .. '\ .s. .....1:._. ...\...... -. .. ... " ..u. A Y v ..._ ‘. 000}
! DN R A LAY Y
..~ Vi ...s.. Wy u L v, \ ... v
W Wl 'y " ..
o. v .._ " _s: \ '
v ! 100G}
10002
~ 100Se
ﬁ 1000€
|
| i
Z 100S€
000y

- 153 -



02°G 94nbi4

(14om}au djweuip) 8 quIl
(205) sojepdn mo|s/joo0joid ouy/ajjer 104 ananp ‘Xey/S4as() it /Mo|d
03S) aw} ’

o< m.N oz Gl 0l S

(0Lx) 821S ONAND WNWIXBY oo
{00LX) SJ8SN 3ANJE JO JAqWNN - - - -
JBAIBJUI 2DS |°() J9A0 PRJJIWSURY )1~

00sS

10004

00s!

0002

00se

oooe

00Ss¢e

ooov

- 154 -



L2'G ainbiy4

(310M}au d1WweuAp) Z yurl
sajepdn moys/[020j04d/9jjef 10§ 3NaNY ‘XeW/SidS() At /MO|4
0

L

(99s) awy
(01 s 1024 Gl
4 ¥ . 1008
. 1oy . ", ..._ [ [}
(01x) 3218 .0.:36 wnugxepy o ! .._ Vo ’ R ‘ [ 5 RE
(001 x) 61980 BAY1OE ) 4BJUPN & - - - .,....._. Y doATI AN \ N ")
\ . A 1l . 1 1 1 -. ' * ) .
, 19me1u1 955 ) 10 s3%0 nu:..;jcwsm._m ..a..l._ J.... .... .,. .... Y W L N ' A 0008
7_..: vy, w. ) ! v K [ P ‘e Yo Y o
LY A M Yo ' K] oY \J ._. DR o
(U L L] —— \ )’ v { U (I -.a Y
L ] ;_... l—— o v Yo I- 4
[ ‘v " !
[ v \! loosi
Y

0002

10052

1000¢

joose

- 155 -



22°'G9i4nbi4

(%40m}3u djweulp) g suiy
sajepdn mojs/1090j04d /9418 10} onanp "xeN/S19sM 4t /MO|4

(29s) awyy
og 14 (*J4 Gl 0l S o
- " oos
8—& aziIs ananb wnwixeyy -
(001X) S13SN 8ANIE jO J3qUINN - - - -
[BAISJUI D35 |0 JAAO PallIWSUES] S —— 0001
P N \\ \
My M AN ) y “. '
.:. ....:. " AT ' \ .... " ..... .....‘ ..._.. \
) W v vy ' A o A LS
DA A AP Y o A T T
T N L N R A S A WO S T P N RN sl
W) T Voo ' e e N A T Ty o N Ry vy s
' ) [ TR ) R LA R I T P b Iy i LR
' Y A wooro N .._:_. V. PP ) oo b W
N PR T HYE
._ S no iy r “
L "o \ |00z
¥
10062
v | {oooe
1oose
;801

- 156 -




£2°G 84nb14

(y140m}au ojweudp) g yuiy
sajepdn jsej/]090j04d ou/Aj9SO 10§ Bnany ‘Xep/S19sM) L /MO[4
(39s) oWy} ;
o SZ_ __oz o
L S R
... _v .... ..... .. By n ~.4._-. 00S
- ' 8_3 ozis gment E_..e.maz bt
ao:c m._mu_.. §noe b ._onE:z -4 u.._.
[eA1i ".vow 10 ‘.u>o noz_Em:En. m_”m oo
00St
!
r~
/ =
. : \ 000¢ )
| | loss
i v [
| |
( 1000€
100S¢€

“ooor



ye2'G ainbi4

(Xiom}au ojweuhp) g xuri
sajepdn jsej/j020j04d ou/A|3SO 10 dNANY *XEN /SI3SM) 4t /MO|4
(23s) oWy}

¢ s¢ oc Gi (°]} S 0
. ; Lo R I ¥ .-.“ ....".~....
1008 |
(01x) 9z1s ananb wnwixey -
(001X) S19SN 9ARE JO JOQWNN - - =+ ...“_ ¥
(BAISIUY 935 |'( JOAD PIINWSULY) SjiY  ——— ] " ’ i
04 uey) siig . .... ! R . 000:
.._ P [T n w
x o o o |
i [ : 3 HE " Y [
ay . N I N S UV A S At S
'y n . o i . . ..... : .... W " ) ! .. P 00s4 |
.;_.. ..‘. “._ - , n \ 4.... .".-. [ .. HE)) .. , ... \ ' g.._. .. ‘., .- .ls. s... !
! .;._. ..,... YL Ao / W VoN / e \ ;o N ' \ .,... | A
\ " ... ‘ \ .... g S S ot e u \ i " v Vo .. X W N
A A Y Ve v tloooz _
] ' : [ !
_. : ....-“
1
]
' 100Se
1
\
1000€E
1006¢

000y



(29s) aw

GZ2'G ainbi4

(3140M}au djweuhpj g yui

sajepdn jsej/j020)0id/AjaS0y 40§ BNBNY) "XEN/SI9S) 1t /MO|d

oge Sc oc . Gl O-. . S (0]
- -
" .a...,.. Y R . L
: RN " .:.. PN .. " 0os
\ : ; oy ' P! T
- #Jy (01X) 2215 3n@ND WiwXBN: vy 1 W i ..\. -V 5 e
O v oy siesn ameyosquiliy - == o it ! .._. ™ .
. _@.,.a.,._c. u}—.@f._._m nw____.,_c.mcsz._m : ...... ... .._..._.. L - - flooos
.s. |..... .“. “ ; n l , .- " ...
_.J....“_,u. ! " “ ,_._.h. !
Vo .; . _-" i
' RN 10054
... o
‘
10002
7 :\ _ 100se
/! I
| s
|
100S€
<000y

- 159 -



(93s) awn
og

92°G 8inb14

(’140M}3U d1WweuAp) g yuIq
sajepdn jsej/|020j0id/Ajasoyy 104 d8nand ‘Xe/SI8SM) # /MO|d

(oLx) ezis o:o:w wnwixepw

(001 x) S1osn dAoe’jo JoquNN = - - -

feAlejul 23s |°Q 1340 papfusues siig ——
H 1y

v

' ..f_" .. iy
i .x. ' e "
. _. ... t '
XA '
v \
' '
: \
] 1
\
'
Vo
.._...__
v
[
)

Sl _ 0ot

100

000!

