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Abstract

Curved geometries that can be obtained from flat sheets of material have many potential appli-
cations in design and engineering. In this thesis, we consider shapes achievable by joining planar
patches of material along their curved boundaries, focusing specifically on curved-crease origami as
a special case. Our research makes a threefold contribution.

First, we extend the theory behind the computation of shapes consisting of developable patches.
Based on classical differential geometry using curvature-based analysis, we consider the gluing of
two patches with specified rulings and the pairwise joining of three patches with partial ruling
information. We highlight a simplified computational approach for the case when the joined two
patches are cylinders or cones that is also applicable in the discrete case. Additionally, we show
how to compute a crease that connects a patch with a patch that is composed of tangent-continuous
cylinders and cones.

Using this theory, we are able to extend the family of shapes that allow a parametric recon-
struction. We provide examples of shapes that allow explicit parametrizations, parametrizations
using elliptic integrals, and parametrizations that require numerical integration.

Finally, we employ the developed theory to devise algorithmic design strategies for shapes with
curved creases. Inspired by artistic origami, we offer a parametric design tool for the construction
of origami spirals. Additionally, we consider two strategies that approximate a polyhedral shape
with a modular curved-crease design. Finally, we provide a constructive linear subdivision scheme
for regular developable planar quad meshes that correspond to a discretized curved-crease shape.

With this thesis, we aim to make curved-crease origami more accessible for interdisciplinary
research in various design and engineering contexts.

Thesis supervisor: Erik D. Demaine
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation
The process of joining planar sheets of non-stretchable material, such as paper or sheet metal, along
curved boundaries yields intricate geometries that offer cost-efficient fabrication and space-efficient
transportation, while having beneficial structural properties [110, 112]. Consequently, such shapes
have multiple applications across various disciplines.

One of the primary engineering applications of joined bent metal or wood sheets is in the design
of ship hulls [70, 13]. Another notable domain is in architectural applications, where single curved
panels are employed to create semi-discrete surfaces [74]. Traditional examples include onion domes,
often seen atop churches in Central Europe. Examples in contemporary architectural designs can
be observed in the works of Frank Gehry [30], Carlos Martinez Architekten [5], Zaha Hadid [32],
Rupert Maleczek [54], and Duks Koschitz [44].

In the special case where the boundary curves are identical, the joined bent shape can be
obtained by creasing a planar sheet along the shared curve, resulting in a so-called curved crease.
Shapes composed of bent sheets with curved creases can be found in product design and packaging,
such as the furniture designs of Flux [27] and McDonald’s packaging of fries. Recent engineering
developments have introduced aluminum curved-crease fold cores [28, 62] and functional meta-
materials [50].

However, artistic explorations often yield the most intricate and diverse shapes. One of the
first references of a sculpture with curved creases dates back to a course in paper study at Bauhaus
by Josef Albers, circa 1927—1928 [2]. In the early 1970s, pioneers such as David Huffman [19]
and Ron Resch [80] were among the first to systematically explore the potential of shapes created
by creasing paper along curves. Contemporary artists continue to expand upon this foundation.
For example, Erik and Marty Demaine use swirling surfaces, primarily crafted from circular pleats,
to compose captivating sculptures. Richard Sweeney [97] uses pleated creases to sculpt freeform
designs. Saadya Sternberg [95] is recognized for his origami faces and animals. Besides sculptural
faces, Polly Verity is known for her Bauhaus-inspired tessellations that feature curved creases.
Meanwhile, Ekaterina Lukascheva’s work [53] is a large collection of mesmerizing patterns and
kusudama artworks.

While many technical applications of these shapes face constraints related to practicality and
fabrication, the complexity of digital design involving bent planar sheets is another significant
limiting factor. As innovative technologies look to harness the potential of these forms, the need
for analysis and digital design of these designs grows.

Much of the theory outlined in this thesis stems from the analysis of artistic designs; see
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(a) Bauhaus model
(Albers, 1927–1928).

Figure from Wingler [109].

(b) Hexagonal tower with cusps
(David Huffman, 1978).

Figure 4.4.48 in Koschitz [43].

(c) Squaricle
(Tony Wills, 2006).

Figure 4 in Wills [108].

(d) Four columns
(David Huffman, 1978).

Figure 4.4.70 in Koschitz [43].

(e) Folded Vesica Piscis
(Susan Latham, 2008).
Figure from author’s

homepage [49].

(f) Exploded vertex spiral
(David Huffman, undated).

Figure 4.11.27 in Koschitz [43].

Figure 1.1: Selection of shapes that inspired the research presented in this thesis. Not for repro-
duction.

Figure 1.1. The first part of this thesis builds on the Bauhaus model, artwork of David Huffman
(particularly his hexagonal tower), and (Anti) D-forms designed by Tony Wills. The second part
is inspired by Tony Wills’ squaricle and David Huffman’s conic crease patterns with reflecting rule
lines. The final part builds upon the theory developed from analyzing Susan Latham’s folded Vesica
Piscis and David Huffman’s exploded vertex spirals.

1.2 Basic Definitions
Mathematical surfaces resembling a piece of bent paper or another sheet of material, that is, smooth
(tangent-continuous) surfaces that can be flattened onto a plane without stretching or tearing, are
known as developable surfaces. Developable surfaces are spanned by a family of lines known as
rule lines or rulings, and are characterized by a constant tangent plane along these lines. Although
developable surfaces can theoretically be infinitely long, we typically consider only a finite part for
practical reasons. We refer to such finite parts of developable surfaces as smooth patches. We refer
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(a) Smooth boundary-rule (left) and crease-rule (right) pattern. (b) Folded configuration.

(c) Discrete boundary-rule (left) and crease-rule (right) pattern. (d) Folded discrete configuration.

Figure 1.2: Illustration of the terminology used in this thesis.

to the flattened counterpart of a developable patch as its development.
The discrete counterparts of smooth patches are strips of triangles and planar quadrangles

(quads), as they can also be laid out on the plane without distortion. We will refer to such strips
as discrete patches, and to their interior edges as rule lines or rulings.

This thesis studies compositions of patches obtained by gluing their curved or polygonal bound-
aries and examines their kinematic properties. In the special case where the common curves or
polylines match in the development (and the developed patches belong to opposite sides of the
common curve), the shape can be made from one sheet by creasing the common curve.

For both smooth and discrete patches with specified rulings, each ruling represents a degree
of freedom in the patch’s configuration. A smooth patch offers an infinite number of degrees of
freedom, while a discrete patch has a finite number. Yet, when joining two patches with specified
rulings, there is typically only a one-parameter family of configurations. Joining three patches
with specified rulings, a configuration only exists in special cases, as specifying rulings for all three
patches becomes over-constraining.

Moving forward, we will refer to a set of developed patches with specified rulings as a boundary-
rule pattern; see Figure 1.2. In cases where patches are joined by creases, a crease pattern with
ruling assignment will be termed a crease-rule pattern. Motions that preserve the same boundary-
rule or crease-rule pattern will be referred to as rigid-ruling folding (for smooth patterns) or rigid
folding (for discrete patterns).
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1.3 Contributions and Related Work
This thesis contributes to three research areas. The following subsections provide an overview of
related work and summarize the findings for each domain.

1.3.1 Theory of Gluing and Creasing Developable Patches

Developable surfaces are extensively studied in differential geometry literature [8, 75]. For many
years, the emphasis was on understanding the behavior of individual developable patches. However,
recently, there has been an increasing interest in combining these surfaces. Two key questions are:

• How can we compute shapes that are combinations of smooth or discrete patches?

• Which families of shapes possess kinematic properties such as rigid-ruling folding motions?

Related work

Gluing developable patches has in particular been studied in the context of generating convex
shapes. Tony Wills [108] introduced D-forms as the shapes obtained by gluing two planar regions
of equal perimeter along their boundaries [86]. This concept was further formalized by Pottmann
and Wallner [75]. Demaine and Price [21] demonstrate that the unique convex gluing of two smooth
convex regions results in the convex hull of its seam curve and is free of creases. However, the
parametrization of D-forms from even simple boundary curves are known only in a limited number
of cases. Another family of shapes consisting of multiple developable surfaces are T-surfaces, the
smooth analogue of T-hedra. Here, the curve shared by two neighboring patches is planar. Izmestiev
et al. [37] provide analytic descriptions and discuss their isometric deformations.

David Huffman [34] was one of the first to systematically explore the behavior of curved-creased
paper [19, 15]. Notably, he designed many intriguing shapes by creasing paper along conics [43].
Fuchs and Tabachnikov [26] formalized joining two patches along a curved crease using differential
geometric terms. Tachi [100] shows how to generate rigidly foldable vault structures from a single
curved crease. In collaboration with Demaine et al., the authors describe geometric characteristics
of creases and rulings [16, 17]. Additionally, the authors introduce a crease-to-crease compatibility
condition [18], and identify families of crease-rule patterns that allow a rigid-ruling folding motion.

Contributions

We provide a set of tools for the computation of glued and creased shapes, accompanied by numerous
examples for computation. Specifically, we extend existing methods for curved-crease folding to
include the gluing of two patches with specified rulings (Section 3.3). In addition, we devise a
framework for reconstructing shapes from three patches when only partial ruling information is
available (Section 3.4). We also highlight kinematic properties of shapes consisting of tangent
parallel curves (Section 3.5.2).

In addition, we consider the joining of two smooth or discrete patches that are either cylinders
or cones. We demonstrate that these computations can be significantly simplified. Specifically,
we introduce the “join-and-fan” method, which allows for the computation of the glued or creased
configurations of a cylinder or a cone in two steps (Chapter 8). In the special case of devel-
opable discrete crease patterns between cylinders and cones, we discuss sufficient constraints for
the existence of a rigid-ruling folding motion which is also applicable to non-flat-foldable patterns
(Section 8.5). We apply this method to establish the rigid-foldability of two discretizations of conic
crease patterns with reflecting rulings (Section 10.6.4).
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We also demonstrate how to determine the crease curve on a patch that connects a given
developable surface with either a cylinder or a cone (Section 12.3). Finally, we formalize two
approaches to compute the crease between a patch and another patch composed of piece-wise
cylinders and cones (Section 12.7).

1.3.2 Parametric Construction of Shapes Obtained by Gluing or Creasing Patches

The complexity of the mathematical expressions involved often restricts the practical application of
the theory to shapes that can be readily created by gluing or creasing paper. Moreover, determining
the correct ruling layout based solely on observations is challenging [25]. Paper’s potential to allow
small imperfections, like minor buckling, add to the complications. For instance, the hyperbolic
paraboloid [16] has been demonstrated to not exist mathematically without incorporating additional
creases. As a result, there are only a few known parametrizations that describe naturally occurring
non-trivial shapes. Key questions related to this exploration include:

• Given a shape, does it mathematically “exist”? In other words, can it be parametrized using
developable patches with the specified glue or crease curves?

• What properties can be derived from this parametrization? Does it allow a rigid-ruling folding
motion?

Related Work

Wunderlich [111] introduces a family of closed-form parametrizations of a Möbius strip in equilib-
rium. For an English translation, see Todres [104]. Dirnböck and Stachel [23] analytically examine
the properties of the oloid, which is the convex hull of two congruent circles in perpendicular planes,
with each circle containing the center of the other. However, other shapes from a single sheet, as
discussed by Stachel [91], are not straightforward to describe parametrically. Mayrhofer [56] offers a
discussion on the analytic reconstruction of D-forms from ellipses. Yet, determining a parametriza-
tion of a D-form originating from two congruent ellipses joined with an arbitrary offset remains an
open problem.

Mosley [61] details a parametrization of her design, the “Orb”, using elliptic integrals. With a
similar approach, Demaine et al. [17] show the existence of lens tessellations with convex curves.
Drawing inspiration from Huffman’s research on conic crease patterns, Demaine et al. [18] char-
acterize valid conic crease combinations with reflecting rule lines. They demonstrate that valid
combinations support a rigid-ruling folding motion.

Lastly, Alese [3] explores concentric circular pleats by attaching circular patches to appropri-
ately chosen space curves and introducing additional circular creases. The author shows that for
sufficiently small radii, circular creases can be propagated finitely many times.

Contributions

In this thesis, we provide analytic descriptions of multiple families of shapes that serve as examples
of the developed theory.

We use the smooth join-and-fan method to find explicit parametrizations of the convex poly-
gircle, that is, the unique gluing between a polygon and a circle (Section 9.3). Additionally, we
determine explicit parametrizations of a family of modular curved crease designs in the shape of
spherical polyhedra (Section 13.3).

Up to elliptic integrals, we find parametrizations of shapes with conic creases and (Section 10.6.3)
and variations of the Vesica Piscis (Section 13.2).
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In addition, we apply the developed theory to obtain examples visualized through numerical
integration. These examples include Anti D-forms from elliptical holes (Section 4.2) and pleated
closed shapes exemplified by elliptic creases (Section 4.3), which we determined by estimating
suitable ruling angles. Furthermore, we analyze Huffman’s hexagonal tower (Section 5.3) and
variations of the gluing of a square and a circle (Section 5.2), which we compute using partial
ruling information. Inspired by Maximilian Klammer’s kinetic sculpture “Polyannular Cyclide”,
we determine the rulings of patches subject to their curved boundaries being planar (Section 6.2).
Lastly, we identify a computational approach for periodic shapes corresponding to circular pleats
with at least two creases (Section 7.2). While we do not answer the open problem of whether the
pleats can be propagated infinitely many times, our computations provide a three-parameter family
of (numerically) closed folded shapes (with a finite number of creases), reflecting the flexibility of
a folded shape with periodic symmetry.

1.3.3 Computational Design Tools for Shapes Obtained by Gluing or Creasing
Patches

Developable surfaces are popular in industrial applications due to their cost-efficient fabrication
properties as they can be derived from a one-directional bending of a planar sheet. Consequently,
recent work has introduced many strategies to approximate geometric data with developable patches
or to devise strategies for their designs. However, some of these methods rely on a favorable
initial configuration and face a trade-off between computational stability and the resolution of the
result. While many of these efforts have produced impressive results, there remains room for new
algorithmic strategies for the design of complex shapes from glued or creased patches.

Related Work

Various strategies have been developed from different perspectives to approximate geometric data
using developable surfaces. Peternell [71] studies developable surface fitting to point clouds. Kilian
et al. [41] propose an optimization-based framework for digital reconstruction of shapes consisting
of developable surfaces as planar quad-dominant meshes. Stein et al. [92] propose a variational
approach to modify a given mesh toward developable pieces separated by regular seam curves.
Sellán et al. [83] obtain piecewise developable meshes by phrasing a rank minimization problem
which results in a convex semidefinite optimization. Ion et al. [36] wrap a shape into piecewise
developables by projecting developable patches, each modeled as a discrete orthogonal geodesic
net, onto the shape. Binninger et al. [9] use the approach of Gauss image thinning to obtain a
piecewise developable mesh. Verhooven et al. [107] propose an algorithm to remesh triangle meshes
representing developable surfaces to planar quad dominant meshes.

Approaches for interactive modeling of surfaces consisting of developable patches have also
been subject to investigations. Mitani et al. [60, 58] develop an interactive design tool for shapes
consisting of planar creases. Solomon et al. [88] represent curved-crease designs by quad-dominant
meshes optimized with discrete bending energies. Tang et al. [103] optimize the control points of
B-spline surfaces for developability for interactive design. Another line of work by [77, 76, 78] uses
discrete orthogonal geodesic nets to allow manipulating developable surfaces with curved creases.
This method has the benefit that the edges of the underlying mesh do not need to be aligned with
the rule lines of the surface which benefits robustness. Recently, developable quad meshes and
discrete-isometric mappings have been studied in the context of canonical checkerboard patterns
[39, 35], where developability is imposed by constraining the rank of the second fundamental form.
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Contributions

Based on the developed theory, we devise multiple design tools for shapes with curved creases,
which we implemented in Grasshopper/Rhino [81, 57].

Our implementation of the patch-to-patch method (Section 12.3) provides an interactive soft-
ware tool for designing complex shapes using the additive construction of creases.

Inspired by curved-crease origami spirals, we develop a constructive approach to generate
origami spirals using cones and planar creases (Chapter 14).

In our goal to approximate a polyhedral mesh with modular curved-crease shapes, we devise
two design strategies. The first replaces each edge of the shape with a cylinder and connects all
cylinders incident with a vertex using a tangent-continuous cone (Chapter 15). The second family
of shapes approximates an input polyhedron using modular curved-crease origami molecules that
are inspired by Huffman’s tessellations (Chapter 16).

Finally, we introduce a linear-time subdivision scheme for regular developable planar quad
meshes (Chapter 17). In combination with a solver that optimizes the coarse mesh for developability
and planar faces, this tool allows for interactive exploration of fine and precise developable regular
planar quad meshes.

1.4 Thesis Overview
In this thesis, we examine gluing and creasing of developable patches using two techniques. The first
technique employs a curvature-based analysis, using tools from classical differential geometry. The
second technique uses a ruling-length-based approach, applicable only to cases involving cylinders
and cones.

The thesis is structured into three parts, with each focusing on a unique combination of methods
or objectives. In Part I, we compute configurations of combinations of smooth patches using
the curvature-based approach. In Part II, we adopt a ruling-length-based approach to determine
configurations of either smooth or discrete combinations of cylinders and cones. Finally, Part III
uses a ruling-length-based approach to compute the crease between a developable patch and a patch
consisting of tangent-continuous cylinders and cones.

When applied successfully, the presented computational methods yield precise glued or creased
shapes that comprise a sequential combination of developable patches. However, in many instances,
closing a loop of patches remains limited to special cases.

Each part begins with a chapter introducing the theory, followed by chapters showcasing its
practical applications.

1.4.1 Part I: Curvature-Based Computation of Configurations

In Chapter 3, we introduce a toolbox that can be used to analyze and reconstruct glued or creased
shapes through classical differential-geometric methods. Specifically, we build upon existing work of
Fuchs and Tabachnikov [26], as well as that of Demaine et al. [18], and express the ruling directions of
a smooth developable patch using quantities associated with the Frenet-Serret equations specifying
a space curve incident to the considered developable patch. This toolbox includes:

• We show how to glue two patches with complete ruling information. For computational
purposes, we propose a simplification of the corresponding differential-algebraic system to
a single differential equation and algebraic equalities. In addition, we connect the opening
angle of the surfaces to the initial values of the differential equation.
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• We show how to join three patches with only partial ruling information. Specifically, we
discuss three cases how to encode the partial ruling information:

– The rulings of the left and right patch are given, and our goal is to determine the rulings
of the central patch.

– In case of creasing, the type of connection is specified (planar or constant angle).
– The shape of polylines consisting of three consecutive rulings is encoded by an unknown

function.

• Lastly, we discuss methods to append additional surfaces to the existing shape. In general, the
ruling directions of an attached surface depend on the shape of the patch they are attached to.
Even if a bending of the to-be-appended-to patch preserves the developed ruling directions,
in general it results in a change of the rulings of the appended patch. We highlight a special
case where the composition of surfaces still allows a rigid ruling motion, that is, when the
surfaces are joined along tangent parallel curves.

Our proposed toolkit allows for computational analysis or design of shapes by joining either two
patches with specified rulings or three patches with only partially specified rulings. Additionally,
one can append further patches to the 3D configuration.

Advantages. The proposed approach of joining two developable patches is suitable for application
to any composition of parametrized patches with specified rulings. However, not every combination
of patches with specified rulings and opening angles results in a valid glued or creased state.
Since deducing the correct rulings of a shape is non-trivial, allowing for partial ruling specification
broadens the range of shapes that can be analyzed and reconstructed. Joining patches along tangent
parallel curves enables the creation of complex structures with glue or crease curves that fold with
rigid rulings.

Generally, the proposed methods yield precise glued or creased shapes applicable to a wide
variety of developable patches, and their accuracy is limited only by the numerical precision of the
computational mathematical tool used.

Disadvantages. One of the primary limitations of the proposed methods is that it is often
non-trivial to determine or even estimate ruling directions that would achieve the desired shape.
Furthermore, we lack control over the ruling directions of the appended surfaces.

Additionally, the setup and computation often requires mathematical background and careful
preparation, making it unsuitable for users without a foundation in differential geometry and differ-
ential equations. Except for very basic shapes, integration of the Frenet-Serret equations typically
does not yield explicit parametrizations, limiting the computation to numerical integrals. As the
number of attached patches grows, the resulting expressions become more complicated, potentially
leading to the accumulation of numerical errors.

In its current formulation, the proposed method to join three patches with only partial ruling
information is constrained to cases with an explicit relationship between the curve’s parametrization
and its curvature (at arc-length parameter) of both curves corresponding to a joined pair.

Applications. To illustrate the versatility of the proposed methods, we consider multiple exam-
ples and applications:

• In Chapter 4, we consider the gluing and creasing of ellipses. The discussed examples are
inspired by Anti D-form and the Bauhaus model; see Figure 1.3a.

36



(a) Elliptic pleats
(Section 4.3).

(b) Huffman’s tower
(Section 5.3).

(c) Kinetic sculpture
(Section 6.2).

(d) Circular pleats
(Section 7.2).

Figure 1.3: Selection of shapes discussed in Part I.

• In Chapter 5, we consider how to connect two patches with specified rulings with a central
patch with unspecified rulings. The discussed examples include variations of the squaricle
and the analysis of Huffman’s hexagonal tower; see Figure 1.3b.

• In Chapter 6, we consider how to connect two planar and two constant angle creases. The
discussed examples include a kinetic sculpture (see Figure 1.3c) and a rigid-ruling folding of
two logarithmic spiral curves.

• In Chapter 7, we consider approaches that encode the rulings of the shape using an initially
unknown function. The computed examples include circular pleats (see Figure 1.3d) and an
unsuccessful attempt to analyze a spiral with circular creases.

1.4.2 Part II: Ruling-Length-Based Computation of Configurations of Joined
Cylinders and Cones

In Chapter 8, we consider the special case of computing the configuration that corresponds to the
gluing of two smooth or discrete patches that are either cylinders or cones. Since the developability
condition is trivially satisfied when the 3D rulings are kept parallel or converge at a point, the
problem simplifies to ensuring that intrinsic distances are the same in 2D and 3D.

We formalize the join-and-fan method that allows for the computation of the configuration of
two glued or creased cylinders or cones in two steps. In the joining step, we combine the rulings of
the two involved cylinders to a planar linkage, using explicit algebraic expressions. In the second
step, we fan out the bars of the planar linkage, resulting in at most one differential or difference
equation to compute the gluing curve.

In the special case of joining two discrete cylinders or cones along a crease, we use a linkage-
based argument to show sufficient conditions for a rigid folding motion between the developed and
the folded configuration.

Advantages. The simplified computations give further insight into the existence of folded states
and motions of shapes obtained by gluing or creasing two cylinders or cones, and are applicable to
both the smooth and discrete case.

Additionally, the presented computations have the benefit of requiring at most one (smooth or
discrete) integration step, which in some cases allows us to find a closed form parametrization.
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(a) Two gluings of a square and a circle and their developments with specified rulings.
Left: Convex gluing. Right: Tony Wills’ squaricle (Chapter 9).

(b) Rigid-ruling folding motion of conic crease patterns with reflecting rule lines and their flat and rigidly
foldable discretization (Chapter 10).

Figure 1.4: Selection of shapes discussed in Part II.

Disadvantages. The proposed method is limited to only combinations of two surfaces that are
either cylinders or cones.

Applications. To illustrate the simplified computations, we consider multiple examples and ap-
plications:

• In Chapter 9, we consider rotationally symmetric gluings of a polygon and a circle; see
Figure 1.4a. We state an explicit arc-length parametrization of the convex realization of such
a gluing, and provide computational insights into shapes with other ruling combinations.

• In Chapter 10, we apply the join-and-fan method to find parametrizations of conic creases
with reflecting rule lines. In addition, we introduce two discretizations of conic crease patterns
with reflecting rule lines, and use the join-and-fan method to provide a constructive proof for
their rigid foldability; see Figure 1.4b.

• In Chapter 11, we explore a type of rigid-ruling folding that maintains the planarity of a
fixed curve on the patch. Because the folding motion resembles a gliding motion, we have
termed the resulting patches sliding developables. These sliding developables offer practical
advantages, providing an intuitive design framework for developable patches.

1.4.3 Part III: Ruling-Length-Based Computation of Creases

In Chapter 12, we introduce a ruling-based design approach which begins with either a smooth or
discrete bent developable patch and sequentially computes creases (whether smooth or discrete)
that connect the patch with a sequence of cylinders or cones.
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(a) Folded Vesica Piscis
(Section 13.2).

(b) Origami spirals from cones with planar creases
(Chapter 14).

(c) Rounded corner design approach (Chapter 15). (d) Wrinkling paper design approach (Chapter 16).

(e) Developable subdivision scheme for regular PQ meshes (Chapter 17).

Figure 1.5: Selection of shapes discussed in Part III.

Initially, we outline the patch-to-cylinder and patch-to-cone construction methods. These tech-
niques determine a crease connecting a given developable patch with a cylinder, defined by its
ruling direction, or a cone, defined by its apex.

To avoid the need for a case-by-case analysis between cylinders and cones, and to enhance the
computational robustness, we combine both methods into the patch-to-projective-cone construction.
Finally, we show a method for constructing a crease between a patch and a tangent-continuous
sequence of projective cones.

Advantages. The presented construction methods offer the advantage that if a patch’s develop-
ment is known, the crease can be determined using an explicit algebraic expression. As a result,
they are well-suited for implementation in CAD environments. Furthermore, these methods provide
an intuitive input based solely on 3D information, making them suitable for interactive design by
users without an in-depth understanding of the underlying computation.

Disadvantages. Unlike optimization-based approaches, the design of shapes with this method
is additive, supporting only a tree-like connectivity of connected patches. Consequently, closure of
the designed shapes mostly relies on symmetry. Additionally, the control over the location of the
crease curve is limited.
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Applications. We show the versatility of the proposed method in multiple examples:

• In Chapter 13, we show two applications of the patch-to-cylinder and patch-to-cone methods
and find (up to elliptic integrals) closed-form parametrizations of two families of shapes, gen-
eralizations of the folded Vesica Piscis, see Figure 1.5a, and curved-crease designs of rounded
regular spherical polyhedra.

• In Chapter 14, we show how to construct smooth and discrete origami spirals composed of
cones and planar creases; see Figure 1.5b.

• In Chapter 15, we design curved-crease shapes by rounding the edges of a polyhedron with
right circular cylinders and replacing its vertices with a cone that is connected to adjacent
cylinders by a curved crease; see Figure 1.5c.

• In Chapter 16, we design curved-crease shapes by filling each non-planar face of a mesh with
modular tessellation-inspired molecules; see Figure 1.5d.

• In Chapter 17, we show how to use the patch-to-projective-cone construction to subdivide an
almost developable planar quad mesh into a developable planar quad mesh; see Figure 1.5e.
This construction is linear in the number of constructed rulings and therefore suited for
interactive design.
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Chapter 2

Preliminaries on Smooth and Discrete
Developable Surfaces

In the following, we introduce smooth (developable) patches and their discrete analogues as (finite
parts of) either smooth or discrete ruled surfaces1. To ensure developability, we will impose a
condition that these surfaces must satisfy.

2.1 Ruled Surfaces
A smooth ruled surface is a surface that consists of a continuous one-parameter family of lines; see
Figure 2.1. Its discrete counterpart, a discrete ruled surface, consists of a discrete set of lines; see
Figure 2.2. In both contexts, these lines are called rulings or rule lines. For finite parts of surfaces,
we may also refer to them as rule segments.

2.1.1 Smooth Ruled Surfaces

In this thesis, we describe a smooth2 ruled surface by

S(t, u) = X(t) + uR(t), (2.1)

for t ∈ T = [0, tmax] and u ∈ R. Here, X(t) : T → R3 is a regular3 C1 space curve, the directrix,
and R(t) : T → S2 a C1 space curve on the unit sphere, the ruling directions. Unless specified
otherwise, we assume that the ruling directions are not aligned with the incident tangent direction
of X(t), meaning |X′(t) × R(t)| ≠ 0.

2.1.2 Discrete Ruled Surfaces

In the discrete case, let T = (t0, t1, . . . , tn) be an array of parameter values. We describe a discrete
ruled surface by

S(t, u) = X(t) + uR(t), (2.2)
1In this thesis, we use the term smooth or discrete surface to refer to a map from a subset of R2, the domain, to

R3. Typically, the domains used in this thesis can be represented as T × R, where T is a continuous subset of R for
smooth surfaces, or a discrete subset of R for discrete surfaces.

2Note that in our context, we employ the term “smooth” to distinguish between smooth and discrete surfaces.
Unlike other literature on differential geometry, when we refer to “smooth,” it indicates that both the directrix and
ruling vectors possess C1 continuity (unless specified otherwise).

3We refer to a space curve X(t) as regular if |X′(t)| ̸= 0 for all parameter values t.
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X(t)

R(t)

S(t, u)

(a) A smooth ruled surface
patch that is not developable.

X(t)

R(t)

S(t, u)

x(t)
r(t)

s(t, u)

(b) A smooth ruled developable patch (left)
and its development (right).

Figure 2.1: Illustration of smooth ruled patches.

X(t)

R(t)

S(t, u)

(a) A discrete ruled surface
patch that is not developable.

X(t)

R(t)

S(t, u)

x(t)
r(t)

s(t, u)

(b) A discrete ruled developable patch (left)
and its development (right).

Figure 2.2: Illustration of discrete ruled patches.

for t ∈ T and u ∈ R. Here, X(t) : T → R3 is a regular4 polyline, and R(t) : T → S2 is a
polyline on the unit sphere. Similar to the smooth case, we refer to X(t) as the directrix and to
R(t) as rulings directions. Unless specified otherwise, we assume that the ruling directions are
not aligned with the edges of the incident polyline, that is, |R(ti) × (X(ti+1) − X(ti))| ̸= 0 and
|R(ti+1) × (X(ti+1) − X(ti))| ≠ 0.

2.2 Developability Condition and Development
Smooth and discrete surfaces that can be flattened into the plane without distortion are called
developable surfaces. We will refer to an isometric planar counterpart (typically in the xy-plane)
as the development.

Both smooth and discrete developable surfaces come in many forms. However, for our practi-
cal applications, we are primarily interested in smooth surfaces and their corresponding discrete
versions, rather than in shapes that resemble crumpled paper.

In the following, we adopt the notation of Demaine et al. [17, 18]. Specifically, we use upper-
case letters to denote 3D quantities and lowercase letters for the corresponding quantities in the
development.

4We refer to a polyline X(t) as regular if |X(ti) − X(ti+1)| ̸= 0 for all i < n.
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2.2.1 Smooth Developability Condition and Development

Smooth developable surfaces are well-studied in classical differential geometric literature [90, 75],
and in the context of curved-crease origami [16, 17, 18].

According to Gauss’s Theorema Egregium [29], a C2 surface that can be flattened into a plane
without stretching or tearing is characterized by vanishing Gaussian curvature. Moreover, points
on a C2 surface with zero Gaussian curvature are essentially either parabolic or flat [75, 33]. This
allows for parametrizations using ruled surfaces that maintain constant tangent planes along their
rulings.

However, the situation differs for surfaces that are only C1 [75]. According to Nash’s embedding
theorem [68], a developable C1 surface can take the shape of a torus in Euclidean space. Recently,
Borrelli et al. [11] published an algorithm that enables the visualization of such a flat torus. The
resulting “wrinkled” surface has tangent planes defined at every point, but the normals exhibit
fractal behavior.

For computational convenience, we focus on ruled surfaces that possess an isometric counterpart
in the xy-plane. We show that a tangent-continuous ruled surface is developable if and only if all
its rulings are torsal; meaning, the tangent planes (if defined) corresponding to the same rulings
coincide.

Lemma 2.1. A smooth ruled surface S(t, u) = X(t) + uR(t) (as defined in Section 2.1.1) is
developable if it satisfies the developability condition for all t ∈ T ,

det(R(t),R′(t),X′(t)) = 0. (2.3)

The development s(t, u) = x(t) + ur(t) of a developable patch S(t, u) can be obtained as r(t) =
(cosα(t), sinα(t), 0) where

α′(t) = R′(t) · X′(t)√
|X′(t)|2 − |R(t) · X′(t)|2

, (2.4)

and x(t) = (xx(t),xy(t), 0) where

(
x′

x(t)
x′

y(t)

)
=

(R(t) · X′(t)) cosα(t) +
√

|X′(t)|2 − |R(t) · X′(t)|2 sinα(t)
(R(t) · X′(t)) sinα(t) −

√
|X′(t)|2 − |R(t) · X′(t)|2 cosα(t)

 . (2.5)

Since |X′(t)| > |R(t) · X′(t)|, the solution to the differential equations are real-valued, and x(t) and
r(t) are tangent-continuous.

Proof. We prove the claim in three steps:

• Step 1: First, we gather five constraints necessary for the developed quantities. This results
in a system of differential-algebraic equations for the coordinate functions of r(t) and x(t).

• Step 2: We show that a solution that satisfies the differential-algebraic system corresponds
to the directrix and ruling direction of the development of s(t, u).

• Step 3: We then confirm that the integrals in Equation (2.4) and Equation (2.5) provide
solutions to the stated differential-algebraic system.
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Step 1. We start by identifying five constraints necessary for specifying the development. Since
isometry preserves both distances and angles, the involved quantities must meet the following
constraints:

(1) The developed rulings are of unit length, that is, |r(t)| = |R(t)| = 1.

(2) The parametrization speed of the 3D and 2D directrices need to be the same, that is, |x′(t)| =
|X′(t)|.

(3) The angle between the ruling and tangent needs to be the same. With constraints (1) and
(2), this requirement simplifies to r(t) · x′(t) = R(t) · X′(t).

(4) As the developability condition implies that R′(t) lies in the tangent plane, the scalar product
between the derivative of the ruling direction and tangent must be the same in both 2D and
3D. This results in r′(t) · x′(t) = R′(t) · X′(t).

We will make note that a solution to constraints (1)–(4) also satisfies |r′(t)| = |R′(t)|. This
is because it follows from constraint (1) that R′(t) and r′(t) are perpendicular to R(t) or r(t),
respectively. With constraint (3), it follows that the direction of r′(t) is specified up to sign. With
constraint (4), a solution satisfies |r′(t)| = |R′(t)|. We will see in Section 3.2.6 that this constraint
ensures that the absolute value of the intrinsic curvature of the non-straight principal curvature
lines on S(t, u) and s(t, u) are the same.

Step 2. We now show that a solution to the above system of differential-algebraic equations
corresponds to the development s(t, u) of S(t, u).

This claim can be verified by confirming that the coefficients of the respective first fundamental
forms5 of s(t, u) and S(t, u) are the same [12]:

ES − Es =
∣∣X′(t) + uR′(t)

∣∣2 −
∣∣x′(t) + ur′(t)

∣∣2 = 0,
FS − Fs = (X′(t) + uR′(t)) · R(t) − (x′(t) + ur′(t)) · r(t) = 0,
GS −Gs = |R(t)|2 − |r(t)|2 = 0.

Step 3. The stated solution assumes that the ruling vector is parametrized in terms of an angular
function α(t) as r(t) = (cosα(t), sinα(t)), and that the unknown functions α(t), xx(t), and xy(t)
result from the explicit initial value problem

α′(t) = R′(t) · X′(t)√
|X′(t)|2 − |R(t) · X′(t)|2

x′
x(t) =

(
R(t) · X′(t)

)
cosα(t) +

√
|X′(t)|2 − |R(t) · X′(t)|2 sinα(t)

x′
y(t) =

(
R(t) · X′(t)

)
sinα(t) −

√
|X′(t)|2 − |R(t) · X′(t)|2 cosα(t).

Next, we will verify that the given equations correspond to the constraints (1)–(4):

(1) The first constraint is trivially satisfied as 1 = |r(t)| = |R(t)|.

(2) We compute |x′(t)|2 = x′
x(t)2 + x′

y(t)2 = |X′(t)|2, as all other terms cancel out.
5Recall that the first fundamental form I encodes the metric of a surface S(t, u). Its four coefficients of are defined

as E = I11 =
(

d
dt

S(t, u)
) (

d
dt

S(t, u)
)
, F = I12 = I21 =

(
d
dt

S(t, u)
) (

d
du

S(t, u)
)
, and G = I22 =

(
d

du
S(t, u)

) (
d

du
S(t, u)

)
.
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(3) We compute

r(t) · x′(t) =
(
R(t) · X′(t)

)
cos2 α(t) +

(
R(t) · X′(t)

)
sin2 α(t) = R(t) · X′(t).

(4) We have that

r′(t) · x′(t) = α′(t)
√

|X′(t)|2 − |R(t) · X′(t)|2 = R′(t) · X′(t).

Finally, note that |R(t) · X′(t)| represents the length of the projection of X′(t) onto R(t). Conse-
quently, |X′(t)| > |R(t) · X′(t)|.

Note that our computations of the development are solely based on the tangent continuity of
both the directrix and the ruling directions (in contrast to other approaches, such as those in [75, 17],
which require C2 continuity). This is because the curvature of the (non-ruling) principal curvature
lines is encoded in the first derivative of the ruling directions.

Next, we show that the developability condition is also sufficient:

Lemma 2.2. If a tangent-continuous ruled surface has a development, the developability condition
is satisfied for all t ∈ T .

Proof. Let s(t, u) = x(t) + ur(t) denote the development of a tangent-continuous surface S(t, u) =
X(t)+uR(t). It follows from isometry that the parametrization speeds of the two curves x(t)+r(t)
and x(t) + 2r(t) are the same as the speeds of their respective 3D counterparts, that is,

0 =
∣∣x′(t) + r′(t)

∣∣− ∣∣X′(t) + R′(t)
∣∣ = 2(r′(t) · x′(t) − R′(t) · X′(t)) + (

∣∣r′(t)
∣∣2 −

∣∣R′(t)
∣∣2),

0 =
∣∣x′(t) + 2r′(t)

∣∣− ∣∣X′(t) + 2R′(t)
∣∣ = 4(r′(t) · x′(t) − R′(t) · X′(t)) + 4(

∣∣r′(t)
∣∣2 −

∣∣R′(t)
∣∣2).

Consequently, we have |r′(t)|2 − |R′(t)|2 = 0 and r′(t) · x′(t) − R′(t) · X′(t) = 0. Additionally, the
isometry yields R(t) · X′(t) − r(t) · x′(t) = 0, and |R(t)|2 = 1 implies that R′(t) · R(t) = 0.

We now examine the 3D configuration of the vectors R(t), R′(t), and X′(t), aiming to demon-
strate that they are coplanar. It follows from R(t) ·X′(t) = r(t) ·x′(t) and R′(t) ·X′(t) = r′(t) ·x′(t)
that R(t) and R′(t) are restricted to cones with axis direction X′(t). The cosine of their respective
opening angle is defined by r(t) · x′(t) and r′(t) · x′(t), respectively. Therefore, given vectors R(t)
and X′(t), the only vector satisfying R′(t) · X′(t) = r′(t) · x′(t) and R(t) · R′(t) = r(t) · r′(t) lies in
the plane spanned by R(t) and X′(t).

Finally, we conclude:

Corollary 2.1. A smooth ruled patch S(t, u) = X(t) + uR(t) is developable if and only if the
developability condition is statisfied for all t ∈ T .

In Section 3.2.3, we discuss an alternative approach for computing the development of a devel-
opable patch with a curvature-continuous directrix using patch characteristics.

45



2.2.2 Discrete Developability Condition and Development

A developable discrete ruled surface is characterized by the property that consecutive rulings are
coplanar (and oriented correctly).

Lemma 2.3. A discrete ruled surface S(t, u) = X(t)+uR(t) is developable if and only if it satisfies
the discrete developability condition for all pairs of consecutive rulings,

det(R(ti),R(ti+1),X(ti+1) − X(ti)) = 0, (2.6)

ensuring that two consecutive rulings are coplanar.

In the following, we assume that of the two possible orientations of the ruling vector R(t), the
direction is chosen to point consistently towards one side of the directrix, that is,

(R(ti) × (X(ti+1) − X(ti))) · (R(ti+1) × (X(ti+1) − X(ti))) > 0.

A discrete developable patch comprises a sequence of planar regions defined between two rulings.
For practical considerations, we focus exclusively on finite regions. A development can be realized
by sequentially placing planar quads and triangles in the xy-plane, while constructing the developed
directrix x(t). Conversely, if a ruled patch has an development, the isometry forces two consecutive
rule lines to be coplanar.

2.3 Singularities

2.3.1 Singularities on Smooth Patches

In this section, we provide an intuitive interpretation of the smooth developability condition and
identify possible singular points of developable surfaces. Specifically, we show that the developa-
bility condition implies that, at points along a single ruling where the surface normal is defined,
the tangent planes are constant. For each ruling, there exists at most one point where the tangent
plane is undefined.

Recall that the normal vector P(t, u) of the surface S(t, u) = X(t) + uR(t) can be derived by
normalizing the vector:

P̃(t, u) =
(
d

dt
S(t, u)

)
×
(
d

du
S(t, u)

)
=
(
X′(t) + uR′(t)

)
×R(t) = R(t)×X′(t)+u

(
R(t) × R′(t)

)
.

If R′(t) = 0, this vector simplifies to P̃(t, u) = R(t) × X′(t) ̸= 0. Consequently, P̃(t, u) and
P(t, u) are constant in u. This implies that the normal plane is the same for all points along the
ruling at parameter t.

If on the other hand R′(t) ̸= 0, it follows from the developability condition that the vectors
R(t)×X′(t) and R(t)×R′(t) are parallel and non-zero. Consequently, the normal vector is constant
except for a unique parameter combination (t, ut) where P̃(t, ut) = 0, that is,

ut = −(X′(t) × R(t)) · (R′(t) × R(t))
|R′(t) × R(t)|2

= −X′(t) · R′(t)
|R′(t)|2

.

Note that this value is independent of the parametrization of the surface; thus, these points are
(proper) singularities of the developable surface.
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R′(t) = 0

(a) Cylinder.

Xe(t) = const.

(b) Cone.

Xe(t)

(c) Tangent developable.

Figure 2.3: Three basic types of a smooth developable patch.

Corollary 2.2. Let S(t, u) be the parametrization of a smooth developable patch. For parameter
values t where |R′(t)|2 = 0, the incident ruling is singularity-free. If on the other hand |R′(t)|2 ̸= 0,
the unique singular point of a ruling is located at

Xe(t) = X(t) + e(t)R(t),

where
e(t) = −(X′(t) × R(t)) · (R′(t) × R(t))

|R′(t) × R(t)|2
= −X′(t) · R′(t)

|R′(t)|2
. (2.7)

Locally, a developable patch can be of one of three types: cylinder, cone, or general developable.
For open parameter intervals J ⊆ T where R(t) is constant for all t ∈ J , the surface is locally

a cylinder or cylindrically ruled. If there is an open parameter interval J where Xe(t) is constant,
then the developable surface is locally a cone or conically ruled, with Xe(t) being its cone apex.

The third scenario arises when Xe(t) does not fit either of the prior descriptions for all open
subintervals of an open interval J ⊆ T . If the surface is C2 for all t ∈ J , the curve of singularities is
termed the edge of regression. As the tangents of the edge of regression are parallel to the incident
rulings, this surface type is also known as a tangent developable. For surfaces that are only C1 for
all values of t ∈ J , the curve Xe(t) is only continuous. Further analysis of this kind is left for future
work.

2.3.2 Singularities on Discrete Patches

Another interpretation of the singularities in a smooth patch is that they are located at the inter-
sections of two infinitesimally close rulings. In the case of a discrete patch, singularities occur at
the intersections of two consecutive rulings. Specifically, when two consecutive ruling vectors are
not parallel, that is R(ti+1) ̸= R(ti), we define Xe(ti+1) to be the intersection of rulings incident
to X(ti) and X(ti+1).

Lemma 2.4. Let S(t, u) be the parametrization of a discrete developable patch. At parameters
ti+1 with |R(ti+1) − R(ti)|2 = 0, the incident ruling is singularity-free. If on the other hand
|R(ti+1) − R(ti)|2 ̸= 0, the unique singular point of the ruling is located at

Xe(t) = X(t) + e(t)R(t),

where e(t) : T\{t0} → R is

s(ti+1) = −((X(ti+1) − X(ti)) × R(ti)) · (R(ti+1) × R(ti))
|R(ti+1) × R(ti)|2

,

for 0 ≤ i < n.
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Xe(t)

X(t)

Xp(t)

Figure 2.4: Developable patch with curve of regression Xe(t) (red) and parallel curves Xp(t) (gray)
of the directrix X(t) (purple).

Proof. Since two consecutive rulings are coplanar, they have an real or ideal intersection. We
compute this intersection by finding e(ti) and e(ti+1) such that

0 = (X(ti+1) + s(ti+1)R(ti+1)) − (X(ti) + s(ti)R(ti))
= X(ti+1) − X(ti) − s(ti)R(ti) + s(ti+1)R(ti+1).

For parameter values with R(ti+1) × R(ti) ̸= 0, the vector X(ti+1) − X(ti) − s(ti)R(ti) is not
parallel to R(ti) and has non-zero length. Consequently, we rewrite the constraint in terms of

0 = (X(ti+1) − X(ti) + s(ti+1)Ri+1 − s(ti)R(ti)) × R(ti)
= (X(ti+1) − X(ti)) × R(ti) + s(ti+1) (R(ti+1) × R(ti))

Similar to above, the vectors (X(ti+1) − X(ti)) × R(ti) and (R(ti+1) × R(ti)) are parallel to the
incident tangent plane normal. Consequently, the above is the zero vector if and only if the product
with a parallel non-zero vector is zero, that is,

0 = ((X(ti+1) − X(ti)) × R(ti)) · (R(ti+1) × R(ti)) + s(ti+1) |R(ti+1) × R(ti)|2 .

This implies the stated expression.

Similar to the smooth case, we can distinguish between three types of discrete patches: cylinder,
cone, or tangent developables.

Let J be a set of at least three consecutive parameters values ti. If R(t) is constant for all
ti ∈ J , the surface is locally a cylinder or cylindrically ruled. If Xe(t) is constant for all t ∈ J , the
patch is locally a cone or conically ruled, with Xe(t) being its cone apex.
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The third scenario arises when the patch does not fit either of the prior descriptions for all
subsets of at least size three of a set of parameter values J . Here, we refer to Xe(t) as the (discrete)
edge of regression. As the discrete tangents of the polyline Xe(t) are parallel to the incident rulings,
this surface type is also termed a discrete tangent developable.

2.4 Tangent-Parallel Curves

Given a developable patch S(t, u) by its directrix X(t) and ruling direction R(t), we study the
curves whose tangents are parallel to the tangents of X(t). Specifically, we name a curve Xp(t) =
X(t) + p(t)R(t) a tangent-parallel curve of X(t), if the tangents of X(t) and Xp(t) at the same
parameter value are parallel; see Figure 2.4. These curves play an important role in the following
chapters, in particular Section 3.5.2, as they share a similar kinematic behavior when incident
patches are folded.

2.4.1 Tangent-Parallel Curves on Smooth Patches

In the following, we review selected properties of smooth parallel curves, and refer to Tachi [101]
for another exposition.