00S1

- 160 -

no0Se

10008

100s¢€




l2°'G 84nbi4

(7110M}au d1weuhp) g yur

sajepdn Jsej/1020j04d ou/plIQAH 10§ 3N3aNO "XeWw/SIBSN A /MO[d

(oas) awy
og 14 oc Gl ot S (¢}
NN .....s. 00S
1 = [}
... {01x) @2is @ananb E:s.__:vﬁ. ._ .......... M .. Ly,

.., . K (00Lx) 8195n m>=ow 10 23QwnN .... --- ! ..._.:. e C .._, ) . i hl
\(BAIQJUI 205 |0 JAAO pajliwsulil S1G -, P L W M A R _GQOh
Uk e A LI ! AR T S R PRTT Y

_._- wr T v - (X} oy s_- ) n ! ot 'y ' ' []
R L P W L N Y | - Y R AP B U, gt (0 v . ', - !
] v v v LY e.....\... ' .._ Yy 3 Yy v
" VY Y :.._ ) o
v . \
) ‘ 100G

S ——

0002

0o0se

j000¢

0os¢e

oooy

- 161 -

T WA R



sajepdn }sej/1020}0id ou/plIQAH 10j AnanNY ‘Xe/SidSN A /Mol

82°G 94nb14

(>ldomj}au o1weudp) g yuil

~00a~ ouif}
o€ 14 oc Si (o]
(01 x) 9216 8n3IND WnWiXRYy -
(001 X) $49SN BANDR JO JBQWNN ===~
[BAIBjU| 338 | () 19A0 PANIWSUBA S ——
! (
[ "\ " »
R ; Soon
\ .. Y | ! ) [ " .. o
...,. ...._s.. 'y ._.a..—....o. _._ n “ _. ... 7 ..... 4 '
.... ...:.\ _... ] ..:. " oy , l. 2 1 ) .. . ]
vy “r T Wt e = deoa Yy
P ! IR .._... T Y —. ' ' .... Y
' .|.. \ e d NI O 7 ' WLy vy
[} ] ~' —-- o. -.—. L -—-:
' 'y ' -, Yoy
U [ I} ", YW
' V! Y
. ! !

00S

000}

00S

000¢e

n00se

000t

00Ss¢

ooory

- 162 -




Ave. tlow (bits/sec)

W
)
8
Q

40000,

38000}

34000}

32000}

30000}

28000}

26000}

+

+4- Hayden/no prolocol/slow

— Hayden/protocol/slow

x Jafte/no protocol/slow

X Jatfe/prolocol/slow

¥ Mosely/no prolocol/tast
+ & Mosely/protocol/fast

% Hybrid/no protocol/fast

'Y

24000
o

1
] Ave. delay (sec)
Link 2 Average Delay vs. Average Flow
Figure 5.29 :

- 163 -



Ave. flow (bits/sec)

:

38000

36000}

34000

32000}

30000

28000

26000

T

4

24000
(o)

4+ Hayden/no protocol/slow +

- Hayden/protocol/slow

X Jafle/no protocol/slow

X Jafie/protocol/slow

¥ Mosely/no protocol/fast
Mosely/protocol/tast

% Hybrid/no protocol/fast

1
Ave. delay (sec)

Link 8 Average Delay vs. Average Flow

Figure 5.30

- 164 -



Chapter 6
Suggestions for Further Research

In this thesis, we have considered the problem of
designing a distributed fair flow éontrol algorithm that can
be implemented asynchronously and remain stable in the
presence of feedback delays. After developing an appropriate
system model, we analyzed several flow control algorithms. We
discovered that one algorithm which is unstable when
implemented asynchronously, can be made stable by the addition
of an update protocol (the generalized link memory algorithm).
One algorithm cannot be made stable even with the update
protocol (Hayden), and another is stable even without the
update protocol (modified Hayden). This last algorithm is
particularly interesting in that the 1links, when updating
their controls, make more use of the available feedback

information than the other algorithms.

While the theoretical results indicate that these
algorithms should perform well, the results are only valid for
a static network. Computer simulations indicate that none of
the algorithms can respond to changing input conditions fast
enough to effectively control a dynamic network. Therefore,
it is necessary to improve the response time of the system.

This might Dbe accomplished in several ways. First, queueing
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priority should be given to the control packets, to speed up
convergence of tne controls. Also, when links become very
congested, we mignt allow the system to discard low priority
packets. Finally, as described at the end of Chapter 5, we
could try to devise better update functions that ‘make more

complete use of the available feedback information.

As an example, we propose the following update function:
n+12 R ¢ ._¢.D . N<e.
Pj .ﬂiz rij(ty )+(CJ_fJ )/Wi(a) when f3°£¢;
F(rj(tjn)rcj) when fjn>cj (6.1)
where a is some appropriately chosen constant such that 0<a<1,

wj(a) is the number of sessions whose rate is higher than

n .
a‘max rij(t; ), rj(tjn) is the vector of rates

(---,rij(tjn),»--): iégﬂj, and F(Rj,cj) is the maximum of the

coordinates of the fair allocation over the set defined by

Py <Ry 5 ' (6.2.1)
and

2. Tiiceq. 6.2.2

€y 155¢3 ( )

The idea behind this wupdate function 1is simple. All the
update functions given previously change the controls by
conservative amounts, assuming at all times that the links
control all their users. . This update function lets the link
use its knowledge of the rate vector to make better estimates
of the number of sessions that are actually under its control.
When the flow is less than capacity, the link uses wj(a) as an
estimate of the number of sessions it 1is currently

controlling. When the flow is greater than Capacity, the link
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adopts the largest control that would let each of its sessions
send at the minizum of its former rate and the new control,
while guafanteei:g that the new flow would be less than or

equal to capacity.

In conclusion, we remark that flow control algorithms are
just one example of many different distributed asynchronous
problems. The techniques described in this thesis, that is,
the use of update protocols and more complete use of feedback
information, might be profitably applied to other problems-as
well, and the theorems in Chapter 4 might be used to analyze

such algorithms
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Appendix A

Theorem 3.1. If d;,(t) and D;;(t) satisfy (3.10) and (3.11),
then for any tO there exists t1>t0 such that for all t>tl,

t=d j(£)-Dyp(t-dyj(£))2t0. (A.1)
for all jef, ie§;, kel;.

Proof. For any tO, by (3.11) there must exist Tij such that

Ty3-Dij(Tij)>t0 (A.2)

Let T,- max Tij. By (3.11), there must also exist tjj such
.
that 1 %

tij'dij(tij)>Ti' (A.3)

Let’ t1'-’ ‘max tiJ’ Then for t_)t1, by (3.10),
ﬂeuﬂiégj

E=d45(t)=Dik(t-djj(t))
Ztij-dij(tij)-Dik(tij-dij(tij))
ZTi-Dik(Ti)
2T k-Dik(Tik)
2t0. (A.4)

This completes the proof of Theorem 3.2.
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Appendix B

A

Lemma 3.2.1. Let Fj(z)z(min Zk)(1-WJ/(2GJ))+Cj/(2Wj) and
1<

define F(z)=(...,Fj(z),...). Let z0=0 and define zh+1=F(znh).