Lemma 2.5. Let X(t) be the directrix of a developable surface S(t, u). The tangent-parallel curves
with respect to X(t) on S(t.u) can be parametrized by

Xp(t) = X(t) + p(t)R(t), (2.8)

where p(t) is specified by the initial value problem

p′(t)
p(t) = −(R′(t) × X′(t)) · (R(t) × X′(t))

|R(t) × X′(t)|2
and p(0) = p0 ̸= 0. (2.9)

Proof. We are interested in length functions that satisfy X′
p(t) × X′(t) = 0, that is,

0 = (X′(t) + p(t)R′(t) + p′(t)R(t)) × X′(t) = p(t)
(
R′(t) × X′(t)

)
+ p′(t)

(
R(t) × X′(t)

)
It follows from the developability condition that the vectors R′(t) × X′(t) and R(t) × X′(t) are
parallel. Consequently, their sum is the zero vector if and only if the scalar product of their sum
with a parallel non-trivial vector is zero. Since R(t) × X′(t) ̸= 0, the above expression is equivalent
to

0 = p(t)
((

R′(t) × X′(t)
)

·
(
R(t) × X′(t)

))
+ p′(t)

∣∣R(t) × X′(t)
∣∣2 ,

which implies the above equation.

Lemma 2.6. The solution to the initial value problem in Equation (2.9) reads

p(t) = p0e
−
∫ t

0
(R′(u)×X′(u))·(R(u)×X′(u))

|R(u)×X′(u)|2
du
. (2.10)
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2.4.2 Tangent-Parallel Polylines on Discrete Patches

In the discrete case, the tangent-parallel curves are polylines Xp(t) : T → R3 with vertices on the
rule lines of S(t, u) such that X(ti+1) − X(ti) and Xp(ti+1) − Xp(ti) are parallel.

Lemma 2.7. Let X(t) be a directrix of a developable surface S(t, u). The tangent-parallel curves
with respect to X(t) can be parametrized by

Xp(t) = X(t) + p(t)R(t),

where p(t) is specified by the difference equation, namely,

p(ti+1)
p(ti)

= (R(ti) × (X(ti+1) − X(ti))) · (R(ti+1) × (X(ti+1) − X(ti)))
|R(ti+1) × (X(ti+1) − X(ti))|2

and p(t0) = p0 ̸= 0.

(2.11)

Proof. Similar to above, we want the length function to satisfy

0 = (Xp(ti+1) − Xp(ti)) × (X(ti+1) − X(ti)) ,

or, equivalently,

0 = (X(ti+1) − X(ti) + p(ti+1)R(ti+1) − p(ti)R(ti)) × (X(ti+1) − X(ti))
= p(ti+1) (R(ti+1) × (X(ti+1) − X(ti))) − p(ti) (R(ti) × (X(ti+1) − X(ti))) .

Similar to the proof of Lemma 2.5, det(X(ti+1) − X(ti),R(ti),R(ti+1)) = 0, and the two vectors
R(ti+1) × (X(ti+1) − X(ti)) and R(ti) × (X(ti+1) − X(ti)) are parallel. Consequently, assuming
R(ti+1) × (X(ti+1) − X(ti)) ̸= 0, the expression is equivalent to

0 = p(ti+1) |R(ti+1) × (X(ti+1) − X(ti))|2

− p(ti) (R(ti) × (X(ti+1) − X(ti))) · (R(ti+1) × (X(ti+1) − X(ti))) ,

resulting in the stated expression.

Lemma 2.8. The difference equation stated in Equation (2.11) allows for the following solution

p(tj) = p0

j−1∏
i=0

(R(ti) × (X(ti+1) − X(ti))) · (R(ti+1) × (X(ti+1) − X(ti)))
|R(ti+1) × (X(ti+1) − X(ti))|2

,

for 0 ≤ j < n.
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Part I

Curvature-Based Computation of
Configurations
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Chapter 3

Gluing and Creasing Using Patch
Characteristics

The content of this chapter is unpublished and is based on discussions with Erik Demaine and Tomohiro
Tachi.

Overview

In this chapter, we explore computational methods for joining multiple smooth patches with C2

directrices along their curved boundaries. Initially, we introduce the patch characteristics, five
functions that describe the geometry of a smooth ruled surface. We use these functions to express
the developability condition and other useful geometric properties. Next, we discuss the process of
joining two developed patches with specified rulings, emphasizing creasing as a special case. Subse-
quently, we address the problem of joining three developed patches along their curved boundaries
when provided with only partial ruling information. Finally, we illustrate how to add additional
patches to a pre-existing glued or creased structure, and highlight the special case of adding patches
along tangent-parallel curves due to their special kinematic properties.

3.1 Introduction
Shapes that can be obtained by joining pieces of paper along curves allow the generation of intricate
shapes. The parametric reconstruction of glued or creased shapes is a non-trivial task, for at least
two reasons: First, it is hard to make a good guess about the rulings of the surface. Second,
the underlying material allows imperfections, resulting in shapes that cannot be achieved with the
provided crease pattern [16].

In this chapter, we provide a set of tools for the computational reconstruction of shapes obtained
by gluing or creasing smooth patches. Up to this point, we have represented the ruling direction
independently of the directrix. Particularly, in the smooth case, finding pairs of functions for
the directrix and ruling direction that satisfy the developability condition (and are not cylinders
and cones) is not very intuitive. Consequently, it is often more convenient to represent the ruling
direction in relation to a local geometry-encoding coordinate system.

In Section 3.2, we build upon existing theoretical work, such as Fuchs and Tabachnikov [26] and
Demaine et al. [17, 18], and use an orthonormal frame associated with the directrix to locate the
ruling directions. As a result, we identify five scalar-valued functions which specify the configuration
of a patch with specified rulings. These are termed as patch characteristics. Analogous to Chapter 2,
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these patch characteristics must satisfy the developability condition to ensure that the patch is
developable. Additionally, we discuss how other features, such as singularities and tangent-parallel
curves, simplify in terms of patch characteristics. Furthermore, we explain how a subset of these
five functions is capable of defining a configuration of a developable patch.

Next, in Section 3.3, we discuss the method of joining two developed patches with specified
rulings. Although the methodology for determining the configuration of two glued patches is likely
not novel, we believe our approach offers deeper insights into its computation. Specifically, we
introduce a method to determine initial values based on a specified initial opening angle between
the incident tangent planes of the two surfaces. Notably, in the unique case where both curves are
identical and the patches represent opposite sides of the shared curve, the desired shapes can be
achieved using a curved crease.

In Section 3.4, we consider the gluing of three patches along pairs of boundaries. As prescribing
the rulings of all three patches would be overconstraining, we consider only partial ruling infor-
mation as input. We provide three strategies how this partial ruling information can be specified.
However, as of now the method is limited by the computational constraint that the relationship
between the curve and its arc-length parametrized curvature of at least one pair of curves needs to
be known.

Finally, in Section 3.5, we discuss how to append a patch to a curve on a patch of an already
glued or creased pair. We highlight the special case where the patch is appended along tangent-
parallel curves.

3.2 Patch Characteristics

3.2.1 Parametrization of Ruled Patches

We proceed with the definition of the five functions K(t), τ(t), s(t), φ(t), and θ(t) comprising the
patch characteristics. Three of the five functions describe a space curve, the directrix, equipped
with an orthonormal frame, while the other two determine the ruling direction in relation to the
local orthonormal frame.

We draw inspiration from existing work, such as Fuchs and Tabachnikov [26] or Demaine et
al. [17, 18], that devise properties of the directrix and incident developable surfaces joined along
a curved crease based on differentiation. While these existing approaches provide valuable insight
into the geometry, when it comes to practical applications, they are limited by the requirement
that the directrix needs to be properly curved. Consequently, cases where the curvature vanishes
require special consideration. In this part of the thesis, our primary focus is on determining the 3D
configuration based on a provided development, mostly using integration. As a result, we deviate
a bit from the existing literature and approach the computations from another perspective.

Directrix and orthonormal frame

The first three patch characteristic functions K(t) : [0, tmax] → R, τ(t) : [0, tmax] → R, and
s(t) : [0, tmax] → R≥0 define the directrix X(t) and its orthonormal frame (T(t),N(t),B(t)) through
the Frenet-Serret formulas:

X′(t)
T′(t)
N′(t)
B′(t)

 = s′(t)


1 0 0
0 K(t) 0

−K(t) 0 τ(t)
0 −τ(t) 0


T(t)

N(t)
B(t)

 . (3.1)
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X(t)

B(t)

N(t)

P(t)×T(t)

T(t)
P(t)φ(t)

θ(t)
B(t)

P(t)

N(t)

φ(t)

P(t)×T(t)

x(t)

t(t)

n(t)

θ(t)

Figure 3.1: Illustration of the notation of a patch and its development involving patch characteris-
tics.

Here we require that the K(t), τ(t), and s′(t) are continuous, and s′(t) > 0.
Note that we permit K(t) to take negative values. Moreover, isolated points or intervals where

K(t) = 0 or τ(t) = 0 still yield a continuous frame (T(t),N(t),B(t)). Consequently, this described
frame is not a Frenet-frame. However, at parameter values where the Frenet-frame is defined, the
computed frame coincides with the Frenet-frame up to sign. Additionally, K(t) corresponds to the
curvature of the directrix up to sign, while τ(t) is the torsion of the directrix when defined. We
will refer to K(t) as the (signed) curvature and to τ(t) as the torsion. Furthermore, s(t) denotes
the arc length of the directrix, and s′(t) represents the parametrization speed.

Ruling direction

The remaining two patch characteristic functions, the inclination angle φ(t) : [0, tmax] → (−π, π]
and the ruling angle θ(t) : [0, tmax] → (0, π), parametrize the unit-length ruling vectors R(t) with
respect to the local frame (T(t),N(t),B(t)) of X(t); see Figure 3.1. The angle φ(t) encodes the
angle between the tangent plane and the local frame. Specifically, let Π(t) be a tangent plane, then
its normal vector P(t) can be represented as

P(t) = cosφ(t) B(t) + sinφ(t) N(t), (3.2)

where φ(t) is the signed angle between P(t) and B(t).
Within the plane Π(t), we locate the ruling direction using the ruling angle θ(t) as

R(t) = cos θ(t) T(t) + sin θ(t) (P(t) × T(t))
= cos θ(t) T(t) + sin θ(t) (cosφ(t) N(t) − sinφ(t) B(t)) . (3.3)

For the ruling direction to be at least C1, we require θ(t) and φ(t) to be C1. Additionally, we exclude
the undesirable cases where θ(t) ∈ {0, π}, that is, cases where the ruling direction is parallel to the
tangent direction.
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3.2.2 Developability Condition and Development

The following lemma is a translation of Lemma 2.1 on the developability condition and the devel-
opment.

Lemma 3.1. A smooth ruled surface S(t, u) = X(t) +uR(t) parametrized using patch characteris-
tics (as defined in Section 3.2.1) is developable if and only if the developability condition is satisfied
for all t ∈ T ,

K(t) sinφ(t) cot θ(t) = −τ(t) + φ′(t)
s′(t) . (3.4)

The development s(t, u) = x(t) + ur(t) of such a developable patch S(t, u) can be obtained as
r(t) = (cosα(t), sinα(t), 0), where

α′(t) = θ′(t) + s′(t)K(t) cosφ(t)
sin θ(t)

and x(t) = (xx(t),xy(t), 0), where(
x′

x(t)
x′

y(t)

)
=
(
s′(t) cos θ(t) cosα(t) + s′(t) sin θ(t) sinα(t)
s′(t) cos θ(t) sinα(t) − s′(t) sin θ(t) cosα(t)

)
.

Proof. We first simplify the developability condition (2.3). It follows from Equation (3.3) and
X′(t) = s′(t)T(t) that

X′(t) × R(t) = s′(t) sin θ(t) (cosφ(t) B(t) + sinφ(t) N(t)) .

Differentiating Equation (3.3) and using the Frenet-Serret equations (Equation (3.1)) yields

R′ = −(θ′ + s′K cosφ) sin θ T
+
(
(θ′ cosφ+ s′K) cos θ + (−φ′ + s′τ) sinφ sin θ

)
N (3.5)

+
(
−θ′ sinφ cos θ + (−φ′ + s′τ) cosφ sin θ

)
B

Ultimately, we obtain

0 = det(X′(t),R(t),R′(t))
= (X′(t) × R(t)) · R′(t)

= s′(t)2 sin θ(t)
((

τ(t) − φ′(t)
s′(t)

)
sin θ(t) +K(t) sinφ(t) cos θ(t)

)
which results in the claimed equation.

Finally, inserting the above expressions in the differential equations that determine the devel-
opment yields the above differential equations.

3.2.3 Developed Curvature of the Directrix

In this section we consider the curvature of the directrix as a curve on S(t, u) and present another
method for the computation of the development. In a sense, the approach for computing the
development is the dual of the method presented earlier. While the prior method determined
the ruling directions first, and determined the developed directrix in a second step, the method
presented next first calculates the developed directrix and subsequently the rulings.
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s′(t)K(t)

s′(t)k(t)

N(t)

B(t)

φ(t)

φ(t)

P(t)
P(t)×T(t)

Figure 3.2: Illustration of the relationship between curvatures K(t) and k(t).

For a given developable surface S(t, u), the position of the tangent plane Π(t) with respect to
the directrix’s frame influences the geodesic curvature k(t) of X(t) as a curve on S(t, u), that is,
the curvature of the projection of X(t) on Π(t) at t,

k(t) = K(t) cosφ(t); (3.6)

see Figure 3.2. In particular, the geodesic curvature is zero if P(t) = ±N(t), and it is ±K(t) if
P(t) = ±B(t).

Since k(t) is an intrinsic quantity, computing the development amounts to constructing a curve
x(t), the developed directrix, in the xy-plane with the same parametrization speed as X(t) and
curvature k(t). To be consistent with the 3D configuration, we consider k(t) to be a signed curva-
ture. Particularly, we define the normal n(t) of x(t) to be the tangent t(t) rotated by π

2 , that is,
n(t) = (0, 0, 1) × t(t) and require 1

s′(t)t′(t) = k(t)n(t). Consequently, n(t) is the left-side normal.
For a given geodesic curvature k(t) and parametrization speed s′(t), we now discuss how to

obtain the corresponding developed curve. For this purpose, we assume that the tangent t(t) of
the developed directrix x(t) is parametrized by an initially unknown angular function β(t), that is,

t(t) = (cosβ(t), sin β(t), 0).

Note that the angular function β(t) also specifies the normal n(t) = (0, 0, 1) × t(t). Since

t′(t) = β′(t)(− sin β(t), cosβ(t)) = β′(t)n(t),

the curvature simplifies to

k(t) = 1
s′(t)t′(t) · n(t) = β′(t)

s′(t) .

We obtain the angular function β(t) by integrating s′(u)k(u), that is,

β(t) = β0 +
∫ t

0
s′(u)k(u) du,
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where β0 = β(0) influences the orientation of the initial tangent. Finally, we integrate the tangent
direction to obtain the developed directrix

x(t) = x0 +
∫ t

0
s′(u)t(u) du,

where x0 = x(0) defines the initial position of the directrix.
As unrolling preserves the angles between rulings and tangents, the developed ruling direction

is given by

r(t) = cos θ(t) t(t) + sin θ(t) n(t).

3.2.4 Singularities

We now consider a statement analogous to Corollary 2.2 using patch characteristics:

Lemma 3.2. Let S(t, u) be a parametrization of a smooth developable patch using patch character-
istics. For parameter values t where θ′(t) + s′(t)k(t) = 0, the incident ruling is singularity-free. If
on the other hand θ′(t) + s′(t)k(t) ̸= 0, the unique singular point of a ruling is located at

Xe(t) = X(t) + e(t)R(t),

where
e(t) = s′(t) sin θ(t)

θ′(t) + s′(t)k(t) . (3.7)

Proof. Taking advantage of the isometry between 3D and 2D, we perform the necessary computa-
tions in 2D. First, we consider

r′(t) =
(
θ′(t) + s′(t)k(t)

)
(− sin θ(t) t(t) + cos θ(t) n(t)) .

Since |R′(t)| = |r′(t)|, a singularity-free ruling is characterized by θ′(t) + s′(t)k(t) = 0. For pa-
rameter values t where θ′(t) + s′(t)k(t) ̸= 0, we determine the location of e(t) using the developed
tangent and ruling direction using Corollary 2.2, namely,

e(t) = −x′(t) · r′(t)
|r′(t)|2

= −(−s′(t) sin θ(t)) (θ′(t) + s′(t)k(t))
(θ′(t) + s′(t)k(t))2 = s′(t) sin θ(t)

θ′(t) + s′(t)k(t) ,

since x′(t) = s′(t)t(t).

3.2.5 Tangent-Parallel Curves

Next, we consider a statement analogous to Lemma 2.5 using patch characteristics:

Lemma 3.3. Let X(t) be the directrix of a developable surface S(t, u) parametrized using patch
characteristics. The tangent-parallel curves with respect to X(t) can be parametrized by

Xp(t) = X(t) + p(t)R(t),

where p(t) is specified by the initial value problem

p′(t)
p(t) = − cot θ(t)

(
θ′(t) + s′(t)k(t)

)
and p(0) = p0. (3.8)
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Proof. Again, we use the 2D quantities to simplify the computations. First, note that

p′(t)
p(t) = −(r′(t) × x′(t)) · (r(t) × x′(t))

|r(t) × x′(t)|2
= −(r(t) · x′(t))(r′(t) · x′(t))

|x′(t)|2 − |r(t) · x′(t)|2
.

Consequently, it follows that

p′(t)
p(t) = −(s′(t) cos θ(t))(−s′(t) sin θ(t)(θ′(t) + s′(t)k(t))

s′(t)2 − (s′(t) cos θ(t))2 = − cot θ(t)
(
θ′(t) + s′(t)k(t)

)
.

We use the patch characteristic functions to express the following relationship between the
parametrization speeds s′(t) and s′

p(t) of the directrix and its tangent parallel counterpart; see
Tachi [101].

Lemma 3.4. The parametrization speed s′(t) of x(t) and the parametrization speed s′
p(t) of xp(t)

are related by

s′
p(t) = s′(t) − θ′(t) + s′(t)k(t)

sin θ(t) p(t) =
(

1 − p(t)
e(t)

)
s′(t). (3.9)

where e(t) is the distance to the singular point on a ruling from Equation (2.7).

Proof. Recall that with vanishing normal component, the first derivative of xp(t) reads

x′
p(t) = (s′(t) + p′(t) cos θ(t) − p(t) sin θ(t)(θ(t) + s′(t)k(t)))t(t).

Solving Equation (2.9) for p′(t), and using the resulting expression in the previous equation results
in

x′
p(t) = 1

sin θ(t)
(
s′(t) sin θ(t) −

(
θ′(t) + s′(t)k(t)

)
p(t)

)
t(t)

Note that we are interested in solutions were x′
p(t) · r⊥(t) < 0. With r⊥(t) = − sin θ(t) t(t) +

cos θ(t) n(t), this constraint simplifies to

x′
p(t) · r⊥(t) = p(t)

(
θ′(t) + s′(t)k(t)

)
− s′(t) sin θ(t) < 0.

Since sin θ(t) > 0, the parametrization speed s′
p(t) =

∣∣∣x′
p(t)

∣∣∣ of xp(t) simplifies with the above
inequality to

s′
p(t) =

∣∣∣x′
p(t)

∣∣∣ = s′(t) − θ′(t) + s′(t)k(t)
sin θ(t) p(t).

Lemma 3.5. For s′
p(t) ̸= 0, the curvature kp(t) of xp(t) relates to the curvature k(t) of x(t) by

s′
p(t)kp(t) = s′(t)k(t).

Furthermore, the curvature and Kp(t) and torsion τp(t) of Xp(t) relate to the curvature K(t) and
torsion τ(t) of X(t) by

s′
p(t)Kp(t) = s′(t)K(t) and s′

p(t)τp(t) = s′(t)τ(t).
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Proof. Since the first derivatives of x(t) and xp(t) are parallel, their tangents and normals are the
same. Therefore,

kp(t) = 1
sp(t)t′(t) · n(t) = s′(t)

s′
p(t)k(t).

Similar observations hold for their 3D counterparts. In particular, we have that X′(t) and X′
p(t)

are parallel, and thus the tangent directions of X(t) and Xp(t) are the same. It follows that the first
derivatives of the tangent vectors of X(t) and Xp(t) are the same. Consequently, the normal vectors
of X(t) and Xp(t) are the same too. Thus the two curves have the same frame (T(t),N(t),B(t)).
We conclude

Kp(t) = 1
sp(t)T′(t) · N(t) = s′(t)

s′
p(t)K(t) and τp(t) = 1

sp(t)N′(t) · B(t) = s′(t)
s′

p(t)τ(t).

Corollary 3.1. If K(t) ̸= 0 and Kp(t) ̸= 0, the ratio between torsion and curvature of parallel
curves is constant along a ruling, that is,

τp(t)
Kp(t) = τ(t)

K(t) .

3.2.6 Ruling Curvature

In later sections, we will consider configurations of developed patches with specified rulings. To
show that two configurations of the same patch with specified rulings are identical, we follow the
approach by Demaine et al. [17, 18] and define a measure for the amount of bending at each ruling,
the so-called ruling curvature. This concept is closely related to principal curvature lines, which
we will address first.

Principal curvature lines

If S(t, u) is a smooth developable patch, one of its principal curvature direction is aligned with the
incident ruling direction [12, 75]. Consequently, one of the principal curvatures is zero, and the
rulings compose one family of curvature lines.

As the principal curvature directions are perpendicular at non-umbilical points, the other prin-
cipal direction is perpendicular to the rulings. The family of curves on the surface whose tangents
are perpendicular to the rulings form the second family of curvature lines. Since their tangents
enclose a constant angle with the ruling directions, namely π

2 , they form a family of tangent parallel
curves. The following lemma shows how to obtain the parametrization of a principal curvature line
on a given developable surface.

Lemma 3.6. Given a parametrization S(t, u) = X(t) + uR(t) of a smooth patch, a principal
curvature line can be parametrized by

Xc(t) = X(t) + c(t)R(t) (3.10)

where c(t) is the solution to the initial value problem

c′(t) = −R(t) · X′(t) and c(0) = c0.
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D1(t)
T(t)

P(t)×T(t)

D2(t)

D3(t)

X(t)

Figure 3.3: Illustration of the Darboux-frame of a principal curvature line of a patch.

Proof. We make the ansatz that a principal curvature is parametrized as stated in Equation (3.10)
for an initially unknown length function c(t). Since the tangent of Xc(t) is perpendicular to r(t),
we require X′

c(t) · R(t) = 0. Since R′(t) · R(t) = 0, this constraint simplifies to

0 = X′
c(t) · R(t) =

(
X′(t) + c′(t)R(t) + c(t)R′(t)

)
· R(t) = X′(t) · R(t) + c′(t),

which yields the differential equation stated above.

A phrasing of Lemma 3.6 using patch characteristics is as follows:

Lemma 3.7. Given a parametrization S(t, u) = X(t) + uR(t) of a smooth patch using patch
characteristics, the length function of the principal curvature line in Equation (3.10) simplifies to

c(t) = c0 −
∫ t

0
s′(u) cos θ(u)du,

where c0 = c(0).

Proof. The above follows directly from the definition of the ruling direction in Equation (3.3) since
R(t) · X′(t) = s′(t) cos θ(t).

Principal curvatures

We continue our analysis by computing the non-trivial principal curvature of a developable strip.
For this purpose, recall that the Darboux frame of a curve on a surface is a frame that is aligned

with the incident surface’s tangent plane; see [90, Chapter 4]. Specifically, the Darboux frame of
a curve X(t) on a surface S(t, u) consists of its tangent vector D1(t), the incident tangent plane
normal D3(t), and the cross-product D2(t) = D3(t) × D1(t) of these two vectors. The Darboux-
frame satisfies the following differential equations

1
s′(t)

D′
1(t)

D′
2(t)

D′
3(t)

 =

 0 κg(t) κn(t)
−κg(t) 0 τr(t)
−κn(t) −τr(t) 0


D1(t)

D2(t)
D3(t)

 ,
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where s′(t) is the curve’s parametrization speed. In addition, κg(t) denotes the geodesic curvature,
κn(t) the normal curvature, and τr the relative torsion.

We now consider the Darboux frames along a principal curvature line Xc(t) of a developable
surface. For this purpose, we set D3(t) = P(t) to be the incident tangent plane normal, D2(t) =
R(t), and D1(t) = R(t) × P(t); see Figure 3.3.

Note that since the normal along a ruling of a tangent developable is constant, the Darboux
frame is the same for all points along a ruling. Consequently, the product of parametrization speed
s′

c(t) of Xc(t) and one of the three quantities, the geodesic curvature κg,c(t), the normal curvature
κn,c(t), or relative torsion τc(t), are the same for all points of a ruling.

Before we proceed in computing the quantities, note that

R(t) × P(t) = sin θ(t) T(t) − cos θ(t) (P(t) × T(t))
= sin θ(t) T(t) − cos θ(t) (cosφ(t) N(t) − sinφ(t) B(t)) . (3.11)

Relative torsion. We first consider the relative torsion. Since

s′
c(t)τc(t) = D3(t) · D′

2(t) = P(t) · R′(t) = 0

This is not surprising, since the relative torsion vanishes for principal curvature lines.

Geodesic curvature of the (non-trivial) principal curvature lines. Using Equation (3.5)
and Equation (3.11), we obtain

s′
c(t)κg,c(t) = −D′

3(t) · D1(t) = −R′(t) · (R(t) × P(t)) = θ′(t) + s′(t)k(t)

Consequently, observe that |s′
c(t)κg,c(t)| = |R′(t)| = |r′(t)|. Notably, the absolute value of the

geodesic curvature of an arc-length parametrized principal curvature line only depends on the
change of ruling directions, not their displacement.

Normal curvature of the (non-trivial) principal curvature lines. Finally, we compute the
non-trivial curvature as the normal curvature of the specified Darboux-frame. Using Equation (3.4)
for θ(t) ̸= 0, this curvature simplifies to

s′
c(t)κn,c(t) = −D′

2(t) · D1(t)
= −P′(t) · (R(t) × P(t))
= − cos θ(t)(s′(t)τ(t) − φ′(t)) + sin θ(t)s′(t)K(t) sinφ(t)

= s′(t)K(t) sinφ(t) 1
sin θ(t) .

Ruling curvature

The quantity s′
c(t)κn,c(t) encodes the bend of the surface perpendicular to the ruling direction. We

therefore name it the ruling curvature:

V (t) = s′
c(t)κn,c(t) = s′(t)K(t) sinφ(t) 1

sin θ(t) . (3.12)

In the next lemma, we demonstrate that (up to Euclidean motion) a 3D patch is specified by its
development and a scalar-valued function V (t). Upon successful construction, V (t) will represent
the patch’s curvature. Consequently, we can use the ruling curvature to assess whether the bent
states of a developed patch with specified rulings are the same, as we will do in the subsequent
chapters.
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(a) Developed patch with specified rulings parametrized for t ∈ [0, 2π] with an inflection point at t = π.

(b) Bending with prescribed torsion (τ(t) = 0).
Successful bend (left) and premature termination with φ(t′) = π

2 (right).

(c) Bending with prescribed inclination angle φ(t).
Successful bend with φ(π) = k(π) = 0 (left) and premature termination with φ(π − 0.1) = 0 (right).

(d) Bending with prescribed curvature K(t).
Successful bend with K(π) = k(π) = 0 (left) and premature termination because |K(t′)| < |k(t′)|.

Figure 3.4: Various configurations of a developed patch with specified rulings.

63



Lemma 3.8. The configuration of a developable patch is defined by its development with specified
rulings and the ruling curvature V (t).

Proof. Assuming that we are given a parametrization of a developed patch with specified rulings
s(t, u) = x(t) + ur(t), where s′(t) = |x′(t)|, we obtain a principal curvature line

xc(t) = x(t) + c(t)r(t)

and its parametrization speed s′
c(t) using Lemma 3.6,

We obtain the space curve Xc(t) corresponding to xc(t) by integrating the Darboux frame equa-
tions with normal curvature 1

s′
c(t)V (t), geodesic curvature 1

s′
c(t) (θ′(t) + s′(t)k(t)), and zero relative

torsion. Additionally, the ruling vector is the second vector of the integrated frame.
Ultimately, we obtain the directrix as X(t) = Xc(t) − c(t)R(t), resulting in the to s(t, u)

isometric parametrization S(t, u) = X(t) + uR(t).

3.2.7 Bending a Developed Patch with Specified Rulings

To summarize the previous considerations, the development of a patch with specified rulings is
determined by the curvature k(t) and the parametrization speed s′(t) of its developed directrix
x(t), along with a function that encodes the ruling angles θ(t) ∈ (0, π).

The 3D configuration is further characterized by three additional functions: the signed curvature
K(t) and torsion τ(t) of its directrix X(t), and the inclination angle φ(t). All these quantities are
subject to constraints that connect the curvatures and the inclination angle (see Equation (3.6))
and enforce developability (see Equation (3.4)).

In the following, we assume that the development of a patch with specified rulings is provided.
We explore how to specify the range of shapes it can be bent into, in addition to Lemma 3.8.
Specifically, we demonstrate how to retrieve the remaining quantities if one of the functions K(t),
τ(t), or φ(t) is given.

Prescribed torsion τ (t)

If we are given the torsion τ(t), the angular function is specified by the following initial value
problem:

φ′(t) = (cot θ(t)k(t) tanφ(t) + τ(t)) s′(t), where φ(0) = φ0.

However, the computation of a suitable inclination angle might encounter premature failure or not
succeed at all. If k(t′) ̸= 0 or θ(t′) ̸= π

2 , the computed angle φ(t) cannot exceed φ(t′) = ±π
2 , as this

would result in φ(t′) = ∞. Specifically, we need the limit limt→t′ cot θ(t)k(t) tanφ(t) to exist. This
constraint is not easily achievable, as the trajectory of φ(t) depends on the initial value φ0.

Nevertheless, there usually exists a one-parameter family of solutions corresponding to suitable
initial values for φ0. Once a suitable φ(t) is computed, the curvature is given by K(t) = k(t)

cos φ(t) .
Note that if k(t′) ̸= 0 and φ(t′) = ±π

2 , it follows that K(t′) = ∞. Consequently, we need
limt→t′

k(t)
cos φ(t) to be finite.

Prescribed inclination angle φ(t)

If we are given the inclination angle φ(t), we obtain the curvature and torsion as follows

K(t) = k(t)
cosφ(t) and τ(t) = −k(t) cot θ(t) tanφ(t) + φ′(t)

s′(t) .
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Figure 3.5: Parametrization of a Möbius-strip in equilibrium. Left: Space curve and developed
patch with unspecified rulings. Right: Patch attached to the space curve. The parametrization
of the space curve and the resulting developable surface was developed by Wunderlich [111] in the
context of a parametrization of a Möbius band in equilibrium.

Consequently, if φ(t′) = ±π
2 and k(t′) ̸= 0, we obtain K(t′) = ∞. Again we need limt→t′

k(t)
cos φ(t) to

be finite.

Prescribed curvature K(t)

If we are given the curvature K(t), we first set without loss of generality φ(t) = arccos
(

k(t)
K(t)

)
. It

follows that we require |K(t)| ≥ |k(t)|. Furthermore, if K(t′) = 0, we require limt→t′
k(t)
K(t) to exist.

However, this is usually the case since |K(t)| ≥ |k(t)|. If φ(t) is real-valued and differentiable along
an interval, we can use it to compute the torsion as

τ(t) = φ′(t)
s′(t) −K(t) sinφ(t) cot θ(t).

3.2.8 Gluing a Patch to a Specified Curve

Gluing an patch with unspecified rulings to a space curve has been studied in differential geometric
literature before, for instance, by Wunderlich [111] and Alese [3].

In the following, we assume that we are given a space curve X(t) and a directrix x(t) of a
developed patch with unspecified rulings. Let the 3D curve X(t) be defined by the curvature
function K(t), the torsion τ(t), and the parametrization speed s′(t). Additionally, without loss of
generality, we assume that x(t) has the same parametrization speed s′(t) as X(t) and its (signed)
curvature is represented by k(t).

Then, the two remaining degrees of freedom, the inclination angle φ(t) and ruling angle θ(t), can
be computed from the developability condition (Equation (3.4)) and curvature condition (Equa-
tion (3.6)). Specifically, for intervals where |K(t)| > |k(t)|, the inclination angle can be computed
as

φ(t) = ± arccos k(t)
K(t) .
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“right”

“left”
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Figure 3.6: Two developed patches with specified rulings and their configuration when glued along
their directrices.

Note that if k(t) ̸= 0, the there are two possible inclination angles that in general (for curves with
non-vanishing curvature) result in different surfaces.

Upon successful computation, the ruling angle can then be obtained from

cot θ(t) = −
τ − φ′(t)

s′(t)
K(t) sinφ(t) .

Figure 3.5 shows an example developed by Wunderlich [111] for the parametrization of a Möbius
strip in equilibrium.

3.3 Joining Two Patches Patches with Specified Rulings
In this section, we consider configurations obtained by gluing two developed patches with specified
rulings along curves. We show that the configurations are determined up to initial opening angle
of the configuration. We highlight the special case where the two gluing curves match in the
development, as the resulting configuration can be achieved by folding along a curved crease.

3.3.1 Notation

In the following, we examine two developed patches with specified rulings, each parameterized by a
directrix and a left-side ruling directions. Each directrix splits its respective developed patch into
two subpatches, as depicted in Figure 3.6. Since combining both developed subpatches from each
surface results in self-intersecting shapes, we focus on the case where we join two subpatches from
distinct patches. Without loss of generality, we assume the two parts of interest to be associated
with the left and right sides of the developed curves, respectively. More formally:

sL(t, u) = xL(t) + urL(t) and sR(t, u) = xR(t) − urR(t),

where xL(t) and xR(t) represent the two directrices that will be joined; see Figure 3.7. This
assumption is valid, as the right-side subpatch is the left-side subpatch of a reflected patch. Without
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(a) Development.

X(t)

φR(t)
φL(t)

B(t)

T(t)

N(t)

PR(t)
PL(t)

(b) Glued configuration.

Figure 3.7: Illustration of the notation used for gluing two patches with specified rulings in Sec-
tion 3.3.

loss of generality, we assume that the two curves have the same parametrization speed, that is,
|x′

L(t)| = |x′
R(t)|. The vectors rL(t) and rR(t) denote the (left-side) ruling directions of the patch.

These are defined as

rL(t) = cos θL(t) tL(t) + sin θL(t) nL(t) and rR(t) = cos θR(t) tR(t) + sin θR(t) nR(t),

where ti(t) are the tangents and ni(t) are the left-side normals of xi(t) as discussed in Section 3.2.3.
Lastly, kL(t) and kR(t) denote the signed curvatures of the curves xL(t) and xR(t), respectively.

Typically, the gluing of two patches does not have a planar configuration. However, when the
two curves are congruent, a planar arrangement of the joined patches is achievable. If the curves,
xL(t) and xR(t), are not related by a reflection, the patches can be connected along opposite sides
of the common curve, and the other glued states correspond to a creasing along the shared curve. In
contrast, when the curves are congruent and related by a reflection, such a combination is referred
to as a geodesic pair, as introduced in [74]. The planar configuration in this case corresponds to
two patches whose directrices are related by a reflection.

In the following, we aim to determine the patch characteristics of the patches SL(t, u) and
SR(t, u) corresponding to sL(t, u) and sR(t, u) with respect to the shared common glue curve X(t).
Since the curve is incident to both patches, the curvature and torsion functions of both patch charac-
teristics are the same, and we will denote them by K(t) and τ(t). Additionally, the parametrization
speed of X(t) is the same as of the developed curves, that is, s′(t) = |x′

L(t)| = |x′
R(t)|, and the ruling

angles are also specified by the development, that is, θL(t) and θR(t). We denote the inclination
angles with a corresponding subscript, φL(t) and φR(t). It therefore remains to compute the four
unknown functions: K(t), τ(t), φR(t) and φL(t).

3.3.2 Constraints

We derive the four quantities necessary to describe the 3D state from a differential-algebraic system
of the following four equations, which arise from the developability constraint in Equation (3.4) for
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each surface,

K(t) sinφL(t) cot θL(t) = −τ(t) + φ′
L(t)
s′(t) and K(t) sinφR(t) cot θR(t) = −τ(t) + φ′

R(t)
s′(t) ,

(3.13)

and the curvature constraint in Equation (3.6) for each surface,

kL(t) = K(t) cosφL(t) and kR(t) = K(t) cosφR(t). (3.14)

Before we discuss the computation of the 3D shape, we observe the following relationship
between solutions of the given differential-algebraic system:

Lemma 3.9. If S0 = (K(t), τ(t), φL(t), φR(t)) is a solution of the differential algebraic system in
Equations (3.13) and (3.14), then the following combinations are also solutions

S1 = (K(t),−τ(t),−φL(t),−φR(t)) ,
S2 = (−K(t),−τ(t), π − φL(t), π − φR(t)) ,
S3 = (−K(t), τ(t), φL(t) − π, φR(t) − π) .

The four corresponding solutions are related by Euclidean motions; see Figure 3.8.

Proof. The claim can be verified by inserting the quadruples of solutions into Equations (3.13)
and (3.14). Simplification results in the same conditions as the respective change of signs cancel
out. Furthermore, as the absolute value of the curvature and torsion are the same in all proposed
solutions, the curves will be related by an Euclidean motion. In particular, S0 and S1 relate to
S2 and S3 by a reflection about the initial rectifying plane. S0 and S2 relate to S1 and S3 by a
reflection about the initial osculating plane. Finally, S0 and S1 relate to S3 and S2 by a rotation
about the initial tangent direction by π.

In the following, we first consider the general case of non-congruent curves. We then address
the special case where the curves can be aligned, which corresponds to creasing the common curve.

3.3.3 Gluing: Joining Along Two Curves

In general, solving the differential-algebraic system presented in Equations (3.13) and (3.14) can
be challenging. Even sophisticated programs like Mathematica encounter difficulties, even for
relatively “simple” input functions kL(t), kR(t), θL(t), θR(t), and s′(t). To address this challenge,
we propose a rephrasing of this system, resulting in a single differential equation for one of the
inclination angles, and three explicit equations for the remaining three unknown functions.

To solve the differential equation, an initial value for the inclination angle is required. This
initial value determines the value of the other inclination angle, subsequently determining the
overall opening angle between the first two tangent planes. This reflects the discrete counterpart
of the problem, specifically the gluing of two PQ strips with equal edge lengths along the gluing
polyline. When the gluing process begins, there is one degree of freedom for the angle between the
initial two faces. As subsequent pairs of planar quads are attached, there are generally either two
or no possible configurations. In cases where two possible solutions exist, one of them typically
corresponds to the discrete counterpart of a smooth gluing.

In the subsequent discussion, we aim to derive a solution using an initial value problem for one
of the inclination angles, beginning at t = 0. The asymmetric nature of the problem has led us to
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sR(t, u)

xR(t)

xL(t)
sL(t, u)

xL(0)

xR(0)

(a) Development. (b) Glued configurations corresponding to S0, S1, S2, and S3.

Figure 3.8: Four congruent solutions corresponding to the same development and same initial frame.

situations where solving for one inclination angle becomes infeasible, while integration for the other
continues without issues. Specifically, points at which a curvature reaches zero present challenges
for the corresponding inclination angle. For instance, consider the development in Figure 3.8
(left). Note that xR(t) exhibits an inflection point, resulting in it vanishing curvature kR(t) at
an intermediate value. Attempting to integrate φR(t) would be problematic at this point. Yet,
integration of φR(t) with the right initial values results in the full gluing, as illustrated in Figures 3.8
and 3.10.

In the following, we will adaptively set either (A,B) = (L,R) or (A,B) = (R,L), and compute
a solution for φB(t) up to the point where integration meets an obstacle. Where feasible, we
will switch the roles of L and R and continue. Observations suggest that it is possible to stitch
together the integrated outcomes of the inclination angles alternately to achieve a solution for a
larger interval.

Until now, the curvatures of the developed patches only required to be continuous. For the
following simplifications, we require kA(t) and kB(t) to be C1.

Lemma 3.10. For kB(t) ̸= 0, the system of differential-algebraic equations in Equations (3.13)
and (3.14) can be rephrased as the explicit initial value problem

φ′
B(t) = σ(kAk

′
B − kBk

′
A) cosφB + s′kB

(
σ(k2

A cosφB − k2
B secφB) cot θA + k2

Bx tanφB cot θB

)
k2

Bx− σkAkB sinφB

where σ ∈ {−1, 1} and x(t) =
√

1 − k2
A(t)

k2
B(t) cos2 φB(t).

The initial value problem is locally real-valued if the initial value φB(0) ∈ [−π, π] satisfies∣∣∣∣kA(0)
kB(0) cosφB(0)

∣∣∣∣ ≤ 1.
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The inclination angle φB(t) and its first derivative φ′
B(t) specify the remaining functions as

K(t) = kB(t)
cosφB(t) ,

τ(t) = 1
s′(t)

(
φ′

B(t) − s′(t)kB(t) cot θB(t) tanφB(t)
)
,

φA(t) = σ arccos
(
kA(t)
kB(t) cosφB(t)

)
.

Proof. First, we use equations in Equation (3.13) to solve for the curvature and torsion of X(t),
resulting in

K(t) = φ′
A(t) − φ′

B(t)
s′(t) (cot θA(t) sinφA(t) − cot θB(t) sinφB(t)) , (3.15)

τ(t) = −φ′
A(t) cot θB(t) sinφA(t) − φ′

B(t) cot θA(t) sinφB(t)
s′(t) (cot θA(t) sinφA(t) − cot θB(t) sinφB(t)) . (3.16)

If kB(t) ̸= 0, it follows from Equation (3.14, left) that K(t) ̸= 0 and cosφB(t) ̸= 0. From the
equations in Equation (3.14) we obtain

cosφA(t) = kA(t)
kB(t) cosφB(t) =⇒ φA(t) = σ arccos

(
kA(t)
kB(t) cosφB(t)

)
, (3.17)

where σ ∈ {−1, 1}.
In order for the arccosine function to be real-valued, it is necessary for the absolute value of its

argument to be less than or equal to 1. Additionally, to obtain continuous solutions, we need to be
consistent in the choice of σ unless we encounter a point where

∣∣∣ kA(t)
kB(t) cosφB(t)

∣∣∣ = 1.
Differentiation of φA(t) yields

φ′
A(t) = σ

(kA(t)k′
B(t) − kB(t)k′

A(t)) cosφB(t) + kA(t)kB(t) sinφB(t)φ′
B(t)√

1 − kA(t)2

kB(t)2 cos2 φB(t)kB(t)2
. (3.18)

Finally, inserting Equations (3.15), (3.16), (3.17), and (3.18) in Equation (3.14, right) and solving
for φ′

B(t) results in the claimed equation.
The remaining functions are obtained in a straight-forward way. The expressions for curvature

and torsion can be obtained by solving Equation (3.14, right) or Equation (3.13, right) for K(t) or
τ(t), respectively. The expression for φA(t) follows Equation (3.17).

Note that in the special case where kA(t) = kB(t), it follows that φA(t) = |σφB(t)|. Additionally,
x(t) =

√
sin2 φB(t) and the differential equation in Lemma 3.10 simplifies to

φ′
B =

s′(t)kB(t)
(

−σ sinφB(t) cot θA(t) +
√

sin2 φB(t) cot θB(t)
)

√
sin2 φB(t) − σ sinφB(t)

tanφB(t).

If
√

sin2 φB(t) = σ sinφB(t), it follows that φA(t) = φB(t) and the expression is undefined. How-

ever, if
√

sin2 φB(t) = −σ sinφB(t), it follows that φA(t) = −φB(t) and the above simplifies to

φ′
B = 1

2s
′(t)kB(t) (cot θA(t) + cot θB(t)) tanφB(t). (3.19)

In the next subsection, we will see that the latter case corresponds to the special case of creasing,
and we will discuss a simpler derivation of Equation (3.19).
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Figure 3.9: Illustration of the relationship between the fold angle ρ and the angles between the left
and right surface patches.

Finding an initial value from a given opening angle

Instead of using the possibly unintuitive initial value for one of the inclination angles, φB(0), we
might prefer to specify an opening angle between the initial tangent planes normal vectors, and
hence the tangent planes. Specifically, we may wish to specify ρ0 = φA(0)−φB(0) and subsequently
find φB(0) such that:

φB(0) = arccos (c cos(φB(0) + ρ0)) for c = kB(0)
kA(0) ̸= 0.

In the special case where the glue curve corresponds to a crease, ρ(t) = φA(t) − φB(t) denotes the
deviation from the flat stated and is often referred to as the fold angle; see Figure 3.9.

Without loss of generality, we assume ρ0 > 0, which implies φB(0) < φA(0). This assumption
is made based on Lemma 3.9, which shows that every solution with φB(0) < φA(0) corresponds to
a solution with φA(0) < φB(0) by replacing S0 with S2. This replacement involves considering the
complements of φA(t) and φB(t), as well as changing the sign of the curvature and torsion.

Lemma 3.11. For c ̸= 0, ρ0 ∈ (0, π), and 1 + c2 − 2c cos ρ0 > 0, the equation

φ0 = arccos (c cos(φ0 + ρ0)) (3.20)

has the following real-valued solutions: If ρ0 = π
2 , this equation has two solutions, namely

φ∓
0 = arccos

(
∓ c√

1 + c2

)
.

Otherwise, the unique solution reads

φ0 =


arccos

(
− c sin ρ0√

1+c2−2c cos ρ0

)
, if 1 − c cos ρ0 > 0,

0, if 1 − c cos ρ0 = 0,

arccos
(

c sin ρ0√
1+c2−2c cos ρ0

)
, if 1 − c cos ρ0 < 0.
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Proof. We first rewrite Equation (3.20) as

cosφ0 = c cos(φ0 + ρ0),

possibly introducing new solutions that we will later eliminate. We then use the addition formula
for cosines to obtain the equivalent expression

cosφ0 = c(cos ρ0 cosφ0 − sin ρ0 sinφ0).

Using the tangent half-angle substitution φ0 = tan p
2 , we obtain

(−1 + c cos ρ0)p2 + 2(c sin ρ0)p+ 1 − c cos ρ0
1 + p2 = 0.

Since the denominator can not vanish, we distinguish two cases:
First, if −1 + c cos ρ0 = 0, the condition on p is linear. Furthermore, since ρ0 = arccos 1

c , and
sin ρ0 =

√
1 − 1

c2 , this constraint simplifies to

2
√

1 − 1
c2 p = 0.

Since ρ0 ̸= 0 and ρ0 ̸= π, we have that c ̸= ±1. We thus require p = 0, resulting in φ0 = 2 arctan p =
0.

Otherwise, assume −1 + c cos ρ0 ̸= 0. In this case the constraint is quadratic, and its two
solutions read

p∓ = ∓
√

1 + c2 − 2c cos ρ0 − c sin ρ0
−1 + c cos ρ0

,

resulting in two possible solutions φ∓
0 = 2 arctan p∓ of Equation (3.20).