A
Then z 305z x=pT+W g/ (2W;) (cj/W;-p!) and z3P<e /iy for all n.

Proof. First we show that z¥* is a fixed point of Fj(-). Note
that since pl=min c;/uj5, 23*291 for all j and p1:2§? z, %,
Hence L

Fi(z3%)=p  U=W;/(2W5) ) 4cj/(2W3)

Now let [izii= max izji. We show that F(*) is a contraction
1

under this norm.

PiF(x)=F(y)ii= max 5(1-Wj/(2ﬁj))(mén xk_mig yi) |

j
A
= max (1-Wj/(2WJ)){(min Xg=min YK)=
K K.
-3
. A
< Q- min Wy/(2W))) max ixg-yy!
43 i<
= (1- min wj/(zﬁj))iix-xi:. (B.2)

Hence, zP »z¥,

Now suppose Zj“<cj/wj for each j, for some n. Then
n+1 “W./(2W. I ene /(2.
Z; <(1 Wi/(2W5))e /Wjec s/ (2W5)
=C. .
J/WJ. (B.3)
Hence, by induction, zj“<cj/wj for all n. This completes the

proof of Lemma 3.2.1.
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Appendix C

Theorem 3.4. Let S be a linear space with norm }i<}i such

that {x: !!x}!<c} is compact for all c. Let f:S—>S and

f :S->S be functions such that fp->f uniformly, and such that

PIF(x) = £(y)Hiciix = yid for all x,yé€S. Suppose there
exists x* such that x*=f(x*). Define X, q=fp(xp). Then
X =rxt

Proof. Without loss of generality, we assume x*¥=0. For each

e>0, define

d(e)= max |{f(x)ili. (C.1)
Ixlig e

The maximum must exist because {x: l1xli<c} is compact for all

c. Note that d(e)<e, since |if(x)ii<iixii.

Now,
PIE(x)=fle(x/iixi D) i<l ix-e(xiixii)
Liixii-e (c.2)
and

IE(x) L i ix ) t-eef(e(x/1ixi 1))

<iixii-(e-d(e)). (c.3)
Now let eqze/2 and find N such that
VI (x)-f(x)11L(eq-d(e1))/2 (c.4)

for all n2N. Then
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Xn-1)ii+(e1-d(eq))/2

< max (eq 1ixp_qii-(e1-d(eq)))+(eq1-d(eq))/2

< max (ey,}ixp.qii-(e1-d(eq))/2),
where the third step follows by (C.3).

So for any Xo,

LiXq11< max (e, lixg}ii-(ej-d(e1))/2),

and by induction on n,

X 1< max (e, iixg!l-n(eq-d(eq))/2).
Thus, for any e>0, if "Zziixoll/(e1-d(e1)),

completes the proof of Theorem 3.4
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Appendix D

Define, for k=1,...,L,

ek(0)= aE (D.1.1)
and

EK(0)= E (D.1.2)
where a=.ﬁ£2 1/wj and E is some suitably large constant such
that E>pk/a. Let

el(n)=0 (D.2.1)
and

EV(n+1)=(1-a)E (D.2.2)
for all n21. Now define, for nsz

eK(n+1)=(1-a)(ek(n)+Ek=1(n)) (D.3.1)

EK(n+1)=(1-2a) (ek(n)+EK(n)) (D.3.2)

and for Nk$n<Nk+1’ K>k,
eK(n+1)= pK-pKiek(n+1) (D.4.1)

EK(n+1)=E, (D.4.2)
where Nq<No<...<NL, N1=1 and, for k>1,
ek-1(n)+EK-1(n)<(pk-pk-1)a/(1-a). (D.5)

for all n2N |

We show by induction that the sequence N1<N2<...<NL
satisfying (D.5) exists, and that the sequences {eK(n)} and
{EK(n)} are monotonically non-increasing and converge to O,

for all k.
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Furthermore, we show that the sequences have the

properties that, for k<K, for all n,

ek(n)<eK(n) (D.6.1)

EK(n)<EK(n) (D.6.2)
and

pK-eK(n)<pK-eK(n). (D.6.3)

By (D.2), el(n)=0 and E1(n)->»0. Hence, there must exist
a time N, sych that for all n>N,,

el (n)+EVT(n)<(p2-pl)a/(1-a). (D.7)
Suppose we have {eK-1(n)} and {EXK-1(n)} such that eK-1(n)=0
and EK-T(n)—>o. Then there must exist a time NK such that,
for all n_>_NK

eK-1(n)+EK=1(n)<(pK-pK-T)a/(1-2a). (D.8)
Now for nzNK,

eK(n+1)=(1-2) (eK(n)+EX-1(n)). (D.9)
Since (1-a)<1 and EK-1(n)>0, eK(n)—o. Similarly, eK(n)—0
implies EX(n)—so. Hence, we have shown by induction, the
existence of N,<N,<...<N;, and that ek(n)—0 and EK(n)—>0 for

each k.

We show by 1induction that eK(n) and EK(n) are
monotonically non-increasing for each k. Clearly el(n) and
El(n) are monotonically non-increasing. Now suppose that
eK-1(n) and EK-1(n) are monotonic non-increasing sequences.
Then eK(n+1)<eK(n) and EK(n+1)<EK(n) for n<Ng. For n=Ng,

X Nge1)=(1-2) (X Ny KT () )
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=(1-2) (pK-pK-T4eK=1(N ) ,gK-T(Ny))

<(1-a) (pK-pK-1)4a(pK-pK-1)

= pK_pK-1

<eK(Npy, (D.10)
Also,

EK(NK+1)=(1-a)(eK(NK)+EK(NK))

<(1-a)(eK(1)+EK(1))

=(1-a)(pK-pl+E)

<(1-a)(pL+E)

<E

=EK(Ny), (D.11)
The next to last step holds because E was chosen greater than

or equal to pl/a.

Now suppose eK(n)<eK(n-1) for some n>Ny,1, Then
eK(n+1)=(1-a) (eK(n)+EK=1(n))
<(1-a)(eK(n-1)+EK-1(n-1))
=eK(n). (D.12)
Similarly, if EK(n)<EK(n-1),
EK(n+1)=(1-a) (eK(n)+EK(n))
<(1-a)(eK(n-1)+EK(n-1))
=EK(n). | (D.13)
Hence, eK(n) and EK(n) are monotonically non-increasing for

all k.

Next we show that (D.6) holds. For n=0, eK(0)zaE and
EK(0)=zE for all k. For n=1, ek(1)=pk-pl1 and EK(1):=E. Hence,
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(D.6) holds for n=0 and n=1.