To get a simpler expression, we note that arccos(cos(2 arctan p)) = 2 arctan p since arctan : R 7→
[−π/2, π/2], and arccos(cosx) = x for x ∈ [−π, π]. As furthermore

cos(2 arctan p) = 1 − p2

1 + p2 ,

we ultimately obtain

φ∓
0 = arccos(cos(2 arctan p∓)) = arccos

(
1 − (p∓)2

1 + (p∓)2

)
= arccos

(
∓ c sin ρ0√

1 + c2 − 2c cos ρ0

)
.

To eliminate the initially introduced solutions, we simplify

arccos
(
c cos(φ∓

0 + ρ0)
)

= arccos
(
c(cos ρ0 cosφ∓

0 − sin ρ sinφ∓
0 )
)

= arccos
((

∓c cos ρ0 −
√

(1 − c cos ρ0)2√
1 + c2 − 2c cos ρ0

)
c sin ρ0

)
.

If cos ρ = 0, that is ρ0 = π
2 , we the above simplifies to

arccos
(
c cos

(
φ∓

0 + π

2

))
= arccos

(
± c√

1 + c2

)
= φ∓

0 ,

resulting in two possible solutions for φ0.
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Figure 3.10: Gluing of the two patches depicted in Figure 3.8a for opening angles ρ ∈ (0.95π, 0.85π,
0.75π, 0.65π, 0.55π, 0.45π, 0.35π, 0.25π, 0.15π, 0.05π). Integration stopped prematurely for the first
three shapes and the last shape.

Otherwise, assume cos ρ0 ̸= 0. If 1 − c cos ρ0 > 0, we have

arccos(c cos(φ− + ρ0)) = arccosφ−,

in case of 1 − c cos ρ0 < 0, we have

arccos(c cos(φ+ + ρ0)) = arccosφ+.

Finally, note that if 1 + c2 − 2c cos ρ0 > 0, the arccosines are real-valued since(
∓ c sin ρ0√

1 + c2 − 2c cos ρ0

)2

≤ 1 ⇐⇒ c2 sin2 ρ0 < 1 + c2 − 2c cos ρ0

⇐⇒ 0 ≤ (1 − c cos ρ0)2.

Practical considerations

When employing the initial value obtained in Lemma 3.11 as an initial value for the differential
equation in Lemma 3.10, it is important to choose the appropriate sign σ.

Figure 3.10 depicts gluings with varying opening angle ρ. It is worth noting that as the difference
ρ approaches 0 or π, the solution interval typically becomes smaller if the glue curve does not
correspond to a crease or a geodesic pair. This is due to the material struggling to compensate for
the material loss or excess while maintaining developability; see Figure 3.10.

73



3.3.4 Creasing: Joining Along Two Matching Curves

We dedicate this subsection to a very prominent special case namely when the two curves match.
In this case, we denote their common curvature by k(t) and assume that k(t) is non-zero except at
isolated points. Then, Equation (3.14) implies that cosφL(t) = cosφR(t), which leads to φL(t) =
±φR(t). The interesting scenario occurs when φL(t) = −φR(t), as described in Lemma 3.13. For
the sake of completeness, we also state the case when both angular functions are the same; see
Lemma 3.12.

Lemma 3.12. If φL(t) = φR(t), two possible cases arise:

• If θL(t) ̸= θR(t), the system is overconstrained, resulting in the only solution being the flat
configuration.

• If θL(t) = θR(t), the system is underconstrained, resulting in multiple potential configurations
of a doubly-covered patch with prescribed rulings (see Section 3.2.7).

Proof. For φ(t) = φL(t) = φR(t), we begin by expressing the torsion from both equations given in
Equation (3.13). Using K(t) = k(t)

cos φ(t) , we obtain

τ(t) = φ′(t)
s′(t) − k(t) cot θL(t) tanφ(t), and τ(t) = φ′(t)

s′(t) − k(t) cot θR(t) tanφ(t).

Subtracting one equation from the other, results in

0 = (cot θL(t) − cot θR(t)) k(t) tanφ(t).

When the ruling angles differ and k(t) ̸= 0 holds for almost all values of t, the above constraint
implies φ(t) = 0. As a result, we also have τ(t) = 0 and K(t) = k(t). Consequently, this corresponds
corresponds to a flat configuration.

Otherwise, if θL(t) = θR(t), the above equation is trivially satisfied. As discussed in Sec-
tion 3.2.7, there is a lot of flexibility when bending a patch with prescribed rulings. Recall that
a bent patch is specified by the three functions: K(t), τ(t) and φ(t), which need to satisfy two
constraints. Consequently, we have the flexibility to prescribe one of the three functions while
determining the remaining two.

We now proceed with the nontrivial case where φ(t) = φL(t) = −φR(t), which for a given initial
value of φ(t) results in a uniquely defined 3D shape that corresponds to creasing along the common
crease. Note that here we only require the common curvature function to be continuous.

Lemma 3.13. If φ(t) = φL(t) = −φR(t), the folded shape can be obtained by solving an initial
value problem for the angular function φ(t), namely,

φ′(t) = 1
2s

′(t)k(t) (cot θL(t) + cot θR(t)) tanφ(t), where φ(0) = φ0. (3.21)

In addition, the directrix X(t) is specified by the following curvature and torsion,

K(t) = k(t)
cosφ(t) and τ(t) = −1

2k(t) (cot θL(t) − cot θR(t)) tanφ(t). (3.22)
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Proof. Using the definition of φ(t) and K(t) = k(t)
cos φ(t) , the equations in Equation (3.13) simplify to

k(t) cot θL(t) tanφ(t) = −τ(t) + φ′(t)
s′(t) and k(t) cot θR(t) tanφ(t) = τ(t) + φ′(t)

s′(t) . (3.23)

Solving both equations for φ′(t) and τ(t) results in the claimed expressions.

Lemma 3.14. The solution to the initial value problem in Equation (3.21) reads

φ(t) = arcsin
(
e
∫ t

0 f(u)du sinφ0

)
,

where
f(t) = 1

2s
′(t)k(t) (cot θA(t) + cot θB(t)) .

Proof. The claim follows directly from∫
φ′(t)

tanφ(t)dt = ln (sinφ(t)) .

Planar creases

In the special case where θL(t) = θR(t), we observe that τ(t) = 0, which implies that the crease
curve is planar. Under these conditions, the developed rulings corresponding to the same curve
parameter are collinear, as illustrated in Figure 3.11 (left).

Planar creases can be constructed without the need for patch characteristics-based computa-
tions. One can form them by bisecting a patch with a plane and subsequently reflecting one of the
resulting subpatches to the opposite side. This process ensures both connectivity and developability
while introducing a curved crease.

Due to their simple construction, planar creases serve as a powerful design instrument [60, 58].
The above-mentioned method can be conveniently integrated into CAD software, enabling the
design of shapes with multiple planar creases. In Chapter 14, we demonstrate the construction of
spirals using cones and planar creases, showcasing examples of non-trivial designs achievable with
this method.

Creases of constant fold angle

Another special case occurs when θL(t) = π−θR(t), that is, when the developed rulings correspond-
ing to the same curve parameter are reflected on the developed tangent. Note that this implies
φ′(t) = 0, resulting in a crease with constant fold angle; see Figure 3.11 (right).

Prominent examples of such creases include constant fold angle creases between cylinders and
cones. In this case, the developed creases are conic curves, with developed rule lines that converge
at the conic’s focal points. Combinations of conics as creases have been explored by Huffman in
his designs [19, 43]. Some combinations of conic creases are compatible under rigid-ruling folding
motion [18]. Chapter 10 provides a parametrization of those creases using elliptic integrals.
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(a) A crease-rule pattern with pairwise collinear rulings (θL(t) = θR(t)) results in a planar crease.

(b) A crease-rule pattern with pairwise tangent-reflected rulings (θL(t) = π − θR(t)) results in a crease with
constant fold angle.

Figure 3.11: Illustration of the two special families of curved creases.

3.3.5 Practical Considerations

Unlike in the general case, a planar configuration always exists. This follows from Lemma 3.14 as
φ0 = 0 implies φ(t) = 0.

As noted before, ρ(t) = φL(t) − φR(t) = 2φ(t) represents the deviation from the planar state.
Consequently, φ(t) denotes half of the fold angle ρ(t).

3.4 Joining Three Patches with Partial Ruling Information

3.4.1 Notation

In what follows, we assume that we are given three patches, as depicted in Figure 3.12. The central
patch is bounded on the right by x1L(s) and on the left by x2R(s). The right patch is bounded by
x1R(s), while the left patch is bounded by x2L(s), as shown in Figure 3.12.

Our objective is to connect the right patch to the central patch along the curves x1R(s) and
x1L(s). Similarly, we aim to join the central patch to the left patch along the curves x2R(s) and
x2L(s). We assume, without loss of generality, that all four curves are parametrized by arc length.
In subsequent discussions, let kiL(s) and kiR(s) represent the curvature of the curves xiL(s) and
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(a) Development.
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B2(t)

T2(t)

φ1R(t)

(b) Glued configuration.

Figure 3.12: Illustration of the notation used for gluing three patches with partial ruling information
in Section 3.4.

xiR(s), respectively, at their arc-length parameters.
We represent the ruling directions using ruling angles. For a more streamlined notation and to

ensure consistent ruling directions related to the central patch, we adopt the notation proposed by
Demaine et al. [18] and use the parameter t to describe consecutive rulings. Specifically, we define
two functions, s1(t) and s2(t), that encode the arc length of the curves corresponding to parameter
t. Consequently, the ruling directions of the shared surface are given by

r1L(t) = r2R(t) = x2R(s2(t)) − x1L(s1(t))
|x2R(s2(t)) − x1L(s1(t))| . (3.24)

It follows that the ruling angles of the central surface relative to either curve can be determined
by the following

θ1L(t) = arctan (t1L(s1(t)) · r1L(t),n1L(s1(t)) · r1L(t)) . (3.25)
θ2R(t) = arctan (t2R(s2(t)) · r2R(t),n2R(s2(t)) · r2R(t)) . (3.26)

Here, ti(t) represents the unit tangent, while ni(t) stands for the left-normal of x1L(s) and x2R(s),
respectively. Moreover, let θ1R(t) and θ2L(t) be the ruling angles incident to x1L(s1(t)) and
x2R(s2(t)), respectively.

To describe the geometry of the two gluing curves X1(t) and X2(t) and the incident patches, it
is left to determine their curvatures K1(t) and K2(t), torsions τ1(t) and τ2(t), and the inclination
angles φ1L(t), φ1R(t), φ2L(t), and φ2R(t).

3.4.2 Constraints

We will now discuss the constraints required for a glued state to be valid. Specifically, we require
that Equation (3.4) is satisfied for both adjacent patches of both curves. This results for i ∈ {1, 2}

77



in four equations,

Ki(t) sinφiR(t) cot θiR(t) = −τi(t) + φ′
iR(t)
s′

i(t)
, (3.27)

Ki(t) sinφiL(t) cot θiL(t) = −τi(t) + φ′
iL(t)
s′

i(t)
. (3.28)

In addition, we need to ensure that the geodesic curvatures of the surfaces match the given
developed curvatures. Consequently, we require that Equation (3.6) is satisfied for both adjacent
patches of both curves. This results for i ∈ {1, 2} in four equations,

kiR(si(t)) = KiR(t) cosφiR(t) and kiL(si(t)) = KiL(t) cosφiL(t). (3.29)

If all the above constraints are met, upon computational success, each pair of surfaces results
in a valid glued state. However, we want to ensure that the common surface of the two pairs has
the same curvature. Using Lemma 3.8, we consider the ruling curvature of the common patch with
respect to the directrices X1(t) and X2(t), with the goal to ensure that

s′
1(t)K1(t) sinφ1L(t) 1

sin θ1L(t) = s′
2(t)K2(t) sinφ2R(t) 1

sin θ2R(t) . (3.30)

In conclusion, the glued state is constrained by nine equations. However, the 3D shape is
specified by eight functions: the curvatures K1(t) and K2(t), the torsions τ1(t) and τ2(t), and the
inclination angles φ1R(t), φ1L(t), φ2R(t), and φ2L(t).

Thus, in general, specifying the developed patch with rulings would be overconstraining. Con-
sequently, we introduce an additional “degree of freedom” in the development that influences the
developed rulings, such as the relationship between the functions s1(t) and s2(t). For instance, we
set s1(t) = t and s2(t) = u(t), and determine u(t) so that all constraints are met.

In the following, we present three possible application strategies:

• Prescribe the ruling directions of the left and right patch with the goal to find the central
patch’s rulings. This strategy is used in the computation of a generalization of Tony Wills
squaricle (Section 5.2) and David Huffman’s tower (Section 5.3).

• Prescribe the type of crease curve, either planar or constant fold angle. An example where
we solve for planar creases (θiL(t) = θiR(t)) is shown in Section 6.2, and an example where
we consider constant angle creases (θiL(t) = π − θiR(t)) is shown in Section 6.3.

• Finally, we can also prescribe a general relationship between consecutive ruling polylines. An
example is shown in the analysis of periodic circular creases (Section 7.2) and the attempt to
analyze the circular spiral (Section 7.3).

3.4.3 Gluing: Joining Two Pairs of Curves

In this section, we outline a strategy to address the system of equations compiled in the previous
section. As in earlier discussions, we work under the assumption that not both curves from a pair
intended for joining exhibit vanishing curvature at the same parameter value.

Drawing parallels to Section 3.3.3, tackling this system directly might be challenging using
standard mathematical software. As a result, we explore how to rephrase the nine constraints
as a system of differential equations for three unknowns while expressing the remaining functions
algebraically. Without loss of generality, we set s1(t) = t and discuss how to express the system
in terms of only two inclination angles corresponding to different curves and the parametrization
speed s2(t).
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Initial values. Before determining the unknown patch characteristics, it is frequently advan-
tageous to first establish the initial values for both the inclination angles and the curve’s initial
orthonormal frame. For simplicity, we typically specify these initial values at the parameter t = 0.

First, it is essential to establish a 2D ruling polyline. This can be achieved by setting the value
of s2(0). We have encountered the following two scenarios:

• Scenario 1: In certain cases, such as in Section 5.2, the location of the corresponding initial
3D polyline is provided, along with appropriate tangent directions denoted by T1,0 and T2,0.
In this case, it is necessary to compute the normal vectors and initial opening angles. This
can be achieved by using the considerations presented in Section 3.3.3.

• Scenario 2: In other cases, we begin by freely specifying the initial values of the corresponding
two inclination angles. However, this means that we need to determine the location of the
corresponding initial 3D polyline and the initial orthonormal frames. It is important to
note that specifying two inclination angles (corresponding to different curves) determines the
other two inclination angles up to their sign. In this case, the location of the first orthonormal
frame can be chosen freely, such as X1,0 = (0, 0, 0) and T1,0 = (1, 0, 0), N1,0 = (0, 1, 0), and
B1,0 = (0, 0, 1). Let P1L,0 = cosφ1L,0 B1,0 + sinφ1L,0 N1,0 denote the initial normal vector
of the left tangent plane. Then, the initial tangent direction of the second frame can be
computed as T2,0 = R · T1,0 where R denotes the matrix that corresponds to a rotation
by θ1L(0) − θ2R(0) around P1L,0. Moreover, B2,0 = R′ · P1L(0) where R′ is the matrix
corresponding to a rotation by −φ2R,0 around T2,0. Consequently, N2,0 = B2,0 × T2,0. The
initial point of the second curve can be obtained by

X2,0 = X1,0 + |x1(s1(0)) − x2(s2(0))| R1L,0

where R1L,0 = cos θ1L(0) T1,0 + sin θ1L(0) (P1L,0 × T1,0) is the initial ruling direction of the
left patch incident to the first curve.

Simplification of the system. To simplify the system of equations, we follow the computations
presented in Section 3.3.3. Under consideration of vanishing curvature functions as discussed in
Section 3.3.3, we set either Ai = L and Bi = R or the other way round. Similar to before, for the
subsequent simplifications, we require that kiAi(t) and kiBi(t) be C1.

First, we solve Equation (3.27) and Equation (3.28) (with i ∈ {1, 2}) forKi(t) and τi(t), resulting
in

Ki(t) =
φ′

iAi
(t) − φ′

iBi
(t)

s′
i(t) (cot θiAi(t) sinφiAi(t) − cot θiBi(t) sinφiBi(t))

(3.31)

τi(t) = −
φ′

iAi
(t) cot θiBi(t) sinφiBi(t) − φ′

iBi
(t) cot θiAi(t) sinφiAi(t)

s′
i(t) (cot θiAi(t) sinφiAi(t) − cot θiBi(t) sinφiBi(t))

. (3.32)

Next, similar to the gluing case, it follows from Equation (3.29) that

cosφiAi(t) = kiAi(si(t))
kiBi(si(t))

cosφiBi(t).

Depending on the initial values of the inclination angles, we then choose σi ∈ {−1, 1} appropriately,
resulting in

φiAi(t) = σi arccos
(
kiAi(si(t))
kiBi(si(t))

cosφiBi(t)
)
. (3.33)
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The corresponding derivative of the inclination function reads

φ′
iAi

(t) = σi

(kiBi(si(t))kiAi(si(t)))′ cosφiBi(t) + kiAi(si(t))kiBi(si(t))φ′
iBi

(t) sinφiBi(t)+√
1 − kiAi

(si(t))2

kiBi
(si(t))2 cos2 φiBi(t)kiBi(si(t))2

. (3.34)

Note that the only unknown functions occurring in the above two Equations are φiBi(t), the
parametrization speeds, and their derivatives. Consequently, replacing Ki(t) (Equation (3.31)),
φiAi(t) (Equation (3.33)), and φ′

iAi
(t) (Equation (3.34)) in Equations

k1B(s1(t)) = K1B1(t) cosφ1B1(t) and k2B(s2(t)) = K2B2(t) cosφ2B2(t)

and Equation (3.30) results in three equations that depend only on φiBi(t), φ′
iBi

(t), and the
parametrization speeds. Assuming s1(t) = t and s2(t) = u(t), the three equations have only
three unknowns, possibly allowing to solve for φ1B1(t), φ2B2(t) and u(t).

However, note that the system might not be explicit, that is, we might not be able to solve for
the unknown derivatives. This is because the u′(t) = s′

2(t) appears in both Equation (3.30) and
the expression for φ′

2A2
(t) in Equation (3.34).

Computation of the gluing curves and construction of surfaces. Upon successful com-
putation of φ1B1(t), φ2B2(t), and u(t) using appropriate initial values, the remaining inclination
angles are given by Equation (3.33). The expressions for curvatures and torsions are as follows

Ki(t) = kiBi(t)
cosφiBi(t)

, τi(t) =
φ′

iBi
(t)

s′
i(t)

− kiBi(t) cot θiBi(t) tanφiBi(t). (3.35)

Subsequently, the Frenet-Serret equations, as presented in Equation (3.1), need to be integrated
using the previously determined initial orthonormal frames along with appropriate starting points
for the curves. Upon completion, we obtain the two gluing curves, X1(t) and X2(t).

Lastly, we construct the surfaces. The central surface is derived by lofting between X1(t) and
X2(t). The ruling directions for the left and right surfaces can be determined using Equation (3.3).
Specifically,

R1R(t) = cos θ1R(t) T1(t) + sin θ1R(t) (cosφ1R(t) N1(t) − sinφ1R(t) B1(t)) ,
R2L(t) = cos θ2L(t) T2(t) + sin θ2L(t) (cosφ2L(t) N2(t) − sinφ2L(t) B2(t)) .

3.4.4 Creasing: Joining two Pairs of Matching Curves

We now discuss the special case where both curves match, allowing further simplifications of the
equations. In this case, we denote the common curvatures by ki(t) = kiL(t) = kiR(t). In this case,
however, it is sufficient for ki(t) to be C0. Unlike the case of gluing, we assume that neither crease
curve is straight, that is, k1(t) ̸= 0 and k2(t) ̸= 0.

As discussed in Section 3.3.4, the interesting curved-crease case occurs when φi(t) = φiL(t) =
−φiR(t). Consequently, the folded state is specified by K1(t), K2(t), τ1(t) and τ2(t), and the two
inclination angles φ1(t) and φ2(t).

The computation of consistent initial values of the directrix and the frame is analogous to the
gluing case.
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Simplification of the system. The stated assumptions simplify the constraints discussed in
Section 3.4.2. Specifically, the developability conditions (Equation (3.27) and Equation (3.28))
simplify to

Ki(t) sinφi(t) cot θiR(t) = τi(t) + φ′
i(t)
s′

i(t)
(3.36)

Ki(t) sinφi(t) cot θiL(t) = −τi(t) + φ′
i(t)
s′

i(t)
, (3.37)

the curvature constraints (Equation (3.29)) become

ki(si(t)) = Ki(t) cosφi(t),

and the compatibility constraint (Equation (3.30)) simplify to

s′
1(t)K1(t) sinφ1(t) 1

sin θ1L(t) = −s′
2(t)K2(t) sinφ2(t) 1

sin θ2R(t) . (3.38)

Assuming that s1(t) is given (for example, s1(t) = t), the seven stated equations allow solving
for φ′

1(t), φ′
2(t), s′

2(t), K1(t), K2(t), τ1(t), and τ2(t), resulting in the three differential equations

s′
2(t) = −s′

1(t)k1(s1(t))
k2(s2(t))

sin θ2R(t)
sin θ1L(t)

tanφ1(t)
tanφ2(t)

φ′
1(t) = 1

2s
′
1(t)k1(s1(t)) (cot θ1L(t) + cot θ1R(t)) tanφ1(t) (3.39)

φ′
2(t) = −1

2s
′
1(t)k1(s1(t))sin (θ2L(t) + θ2R(t))

sin θ1L(t) sin θ2L(t) tanφ1(t).

and the four algebraic expressions

Ki(t) = ki(si(t))
cosφi(t)

and τi(t) = −1
2 (cot θiL(t) − cot θiR(t)) ki(si(t)) tanφi(t). (3.40)

For reasonable input, the explicit system of differential equations in Equation (3.39) may be
locally solved using initial values for s2(t), and the two inclination angles.

Computation of the gluing curves and construction of surfaces. Upon successful compu-
tation of the inclination angles and parametrization speed using Equation (3.39), we compute the
curvatures and torsions from Equation (3.40).

Similarly to the previous section, it remains to integrate the Frenet-Serret equations (Equa-
tion (3.1)) for the previously computed initial orthonormal frame and the appropriate starting
point of the curves to obtain the two gluing curves X1(t) and X2(t).

Finally, we construct the surfaces. Again, the central surface can be obtained by lofting between
X1(t) and X2(t). The left and right surfaces’ ruling directions follow from Equation (3.3), that is,

R1R(t) = cos θ1R(t) T1(t) + sin θ1R(t) (cosφ1(t) N1(t) + sinφ1(t) B1(t)) , (3.41)
R2L(t) = cos θ2L(t) T2(t) + sin θ2L(t) (cosφ2(t) N2(t) − sinφ2(t) B2(t)) . (3.42)

Next, we discuss how the system of differential equations in Equation (3.39) simplifies in two special
cases: the combination of two planar creases and the combination of two creases with a constant
fold angle.
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Combination of two planar creases

When joining two planar creases, we have that θiR(t) = θiL(t). Consequently,

s′
2(t) = −s′

1(t)k1(s1(t))
k2(s2(t))

sin θ2L(t)
sin θ1L(t)

tanφ1(t)
tanφ2(t) (3.43)

φ′
1(t) = s′

1(t)k1(s1(t)) 1
tan θ1L(t) tanφ1(t) (3.44)

φ′
2(t) = −s′

1(t)k1(s1(t))cos θ2L(t)
sin θ1L(t) tanφ1(t)

In particular, it follows that
φ′

1(t)
φ′

2(t) = −cos θ1L(t)
sin θ2L(t) .

Note that this system is trivially satisfied for tangent parallel curves when φ1(t) = −φ2(t).
In this scenario, as discussed in Section 3.2.5, we have that θ1L(t) = θ2L(t) and s′

1(t)k1(s1(t)) =
s′

2(t)k2(s2(t)), and the two creases lie in parallel planes.
An example of a computation of the rulings connecting two planar creases can be found in

Section 6.2.

Combination of two creases of constant fold angle

When joining two creases of constant fold angle, we have that θiR(t) = π − θiL(t). Consequently,
the last two equations in Equation (3.39) simplify to φ′

1(t) = 0 and φ′
2(t) = 0. Additionally, it

follows that
s′

2(t) = −s′
1(t)k1(s1(t))

k2(s2(t))
sin θ2L(t)
sin θ1L(t)

tanφ1,0
tanφ2,0

(3.45)

where φi(t) = φi,0.
The above equation indicates that for appropriate initial values, we may obtain a rigid-ruling

folding, as shown by Demaine et al. [18] (Theorem 2). Specifically, when we choose s2(0) = c1 and
φ2,0 = − arctan (c2 tanφ1,0) for some appropriate constants c1 and c2, a solution s2(t) corresponds
multiple initial values, resulting in the same ruling layout for initial values where c2 = tan φ2,0

tan φ1,0
.

Note that as φ1,0 and φ2,0 approach ±π
2 , Ki(t) and τi(t) tend towards infinity, corresponding to a

“smooth flat-folded state”.
An example of a computation of the rulings connecting two constant fold angle creases is

discussed in Section 6.3.

3.4.5 Towards Joining More Surfaces

Considerations similar to those discussed above can be extended to three or more glue or crease
curves. However, the gluing scenario becomes increasingly computationally challenging, causing
the generalization to be more relevant for the curved-crease case. It is important to note that
the number of compatibility conditions can often conflict with the idea of closing a loop. If the
geometry is not suitable, imposing a closure constraint is not supported.

Furthermore, we conjecture that there might be specific shapes, like D-forms, where rulings
might spiral around the structure. Consequently, the computations we have presented might not
directly apply to such cases. Investigating these unique shapes and formulating a computational
method for their reconstruction remains a subject for future research.
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3.5 Gluing Patches along Curves on Patches
In this section, we explore two approaches for gluing patches to a series of either glued or creased
surfaces:

• Gluing a patch with unspecified rulings to a curve on a patch: The first method is based
on attaching a patch with unspecified rulings to a space curve discussed in Section 3.5.1.
It allows to specify the crease or glue curve and the corresponding 2D curvature. In this
section, however, we tailor the computations specifically to patch characteristics. Through
this approach, we identify two potential configurations for the appended surface and determine
the ruling angles for each.

• Gluing along a tangent-parallel curve on a patch: The second method uses tangent-parallel
curves discussed in Section 3.2.5. We demonstrate that it is possible to append a patch along
a tangent parallel curve, with its rulings parallel to the penultimate patch. In a way, this
method is dual to the previous one: while it calculates the gluing curve, it operates with
predetermined ruling directions. This approach is noteworthy, as it enables the creation of
patch combinations that allow a rigid-ruling folding motion.

In the following, we assume that we start with a gluing of two developed ruled patches and
consider adding patches to the left side of the glue curve. However, adding patches to the right
side works in a similar manner.

3.5.1 Gluing a Patch with Unspecified Rulings to a Curve on a Patch

In this case, the computations can be isolated to only quantities corresponding to the patch to
which the new patch is appended. Consequently, we assume that we are given a patch by its
characteristics K1(t), τ1(t), s1(t), φ1(t) and θ1L(t). Let X1(t) denote the corresponding curve and
R1L(t) the corresponding ruling direction. We now discuss how to append a patch with unspecified
rulings and developed curvature k2R(t) along the curve X2(t) = X1(t) + l(t)R1L(t).

In Section 3.5.1, we described a method for attaching a curve to a space curve. However, this
method necessitates the knowledge of both the curvature (including its sign) and the torsion of the
space curve X2(t). At parameters where X′

2(t) and X′′
2(t) are linearly independent, we can derive

the absolute value of the curvature and the torsion from the parametrization of X2(t) using

K2(t) = |X′
2(t) × X′′

2(t)|
|X′

2(t)|3
and τ2(t) = (X′

2(t) × X′′
2(t)) · X′′′

2 (t)
|X′

2(t) × X′′
2(t)| .

However, special consideration is required for the sign of K2(t) and parameter values with vanishing
curvature or undefined torsion.

To avoid a cumbersome case-analysis, we combine both 3D and 2D information and use the
ruling curvature of the shared patch to compute the appropriate (signed) curvature K2(t) and
torsion τ2(t).

First, let x1(t) and r1L(t) denote the developed curve and ruling directions corresponding to
X1(t) and R1L(t), and set x2(t) = x1(t)+ l(t)r1L(t). Let s′

2(t) be the shared parametrization speed
of X2(t) and x2(t). Furthermore, denote the tangent and left-side normal of x2(t) by t2(t) and
n2(t), respectively, and let k2(t) be the (signed) curvature.

First, we compute the ruling angle corresponding to the right patch of the second curve as

θ2R(t) = arctan (r1L(t) · t2(t), r1L(t) · n2(t)) .
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Since the ruling curvature (Equation (3.12)) of the considered patch with respect to either curve
must be same, we obtain an expression for the inclination angle of the common patch with respect
to the frame of the second curve,

φ2R(t) = arctan
(

s′
1(t) sin θ2R(t)

s′
2(t)k2R(t) sin θ1L(t)K1(t) sinφ1L(t)

)
(3.46)

It is important to note that the range of arctan is only (−π
2 ,

π
2 ). At values where k2R(t) = 0, special

considerations are required to ensure the continuity of φ2R(t).
Upon successful computation of φ2R(t), the curvature and torsion read

K2(t) = k2R(t)
cosφ2R(t) and τ2(t) = −φ′

2(t)
s′

2(t) + 1
cot θ2R(t)k2R(t) tanφ2R(t).

In addition, we obtain the other inclination angle as

φ2L(t) = ± arccos
(
k2L(t)
k2R(t) cosφ2R(t)

)
.

Finally, the other ruling angle is specified by the developability condition (Equation (3.4)) as

θ2L(t) = − arccot
(

cot θ2R(t) − 2
k2(t)

φ′
2L(t)
s′

2(t) cotφ2L(t)
)

(mod π). (3.47)

This concludes the computations of the patch characteristics (K2(t), τ2(t), s′
2(t), φ2L(t), θ2L(t))

necessary to define the next patch.
To construct the next ruling direction R2L(t), there are at least two possibilities:

• Option 1: One approach is to integrate the Frenet-Serret Equations with appropriate initial
values to obtain the frame (T2(t),N2(t),B2(t)). Additionally, set P2R(t) = cosφ2(t) B2(t) −
sinφ2(t) N2(t).

• Option 2: Alternatively, we start with the left tangent plane normal of the first curve,
P1L(t) = cosφ1L(t) B1(t) + sinφ1L(t) N1(t), and compute the tangent plane normal of
the appended patch, P2L(t), by rotating P1L(t) by φ2R(t) −φ2L(t) about X′

2(t). Let T2(t) =
1

s′
2(t)X′

2(t) denote the tangent of X2(t).

In either case, the next next ruling direction is computed as

R2L(t) = cos θ2L(t) T2(t) + sin θ2L(t) (P2R(t) × T2(t)) .

While it has not been explicitly mentioned, the computations discussed can also be applied to
append a curved crease. In this case, the computed expressions allow further simplifications.

3.5.2 Gluing Along a Tangent-Parallel Curve on a Patch

We have seen that in general, the ruling angles of the next surface depend on the ruling curvature
of the previous surface. Thus, if the folded state of the initial patch is modified, the rulings of the
appended patch usually need to adapt in response to these changes. In the following subsection,
we show a special case that permits rigid-ruling folding motions for compositions of patches.

We consider a gluing curve X1(t) of two planar patches s1L(t) = x1(t) + urL(t) and s1R(t) =
x1(t) − urR(t), where x1L(t) and x1R(t) share the same parametrization speed s′

1(t). Let RL(t)
and RR(t) denote the (left-side) ruling vectors of the left and right patch, respectively, specified by
the ruling angles θL(t) and θR(t), and inclination angles φL(t) and φR(t). Furthermore, let k1L(t)
and k1R(t) denote the developed curvature of x1L(t) and x1R(t), respectively.
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Lemma 3.15. Let X2(t) = X1(t) + pL(t)RL(t) be a tangent parallel curve of X1(t), that is, pL(t)
is a solution to the initial value problem stated in Lemma 3.3,

p′
L(t)
pL(t) = − cot θ1L(t)

(
θ′

1L(t) + s′
1(t)k1L(t)

)
and pL(0) = pL,0. (3.48)

Then, S2L(t, u) = X2(t) + uRR(t) is a developable patch. If X1(t) is a curved crease, then X2(t)
is a curved crease connecting S2L(t, u) and S2R(t, u) = X2(t) − uRL(t).

Proof. In the following, let Ki(t), τi(t), and si(t) denote the curvature, torsion, and parametrization
speed of the curves Xi(t). By Lemma 3.5, the curvature and torsion of X2(t) are

K2(t) = s′
1(t)
s′

2(t)K1(t) and τ2(t) = s′
1(t)
s′

2(t)τ1(t).

Furthermore, the curvature of the curve X2(t) with respect to S1L(t, u) reads

k2R(t) = s′
1(t)
s′

2(t)k1L(t).

To verify the stated claim, we need to confirm the developability condition stated in Equa-
tion (3.4) for the appended patch. Before doing that, let us explore some similarities between the
surfaces.

First, it is important to note that the tangents of X1(t) and X2(t) are parallel, resulting in the
same angles between RR(t) and the tangents of X1(t) and X2(t), namely θR(t). Since the frames
of both curves are parallel (see proof of Lemma 3.5), the inclination angles of the tangent planes
P1R(t) and P2R(t) and the frame of either curve are the same, namely φR(t).

Using Equation (3.4), we finally confirm that the parametrization of S2R(t, u) is developable,

−
τ2(t) − φ′

R(t)
s′

2(t)

K2(t) sinφR(t) = −
s′

1(t)
s′

2(t)τ1(t) − φ′
R(t)

s′
2(t)

s′
1(t)

s′
2(t)K1(t) sinφR(t)

= −
τ1(t) − φ′

R(t)
s′

1(t)

K1(t) sinφR(t) = cot θR(t).

Since cosφR(t) = k1R(t)
K1(t) , we obtain the developed curvature k2R(t) of X2(t) with respect to

surface S2R(t, u), as

k2R(t) = K2(t) cosφR(t) = s′
1(t)
s′

2(t)K1(t)k1R(t)
K1(t) = s′

1(t)
s′

2(t)k1R(t). (3.49)

Although each strip is bounded by two tangent-parallel curves, the strips corresponding to the
same ruling directions will not necessarily be part of the same developed surface. Nevertheless,
if we start with a curved crease, that is k1L(t) = k1R(t), the above construction will result in
tangent-parallel patches connected by curved creases, since

k2L(t) = s′
1(t)
s′

2(t)k1L(t) = s′
1(t)
s′

2(t)k1R(t) = k2R(t).

As discussed in Section 3.3, varying the initial opening angle between the glued patches while
keeping the rulings rigid results in a 1-DOF mechanism of the two glued patches. Note that
tangent parallel curves and ruling directions only depend on the developed state which remains
rigid throughout this motion. As Lemma 3.15 holds for all configurations, we conclude:
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(a) Two tangent-parallel planar creases.

(b) Two tangent-parallel creases of constant fold angle.

Figure 3.13: Illustration of two rigidly-foldable crease-rule patterns with tangent-parallel crease
curves.

Corollary 3.2. The composition of patches described in Lemma 3.15 allows a rigid-ruling folding
motion.

Adding parallel creases to the resulting shapes introduces additional creases of the same type;
see Figure 3.13. For combinations of two constant-angle creases (see Section 3.4.4), this is especially
intriguing, as it enables the construction of crease rule patterns that fold with rigid rulings, even
when some creases are not tangent-parallel.

3.5.3 Practical Considerations

By employing the discussed methods iteratively, one can construct intricate shapes with multiple
glue or crease curves. In the case of tangent-parallel curves, this composition even allows a rigid-
ruling bending motion. Chapter 4 demonstrates the application of the presented methods to add
creases to shapes resulting from folds along an ellipse. However, as this construction does not
directly influence the position of the edge of regression, the geometry of the shape constrains the
number of times a subsequent patch can be added.
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Chapter 4

Gluing and Creasing Ellipses

The content of this chapter is unpublished and is based on discussions with Erik Demaine and Tomohiro
Tachi.

Overview

This chapter centers around the analytic reconstructions of two families of shapes: Anti D-forms
and variations of the Bauhaus model with pleated ellipses. Both shapes result from either gluing or
creasing elliptical curves into a closed space curve. We use a computational approach of prescribing
the rulings of two adjacent patches and subsequently determining a folded state that results in a
numerically closed shape.

4.1 Introduction
In this chapter, we provide two examples of the proposed theory from Chapter 3 applied to gluing
or creasing ellipses.

In the first example, discussed in Section 4.2, we consider shapes inspired by Anti D-forms,
which are shapes introduced by Tony Wills and John Sharp [108, 86, 87]. Here, two sheets with
two holes with the same perimeter are glued along their boundaries. We examine the special case
where the holes are congruent ellipses. Moreover, we glue the two elliptical holes in a manner such
that one ellipse is a rotated version of the other by π

2 .
The second example, discussed in Section 4.3, explores variations of the Bauhaus model, a shape

obtained by folding paper along concentric circles using alternating mountain-valley assignments.
We explore variations featuring at least one elliptical crease. The first example demonstrates scaled
elliptical creases, while the other showcases pleats that are tangent parallel to an ellipse on a patch
with periodic rulings.

At a high level, we compute the studied shapes by firstly determining the glued or folded state
of the first curve, and then appending surfaces in the second step. For the computation of the
proposed shapes, there exist at least two possible strategies:

• Approach 1: The first strategy involves specifying a space curve and using Section 3.2.8
to attach the surfaces. For this approach to be feasible, both developed curvatures must
meet certain constraints, which is challenging to achieve. Furthermore, the resulting rulings
might be undesirable since singularities could be positioned closely to the specified 3D curve.
Ensuring the attached surfaces close properly also demands special attention.
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(a) Anti D-form
(Tony Wills, 2006)

Figure 6 in Wills [108].

(b) Variations of Bauhaus model with ellipses and circles
(Duks Koschitz, 2015).

Parts of Figure 3 in Demaine et al. [15].

Figure 4.1: Shapes that inspired the content of Chapter 4.

• Approach 2: As an alternative, one might begin solely with 2D information. This in-
volves estimating appropriate ruling directions of two neighboring patches and then exam-
ining rigid-ruling folding motions of the connected patches. When ruling angles are chosen
appropriately, the curves might close for appropriate initial inclination angles and result in
tangent-continuous surfaces.

In the following two examples, we follow Approach 2 to obtain a folded state of the first pair
of patches. In the second set of considered examples, we subsequently append further creases as
discussed in Section 3.5 or Section 3.5.2.

4.2 Joining two Ellipses to an Anti D-Form

Anti D-forms were introduced by Tony Wills and John Sharp [108, 86]. They are closely related
to D-forms, that is, shapes that result from gluing two regions with equal perimeter along their
boundaries. Examples of D-forms will be discussed in greater detail in Section 5.2 and Chapter 9.

The shape of a D-form, especially the unique convex realization, is generally not trivial to
compute, as the gluing curve’s points need to satisfy intrinsic distance constraints. This is not
the case for Anti D-forms, allowing for flexibility in the shape that is constrained by the closure
requirement only.

In this section, we study the gluing of two elliptical holes, where one ellipse is rotated by π
2

with respect to the other. Given that the glued shape is not fully determined by the closure
constraint, there are many possible glued states. In the following, we devise a family of ruling angle
combinations that result in numerically closed shapes. We believe that the proposed ruling family
is only one of many feasible rulings.

4.2.1 Computation

Parametrization of the development

In this section, we consider a gluing of the following two elliptical curves, related by a rotation
by π

2 . To ensure that we combine a left and a right surface patch, we assume that the “left”
patch is specified by a clockwise parametrized ellipse, and that the “right” patch is specified by a
counterclockwise parametrized ellipse, that is,

x̃L(t) = (a cos(−t), sin(−t)) and x̃R(t) = (sin t, a cos t) ,
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Figure 4.2: Two developed patches with specified rulings with p = 0.8 and a numerically closed
gluing with φR(0) = 1.1935.

with common perimeter of length 2D, see Figure 4.2.
We require both curves to have the same parametrization speed for the joining method discussed

in Section 3.3 to be applicable. Consequently, we reparametrize both curves by arc length and
denote the corresponding reparametrizations by xL(t) and xR(t). Moreover, let kL(t) and kR(t)
be the curvature with respect to the arc-length parameter. Note that both curvatures are even
periodic functions with period length D.

We select the ruling angles such that the cotangents of these angles form odd periodic functions
with the same period length as the curvature functions,

θL(t) = π

2 − p cos
(4π
D

(
t− D

8

))
and θR(t) = π

2 − p cos
(4π
D

(
t+ D

8

))
,

where p ∈ [0, π
2 ); see Figure 4.2. Note that the parameter p influences the ruling angles and

therefore the bending direction of the patches. If p = 0, the rulings are aligned with the normals
of the ellipse, and in the undesirable case of p = π

2 , the rulings become tangents of the ellipse at
t ≡ D

4 (mod D
2 ).

Computation of the inclination angles, gluing curve, and surfaces

We now use Lemma 3.10 to find the solution for φR(t) for t ∈ [0, 2D] through the stated differential
equation using appropriate initial values φR,0. The solution φR(t) specifies the curvature K(t),
torsion τ(t), and the other inclination angle φL(t).

Subsequently, we use the Frenet-Serret equations (Equation (3.1)) to determine the geometry
of the glue curve X(t) for t ∈ [0, 2D]. Note that this curve will in general not be closed. However,
we observe that the distance between its endpoints is influenced by the initial value for the opening
angle φR,0; see Figure 4.3. Finally, we use Equation (3.3) to specify the ruling directions. For
visualization, we trim the constructed surfaces so they are bounded by a scaled version of the
elliptical glue curve.

4.2.2 Remarks on the Closure of the Gluing Curve

We observed that for appropriate parameter p, we were able to find initial values φR,0 that resulted
in a numerically closed glue curve with tangent-continuous surfaces; see Figure 4.4. In the following,
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Figure 4.3: Illustration of the rigid-ruling folding motion for a = 1.2 and φR,0 ∈
(0.96, 1.06, 1.26, 1.36).

we use the periodicity of the developed curvatures and ruling angles to devise constraints for
tangent-continuous closure of the gluing curve.

Periodicity of the inclination angle

We observe that if the computation of φR(t) succeeds for t ∈ [0, D
2 ], the computed inclination

angles are periodic with period length D. Although we do not have a proof for the the existence
and uniqueness of the solution φR(t) of the differential equation in Lemma 3.10, we observe the
following property of the solution:

Lemma 4.1. The existence of a solution of the initial value problem for φR(t) in Lemma 3.10 for
t ∈ [0, D

2 ] implies the existence of a periodic solution for t ∈ R with period length D.

Proof. The differential equation in Lemma 3.10 can be expressed as φ′
R(t) = f(t, φR(t)). We show

the following three properties:

• Property 1: 0 = f(0, φ(t)) = f
(

D
2 , φ(t)

)
,

• Property 2: f(t, φ(t)) = −f(−t, φ(t)),

• Property 3: f(t, φ(t)) = f(t+D,φ(t)).

As mentioned earlier, kL(t) and kR(t) are even periodic functions with period length D,

ki(t) = ki(−t), ki(t) = ki(t+D).

Consequently, their first derivatives are odd periodic functions with the same period length, that
is,

k′
i(t) = −k′

i(−t), k′
i(t) = k′

i(t+D).

In addition, we have chosen the ruling angles such that their cotangents are odd periodic functions
with period length D,

cot θi(t) = − cot θi(−t), cot θi(t) = cot θi(t+D).

Note that property 1 follows from 0 = k′
i(0) = k′

i

(
D
2

)
and 0 = cot θi(0) = cot θi

(
D
2

)
. In

addition, the above stated properties of ki(t), k′
i(t), and cot θi(t) imply properties 2 and 3.
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Figure 4.4: Numerically closed shapes for p ∈ (0.6, 0.8, 1.2), φR(0) ∈ (1.261728, 0.956301, 1.291588),
and a = 1.2.

Figure 4.5: Numerically closed shapes with modified ruling directions from Equation (4.1) with
p ∈ (0.8, 1.0, 1.2), φR,0 ∈ (0.967000, 1.025101, 1.246270), and a = 1.2.

It follows that if φ(t) is a solution of φ′
R(t) = f(t, φR(t)) for t ∈ [0, D

2 ], a continuous continuation
of the solution for t ∈ [−D

2 , 0] can be obtained using properties 1 and 2 by reflecting φ(t) across
t = 0. Utilizing properties 1 and 3, we can achieve continuation of the solution for t ∈ R through
repetition.

Periodicity of the gluing curve

Upon successful computation of a periodic function φR(t), it follows that the curvature K(t) and
torsion τ(t) are also periodic functions with period length D. In particular, K(t) is an even function,
and τ(t) an odd function. Consequently, the integrated curve corresponding to t ∈ [0, 2D] consists
of four parts separated at t = D

2 , t = D and t = 3D
2 , where consecutive parts are related by

a reflection on the normal plane at the common curve point; see Figure 4.3. It follows that if
the normal planes at the endpoints are perpendicular, the overall curve is closed and curvature
continuous. Additionally, the surfaces are also tangent-continuous.
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Figure 4.6: Numerically closed folding along a single elliptic crease with a = 1.1, p = 0.9, and
φ1,0 = 1.05181.

To find numerically closed curves, we vary the initial fold angle for fixed values of p; see Fig-
ure 4.3. We observe that for suitable p, we were able to find initial opening angles that would result
in closed curves.

4.2.3 Further Variations

There exist numerous families of rulings that lead to (numerically) closed curves. As an example,
instead of using the same parameter p for both θL(t) and θR(t), variations in the shape can be
achieved by substituting p with pL and pR (along with appropriate combinations of pL and pR).

In addition, we can also vary the sign in one of the cosine functions, such as

θ̄L(t) = θL(t) and θ̄R(t) = π

2 − p cos
(4π
D

(
t− D

8

))
. (4.1)

Figure 4.5 shows corresponding (numerically) closed curves.
It would also be interesting to explore other shifts in parameters between the two ellipses xL(t)

and xR(t). In this case, however, it is more challenging to find ruling angles that result in periodic
solutions.

4.3 Elliptic Creases
We now turn to the second example where we study the shapes obtained by creasing along ellipse
and adding further creases to the resulting folded shape. This section is inspired by the Bauhaus
model, developed by a student of Josef Albers at the first Bauhaus in 1927 and 1928 [15, 2]. Over
the years, it has been reinterpreted by multiple artists, including Irene Schawinsky, and Erik and
Martin Demaine.

We follow a similar approach as in the previous section. First, we prescribe rulings that result
in periodic curvature and torsion functions. Subsequently, by varying the initial angle, we find
configurations that result in numerically closed shapes that correspond to creasing along a single
elliptic crease. Finally, we explore examples of added pleats to the shape.
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Figure 4.7: Illustration of the rigid-ruling folding motion of a single elliptic crease for a = 1.2,
p = 0.9, and φ1,0 ∈ (0.15π, 0.25π, 0.35π, 0.4π).

4.3.1 Computation of the First Curve

Parametrization of the development

We parameterize the first ellipse as follows

x1(t) = (a cos t, sin t, 0) ,

where t ∈ [−π, π]. Unlike Section 4.2, there is no need for reparametrization by arc length in this
case. The curvature function of x1(t) is given by

k1(t) = − a√
(cos2 t+ a2 sin2 t)3

.

Similar to the previous example, we define the ruling angles as

θ1L(t) = π

2 + p sin(2t) and θ1R(t) = π

2 − θ1L(t),

where p ∈ [0, π
2 ).

Computation of the inclination angle, crease curve, and surfaces

First, we use Section 3.3.4 to compute the inclination angle. Since θ1L(t)+θ1R(t) = π, the fold angle
is constant, hence φ1(t) = φ1,0. The curvature and torsion are then specified by Equation (3.22) as

K1(t) = a

(cos2 t+ a2 sin2 t)
3
2 cosφ1,0

and τ1(t) = a tan(p sin(2t))
(cos2 t+ a2 sin2 t)

3
2

tanφ1,0.

Subsequently, we use the Frenet-Serret equations (Equation (3.1)) to determine the geometry of
the crease curve X1(t) for t ∈ [−π, π]. Again, note that the distance between the curve’s endpoints
depends on the initial inclination angle φ1,0. Finally, we use Equation (3.3) to specify the ruling
directions. For visualization purposes, we trim the constructed surfaces so they are bounded by a
scaled version of the elliptical glue curve.

4.3.2 Remarks on the Closure of the Crease Curve

Analogous to the previous example, the curvature of the developed ellipse and the cotangent of the
ruling angles are periodic with period π. Specifically, k1(t) is even and cot θi(t) are odd. Since the
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inclination angle function is constant, the curvature K1(t) is an even function and the torsion τ1(t)
is an odd function with period length π.

Because of the periodicity of both curvature and torsion, the curve can once again be divided
into four segments separated at t = −π

2 , t = 0, and t = π
2 , where adjacent segments are related

through a reflection about the normal plane at the shared endpoint; see Figure 4.7.
Changing the initial value influences the angle between the normal planes at the endpoints of

the quarter curve. We conjecture that, for suitable values of p, there exists a parameter value at
which these two planes become orthogonal, consequently resulting in a closed shape.

4.3.3 Adding Pleats

In the subsequent discussion, we compare two approaches for adding further creases to the 3D
shape, which bear a certain duality:

• First, we introduce pleats by attaching patches to curves on surfaces as described in Sec-
tion 3.5. In this approach, we specify the 2D crease and then determine the rulings of the
appended patch.

• Second, we add pleats along tangent parallel curves as described in Section 3.5.2. Here,
the rulings of the upcoming patch are predetermined (they are parallel to the rulings of the
penultimate patch), but the shape of the crease is constructed.

In both strategies, we lack the ability to directly control the edge of regression of the newly added
surface. As a consequence, as we introduce an increasing number of creases, undesirable situations
might arise where the edge of regression approaches the last crease.

Recall that we started from x1(t) with rulings r1L(t) and r1R(t) (defined by θ1L(t) and θ1R(t)),
and computed their 3D counterparts, the curve X1(t) and the 3D rulings R1L(t) and R1R(t), defined
using the additional function φ1(t). Next, we will demonstrate how to add additional creases to
the left patch of x1(t) or X1(t), respectively. The process of adding creases to patches to the right
is analogous.

Scaled pleats

In this section, we discuss how to add pleats along scaled ellipses cix1(t) where ci < ci−1 for i > 1.
However, the computation for other appropriate curves works similarly.

In the following, we show how the curves xi−1(t) and Xi−1(t), and the angles θi−1,L(t) and
φi−1(t) specify the next curves and angles xi(t), Xi(t), θi−1,L(t), and φi−1(t).

• Step 1: First, we determine an appropriate parametrization of the next curve. The parametriza-
tion xi−1(t) and θi−1,L(t) specify the developed left ruling direction ri−1,L(t). If the patch
connecting xi−1(t) and cix1(t) is free of singularities, we trim the left rulings of xi−1(t) with
the next elliptic curve by solving

xi−1(t) + li−1(t)ri−1,L(t) = cix1(ui(t))

for li−1(t) and ui(t). When doing this computation in Mathematica, we use a fine sampling
of t ∈ [−π, π] and interpolate the corresponding values of li−1(t) and ui(t). We then set
xi(t) = cix1(ui(t)) and define Xi(t) = Xi−1(t) + li−1(t)Ri−1,L(t)
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Figure 4.8: Numerically closed folded states of a pleated ellipse for a = 1.1, p ∈ (0.8, 1, 1.2), and
φ1,0 ∈ (1.104801, 0.974231, 0.614106).

• Step 2: Next, we extract information from xi(t). We set s′
i(t) = |x′

i(t)| and compute the
curvature ki(t) of xi(t) (at parameter t). Finally, we compute the ruling angle θi,R(t) using
ri−1,L(t) and the tangent and normal vectors of xi(t) as

θi,R(t) = arctan(ri−1,L(t) · ti(t), ri−1,L(t) · ni(t)).

• Step 3: We determine the inclination angle φi(t) from the computed quantities using the
ruling curvature as stated in Equation (3.46), that is,

φi(t) = − arctan
(

s′
i−1(t) sin θi,R(t)

s′
i(t)ki(t) sin θi−1,L(t)Ki−1(t) sinφi−1(t)

)
.

• Step 4: Finally, we find the next ruling direction θi,L(t) using Equation (3.47), that is,

θi,L(t) = − arccot
(

cot θi,R(t) − 2
ki(t)

φ′
i(t)
s′

i(t)
cotφi(t)

)
(mod π).

Figure 4.8 illustrates the application of this method to both sides of the curve. Here, we intended
to append four creases to either side of the curve, but failed to make much progress on the inner
side of the ellipse.

Tangent parallel curves

In this section, we discuss the construction of pleats using tangent parallel curves. For this purpose,
we first determine tangent-parallel curves to the left and right patch by solving the initial value
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Figure 4.9: Elliptic crease depicted in Figure 4.6 with tangent-parallel pleats.

problem stated in Equation (2.9) for both sides, that is,

l′L(t)
lL(t) =

(
2 cos(2t) − a

cos2 t+ a2 sin2 t

)
tan(sin(2t)) with lL(0) = lL,0,

and
l′R(t)
lR(t) =

(
2 cos(2t) + a

cos2 t+ a2 sin2 t

)
tan(sin(2t)) with lR(0) = lR,0.

Recall that the constructed surfaces consist of two families of parallel rulings. We therefore set
rL(t) = r1L(t), rR(t) = r1R(t), RL(t) = R1L(t), and RR(t) = R1R(t). Lemma 3.15 implies how
the curves xi−1(t) and Xi−1(t) specify the next curves xi(t) and Xi(t), that is,

xi(t) =
{

xi−1(t) + ci−1lL(t)rL(t), if i is odd,
xi−1(t) + ci−1lR(t)rR(t), if i is even,

and

Xi(t) =
{

Xi−1(t) + ci−1lL(t)RL(t), if i is odd,
Xi−1(t) + ci−1lR(t)RR(t), if i is even,

where ci−1 > 0 are sufficiently small constants.
Figure 4.9 illustrates the application of this method to both sides of the curve. Here, we intended

to append three curves to either side, but again failed to make much progress towards the center of
the ellipse. Finally, note that Corollary 3.2 implies that a rigid-ruling folding motion as illustrated
in Figure 4.7 induces the same crease-rule pattern when patches along tangent parallel curves are
added; see Figure 4.11.

4.3.4 Further Variations

Similar to Section 4.2, this is not the only ruling angle combination that results in (numerically)
closed shapes. Other variations can be obtained by considering

θ1L(t) = π

2 + pL sin(2t) and θ1R(t) = π

2 + pR sin(2t).
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Figure 4.10: Numerically closed folded states of the pleated ellipse with tangent parallel pleats for
the same folded states of curves as in Figure 4.8.

Figure 4.11: Illustration of the rigid-ruling folding motion in Figure 4.7 with tangent-parallel pleats.
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for appropriate values of pL and pR. When pL ̸= pR, the crease does not have constant fold angle.
However, solving the corresponding initial value problem for φ1(t) results in an even periodic
function. This allows a similar argument to the previous section implying periodic curves.

4.4 Final Remarks

We developed a strategy to derive (numerically) closed space curves from glued or folded ellipses.
We suspect that similar considerations can be applied to other periodic convex crease or glue curves,
provided the ruling angles are chosen appropriately. Specifically, in the case of circular curves, we
are not limited by the curvature period of the developed curve. As a result, we can select the period
length at will and construct shapes similar to those in Section 7.2.
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Chapter 5

Connecting Two Patches with
Specified Rulings to a Central Patch
with Unspecified Rulings

The content of this chapter is unpublished and is based on discussions with Erik Demaine, Robert Lang, and
Tomohiro Tachi.

Overview

In this chapter, we consider an application of gluing and creasing three patches with partial ruling
information. Specifically, we highlight two examples in which the rulings of the left and right
patches are deduced from the folded shape, while the rulings of the central patch remain initially
undefined. These examples showcase variations of Tony Wills’ squaricle and David Huffman’s
hexagonal column.

5.1 Introduction
This chapter illustrates the first application of the theory presented in Section 3.4. Specifically,
we explore examples of how to join three patches where the rulings of the left and right patches
are known. This is particularly interesting because the rulings of the side patches can sometimes
be derived from symmetry or other properties of the folded shape. However, the central patch’s
rulings are initially unknown and not trivial to deduce. Consequently, prescribing the rulings of
two patches and then attaching a third surface often does not yield the desired result.

We illustrate the corresponding computation using two examples. The first, discussed in Sec-
tion 5.2, explores variations of the “squaricle”, a shape introduced by Tony Wills [108]. A squaricle
is a gluing of a square and a circle with equal perimeter length along their boundaries, as depicted
in Figure 5.1a. The variations we consider in this chapter were suggested by John Sharp [86].

The second example, discussed in Section 5.3, analyzes one of David Huffman’s designs: the
hexagonal tower. Beyond Huffman codes, Huffman is known for a systematic study of the behavior
of paper when folded along curves, specifically conic creases. Reconstructions of this crease pattern
suggest that it consists of circles, parabolas, and lines [18]. Upon assembly, the pattern can be
closed into a hexagonal shape, as shown in Figure 5.7. To the best of our knowledge, this section
presents the first curved-crease analysis of this shape with a positive result.
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(a) A squaricle (Figure 4 in Wills [108]), which is obtained by gluing a circle with four creases and a square.

(b) A variation of the squaricle with a central planar square on the circular region.

Figure 5.1: The squaricle and its variations as considered in Section 5.2.

5.2 Variations of the Squaricle
The gluing of a square and a circle, as well as other planar regions, can result in various shapes.
The final form can be altered by purposefully introducing creases on one or both surfaces. In the
following, we consider squaricle variations proposed by John Sharp [86], illustrated in Figure 5.1b.
In this context, we add eight creases to the circular region. Four of these create a planar square,
with its midpoint coinciding with the circle’s center. The other four creases connect the corners
of the square with four evenly spaced points along the boundary of the circle. When folded, these
designated points align with the corners of the square. In Chapter 9, we consider other variations
of such gluings.

5.2.1 Ruling Analysis

When carefully constructing the proposed variation of the squaricle from paper, it is not obvious
how the rulings are distributed. As one of the four bent regions of the circle is bounded by
three straight edges and a curved edge, it requires further decomposition; see Figure 5.1b. In the
following, we assume that an edge of the central square is part of a triangular region, dividing the
patch into two cones on either side, with their apices coinciding with the corners of the creased
square. Hence, the circular surface consists of a central square, four triangles, and eight cones as
depicted in Figure 5.2. Due to the 4-fold rotational symmetry of the circular region, the square
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Figure 5.2: Crease pattern and notation.

region also requires 4-fold rotational symmetry. It consequently features a central plane. However,
the alignment of rulings of the remaining triangular patches is unknown. In symmetric cases, these
surfaces become cylinders, but for “twisted” squares, this assumption might not hold true.

In the following section, we demonstrate how to identify the rulings for the four patches, with
each one connecting two cones.

5.2.2 Computation

Without loss of generality, we assume that the circle and square have unit boundary length. A
circle and one side of the square can be parametrized by arc length as

x◦(s) = 1
2π (cos(2πs), sin(2πs), 0) and x□(s) =

(1
8 , s, 0

)
,

respectively. Assume that the circle and square are glued so that points corresponding to the
same arc-length parameter value coincide. We parametrize the coordinates of the corners vi of the
creased shape using polar coordinates with radius r and angle α. We set v1 = r (cosα, sinα, 0),
and denote by v2, v3, and v4 the rotated copies of v1 by π

4 , π
2 , and 3π

4 about the z-axis.

Initial values

Previously, we established the assumption that one of the bent patches consists of a triangle and
two cones. However, we have not yet determined the third corner p◦ of the triangle {v1,v2,p◦}
that lies on the circular boundary.

Further careful analysis suggests that for a feasible combination of α and r there is only one
possible solution for the location of p◦. To obtain this location, we consider the initial tangent
planes of the computed surfaces. As p◦ might be any point on the circular boundary, we assume
that p◦ = x◦(ι) for some initially unknown arc-length parameter ι. Furthermore, we denote its
corresponding counterpart on the square by p□ = x□(ι). Finally, we denote the corner of the square
by s = x□

(
1
8

)
.
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P2L,0

P

R · P

Figure 5.3: Notation of the quantities used in the analysis of the variation of a squaricle.

Without loss of generality, we assume that the 3D shape is positioned such that the corners of
the creased square Vi coincide with their 2D counterparts, that is, Vi = vi. Our goal is to locate
point P that corresponds to the location of the points p□ and p◦, and point S that corresponds to
the corner s on the initial tangent plane of the triangular patch of the square. In the following, we
denote a rotation matrix corresponding to a rotation by π

4 about the z-axis by R.
The parameter ι and the location of the points S and P constitute seven unknowns. These can

be determined from seven constraints derived from the isometry requirement between 2D and 3D.
Specifically, we obtain five constraints from the following distance requirements,

dist(p◦,v1) = dist(P,V1), dist(p◦,v2) = dist(P,V2), dist(p, s) = dist(P,S),
dist(p□, R · p□) = dist(P, R · P), dist(R · p, s) = dist(R · P,S).

and two constraints from the angular constraints

(s − p) · (v2 − p)
|s − p|

= (S − P) · (V2 − P)
|S − P|

,

(s −R · p) · (v2 −R · p)
|s −R · p|

= (S −R · P) · (V2 −R · P)
|S −R · P|

.

We solve the above seven constraints numerically, and for reasonable r and α, we obtain solutions
for ι, S, and P. This defines the “scaffolding” consisting of the planar regions of the shape depicted
in Figure 5.3. Additionally, the points of P and S define the initial tangent directions,

T1(0) = T1,0 = S − P
|S − P|

and T2(0) = T2,0 = S −R · P
|S −R · P|

,
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n1R(0)
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n2L(0)
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Figure 5.4: Illustration of the notation of the development.

and the normals of the incident tangent planes,

P1R,0 = (P − S) × (V2 − S)
|(P − S) × (V2 − S)| ,

P1L,0 = P2R,0 = − (P − S) × (R · P − S)
|(P − S) × (R · P − S)| ,

P2L,0 = − (R · P − S) × (V2 − S)
|(R · P − S) × (V2 − S)| .

Parametrization of the development

We now proceed in discussing the parametrization of the development to set up the computation
of the gluing curves; see Figure 5.4.

Following the notation of Section 3.4.3, we let the central triangular patch be bounded by curves

x1L(s) = x□(ι+ s) and x2R(s) = R · x□(ι− s);

see Figure 5.4. For simplicity, we work with reflected versions of x1R(s) and x2L(s), denoting them
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using a tilde superscript (∼):

x̃1R(s) = x◦(ι+ s) and x̃2L(s) = R · x◦(ι− s).

This reflection needs to be taken in account when computing the corresponding ruling directions
and curvatures.

In the following, analogous to Section 3.4.3, we assume that the rulings of the central patch con-
nect x1L(s1(t)) with x2R(s2(t)), where we assume without loss of generality that the parametrization
speeds are s1(t) = t and s2(t) = u(t) for an initially unknown function u(t).

The (reflected) ruling directions can be obtained from

r̃1R(t) = v2 − x̃1R(t)
|v2 − x̃1R(t)| , r1L(t) = r2R(t) = x2R(u(t)) − x1L(t)

|x2R(u(t)) − x1L(t)| , r̃2L(t) = v2 − x̃2L(u(t))
|v2 − x̃2L(u(t))| .

Considering the reflection, the corresponding ruling angles read

θ1R(t) = π − arctan
(
r̃1R(t) · t̃1R(t), r̃1R(t) · ñ1R(t)

)
= π − arctan

(
2πr cos(α− 2π(ι+ t))√

1 + 4π2r2 + 4πr sin(α− 2π(ι+ t))
,

1 + 2πr sin(α− 2π(ι+ t))√
1 + 4π2r2 + 4πr sin(α− 2π(ι+ t))

)
θ2L(t) = − arctan

(
r̃2L(t) · t̃2L(u(t)), r̃2L(t) · ñ2L(u(t))

)
= − arctan

(
−2πr sin(α− 2π(ι− u(t)))√

1 + 4π2r2 + 4πr cos(α− 2π(ι− u(t)))
,

−1 + 2πr cos(α− 2π(ι− u(t)))√
1 + 4π2r2 + 4πr cos(α− 2π(ι− u(t)))

)
,

where t̃1R(s) and t̃2L(s) are the tangents, and ñ1R(s) and ñ2L(s) the normals of x̃1R(s) and
x̃2L(s), respectively. The remaining ruling angles follow the definition in Equation (3.25) and
Equation (3.26), that is,

θ1L(t) = arctan

 1
8 − ι− t√

(1
8 − ι− t)2 + (1

8 + ι− u(t))2
,

1
8 + ι− u(t)√

(1
8 − ι− t)2 + (1

8 + ι− u(t))2


θ2R(t) = arctan

 −1
8 − ι+ u(t)√

(1
8 − ι− t)2 + (1

8 + ι− u(t))2
,

1
8 − ι− t√

(1
8 − ι− t)2 + (1

8 + ι− u(t))2


using the tangents t1L(s) and t2R(s), and normals n1L(s) and n2R(s) of x1L(s) and x2R(s), respec-
tively.

Finally, the curvatures of the developed curves are k1R(s) = −2π, k1L(s) = k2R(s) = 0, and
k2L(s) = 2π.

Initial values of frame and inclination angles

It follows from k1L(t) = 0 and k2R(u(t)) = 0 that φ1L(t) = ±π
2 and φ2L(t) = ±π

2 . In both cases,
we decide to use the positive branch1. Furthermore, it follows that φ′

1L(t) = φ′
2R(t) = 0.

These two inclination angles determine the initial normal vectors of both frames, since by
Equation (3.2), we have that

P1L(0) = cosφ1L(0) B1(0) + sinφ1L(0) N1(0) = N1(0) = N1,0,

P2R(0) = cosφ2R(0) B2(0) + sinφ2R(0) N2(0) = N2(t) = N2,0.

1Experimentation suggests that this is the only valid choice, but we do not have an argument for that
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Consequently, the initial binormal vectors read Bi(0) = Bi,0 = Ti,0 × Ni,0.
The initial values of the frame specify the initial values of the other inclination angles as

φ1R,0 = arctan (P1R,0 · B1,0,P1R,0 · N1,0) and φ2L,0 = arctan (P2L,0 · B2,0,P2L,0 · N2,0) .

Computation of the inclination angles and parametrization speed

Since k1L(t) = 0, we use the approach discussed in Section 3.4.3 for (A1, B1) = (L,R) and
(A2, B2) = (R,L), that is, φ1A(t) = φ1L(t), φ1B(t) = φ1R(t), φ2A(t) = φ2R(t), and φ2B(t) = φ2L(t).

Inserting φ1L(t) = π
2 and φ2R(t) = π

2 simplifies the three equations discussed in Section 3.4.3
in a system of three differential equations, that can be stated explicitly as follows

u′(t) = k1R(t)
k2L(u(t))

cosφ2L(t)
cosφ1R(t)

sin θ2R(t)
sin θ1L(t)

φ′
1R(t) = k1R(t)

(
−secφ1R(t)

tan θ1L(t) + tanφ1R(t)
tan θ1R(t)

)
φ′

2L(t) = −k1R(t)sin θ2R(t)
sin θ1L(t)

( 1
tan θ2R(t) − sinφ2L(t)

tan θ2L(t)

)
secφ1R(t)

For t ∈ [0, 1
8−ι), we then solve these three equations using the initial values u(0) = 0, φ1R(0) = φ1R,0

and φ2L(0) = φ2L,0.

Computation of the gluing curves and construction of surfaces

Upon a successful computations of the inclination angles and parametrization speed, we define the
curvatures, K1(t) and K2(t), and torsions, τ1(t) and τ2(t), using Equation (3.35).

Finally, we integrate the corresponding Frenet-Serret equations (see Equation (3.1)). The first
curve is parametrized by arc-length and starts at X1(0) = P. Its Frenet frame has the initial values
(T1,0,N1,0,B1,0). The second curve starts at X2(0) = R · P and its parametrization speed is u(t).
Additionally, its frame has initial values (T2,0,N2,0,B2,0).

Finally, we construct the surfaces as a loft between the two curves X1(t) and X2(t), and either
curve and V2.

5.2.3 Conclusion

Although we anticipated the integration to terminate prematurely, our observations indicated that
upon successful computation of the scaffolding, that is, ι, P, and S, we usually also managed to
derive solutions for the two systems of differential equations.2 This suggest (numerical) existence
of these variations of the squaricle. This could be attributed to the observation that the rulings of
the central patch are almost parallel (appearing to be strictly parallel only in the symmetric case).

For cases with symmetric configurations, specifically when α = π
4 , it follows that ι = 0, allowing

for a constructive computation of the scaffolding. In such instances, the join-and-fan method
explained in Section 8 can be employed to achieve a more straightforward computation, as discussed
in Chapter 9 for cases where r = 0.

2Given the singularity of the system at t = 1
8 − ι, our typical integration range was up to tmax = 1

8 − ι − 10−6.
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Figure 5.5: Squaricle variations for r = 0.05 and α ∈ (0.05π,−0.1π,−0.25π,−0.4π,−0.55π).
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Figure 5.6: Squaricle variations for r = 0.1 and α ∈ (−0.05π,−0.15π,−0.25π,−0.35π,−0.45π).
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Figure 5.7: Left: Hexagonal tower with cusps (David Huffman, 1978), Figure 4.4.48 in Koschitz [43].
Not for reproduction. Right: Reconstructed crease pattern with guessed rulings.

5.3 Huffman’s Hexagonal Tower
David Huffman’s hexagonal tower is a result of his investigation into folding paper along conic
creases. The studied shape’s crease pattern consists of pairs of circular and parabolic arcs, which
are positioned such that the parabola’s focal point aligns with the circle’s center. The circle’s
radius is selected to be half the focal length of the parabola, allowing for the regular tessellation
of the pattern. In addition to the tessellation that produces a hexagonal tower, Huffman also
experimented with a quadrangular base [43].

5.3.1 Ruling Analysis

We begin by analyzing the folded shape to form an informed hypothesis about the ruling patterns
of the patches; see Figure 5.7 (right). Given that the folded shape exhibits rotational symmetry
indicates that the area between two adjacent parabolic arches is cylindrically ruled. On the other
hand, the section connecting the intersection of two neighboring parabolas to the circular arc must
be, at the very least, locally conically ruled. In the subsequent discussion, we will assume that the
entire half-circle is a cone, in line with the indications from the folded shape and existing analysis
of Koschitz [43] and Demaine et al. [18].

In the upcoming computation, our initial focus will be only on one of the modules of the shape.
One module consists the conical and cylindrical patches, along with the central patch whose ruling
pattern is unknown. In the computation, our goal is to determine the rulings of the central patch
to create a compatible connection between the cylinder and a cone. Our computations provide a
family of folded states that can be influenced by the initial values of the fold angles.

Ultimately, our goal is to achieve complete closure of the shape corresponding to an appropriate
arrangement of folded modules. First, we encounter the problem that fully covering the computed
surface with a single singularity-free developable patch may not achieve the curvature required for
full closure. Consequently, we follow the same strategy as Demaine et al. [18] in the discretized
simulation. Specifically, we allow the rulings to come closer together (on the side closer to the
circle), resulting in a not fully covered circular crease. To avoid gaps in the shape, we append two
cones connected by a circular curved crease to either side, whose apices align with the endpoints of
the parabola. This strategic combination of rulings ensures the necessary curvature of the patches
and, upon proper assembly, results in a (numerically) closed tower.
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Figure 5.8: Folding of the first module.

5.3.2 Computation

Parametrization of the development

In the following, we study the creasing of a part of a crease pattern that consists of a single parabolic
and circular arc that share the same center and focal point respectively; see Figure 5.8. Specifically,
we choose the common center to coincide with the origin, the circle to have radius one, and the
parabola to pass through point (2, 0, 0).

To apply the discussed method, we parametrize the rulings with a parameter t. Since a closed-
form of the arc-length parametrization of a parabola is not known (to the best of my knowledge),
we want to avoid solving for a function that needs to be evaluated at the arc-length parametrization
of the parabola’s curvature. Therefore, we assume that the function s2(t), which corresponds to
the arc-length parameter of the circle, is unknown. Specifically, we let x1(t) be the (numerically
approximated) arc-length parametrization of the parabola3 starting at point x1(0) = (2, 0, 0) and
ending at point x1(tmax) = (0, 4, 0). Furthermore, let x2(s) denote the arc-length parametrization
of the circle,

x2(s) = (cos s, sin s, 0) .

In the following, we parametrize the ruling polylines by s1(t) = t and s2(t) = u(t).
Additionally, we set the ruling directions of the left and right patch to be

r1R(t) = (−1, 0, 0) and r2L(t) = − x2(u(t))
|x2(u(t))| .

3A parabola can be parametrized by polar coordinates by

x̃1(ϕ) = 4
1 + cos ϕ

(cos ϕ, sin ϕ, 0) .

Then the parametrization speed is

s̃′(ϕ) = 2 sec3 ϕ

2 resulting in s̃(ϕ) = 2
(

arctanh
(

sin ϕ

2

)
+ sec ϕ

2 tan ϕ

2

)
.

In the following computations, we set x1(s) = x̃1(s̃−1(τ)). A closed form of the inverse is not known (I think).
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Consequently, the corresponding ruling angles read

θ1R(t) = arctan (r1R(t) · t1(t), r1R(t) · n1(t))
θ2L(t) = arctan (r2L(t) · t2(u(t)), r2L(t) · n2(u(t)))

where ti(s) and ni(s) denote the tangent and normal vectors of xi(s). In addition, we use Equa-
tion (3.24) to define the ruling direction r1L(t) = r2R(t) of the central patch, and Equation (3.25)
and Equation (3.26) to define their corresponding ruling angles θ1L(t) and θ2R(t).

Finally, we denote the curvature of the parabolic arc x1(s) at arc-length parameter by k1(s).
The curvature of the circle is k2(s) = 1.

Computation of the inclination angles and parametrization speed

We use the system of differential equations in Equation (3.39) to compute the inclination angles
and the unknown parametrization speed. To cover the full central area, we set u(0) = 0. The
combination of initial values of the inclination angles influences the value of u(tmax). To get a
full covering of the central patch, we aim for u(tmax) = π

2 ; see Figure 5.8. It appears that if the
initial value of one inclination angle remains the same, changing the other appropriately results in
solutions with the desired property.

Computation of the crease curves and construction of surfaces

Upon a successful computation of u(t), φ1(t), and φ2(t), we define the curvatures Ki(t) and torsions
τi(t) using Equation (3.40).

To obtain a suitable combination of the initial points and vectors of the curves and their frames,
we follow the strategy outlined in Section 3.4.3, Scenario 2.

Arranging surfaces

Finally, we attempt to arrange the surfaces to form the full shape. To do that, we first rotate all
three surfaces by π about the bisector of the first two rulings of the central and right patch, that
is, the line with direction D = R2L(0) − R1R(0) passing through X2(0). Let T : X 7→ Rπ · (X −
X1(0)) + X1(0) denote the corresponding transformation, where Rπ indicates the corresponding
rotation matrix about π around D. Furthermore, let Π be the base plane of the cylinder, that is,
a plane perpendicular to R1R(t) (which is constant) passing through X1(0).

For the folded patches to form a closed shape, we require the following four constraints to be
met (see Figure 5.3.2):

• Constraint 1: As mentioned, to cover the full area of the central patch, we require u(tmax) = π
2 .

• Constraint 2: To allow for the surfaces to be reflected and aligned in a polar array, we require
that T (X1(tmax)) ∈ Π.

• Constraint 3: Additionally, to ensure that there is no gap or intersection along the reflected
surfaces, we also need T (X2(u(tmax))) ∈ Π.

• Constraint 4: Finally, for the shape to close up, we require that the angle between consecutive
cylinders is appropriate. In the case of an hexagonal column, the angle between R1L(0) and
Rπ · R1L(0) should be 5π

6 .
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(a) Not aligned boundaries. (b) Aligned boundaries.

Figure 5.9: Composition of two modules of Huffman’s tower.

Within our assumptions, these four conditions can only be influenced by two initial values for
the inclination angles. Experimentally, we were not able to find values that would satisfy all four
constraints. Consequently, we resorted to the following approach to allow for more flexibility in the
design.

Modified approach with circular creases

In this modified approach, we let the initial value u(0) vary too (within reasonable bounds 0 <
u(0) < π

2 ). This results in a potentially not fully covered circle. To avoid gaps, we fill the holes
with two cones connected by circular creases to either side. In the following, we assume that we
have obtained a folding of parts of the three patches, and proceed with discussing how to compute
and append the remaining conical patches.

We divide the circular arc into three parts. In the following, we use subscripts “S” and “E” to
indicate whether the newly introduced circular creases between cones belong to the “start”, that
is, the circular segment xS(s) = x2(s) where s ∈ [0, u(0)], or “end”, that is, the circular segment
xE(s) = x2(s) where s ∈ [u(tmax), π

2 ].

Parametrization of the development. We define the the left ruling directions of both patches
to be

rS,L(s) = rE,L(s) = − x2(s)
|x2(s)| .

In addition, we define the right ruling directions as

rS,R(s) = x2(s) − x1(0)
|x2(s) − x1(0)| , and rE,R(s) = x2(s) − x1(tmax)

|x2(s) − x1(tmax)| .
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Figure 5.10: Notation and folding of the modified module.

The corresponding ruling angles θS,R(t), θS,L(t), θE,R(t) and θE,L(t) follow similar to Equation (3.25)
and Equation (3.26).

Computation of the inclination angles and parametrization speed. For the beginning
and end, we compute φS(t) and φE(t) from Equation (3.21).

To obtain (tangent) continuous transitions, we set the initial values of the inclination angles to
match the corresponding start and end values of φ2(t). Specifically, we set φS(u(0)) = φ2(0) and
φE(u(tmax)) = φ2(tmax).

Computation of the crease curves and construction of surfaces. We use Equation (3.22)
to define the curvatures KS(t) and KE(t), and torsions τS(t) and τE(t).

To obtain tangent-continuous transitions, we start the integration of the Frenet-Serret equations
at the respective frames at the end points of X2(t). Specifically, we set set XS(u(0)) = X2(0),
XE(u(tmax)) = X2(tmax), and

(TS(u(0)),NS(u(0)),BS(u(0))) = (T2(0),N2(0),B2(0))
(TE(u(tmax)),NE(u(tmax)),BE(u(tmax))) = (T2(tmax),N2(tmax),B2(tmax)).

Upon successful computation, we construct the cones using the ruling directions (Equation (3.41)
and Equation (3.42)) or as a central extrusion between the curve and corresponding apices.

Numerical closure of shape

With the modified approach we have one more degree of freedom, the initial value of u(t), while
no longer requiring the first constraint (we no longer require u(tmax) = π

2 ). The second and
fourth constraint remains unchanged, while the third is modified to T (XE(π)) ∈ Π. Note that
transformation T is modified to rotate by π about the bisector of the first rulings of the cones
adjacent to XS(s).

To measure the suitability of a configuration, we introduce the following error measurements:

• Error corresponding to Constraint 2: e1 = R1R · T (X1(tmax))−X1(0)
|T (X1(tmax))−X1(0)|
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Figure 5.11: Final assembled Huffman’s hexagonal tower.

• Error corresponding to Constraint 3: e2 = R1R · T (XE( π
2 ))−X1(0)

|T (XE( π
2 ))−X1(0)|

• Error corresponding to Constraint 4: e3 = R1R · (R · R1R) − cos 5π
6 .

Using numerical minimization in Mathematica (with manual help to find a good initial guess), we
obtain the following initial values

(u0, φ1,0, φ2,0) = {0.6015913936768009,−0.7753374025984491, 0.6754673354175101}.

A computation with u(0) = u0, φ1(0) = φ1,0, and φ2(0) = φ2,0, results in a solution where

(e1, e2, e3) = (1.4 · 10−9,−1.02 · 10−10, 6.22 · 10−15).

Consequently, appropriately assembling the modules results in a (numerically) closed shape. To
better match David Huffman’s design, we add planar faces at the top and bottom of the shape.

5.3.3 Conclusion

We were able to obtain a precise numerical approximation of Huffman’s shape that closes up
to numerical error. Consequently, we conjecture that the shape exists with the proposed ruling
pattern.

Variations of this shape can be obtained by changing the shapes of the involved creases, such
as replacing the parabolic crease with circular creases [19]. Figure 5.12 shows two variations with
strategically positioned circles. The shapes are computed with an analogous approach to the
presented method.
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(a) Circular creases with radius r = 4.

(b) Circular creases with radius r = 5.

Figure 5.12: Variations of David Huffman’s hexagonal tower with circular creases.

114



Chapter 6

Connecting Two Planar or Constant
Fold Angle Creases

The content of this chapter is unpublished.

Overview

In this chapter, we focus on the second application, which involves joining three patches using
partial ruling information and specifying the glue curves to be either planar creases or creases with
a constant fold angle. In the case of the latter, appropriate combinations of inclination angles result
in a rigid folding motion. The examples considered include Maximilian Klammer’s kinetic sculpture
“Polyannular Cyclide” and two logarithmic spiral curves folded with constant fold angle.

6.1 Introduction
In certain applications, prescribing the type of crease has practical implications. For instance, as
demonstrated in the following examples, defining a patch to be bounded by two planar creases
allows for patches to be wedged between planes and arranged using reflections. On the other hand,
prescribing constant angle creases facilitates rigid-ruling folding motions.

However, achieving a scenario where both creases are either planar or of constant angle is not
straightforward. For a single crease, selecting a specific ruling angle function, along with the crease
type (either planar or of constant angle), determines the direction of the other incident ruling.
When adding a second patch along a specified curve, the ruling angles of this new patch may not
correspond to a planar or constant-angle crease. As a result, insisting on both creases being planar
or of constant angle defines the rulings of the three patches. While it is possible to combine both
types – asking for one crease to be planar and the other to maintain a constant fold angle – this
may not always be practical.

In Section 6.2, we examine the kinetic sculpture shown in Figure 6.1. Maximilian Klammer de-
signed this sculpture for his Master’s thesis at the Academy of Fine Arts Vienna [42]. The sculpture
consists of twenty-four circular segments, alternately joined along their curved boundaries. With-
out further constraints, this configuration permits numerous degrees of freedom. In our discussion,
we will focus on instances where the gluing curves are constrained to lie in rotationally symmetric
planes, all enclosing equal angles. The motion proposed by Max Klammer is steered by a circular
opening, as illustrated in Figure 6.1. By reconstructing this shape, we observe that the circular
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Figure 6.1: Kinetic sculpture “Polyannular Cyclide” from annuli designed by Maximilian Klammer.

patches move on developable surfaces whose shape is determined by the opening angle of the two
planes and the radius of the opening.

In the second example, we focus on creasing along two logarithmic spirals. We chose this
particular example for two reasons: first, unlike the previous examples, here both curves do not
exhibit a constant curvature; second, we aimed to experimentally validate our intuition concerning
a fully folded state. We conjecture that, in the limit, two constant-angle creases allow a fully
folded state where all rulings become parallel. This would be analogous to the flat folded state of
discretizations of curved-crease patterns that have rows of flat-foldable vertices.

6.2 Kinetic Sculpture from Annuli
In the upcoming sections, we use the discussed methods to compute the developable surfaces in-
volved in the kinetic sculpture displayed in Figure 6.3. Specifically, we will demonstrate how to
position a region bounded by two concentric circles such that the circular boundaries lie in two in-
tersecting planes. By arranging the resulting bent patches appropriately, we obtain a configuration
of the kinematic sculpture. We show that, given a circular opening, the developable patches move
along fixed developable surfaces throughout the motion, provided they are sufficiently constrained
to do so.

6.2.1 Computation

Since we constrain the overall shape to exhibit n-fold rotational symmetry, we would like to ensure
that the gluing curves are planar. However, finding an appropriate ruling layout based solely on a
paper model is not straightforward. Simply connecting the two curves with rulings perpendicular
to both curves results in a conical ruling. When the corresponding conical patch is bent, both
boundary curves lie in parallel planes. The boundaries of the patches involved in the sculpture,
however, are contained in intersecting planes.

To find appropriate rulings, we apply the approach of joining three patches along curved creases,
as described in Section 3.4.4. Specifically, we view the circular boundary curves as planar creases,
as depicted in Figure 6.2. In the following section, we assume that one circular crease (or boundary)
is parametrized by arc length and demonstrate how to determine the parametrization of the second
curve that results in a valid combination of two curved creases.
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Figure 6.2: Illustration of the computational approach for the analysis of the kinetic sculpture.

Parametrization of the development

In the following, we consider the patch between two developed circles with radius r1 and r2. These
circles can be parametrized by arc length as follows:

xi(s) = ri

(
cos s

ri
, sin s

ri
, 0
)
.

There are multiple possible ways to set-up the assumption about the parametrization to use the
method discussed in Section 3.4.4. In the following, we assume s1(t) = r1t and s2(t) = r2(t+ u(t))
for some unknown function u(t).

Since we consider planar creases, all ruling directions are the same and can be parametrized by

r(t) = r1R(t) = r1L(t) = r2R(t) = r2L(t) = x2(s2(t)) − x1(s1(t))
|x2(s2(t)) − x1(s1(t))| .

To compute the ruling angles, recall that the tangent and normal of xi(s) read

ti(s) =
(

− sin s

ri
, cos s

ri
, 0
)

and ni(s) = −
(

cos s
ri
, sin s

ri
, 0
)
.

To simplify the equations, we assume without loss of generality that r1 = 1 and r2 = r for some
0 < r < 1. Then, the ruling angles in Equation (3.25) and Equation (3.26) can be expressed as
follows:

θ1L(t) = θ1R(t) = arctan (r sin u(t), 1 − r cosu(t)) , (6.1)
θ2L(t) = θ2R(t) = arctan (sin u(t), cosu(t) − r) . (6.2)

Initial values

The function u(t) measures the deviation of the ruling directions from being perpendicular to both
curves. To avoid undesired artifacts such as intersecting rulings or rulings that exceed the circular
region, we aim for the absolute value of u(t) to be small.
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1 − r

dX1(0)

N1(0) γ
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N2(0)
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P2R(0)

P1L(0)
α

φ10

φ20

β

x

V

X2(0)

Figure 6.3: Illustration of the construction of the initial values in Section 6.2.1.

For reasonable initial values, the system of equations provides a local solution. To facilitate a
geometric interpretation of the resulting curves, we consider solutions corresponding to symmetric
initial values at t = 0. Specifically, we set u(0) = 0, resulting in parallel developed tangents at
t = 0, which imply parallel tangents in 3D. Since these tangents lie in the two base planes, the
3D ruling corresponding to t = 0 lies in a plane perpendicular to the intersection of the two base
planes; see Figure 6.2.

We connect the initial values of the inclination angles to the angle α between the two base
planes and the distance d between the initial point X1(0) and the common axis. For this purpose,
we study the triangle composed of X1(0), X2(0), and V, the base point of Xi(0) on the intersection
of the base planes.

Note that the distance between X1(0) and X2(0), the length of the ruling at u(0), is 1 − r.
Consequently, using trigonometric identities (see Figure 6.3), we can obtain the remaining length
of the triangle:

x = dist(V,X2(0)) = d cosα+

√
(1 − r)2 − d2

2 (1 − cos(2α))

and the angles:

γ = arcsin
(

x

1 − r
sinα

)
and β = π − α− (π − γ).

The (oriented) initial angles are φ10 = −γ and φ20 = β.
In our computations, we use T1,0 = (1, 0, 0), N1,0 = (−1, 0, 0), B1,0 = T1,0 ×N1,0. Additionally,

we set T2,0 = T1,0, B2,0 = cos δ N1,0 +sin δ B1,0, where δ = π
2 −φ1,0 +φ2,0, and N2,0 = B2,0 ×T2,0.

Finally, let X1(0) = (−d, 0, 0) and X2(0) = X1(0) + (1 − r)(cos γ N1,0 + sin γ B1,0).
Figure 6.4a shows configurations with common angle α but varying distances d. On the other

hand, Figure 6.4b shows shapes sharing a common distance d that vary in angle α.

Computation of the inclination angles and parametrization speed

Using Equation (6.1), Equation (6.2), and the assumptions about the arc-length parameters s1(t)
and s2(t), the system of differential equations for u(t), φ1(t), and φ2(t) in Equation (3.44) simplifies
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(a) Opening angle α = π
10 and distances d ∈ (0.01, 0.2, 0.4, 0.6).

(b) Opening angles α ∈
( 2π

32 ,
2π
24 ,

2π
16 ,

2π
8
)

and distance d = 0.4.

Figure 6.4: Illustration of solutions for r = 1
2 corresponding to different initial values.
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Figure 6.5: Illustration of a motion of a circular patch.

to

u′(t) = −1 − (cosu(t) − r) tanφ1(t)
(1 − r cosu(t)) tanφ2(t)

φ′
1(t) = r sin u(t)

1 − r cosu(t) tanφ1(t) (6.3)

φ′
2(t) = − sin u(t)

1 − r cosu(t) tanφ1(t).

Note that φ′
1(t) = −rφ′

2(t), which yields φ1(t) = −rφ2(t)+c. However, despite this relationship,
we could not find a closed-form solution of the given system.

We also observe that the existence of a unique real-valued solution implies that it is periodic.
An argument for this property of the system follows from Kotin [45]. Firstly, note that the system
of equations in Equation (6.3) can be expressed using a function f(x) : R6 → R3 as follows:

f(u(t), φ1(t), φ2(t), u′(t), φ′
1(t), φ′

2(t)) = 0. (6.4)

Additionally, functions that satisfy Equation (6.4) also satisfy

f(−u(t), φ1(t), φ2(t), u′(t),−φ′
1(t),−φ′

2(t)) = 0.

Furthermore, we have the initial condition u(0) = 0. It follows from Lemma 1 in Kotin [45] that
u(t) = −u(−t), φ1(t) = φ1(−t), and φ2(t) = φ2(−t). Moreover, if there exists a parameter D with
u
(

D
2

)
= 0, then u(t+D) = φ1(t+D) = φ2(t+D) = 0 by Theorem 1 in Kotin [45]. We numerically

solve the system and observe that, given suitable initial values, the obtained solutions were unique
and periodic.

Figure 3-6: Illustration of a motion of a circular patch.

Computation of the crease curves and construction of surfaces

We obtain the 3D curvatures with Equation (3.40) (the torsion of a planar curve is zero). Finally,
we find the curves by integrating the Frenet-Serret equations with appropriate initial orthonor-
mal frames and points as discussed earlier (see Figure 6.3). Finally, we construct the surface by
computing a linear loft between X1(t) and X2(t).
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Figure 6.6: Shape from periodic developable patches that contains the configurations of a variation
of the sculpture.

Figure 6.7: Illustration of the kinetic motion of two variations of the the sculpture.

6.2.2 Kinetic Motion

Three or two of the four solutions presented in Figure 6.4a and Figure 6.4b, respectively, result in
(numerically computed) periodic solutions that allow infinite propagation. However, in reality, we
only consider a finite segment, such as a circular segment with an opening angle of 2π

3 .
Due to the circular shape of the development, we can trace out the computed global developable

surface with such a finite circular patch; see Figure 6.5 and Figure 6.6. In the sculpture by Max
Klammer, this motion is guided by the circular opening, as shown in Figure 6.7, until the point
where one of the boundaries reaches the circular opening.
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x1(t)

t1(t)n1(t)
x2(u(t))

t2(u(t))n2(u(t))

(a) Notation. (b) Computed developed rulings and folded state.

Figure 6.8: Illustration of the computations in Section 6.3.

6.3 Constant Angle Creases Along Logarithmic Spirals
In the following, we consider two spiral curves to illustrate how to apply the method discussed in
Section 3.4.4 to compute the rulings of two creases with constant fold angle.

6.3.1 Computation

Parametrization of the development

In the following, we parametrize the first arc-length parametrized logarithmic spiral by

x1(s) =
(1

2s cos(
√

3 log s), 1
2s sin(

√
3 log s)

)
and define the second curve to be a by π

3 rotated copy of x1(s), that is, x2(s) = Rπ
3

· x1(s), where
Rπ

3
denotes a rotation of π

3 about the z-axis. The curvatures of both curves are k1(s) = k2(s) =
√

3
s .

Similar to before, we assume that the central rulings are parametrized by a parameter t. The
rulings connect the two curves at arc-length parameter values s1(t) = t and s2(t) = u(t), respec-
tively, where u(t) is an initially unknown function. Using Equation (3.24), we obtain the ruling
angles as

sin θ1L(t) = n1(t) · r(t) = −
√

3t− 2u(t) sinX(t)

2
√
t2 − t(cosX +

√
3 sinX)u(t) + u(t)2

,

sin θ2R(t) = n2(u(t)) · r(t) = (
√

3 cosX(t) + sinX(t))t−
√

3u(t)

2
√
t2 − t(cosX(t) +

√
3 sinX(t))u(t) + u(t)2

,

whereX(t) =
√

3(log t−log u(t)) and ti(s) and ni(s) denote the tangent and normal of the respective
curve at arc-length parameter.
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Figure 6.9: Rigid-ruling folding motion of the spiral for φ1,0 ∈ (0.1π, 0.2π, 0.3π, 0.4π, 0.49π) with
c = 0.917.

Computation of the inclination angles and parametrization speed

Substituting the above ruling angles and curvatures in Equation (3.45) simplifies to

u′(t) = (3t cosX(t) +
√

3t sinX(t) − 3u(t))u(t)
(3t− 2

√
3u(t) sinX(t))t

tanφ1,0
tanφ2,0

.

As the right hand side of the above expression is unbounded at t = 0, we choose to start our
integration at some value other than 0, for example t0 = 2. We choose a value for u(t0), and the
inclination angles φ1(t) = φ1,0 and φ2(t) = φ2,0.

As highlighted in the previous section, we obtain the same ruling layout for combinations of
inclination angles where c = φ1,0

φ2,0
.

Computation of the crease curves and surfaces

Upon successful computation of the function u(t), we obtain the curvatures and torsions using
Equation (3.40).