We show that (D.6.1) and (D.6.2) hold by induction.
Suppose that (D.6.1) and (D.6.2) are satisfied for some n2i.
Let J be the largest number such that nzNJ. We show that
(D.6.1) and (D.6.2) are satisfied for n+1, for k<K. We
consider three cases: k<K<J, k<JI<KK, J<k<K.

Let k<K<J. Then
eK(n+1)=(1-a)(eK(n)+Ek-1(n))
<(1-a)(eK(n)+EK-1(n))
zeK(n+1) (D.14)
and
EK(n+1)=(1-a) (ek(n)+EK(n))
<(1-a)(eK(n)+EK(n))
=EK(n+1). (D.15)

Let k<J<K. Then by (D.14),
eK(n+1)<ed(n+1)
<pK-pJ+ed(n+1)
zeK(n+1) (D.16)
and
EK(n+1)<EJ (n+1)
<E
=EK(n+1). (D.17)
Finally, suppose J<k<K. Then

ek(n+1)=pK-pJ+ed(n+1)
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<pK-pJ+ed(n+1)
zeK(n+1) (D.18)
and
EX(n+1)=E=EK(n+1). (D.19)

So, by induction, (D.6.1) and (D.6.2) hold for all n.

Finally, we show that (D.6.3) holds for all n>1. Let J
be defined as above. We have already shown in (D.10), for
nsz

ekK(n)<ek(n+1)

<pk-pk-1, (D.20)
Thus, for K<J,
pk-ek(n)<pk
$PK'1
<pK-eK(n). (D.21)
For J<K,
pk-ek(n)<pJd-ed(n)
=pK-eK(n). (D.22)

Therefore, (D.6.3) holds for all n.

This completes Appendix D.
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Appendix E

: -#%_ Mode:LISP; Package:USER; Base:10; Fonts:MEDFNT -*-

AR AR R R R R R RN RN R R RN E NN RN RN R RN
Copyright (c) 1984 by S
Jeannine Mosely and Allan C. Wechsler

It is the intention of the authors that this
software remain in the public domain, and that
no one shall impede its distribution, nor

distribute it for profit.
Y N e e R I TR I T T I I 3222222222222 2222 2

(DEFSTRUCT (USER :CONC-NAME)

PA

RTNER : : Another user.

?
ROUTE ; A list of links.
(RATE 500) ; Bits per second.
ID 3y A number.
(PARTNER-RATE 1000) ; Bits per second.

° .
7

The following six components are statistics that we

; reset every after statistics collection.

(TOTAL VOICE-PACKET-DELAY 0)

(T
(N

OTAL-CONTROL-PACKET-DELAY 0)
UMBER-OF-VOICE-PACKETS 0)

(NUMBER-OF-CONTROL-PACKETS 0)
(MAX-VOICE-PACKET-DELAY 0)
(MAX-CONTROL-PACKET-DELAY 0)

TALKING? ; T or NIL.
PRINT-STATISTICS? ; T or NIL.

)

(DEFSTRUCT (LINK :CONC-NAME)

USERS

; An a-1list of
; active users and
;7 their rates.

(NUMBER-OF-USERS 0)

QU
QU

(QUEUE-LENGTH 0)

EUE-FRONT ; A list of packets.
EUE-BACK The last vertebra
of QUEUE-FRONT.

(Efficiency hack.)

Max queue length is reset after each statistics
collection.

(MAX QUEUE-LENGTH 0)
(CONTROL 1000) ; Bits per second.

(CAPACITY 40000)

(P
PA

(NUMBER-OF-PACKETS-SENT 0)

(T

Bits per second.
Seconds.

A packet, or NIL
if link idle.
per stats.

ever.

ROPAGATION-DELAY 0.003)
CKET-NOW-TRANSMITTING

we we We We W Wwe W

OTAL-NUMBER-OF-PACKETS-SENT 0)
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(NUMBER-OF-BITS-SENT 0) ; per stats.
(TOTAL-NUMBER-OF-BITS-SENT 0) ; ever.
(TOTAL-PACKET-DELAY 0) ; ever,
(TOTAL-SQUARED-PACKET-DELAY 0) ; ever.
(PACKET-DELAY-HISTOGRAM ; ever.
(MAKE-ARRAY 11 ':TYPE 'ART-16B))

(PRINT-STATISTICS? T) 7y T or NIL
ID) ; A number.

(DEFSTRUCT (PACKET :CONC-NAME)

(FORWARD-CONTROL 1000000)

FEEDBACK-CONTROL

LENGTH
ROUTE

we We we wo We we

GENERATION~TIME
ARRIVAL-TIME
LAST-IN-TALK-SPURT?

TYPE
SOURCE

SOURCE-RATE
DESTINATION)

(DEFSTRUCT (EVENT
FUNCTION

TIME

:CONC-NAME)

ARGUMENTS)

(DECLARE (SPECIAL

(DEFCONST
(DEFCONST
(DEFCONST
(DEFCONST

(DEFCONST
(DEFCONST

(DEFCONST
(DEFCONST

Global variables.

#USERS* H
L INKS* :
ETIME® ;
®*JSER-STAT-STREAM*
®_ INK-STAT-STREAM¥
®*EVENT-TABLE¥* ;

Minimum control
seen so far on
this traverse.
Control data
going back to
starting point.

VOICE or CONTROL.

All users.
A1l links.
Simulated.

The Heap of

; Things to Come.

ENEXT-EVENT-NUMBER¥))

¥PACKET-ABSORPTION-DELAY#¥ 0.0005)
#PACKET-ARRIVAL-DELAY® 0.0005)

; Index into heap.

¥PACKET-TRANSMISSION-DELAY* 0.0001)

*PACKET-GENERATION-DELAY#* 0.0005)

¥AVERAGE-TALK~-SPURT-LENGTH#¥* 60) ;
®USERS-TALK-FOREVER#® T) H
’
’

¥CONTROL-PACKET-SPACING* 0.10)
®UPDATE-INTERVAL®* 0.10) H
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(DEFCONST

(DEFCONST
(DEFCONST

(DEFCONST
(DEFCONST

(DEFCONST
'(1 915

®UPDATE-ATTEMPT-INTERVAL* 0.02) Seconds.

*UPDATE-PROTOCOL® 'MOSELY) ; HAYDEN or MOSELY.
*UPDATE-FUNCTION¥* 'MOSELY-UPDATE-FUNCTION)

L INK-STATISTICS-INTERVAL® 0.1)
*USER-STATISTICS-INTERVAL¥® 0.5)

#USERS-TO-PRINT#*
19 21 29 35 39 41 49 55 59 61 69 75 79))

773 Top level function.

(DEFUN RUN-NETWORK (TIME-LIMIT)
(INITIALIZE)
(WITH-OPEN-FILE
(*USER-STAT-STREAM* "oz :<{j9duser-stats.text" ':0UT)
(WITH-OPEN-FILE

(®*LINK-STAT-STREAM¥ "oz :<j9>link-stats.text" ':0UT)
(FORMAT #®USER-STAT-STREAM¥® »
User ID Time AVD MVD ACD
MCD Rate Feedback™")

(FORMAT ¥*LINK-STAT-STREAM* n
Link ID Time # Bits Control # Users

Max. Q Q # Packets")

(SETQ ¥TIME® -1)

(SIMULATE TIME-LIMIT)
(PRINT-LINK-HISTOGRAMS))))

y3; Network initialization.

(DEFUN INITIALIZE ()

(SETQ *USERS#* NIL)
(CLEAR-EVENT-TABLE)
(LET ((LINK-1 (MAKE-LINK ID 1))
(LINK-2 (MAKE-LINK ID 2 PRINT-STATISTICS? T))
(LINK-3 (MAKE-LINK ID 3))
(LINK-4 (MAKE-LINK ID 4))
(LINK-5 (MAKE-LINK ID 5))
(LINK-6 (MAKE-LINK ID 6))
(LINK-7 (MAKE-LINK ID 7))
(LINK-8 (MAKE-LINK ID 8 PRINT-STATISTICS? T)))
(SETQ *LINKS* (LIST LINK-1 LINK-2 LINK-3 LINK-4
LINK-5 LINK-6 LINK-7 LINK-8))
(USERS '((1 8) (21 28) (41 48) (61 68)) LINK-8)
(USERS '((9 14) (29 34) (49 54) (69 74)) LINK-7)
(USERS '((15 18) (35 38) (55 58) (75 78)) LINK-6)
(USERS *((19 20) (39 40) (59 60) (79 80)) LINK-5)
(USERS '"((1 20)) LINK-1)
(USERS '((21 40)) LINK-2)
(USERS '((41 60)) LINK-3)
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(USERS '((61 80)) LINK-4))
(ESTABLISH-USER-PARTNERS)
(INITIALIZE-USERS-TO-PRINT))

(DEFUN INITIALIZE-USERS-TO-PRINT ()
(DOLIST (USER-TO-PRINT ®USERS-TO-PRINT¥)
(SETF (USER-PRINT-STATISTICS?
(FIND-KNOWN-USER USER-TO-PRINT)) T)))

(DEFUN USERS (ID-RANGES LINK)
(LOOP FOR (LOW-ID HIGH-ID) IN ID-RANGES
DO
(LOOP FOR ID FROM LOW-ID TO HIGH=-ID
DO
(ADD-OR-MODIFY-USER ID LINK))))

(DEFUN ADD-OR-MODIFY-USER (ID LINK)
(LET ((USER (FIND-USER ID)))
(PUSH LINK (USER-ROUTE USER))))

(DEFUN ESTABLISH-USER-PARTNERS ()
(LOOP FOR USER IN *USERS*¥
DO
(SETF (USER-PARTNER USER)
(FIND-KNOWN-USER (- 81 (USER-ID USER))))))

(DEFUN FIND-USER (ID)
(OR (FIND-KNOWN-USER ID)
(LET ((USER (MAKE-USER ID ID)))
(PUSH USER *USERS¥)
USER))) '

(DEFUN FIND-KNOWN-USER (ID)
(LOOP FOR USER IN ®USERS*
DO
(WHEN (= (USER-ID USER) ID)
(RETURN USER))))

333 Event table hackery.

(DEFUN CLEAR-EVENT-TABLE ()
(SETQ ¥*EVENT-TABLE* (MAKE-ARRAY 2048))
(SETQ *NEXT-EVENT-NUMBER¥® 1))

(DEFUN ADD-EVENT-TO-HEAP (EVENT)
(PERCOLATE-UP EVENT ¥NEXT-EVENT-NUMBER¥*)
(INCF ¥®NEXT-EVENT-NUMBER¥))

(DEFUN GET-NEXT-EVENT ()
(WHEN (> ®*NEXT-EVENT-NUMBER%® 1)
(LET ((EVENT (AREF ®EVENT-TABLE* 1))
(HOLE (PERCOLATE-DOWN 1)))
(UNLESS (= HOLE (- *NEXT-EVENT-NUMBER®* 1))
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(PERCOLATE-UP (AREF ¥EVENT-TABLE¥
(- ¥*NEXT-EVENT-NUMBER®* 1))
HOLE))
(DECF #NEXT-EVENT-NUMBER#)
EVENT)))

(DEFUN PERCOLATE-UP (EVENT INDEX)
(LET ((PARENT-INDEX (LSH INDEX =-1)))
(LET ((PARENT-EVENT (AREF ¥*EVENT-TABLE¥
PARENT-INDEX)))
(IF (OR (= PARENT-INDEX 0)
(EVENTS-IN-ORDER PARENT-EVENT
EVENT))

;; EVENT goes here -- put it here.
(SETF (AREF ¥EVENT-TABLE¥* INDEX) EVENT)

;3 EVENT goes higher --

;3 put parent here and recurse.

(SETF (AREF ¥EVENT-TABLE¥* INDEX)
PARENT-EVENT)

(PERCOLATE-UP EVENT PARENT-INDEX)))))

(DEFUN PERCOLATE-DOWN (INDEX)
(LET ((LEFT-CHILD-INDEX (LSH INDEX 1)))
(IF ( LEFT-CHILD-INDEX ¥NEXT-EVENT-NUMBER¥)
INDEX
(LET ((RIGHT-CHILD-INDEX (+ 1 LEFT-CHILD-INDEX))
(LEFT-CHILD (AREF ¥EVENT-TABLE®*
LEFT-CHILD-INDEX)))
(IF (< RIGHT-CHILD-INDEX ¥NEXT-EVENT-NUMBER¥)
(LET ((RIGHT-CHILD (AREF ¥EVENT-TABLE¥
RIGHT-CHILD-INDEX)))
(COND ((EVENTS-IN-ORDER LEFT-CHILD
RIGHT-CHILD)
(SETF (AREF ¥®EVENT-TABLE#* INDEX)
LEFT-CHILD)
((PERCOLATE-DOWN LEFT-CHILD-INDEX))
T
(SETF (AREF *EVENT-TABLE* INDEX)
RIGHT-CHILD)
(PERCOLATE-DOWN RIGHT-CHILD-INDEX))))
(SETF (AREF ®EVENT-TABLE#® INDEX)
LEFT-CHILD)
LEFT-CHILD-INDEX)))))

(DEFUN EVENTS-IN-ORDER (E1 E2)
(LET ((T1 (EVENT-TIME E1))
(T2 (EVENT-TIME E2)))