To obtain the consistent initial points and vectors of the curves and orthonormal frames we
follow the strategy outlined in Section 3.4.3, Scenario 2.

6.3.2 Conclusion

Upon successful computation, we obtain folded states of the two spiral curves with constant angle.
We experimentally confirm our conjecture that the folded states converge towards a thin line with
parallel rulings as the fold angles of both creases converge to a complete fold.
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Chapter 7

Parametrization of Ruling Polylines

The content of this chapter is unpublished and is based on discussions with Erik Demaine, Robert Lang, and
Tomohiro Tachi.

Overview

In this chapter, we present the last application of joining three patches with partial ruling infor-
mation along two creases. Specifically, we define the shape of the ruling polylines up to a single
parameter, which is then determined by the common ruling curvature of the shared patches. We
demonstrate this approach on closed periodic shapes with two circular creases, and discuss an
unsuccessful attempt to analyze circular spirals.

7.1 Introduction
In this chapter, we explore other variations of the method for joining three patches with partial
ruling information along two creases. The examples presented in this chapter lean more towards
the experimental side and may not directly contribute to new theoretical insights. Nevertheless, we
find them to be interesting applications that highlight potential and constraints of the discussed
method.

In our first example, discussed in Section 7.2, we consider closed circular pleats. This subsequent
analysis differs from that presented in Section 4.3, which was also applicable to circular curves. In
that context, we determined a two-parameter family of shapes corresponding to closed elliptic pleats
by guessing appropriate ruling directions. However, in this chapter, we take a different approach.
We obtain the ruling directions by making an assumption about the shape of consecutive rule
segments, which is determined up to scaling. We use the ruling curvature to find the scale factor
for each ruling parameter, which identifies ruling directions that correspond to periodic shapes
with two circular creases. Given suitable initial values, we achieve periodic shapes with numerical
closure. However, as noted in Section 4.3, the addition of more patches to the folded shape is
similarly constrained by both geometric and numerical factors.

Our second example, discussed in Section 7.3, is based on David Huffman’s circular spirals, as
discussed in Koschitz [43] or Demaine et al. [19]. In this chapter, we make a similar assumption
about the rulings of the crease pattern, which leads to a folded state comprising three patches.
However, since the compatibility holds only for the shared patch and not for the left and right
patches, we are unable to complete the spiral. The rulings necessary to close and complete the
spiral towards the center are unknown and may not be retrievable with the discussed approach. A
construction for a special family of folded states of spirals is shown in Chapter 14.
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Figure 7.1: Two concentric circles with constant fold angle computed with the method discussed
in Section 6.3.

7.2 Pleated Annulus
Folding circles in an alternating pattern of mountain and valley creases produces intricate shapes.
Yet, describing these forms is a non-trivial task. Alese [3] explores examples by carefully construct-
ing surfaces around closed curves and introducing additional creases.

When folding concentric circles, a seemingly “natural” state emerges. Nonetheless, in most
cases, these shapes remain flexible and can be guided into various configurations. In our pursuit to
parametrize such shapes, we conducted experiments to identify rulings that appeared as “natural”
as possible. We conducted many experiments. For example, our attempt to assume that two curves
are folded along constant angle creases proved unsuccessful as we could not achieve a closed shape,
as shown in Figure 7.1. In what follows, we detail one of our more successful approaches.

7.2.1 Computation

In the following, we assume that the four circles, corresponding to two circular creases and two
circular boundaries, are parametrized by arc length by

xi(s) =
(
ri cos s

ri
, ri sin s

ri
, 0
)
,

where r0 > r1 > r2 > r3.
The method defines the layout of the polyline of consecutive rulings, constrained by a scale factor

u(t), which represents the yet-to-be-determined degree of freedom. This scale factor is encoded in
the arc lengths si(t) of the circles xi(s),

si(t) = ri(t+ piu(t)),

where pi are four constants. The shape of the ruling polylines (x0(s0(t)),x1(s1(t)),x2(s2(t)),x3(s3(t)))
is then specified up to parameter u(t).

The four constants determine the shape of the polyline. Since a common scale factor can be
incorporated in the function u(t), they comprise three shape parameters.
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(a) Folded shapes with s = 0.9.

(b) Folded shapes with s = 0.8.

Figure 7.2: Illustration of shapes obtained from the computations in Section 7.2.

127



Parametrization of the development

Using Equation (3.24), the ruling directions for i < 3 read

riL(t) =

−ri cos(t+ piu(t)) + ri+1 cos(t+ pi+1u(t))√
r2

i + r2
i+1 − 2riri+1 cos((pi − pi+1)u(t))

,
−ri sin(t+ piu(t)) + ri+1 sin(t+ pi+1u(t))√
r2

i + r2
i+1 − 2riri+1 cos((pi − pi+1)u(t))

, 0

 .
Consequently, the ruling angles simplify to

θiR(t) = arctan (ri−1,L(t) · ti(si(t)), ri−1,L(t) · ni(si(t)))

= arctan

− −ri−1 sin((pi−1 − pi)u(t))√
r2

i−1 + r2
i − 2ri−1ri cos((pi−1 − pi)u(t))

,
−ri + ri−1 cos((pi−1 − pi)u(t))√

r2
i−1 + r2

i − 2ri−1ri cos((pi−1 − pi)u(t))


and

θiL(t) = arctan (ri+1,L(t) · ti(si(t)), ri+1,L(t) · ni(si(t)))

= arctan

− −ri+1 sin((pi − pi+1)u(t))√
r2

i + r2
i+1 − 2riri+1 cos((pi − pi+1)u(t))

,
−ri + ri+1 cos((pi − pi+1)u(t))√

r2
i + r2

i+1 − 2riri+1 cos((pi − pi+1)u(t))

 .
Additionally, the curvatures of the curves xi(t) are ki(t) = 1

ri
.

Computation of the inclination angles and parametrization speed

The equations in Equation (3.39) simplify to

u′(t) = (−r2 + r1 cos((p1 − p2)u(t))) tanφ1(t) + (r1 − r2 cos((p1 − p2)u(t))) tanφ2(t)
p1 (r2 − r1 cos((p1 − p2)u(t))) tanφ1(t) + p2 (−r1 − r2 cos((p1 − p2)u(t))) tanφ2(t)

φ′
1(t) = −(p1 − p2) (r0r1 sin((p0 − p1)u(t)) − r1r2 sin((p1 − p2)u(t)) + r0r2 sin((p0 − 2p1 + p2)u(t)))

2(r1 − r0 cos((p0 − p1)u(t)))X(t)

φ′
2(t) = −(p1 − p2) (r1r2 sin ((p1 − p2)u(t)) − r2r3 sin((p2 − p3)u(t)) + r1r3 sin((p1 − 2p2 + p3)u(t)))

2(r2 − r3 cos((p2 − p3)u(t)))X(t)

where X(t) = p2 (r1 − r2 cos((p1 − p2)u(t))) cotφ1(t) + p1 (−r2 + r1 cos((p1 − p2)u(t)) cotφ2(t)).

Computation of the crease curve and surfaces

Upon successful computation, the curvatures and torsion follow from Equation (3.40). Additionally,
the consistent initial values for the curve and frame can be obtained as described in Section 3.4.3,
Scenario 2.

7.2.2 Remarks on the Closure of the Shape

Similar to Chapter 4 and Section 6.2, we observed that a successful numerical computation results
in three periodic functions with respect to the same period length D. Specifically, an odd function
u(t), and two even solution φ1(t) and φ2(t).

An informal argument, neglecting the requirement of a unique solution, again invokes the theory
presented by Kotin [45]. We interpret the initial value problem for the functions u(t), φ1(t), and
φ2(t) as

0 = f(u(t), φ1(t), φ2(t), u′(t), φ′
1(t), φ′

2(t)). (7.1)
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Figure 7.3: Numerically closed circular creases with n = 4 with added circular pleats towards the
center of the shape.

Since a solution of Equation (7.1) also satisfies

0 = f(−u(t), φ1(t), φ2(t), u′(t),−φ′
1(t),−φ′

2(t)),

it follows from Kotin [45] that, if the solution is unique, u(t) = −u(−t), φ1(t) = φ1(−t), and
φ2(t) = φ2(−t). Moreover, if there exists a parameter D with u

(
D
2

)
= 0, then u(t + D) = u(t),

φ1(t+D) = φ1(t), and φ2(t+D) = φ2(t).
If the above holds true, similar to Chapter 4, it follows that also Ki(t) and τi(t) are periodic

functions with respect to the same period D. Specifically, Ki(t) are even functions, and τi(t) are odd
functions. Upon successful integration of the Frenet-Serret equations for t ∈ [−D

2 ,
D
2 ], the resulting

curve is symmetric with respect to the normal plane at t = 0. Additionally, the normal planes at
t = ±D

2 contain the incident ruling directions and are perpendicular to the tangent planes. As a
result, copies of this curve segment can be arranged by reflecting on the endpoint’s normal planes,
as discussed in Chapter 4. When the opening angle between the normal planes at t = ±D

2 is 2π
n for

some n, the curve closes up. When in addition the period length is also 2π
n , the full shape allows a

closed folded state without a cut.
Through experimentation, we observe that the choice of φ1(0) and φ2(0) influences the period

length D and the opening angle between the normal planes at t = ±D
2 . We conjecture that for

appropriate values pi, we are able to achieve numerically closed shapes for different values of n.
To navigate the three-dimensional parameter space, we experimented with different parameter

combinations, for example setting p0 = c3, p1 = −c2, p2 = c and p3 = −1 for some parameter c,
resulting in a one-parameter family of solutions parametrized by c. Figure 7.2 shows numerically
closed shapes obtained for appropriate initial values resulting in n ∈ {2, 3, 4} and D ∈ {π, 2π

3 ,
2π
4 },

where c = 0.9 (first row) and c = 0.8 (second row).
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(a) Spiral with “spiraling” rulings. (b) Spiral with “closed” rulings. (c) Spiral with “conical” rulings.

Figure 7.4: Possible ruling layouts for origami spirals.

7.2.3 Limitations

Our still unresolved primary objective is to demonstrate that circular creases can be propagated
infinitely many times. To achieve this, we studied crease patterns that are scaled versions of one
another. Yet, while the ruling curvature condition ensures compatibility for the central patch, it
does not guarantee it for the left and right patches. At present, our capability to introduce creases
is as discussed in Section 3.2.8. An example of a shape with added circular pleats is shown in
Figure 7.3.

We also made an attempt to generalize the described approach for a greater number of creases.
Unfortunately, we were unable to identify periodic solutions in this context.

7.3 Circular Spiral
In the following, we discuss another application of the approach outlined in the previous section,
using Huffman’s design of circular spirals as an example.

7.3.1 Ruling Analysis

Folding eight circular arcs arranged in a polar array, with alternating mountain and valley patterns,
results in an origami spiral. Among the numerous possible configurations, we, for the sake of
analysis, assume that the spiral is folded such that the patches exhibit 4-fold rotational symmetry.
As a result, the rulings of the developed patches also possess rotational symmetry. The alignment
of these rulings can be categorized into at least the following three possibilities:

• Spiraling rulings: One approach is for the ruling polylines to form infinite “spiraling” polylines,
as indicated in David Huffman’s other spiral designs [43, Figure 4.11.7]. However, without
further assumptions, this approach does not allow for a direct application of the methods
previously discussed. To date, we have not managed to find compatible spiraling rulings. We
conjecture that a successful computation of this nature requires a well-informed initial guess.

• Closed rulings: There is also the theoretical possibility that the rulings create closed polygons.
This assumption can be analyzed using the previously discussed method and will be elaborated
on below. Nevertheless, attempts at application have been unsuccessful.
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x1(u(t))

x0(t)

x2(t)

x3(u(t))

t1(u(t))

n1(u(t))

t2(t)
n2(t)

(a) Notation. (b) Computed developed rulings and folded state.

Figure 7.5: Illustration of the computations in Section 7.3.

• Conical rulings: Another option is for all rulings to intersect at the spiral’s center. In this
scenario, the patches are to cones connected by planar creases. However, parts of the spiral
must be trimmed since the “D”-shaped areas, bounded by a crease and a ruling, need to
remain planar. Drawing from this observation, we developed a construction tool for such
spirals, introduced in Chapter 14.

7.3.2 Computation

Parametrization of the development

We follow the notation of the previous section. In particular, we parametrize the developed curves
as circular arcs in the xy-plane of unit radius centered at (1, 0, 0) and their n− 1 copies, that is,

xi(t) = R iπ
n

· (1 − sin t, cos t, 0) ,

where R iπ
n

denotes the rotation about the z-axis by iπ
n ; see Figure 7.5a.

We make the assumption that s0(t) = s2(t) = t and s1(t) = s3(t) = u(t), a and compute
ruling angles with Equation (3.24) as discussed in the previous sections. Additionally, we have that
k1(t) = k2(t) = 1.

Computation of the inclination angles and parametrization speed

For the system of differential equations discussed in Section 3.4, we must determine initial values
for u(t), φ1(t), and φ2(t). Our calculations tend to be more successful when initiated at t = π

4 ,
aiming to reach the limits at tmin = 0 and tmax = π

2 . However, in many instances, the computation
ends prematurely or u(t) reverses its direction, leading to overlaps.

Computation of the gluing curves and construction of surfaces

Upon successful computation, the curvatures and torsion follow from Equation (3.40). Additionally,
the consistent initial values for the curve and frame can be obtained as described in Section 3.4.3,
Scenario 2.
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7.3.3 Conclusion

Figure 7.5b displays a promising result from our computations for three patches. However, it
is important to note that our calculations made only the central patch compatible. In general,
the outer patches possess differing ruling curvatures. Despite numerous experiments with various
combinations of initial values, we were unable to achieve a consistent ruling curvature.

In Chapter 14, we present a construction for spirals where the rulings converge toward the
shape’s center. However, this construction cannot be extended right up to the center. The question
of whether a complete origami spiral, with creases that converge to the center – even if they are
circular – remains an open problem.
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Part II

Ruling-Length-Based Computation of
Configurations of Cylinders and Cones
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Chapter 8

Join-and-Fan Method

The content of this chapter is unpublished and is based on discussions with Erik Demaine.

Overview

We consider the special case of gluing two surfaces that are either cylinders or cones. We intro-
duce the join-and-fan method, a technique designed to compute the glue or crease curves between
cylinders or cones using a single integration step. Through this method, we simplify the computa-
tional process, enabling a deeper understanding of the underlying geometry. Additionally, in the
context of discrete creases, we explore a linkage-based approach that offers further insights into the
existence of rigid folding motions.

8.1 Introduction
Many naturally occurring or intentionally designed shapes from developable surfaces exhibit sym-
metries. In many cases these shapes consist of cylinders and cones. Notable examples of such
designs can be found in the works of David Huffman [19, 43] and Jeannine Mosely [61].

When the geometry consists of cylinders or cones, the complexity of the involved surfaces is
significantly reduced. This reduction arises from the simplified requirement of developability, which
translates to the requirement that the rulings of the involved surfaces either converge to a single
point or remain parallel. Consequently, the corresponding shapes can be constrained by intrinsic
distances.

In this section, we formalize a simplified computational approach for the case of gluing two
(smooth or discrete) surfaces that are either cylinders or cones. We introduce the join-and-fan
method, which computes the glue or crease curve of two cylinders or cones using two steps: the
joining step amounts to solving two algebraic equations, the fanning step requires solving a first-
order differential equation in the smooth case or a difference equation in the discrete case. This
approach offers a straightforward computation, providing deeper insights into the geometric char-
acteristics of the constructed shapes. This approach can be seen as a generalization of a method
employed by Mosely [61] in the analysis of the Orb, a modular curved-crease origami shape, and
by Demaine et al. [17] in the analysis of curved-crease tessellations.

Furthermore, in the case of discrete creases, we use a linkage-based approach to analyze the
rigid folding behavior, without the requirement of flat foldability. In particular, we present an
intuitive interpretation of sufficient conditions for the existence of a rigid folding motion of a single
crease.
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The use of the join-and-fan method helps the mathematical description of various shapes. In
Chapter 9, we use this method to derive closed-form parametrizations for different variations of
gluings between a polygon and a circle. Additionally, in Chapter 10, we apply this method to
demonstrate the rigid foldability of two discretizations of conic crease patterns with reflecting rule
lines. This finding is particularly noteworthy as conventional methods typically require the patterns
to be flat foldable, which is not always the case for the studied crease patterns.

8.2 Smooth Join-and-Fan Method

8.2.1 Input

The smooth join-and-fan method’s input consists of two surface patches, denoted by s1(t, u) and
s2(t, u), each of which can be either conical or cylindrical, and are assumed to be parameterized by

si(t, u) = xi(t) + uri(t),

where, in the case of a cone, all rulings converge at a point vi, and in the case of a cylinder, all
rulings are parallel.

The goal of this section is to determine the 3D shape resulting from joining the two surfaces
along x1(t) and x2(t). Without loss of generality, we assume that the curves x1(t) and x2(t) have
the same parametrization speed, meaning that |x′

1(t)| = |x′
2(t)|.

Furthermore, if surface si(t, u) is a cone, we assume that we are given the target 3D apex Vi. If
surface si(t, u) is a cylinder, we assume that we are given an oriented base line πi of the developed
cylinder, that is, a line perpendicular to the cylinder’s ruling direction ri specified by an incident
point pi, and its 3D target position, the base plane Πi of the 3D cylinder, specified by the 3D ruling
direction Ri and an incident point Pi.

8.2.2 Unknowns

In the smooth join-and-fan method, we encode the three unknowns of the gluing or folding curve
X(t) as three functions, for example, the three coordinate function in a parametrization with
Cartesian coordinates

X(t) = (Xx(t),Xy(t),Xz(t)), (8.1)

or the distance and angle functions in a parametrization with polar coordinates, such as

X(t) = l(t) (cos ζ(t) cos η(t), cos ζ(t) sin η(t), sin ζ(t)) , (8.2)

where l(t) ≥ 0, η(t) ∈ [0, 2π], and ζ(t) ∈ [−π
2 ,

π
2 ].

8.2.3 Constraints

The smooth join-and-fan method solves for the three unknown functions in two steps:

Joining step

In the joining step, we deduce two functions from two algebraic constraints from the distances
imposed by the conical or cylindrical surfaces. In particular, if si(t, u) is a cone, we want the
distance between the glue curve and the 3D apex to be the same as in the development, which
yields

|X(t) − Vi|2 = |xi(t) − vi|2 . (8.3)
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x1(t) x2(t)

v1 v2

(a) Input: Two developed cones.

V1 V2

(Xx(t),Xy(t), 0)

(b) Joining step.

V1

V2

X(t)

(c) Fanning step.

Figure 8.1: Illustration of the smooth join-and-fan method for two cones.

If si(t, u) is a cylinder, we constrain the distances between the glue curve and the base line πi and
base plane Πi to be the same, resulting in

(X(t) − Pi) · Ri = (xi(t) − pi) · ri, (8.4)

where pi ∈ πi and Pi ∈ Πi are two points incident to the base line or plane of the cylinder.
Using two constraints, one from each surface, we are able to compute two out of the three

unknown functions (for details see Section 8.2.4). The two resulting functions allow for the inter-
pretation of an intermediate planar solution as depicted in Figure 8.1 (middle).

Fanning step

Second, to obtain isometric surfaces, we need to ensure that the parametrization speeds of X(t)
and the corresponding developed curves match. In the fanning step, we therefore find the third
function from the differential constraint∣∣X′(t)

∣∣2 =
∣∣x′

1(t)
∣∣2 =

∣∣x′
2(t)

∣∣2 .
In case of Cartesian coordinates, this constraint can be written as

X′
x(t)2 + X′

y(t)2 + X′
z(t)2 =

∣∣x′
1(t)

∣∣2 =
∣∣x′

2(t)
∣∣2 . (8.5)

In case of a parametrization with polar coordinates, this constraint reads

l′(t) + l(t)2
(
η′(t)2 cos2 ζ(t) + ζ ′(t)2

)
=
∣∣x′

1(t)
∣∣2 =

∣∣x′
2(t)

∣∣2 . (8.6)

This step can be visualized as spreading or “fanning” out the planes containing consecutive ruling
lines, which were computed in the previous step. This process results in the final 3D shape, as
depicted in Figure 8.1 (right).

8.2.4 Computation Details

There are many ways to apply this method to a given problem, but not all approaches result in
explicit solutions for two of the three unknown functions in the joining step. In the following,
we present approaches for choosing the parametrization of the gluing curve and the location and
orientation of the coordinate systems for the three different cases (cylinder-cylinder, cone-cylinder,
and cone-cone) that result in explicit solutions for two of the three involved functions in the joining
step.
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Cylinder-cylinder gluing

If s1(t, u) and s2(t, u) are both cylinders, it is convenient to parametrize the glue curve with Carte-
sian coordinates as given in Equation (8.1). Additionally, we assume that the ruling directions R1
and R2 are parallel to the xy-plane, that is, 0 = R1 · (0, 0, 1) = R2 · (0, 0, 1).

1. Joining step: By imposing the constraint in Equation (8.4) for both surfaces, we obtain
expressions for the first two coordinates of the glue curve, namely,(

Xx(t)
Xy(t)

)
=
(

R1,x R1,y

R2,x R2,y

)−1((x1(t) − p1) · r1 + P1 · R1
(x2(t) − p2) · r2 + P2 · R2

)
. (8.7)

2. Fanning step: The third coordinate function is determined from the parametrization speed
constraint in Equation (8.5), which yields two solutions that are related by a reflection on a
xy-parallel plane.

Cylinder-cone gluing

If s1(t, u) is a cone and s2(t, u) is a cylinder, it is convenient to parametrize the glue curve X(t) in
polar coordinates as in Equation (8.2). Without loss of generality we assume that the cone apex
V1 coincides with the origin and that R2 = (0, 0, 1). Note that the ruling vector R2 is chosen so
that the scalar product R2 · X(t) depends on only one angular function.

1. Joining step: Using the conical constraint in Equation (8.3) for the first surface in polar
coordinates results in l(t) = r1(t). The cylindrical constraint in Equation (8.4) yields1

ζ(t) = arcsin ((x(t) − p2) · r2 − P2 · R2) . (8.8)

2. Fanning step: The remaining angular function η(t) can be computed from the parametrization
constraint in Equation (8.6), resulting in

η′(t) = ±

√
|x′

1(t)|2 − r′
1(t) − r1(t)2ζ ′(t)2

r1(t)2 cos2 ζ(t) . (8.9)

When solving this initial value problem with η(0) = η0, the resulting two shapes vary by a
reflection on a vertical plane.

Cone-cone gluing

If s1(t, u) and s2(t, u) are both cones, it is convenient to assume that the glue curve is again
parametrized by polar coordinates as given in Equation (8.2). Without loss of generality, assume
that the two apices are located at V1 = (0, 0, 0) and V2 = (0, 0, h).

1. Joining step: Using the conical constraint in Equation (8.3) for the first surface in polar
coordinates results in l(t) = r1(t). Consequently, the conical constraint in Equation (8.3) for
the second surface in polar coordinates yields

ζ1(t) = arcsin
(
h2 + r1(t)2 − r2(t)2

2hr1(t)

)
. (8.10)

2. Fanning step: Similar to before, the second angular function is determined from the parametriza-
tion speed constraint (see Equation (8.9)).

1Recall that we limited ζ(t) to [− π
2 , π

2 ].
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8.2.5 Limitations

When employing the smooth join-and-fan method with suitable initial values and realistic input, it
typically yields a local solution. However, it’s important to note that, similar to the gluing process
described in Section 3.3, there is a possibility of encountering geometric challenges that may cause
the solution computation to fail prematurely in either of the two steps.

Geometric limitations in the joining step. For the cylinder-cylinder combination, it is nec-
essary for the two 3D ruling directions to be non-parallel to ensure the existence of the inverse in
Equation (8.7). In the cone-cylinder case, the corresponding plane should not be too close or too
far away from the common vertex to ensure a successful (local) computation in Equation (8.8). In
the cone-cone case, it is required that the 3D vertices are neither too close nor too far away from
each other to find a (local) solution in Equation (8.10).

Geometric limitations in the fanning step. To obtain intuition about the functionality of the
fanning step, we consider the planar curves that corresponds to intermediate “solutions”, namely,

xtemp(t) = (Xx(t),Xy(t), 0) or xtemp(t) = (l(t) cos η(t), l(t) sin η(t), 0),

respectively. To ensure the success of the fanning step, we require that the parametrization speed
of the intermediate curves xtemp(t) is smaller than the common parametrization speed of x1(t) and
x2(t).

8.3 Discrete Join-and-Fan Method

8.3.1 Input

In the following, we discuss how the smooth join-and-fan method can be adapted to the discrete
setting. Let T = (t0, t1, . . . , tn) be an array of discrete parameter values. We parametrize two
discrete surfaces s1(t, u) = x1(t) + ur1(t) and s2(t, u) = x2(t) + ur2(t) using two polylines that are
parametrized as discrete 3D functions x1(t) and x2(t) defined over the same domain T . Similarly
to the smooth case, we require that their discrete “parametrization speeds” are the same, that is,

|x1(ti) − x1(ti+1)| = |x2(ti) − x2(ti+1)| ,

for all consecutive pairs of parameter values. Additionally, we encode the incident unit-length ruling
vectors as discrete 3D functions r1(t) and r2(t) defined over domain T , such that |r1(ti)| = 1. The
surface si(t, u) is a (discrete) cylinder, if all discrete rulings are parallel, that is, ri(t) is constant.
The surface si(t, u) is a (discrete) cone, if all discrete rulings converge at a point vi, the apex of
the cone.

In addition, we assume that in case of a cone, we are given the corresponding target cone apex
Vi. In case of a cylinder, we assume that we are given an oriented base line πi perpendicular to ri

by its incident point pi, and its 3D counterpart, the oriented base plane Πi, specified by a point
Pi and a target ruling direction Ri.

8.3.2 Unknowns

Similar to the smooth case, for each parameter value in T , the glue or crease polyline has three
unknown discrete coordinate functions. These unknowns can be encoded as the three discrete
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coordinate functions defined over T of a three-dimensional polyline

X(t) = (Xx(t),Xy(t),Xz(t)).

Alternatively, we may use a polar coordinate representation, such as

X(t) = l(t) (cos ζ(t) cos η(t), cos ζ(t) sin η(t), sin ζ(t)) . (8.11)

Here the three unknowns are encoded as the three discrete functions l(t) ≥ 0, η(t) ∈ [0, 2π], and
ζ(t) ∈ [−π

2 ,
π
2 ] that are defined over T .

8.3.3 Constraints

The values of the three unknown functions are again constrained by three equations, corresponding
to the smooth steps described above.

Joining step

If either of the surfaces is a cone with 3D apex Vi and 2D apex vi, we write

|X(t) − Vi|2 = |x(t) − vi|2 .

If either surface is a cylinder with corresponding base line πi and base plane Πi, we require

(X(t) − Pi) · Ri = (x(t) − pi) · ri.

Using analogous representation assumptions and coordinate system locations as in discussed for
the smooth case in Section 8.2.4, we can obtain explicit expressions for two of the three discrete
functions.

Fanning step

Finally, we need to ensure that the distances between two consecutive points on the polyline are
the same in 2D as in 3D, that is,

|X(ti+1) − X(ti)|2 = |x1(ti+1) − x1(ti)|2 = |x2(ti+1) − x2(ti)|2 .

Note that, starting from an initial value for the remaining unknown function, there are in general two
or no real-valued solution. If there are two real-valued solutions, only one consistent choice results
in the discrete counterpart of a smooth gluing. If there is no real-valued solution, continuation is
not possible.

8.4 Rigid-Ruling Folding Motions
Both in the smooth and discrete case, the join-and-fan method allows us to explore a family of
glued states with rigid rulings.

Recall that if the incident surface is a cone, all corresponding points are constrained to meet
at a single point, the 3D apex. On the other hand, if the incident surface is a cylinder, the rule
segments are constrained to be perpendicular to an arbitrary but fixed plane, the base plane of the
cylinder. Consequently, rigid-ruling folding motions can be induced as follows:
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Figure 8.2: Rigid-ruling folding motion of the two cones from Figure 8.1.

• In the cone-cone case, a motion can be obtained by varying the distance between the cone
apices; see Figure 8.2.

• In the cylinder-cone case, a motion can be obtained by varying the the distance between the
cylinder’s base plane with respect to the 3D cone apex.

• In the cylinder-cylinder case, a motion can be obtained by varying the opening angle of the
cylinder’s base planes.

Note that every glued state can be considered computationally in the two separate steps of the
join-and-fan method.

8.5 Rigid Foldability of Discrete Creases between Cylinders and
Cones

In this section, we use a linkage interpretation to get further insights into the geometry of shapes
obtained from gluing two conical or cylindrical surfaces along discrete congruent curves x1(t) and
x2(t). Recall that the resulting gluings correspond to either a discretized curved fold or a geodesic
gluing.

Without loss of generality, we assume that the considered cylindrical or conical surfaces s1(t, u)
and s2(t, u) are positioned such that the two curves x1(t) and x2(t) are aligned. We define linkages
formed by bars that correspond to the discrete rulings of these surfaces, where the bars are connected
at vertices located on the discrete glue or crease curve. Additionally, bars corresponding to the
rulings of a cone are joint at the apex, and bars corresponding to the rulings of a cylinder are
constrained to be perpendicular to a line. The precise definition of these extracted linkages is
provided in Section 8.5.2.

As previously discussed, for a folded state of the crease pattern to exist, both steps of the
join-and-fan method need to be successful. Consequently, the joining step needs to result in a con-
figuration in which the distances between neighboring vertices along the common curve are smaller
than in the initial configuration. We call such a configuration a contracted diagonals configuration.

When starting from an extracted linkage, usually only one motion results in a contracted di-
agonals configuration. In the example shown in Figure 8.3, only decreasing the distances between
the apices results in a decrease of the distance between adjacent points on the glue or crease curve.

The contributions of this section are two-fold. First, we study how the previously discussed
motions affect the distances between neighboring points on the common curve, with the goal to
classify contracted diagonals motions. Second, we show that for a given extracted linkage X0,
the existence of a contracted diagonals configuration X1 implies the existence of a one-parameter
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Figure 8.3: Illustration of a linkage derived from a crease between two cones. Left: Initial configura-
tion. Middle: Configuration with decreased distance between the cone apices. Right: Configuration
with increased distance between the cone apices.

family of intermediate contracted diagonals configurations Xt. Finally, we specify which contracted
configurations allow a successful fanning step.

8.5.1 Diagonal Property of Four-bar Linkages

Before we continue, let us review the diagonal property that describes the behavior of diagonals of
a four-bar linkage. Recall that four-bar linkages come in three different types (Figure 8.4): convex,
crossing or non-crossing concave.

a

b

c

d

−
+

a c

b

d

+

−

a

b

c

d

−

−

Figure 8.4: The three types of a four-bar linkage X = {a,b, c,d}: convex (left), crossing (middle),
non-crossing concave (right). The signs indicate whether the diagonal ac increases (convex or
crossing) or decreases (non-crossing concave) as the diagonal bd decreases in length.

The relationship between modifications of the linkage and changes in diagonal lengths can be
expressed as follows:

Theorem 8.1 (Diagonal property of a four-bar linkages (from [105])). Let X = {a,b, c,d} be a
four-bar linkage in general position, that is, no three of its vertices are collinear.

• If X is a convex or a crossing four-bar linkage, one diagonal increases if and only if the other
decreases.

• If X is a non-crossing concave four-bar linkage, one diagonal increases if and only if the other
also increases.

In the discussion below, we will examine four-bar linkages that correspond to either a combi-
nation of a cylinder and a cone or two cylinders. In this context, the intersection point of the two
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Figure 8.5: The three types of a four-bar linkage with a pair of parallel bars (from left to right):
convex, crossing, and two concave non-crossing configurations.

bars lies at infinity. Rather than working with infinitely long parallel bars, we will truncate these
bars using an oriented perpendicular line. As a result, instead of moving the intersection point, we
adjust the location of the line. Through careful case analysis, we will confirm behavior analogous
to these linkages.

In the following, we will consider four-bar linkages that correspond to a combination of a cylinder
and cone, that is, four-bar linkages with a pair of parallel bars. In this case, the four-bar linkage
consists of an open sequence of bars connecting the vertices (c,b,a,d, c′). Additionally, the bars
bc and dc′ are constrained to be perpendicular to an oriented line γ. Specifically, points b and d
will be situated in the left-hand side half plane bounded by γ, while points c and c′ represent the
base points of b and d on γ. Consequently, we will indicate a four-bar linkage with two parallel
bars by three points and an oriented line, such as X = {a,b,γ,d}.

Similar to the previous linkage type, these linkages can be categorized into three types: convex,
concave non-crossing, and crossing, as depicted in Figure 8.5. The diagonal property of these
linkages can be expressed as follows. For a proof, please refer to Section 8.6.

Theorem 8.2 (Diagonal property of a four-bar linkage with a pair of parallel bars). Let X =
{a,b,γ,d} be a four-bar linkage with a pair of parallel bars in general position, that is, the three
vertices a, b, d are not collinear and ac and ad are not perpendicular to γ.

• If X is in a convex or crossing four-bar linkage, the distance between b and d decreases when
the distance between a and γ increases.

• If X is in a non-crossing and concave four-bar linkage, the distance between b and d decreases
when the distance between a and γ decreases.

Finally, we also introduce four-bar linkages with two pairs of parallel bars. These will be useful
for further analysis of the linkages corresponding to combinations of two cylinders. In this case,
the four-bar linkage consists of two pairs of bars, connecting the vertices (a,b, c) and (a′,d, c′).
Additionally, the bars ab and a′d are constrained to be perpendicular to an oriented line α, and
the bars bc and dc′ are constrained to be perpendicular to an oriented line γ. Specifically, the
vertices b and d will be located on the left-hand side half planes of α and γ. Consequently, we
will indicate a four-bar linkage with two pairs of parallel bars by two points and two planes, such
as X = {α,b,γ,d}.

In this case, however, the linkages come only in two types: concave non-crossing and crossing;
see Figure 8.6. To specify when a four-bar linkage with two pairs of parallel bars is crossing or
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Figure 8.6: The three types of four-bar linkage with two pairs of parallel bars: convex (left), and
two crossing configurations (center and right).

non-crossing, we consider the oriented distances of the intersection O of the base lines α and γ to
the respective foot-points a, a′, or c, c′ of b and d. In particular, let da, da′ , dc, dc′ denote the
corresponding oriented distances. We compute

D = (da′ − da)(dc′ − dc).

If D > 0, we say that the linkage is non-crossing, and if D < 0, we say that the linkage is crossing.
Note that if the vertices are in general position, D ̸= 0.

The diagonal property can be expressed as follows. Again, the corresponding proof can be found
in Section 8.6.

Theorem 8.3 (Diagonal property of four-bar linkages with two pairs of parallel bars). Let X =
{α,b,γ,d} be a four-bar linkage with two pairs of parallel bars in general position, that is, b ̸= c
and α and γ not parallel.

• If X is a crossing four-bar linkage, the distance between b and d decreases when the angle
between the lines α and γ increases.

• If X is a non-crossing (and concave) four-bar linkage, the distance between b and d decreases
when the angle between the lines α and γ decreases.

8.5.2 Extracting Linkages from Crease Pattern

We now provide the definition of an extracted linkage of a developed configuration. For this purpose,
let xj denote the vertices of the common planar discrete glue curve, that is, xj = x1(tj) = x2(tj).
If sj(t, u) is a cone, let vj be the location of its apex. If sj(t, u) is a cylinder, let πj be its (oriented)
base line, such that all points xj lie to the left-hand side of πj . (If we combine a cylinder and a
cone, without loss of generality, let s1(t, u) be the cone.)

We define the bars of the extracted linkage to be as follows. Let aj denote the bars that connect
xj with v1 or the corresponding base point on π1, and let bj denote the bars that connect xj with
v2 or the corresponding base point on π2. In addition, we will use aj or bj to refer to the bar
lengths too.

Additionally, we assume that the extracted linkages are positioned in the plane in standard
position, defined as follows:
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• If both surfaces are cones, let the apex of the first cone coincide with the origin, and the apex
of the second cone be located on the positive x-axis.

• If one surface is a cone and the other a cylinder, assume that the cone apex v1 is located
at the origin, and that the cylinder’s base line π2 is perpendicular to the x-axis, specifically,
π2 : x = v for some v > 0.

• If both surfaces are cylinders, let the linkage be positioned such that the intersection of base
lines coincides with the origin. In addition, let π1 be aligned with the x-axis.

If the vertices xj of the common polyline have both positive and negative y-coordinates, reflect
the linkage points with negative y-coordinates on the x-axis to arrive at a linkage with vertices
that have non-negative y-coordinates.

An extracted four-bar linkage consists of two consecutive rule polylines, that is, (ai, bi) and
(ai+1, bi+1), that are joined at their common endpoints. These four-bar linkages can be categorized
into three types:

• Cone-cone combination: If the extracted linkage corresponds to a gluing of two cones, the
obtained linkage is a (standard) four-bar linkage. Due to the above assumptions, the linkage
is either non-crossing concave, crossing, or has at most two collinear bars that correspond to
different surfaces.

• Cylinder-cone combination: If the extracted linkage corresponds to a gluing of a cylinder
and a cone, the linkage is a four-bar linkage with a pair of parallel bars. Due to the above
assumptions, the linkage is either non-crossing concave, crossing, or has at most two collinear
bars that correspond to different surfaces.

• Cylinder-cylinder combination: If the extracted linkage corresponds to a gluing of two cylin-
ders, the linkage is a four-bar linkage with two pairs of parallel bars. Due to the above
assumptions, the linkage is either non-crossing, or crossing.

Note that in the context of the extracted linkages, we assume that consecutive bars correspond-
ing to the same surface, such as ai and ai+1, or bi and bi+1, are not collinear.

Given that none of the considered linkages are convex, we will focus our discussion on dis-
tinguishing between non-crossing and crossing linkages. Additionally, we will use the term cable
distance to refer to the distance between xi and xi+1. This term intuitively captures our objective
of considering configurations where the distance between xi and xi+1 is either smaller or equal to
the distance in the initial configuration.

8.5.3 Collinear Linkage Configurations

In the following analysis, we explore the configuration space of linkages and investigate the relation-
ships between bar lengths and diagonals. Additionally, we consider contracted motions of all types
of linkages. In particular, we show contracted motions of extracted collinear configurations (see
Lemma 8.3 and Lemma 8.5). Finally, we classify which types of extracted four-bar linkages of the
same type are compatible to ensure the existence of a local contracted motion (see Corollary 8.1,
Corollary 8.2, and Corollary 8.3).

Before we continue, we make note of the following:
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Figure 8.7: Illustration of two collinear configurations of extracted linkages corresponding to cone-
cone combinations (left) and the configurations after contracted motions (right).

Lemma 8.1. Let a and a′ be two lengths. There exists a triangle with side lengths (a, a′, d) if and
only if |a− a′| ≤ d ≤ a+a′. For a ̸= a′, there exists a (possibly degenerated) right trapezoid2, whose
parallel edges have length a and a′ and whose non-perpendicular edge has length d if and only if
|a− a′| ≤ d.

Proof. The first claim follows directly from the triangle inequalities.
For the second claim, we construct the trapezoid from an inscribed right triangle with side length

|a− a′| and hypotenuse d. It follows, that such a triangle exists if and only if d ≥ |a− a′|.

Cone-cone combination

Let X = {v1,xi,v2,xi+1} be an extracted four-bar linkage of a cone-cone combination.
Since {v1,v2,xi} and {v1,v2,xi+1} form triangles, it follows from the triangle inequalities

described in Lemma 8.1 that the diagonal distances need to satisfy

vmin = max{|ai − bi| , |ai+1 − bi+1|} ≤ |v1 − v2| ≤ min{ai + bi, ai+1 + bi+1} = vmax.

Similarly, the triangles {v1,xi,xi+1} and {v2,xi,xi+1} yield

dmin = max{|ai − ai+1| , |bi − bi+1|} ≤ |xi − xi+1| ≤ min{ai + ai+1, bi + bi+1} = dmax.

Lemma 8.2. Given four bar lengths ai, ai+1, bi and bi+1, and a distance v = |vA − vB| with
vmin ≤ v ≤ vmax, a configuration of an extracted linkage corresponding to a cone-cone combination
in standard position is uniquely defined.

Proof. Given the distance v, we can first position the points v1 = (0, 0) and v2 = (v, 0). Since both
points xi and xi+1 should have non-negative y-coordinate, their location is uniquely defined from
the incident bar lengths.

It follows that there are only two cases where ai and bi become collinear: either when |v1 − v2| =
ai + bi or when |v1 − v2| = |ai − bi|, as depicted in Figure 8.7. In the following, we will also
refer to these configurations as non-crossing and crossing cone-cone combinations, respectively. A
justification of this is provided by the next lemma:

Lemma 8.3. Given an extracted four-bar linkage corresponding to a collinear non-crossing cone-
cone combination, that is, |v1 − v2| = ai + bi, decreasing the distance between v1 and v2 such that
xi and xi+1 lie on the same side of v1v2 decreases the distance between the points xi and xi+1.

Given an extracted four-bar linkage corresponding to a collinear crossing cone-cone combination,
that is, |v1 − v2| = |ai − bi|, increasing the distance between vA and vB such that xi and xi+1 lie
on the same side of v1v2 decreases the distance between the points xi and xi+1.

2A right trapezoid is a trapezoid with two right angles.
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Proof. First, we consider the case where |v1 − v2| = ai + bi < ai+1 + bi+1 and argue that this
configuration behaves like a non-crossing linkage.

We consider the configurations obtained by slightly rotating the bar ai towards ai+1, hereby
decreasing the cable distance, that is, the distance between xi and xi+1. As the initial configuration
is a triangle, the initial cable distance d between xi and xi+1 satisfies

d > max{|ai − ai+1| , |bi − bi+1|} = dmin.

As the cable distance varies smoothly with the rotation angle ε, we obtain a one-parameter family of
shapes where the cable distance monotonically decreases while staying greater than dmin, ensuring
that neither ai and ai+1, or bi and bi+1 become collinear. In addition, ai and bi are not collinear since
we decrease the angle between ai and ai+1. Furthermore, ai+1 and bi+1 cannot become collinear
due to length constraints corresponding to the triangle inequalities. For all intermediate shapes,
we find the location of vertex v2, such that v1 and v2 lie on opposite sides of xi and xi+1.

It remains to show that the distance between v1 and v2 decreases, and that the obtained linkage
configuration’s vertices xi and xi+1 lie on one side of v1 and v2.

Since we smoothly varied the initial linkage, the motion is reversible. When considering the
reversed motion, we observe that the resulting shape cannot be crossing. This is because a crossing
linkage in general position with increasing distances between vertices xi and xi+1 decreases the
distance between v1 and v2, as stated in Theorem 8.1. As the initial configuration started with the
maximal possible distance between v1 and v2, this is not possible. An analogous argument yields
that the intermediate configurations are not convex.

Therefore, the intermediate configurations are concave and non-crossing, and thus a motion
with decreasing distance between xi and xi+1 decreases distance v1v2. Note that this also implies
that both xi and xi+1 lie on one side of v1v2.

Second, we consider the case where |v1 − v2| = |ai − bi| > |ai+1 − bi+1| , and argue that this
configuration behaves like a crossing linkage. Again, we consider the motion obtained by slightly
rotating the bar ai towards ai+1, hereby decreasing the cable distance. As the initial configuration
satisfies the corresponding triangle inequalities, we have that the initial cable distance d satisfies

d > max{|ai − ai+1| , |bi − bi+1|} = dmin.

Analogous to the previous case, by smoothly varying the rotation angle ε, we obtain a one-parameter
family of shapes whose cable distances monotonically decrease while staying greater than dmin, that
is, no other bars become collinear. For all intermediate shapes, we find the location of vertex v2
such that v1 and v2 lie on the same side of the diagonal xi and xi+1. Unlike above, this already
implies that vertices xi and xi+1 lie on the same side of v1 and v2. Furthermore, the intermediate
configurations can only be non-crossing concave or crossing.

It remains to show that the distance between v1 and v2 increases, and that the shapes are
crossing. For this purpose, we again consider the reversed motion. If this would be a non-crossing
linkage, reversing the motion would increase the distance between points v1 and v2, as stated
in Theorem 8.1. However, as the initial configuration started with the minimal possible distance
between v1 and v2, this is not possible.

Therefore, the intermediate configurations are crossing, and thus decreasing distance between
xi and xi+1 increases distance between v1 and v2.

It follows from Theorem 8.1 and Lemma 8.3 that extracted linkages allow a contracted diagonals
motion if and only if they consist of four-bar linkages of the same type:
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Figure 8.8: Illustration of two collinear configurations of extracted linkages corresponding to
cylinder-cone combinations (left) and the configurations after a contracted motion (right).

Corollary 8.1. An extracted linkage of a cone-cone combination allows a contracted motion by
decreasing the distance between the cone apices if and only if all extracted four-bar linkages are
non-crossing.

Conversely, an extracted linkage of a cone-cone combination allows a contracted motion by
increasing the distance between the cone apices if and only if all extracted four-bar linkages are
crossing.

Cylinder-cone combination

Let X = {v1,xi, π2,xi+1} be an extracted four-bar linkage of a cylinder-cone combination.
Since the sum of connected bars cannot be smaller than the distance between the apex and the

base line, and the difference cannot be bigger than the distance between the apex and the base
line, we have

vmin = max{|ai − bi|, |ai+1 − bi+1|} ≤ dist(v, π2) ≤ min{ai + bi, ai+1 + bi+1} = vmax.

Similarly, to the previous section, the cable distance is limited by applications of the statements
in Lemma 8.1. Specifically, triangle inequalities corresponding to triangle {v1,xi,xi+1}, and the
constraint of the existence of a right trapezoid with parallel edge lengths bi, bi+1 result in

dmin = max{|ai − ai+1| , |bi − bi+1|} ≤ |xi − xi+1| ≤ ai + ai+1 = dmax.

Lemma 8.4. Given four bar lengths ai, ai+1, bi, and bi+1, and the distance v = dist(v1, π2)
where vmin ≤ v ≤ vmax, a configuration of an extracted linkage corresponding to a cylinder-cone
combination in standard position is uniquely defined.

Proof. When positioning apex v1 at the origin and π2 : x = v, we obtain

xj =
(
v − bj ,

√
a2

j − (v − bj)2
)

;

see the proof of Theorem 8.2. Note that these points are well-defined, since a2
j − (v − bj)2 ≥ 0 for

v ∈ [|aj − bj | , aj + bj ].

It follows that there are only two cases where ai and bi become collinear: either when dist(v1, π2) =
ai + bi or when dist(v1, π2) = |ai − bi|, as depicted in Figure 8.8. As before, we will also refer to
these configurations as non-crossing and crossing cylinder-cone combinations, respectively. A jus-
tification of this is provided by the next lemma:
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Lemma 8.5. Given an extracted four-bar linkage corresponding to a collinear cylinder-cone com-
bination with dist(v1, π2) = ai + bi, decreasing the distance between v1 and π2 such that xi and
xi+1 lie on the same side of the normal of π2 through v1 decreases the distance between the points
xi and xi+1.