(OR

(< T1 T2)
(AND
(= T1 T2)
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(LET ((F1 (EVENT-FUNCTION E1))
(F2 (EVENT-FUNCTION E2)))
(OR (AND (EQ F1 #'LINK-STATISTICS-COLLECTION)
(NOT (EQ F2 #'LINK-STATISTICS-COLLECTION)))
(AND (EQ F1 #'LINK-STATISTICS-COLLECTION)
(EQ F2 #'LINK-STATISTICS-COLLECTION)
(< (LINK-ID (CAR (EVENT-ARGUMENTS E1)))
(LINK-ID (CAR (EVENT-ARGUMENTS E2)))))
(AND (EQ F1 #'USER-STATISTICS-COLLECTION)
(NOT (EQ F2 #'USER-STATISTICS-COLLECTION))
(NOT (EQ F2
#'LINK-STATISTICS-COLLECTION)))
(AND (EQ F1 #'USER-STATISTICS-COLLECTION)
(EQ F2 #'USER-STATISTICS-COLLECTION)
(< (USER-ID (CAR (EVENT-ARGUMENTS E1)))
1)) (USER-ID (CAR (EVENT-ARGUMENTS E2)))))))

;;; The Guts.

(DEFUN SIMULATE (TIME-LIMIT)
(EVENT #'SIMULATION-STARTUP 0)
(LOOP FOR EVENT = (GET-NEXT-EVENT)
WHILE EVENT
UNTIL (< TIME-LIMIT (EVENT-TIME EVENT))
DO
(PERFORM-EVENT EVENT)))

(DEFUN PERFORM-EVENT (EVENT)
(SETQ ¥*TIME¥* (EVENT-TIME EVENT))
(LEXPR-FUNCALL (EVENT-FUNCTION EVENT)
(EVENT-ARGUMENTS EVENT)))

HHH P Y2 3232222 1222222223232 2222X222222 2222222222222 dd R

I : --Events. -~ -~~~ :

HHH R R AR AR R E R R E R R E N R R R RN R R R R R R RN AR R R RN R E RN ENEEES

;33 Schedule an event

(DEFUN EVENT (EVENT-FUNCTION TIME &REST EVENT-ARGUMENTS)
(WHEN (< TIME ¥TIME¥)
(FERROR "Tried to schedule event in the past."))
(ADD~EVENT-TO-HEAP
(MAKE-EVENT TIME TIME
FUNCTION EVENT=-FUNCTION
ARGUMENTS (COPYLIST EVENT-ARGUMENTS))))

;33 Everything starts up.

(DEFUN SIMULATION-STARTUP ()
(LOOP FOR USER IN ®USERS*
DO
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(IF (EVENP (USER-ID USER))
(START-TALKING USER)
(EVENT #'CONTROL-PACKET-GENERATION
(+ ®TIME® ¥CONTROL-PACKET-SPACING®)
USER))
(EVENT #'USER-STATISTICS-COLLECTION
(+ *TIME* ®*USER-STATISTICS-INTERVAL¥)

USER))
(LOOP FOR LINK IN ¥LINKS®
DO
(EVENT #'UPDATE
(+ ®TIME®
(SI:RANDOM-IN-RANGE O *UPDATE-INTERVAL#*))
LINK)

(EVENT #'LINK-STATISTICS-COLLECTION
(+ ®TIME®* *_INK-STATISTICS-INTERVAL#¥)
LINK))) ‘

;33 A link begins passing the first packet in its queue to
;3; the next link in that packet's route.

(DEFUN PACKET-TRANSMISSION (LINK)
(LET ((LAST-PACKET-SENT
(LINK-PACKET-NOW-TRANSMITTING LINK)))
(WHEN LAST-PACKET-SENT
(INCF (LINK-NUMBER-OF-BITS-SENT LINK)
(PACKET-LENGTH LAST-PACKET-SENT))
(INCF (LINK-TOTAL-NUMBER-OF-BITS-SENT LINK)
(PACKET-LENGTH LAST-PACKET-SENT))
(IF (PACKET-LAST-IN-TALK-SPURT? LAST-PACKET-SENT)
(REMOVE-USER-FROM-LINK
(PACKET-SOURCE LAST-PACKET-SENT)
LINK))))
(LET ((PACKET (POP (LINK-QUEUE-FRONT LINK))))
(SETF (LINK-PACKET-NOW-TRANSMITTING LINK) PACKET)
(UNLESS (NULL PACKET)
(INCF (LINK-NUMBER-OF-PACKETS-SENT LINK))
(INCF (LINK-TOTAL-NUMBER-OF-PACKETS-SENT LINK))
(DECF (LINK-QUEUE-LENGTH LINK))
(LET ((PACKET-DELAY (- #TIME®
(PACKET-ARRIVAL-TIME PACKET))))
(INCF (LINK-TOTAL-PACKET-DELAY LINK) PACKET-DELAY)
(INCF (LINK-TOTAL-SQUARED-PACKET-DELAY LINK)
(* PACKET-DELAY 2))
(INCF (AREF (LINK-PACKET-DELAY-HISTOGRAM LINK)
(MIN 10
(FIX (// PACKET-DELAY 0.002))))))
(SETF (PACKET-FORWARD-CONTROL PACKET)
(MIN (PACKET-FORWARD-CONTROL PACKET)
(LINK-CONTROL LINK)))
(EVENT #'PACKET-TRANSMISSION
(+ *TIME*
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(// (PACKET-LENGTH PACKET)
(FLOAT (LINK-CAPACITY LINK)))
®PACKET-TRANSMISSION-DELAY®)
LINK)
(LET ((DESTINATION (POP (PACKET-ROUTE PACKET))))
(IF (NULL DESTINATION)
(EVENT #'PACKET-ABSORPTION
(+ ¥*TIME®
(LINK-PROPAGATION-DELAY LINK)
®PACKET-ABSORPTION~DELAY¥)
PACKET
(PACKET-DESTINATION PACKET))
(EVENT #'PACKET-ARRIVAL
(+ ¥TIME®*
(LINK~PROPAGATION-DELAY LINK)
#PACKET-ARRIVAL-DELAY#®)
PACKET
DESTINATION)
(EVENT #'PACKET-TAIL-ARRIVAL
(+ ¥TIME®*
(// (PACKET-LENGTH PACKET)
(FLOAT (LINK-CAPACITY LINK)))
(LINK-PROPAGATION-DELAY LINK)
#PACKET-ARRIVAL-DELAY®)
PACKET
DESTINATION))))))