Given an extracted four-bar linkage corresponding to a collinear cylinder-cone combination with
dist(v1, π2) = |ai − bi|, decreasing the distance between v1 and π2 such that xi and xi+1 lie on the
same side of the normal of π2 through v1 decreases the distance between the points xi and xi+1.

Proof. The proof is analogous to the proof of Lemma 8.3. In particular, we start with the corre-
sponding configuration and modify it by rotating ai towards ai+1. We obtain the location of the
base line from the construction of a corresponding right trapezoid.

Again, we argue that the corresponding configurations are non-crossing or crossing respectively,
as it would otherwise contradict the maximality or minimality of the initial lengths.

Similar to Corollary 8.1, it follows from Theorem 8.2 and Lemma 8.5 that extracted linkages
allow a contracted diagonals motion if and only if they consist of four-bar linkages of the same
type:

Corollary 8.2. An extracted linkage of a cylinder-cone combination allows a contracted motion
by decreasing the distance between the cone apex and base line if and only if all extracted four-bar
linkages are non-crossing.

Conversely, an extracted linkage of a cylinder-cone combination allows a contracted motion by
increasing the distance between the cone apex and the base line if and only if all extracted four-bar
linkages are crossing.

Cylinder-cylinder combination

Let X = {π1,xi, π2,xi+1} be an extracted four-bar linkage of a cylinder-cylinder combination.
In the following, we limit our considerations only to the case where ai ̸= ai+1 or bi ̸= bi+1. We

therefore require that
0 < ̸ (π1, π2) < π.

Furthermore, it follows from the existence of right trapezoids in Lemma 8.1 that

dmin = max{|ai − ai+1| , |bi − bi+1|} ≤ |xi − xi+1| .

Lemma 8.6. Given four bar lengths ai, ai+1, bi and bi+1, and an angle φ ∈ (0, π) between the
base line π1 and π2, a configuration of an extracted linkage corresponding to a cylinder-cylinder
combination in standard position is uniquely defined.

Proof. It follows from the proof of Theorem 8.3, that

xj =
( 1

sinφ(bj − aj cosφ), aj

)
,

resulting in the statement.

In the following, we exclude collinear bars aj and bj in the case of cylinder-cylinder combinations,
since the considered linkage is not well-defined for parallel planes. We therefore only claim:

Corollary 8.3. An extracted linkage of a cylinder-cylinder combination allows a contracted motion
by decreasing the angle between the base lines if all extracted four-bar linkages are non-crossing.

Conversely, an extracted linkage of a cylinder-cylinder combination allows a contracted motion
by increasing the angle between the base lines if all extracted four-bar linkages are crossing.
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Figure 8.9: Motions of an extracted four-bar linkage corresponding to a cone-cone combination in
standard position. First row: Non-crossing configuration changes to crossing configuration. Second
row: Non-crossing configuration remains non-crossing. Third row: Crossing configuration remains
crossing.

8.5.4 Linkage Motions and the Joining Step

In this section, we examine the range of motion of extracted four-bar linkages and analyze the
behavior of the cable distance. We establish that the cable distance undergoes a change from
increasing to decreasing or vice versa at most once.

By the end of this section, we conclude that for any two linkage configurations, where the
second configuration has a smaller cable length than the first, it is possible to smoothly transition
from the first linkage to the second while maintaining contracted diagonals of the intermediate
configurations (Corollary 8.4).

Cone-cone combinations

We first consider the motion that starts with collinear non-crossing configuration, that is at
|v1 − v2| = vmax = ai + bi; see Figure 8.9 (first and second row). Using Lemma 8.3, decreas-
ing the distance between the points v1 and v2, decreases the cable distance. We decrease the
distance between points v1 and v2 until three points become collinear:

• If the three points {v1,xi,v2} or {v1,xi+1,v2} become collinear, we have that |v1 − v2| =
vmin and no further motion is possible; see Figure 8.9 (second row).

• If on the other hand the three points {v1,xi,xi+1} or {v2,xi,xi+1} become collinear, we are
at a transition point to a crossing configuration; see Figure 8.9 (first row). This is because
remaining collinear is not possible, and remaining non-crossing would result in a decrease
of the cable distance beyond feasible values by Theorem 8.1. Thus, decreasing the distance
between v1 and v2 more leads to an increase of the cable distance. The remaining motion
then increases the cable distance until |v1 − v2| = vmin.

Second, we consider the motion that starts with a collinear crossing configuration with |v1 − v2| =
vmin = |ai − bi|; see Figure 8.9 (first and third row), from right to left. Using Lemma 8.3, increas-
ing the distance between the points v1 and v2 decreases the cable distance. Similar to before, we
increase the distance between points v1 and v2 until three points become collinear:
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Figure 8.10: Motions of an extracted four-bar linkage corresponding to a cylinder-cone combination
in standard position. First row: Non-crossing configuration changes to crossing configuration.
Second row: Non-crossing configuration remains non-crossing.

• If the three points {v1,xi,v2} or {v1,xi+1,v2} become collinear, we have that |v1 − v2| =
vmin and no further motion is possible; see Figure 8.9 (third row).

• If on the other hand the three points {v1,xi,xi+1} or {v2,xi,xi+1} become collinear, we
are at a transition point to a non-crossing configuration; see Figure 8.9 (first row). This is
because remaining collinear is not possible, and remaining non-crossing would result in an
increase of the cable distance beyond feasible values by Theorem 8.2. Thus, increasing the
distance between v1 and v2 more leads to a decrease of the cable distance. The remaining
motion then decreases the cable distance until |v1 − v2| = vmax.

Cylinder-cone combinations

Analogous observation can be done also in the cylinder-cone case; see Figure 8.10. Instead of
decreasing the distance between v1 and v2, we decrease the distance between v1 and π2.

We first consider the motion that starts with a collinear non-crossing configuration, that is at
dist(v1, π2) = vmax = ai + bi. Using Lemma 8.5, decreasing the distance between the point v1 and
the line π2, decreases the cable distance. We decrease the distance between the point v1 and the
line π2 until the two bars become collinear:

• If the bars ai and bi or ai+1 and bi+1 become collinear, we have that dist(v1, π2) = vmin and
no further motion is possible; see Figure 8.10 (second row).

• If on the other hand the bars ai and ai+1 become collinear, we are at a transition point to a
crossing configuration; see Figure 8.10 (first row). This is because remaining collinear is not
possible, and remaining non-crossing would result in a decrease of the cable distance beyond
feasible values by Theorem 8.2. Thus, decreasing the distance between v1 and π2 more leads
to an increase of the cable distance. The remaining motion then increases the cable distance
until dist(v1, π2) = vmin.

Every non-crossing configuration of a cylinder-cone combination corresponds to a crossing
cylinder-cone combination. Thus, reversing the argument yields a motion that starts from a
collinear crossing configuration and results in a collinear non-crossing or fully collinear configu-
ration.
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Figure 8.11: Motion of a four-bar linkage corresponding to a cylinder-cylinder combination.

Cylinder-cylinder combinations

In the case of two cylinders, our consideration begins at φ = π
2 ; see Figure 8.11. Let us first

examine the scenario where the linkage is non-crossing at φ = π
2 . According to Theorem 8.3,

increasing the angle φ leads to an increase in the cable distance. Consequently, the linkage will
remain non-crossing as we continue the motion in this manner.

Conversely, starting at φ = π
2 , we consider the motion induced by decreasing φ. This causes

the cable distance to decrease, resulting in two possibilities:

• While decreasing φ, we do not reach a collinear state.

• While decreasing φ, we reach a collinear state. This occurs at the smallest possible cable
distance. Since further decreasing the cable distance is not feasible, the linkage transitions
into a crossing state. Subsequently, as the angle is further decreased, the cable distance
increases and the linkage remains in a crossing state until the end of the motion.

Hence, it can be concluded that there is at most one transition from a crossing to a non-crossing
configuration throughout the motion that involves a non-crossing configuration.

The motion of the linkage behaves similarly when initiated from a crossing state. In other
words, during the motion, there is at most one transition to a non-crossing configuration.

Interpolation between linkages

In all cases, we observe that a transition from decreasing to increasing cable length or vice versa can
occur at most once. Therefore, when considering the cable distance throughout the motion, there
can be at most one local minimum. Based on this observation, we draw the following conclusion:

Lemma 8.7. Given an initial four-bar extracted linkage configuration X0 with a cable distance of
d0, and a target configuration X1 with a cable distance of d1, if d1 ≤ d0, there exists a smooth
transition of linkages Xt between X0 and X1 with cable distance dt, such that dt ≤ d0.

Recall that for a given set of bar lengths and diagonal distance, the corresponding extracted
four-bar linkage configuration in the standard position is uniquely defined. This allows us to
combine multiple four-bar linkages, leading to the following result:

Corollary 8.4. Given an initial extracted linkage configuration X0 with cable distances d0,i, and
a target configuration X1 with cable distances d1,i, if d1,i ≤ d0,i for all i, there exists a smooth
transition of linkages Xt between X0 and X1 with cable distances dt,i such that dt,i ≤ d0,i.
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(a) Case 1: Cable length increases beyond the configuration corresponding to the flat-folded state.

(b) Case 2: Cable length decreases beyond the configuration corresponding to the flat-folded state.

Figure 8.12: Illustration of linkages obtained from the joining step (top rows) and their correspond-
ing configurations after the fanning step (bottom rows).

8.5.5 Linkage Motions and the Fanning Step

In contrast to the smooth case, the discrete fanning step during the construction of linkages imposes
an additional requirement to ensure feasibility. Apart from reducing cable lengths, it is necessary
to consider the realizability of the proposed linkages.

Specifically, let us consider the two faces corresponding to a (planar) four-bar linkage; as de-
picted in Figure 8.12a. During the folding motion corresponding to the fanned-out linkage motion,
one face rotates with respect to the other, until the rotation angle of π is reached. If the initial
linkage configuration is non-crossing, the resulting configuration becomes crossing, and vice versa.
The extracted four-bar linkage corresponding to this extremal configuration represents a bound on
the distance between the two apices, the apex and the base line, or the angle between the baselines.

To determine the maximum achievable configuration for each four-bar linkage given the initial
state, we reflect one face about the corresponding edge of the discrete glue curve. If the linkage was
initially crossing, this reflected configuration represents the maximum achievable distance or angle
for that particular four-bar linkage. If the linkage was initially non-crossing, this reflected config-
uration represents the minimum achievable distance or angle for that particular four-bar linkage.
To obtain a feasible configuration for the entire pattern, we take the corresponding minimum or
maximum over these distances.

In many cases, the configuration obtained by reflecting one face onto the other side is a con-
figuration of the other type with equal cable length and part of the motion. Therefore, usually
continuing the motion beyond this configuration would result in not feasible cable lengths anyhow;
see Figure 8.12a. However, this is not always the case. In Figure 8.12b, there are configurations of
the linkage that satisfy the cable distance requirement, but fail to construct the fanning step when
the apices are too far apart.
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Figure 8.13: Illustration of the case analysis from the proof of Theorem 8.2.

Theorem 8.4. Given an extracted linkage X0 and a configuration X1 with contracted cable lengths
corresponding to an appropriate distance or angle, there exists a rigid motion connecting X0 with
a fanned-out version of X1.

In Chapter 10, we use the discrete join-and-fan method and Theorem 8.4 to prove rigid foldabil-
ity of two discretizations of conic crease patterns with reflecting rule lines. It is worth noting that
the conventional method of proving rigid foldability in quadrivalent patterns, which involves fold
angle multipliers [24], cannot be directly applied in this context as some of the studied patterns
have non-flat-foldable vertices.

8.6 Selected Proofs from Section 8.5
Considering the length and potential diversion caused by the inclusion of certain proofs in Sec-
tion 8.5, we have relocated them to this dedicated section.

Proof of Theorem 8.2. Let a1 and a2 be the lengths of the bars ab and ad corresponding to the
cone, and b1 and b2 be the lengths of the bars b and dc′ corresponding to the cylinder. Without
loss of generality, let a = (0, 0) be the cone apex and γ : x = v be the the cylinder’s base line.

From the distance constraints

|b|2 = a2
1 and b · (1, 0) = v − b1,

|d|2 = a2
2 and d · (1, 0) = v − b2,

we obtain the locations of the vertices

b =
(
v − b1, σ1

√
a2

1 − (v − b1)2
)
,

and
d =

(
v − b2, σ2

√
a2

2 − (v − b2)2
)
,

where σj ∈ {−1, 1}.
In the following, we are interested in the change of the squared distance d(v) between the points,

that is,

d(v) = |a − d|2 = (b1 − b2)2 +
(
σ1

√
a2

1 − (v − b1)2 − σ2

√
a2

2 − (v − b2)2
)2
.
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To see the infinitesimal behavior, we consider the fist derivative,

d′(v) = 2F1F2,

where
F1 = σ1

√
a2

1 − (v − b1)2 − σ2

√
a2

2 − (v − b2)2

and
F2 = σ2(v − b2)√

a2
2 − (v − b2)2

− σ1(v − b1)√
a2

1 − (v − b1)2
.

If d′(v) > 0, the length between b and d increases for increasing distance between a and γ, which
we show to happen in the non-crossing concave case. If d′(v) < 0, the length between b and d
decreases for increasing distance between a and γ, which we show to happen in the crossing or
convex case.

We first consider the non-crossing cases, and assume without loss of generality a1 > a2, and
that σ1 = 1, that is, b to be located in the upper half plane. In the following, we will use a (slightly
lengthy) case-analysis to analyze the signs of F1 and F2, and therefore determine the sign of d′(v);
see Figure 8.13.

• Case A: Here, we assume that bx = v − b1 < 0. Note that since we assume that a1 > a2, we
obtain non-crossing configurations only when by > dy, and thus, F1 > 0. We now consider
the following seven cases for the location of d:

– Case A1: Here d and has negative x-coordinate, that is, v − b2 < 0, but positive y-
coordinate, that is, σ2 = 1. As vertex d it additionally lies to “the right” of the line ab,
we have that √

a2
1 − (v − b1)2√
a2

2 − (v − b2)2
= by

dy
<
a1
a2

<
bx

dx
= σ1(v − b1)
σ2(v − b2) .

For the corresponding concave configuration, it follows that F2 > 0 and d′(v) > 0.
– Case A2: Here, we have that v − b2 = 0 and σ2 = 1.

For the corresponding concave configuration, it follows that F2 > 0 and d′(v) > 0.
– Case A3: In this case, we have that v − b2 > 0 and σ2 = 1.

For the corresponding concave configuration, it follows that F2 > 0 and d′(v) > 0.
– Case A4: In this case, σ2 = −1 and v − b2 > 0. In addition, we have that d lies to “the

right” of line ab, resulting in√
a2

1 − (v − b1)2√
a2

2 − (v − b2)2
= by

−dy
>
a1
a2

>
bx

−dx
= σi(v − b1)
σ2(v − b2) .

For the corresponding convex configuration, it follows that F2 < 0 and d′(v) < 0.
– Case A5: In this case, again σ2 = −1 and v − b2 > 0. In addition, we have that d lies

to “the left” of line ab, resulting in√
a2

1 − (v − b1)2√
a2

2 − (v − b2)2
= by

−dy
<
a1
a2

<
bx

−dx
= σ1(v − b1)
σ2(v − b2) .

For the corresponding concave configuration, it follows that F2 > 0 and d′(v) > 0.
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– Case A6: Again σ2 = −1, but in this case we have that v−b2 = 0. For the corresponding
concave configuration, it follows that F2 > 0 and d′(v) > 0.

– Case A7: Finally, consider the case where v−b2 < 0 and σ2 = −1. For the corresponding
concave configuration, it again follows that F2 > 0 and d′(v) > 0.

• Case B: In this case, we assume that v− b1 = 0. As in the previous case, we can only obtain
non-crossing configurations for point combinations where by > dy, and thus, F1 > 0.

– Case B1: Assume v − b2 > 0 and σ2 = 1.
– For the corresponding concave configuration, it follows that F2 > 0 and d′(v) > 0.
– Case B2: Assume v − b2 > 0 and σ2 = −1.

For the corresponding convex configuration, it follows that F2 < 0 and d′(v) < 0.
– Case B3: Assume v − b2 < 0 and σ2 = −1.

For the corresponding concave configuration, it follows that F2 > 0 and d′(v) > 0.

• Case C: Finally, we consider the cases where v − b1 > 0. Unlike in the previous cases, it can
happen by < dy, and thus we consider both factors separately.

– Case C1: Let v − b2 < 0 and σ2 = 1. To arrive at a non-crossing configuration, we
require by < dy, and thus F1 < 0. In addition, it follows that F2 < 0.
For the corresponding concave configuration, we therefore have d′(v) > 0.

– Case C2: Let v − b2 = 0 and σ2 = 1. To arrive at a non-crossing configuration, we
require by < dy, and thus F1 < 0. In addition, it follows that F2 < 0.
For the corresponding concave configuration, we therefore have d′(v) > 0.

– Case C3: Let v− b2 > 0 and σ2 = 1. To arrive at a non-crossing configuration, we again
require by < dy, and thus F1 < 0. As d lies to “the left” of ab, we have that√

a2
1 − (v − b1)2√
a2

2 − (v − b2)2
= by

dy
<
a1
a2

<
bx

dx
= σ1(v − b1)
σ2(v − b2) ,

which implies that F2 < 0.
For the corresponding concave configuration, we therefore have d′(v) > 0.

In the remaining cases, we have that by > dy, and thus F1 > 0.

– Case C4: Let v − b2 > 0 and σ2 = 1. As d lies to “the right” of ab, we have that√
a2

1 − (v − b1)2√
a2

2 − (v − b2)2
= by

dy
>
a1
a2

>
bx

dx
= σ1(v − b1)
σ2(v − b2) ,

which implies that F2 > 0.
For the corresponding concave configuration, we again have d′(v) > 0.

– Case C5: Let v − b2 > 0 and σ2 = −1, which implies that F2 < 0.
For the corresponding convex configuration, it follows that d′(v) < 0.

– Case C6: Let v − b2 = 0 and σ2 = −1, which implies that F2 < 0.
For the corresponding convex configuration, it follows that d′(v) < 0.
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– Case C7: In this case, we have that v − b2 < 0 and σ2 = −1. As d lies to “the right”
of ab, we have that√

a2
1 − (v − b1)2√
a2

2 − (v − b2)2
= by

−dy
<
a1
a2

<
bx

−dx
= σ1(v − b1)
σ2(v − b2) ,

which implies that F2 < 0.
For the corresponding convex configuration, it follows that d′(v) < 0.

– Case C8: Finally, we consider the case where v− b2 < 0 and σ2 = −1. As d lies to “the
left” of ab, we have that√

a2
1 − (v − b1)2√
a2

2 − (v − b2)2
= by

−dy
>
a1
a2

>
bx

−dx
= σ1(v − b1)
σ2(v − b2) ,

which implies that F2 > 0.
For the corresponding concave configuration, it follows that d′(v) > 0.

Ultimately, the case-analysis above confirms the statement for the non-crossing cases, that is,
convex and concave non-crossing.

Note that every concave non-crossing linkage corresponds to a crossing linkage. The crossing
linkage can be obtained by replacing the horizontal bars with bars of appropriate length to the
other side, and reflecting the whole linkage across the y-axis. A non-crossing linkage configuration
obtained by moving the base plane towards the apex corresponds to a crossing linkage configuration
with the base plane moved away from the apex.

This concludes our proof.

Proof of Theorem 8.3. As previously, we use a parametrization to study the behavior of the linkage.
In particular, without loss of generality, assume that α and γ coincide with the origin. In addition,
assume that the base lines have direction vectors rα = (1, 0) and rγ = (cosφ,− sinφ), resulting
in the normals nα = (0, 1) and nγ = (sinφ, cosφ), where φ ∈ [0, π]. Finally, let a1 and a2 be the
lengths of the cylinder bars corresponding to the first surface, that is, ab and a′d, respectively.
Similarly, let b1 and b2 be the lengths of the bars bc and dc′.

Then, the vertices of the linkages satisfy

b · nα = a1 and b · nγ = b1,

d · nα = a2 and d · nγ = b2,

resulting in the coordinates

b =
( 1

sinφ (b1 − a1 cosφ) , a1

)
and d =

( 1
sinφ (b2 − a2 cosφ) , a2

)
.

Consequently, the diagonal distance reads

D(φ) = |b − d|2 = (a1 − a2)2 + 1
sin2 φ

(−b1 + b2 + (a1 − a2) cosφ)2 .

We compute the first derivative of D′(φ) as

D′(φ) = 2
sin3 φ

(−b1 + b2 + (a1 − a2) cosφ) (−a1 + a2 + (b1 − b2) cosφ) .
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Since φ ∈ [0, π], the first factor is positive. In addition, we now show that the other factors
correspond to da − da′ and dc − dc′ , respectively.

First, the base points are

a = b − a1nα =
( 1

sinφ(b1 − a1 cosφ), 0
)
,

a′ = d − a2nα =
( 1

sinφ(b2 − a2 cosφ), 0
)
.

and

c = b − b1nγ = ((b1 cosφ− a1) cotφ, a1 − b1 cosφ) ,
c′ = d − b2nγ = ((b2 cosφ− a2) cotφ, a2 − b2 cosφ) .

Consequently, the oriented distances from of the base points to the origin read

da = a · rα = 1
sinφ (b1 − a1 cosφ) dc = c · rγ = 1

sinφ (b1 cosφ− a1)

da′ = a′ · rα = 1
sinφ (b2 − a2 cosφ) dc′ = c′ · rγ = 1

sinφ (b2 cosφ− a2)

It follows that
D′(φ) = − 1

sinφ (da′ − da) (dc′ − dc)

Thus, D′(φ) > 0 if the linkage is non-crossing andD′(φ) < 0 if the linkage is crossing, confirming
the statement of the lemma.
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Chapter 9

Rotationally Symmetric Polygircles

The contents of this chapter are not published and are based on discussions with Erik Demaine,
Robert Lang, Tomohiro Tachi, and Tony Wills.

Overview

Based on Tony Wills’ squaricle design, we explore families of “polygircles”, that is, shapes that can
be obtained by gluing a polygon and a circle along their entire perimeter such that the resulting
shapes consist of cylinders, cones, and planes. Using the join-and-fan method from Chapter 8,
we find closed-form expressions for certain types of these gluings, which provide insights into the
shape’s geometry. In particular, we show that the gluing of a circle and polygon consisting of
cylinders and planes results in a convex shape.

9.1 Introduction
D-forms are shapes that can be created by joining two convex regions of equal perimeter along
their boundary. These forms were discovered by Tony Wills, a designer based in London [108, 86].
According to the Alexandrov–Pogorelov theorem [4], there exists a unique convex shape that can be
obtained by joining two regions along their boundaries. Demaine et al. [21] show that this convex
shape is the convex hull of its seam, and if the boundaries are smooth, the flat components of the
shape do not have any creases.

In addition to the convex realizations, there are also other interesting non-convex configurations
that can be obtained by joining two regions. One example is the Squaricle [108], which is formed
by joining a square and a circle, while adding four straight creases to the circular region; see
Figure 5.1a.

Determining the shape resulting from joining the boundaries of two convex regions is generally
a non-trivial task, as discussed by Kane et al. [40] in the context of the discrete case. However, in
this section, we demonstrate how the computations described earlier can be applied to simplify the
parametrization of four families of n-fold rotationally symmetric gluings of a circle and a regular n-
gon that consist of cylinders and cones. However, it is important to note that this parametrization
approach has the potential to be extended for other configurations as well.

Building upon Tony Wills’ concept of the squaricle, we adopt the term “polygircles” to refer
to the resulting gluings of a polygon and a circle. By employing the join-and-fan method, we
are able to derive closed-form expressions for certain types of polygircle gluings. This analytical
approach not only provides closed-form parametrizations of non-trivial curves parametrized by arc
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(a) Circles with conical rulings.

(b) Polygons with conical rulings.

(c) Circles with cylindrical rulings.

(d) Polygons with cylindrical rulings.

Figure 9.1: Considered ruling variations of circles and n-gons for n ∈ {3, 4, 5, 6}.
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(a) Convex gluing of a cylindrically-ruled circle and n-gon.

(b) Gluing of a conically-ruled circle and cylindrically-ruled n-gon.

(c) Gluing of a cylindrically-ruled circle and conically-ruled n-gon.

(d) Gluing of a conically-ruled circle and n-gon.

Figure 9.2: Considered gluings of a n-gon and a circle for n ∈ {3, 4, 5, 6}. For visualization, the
surfaces are shown separated.
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length, but also allows us to establish the convexity of the resulting shape in one of the closed form
parametrizations.

In the following, we call a circular or n-gonal region conically ruled if all its rulings are incident
to the center of the region which corresponds to the location of the cone apex; see first two rows of
Figure 9.1. We call a circular or n-gonal region cylindrically ruled, if it consists of a planar region
whose vertices are equally spaced along the boundary (circle) or the midpoints of its boundary
edges (n-gon), and n cylinders whose rulings are parallel to the adjacent edge of the planar patch,
see last two rows of Figure 9.1. We study the following four possible combinations of the proposed
rulings of the circle and n-gon:

(1) Both circular and n-gonal regions are cylindrically ruled (Section 9.3 and first row of Fig-
ure 9.2). This combination results in a convex gluing.

(2) The circular region is conically ruled and the n-gonal region is cylindrically ruled (Section 9.4
and second row of Figure 9.2). This combination results in a generalization of Tony Wills’
squaricle.

(3) The circular region is cylindrically ruled and the n-gonal region is conically ruled (Section 9.5
and third row of Figure 9.2).

(4) Both circular and n-gonal regions are conically ruled (Section 9.6 and fourth row of Figure 9.2).

9.2 Notation
In the following, we consider a circular region R◦ and an n-gonal region R□ with unit boundary
length which we parametrize without loss of generality by arc length. Our goal in the following is
to construct closed 3D shapes with n-fold rotational and mirror symmetry. Since the length of the
boundaries of both glued regions is one, the length of the overall gluing curve will also be one. As a
result, we only consider the portion of the gluing curve X(t) that corresponds to parameter values t
in the interval

[
0, 1

2n

]
. We can then obtain the remaining shape by applying appropriate reflections

and rotations. To simplify notation, we denote the upper limit of the parameter as tmax = 1
2n .

In the following subsections, we parametrize for t ∈ [0, tmax] the respective 2D gluing curves as

x◦(t) =
( 1

2π cos(2πt), 1
2π sin(2πt), 0

)
and x□(t) =

( 1
2n cot π

n
, t, 0

)
,

where x□(t) parametrizes the segment of the n-gon that is perpendicular to the x-axis.
If the surfaces are cylindrically ruled, the developed surface’s rulings are r◦ = (0, 1, 0) and

r□ =
(
sin π

n ,− cos π
n , 0

)
. In addition, we set the points defining the cylinder’s base plane to p◦ =

p□ = (0, 0, 0). Additionally, we also want the corresponding 3D profile curves to be containing in
planes passing through the origin. We therefore set P◦ = P□ = (0, 0, 0).

If the surfaces are conically ruled, the apices v◦ and v□ coincide with the origin. Similar to
the previous section, we can use a polar parametrization centered at the origin. In this case,
the parametrizations can be written as x̄◦(t) = r◦(t)r̄◦(t) and x̄□(t) = r□(t)r̄□(t), with distance
functions

r◦(t) = 1
2π and r□(t) =

√
t2 + 1

4n2 cot2 π

n
,
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and ruling vectors

r̄◦(t) = (cos(2πt), sin(2πt), 0) and r̄□(t) = 1√
t2 + 1

4n2 cot2 π
n

( 1
2n cot π

n
, t, 0

)
.

9.3 Convex Gluing of a Cylindrically-ruled Circle and Polygon

Lemma 9.1. For t ∈
[
0, 1

2n

]
, the gluing curve X(t) of a cylindrically-ruled circle and cylindrically-

ruled n-gon allows the following arc-length parametrization,

Xx(t) = π − 2nπt+ n sin(2πt)
2nπ tan π

n

,

Xy(t) = sin(2πt)
2π ,

Xz(t) = 1
π

(
1 +

(
arctanh

(√
2 cos(πt)
x(t)

)
− arctanh

(
csc π

n

)) cos π
n

tan π
n

− x(t) cos(πt)√
2 sin π

n

)
,

where x(t) =
√

cos(2πt) − cos 2π
n > 0. The remaining parts of the gluing curve can be obtained by

reflecting X(t) on the xz-plane and constructing an n-fold polar array of both curves.

Proof. We follow the explanation in Section 8.2 and use the Cartesian coordinate representation
of X(t). In this case, we set R◦ = r◦ and R□ = r□. In addition, we let the corresponding base
planes be incident to the origin, resulting in P□ = P◦ = (0, 0, 0). Therefore, in the joining step,
simplifying Equation (8.7) results the provided expression for Xx(t) and Xy(t).

In the fanning step, solving Equation (8.5) with Xz(0) = 0 results up to sign in the provided
expression for the third coordinate function of the glue curve.

Lemma 9.2. The parametrization of the gluing of a cylindrically-ruled circle and n-gon provided
by Lemma 9.1 yields a convex shape.

Proof. The computed shape consists of two horizontal n-gons and 2n n-fold rotationally symmet-
ric cylinders with horizontal rulings. To prove convexity of the gluing, we follow a constructive
approach, and represent the gluing as a union of a convexity-preserving arrangement of (convex)
intersections of convex shapes.

On a high-level, our proof can be decomposed in the following three steps:

• Step 1: We define two shapes S◦ and S□, see Figure 9.3.

• Step 2: We show that S◦ and S□ are convex.

• Step 3: We define S as the intersection of S◦ and S□, and show that its assembly into the
final gluing results in a convex shape.

Before we proceed, let us recall that Π◦ and Π□ are the two planes passing through the origin
that are perpendicular to the ruling directions R◦ and R□, respectively. Additionally, let C◦(t)
and C□(t) be the profile curves of the cylinders incident to Π◦ and Π□, respectively. Specifically,
we can write their parametrizations as

C◦(t) = X(t) − (x◦(t) · r◦)R◦ and C□(t) = X(t) − (x□(t) · r□)R□.
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X(0)

X(tmax)

R◦

S◦

X(t)
C◦(t)

S□

R□
X(tmax)

C□(t)

X(0)

S

Figure 9.3: Convex shapes used in the proof of Lemma 9.2.

Step 1. We start our proof by defining the two shapes S◦ and S□, see Figure 9.3. For × ∈ {⃝,□},
let S× be the shape that is bounded by:

• the two xy-parallel planes denoted by Π1 and Π2 that contain the points X(0) and X (tmax),
respectively,

• the two planes denoted by Π3 and Π4 perpendicular to the ruling direction R× that contain
the points X(0) and X (tmax), respectively,

• the cylinder with profile curve C×(t) and ruling direction R×, and

• a vertical plane containing the origin and the ruling direction R×.

For this definition to be meaningful, it is necessary for the intersections of Π1, Π2, Π3, and Π4
with X(t) to occur only at the points X(0) or X (tmax). This condition ensures that the gluing curve
is monotonous with respect to the ruling directions and the vertical axis, justifying the bounding
of the curve by the vertical and horizontal planes.

To verify this, we compute the dot product of the curve’s tangent and the ruling direction,
resulting in the following expressions:

X′(t) · R◦ = cos(2πt), −X′(t) · R□ = cos π
n
, X′(t) · (0, 0, 1) =

√
2x(t)sin(πt)

sin π
n

.

It can be observed that for n ≥ 3 and t ∈ [0, tmax], all three expressions are non-negative, indicating
that the gluing curve is bounded from below, above, and on two sides.

Step 2. We now show that the shapes S◦ and S□ are convex. Let R◦ and R□ be the regions
obtained from intersecting S◦ and S□ with Π◦ and Π□, respectively. Since the shapes S◦ and S□
result from orthogonal extrusion of R◦ and R□ with respect to the corresponding ruling direction,
we show the convexity of S◦ and S□ by showing that the regions R◦ and R□ are convex. Note that
both region are bounded by a polyline and a profile curve of one of the cylinders. In the following
we show that the cylinder’s profile curves are bend consistently in one direction by computing their
curvatures; see Figure 9.4.

First, we consider R◦. The tangents of C◦(t) read

T◦(t) = C′
◦(t)

|C′
◦(t)| =

− sin2(πt)
sin(2πt) tan π

n

, 0,

√
(cos 2π

n − cos(2πt))(−1 + cos(4πt))
4 sin π

n sin(πt) cos2(πt)

 .
Since C◦(t) lies in the xz-plane, its left-sided normal can be obtained by rotating T◦(t) by +π

2
around (0,−1, 0). Computing the curvature results in

κ◦(t) = T′
◦(t) · N◦(t) =

√
2π

x(t) cos π
n

sec(πt).
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C̃□(t)

T̃□(t)Ñ□(t)

C◦(t)

T◦(t)

N◦(t)

X(t)

Figure 9.4: Illustration of the notation in the proof of Lemma 9.2 on a part of a gluing of a circle
and a square.

Note that for t ∈ [0, tmax] and n ≥ 3, κ◦(t) ≥ 0 and thus the region R◦ is convex.
Second, we consider R□. To allow simpler computations of the curvature, we position C□(t) in

the xz-plane using a rotation by π
n around (0, 0, 1), and denote the rotated profile curve by C̃□(t).

The tangent of C̃□(t) simplifies to

T̃□(t) = C̃′
□(t)∣∣∣C̃′
□(t)

∣∣∣ =
(

−
1 + cos 2π

n − 2 cos(2πt)
2 sin2 π

n

, 0,
√

2x(t) sin(πt)
sin2 π

n

)
.

Again, we obtain the normal Ñ□(t) by rotating T̃□(t) by +π
2 around (0,−1, 0). The curvature then

simplifies to

κ□(t) = T′
□(t) · N□(t) = T̃′

□(t) · Ñ□(t) = 2
√

2π
x(t) cos(πt).

Again, note that for t ∈ [0, tmax] and n ≥ 3, κ□(t) ≥ 0 and thus the region R□ is convex. Conse-
quently, the shapes S◦ and S□ are convex.

Step 3. To this end, we have verified that the two shapes S◦ and S□ are convex. Therefore,
their intersection S is convex. To obtain the full shape, we reflect the shape about the plane Π◦ to
obtain shape S′ and form a n-fold polar array of the union of S and S′ around the origin. We now
demonstrate that these operations maintain convexity by ensuring that the transitions between
assembled copies of S and S′ remain convex.

Firstly, it is important to note that since S is bounded from below and above by xy-parallel
planes, the final assembly will also be bounded by these planes, preserving convexity. Additionally,
the non-horizontal boundary transitions maintain convexity because the surfaces are cylinders with
rulings that are perpendicular to the reflecting planes.

We conclude that the proposed parametrization results in a family of convex shapes for n ≥ 3.

9.4 Gluing of a Conically-ruled Circle and a Cylindrically-ruled
Polygon

We follow the description for the cone-cylinder case in Section 8.2.4, and set V◦ = (0, 0, 0) and
R□ = (0, 0, 1).
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V◦
η0

d□ r◦(0)

X(0)

X(t)

Figure 9.5: Notation describing the parametrization of the glue curve between a cylindrically-ruled
n-gon and a conically-ruled circle, as used in Section 9.4.

Joining step. The joining step yields the two functions

l(t) = r◦(t) = 1
2π and ζ(t) = arcsin

(
π

n
(1 − 2nt) cos π

n

)
.

Fanning step. We first compute the first derivative of ζ(t), that is,

ζ ′(t) = −
2π cos π

n√
1 − π2

n2 (1 − 2nt)2 cos2 π
n

.

Then Equation (8.9) simplifies to

η′(t) = 2
√

2nπ

√
n2(1 − cos 2π

n ) − π2(1 + cos 2π
n )(1 − 2nt)2

−2n2 + π2(1 + cos 2π
n )(1 − 2nt)2

= A

√
B − C(1 − 2nt)2

D + C(1 − 2nt)2 , (9.1)

where

A = 2
√

2nπ, B = n2
(

1 − cos 2π
n

)
, C = π2

(
1 + cos 2π

n

)
, D = −2n2.
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Solving the initial value problem in Equation (9.1) with η(0) = η0 results in

η(t) = η0 +A

(
√
B +D

(
arctan

√
C

√
B +D√

D
√
B − C

− arctan
√
C

√
B +D(1 − 2nt)√

D
√
B − C(1 − 2nt)2

)

−
√
D

(
arctan

√
C√

B − C
− arctan

√
C(1 − 2nt)√

B − C(1 − 2nt)2

))
.

Computation of η0. Finally, it remains to determine the initial value η0 that yields the desired
shape; see Figure 9.5. First note, that the cylindrically-ruled n-gon has an inscribed planar n-gonal
region whose circumradius is the inradius of the n-gon, that is,

d□ = 1
2n cot π

n
.

This polygon forms the base of an n-sided pyramid with vertex V◦ whose non-base edge lengths
equal half of the diameter of the circle, that is, r◦(0) = 1

2π . Consequently, we obtain that

η0 = arcsin d□
r◦(0) .

The second row of Figure 9.2 shows the resulting shapes, which were rotated by π
2 about the y-axis

to have consistent orientation with the other gluings.

9.5 Gluing of a Cylindrically-ruled Circle and a Conically-ruled
Polygon

Again, we follow the description for the cone-cylinder case in Section 8.2.4, and set V□ = (0, 0, 0)
and R◦ = (0, 0, 1).

Joining step. The joining step yields the two functions

l(t) =

√
t2 +

cot2 π
n

4n2 and ζ(t) = arcsin sin(2πt)

π
√
t2 + cot2 π

n
4n2

.

Fanning step. We first compute the first derivative of ζ(t), that is,

ζ ′(t) =
2π cos(2πt)

(
4n2t2 + cot2 π

n

)
− 4n2t sin(2πt)

(4n2t2 + cot2 π
n)
√

4π2t2 + π2

n2 cot2 π
n − sin2(2πt)

Then, Equation (8.9) simplifies to

η′(t) =
2nπ

√
π2 cot2 π

n sin2(2πt) − n2(sin(2πt) − 2πt cos(2πt))2

π2 cot2 π
n + n2(4π2t2 − sin2(2πt))

.

We have encountered difficulties in finding a closed-form solution for this or other approaches.
Therefore, we will proceed by solving the initial value problem numerically for X(tmax) = ηmax.
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V□

ηmax

d◦

r□(tmax)

X(tmax)

X(0)

Figure 9.6: Notation describing the parametrization of the glue curve between a cylindrically-ruled
n-gon and a conically-ruled circle, as used in Section 9.5.

Computation of ηmax. It remains to compute the initial value for ηmax; see Figure 9.6. Similarly
to before, note that the cylindrically-ruled circle has an inscribed planar n-gonal region whose
circumradius is the circular boundary of the region. Therefore,

d◦ = 1
2π .

Again, this polygon forms the base of an n-sided pyramid with vertex V□ whose non-base edge
lengths equal half of the diameter of the n-gon, that is, r□(tmax). Consequently, the opening angle
can be obtained as

ηmax = arcsin d◦
r□(tmax) .

The third row of Figure 9.2 shows the resulting shapes, which were rotated by π
2 about the y-axis

to have consistent orientation with the other gluings.

9.6 Gluing of a Conically-ruled Circle and Polygon

In this case, we follow the cone-cone case in Section 8.2.4, and set V◦ = (0, 0, 0) and V□ = (0, 0, h).
Unlike in the previous cases, it is not obvious to determine the parameter h that results in a closed
parametrization. We resort in computing this value at the end of this section numerically.
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n 3 4 5 6 7
h – 0.145527 0.130935 0.120127 0.111651

n 8 9 10 100 1000
h 0.1047600 0.0990101 0.0941159 0.0302579 0.0095841

Table 9.1: Numerically found solutions of η(tmax) = π
n for h and different n.

Joining step. From the joining step for the two cones, we obtain the two functions

l(t) = 1
2π and ζ(t) = arcsin

(
(1 + 4h2π2 − 4π2t2)n2 − π2 cot2 π

2
4hn2π

)
.

Fanning step. The first derivative of the angular function ζ(t) reads

ζ ′(t) = − 2πt

h

√
1 −

(
(1+4h2π2−4π2t2)n2−π2 cot2 π

2
4hn2π

)2
.

With this, Equation (8.10) can be be rewritten as

η′(t) = 2π
√

1 − at2 − (b− ct2)2

1 − (b− ct2)2 ,

where

a = 1
h2 , b =

n2 + 4h2n2π2 − π2 cot2 π
n

4hn2π2 , c = −π

h
.

For η(0) = 0, the solution of the initial value problem can be written in terms of the elliptic integral
of the first kind1, and the incomplete integral of the third kind2

η(t) = x(t)
(

2cF
(
ϕ(t), n−

n+

)
+ a

(
Π
(

n−
2c(b+ 1) , ϕ(t), n−

n+

)
− Π

(
n−

2c(b− 1) , ϕ(t), n−
n+

)))
,

where
n± = a+ 2bc±

√
a2 + 4abc+ 4c2

and

ϕ(t) = − sinh
(√

−2c2

n−
t

)
and x(t) = −

√
1 + 2c2t2

n−

√
1 + 2c2t2

n+

c
√

−2c2

n−

√
1 − at2 − (b+ ct2)2

.

Computing h. The value of η(tmax) is influenced by the parameter h. Given that η(0) = 0,
our objective is to find a solution where η(tmax) = π

n . Through numerical computations, we have
obtained values of h for different values of n ≥ 4; see Table 9.1. However, no numerical solution
was found for n = 3.

As the number of polygonal edges increases, the numerically determined height decreases. This
observation is consistent with the intuition that gluing a polygon with numerous sides to a circle
will yield a shape with a relatively small volume. In Figure 9.2, the resulting shapes are depicted
in the last row.

1F(ϕ, m) =
∫ ϕ

0
1√

1−m sin2 θ
dθ

2Π(n, ϕ, m) =
∫ ϕ

0
1

1−n sin2 θ
1√

1−m sin2 θ
dθ
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Chapter 10

Conic Creases with Reflecting Rule
Lines

This chapter is based on the paper “Flat and Rigidly Foldable Discretizations of Conic Crease
Patterns with Reflecting Rule Lines” that the thesis author coauthored with Erik Demaine and To-
mohiro Tachi. This paper appeared in the proceedings of the International Conference in Geometry
and Graphics [20].

Overview

Conic curved creases with reflected rule lines, first explored by David Huffman, offer one-degree-of-
freedom folding motions with rigid rule lines that remain the same throughout the folding motion.
We employ the join-and-fan method from Chapter 8 to provide a parametrization of these creases.
Furthermore, we present two general methods for discretizing such curved-crease patterns into
straight-line crease patterns. In particular, we replace each curve with either an inscribing or
circumscribing polygonal line, and show in both cases that the resulting discretized crease patterns
are rigidly foldable. Additionally, the circumscribed discretization yields locally flat-foldable crease
patterns, while only careful sampling in the inscribed method achieves the same result.

10.1 Introduction
Many of David Huffman’s curved-crease origami designs use conics sharing focal points as the creases
and lines passing through the focal points as rulings of the curved surfaces [43]; see Figure 10.1.
Demaine et al. [18] call these natural rule lines. Because of properties of conics, natural rule lines
reflect at the creases, and if such creases can fold, they fold with constant fold angles [26]. Demaine
et al. [18] characterize valid combinations of conic creases with natural rule lines and show that
compatible conic creases produce a rigid-ruling folding motion. As the rulings are rigid throughout
the motion, the fold angles along a crease are constant.

Rigid-ruling folding is a curved-crease analogue of rigid folding; see Figure 10.2. Therefore,
rigid-ruling folding of conics naturally raises the question: can we discretize conic curved creases
such that they rigidly fold? Tachi [101] and Lang et al. [48] discretize (using a locally flat-foldable
inscribed discretization as explained later) a specific family of multi-crease curved origami and a
single-crease curved origami, respectively. However, whether such a discretization exists for crease
patterns with multiple conic creases, and if it exists whether it is rigidly foldable, were unknown.

Our contribution in this section is two-fold. First, we use the join-and-fan method discussed in
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(a) 4-lobed cloverleaf design (1977).
Figure 5.3.3. in Koschitz [43].

(b) Starburst design (undated).
Figure 5.8.23 in Koschitz [43].

Figure 10.1: Two designs by David Huffman using conic creases with crease-rule pattern sketches.
Not for reproduction.

Section 8.2 to provide an, up to elliptic integrals, closed form parametrization of conic creases with
reflecting rule lines that does not rely on the computation of the Frenet-frame. Our computations
confirm the crease compatibilities as discussed in [18].

Second, we show how the join-and-fan method is used to analyze two discretization approaches
[20]: (1) the inscribed discretization samples curve points and connects them consecutively to form
an inscribed polyline, and (2) the circumscribed discretization samples conic tangents and ends them
at consecutive intersections to form a circumscribed polyline. With both methods, the sampling
parameters of a single curve can be freely specified, but need to be propagated to other creases
with discrete natural rule lines, that is, the vertices of neighboring compatible creases and their
common focal point need to be collinear. Both discretizations result in rigidly foldable patterns.
In addition, we also show that circumscribed discretization ensures that each vertex is locally flat
foldable, whereas inscribed discretization achieves this property only with careful sampling. When
each vertex is locally flat foldable, the fold angle along the original curved crease is constant,
preserving the original properties of conic curved-crease folding with natural rule lines.

A common approach to proving rigid foldability of a quadrivalent pattern (as produced by our
discretization methods) is to show the compatibility of fold angles based on fold angle multipli-
ers [24, 102], but this approach requires that each vertex is locally flat foldable. As our inscribed
discretization method does not always produce locally flat-foldable vertices, we instead prove rigid
foldability by using the join-and-fan method, resulting in a constructive approach based on a com-
patible series of planar linkages using the properties of conics.

10.2 Review of Properties of Conic Sections
We begin by introducing the notation, and review some of the key properties of conic sections.
Recall that a conic can be described by two parameters: the shape of a conic is determined by
its eccentricity e, and the conic’s scale is determined by a scale parameter a. Specifically, we call
a conic an ellipse if |e| < 1, a parabola if |e| = 1, and a hyperbola if |e| > 1. Analytically, conic
sections are quadratic curves and can be described as follows

ell or hyp: x
2

a2 + y2

a2(1 − e2) = 1, par: y2 = −4ax. (10.1)

A conic has two focal points. In case of an ellipse or hyperbola, both focal points are real-
valued. If the ellipse or hyperbola are given by Equation (10.1) (left), the focal points are located
at f1,2 = (±ae, 0). In case of a parabola, one focal point is real-valued and the other focal point is
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Figure 10.2: A locally flat and rigidly foldable discretization of one of David Huffman’s designs
with scaled and reflected parabolas.

ideal. If the parabola is given by Equation (10.1) (right), one focal point is located at f1 = (−a, 0)
and the other is the ideal point of the x-axis.

10.2.1 Conics as Loci of Points

Alternatively, conic sections can be defined as sets of points that satisfy the following properties
with respect to their focal points:

• An ellipse is the set of points, for which the sum of distances to the two focal points is
constant.

• A hyperbola is the set of points, for which the absolute difference of distances to the two focal
points is constant.

• A parabola is the set of points, for which the orthogonal distance to a line equals the distance
to the real-valued focal point. This line is also referred to as the directrix of the parabola.

10.2.2 Parametrization of Conics with Polar Coordinates

In the following, we position conics such that one real focal point coincides with the origin, and
use the polar parametrization, that is, a parametrization in form of c(t) = r(t)r(t), where r(t) =
(cos t, sin t), to describe the conic. The proofs of the following two Lemmas can be found in
Section 10.9.

Lemma 10.1. An ellipse or hyperbola with eccentricity e and major axis length a ̸= 0 can be
parametrized by polar coordinates centered at one of its foci by

c(t) = a(1 − e2)
1 + e cos tr(t) (10.2)

where t ∈ [−π, π]. Note that in case of a hyperbola, the conic has two ideal points at t± =
± arccos

(
−1

e

)
. When e > 0, t ∈ (t−, t+) parametrizes the branch closer to the origin, and the

branch further from the origin if e < 0. The second focal point is located at (−2ae, 0).
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Figure 10.3: Illustration of Lemma 10.4.

Lemma 10.2. A parabola with scale factor a can be parametrized by polar coordinates centered at
the real-valued focal point by

c(t) = 2a
1 + cos tr(t). (10.3)

10.2.3 Intersections of Tangents of Conics

Lemma 10.3. Let c(t) be a conic section with focal points f and f ′ parametrized using Equa-
tion (10.2) or Equation (10.3), respectively. The intersection p of its tangents at parameter values
τ1 and τ2 is the intersection of the angle bisector of {c(τ1), f , c(τ2)} and the angle bisector of
{c(τ1), f ′, c(τ2)}, that is,

p =
{

a(1−e2)
cos t−+e cos t (cos t, sin t) , in case of an ellipse or hyperbola.

2a
cos t−+e cos t (cos t, sin t) , in case of an parabola,

where t = τ1+τ2
2 and t− = τ2−τ1

2 ; see Figure 10.3.

Proof. The claim can be readily verified by showing that the stated point p lies on the tangents of
the respective conics at parameters τ1 and τ2:

A vector parallel to the normal vector of the conic can be obtained by rotating and scaling c′(t)
by π

2 , resulting in

n(τ) =
{

(e+ cos τ, sin τ) , in case of an ellipse or hyperbola,
(−e+ cos τ, sin τ) , in case of a parabola.

In both cases, we confirm the claim by simplifying for i ∈ {1, 2},

(c(τi) − p) · n(τi) = 0.

Note that as τ2 moves towards τ1, t− converges to zero, and t converges to τ1. Thus the obtained
equations converge to the expressions in Equation (10.2) and Equation (10.3).

10.2.4 Reflection Properties of Conics

It is known, that conic section have a reflecting property. Specifically, a line incident with one focal
point is reflected on the intersection of the conic about its incident tangent in a line that passes
through the other focal point.

The following Lemma extends this property to intersections of conic tangents (see Figure 10.3),
and can be found in classical literature on descriptive geometry, such as Steiner’s Lecture Notes
[93].
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(E) (H) (P1) (P2) (P3)

(EH1) (EH2) (EH3) (EH4)

Figure 10.4: The nine distinct cases of compatible conic creases with reflecting rule lines sharing a
focal point. Red and blue indicate mountain and valley creases, respectively. Note that the entire
MV assignment can also be inverted.

Lemma 10.4. Let c(t) be a conic section with focal points f and f ′, and p the intersection of its
tangents at τ1 and τ2. Then, ̸ (f ,p, c(τ1)) = ̸ (c(τ2),p, f ′) in case of an ellipse or parabola, and
̸ (f ,p, c(τ1)) + ̸ (f ′,p, c(τ2)) = π in case of a hyperbola.

10.3 Smooth Conic Crease Patterns with Reflecting Rule Lines
In the following, we consider conic creases with natural rule lines, that is, rule lines that pass
through the focal points of the conic. When combining conics with natural rule lines, the combined
conics need to share a focal point. Specifically, Demaine et al. show that naturally ruled crease
pattern of two conic creases c1(t) and c2(t) sharing a focal point fold if and only if the conics have
the same or reciprocal eccentricity. Figure 10.4 shows the nine distinct cases of two conics: (E),
(H), (P1), (P2), (P3), (EH1), (EH2), (EH3), and (EH4).

If two conics have the same eccentricity, they are scaled versions of each other if the common
focal point is real (cases (E), (H), and (P1)), and are translated or reflected if the common focal
point is a point at infinity (cases (P2) and (P3)). This can only happen in case of a parabola.

If two conics have reciprocal eccentricities, they are a combination of an ellipse c1(t) and a
hyperbola c2(t). Figure 10.4 shows the resulting valid combinations. In the following case analysis,
let without loss of generality a1 = 1 and e = e1 = 1

e2
, with |e| < 1.

• If 0 < e < 1, the ellipse can only be combined with the branch of the hyperbola that is closer
to the origin. There are two cases that do not result in intersecting rulings that depend on
the scaling of the hyperbola with respect to the scaling of the ellipse:

– Case (EH1): If 0 < 1 − e = c1(0) ≤ c2(0), we require a2 ≤ −e.
– Case (EH2): If 0 < c2(0) < c1(0) = 1 − e, we require −e < a2 < 0.

• If −1 < e < 0, the ellipse can only be combined with the branch of the hyperbola that is
further away from the origin. Again, there are two cases that do not result in intersecting
rulings that depend on the scaling of the hyperbola with respect to the scaling of the ellipse:

– Case (EH3): If 0 < 1 + e = c1(0) ≤ c2(0), we require a2 ≥ −e.
– Case (EH4): If 0 < c2(0) < c1(0) = 1 − e, we require −e < a2 < 0.
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(a) Smooth crease pattern. (b) Inscribed discretization. (c) Circumscribed discretization.

Figure 10.5: Illustration of the considered crease patterns, exemplified by two scaled ellipses with
reflecting rule lines.

In cases (EH2) and (EH3) the two conics intersect. This effects the direction of the reflected
outer rule lines. In the following we only consider parameter intervals (tmin, tmax), where either
|c1(t)| ≤ |c2(t)| < ∞ for all t ∈ (tmin, tmax) or |c2(t)| ≤ |c1(t)| < ∞ for all t ∈ (tmin, tmax).

10.4 Discretized Conic Crease Patterns with Reflecting Rule Lines
In addition to the smooth case, we examine two discretizations, as illustrated in Figure 10.5. In
this section, we provide a formal description of the proposed discretizations.

Let c(t) be a conic and T and Tτ two ordered lists of appropriate parameter values. The two
discretizations under study are as follows:

• Inscribed discretization: The vertices of the inscribed discretization method are points on the
conic corresponding to parameters in T , and vertices corresponding to adjacent parameters
are connected with edges.

• Circumscribed discretization: The vertices of the circumscribed discretization method are
intersections of tangents of the conics at parameters in Tτ , and vertices corresponding to
adjacent parameters are connected with edges.

We propagate the two discretizations with discrete natural rule lines: In case of the inscribed
discretization, the sampling of the conics is propagated such that the sampled vertices of two
compatible conics and the shared focal point are collinear; see Figure 10.5b. In case of the circum-
scribed discretization, the sampling of the points of contact is propagated such the sampled points
of contact of two compatible conics and their shared focal point are collinear; see Figure 10.5c. It
follows from Lemma 10.4 that the vertices obtained by intersecting neighboring tangents and the
shared focal point are again collinear. Thus the discretized rulings in both discretization methods
essentially sample the rulings in the smooth case.

When sampling the input curve, it is important to comply with the following constraints. When
dealing with a hyperbola, sampling should be limited to a single branch. Furthermore, it is crucial
to position the sampled points in such a way that all angles formed by the discretization remain
smaller than π. Specifically, the parameter values of the sampled points must not differ by more
than π in with respect to either apex.

10.5 Local Flat Foldability of Discretized Conic Crease Patterns
Prior to applying the join-and-fan method to determine the parametrization of the smooth crease
curves and demonstrate the existence of a rigid folding motion, we first examine the flat foldability
of vertices.
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Figure 10.6: Illustration of the angles around a locally flat-foldable inscribed vertex. A vertex in
the inscribed discretization is locally flat foldable, if the discretized creases are reflected on the
normal of the conic. Note that this allows a decomposition in three pairs of equal angles around a
vertex as in Lemma 10.4.

For a degree-4 vertex to be flat foldable, the sum of opposite angles must be π. It is known that
when folding a flat-foldable degree-4 vertex, the fold angles along the opposite creases with same
MV assignment are the same. Thus, if a pattern consist of flat-foldable degree-4 vertices, the fold
angles along polylines with same MV assignment are constant.

As the rule lines of smooth conic curved creases are reflected on the crease, the resulting
folded creases will have constant fold angle. In the following, we show when this property is
preserved in our studied discretizations, that is, when all vertices are flat foldable. We show that the
circumscribed discretization gives flat-foldable vertices for any (reasonable) parameter sampling.
Furthermore, we show that carefully chosen parameter samplings in the inscribed discretization
method result in locally flat-foldable crease patterns.

10.5.1 Circumscribed Discretizations

With Lemma 10.4, the angle around a vertex in a circumscribed discretization decomposes into
three pairs of equal angles, that is, 2π = 2α + 2β + 2γ. Note that for discrete natural rule lines
the sum of opposite angles is α + β + γ = π, resulting in flat-foldable vertices for any sampling of
points of contact. This trivially holds for all compatible conics.

10.5.2 Inscribed Discretizations

It is known, that the bisectors of opposite creases in a flat-foldable degree-4 vertex are perpendicular,
and thus are referred to as axes of the flat-foldable vertex. In case of the inscribed discretization
method, it follows from the reflection property of the conic that the axes of a flat-foldable inscribed
vertex are the tangent and normal of the conic, as shown by Lang et al. [48]; see Figure 10.6.

Lemma 10.5. A vertex xi = x(t) of an inscribed discretization of a conic section x(t) is flat-
foldable if and only if its axes are the tangent t(t) and normal direction n(t) of the conic.

For a single crease, we can therefore construct a set of parameters that result in flat-foldable
vertices in the following way. Initially, we choose two sampling parameters. Reflecting the con-
necting lines on the incident conic normal and choosing the intersection with the conic as the next
vertex, makes the central vertex flat-foldable. Iterating this construction results in a discretization
with flat-foldable vertices.

The following lemma establishes a connection between the flat-foldable vertices of the inscribed
discretization and the vertices of the circumscribed discretization method; see Figure 10.7:
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Figure 10.7: Illustration of Lemma 10.6.

Lemma 10.6. The segments of a flat-foldable inscribed discretization are tangents to a conic of
the same type.

It remains to show that flat foldability of vertices propagates to compatible conics. In case of
scaled or translated conics, the discretized creases of neighboring conics are parallel. Thus, opposite
enclosing angles still sum up to π. In case of reflected parabolas with flat-foldable vertices, the
reflected vertices are also still flat foldable.

The only non-trivial case is the combination of conics with reciprocal eccentricities. The proof
of the following lemma is provided in Section 10.9.

Lemma 10.7. A vertex in an inscribed discretization of two conics with reciprocal eccentricities is
flat-foldable if and only if its neighboring vertex on the other conic is flat-foldable.

10.6 Conic Creases and the Join-and-Fan Method
In the following, we first consider a crease-rule pattern consisting of only a single conic crease with
reflecting rule lines, that is, a conic crease that connects a cone with a cylinder, or two cones, whose
apices or ruling direction coincide with the (real or ideal) focal points f and f ′.

Using the join-and-fan method, we compute the parametrization of the resulting smooth crease
curve (see Figure 10.8), and argue rigid foldability of the pattern consisting of one discrete curve.

10.6.1 Input

Parametrization of the development

In the following, we assume without loss of generality that the first surface s1(t, u) in our construc-
tion is a cone with apex v1 located at the origin, that is connected to a cylinder or another cone
with a conic crease.
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(a) Elliptic crease.

(b) Hyperbolic crease.

(c) Parabolic crease.

Figure 10.8: Illustration of the join-and-fan method for conic crease curves. From left to right:
Crease pattern, extracted linkages, joining step, fanning step, and extraction of creases and surfaces.

Since the joining step is similar for both the smooth and discrete cases, we use a common
notation to describe all considered cases: smooth, inscribed, and circumscribed. The main dis-
tinction lies in whether the points corresponding to the studied conic crease lie on the conic itself
(smooth parametrization or inscribed discretization) or not (circumscribed discretization). We call
the lengths associated with the two cases inscribed or circumscribed, respectively.

To cover both cases, we introduce a continuous or discrete domain T , which we use to de-
fine the functions associated with either the smooth or discrete parametrization. Specifically, we
parametrize the smooth or discrete conics with a case-specific distance function r1(t) : T → R
(defined below), and unit length ruling directions r1(t) : T → R3 with r1(t) = (cos t, sin t, 0).
Consequently, for t ∈ T , the parametrization of the conic is given by x(t) = r1(t)r1(t).

Inscribed lengths. In the smooth case, we set T = (tmin, tmax). In case of the inscribed dis-
cretization, we set let the parameter domain be a ordered list of points T = (t0, t1, . . . , tm) where
ti ∈ (tmin, tmax). We parametrize the crease with polar coordinates using the parametrization given
in Lemma 10.1 and Lemma 10.2 as

r1(t) =
{

a(1−e2)
1+e cos t , if x(t) is an ellipse or hyperbola,

2a
1+cos t , if x(t) is a parabola.
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Circumscirbed lengths. In case of the circumscribed discretization, we assume that we are
given a list of parameter values Tτ = (τ0, τ1, . . . , τm). We define T to be the array of the averages
of two consecutive values, that is, T =

(
τ0+τ1

2 , . . . , τm−1+τm

2

)
, and set T− =

(
τ1−τ0

2 , . . . , τm−τm−1
2

)
.

Using the description given in Lemma 10.3, we set

r1(t) =
{

a(1−e2)
cos t−+e cos t , if x(t) is an ellipse or hyperbola,

2a
cos t−+cos t , if x(t) is a parabola,

where t− ∈ T− shares a common index with t ∈ T .

Location of the developed apices and cylinder base lines. If x(t) is an ellipse or hyperbola,
we consider a cone-cone combination where the second cone apex is v2 = f2. Note that this implies
that r2(t) = |x(t) − f2|. If x(t) is a parabola, we consider a cone-cylinder combination where we
choose the cylinders base line π2 to be the directrix of the parabola, which is perpendicular to the
cylinders ruling direction r2 = (1, 0, 0), and coincides with point p2 = (2a, 0).

Parametrization of the folded state

To be closer to the notation of [20], we modify the ansatz for the parametrization of the 3D crease
curve. In particular, we assume that the 3D counterpart X(t) of x(t), defined over the same domain
T , can be represented as

X(t) = l(t) (cos ζ(t), sin ζ(t) sin η(t), sin ζ(t) cos η(t)) , (10.4)

where l(t) is a length function, ζ(t) ∈ [0, π] denotes the opening angle between the ruling and the
x-axis, and η(t) ∈ [0, 2π] encodes the ruling’s rotation around the x-axis.

Note that if two curves have a parametrization that has the same opening angle ζ(t) and rotation
angle η(t), they lie on the same conical surface.

Location of 3D apices and cylinder base planes. In the following, we study the configura-
tions obtained by keeping the apex of the first cone fixed at the origin, that is, V1 = (0, 0, 0), while
moving the second apex V2 or base-plane Π2, respectively.

We parametrize the motion using a fold parameter s as follows:

• Ellipse or hyperbola: We induce a folding motion by changing the distance between the focal
points. Specifically, we move the second vertex from v2 = (−2ae, 0, 0) to V2 = (−2as, 0, 0)
where es > 0. We increase the distance in case of an ellipse, and we decrease that distance
in case of a hyperbola. We will see that in the smooth case and in case of the circumscribed
discretization, folded states exists for 0 < |e| ≤ |s| < 1 in case of an ellipse, or |e| ≥ |s| > 1 in
case of a hyperbola.

• Parabola: In case of a parabola, we move the base plane Π2 of the cylinder towards V1. Since
the directrix of the parabola reads x = 2a, we parametrize the positions of the yz-parallel
plane Π2 by varying the incident point P2 = (2as, 0, 0), where 0 < s ≤ 1.

10.6.2 Joining Step

In this section, we perform the joining step of a single conic crease for both inscribed and circum-
scribed points, resulting in closed-form expressions for the length function l(t) and the opening
angle η(t).
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Elliptic and hyperbolic creases

For the cone-cone combination, the two conical constraints in Equation (8.3) applied to the parametriza-
tion assumption in Equation (10.4), yield

l(t) = r1(t) and cos ζ(t) = r1(t)2 − r2(t)2 + 4s2

4r1(t)s . (10.5)

Inscribed lengths. For an inscribed point at parameter t ∈ T , the distance functions simplify
to

r1(t) = 1 − e2

1 + e cos t and r2(t) = 1 + e2 − 2e cos t
1 + e cos t .

Inserting into Equation (10.5) yields the following two solutions

l(t) = 1 − e2

1 + e cos t and cos ζ(t) = s2 − e2 + e(1 − s2) cos t
(1 − e2)s . (10.6)

Note that since the bar lengths come from ellipses or hyperbolas, their sum or absolute difference
of consecutive bar lengths is constant. This property is preserved when changing the position of
one of the apices. Consequently, the resulting points will still lie on conics of the same type and
same major axis length but varying eccentricity.

Circumscribed lengths. For a circumscribed point at parameter t ∈ T , the distance functions
simplify to

r1(t) = 1 − e2

cos t− + e cos t and r2(t) =
√

(2e cos t− + (1 − e2) cos t)2 + (−1 + e2)2 sin2 t

(cos t− + e cos t)2 ,

where t− ∈ T− is the value corresponding to t ∈ T (sharing the same array index). Inserting into
Equation (10.5) yields the following two solutions

l(t) = 1 − e2

cos t− + e cos t and cos ζ(t) = (s2 − e2) cos t− + e(1 − s2) cos t
(1 − e2)s . (10.7)

Compatibility of creases with reciprocal eccentricities. Before we continue, we make the
following observation:

Lemma 10.8. Substituting e with 1
e and s with 1

s in the expressions for ζ(t) in Equation (10.6)
and Equation (10.7) gives the same result.

Parabolic creases

In the parabolic case, the join step results using the conical constraint in Equation (8.3) for the
first surface, and the cylindrical constraint in Equation (8.4) for the second surface, result in

l(t) = r1(t) and cos ζ(t) = cos t− 2a(1 − s)
r1(t) .

181



Inscribed lengths. For an inscribed point at parameter t ∈ T , we obtain

l(t) = 2a
1 + cos t and cos ζ(t) = cos t− (1 − s)(1 + cos t). (10.8)

Again, note that since the bar lengths come from a parabola, consecutive bar lengths are equal.
This property is preserved when changing the position of the base plane. As a result, the obtained
points will still lie on a parabola, although it may be differently scaled.

Circumscribed lengths. For an circumscribed point at parameter t ∈ T , we obtain

l(t) = 2a
cos t− + cos t and cos ζ(t) = cos t− (1 − s)(cos t− + cos t),

where t− ∈ T− is the value corresponding to t ∈ T (sharing the same array index).

10.6.3 Smooth Fanning Step: Parametrization of Conic Creases

The resulting 2D and 3D cones are isometric if |X′(t)| = |x′(t)|. This constraint is satisfied when

ζ ′(t)2 + η′(t)2 sin2 ζ(t) = 1 =⇒ η′(t) = ±
√

1 − ζ ′(t)2

sin ζ(t) , (10.9)

a first-order differential equation for the function η(t), the rotation angle about the x-axis. Without
loss of generality, we consider only the positive branch and choose η(0) = 0.

Recall that the curves obtained from the inscribed joining step are located on conic sections. As
a result, the curves produced during the smooth fanning step will lie on corresponding rotational
quadrics, as illustrated in Figure 10.8.

Elliptic and hyperbolic creases

Inserting the solution of ζ(t) from Equation (10.6) into the positive root of Equation (10.9) simplifies
to

η′(t) = (e2 − 1)
√

1 + e2 − 2e cos t
(e2 − s+ e(−1 + s) cos t)(e2 + s− e(1 + s) cos t)

√
(e2 − s2)s2

−1 + s2 ,

For δ = 1 in case of an ellipse and δ = −1 in case of a hyperbola, the above can be rewritten as

η′(t) = kδϕ′(t)√
1 −m sin2 ϕ(t)

( 1
1 − n1 sin2 ϕ(t)

− 1
1 − n2 sin2 ϕ(t)

)

where

ϕ(t) = arcsin
(√

1 + e2 − 2e cos t
1 + e

)
,

and

k = 2
1 − e

√
(e− s)(e+ s)

(1 − s2) , n1 = (1 + e)(−1 + s)
(−1 + e)(1 + s) ,

m =
(1 + e

1 − e

)2
, n2 = (1 + e)(1 + s)

(−1 + e)(−1 + s) .
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Note that ϕ(t) has a continuous derivative for t ∈ (−π, π). Using integral substitution, the solution
of the differential equation with ζ(0) = 0 can be written in terms of the incomplete elliptic integral
of the third kind1,

η(t) =
∫ t

0
η′(θ)dθ

= δk

∫ ϕ(t)

ϕ(0)

1√
1 −m sin2 θ

( 1
1 − n1 sin2 θ

− 1
1 − n2 sin2 θ

)
dθ (10.10)

= δk (Π(n1;ϕ(t)|m) − Π(n2;ϕ(t)|m) − (Π(n1;ϕ(0)|m) − Π(n2;ϕ(0)|m)))

Lemma 10.9. For the relevant combinations of e and s, namely es > 0 and 0 < |e| ≤ |s| < 1 for
an ellipse, or |e| ≥ |s| > 1 for a hyperbola, the parametrization of η(t) provided in Equation (10.10)
is real-valued.

Proof. By a case analysis on the possible valid combinations of e and s, we observe that k is a
imaginary part of a complex number.

Nevertheless, the overall solution for η(t) is real-valued. This is a consequence of the sum of
the stated complex-valued elliptic integrals being a complex number whose real-part is zero. Since

1 −m sin2 θ


> 0, for 0 < θ < ϕ(0),
= 0, for θ = ϕ(0),
< 0, for ϕ(0) < θ < ϕ(π),

the real-valued parts, that is,
∫ ϕ(0)

0 (1 − m sin2 θ)−1/2(1 − n1,2 sin2 θ)−1dθ, of the elliptic integrals
cancel out.

Parabolic creases

Inserting the solution of ζ(t) from Equation (10.8) into the positive root of Equation (10.9) simplifies
to

η′(t) =
√

2c√
s(1 + cos t) (2 − s(1 + cos t))

where c =
√

1 − s. Consequently, the solution to the initial value problem with η(0) = 0 reads

η(t) =
(√
s
(
arctan

(
−

√
s sin t

2 , c
)

− arctan
(√
s sin t

2 , c
))

+ 4c arctanh
(
tan t

4
))

cos t
2√

2
√
s(1 + cos t)

.

Note that the above expression is real-valued for t ∈ (−π, π) and s ∈ (0, 1).

10.6.4 Discrete Fanning Step: Rigidly Foldable Discretizations

In this section, we use the tools presented in Section 8.5 to show the existence of rigid folding
motions for both discretizations of a single conic crease.

We now consider an extracted linkage from a discretized conic crease pattern corresponding
to a single conic crease as discussed in Section 8.5. In the following, we specify case-specific

1Π(n; ϕ|m) =
∫ ϕ

0 (1 − m sin2 θ)−1/2(1 − n sin2 θ)−1dθ.
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contracted diagonal configurations and use Corollary 8.4 to argue the existence of linkage motions
with contracted diagonals. We conclude with an discussion of the fanning step, in particular
the the application of Theorem 8.4. In the case of the circumscribed discretization, we confirm the
existence of a complete rigid folding motion to the flat folded state. For the inscribed discretization,
we reach the same conclusion until the first pair of faces fold flat. If the inscribed discretization is
flat foldable, it yields the same result as the circumscribed case.

Figure 10.9: Illustration of the argument for the existence of a contracted configuration of the
circumscribed discretization. Left: Crease pattern with overlaid fully folded faces across crease
edges. Middle: Flat-folded state. Right: Flat-folded state folded along the central line to obtain a
contracted linkage configuration.
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Circumscribed discretization

For either conic crease type, we define the extracted linkages following the definition provided in
Section 8.5; see Figure 10.9 (left). In case of an ellipse or hyperbola with major axis length a, note
that reflecting a focal point on a sampled tangent results in a point on a circle centered at the
other focal point with radius 2a. In case of a parabola, reflecting the real focal point on a sampled
tangent results in a point on the directrix. The reflection property of the conic ensures that the
lines connecting the incident tangent point with either the focal point or its reflection are collinear.

In this case, we can find a suitable linkage configuration by positioning the pairs consisting
of two adjacent triangles (ellipse or hyperbola) or a triangle and a quad (parabola) form the flat
folded state of the pattern (as we will see, circumscribed discretizations are always flat foldable); see
Figure 10.9 (middle). In case of an ellipse or hyperbola, |v1 − v2| = 2a, and in case of a parabola,
dist(v1, π2) = 0.

To obtain the target linkage configuration, we “fold” the aligned faces along the x-axis. The face
boundaries and the connections between neighboring vertices form a configuration of the extracted
linkage; see Figure 10.9 (right). Note that this configuration has shorter cable distances than the
initial pattern, as folding along the x-axis only brings neighboring linkage points closer together.

We therefore conclude the existence of a rigid folding motion that connects the development
with a fully folded state.

Inscribed discretization

Again, for either conic crease type, we define the extracted linkages of an inscribed discretization
following the definition provided in Section 8.5; see Figure 10.10 (left).

As discussed in Section 10.6.2, recall that the vertices of the modified linkages again lie on
conics. Specifically, in case of an ellipse or hyperbola, these conics have the same major axis length,
but have varying eccentricity. In case of a parabola, the vertices again lie on a scaled version of
the parabola. It follows, that the linkages allow a “fully collapsed” configuration where all bars
are aligned, at |v1 − v2| = 2a in case of an ellipse or hyperbola, and dist(v1, π2) = 0 in case of
a parabola; see Figure 10.10 (right). Note that these fully collapsed configurations correspond to
the minimal possible cable length distance. Thus, with Corollary 8.4, there exists a one-parameter
family of configurations whose cable lengths are shorter than the initial cable lengths. (In fact, in
this case the motion monotonically decreases the cable lengths.)

As discussed in Section 8.5, we need to take the extremal feasible distances between apices or
apex and base line into account; see Figure 10.10 (middle). In cases where the pattern cannot
be flat-folded, we continue folding until the first discretized crease edge is completely folded. As
discussed in Section 8.5.5 we can use the following strategy to determine the corresponding extremal
distance. Let v1,i be the vertices obtained by reflecting v1 about the crease segment xixi+1.

• A folding of an elliptic crease is induced by moving the apices further away from each other.
Therefore, the maximal distance between apices equals mini |v2 − v1,i|.

• A folding of a hyperbolic crease is induced by moving the apices closer together. Therefore,
the minimal distance between apices equals maxi(v2,v1,i).

• A folding of a parabolic crease is induced by moving the base plane closer to the apex. There-
fore, the minimal distance between the base plane and the apex equals maxi dist(π2,v1,i).

Note that in case of a locally flat-foldable inscribed discretization, the points v1,i again lie on a
circle centered at v2 (see Lemma 10.6).
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Figure 10.10: Illustration of the argument on the existence of a contracted configuration of the
inscribed discretization. Left: Crease pattern with overlaid fully folded faces across the crease
edges (the maximal/minimal distance between apices or apex and base line is depicted in red).
Middle: Folded state corresponding to the maximal valid folding. Right: Fully folded configuration
of the linkage.

We conclude that a rigid folding motion exists until the corresponding extremal distance between
the apices or the apex and base line is reached.
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(a) Smooth creases with a rigid-ruling folding motions.

(b) Locally flat and rigidly-foldable circumscribed discretization.

(c) Rigidly-foldable inscribed discretization.

Figure 10.11: Illustration of the folding motion of compatible elliptic creases.

10.7 Compatibility of Conic Creases
Finally, we confirm with our computations that the crease combinations stated in Section 10.3 share
a common surface and are therefore compatible.

10.7.1 Conic Creases Connected by a Cylinder

First, let us consider the case where the smooth or discrete creases are connected by a cylindrical
surface, which corresponds to cases (P2) and (P3). When we have a curve on a cylinder, translating
this curve along a vector parallel to the ruling direction or reflecting it about a plane perpendicular
to the ruling direction results in another curve on the same cylinder. The same operations can also
be applied to the ruling vectors corresponding to the cone, resulting in a conical surface that is
connected to the cylindrical surface with a smooth or discrete curved crease.

10.7.2 Conic Creases Connected by a Cone

In the remaining cases, the two conic creases are connected by a cone. Recall that the conics lie on
the same cone when their angular functions η(t) and ζ(t) match.

It follows from the computations in Section 10.6.2 that conic sections with (1) matching eccen-
tricities and identical fold parameters, as well as (2) reciprocal eccentricities and reciprocal fold
parameters (see Lemma 10.8), share the same opening angle ζ(t).

As a result, if two conics have the same ζ(t), they also share the same η(t). Specifically, in the
case of smooth curves, the differential equations are identical. In the discrete case, let us consider
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(a) David Huffman’s “4-lobed cloverleaf design” (see Figure 10.1a) and a variation featuring five leaves.
The crease patterns require a cut to be rigidly-foldable.

(b) Rigidly-foldable spiral with parabolic creases.
The crease pattern requires a cut to be rigidly foldable.

(c) Rigidly-foldable modification of David Huffman’s “starburst design” (see Figure 10.1b).
The crease pattern is rigidly foldable without an additional cut.

Figure 10.12: Illustration of folding motion computed using our implementation.

two conic sections X1(t) and X2(t) that are compatible and connected by a shared cone. Since

̸ (X1(ti),V1,X1(ti+1)) = ̸ (x1(ti),v1,x1(ti+1))
= ̸ (x2(ti),v1,x2(ti+1)) = ̸ (X2(ti),V1,X2(ti+1)),

it can be observed that the second angular function η(t) is likewise identical.
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Figure 10.13: Rigidly foldable design with parabolic creases.

10.8 Implementation

We implemented the linkage-based construction as an interactive design tool for Grasshopper /
Rhino. The plug-in allows the user to construct folded states of sequences of compatible conics.
Rhino’s and Grasshopper’s environment allows to combine the obtained folded states, resulting
in the possibility to explore folded states and folding motions, as depicted in Figure 10.12 and
Figure 10.13.

10.9 Selected Proofs from Chapter 10
Proof of Lemma 10.1. First, consider the equation for an ellipse or hyperbola with unit major axis
length centered at the one of the focal points,

(x+ e)2 + y2

1 − e2 = 1.

Specifically, if e > 0, the above conic is centered at the right focal point. If e = 0, the conic is a
circle and the two focal points coincide with the origin. Otherwise, if e < 0, the conic is centered
at the left focal point.

Replacing the two coordinates (x, y) with r(t)r(t), results in a quadratic equation for r(t),
namely, (

sin2 t

1 − e2 + cos2 t

)
r(t)2 + 2(e cos t)r(t) + e2 − 1 = 0.

Solving for l(t) results in two solutions,

r1(t) = 1 − e2

1 + e cos t and r2(t) = 1 − e2

−1 + e cos t .

The resulting two parametrizations are related by a change of parameters, since

r1(π + t) (cos(π + t), sin(π + t)) = r2(t) (cos t, sin t) .

Setting t ∈ [−π, π], we choose without loss of generality only one of them.
Finally, it follows from the parametrization that the second focal point is located at (−2e, 0).

Scaling by the factor a with respect to the origin yields the claimed results.
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Figure 10.14: Notation used in the proof of Lemma 10.7 (case (EH1)).

Proof of Lemma 10.2. First, again consider the parabola centered at its focal point with scale factor
a = 1,

y2 = −4(x− 1).

Again, substituting (x, y) by r(t)r(t), yields a quadratic equation for r(t), namely,(
sin2 t

)
r(t)2 + (4 cos t) r(t) + 4 = 0.

Solving for r(t) yields two solutions,

r1(t) = − 1
sin2 t

2
and r2(t) = 1

cos2 t
2
.

Analogously to before, we have that

r1(π + t) (cos(π + t), sin(π + t)) = r2(t) (cos t, sin t) ,

thus we may choose to use only one of the solutions. Finally, note that

r(t) = 1
cos2 t

2
= 2

1 + cos t .

Scaling the conic by factor a yields the claimed result.

Proof of Lemma 10.7. Let 0 < |e| < 1 and let the two compatible conics be an ellipse x1(t) and a
hyperbola x2(t) with eccentricity e and 1

e , respectively. Assume without loss of generality that both
conics are parametrized as in Equation (10.1) and denote their normal vectors by ni. Let xi = xi(t)
for t ∈ (tmin, tmax) be two adjacent vertices of the crease pattern. For δ+ > 0 and δ− > 0 such that
t± δ± ∈ (tmin, tmax), we denote the neighboring vertices on the crease by xi,± = xi(t± δ±).

In the following, let cosβi,± := cos( ̸ (ni(t),xi,± − xi)). We show x1 is flat-foldable if and only
if vertex x2 by showing

cosβ1,− = cosβ1,+ ⇐⇒ cosβ2,− = cosβ2,+.
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Using the parametrization in (10.1), we obtain

cosβ1,± =
√

2(1 + e cos t) sin δ±
2√

(1 + e2 + 2e cos t)(2 + e2(1 + cos δ±) + 2e(cos t+ cos(t± δ±)))

cosβ2,± =
√

2e(e+ cos t) sin δ±
2√

(1 + e2 + 2e cos t)(2e2 + 1 + cos δ± + 2e(cos t+ cos(t± δ±)))
.

Note that cosβ1,− = cosβ1,+ is equivalent to B1,− = B1,+, where

B1,± =
sin δ±

2√
2 + e2(1 + cos δ±) + 2e(cos t+ cos(t± δ±))

,

and cosβ2,− = cosβ2,+ is equivalent to B2,− = B2,+, where

B2,± =
sin δ±

2√
2e2 + 1 + cos δ± + 2e(cos t+ cos(t± δ±))

.

Note that Bi,± > 0, and thus Bi,− = Bi,+ if and only if 1
B2

i,−
= 1

B2
i,+

. Because

1
B2

1,+
− 1
B2

2,+
= 1
B2

1,−
− 1
B2

2,−
= 2(1 − e2),

we conclude that

cosβ1,− =cosβ1,+ ⇐⇒ 1
B2

1,−
= 1
B2

1,+
⇐⇒ 1

B2
2,−

= 1
B2

2,+
⇐⇒ cosβ2,− =cosβ2,+.

191



192



Chapter 11

Sliding Developables and Planar
Creases

The contents of this chapter are based on discussions with Erik Demaine, Riccardo Foschi, Robby
Kraft, Rupert Maleczek, Georg Nawratil, Tomohiro Tachi, and Helmut Pottmann, and are partially
published [64, 65].

Overview

Designing developable surfaces while simultaneously preserving their developability, controlling the
regression curve, and providing an intuitive user interface poses a significant challenge. We present
an approach based on a special case of the join-and-fan method that is suited for generating
one-parameter families of bend states of developable surfaces with rigid rulings. This method,
referred to as “sliding”, maintains the planarity of a fixed curve and results in a sliding-like motion.
Consequently, it is closely related to rigid-ruling folding motions of planar creases.

11.1 Introduction
Among all deformations of a planar patch, preserving a given layout of ruling lines has the advantage
of avoiding the introduction of new singularities through folding motions. In this section, we employ
a method where the deformation is guided by maintaining the planarity of a curve that intersects
all ruling lines exactly once.

The construction of such surfaces has a single degree of freedom, which corresponds to the
amount of bending of the surface. If the curve used for guiding the motion is one of the curved
boundaries of the developable patch, adjusting this parameter resembles a sliding motion of the
patch. Consequently, we call it a “sliding motion”; see Figure 11.3. Discrete sliding developables
are studied also in the context of kinematics as they are related to the T-hedra construction [85, 84].

For a given patch with specified rulings, we have previously discussed a Frenet frame based
approach for the computation of states in which a specified curve is planar (see Section 3.3.3).
However, in this section, our focus shifts to methods that do not rely on computing the Frenet
frame. In particular, for cases involving cylinders and cones, this computation can be accomplished
with a single integration step, as opposed to the at least four integrations necessary when using
the Frenet frame-based approach. Moreover, similar to our previous discussion, this alternative
method allows us to gain a deeper understanding of the space of achievable shapes. In addition to
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the cylinder and cone case, we review a connection between deformations of tangent developables
and cones.

11.2 Sliding Cylinders and Cones and the Join-and-Fan Method
In the following, we explore the application of the join-and-fan method to bent cylinders and cones
while maintaining the planarity of a fixed curve. Specifically, we focus on the case where we start
with two copies of a developed cylinder or cone and employ the join-and-fan method to achieve a
symmetric shape with a planar glue curve. Then, one half of the shape will be the desired slided
cylinder or cone. To help intuitive understanding, we modify the setup of the join-and-fan method
to reflect a sliding where the sliding plane is the xy-plane.

11.2.1 Input

In the following, we assume that we are given a smooth or discrete cylindrical or conical patch,
s(t, u) = x(t)+ur(t), where x(t) is a smooth or discrete curve that will be constrained to be planar.

To arrive at a symmetric shape, we set the two surfaces s1(t, u) and s2(t, u) involved in the join-
and-fan method to s(t, u). In particular, we define x(t) = x1(t) = x2(t) and r(t) = r1(t) = r2(t).

Cylinders

In case of a cylinder, we set without loss of generality p1 = p2 = (0, 0, 0). In addition, we use ρ ∈
[π

2 , π] to denote the angle between the cylinder base plane’s normal and the xy-plane. Specifically,
we define the base-planes normals, the 3D ruling vectors, to be R1 = (cos ρ, 0,− sin ρ) and R2 =
(cos ρ, 0, sin ρ). Furthermore, let P1 = P2 = (0, 0, 0). In this case, similarly to Section 8.2.4, it
is convenient to make the assumption that X(t) is parametrized with Cartesian coordinates, as in
Equation (8.1). Note that the opening angle of the planes is φ = 2(π − ρ).

Cones

In case of a cone, we assume that the corresponding 2D cone are located at v. Without loss of
generality, we set the location of the 3D apices to be V1 = (0, 0, h) and V2 = −V1, where h > 0 is
denoted as the height of the cone apex. We use a polar parametrization for the glue curve, centered
at the cone apex V1, that is, X(t) = V1 + l(t)R(t) where

R(t) = (cos η(t) cos ζ(t), sin η(t) cos ζ(t), sin ζ(t)) ,

for l(t) ≥ 0, η ∈ [0, π], and ζ(t) ∈ [0, 2π].

11.2.2 Joining Step

We now perform the joining step for both configurations.

Cylinders

Applying the cylindrical constraints (Equation (8.4)) to each of the two surfaces yields

Xx(t) = x(t) · r
cos ρ and Xz(t) = 0.
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ρ− π
2 ρ− π

2

φ1
φ2 = φmax

φ3

φmax

Figure 11.1: Illustration of the extremal angle φmax used in the sliding cylinder computation. Left:
Discrete planar cylinder in the sliding cylinder computation. Right: Side view of the configuration
where φ = φmax. Here, the limiting red plane lies in a plane perpendicular to the base planes.

Cones

Applying the conical constraints (Equation (8.3)) to each of the two surfaces yields

l(t) = r(t) and ζ(t) = − arcsin h

r(t) .

11.2.3 Discrete Fanning Step: Existence of a Motion

Next, let us examine the discrete fanning step, using the extracted linkages from the surface. In
the case of a cylinder, the extracted linkage consists of four-bar linkages that have two pairs of
parallel bars. On the other hand, in the case of a cone, the extracted linkage consists of regular
four-bar linkages.

Since the involved surfaces are identical, the consecutive lengths of the bars are the same.
As a result, in both cases, the extracted linkages form families of non-crossing four-bar linkages.
Furthermore, the linkages again are symmetric with respect to the bisecting plane of the base lines
or apices.

Cylinders

Since the non-collinear linkages are non-crossing, increasing the angle between the base planes
increases the cable lengths. Therefore, the cable distances only increase during the motion. The
maximal realizable angle ρmax again corresponds to half of the corresponding extremal angle be-
tween the cylinders base plane and its reflection on x(ti)x(ti+1), that is,

ρmax = max
i

∣∣∣∣arccos
(r · (x(ti+1) − x(ti))

|x(ti+1) − x(ti)|

)∣∣∣∣ ,
With Theorem 8.4, we conclude a rigid sliding motion for ρ ∈ [0, ρmax].

Cones

Since the non-collinear linkages are non-crossing, increasing the distance between the apices in-
creases the cable distance. Therefore, the cable distances only increase during the motion. The
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2hmax

hmax

Figure 11.2: Illustration of the extremal height h used in the sliding cone computation. Left:
discrete planar cone. Right: Side view of the configuration where h = hmax. Here, the limiting red
plane lies in a plane perpendicular to the base planes.

maximal realizable height hmax again corresponds to half of the minimal distance between the apex
and its reflection on x(ti)x(ti+1), that is,

hmax = min
i

√
1 − (r(t) · (x(ti+1) − x(ti)))2

|x(ti+1) − x(ti)|2
l(ti).

With Theorem 8.4, we conclude a rigid sliding motion for h ∈ [0, hmax].

11.2.4 Smooth Fanning Step: Existence of a Motion

Cylinder

In case of a cylinder, we obtain the remaining function from the parametrization speed requirement
in Equation (8.5), that is,

X′
y(t) = ±

√
|x′(t)|2 − (r · x′(t))2

cos2 ρ
.

Note that this derivative is real-valued for ρ ∈ [0, ρmax], where

ρmax = max
t∈[0,tmax]

∣∣∣∣arccos
(r · x′(t)

|x′(t)|

)∣∣∣∣ . (11.1)

Note that this is a smooth counterpart of the expression for ρmax in the discrete case, that is, we
the maximal angle between the ruling direction and the curve’s tangent.
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(a) Tangent developable s(t, u). (b) Cone s△(t, u).

(c) Slided configurations S△(t, u) of the cone s△(t, u).

(d) Slided configurations S(t, u) of the tangent developable s(t, u).

Figure 11.3: Illustration of the connection between sliding cylinders and sliding tangent devel-
opables.

Cone

In case of a cone, we obtain the remaining function from the parametrization speed requirement in
Equation (8.6), that is,

η′(t) = ±
√

|r′(t)| − ζ ′(t)
sin ζ(t) = ±

√
r(t)2 |r′(t)|2 (r(t)2 − h2) − h2r′(t)2

l(t)2 − h2

Note that this derivative is real-valued for h ≤ hmax where

hmax = min
t∈[0,tmax]

r(t)2 |r′(t)|√
r′(t)2 + r(t)2 |r′(t)|2

.

Like in the previous case, note that this is a smooth counterpart of the expression for hmax, that
is, the minimal distance between the apex and its reflection on the glue curve’s tangent.

11.3 From Sliding Cones to Sliding Tangent Developables

Sauer [82] presents a method to reduce the sliding motion of a discrete tangent developable to the
sliding motion of a discrete cone. In the following, we review the corresponding discrete approach
and formulate its smooth analogue.
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11.3.1 Discrete Case

Sauer proposes the following approach. Let s(t, u) = x(t) +ur(t) be a discrete tangent developable
surface and c(t) its discrete edge of regression, that is, c(ti)c(ti+1) and r(ti) are collinear. Further-
more, let x(t) = c(t) + l(t)r(t) be a polyline on s(t, u). Our goal is to construct a surface S(t, u)
isometric to s(t, u) such that the curve X(t) corresponding to x(t) is planar.

In the following, let s△(t) = v +ur(t) be a cone with apex v sharing the same ruling directions
as s(t, u). Define x△(t) = c(t)+ l△(t)r(t), where l△(t) is such that l△(0) = l(0) and x△(ti)x△(ti+1)
are parallel to x(ti)x(ti+1). Furthermore, let S△(t, u) = V + l△(t)R(t) be a cone isometric to
s△(t, u) such that X△ = V + l△(t)R(t) is planar.

Saurer shows that one can construct a 3D configuration of S(t, u) from S△(t, u), by recon-
structing the discrete edge of regression. Specifically, let C(0) = V and C(ti+1) = C(ti) +
|c(ti) − c(ti+1)| R(ti) and set S(t, u) = C(t) + uR(t). It follows that X(t) = C(t) + l(t)R(t) is
planar.

11.3.2 Smooth Case

To phrase a smooth analogue of the discrete construction, We consider a tangent developable surface
given by its edge of regression, that is, s(t, u) = c(t) + ur(t) where c′(t) = s′(t)r(t), and a curve
x(t) = c(t) + l(t)r(t) on s(t, u).

Analogous to the discrete case, we consider the planar cone s△(t, u) = v + ur(t) and the curve
x△(t) = v + l△(t)r(t), where l△(t) is chosen such that x′(t) and x′

△(t) are parallel. The length
function l△(t) can be computed from(

x′(t) × x′
△(t)

)
· (0, 0, 1) = 0.

For |r′(t)| ≠ 0, this equation simplifies to

l′△(t)
l△(t) = s′(t) + l′(t)

l(t) . (11.2)

For l△(0) = l(0) the solution of the corresponding initial value problem reads

l△(t) = l(0) e
∫ t

0
s′(θ)+l′(θ)

l(θ) dθ
.

In the following, let S△(t, u) = V+ l△(t)R(t) be a cone isometric to s△(t, u) such that X△(t) =
V + l△(t)R(t) is planar. We now prove:

Lemma 11.1. Let C(t) a curve such that C′(t) = s′(t)R(t). Then, S(t, u) = C(t) + uR(t) is
isometric to s(t, u) and X(t) = C(t) + l(t)R(t) is a planar curve on S(t, u).

Proof. First, we show that S(t, u) and s(t, u) are isometric. Note that the developability of S(t, u)
follows from its definition as a tangent developable. Consequently, it is sufficient select two curves
on S(t, u), and show that (1) two curves on s(t, u) have the same parametrization speed as their 2D
counterparts, and (2) that the two curves enclose the same angle with the ruling vectors as their
2D counterparts with the developed rulings.

For this purpose, consider the two curves C(t) and X(t) and their 2D counterparts c(t) and
x(t). The 3D curves have the same parametrization speed as their 2D counterparts, since |C′(t)| =
s′(t) = |c′(t)| and |X′(t)|2 = (1 + l′(t))2 + l(t)2 = |x′(t)|2. In addition, we have that C′(t) · R(t) =
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s′(t) = c′(t) · r(t) and X′(t) · R(t) = 1 + l′(t) = x′(t) · r(t). Consequently, S(t, u) and s(t, u) are
isometric.

Finally, we show that X(t) is planar by confirming that X′(t) and X′
△(t) are parallel. Analogous

to the above, for |r′(t)| ≠ 0, this condition translates to Equation (11.2) which is satisfied by
definition of l△(t).