733 A packet is received by its intended target user.

(DEFUN PACKET-ABSORPTION (PACKET USER)
(LET ((DELAY (- (+ ¥TIME* ¥*PACKET-ABSORPTION-DELAY#¥)
(PACKET-GENERATION-TIME PACKET))))
(SELECTQ (PACKET-TYPE PACKET)
(VOICE
(INCF (USER-TOTAL-VOICE-PACKET-DELAY USER) DELAY)
(INCF (USER-NUMBER-OF-VOICE-PACKETS USER))
(SETF (USER-MAX-VOICE-PACKET-DELAY USER)
(MAX (USER-MAX-VOICE-PACKET-DELAY USER)
DELAY)))
(CONTROL
(INCF (USER-TOTAL-CONTROL-PACKET-DELAY USER)
DELAY)
(INCF (USER-NUMBER-OF-CONTROL-PACKETS USER))
(SETF (USER-MAX-CONTROL-PACKET-DELAY USER)
(MAX (USER-MAX-CONTROL-PACKET-DELAY USER)
DELAY)))))
(SETF (USER-RATE USER)
(PACKET-FEEDBACK-CONTROL PACKET))
(SETF (USER-PARTNER-RATE USER)
(PACKET-FORWARD-CONTROL PACKET))
(WHEN (PACKET-LAST-IN-TALK-SPURT? PACKET)
(SETF (USER-TALKING? (USER-PARTNER USER)) NIL)
(START-TALKING USER)))
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(DEFUN REMOVE-USER-FROM-LINK (USER LINK)
(SETF (LINK-USERS LINK)
(DELQ (ASSQ USER (LINK-USERS LINK))
(LINK-USERS LINK)))
(DECF (LINK-NUMBER-OF-USERS LINK)))

;3; This is a separate function so it can be called at
733 initialization time,

(DEFUN START-TALKING (USER)
(SETF (USER-TALKING? USER) T)
(EVENT #'VOICE-PACKET-GENERATION
(+ *TIME*
®PACKET-ABSORPTION-DELAY*
(RANDOM=-INTER-TALK-SPURT-SILENCE))
USER))

;33 A packet begins to arrive at a link.

(DEFUN PACKET-ARRIVAL (PACKET LINK)
(SETF (PACKET-ARRIVAL-TIME PACKET) ¥TIME®¥)
;; Enqueue packet.
(LET ((OLD-QUEUE-FRONT (LINK-QUEUE-FRONT LINK)))
(LET ((NEW-QUEUE-BACK (LIST PACKET)))
(IF (NULL (LINK-QUEUE-FRONT LINK))
(SETF (LINK-QUEUE-FRONT LINK) NEW-QUEUE-BACK)
(RPLACD (LINK-QUEUE-BACK LINK)
NEW-QUEUE-BACK))
(SETF (LINK-QUEUE-BACK LINK)
NEW-QUEUE-BACK)
(INCF (LINK-QUEUE-LENGTH LINK))
(SETF (LINK-MAX-QUEUE-LENGTH LINK)
(MAX (LINK-QUEUE-LENGTH LINK)
(LINK-MAX-QUEUE-LENGTH LINK))))
;3 If link is idle, schedule instant transmission.
(UNLESS (OR (LINK-PACKET-NOW-TRANSMITTING LINK)
(NOT (NULL OLD-QUEUE-FRONT)))
(EVENT #'PACKET-TRANSMISSION
(+ ®*TIME* ¥*PACKET-TRANSMISSION-DELAY#)
LINK)))) ’

:3; The tail end of a packet arrives at a link.

(DEFUN PACKET-TAIL-ARRIVAL (PACKET LINK)
(WHEN (EQ (PACKET-TYPE PACKET) 'VOICE)
(LET ((ACTIVE-USER (ASSQ (PACKET-SOURCE PACKET)
(LINK-USERS LINK))))
(IF ACTIVE-USER
(RPLACD ACTIVE-USER
(PACKET-SOURCE-RATE PACKET))
(ADD-USER-TO-LINK
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(PACKET-SOURCE PACKET)
LINK
(PACKET-SOURCE-RATE PACKET))))))

(DEFUN ADD-USER-TO-LINK (USER LINK PACKET-LENGTH)
(PUSH (CONS USER PACKET-LENGTH)
(LINK-USERS LINK))
(INCF (LINK-NUMBER-OF-USERS LINK)))

333 A user creates a voice packet.

(DEFUN VOICE-PACKET-GENERATION (USER)
(LET ((PACKET
(MAKE-PACKET
FEEDBACK-CONTROL (USER-PARTNER-RATE USER)
LENGTH (FIX (// (USER-RATE USER) 50))
ROUTE (USER-ROUTE USER)
GENERATION-TIME ¥*TIME#*
LAST-IN-TALK-SPURT?
(IF ®USERS-TALK-FOREVER®
NIL
(=0
(RANDOM
¥AVERAGE-TALK-SPURT-LENGTH#¥)))
TYPE '"VOICE
SOURCE USER
SOURCE-RATE (USER-RATE USER)
DESTINATION (USER-PARTNER USER))))
(LET ((FIRST-LINK (POP (PACKET-ROUTE PACKET))))
(EVENT #'PACKET-ARRIVAL
(+ *TIME* *PACKET-GENERATION-DELAY®
PACKET '
FIRST-LINK) ‘
(EVENT #'PACKET-TAIL-ARRIVAL
(+ ®TIME® *PACKET-GENERATION-DELAY®¥)
PACKET
FIRST-LINK))
(IF (PACKET-LAST-IN-TALK-SPURT? PACKET)
(EVENT #'CONTROL-PACKET-GENERATION
(+ ¥TIME® ®CONTROL-PACKET-SPACING®)
USER)
(EVENT #'VOICE-PACKET-GENERATION
(+ ®*TIME#* (SI:RANDOM-IN-RANGE 0.018 0.022))
USER))))

733 A user creates a control packet.

(DEFUN CONTROL-PACKET-GENERATION (USER)
(UNLESS (USER-TALKING? USER)
(LET ((PACKET
(MAKE-PACKET FEEDBACK-CONTROL
(USER-PARTNER-RATE USER)
LENGTH 10
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ROUTE (USER-ROUTE USER)
GENERATION-TIME ¥*TIME®#*
TYPE 'CONTROL
SOURCE USER
DESTINATION (USER-PARTNER USER))))
(EVENT #'PACKET-ARRIVAL
(+ *TIME#* *PACKET-GENERATION-DELAY#®
PACKET '
(POP (PACKET-ROUTE PACKET)))
(EVENT #'CONTROL-PACKET-GENERATION
(+ *TIME* ¥*CONTROL-PACKET-SPACING®*)
USER))))

733 A link updates its control.

(DEFUN UPDATE (LINK)
(MULTIPLE-VALUE-BIND (MAX-RATE FLOW)
(MAXIMIZE-AND-SUM-RATES-ON LINK)
(IF (OR (SELECTQ *UPDATE-PROTOCOL ¥
(MOSELY (NOT ( MAX-RATE :
(LINK-CONTROL LINK))))
(HAYDEN NIL))
(ZEROP (LINK-NUMBER-OF-USERS LINK)))
(EVENT #'UPDATE
(+ ¥TIME* ®UPDATE-ATTEMPT-INTERVAL¥)
LINK)
(SETF (LINK-CONTROL LINK)
(FUNCALL ¥*UPDATE-FUNCTION®¥
LINK MAX-RATE FLOW))
(EVENT #'UPDATE
(+ *TIME® ¥UPDATE-INTERVAL®¥)
LINK))))

(DEFUN MAXIMIZE-AND-SUM-RATES-ON (LINK)
(LOOP FOR (USER . RATE) IN (LINK-USERS LINK)
MAXIMIZE RATE INTO MAX-RATE
SUMMING RATE INTO SUM
FINALLY
(RETURN MAX-RATE SUM)))

(DEFUN MOSELY-UPDATE-FUNCTION (LINK MAX-RATE FLOW)
(LET ((ALPHA 1.0)
(EFFECTIVE-CAPACITY (®* 0.8 (LINK-CAPACITY LINK))))
(MAX (MIN (+ MAX-RATE
(// (* ALPHA (- EFFECTIVE-CAPACITY FLOW))
(LINK-NUMBER-OF-USERS LINK)))
EFFECTIVE-CAPACITY)
(// EFFECTIVE-CAPACITY
(LINK-NUMBER-OF-USERS LINK)))))

(DEFUN HAYDEN-UPDATE-FUNCTION (LINK MAX-RATE FLOW)

MAX-RATE
(LET ((ALPHA 1.0)
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(EFFECTIVE-CAPACITY (* 0.8 (LINK-CAPACITY LINK))))
(MAX (MIN (+ (LINK-CONTROL LINK)
(// (% ALPHA (- EFFECTIVE-CAPACITY FLOW))
(LINK-NUMBER-OF-USERS LINK)))
EFFECTIVE-CAPACITY)
(// EFFECTIVE-CAPACITY
(LINK-NUMBER-OF-USERS LINK)))))

(DEFUN JAFFE-UPDATE-FUNCTION (LINK MAX-RATE FLOW)
MAX-RATE
(LET ((ALPHA 1.0) |
(EFFECTIVE-CAPACITY (#* 0.8 (LINK-CAPACITY LINK)))
(CONTROL (LINK-CONTROL LINK)))
(MAX (MIN (+ CONTROL
(// (% ALPHA (- EFFECTIVE-CAPACITY
FLOW
CONTROL) )
| (+ (LINK-NUMBER-OF-USERS LINK) 1)))
EFFECTIVE-CAPACITY)
(// EFFECTIVE-CAPACITY
(+ (LINK-NUMBER-OF-USERS LINK) 1)))))

;3; Some network behavior statistics are recorded.

(DEFUN LINK-STATISTICS-COLLECTION (LINK)
(COND ((LINK-PRINT-STATISTICS? LINK)
(FORMAT *LINK-STAT-STREAM®
" ¢ 10D 2,1,10$ 10D 10D 10D 10D 10D 10D"
(LINK-ID LINK)
%TIME *
(LINK-NUMBER-OF-BITS-SENT LINK)
(FIXR (LINK-CONTROL LINK))
(LINK-NUMBER-OF-USERS LINK)
(LINK-MAX-QUEUE-LENGTH LINK)
(LINK-QUEUE-LENGTH LINK)
(LINK-NUMBER-OF-PACKETS-SENT LINK))
(ALTER-LINK LINK
NUMBER-OF-BITS-SENT 0
MAX-QUEUE-LENGTH 0O
NUMBER-OF-PACKETS-SENT 0)))
(EVENT #'LINK-STATISTICS-COLLECTION
(+ ¥TIME® #LINK-STATISTICS-INTERVAL®#)
LINK))

(DEFUN USER-STATISTICS-COLLECTION (USER)

(COND

((USER-PRINT-STATISTICS? USER)
(FORMAT
#USER-STAT-STREAM®*
"¢ 10D 2,1,10% 2,1,10% 2,1,10% 2,1,10¢$¢ 2,1,10% 10D 10D"
(USER-ID USER)
®TIME®
(SAFE-// (USER-TOTAL-VOICE-PACKET-DELAY USER)
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(USER-NUMBER-OF-VOICE-PACKETS USER))
(USER-MAX-VOICE-PACKET-DELAY USER)
(SAFE-// (USER-TOTAL-CONTROL-PACKET-DELAY USER)
(USER-NUMBER-OF-CONTROL-PACKETS USER))
(USER-MAX-CONTROL-PACKET-DELAY USER)
(FIX (USER-RATE USER))
(FIX (USER-PARTNER-RATE USER)))
(ALTER-USER USER
TOTAL-VOICE-PACKET-DELAY 0
NUMBER-OF-VOICE-PACKETS 0
MAX-VOICE-PACKET-DELAY O
TOTAL-CONTROL-PACKET-DELAY 0
NUMBER-OF-CONTROL-PACKETS 0
MAX-CONTROL-PACKET-DELAY 0)))
(EVENT #'USER-STATISTICS-COLLECTION
(+ ¥*TIME#* ¥USER-STATISTICS-INTERVAL#¥)
USER))

SR XXX X2X32X2223223232332323323233X322322222222222222222 222}

H Random stuff. -
e BEREEEREEREE R R EREE RN AR RN AR AR RN AR RN RN AR R AR R AR RERRNERE

0.0001)

(DEFUN PRINT-LINK-HISTOGRAMS ()
(FORMAT ¥*LINK-STAT-STREAM® "
Av. squared

Link Packets Av. wait wait Av, flow ")
(LOOP FOR LINK IN ¥*LINKS*
DO

(FORMAT *LINK-STAT-STREAM®
"¢ 4p 8D 6,1,10% 6,1,108 2,1,108"
(LINK-ID LINK)
(LINK-TOTAL-NUMBER-OF-PACKETS-SENT LINK)
(/7 (LINK-TOTAL-PACKET-DELAY LINK)
(LINK-TOTAL-NUMBER-OF-PACKETS-SENT LINK))
(// (LINK-TOTAL-SQUARED-PACKET-DELAY LINK)
(LINK-TOTAL-NUMBER-OF-PACKETS=-SENT LINK))
(// (LINK-TOTAL-NUMBER-OF-BITS-SENT LINK)
STIME®))
(LOOP FOR I FROM 0 TO 10
DO
(FORMAT
*LINK-STAT-STREAM*® " 2,1,8%"
(/7 (* 100.0
(AREF (%}NK-PACKET-DELAY-HISTOGRAM LINK)
I
(LINK-TOTAL-NUMBER-OF-PACKETS-SENT LINK))))
))
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(DEFUN SAFE-// (X Y)
(IF (ZEROP Y)
0
(/77 X Y)))
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