Overall, this approach solves four integrals, that is, one to obtain the angular function η(t) and
three more to determine C(t) from R(t). Therefore, it is not a significant improvement to the
construction with the Frenet-frame based approach proposed in Section 3.3.3, where the number
of computed integrals is also at least four. Specifically, we need one integration step to determine
φ(t), one integration step to determine the 2D tangent from the curvature function, and two to
conclude the trajectory of the planar crease. Although it is the same number of integrals, they
need to be performed in three consecutive steps. On the other hand, the smooth counterpart to
Saurer’s construction approach allows a computation of the four integrals in two steps.

Moreover, the sliding based approach offers a better understanding of attainable shapes. Specif-
ically, for a given patch, constructing the corresponding cone is the major limitation, as integrating
an appropriately scaled tangent vector does not cause problems. See Section 11.2.4 for a discussion
on the geometric limitations on the height of the cone apex.

11.4 Folding Motion of Planar Creases
For each slided configuration, extending and reflecting the extended part on the sliding plane results
in a planar crease. If done for each slided state, this gives a rigid-ruling folding motion of the planar
crease. As discussed in Section 3.5.2, a pleated structure can be obtained by adding parallel creases,
which in this case will lie in planes parallel to the sliding plane; see Figure 11.4.

Figure 11.4: Illustration of a rigid-ruling folding motion with planar parallel pleats.
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Chapter 12

Patch-to-Patch Construction

This chapter introduces the patch-to-patch construction method and provides a summary of relevant consider-
ations used in its applications, such as [63, 67, 55, 46, 65]. Most of the presented work is based on discussions
and collaborations with corresponding coauthors, particularly Erik Demaine and Tomohiro Tachi.

Overview

We present a construction method that enables the computation of creases between a smooth or
discrete developable patch and a cylinder or a cone. The proposed patch-to-cylinder and patch-
to-cone constructions do not rely on optimization techniques and are suitable for parametrized
interactive additive design of folded shapes. Furthermore, we demonstrate the combination of both
methods into a unified approach, the patch-to-projective-cone construction. By employing this
unified method, we show how to approximate a curved crease between two developable patches.

12.1 Introduction
The digital reconstruction of folded shapes plays an important role in the design process, offering
designers the ability to verify tolerances and integrate models into other digital projects. This is
especially relevant in engineering applications such as architecture. An editable and parametric
digital model is highly desirable as it allows for easy manipulation, exploration of various configu-
rations, and the ability to meet specific constraints and requirements. However, designing complex
folded shapes presents significant challenges, often requiring a strong background in optimization
or geometry. Moreover, existing methods for parametric design are limited, as discussed by Foschi
et al. [25].

In this chapter, we present a ruling-based constructive approach for the computation and design
of creases that connect smooth or discrete developable patches with cylinders or cones. Additionally,
we demonstrate how the patch-to-cylinder and patch-to-cone construction can be used to approx-
imate a curved crease between two developable patches. This approach is implemented as a user-
friendly plug-in named Lotus for Rhino/Grasshopper, enabling interactive additive parametrized
design of folded shapes.

The subsequent chapters illustrate further applications of the patch-to-cylinder and patch-to-
cone method. Chapter 13 showcases two geometric shapes reconstructed and designed using the
patch-to-cylinder and patch-to-cone constructions. Chapter 15 and Chapter 16 discuss two strate-
gies for algorithmically generating complex shapes with smooth or discrete creases. Finally, Chap-
ter 17 demonstrates how the presented ideas can be applied to the subdivision of regular planar
quad meshes.
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(a) Input and result of the
patch-to-cone construction.
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r(t)

F(t)

f(t)

S(t, u)

s(t, u)

R2

r2

P2

p2

(b) Input and result of the
patch-to-cylinder construction.

Figure 12.1: Illustration of the notation for the patch-to-cone and patch-to-cylinder constructions.

We begin this chapter by introducing the patch-to-cylinder and patch-to-cone constructions to
illustrate the key concept of the construction. Next, in Section 12.4, we present a unified generaliza-
tion that enables numerically stable computations through the utilization of scaling transformations.
While the presented constructions do not prevent surface intersections, we address this issue by
presenting a sufficient constraint for surface intersection prevention in Section 12.5. Additionally, in
Section 12.6, we explore the conditions under which two patch-to-projective-cone constructions can
be connected in a tangent-continuous manner. Finally, we demonstrate the practical application of
combining patch-to-projective-cone constructions to approximate a crease between two patches in
Section 12.7.

12.2 Notation

As in the previous part, we parametrize a (smooth or discrete) developable patch as a ruled surface
with normalized ruling directions R(t), that is,

S(t, u) = X(t) + uR(t),

where X(t) is a curve on S(t, u) that can degenerate to a single point in the case of a cone’s apex.
The surface is a cylinder if the ruling direction R(t) is constant. Let s(t, u) denote an isometric
parametrization of the development of S(t, u) in the xy-plane, that is,

s(t, u) = x(t) + ur(t),

as discussed in Section 2.1. In particular, |r(t)| = 1 and |x′(t)| = |X′(t)| in the smooth case or
|X(ti) − X(ti+1)| = |x(ti) − x(ti+1)| in the discrete case, respectively.

To find the crease curve between S(t, u) and a cylinder or a cone, we make the assumption that
the crease curve F(t) is parametrized with an initially unknown length function l(t) as

F(t) = X(t) + l(t)R(t). (12.1)
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Consequently, its developed counterpart reads

f(t) = x(t) + l(t)r(t). (12.2)

The main idea behind the computation of the location of the crease curve is to identify pairs of
corresponding points for each ruling that satisfy specific distance constraints. In the following, we
will provide algebraic expressions for the resulting length function l(t).

12.3 Patch-to-Cylinder and Patch-to-Cone Constructions

12.3.1 Locating the Crease

In this section, we locate the crease that connects a given patch with a cylinder or a cone specified
by the position of the cylinder’s base plane or the cone’s apex location, respectively.

Lemma 12.1. The crease connecting a developable patch S(t, u) with a cone, specified by the 3D
cone apex V2 and 2D cone apex v2, is uniquely specified by the length function

l(t) = 1
2

|v2 − x(t)|2 − |V2 − X(t)|2

(v2 − x(t)) · r(t) − (V2 − X(t)) · R(t) , (12.3)

if (x(t) − v2) · r(t) − (X(t) − V2) · R(t) ̸= 0. Otherwise, there are no solutions (when |v2 − x(t)|2 −
|V2 − X(t)|2 ̸= 0) or infinitely many solutions (when |v2 − x(t)|2 − |V2 − X(t)|2 = 0).

Proof. If F(t) is a valid crease between the patch and the cone, then each point on F(t) will be
connected to the cone apex V2 through a ruling segment. Similarly, in the 2D case, f(t) is connected
to the the cone apex v2 with corresponding rule line segments. To ensure isometry, we aim for the
corresponding rule line segments in both 2D and 3D to have equal lengths, that is,

|F(t) − V2|2 = |f(t) − v2|2 .

By substituting the assumptions for F(t) and f(t) (Equation (12.1) and Equation (12.2)), we obtain

|X(t) − V2 + l(t)R(t)|2 = |x(t) − v2 + l(t)r(t)|2 ,

a quadratic equation in l(t). However, simplifications lead to the elimination of the quadratic terms
in l(t), resulting in a linear equation for l(t),

0 = −2 ((v2 − x(t)) · r(t) − (V2 − X(t)) · R(t)) l(t) + |v2 − x(t)|2 − |V2 − X(t)|2 .

Consequently, if the coefficient of l(t) is not equal zero, we obtain the unique solution stated above.
If the coefficient of l(t) is zero, the number of solutions depends on whether the constant term is
zero or not.

In the following, we assume that a 3D plane Π2 is specified by the normal direction R2 and an
incident point P2. Similarly, assume that a 2D line is specified by the normal direction r2 such
that |r2| = |R2| ≠ 0, and the incident point π2.

Lemma 12.2. The crease connecting a developable patch S(t, u) with a cylinder, specified by an
oriented 3D base plane Π2 and oriented 2D base line π2, is uniquely specified by the length function

l(t) = (p2 − x(t)) · r2 − (P2 − X(t)) · R2
r(t) · r2 − R(t) · R2

, (12.4)

if r(t)·r2−R(t)·R2 ̸= 0. Otherwise, there are no solutions (when (p2−x(t))·r2−(P2−X(t))·R2 ̸= 0)
or infinitely many solutions (when (p2 − x(t)) · r2 − (P2 − X(t)) · R2 = 0).
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Figure 12.2: Illustration of how the patch-to-cone construction can be used to locate a planar crease
in both the smooth (left) and discrete (right) cases.

Proof. If F(t) is a valid crease between the patch and the cylinder, then each point on F(t) will be
connected to the base plane Π2 by a ruling segment that is perpendicular to Π2. Similarly, in the
2D case, f(t) is connected to π2 with corresponding rule line segments that are perpendicular to
π2. To ensure isometry, we aim for the corresponding oriented distances in both 2D and 3D to be
the same, that is,

(F(t) − P2) · R2 = (f(t) − p2) · r2.

By substituting the assumptions for F(t) and f(t) (Equation (12.1) and Equation (12.2)), we obtain

(X(t) − P2 + l(t)R(t)) · R2 = (x(t) − p2 + l(t)r(t)) · r2,

a linear equation for l(t), that is,

0 = (r(t) · r2 − R(t) · R2) l(t) − ((p2 − x(t)) · r2 − (P2 − X(t)) · R2) .

Consequently, if the coefficient of l(t) is not equal zero, we obtain the unique solution stated above.
If the coefficient of l(t) is zero, the number of solutions depends on whether the constant term is
zero or not.

Note that Equation (12.4) yields the same result for pairs of points P2 and p2 where −r2 · p2 +
P2 · R2 = const. This implies that if a plane Π′ and a line π′ are parallel to Π2 and π2 and share
the same oriented distance with respect to Π2 and π2, they will result in the same crease.

12.3.2 Planar Creases

Recall from Section 3.3.4 that planar creases can be obtained by splitting a developable patch along
a plane Π into two parts, and then reflecting one of those parts across Π. In instances where the
patch is either a cylinder or a cone, and given the appropriate input, the patch-to-cylinder and
patch-to-cone constructions can be used to locate planar crease curves.
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Figure 12.3: Four possible combinations of subpatches obtained by intersecting two patches along
a curved crease. Left: Two combinations achievable through folding. Right: Two geodesic pair
combinations.

If S(t, u) represents a cone with its apex at V, and s(t, u) is its development with an apex of
v2, we obtain a planar crease by setting V2 as the vertex achieved by reflecting V across Π and
v2 = v, as illustrated in Figure 12.2.

In the case where S(t, u) is a cylinder with its base plane determined by the point P and a
normal R, and its development s(t, u) has a corresponding base plane defined by points p and v,
we obtain a planar crease by setting both P2 and R2 as the reflections of P and R across Π and
defining p2 = p and v2 = v, respectively.

12.3.3 Valid Patch Combinations

The computed crease curve divides the input developable surface patch S(t, u) and the cylinder or
cone into two surface parts each. Figure 12.3 illustrates the four possible combinations. Among
these combinations, two can be achieved through folding along a curve, while the remaining two
form a geodesic pair (discussed in Section 3.3.3). The geodesic pair consists of two surfaces with
congruent boundaries that cannot be created by folding along a single crease. We refer to pairs of
surfaces that can be achieved by folding as compatible.

In this section, we demonstrate how to computationally characterize compatible patches by
utilizing the contraction property. This property states that the distance between two points on a
shape can only decrease through folding.

In the following, let S2(t, u) denote the surface patch obtained through a V2-central extrusion
in the case of a cone or a R2-parallel extrusion in the case of a cylinder. The next lemma shows
the connection between the ruling direction of the patch S(t, u) that is compatible with S2(t, u)
and the denominator of l(t).

Lemma 12.3. Let D(t) ̸= 0 denote the denominator of l(t) as given in Equation (12.3) and
Equation (12.4), that is,

D(t) =
{

(v2 − x(t)) · r2 − (V2 − X(t)) · R2, if S2(t, u) is a cylinder
r(t) · r2 − R(t) · R2, if S2(t, u) is a cone.

The surface patch S2(t, u) is compatible with the ruling direction − sign(D(t))R(t).
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Proof. Conical case: For a fixed parameter t we consider the following parametrizations of two
corresponding rulings,

G(u) = X(t) + uR(t) and g(u) = x(t) + ur(t).

In the conical case, we consider the difference between the distances of points on the rulings and
the corresponding apices, that is,

K(u) = |g(u) − v2|2 − |G(u) − V2|2

= −2 ((v2 − x(t)) · r(t) − (V2 − X(t)) · R(t))u+ |x(t) − v2|2 − |X(t) − V2|2 .

Note that K(u) is a linear function in u, and by definition of the crease, K(l(t)) = 0. Assuming
that K(u) is not constant, the sign of K(u) changes at u = l(t).

For values u where K(u) < 0, the distance between points on the rulings and the corresponding
apex in 3D is greater than in 2D. Consequently, the points corresponding to those parameters can
not lie on the part of the ruling that is connected to S2(t, u) by a fold. Parameters corresponding
to the admissible part of the ruling therefore satisfy K(u) > 0.

Since K(u) is a linear function in u, we consider (half of) the coefficient of u, the denominator
D(t) of l(t):

• If D(t) > 0, we have K(u) ≥ 0 if u ≤ l(t), resulting in the compatible ruling direction −R(t).

• If D(t) < 0, we have K(u) ≥ 0 if u ≥ l(t), resulting in the compatible ruling direction +R(t).

Consequently, the compatible ruling direction can be stated as − sign(D(t))R(t).
Cylindrical case: In the cylindrical case, we consider the angles between the rulings. Note that

folding can only decrease the angle between lines. Therefore, consider the denominator

D(t) = r(t) · r2(t) − R(t) · R2(t).

If D(t) > 0, the angle between ruling segments in 3D is bigger than in 2D, making the direction
−R(t) a compatible segment direction. If D(t) < 0, the angle between the ruling segments in 3D
is smaller than in 2D, making the direction +R(t) a compatible segment direction.

12.3.4 Alternative User Input

While specifying cone apices V2 and v2 or cylinder base planes Π2 and π2 can be practical in
certain applications, it is not always intuitive. Additionally, it is desirable to have an input that
relies solely on the 3D configuration, allowing for a proper determination of the corresponding 2D
configurations. A solely 3D input is beneficial in the implementation, as it does not require keeping
track between 2D and 3D configurations. In this section, we introduce two alternative specifications
that we use as user-input in our implementation of the Lotus plug-in for Grasshopper/Rhino [57, 81].

Both types of input require the 3D surface S(t, u), a point A on S(t, u) and a point V not on
the surface. If the second surface is a cylinder, its base plane Π2 is specified by its normal, the
ruling direction R2 = V−A

|V−A| , and the incident point P2 = V. On the other hand, if the second
surface is a cone, V corresponds to the 3D apex position V2.

• In addition to the two points, the user-input 3pt requires a second point B on S(t, u). If
feasible, the resulting crease will pass through A and B. The corresponding developed points
a, b, and v will be oriented in counter-clockwise direction.
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Figure 12.4: Illustration of the notation for user-input 3pt and user-input Tan in the patch-to-cone
(left) and patch-to-cylinder (right) constructions.

• In addition to the two points, the user-input Tan requires an input angle α ∈ [0, 2π). The
resulting crease will pass through point A, and the tangent of the crease curve and the
incident ruling of the input surface will enclose the user-specified angle α. The corresponding
developed point v will lie to the left of the oriented developed tangent.

Note that the user-input 3pt and user-input Tan do only depend on 3D information.

Corollary 12.1. User-input Tan uniquely specifies the location of the point v. If feasible, user-
input 3pt also uniquely specifies the location of v. Consequently, both inputs, if feasible, specify the
location of the 2D base line π2 or 2D apex v2, and thus the crease uniquely.

Proof. From the given input, we first compute the developed surface s(t, u), and locate the point
a1, and if given, the point a2.

User-input 3pt: First, let us consider the case of the patch-to-cylinder construction with the
aim to determine π2. As the distances between points on surfaces in 3D and their developed
counterparts must be the same, we have

dist(A,Π2) = dist(a, π2) and dist(B,Π2) = dist(b, π2).

Thus, π2 is a common tangent of the two circles cA and cB centered at a and b with radii dist(A,Π)
and dist(B,Π), respectively. In general, there are two suitable solutions for the outer tangents,
candidates for π2 on opposite sides of a and b, which determine two solutions for v. We choose π2
such that (a,b,v) are positioned counterclockwise.

Second, let us consider the case of the patch-to-cone construction with the aim to determine
v2. As the distances between points on surfaces in 3D and their developed counterparts must be
the same, the location of v2 is constrained by two distances,

dist(A,V2) = dist(a,v2) and dist(B,V2) = dist(b,v2).
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Geometry assembly

Figure 12.5: Example of a design process with Lotus 1.0.

Figure 12.6: Example of a bus stop designed with Lotus 1.0 (Figure 1 in [65]).

Thus, v2 is an intersection point of two circles cA and cB centered at a and b with radii dist(A,V2)
and dist(B,V2), respectively. If feasible, there are two solutions for v2 on opposite sides of the
line spanned by a and b. Again, we choose the solution such that (a,b,v2) are positioned coun-
terclockwise.

User-input Tan: After finding the location of a, we reconstruct the 3D tangent line in the
incident tangent plane and 2D tangent line using the counterclockwise angle that they enclose with
the ruling. Let β be the angle between the tangent and A, V2. As developing a surface preserves
angles and distances, we find v2 as the endpoint of the line segment of length dist(A,V2) enclosing
the counterclockwise angle β with the 2D tangent line.

12.3.5 Lotus 1.0

The described constructions are implemented as components in the interactive design tool Lotus
for Grasshopper / Rhino. With this, the user can interactively and intuitively design shapes with
multiple patches joined along curved creases.
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Figure 12.7: Illustration of a scaling transformation. If AB ∥ A′B′, the four points {A,A′,B,B′}
determine a scaling where A 7→ A′ and B 7→ B′.

12.4 Patch-to-Projective-Cone
In certain applications presented later, we may encounter apices that are located at greater dis-
tances, which can pose numerical challenges during computation of the crease curve. To address
this issue, we introduce an alternative computation based on (projective) scaling transformations.
Specifically, we consider the newly constructed cylinders and cones as surfaces that can be obtained
by scaling the crease with respect to infinite or finite apices. To describe these transformations,
we employ an approach that allows us to represent the scaling transformation without explicitly
specifying the cone apex. As a result, this method provides a unified expression for both the
patch-to-cylinder and patch-to-cone constructions.

12.4.1 Scaling Transformations

Before we proceed, let us review some scaling properties. In the following, we will represent scaled
images by adding a prime symbol. For example, the scaled version of A will be denoted as A′, and
the scaled version of a will be denoted as a′.

It is important to note that a scaling can be specified in multiple ways, including some that do
not explicitly use the center of scaling. In our approach, we use mappings of two points A 7→ A′

and B 7→ B′ to represent the scaling transformation. It is required that the line segments AB and
A′B′ are parallel in order to ensure a valid scaling, as illustrated in Figure 12.7.

It is worth mentioning that if the line segments AA′ and BB′ are also parallel, the transfor-
mation represents a scaling with respect to a point at infinity, which is essentially a translation.

The following lemma demonstrates that the condition AB ∥ A′B′ is sufficient to uniquely
represent a scaling transformation. A detailed proof is provided in the Section 12.8.

Lemma 12.4. Let {A,A′,B,B′} be four distinct points such that AB and A′B′ are parallel. The
scaling that maps A 7→ A′ and B 7→ B′ can be computed as

P 7→ P′ = s(P − A) + A′ = s(P − B) + B′ where s = (B′ − A′) · N
(B − A) · N

for some vector N with |N| > 0 and (B − A) · N ̸= 0. If AA′ and BB′ are parallel, s = 1. If
s ̸= 1, the scaling center V is

V = A′ − sA
1 − s

= B′ − sB
1 − s

.

We highlight the following:
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Figure 12.8: Notation of the patch-to-projective-cone construction.

Corollary 12.2. Two distinct points A, A′ and a scale factor s ∈ R determine a scale transfor-
mation with A 7→ A′ as follows

P 7→ P′ = s(P − A) + A′.

12.4.2 Locating the Crease

The following theorem provides a unified approach, based on scaling transformations, that combines
the results of Lemma 12.1 and Lemma 12.2.

Theorem 12.1. The crease connecting a developable patch S(t, u) with a projective cone, specified
by a 3D scaling transformation Σ and a 2D scaling transformation σ sharing the same scale factor
s, is uniquely specified by the length function

l(t) = 1
2

|o′ − (1 − s)x(t)|2 − |O′ − (1 − s)X(t)|2

(o′ − (1 − s)x(t)) · r(t) − (O′ − (1 − s)x(t)) · R(t) , (12.5)

= 1
2

(1 − s)
(
|x(t)|2 − |X(t)|2

)
− 2(o′ · x(t) − O′ · X(t))

o′ · r(t) − O′ · R(t) − (1 − s)(x(t) · r(t) − X(t) · R(t)) , (12.6)

if (o′ − (1 − s)x(t)) · r(t) − (O′ − (1 − s)x(t)) · R(t) ̸= 0. Here, O′ and o′ with |O′| = |o′| are the
images of the origin with respect to Σ or σ, respectively.

Proof. We distinguish between two cases:
Crease connecting a cone (s ̸= 1): Similarly to before, during the construction of the crease,

corresponding bars of the newly constructed cylinders or cones need to have equal lengths. In this
case, we require the distance between points on the crease and their scaled counterparts to be the
same in both 3D and 2D, that is,∣∣f(t) − f(t)′∣∣2 =

∣∣F(t) − F(t)′∣∣2 .
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Figure 12.9: Illustration of the notation used in Lemma 12.5.

Substituting the identities for F(t), f(t), F(t)′ = sF(t) + O′, and f(t)′ = sf(t) + o′ results in the
quadratic equation for l(t), that is,

0 =
∣∣(1 − s)x(t) − o′ + (1 − s)l(t)r(t)

∣∣2 −
∣∣(1 − s)X(t) − O′ + (1 − s)l(t)R(t)

∣∣2 .
However, simplifications cancel out the quadratic terms, resulting in a linear equation for l(t) whose
solution is stated above.

Note that the above expression can also be obtained by inserting V2 = O′

1−s and v2 = o′

1−s into
Equation (12.3). In particular, for s = 0, we have that V2 = O′ and v2 = o′, and the expressions
in Equation (12.3) and Equation (12.6) are equal.

Crease connecting a cylinder (s = 1): In this case, the scaling transformation corresponds
to a translation parallel to O′ and o′. Consequently, the cone is specified by base planes that are
perpendicular to O′ and base lines that are perpendicular to o′, sharing a common oriented distance
from the origin. To obtain the crease, we use Lemma 12.2 where Π2 and π2 are set to contain the
origin and have the normals R2 = 1

k O′ and r2 = 1
k o′, respectively, where k = |O′| = |o′|.

Inserting into Equation (12.4) gives the stated expression for s = 1, that is,

l(t) = o′ · x(t) − O′ · X(t)
o′ · r(t) − O′ · R(t) .

12.4.3 Valid Patch Combination

Similarly to before, we now consider the compatible surface combinations that result in a crease
and not in a geodesic gluing.

In the following, let S2(t, u) be the patch between the computed crease and F(t)′, that is, its
scaling with respect to the scaling transformation Σ. Again, the compatible direction depends on
the denominator of the length function l(t).
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Lemma 12.5. Let D(t) denote the (half of the) denominator of the length function as given in
Equation (12.6), that is,

D(t) = (o′ − (1 − s)x(t)) · r(t) − (O′ − (1 − s)x(t)) · R(t).

If s ̸= 1, the surface patch S2(t, u) is compatible with the ruling direction − sign((1 − s)D(t))R(t).
If s = 1, the surface patch S2(t, u) is compatible with the ruling direction − sign(D(t))R(t).
Proof. Again, we distinguish between two cases:

Crease connecting a cone (s ̸= 1): Similar to the proof of Lemma 12.3, we consider two corre-
sponding parametrizations of two rulings at a fixed parameter t,

G(u) = X(t) + uR(t) and g(u) = x(t) + ur(t).

Analogously to the proof of Lemma 12.3, the distances between points on the compatible ruling
segments need to contract during folding, that is, only parameters u with K(u) > 0, where

K(u) = |g(u) − v2|2 − |G(u) − V2|2

are compatible with the corresponding ruling segments of the surfaces S2(t, u) or s2(t, u), respec-
tively.

To show the stated claim, we define

Ks(u) =
∣∣g(u) − g(u)′∣∣2 −

∣∣G(u) − G(u)′∣∣2 .
and show that K(u) > 0 if and only if Ks(u) > 0.

When connecting Ks(u) to K(u), it is important to note that G(u)′ and g(u)′ may not lie on
the surfaces S2(t, u) and s2(t, u), respectively. Refer to Figure 12.9 for visualization.

To address this issue, recall that |O′| = |o′|. Additionally, it follows that |V2| =
∣∣∣ 1

1−s

∣∣∣ |O′| =∣∣∣ 1
1−s

∣∣∣ |o′| = |v2|. We therefore define the a k as follows

k = |V2|
|O′|

= |v2|
|o′|

.

From the intercept theorem applied to the points (O,O′,V2) and (G(u),G(u)′,V2) where O
denotes the origin, we deduce that

|V2 − G(u)|
|G(u)′ − G(u)| = |V2|

|O′|
= k.

Similarly, for the points (o,o′,v2) and (g(u),g(u)′,v2) where o denotes the origin, we have
|v2 − g(u)|

|g(u)′ − g(u)| = |v2|
|o′|

= k.

Consequently, we can conclude that
K(u) = kKs(u),

which implies that Ks(u) > 0 if and only if K(u) > 0 since k > 0.
Finally, we analyze the sign of Ks(u). Similarly to before, note that Ks(u) is a linear function

in u, and that Ks(l(t)) = 0. Consequently, its sign depends on the coefficient of the linear term as
stated above, since

Ks(u) = −2(1 − s)
(
(o′ − (1 − s)x(t)) · r(t) − (O′ − (1 − s)x(t)) · R(t)

)
u

+
∣∣o′ − (1 − s)x(t)

∣∣2 −
∣∣O′ − (1 − s)X(t)

∣∣2 .
Crease connecting a cylinder (s = 1): This case directly follows from the Lemma 12.3.
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Figure 12.10: This figure illustrates that non-intersecting (projective) triangles are only a sufficient,
not necessary, condition for surface non-intersection. While the triangles intersect here, the surfaces
do not.

12.4.4 Alternative User-Input

Similarly to the other constructions, specifying a crease using a 3D and a 2D scale transformations
may not be very intuitive. Therefore, we discuss an alternative input for the patch-to-projective-
cone construction, which is based on either prescribing two points on the crease (user-input 3pt) or
one point and the tangent direction (user-input Tan). Once again, these input specifications only
require 3D quantities and allow us to determine the necessary 2D information.

In addition to the 3D surface S(t, u), in both cases, we prescribe a point A on S(t, u), a point
A′ not on S(t, u), and a scalar s ∈ R. Consequently, the scalar transformation Σ is specified by the
pair of points A 7→ A′ and the scale factor s.

• In addition to the previous specifications, the user-input 3pt requires a second point B on
S(t, u). If feasible, the resulting crease will pass through A and B, and the points (a,b,a′)
will be oriented counterclockwise.

• In addition to the previous specifications, the user-input Tan requires of an angle α ∈ [0, 2π).
If feasible, the resulting crease will pass through A, and the (smooth or discrete) tangent of
the crease at A and the incident ruling of S(t, u) will enclose the angle α. In the development,
a′ will lie to the left of the oriented developed tangent.

We make note of the following lemma, whose proof can be found in in Section 12.8:

Lemma 12.6. If feasible, both user-input 3pt and user-input Tan uniquely specify the scalar trans-
formation σ.

Finally, it is important to note that for the application of the formulas in the patch-to-projective-
cone construction (Lemma 12.1), it is essential to ensure that the surfaces S(t, u) and s(t, u) (as
well as the points A′ and a′) are positioned such that A and a coincide with the origin.

12.5 Preventing Local Surface Intersections
In addition to the valid patch combination, it is often desirable to avoid self-intersections in the
folded surfaces. Self-intersections can occur when the base plane’s normal R2 or the apex V2 are
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chosen improperly. In the following, we discuss sufficient conditions that ensure non-intersecting
surfaces obtained through the patch-to-cylinder and patch-to-cone construction.

Let S(t, u) be a bounded patch defined as S(t, u) = X(t) + u w(t)R(t), where t ∈ [0, tmax] and
u ∈ [0, 1]. The function w(t) represents the width along the rulings of the patch. We assume that
there are no singularities within the interior of the patch, and the crease points are located within
S(t, u), satisfying 0 < l(t) < w(t).

When computing the crease curve between a developable surface and a cylinder or a cone, we
consider the (projective) triangles T△, where each triangle is bounded by a ruling segment of S(t, u)
and either V2 or R2. If all (projective) triangles intersect only at V2 or R2, then the surfaces do
not have self-intersections, as each pair of consecutive rule lines lies in triangles that only meet at
the desired common point. This condition can be intuitively understood as the rule segments being
consistently illuminated by a light source located at V2 or R2. An example for why this constraint
is sufficient but not necessary is given in Figure 12.10.

In the case where the first surface is a cylinder or a cone, we can test for the absence of surface
intersections as follows. When the first surface is a cylinder, we consider the ruling planes T , that
is, the planes that contain the ruling and V2 or R2. When the first surface is a cone, we consider
only ruling half-planes T , that is, planes spanned by the ray starting at the cone apex of S(t, u)
containing the rule segment of S(t, u) and the V2 or R2. Note that in both cases, the planes share
a common line L, which is spanned by the apices or ruling directions of both surfaces. Now, we
may choose a plane Π that does not contain L. If Π ∩ T consists of lines that only meet at L ∩ T ,
the planes in T and thus the triangles in T△ are distinct.

Equivalently, in case of the first surface being a cylinder or a cone, we may consider the normals
of the tangent planes incident to the rulings. Define

X(t) =
{

N(t) · (V2 − X(t)), for a cone
N(t) · R2, for a cylinder.

It follows that there are no surface intersections if either X(t) > 0 for all t ∈ [0, tmax] or X(t) < 0
for all t ∈ [0, tmax].

12.6 Tangent Continuity
To expand the range of design possibilities, it can be advantageous to connect two or more patch-
to-cylinder or patch-to-cone constructions. For many applications, achieving tangent continuity
of the combined crease curves is desirable. The following section focuses on tangent-continuous
combinations of creases obtained by patch-to-cylinder and patch-to-cone constructions.

12.6.1 Computing Tangents

In this section, we consider a pair of corresponding consecutive 2D and 3D ruling directions. We
show that if one of the 3D tangent planes is given, the incident crease curve’s tangent direction is
uniquely specified. To simplify our analysis, we explore the tangent direction in the context of a
patch-to-projective-cone construction. However, note that analogous behavior holds in the context
of the patch-to-cylinder and patch-to-cone constructions.

In the following, we consider a surface pair obtained from a patch-to-projective-cone construc-
tion specified by the two scaling transformations Σ and σ, where O′ and o′ are the images of the
origin and s the scale parameter.
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We focus on the ruling directions and tangent plane incident to a parameter t0, and denote the
tangent direction of the base curve of the first surface at t0 by X′(t0), and the corresponding 2D
counterpart by x′(t0).

Lemma 12.7. The 3D and 2D tangents of the crease at t0 can be parametrized by

Tt0(t) = X(t0) + tX′(t0) + lT (t)R(t0) and tt0(t) = x(t0) + tx′(t0) + lT (t)r(t0),

respectively, where

lT (t) = −o′ · x(t0) − O′ · X(t0)
o′ · r(t0) − O′ · R(t0) + o′ · x′(t0) − O′ · X′(t0)

o′ · r(t0) − O′ · R(t0) t. (12.7)

Proof. We obtain a parametrization of the tangent line of F(t) at t0 by applying the patch-to-
projective-cone construction with respect to the same scaling transformations to two corresponding
parametrizations of the tangent plane in 3D and 2D. The latter is just a special parametrization
of the xy-plane. Here, we define the base curves to be XT (t) = X(t0) + tX′(t0) and xT (t) =
X(t0) + tx′(t0). Furthermore, set RT = R(t0) and rT = r(t0). Then, simplifying Equation (12.6)
results in the stated expression since |X′(t0)|2 = |x′(t0)|2 = 1 and X′(t0) · R(t0) = x′(t0) · r(t0).

The result is a linear curve that does not depend on the scale factor s, that is, the direction
of the tangent does not depend on the (real or infinite) location of the projective cone apex.
Consequently, this is the unique solution to that ensures that all points on the parametrization of
the linear curve have the property that their distance to the tangent plane’s base curve and to any
pair of corresponding points on the second ruling are the same in 2D and 3D. Consequently, this
curve parametrizes the tangent of the crease curve incident to F(t0).

Note that the denominator of lT (t) equals the denominator of l(t0), that is, D(t0). Thus, the
valid patch combinations of the tangent planes incident to t0 and the local surface behavior at F(t0)
is the same.

Corollary 12.3. Two corresponding 3D and 2D ruling directions and an incident tangent plane
determine the location of the incident crease curve’s tangent direction uniquely.

12.6.2 Combinations of Patch-to-Projective-Cone Constructions

We now explore tangent-continuous combinations of patch-to-cylinder and patch-to-cone construc-
tions. To simplify the analysis, we again consider two patch-to-projective-cone constructions.

Consider two surface patches S1(t, u) and S2(t, u) that share a common (oriented) tangent plane
at the incident rulings S1(t1, u) and S2(t2, u). Let A be a point on the common ruling. Without loss
of generality, let us assume that A = S1(t1, u0) = S2(t2, u0), and that the surfaces are positioned
such that A coincides with the origin.

Furthermore, let s1(t, u) and s2(t, u) denote the development of the two surfaces, and let a =
s1(t1, u0) = s2(t2, u0). Without loss of generality, we assume that the developed surfaces are aligned
at the common rulings and that they are positioned such that a coincides with the origin.

Finally, let Σi and σi for i ∈ {1, 2} be two scaling transformations given by the images of the
origin, O′

i and o′
i, where |Oi| = |o′

i|, and the scale factors si ∈ R. Let Fi(t) be the crease obtained
by applying the patch-to-projective-cone construction to Si(t, u) and si(t, u) with respect to the
scaling transformations Σi and σi.

Lemma 12.8. If O′
1 = kO′

2 and o′
1 = ko′

2 for some constant k ̸= 0, then the tangents of the crease
curves incident with A are the same.
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Figure 12.11: Illustration of the tangent-continuity condition for closed crease curves in cases
where the first surface is a closed ring that is developable without additional cuts. Upon successful
computation, the crease curve is tangent continuous for arbitrary combinations of 2D and 3D apices.

Proof. Using Lemma 12.7, we observe that both choices for the image of the origin result in the
same tangent directions, as the factor k cancels out.

We can also phrase the above stated lemma more intuitively as follows:

Corollary 12.4. The two computed creases are tangent-continuous at t0 if the two incident 3D
ruling directions are identical and the incident 2D ruling directions are also identical.

Note that the converse is not true, since by Lemma 12.7 the tangent’s inclination with respect
to the tangent of X(t) is the same for points O′ where O′ · X′(t0) = const. This implies that there
is a one-parameter family of directions O′ that result in the same tangent direction.

12.6.3 Closed Developable Rings and Tangent-continuous Creases

We now consider the special case where we apply a single patch-to-cone or patch-to-cylinder con-
struction to a closed ring of tangent-continuous developable patches R = (S1(t, u), . . . ,Sn(t, u)),
that are joined along common rule lines tangent-continuously. There are two cases to consider,
depending on whether the development r = (s1(t, u), . . . , sn(t, u)) of R is closed or not, that is,
whether the first ruling of s1(t, u) is the same as the last ruling of sn(t, u).

Closed development

If the development is closed, it follows that any (valid) combination of a 3D and a 2D cone apex
results in a tangent-continuous crease. This follows from Corollary 12.4 as we ensure that at all
potential transition rulings between Si(t, u) and Si+1(t, u), their developments, and the tangent
planes align.
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Figure 12.12: Illustration of the tangent-continuity condition for closed crease curves in cases where
the first surface is a closed ring that requires a cut to be developable. In this case, there is only
one location of the 2D apex that results in tangent-continuous closed crease curves.

On the other hand, when constructing a patch-to-cylinder combination, we cannot obtain a
closed crease curve that would result in a consistent valid patch combination, since the developed
ruling directions cannot point consistently towards one side of the developed closed crease curve.

Open development

Note however, that if the development is open – that is, there is a gap between the end rulings of
the development – then the situation changes. In particular, choosing an arbitrary 2D apex might
not result in the same angle between consecutive 2D ruling directions of the start and end ruling.

Consequently, a patch-to-cylinder or patch-to-cone construction typically results in creases that
are not tangent-continuous at the gap (refer to Figure 12.12). To achieve tangent continuity,
we need to ensure that the angle between the ruling directions at the boundaries are the same.
Consequently, if the boundary rulings of the developed ring surface are not parallel, we choose the
apex to be the unique center of rotation that transforms the first ruling of s1(t, u) to the last ruling
of sn(t, u). Consequently, no patch-to-cylinder construction will result in closed tangent-continuous
creases.

If on the other hand the end rulings are parallel, only a patch-to-cylinder construction can result
in tangent-continuous creases. Here, as long as valid, the developed ruling direction of the cylinder
can be chosen freely to ensure tangent continuity. However, we observed that these cases usually
result in intersecting surfaces.
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12.7 Patch-to-Piecewise-Projective-Cone Construction
In this section, we show how to apply a sequence of tangent-continuous patch-to-projective-cone
constructions to obtain an approximation of a crease between two general developable surfaces.

Starting from a tangent-continuous developable patch, we ensure that the crease is tangent-
continuous by finding the apices of the projective cones such that the 3D ruling directions and 2D
ruling directions match at the transition points.

In this section, we explore two construction strategies for the separation of the second surface
into projective cones:

• Ruling planes: We use a sequence of user-specified ruling planes to separate the (projective)
cones. This approach offers the advantage of allowing the user to directly control the singular-
ities of the second surface, as they occur at the intersections of these ruling planes. However,
the shape of the crease can only be influenced indirectly.

• Crease points: We use a sequence of user-specified points that, if possible, will lie on the
crease and separate the (projective) cones. This approach offers the advantage of allowing
the user to directly control the shape of the crease. However, the location of the apices of
the projective cones, and therefore the singularities of the constructed patch, can only be
influenced indirectly.

In Chapter 17, we show how the approximation of patch-to-patch constructions can be used for
developable subdivision of regular planar quad meshes.

12.7.1 Input

The input for our construction is as follows:

• a developable strip S(t, u) = X(t) + uR(t) (without loss of generality assume 0 ≤ t ≤ 1 and
u ≥ 0) and its development s(t, u) = x(t) + ur(t);

• two points A0 ∈ S(t, u) (without loss of generality A0 = S(0, u)) and A′
0 ̸∈ S(t, u) that

determine the initial ruling direction A′
0 − A0;

• their developed counterparts a0 and a′
0; and

• either:

– a list of ruling planes, that is, a sequence of planes Ei containing rulings X(ti) + uR(ti)
with 0 < ti < ti+1 for 1 ≤ i ≤ n, or

– a list of crease points, that is, a sequence of planes Ai coincident with the surface points
S(ti, ui) with 0 < ti < ti+1 for 1 ≤ i ≤ n.

If desired, the position of a′
0 can be indirectly specified using either the user-input 3pt or

Tan methods. However, it is important to note that when using the user-input 3pt method, it is
preferable for the second crease point to be sufficiently close to A.
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Figure 12.13: IIlustration of the patch-to-piecewise-projective-cone construction using ruling planes.

12.7.2 Patch-to-Piecewise-Projective-Cone Construction using Ruling Planes

We now discuss the case where the separation between projective cones is specified through a se-
quence of ruling planes; see Figure 12.13. Specifically, we show how points Ai = {Ai,A′

i,ai,a′
i} and

the next ruling plane Ei+1 specify the scale parameter si and the points Ai+1 = {Ai+1,A′
i+1,ai+1,a′

i+1}
used for the next construction.

Suppose we are given the input points Ai and a plane Ei+1. For Ei+1 to be a ruling plane, it
needs to contain the (finite or infinite) apex Vi of the second surface corresponding to the interval
[ui, ui+1]. As Vi needs to also lie on the ruling AiA′

i, Vi is the intersection of AiA′
i with Ei+1.

If AiA′
i is almost parallel to Ei+1, computing the intersection might be numerically challenging.

However, with Lemma 12.4, we do not need to know the intersection Vi, rather it is sufficient to
only determine the corresponding scale factor. To do that, we use an orthogonal projection of
points Ai and A′

i onto Ei+1 to obtain points Bi and B′
i. Setting Ni = Bi −Ai, we use Lemma 12.4

to compute the scale factor si from the four points {Ai,A′
i,Bi,B′

i}.
Alternatively, if AiA′

i is almost orthogonal to Ei+1, we can compute the intersection Vi directly
and obtain the scale factor si using si = (Vi−A′

i)·Ni

(Vi−Ai)·Ni
, where Ni is some vector not orthogonal to

Vi − A, such as A′
i − Ai.

Having computed the scale factor si, we use Lemma 12.1 to compute the crease curve Fi(u)
for the the surface patch S(u, v) with ui ≤ u ≤ ui+1. To continue, we let Ai+1 = Fi(ui+1) be the
crease point incident to the next ruling plane and ai+1 its development. Furthermore, we define
A′

i+1 and a′
i+1 to be the scaled versions of Ai+1 or ai+1, specified by Ai 7→ A′

i and si.
We can now iterate the above described procedure starting at Ai+1 and Ei+2 to obtain the

remaining scale factors and creases.
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Figure 12.14: IIlustration of the patch-to-piecewise-projective-cone construction using crease points.

12.7.3 Patch-to-Piecewise-Projective-Cone Construction using Crease Points

Second, we discuss the case where the separation of projective cones is specified by a sequence of
crease points; see Figure 12.14. Again, we show how the points Ai = {Ai,A′

i,ai,a′
i} and the next

crease point Ai+1 specify the scale parameter and the points Ai+1 = {Ai+1,A′
i+1,ai+1,a′

i+1} used
for the next construction.

Suppose we are given the input points Ai and the next crease point Ai+1. Let ai+1 be the
development of Ai+1. To determine the location of the cone apex, and therefore the scale parameter
si, we need to find a parameter u that describes the location of the 3D apex Vi = (1 − u)Ai + uA′

i

and its developed counterpart, i.e., vi = (1 − u)ai + ua′
i, such that |Ai+1 − Vi| = |ai+1 − vi|.

Suppose, we “unroll” the plane containing points {Ai,A′
i,Ai+1} to the 2D plane to obtain

{Ãi, Ã′
i, Ãi+1} such that Ãi coincides with ai and Ã′

i coincides with a′
i. As the point vi lies on

aia′
i and is equidistant to Ãi+1 and ai+1, it must be the intersection of the perpendicular bisector

ε of Ãi+1 and ai+1 with aia′
i.

If the angle between ε and aia′
i is small, computing u explicitly might result in numerical

difficulties. Instead of computing this intersection, we can again compute the projections bi and
b′

i of ai and a′
i on ε and use the four points {ai,a′

i,bi,b′
i} and normal ni = bi − ai to compute the

scale factor si with Lemma 12.4.
Alternatively, if ε and aia′

i are almost perpendicular, we can also just compute the intersection
vi directly and employ the above discussed methods to retrieve the scale factor si.

Having computed the scale factor si, we use Lemma 12.1 to compute the crease curve Fi(u) for
the the surface patch S(u, v) with ui ≤ u ≤ ui+1. To continue, we define A′

i+1 and a′
i+1 to be the

scaled versions of Ai+1 or ai+1, specified by Ai 7→ A′
i and si.

We can now iterate the above described procedure starting at Ai+1 and Ai+2 to obtain the
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remaining scale factors and crease points.

Limitations

The approximation of a patch-to-patch construction using crease points has the major disadvantage
of needing to construct the perpendicular bisector of two points that are potentially very close. In
particular, when points Ãi+1 and ai+1 are the same, that is, the 3D patch is almost straight, any
point on the line aia′

i is a candidate for the apex of the next projective cone.

12.7.4 Lotus 2.0

We are currently developing an extension of Lotus 1.0, Lotus 2.0, to incorporate the patch-to-
piecewise-projective-cone constructions.

12.8 Selected Proofs from Chapter 12

Proof of Lemma 12.4. A scaling that maps P 7→ P′ can be described as

P 7→ P′ = s(P − T1) + T2,

where T1,T2 are two translation vectors and s a scale factor. Using A 7→ A′ and B 7→ B′, we
obtain

A′ = s(A − T1) + T2 and B′ = s(B − T1) + T2.

One of the equations is trivially satisfied if (T1,T2) = (A,A′) or (T1,T2) = (B,B′), resulting in
the other simplifying to

s(B − A) = B′ − A′.

Since s(B − A) and B′ − A′ are parallel vectors, they are the same if and only if their non-trivial
projection to a vector is the same. Thus the above equation is equivalent to

s(B − A) · N = (B′ − A′) · N,

for some vector N with |N|> 0 and (B − A) · N ̸= 0, resulting in the claimed expression for s.
Note that if s ̸= 1, we obtain the scaling center as a point that is mapped onto itself,

V = s(V − A) + A′ = s(V − B) + B′,

resulting in the claimed expression.

Proof of Lemma 12.6. We first locate point a, that is, the point corresponding to A on s(t, u), the
development of S(t, u).

Type 3pt. Let B′ = s(B − A) + A′, and b the development of B. We want to find the location
of a′ and b′, such that

dist(a,a′) = dist(A,A′) and dist(b,b′) = dist(B,B′).

In addition, we require that b′ = s(b − a) + a′.
For the following computations, we make the assumption that a′ = a + ra(cosϕ, sinϕ) where

ra = |A − A′|.
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• Case 1 (s ̸= 1): In the case of constructing a crease that connects to a cone, we write
b′ = s(b − a) + a′ and compute the unknown variable ϕ from∣∣b − b′∣∣2 =

∣∣B − B′∣∣2 =: r2
b .

• Case 2 (s = 1): In the case of constructing a crease that connects to a cylinder, the lengths
of the segments between the points on the ruling are trivially the same, as the transformation
is a translation.
However, to ensure that both vectors a′ − a and b′ − b are perpendicular to the same line,
we introduce the planes ΠA and ΠB, which are perpendicular to A′ − A and pass through
A or B, respectively. Similarly, we define the lines πa and πb, which are perpendicular to
a′ − a and pass through a or b, respectively. In order to satisfy the desired constraints, we
require that the oriented distances of the planes (with respect to A′ − A or a′ − a) are the
same. This can be expressed as

(A′ − A) · (B − A) = (a′ − a) · (b − a).

In both cases, the equations can be simplified to(
x1
x2

)
·
(

cosϕ
sinϕ

)
= x3,

where (
x1
x2

)
=

{
2ra(1 − s)(b − a), ifs ̸= 1
ra(b − a) if s = 1

x3 =
{
r2

a − r2
b + (1 − s)2|b − a|2 ifs ̸= 1

(A′ − A) · (B − A) ifs = 1

If x2
1 + x2

2 − x2
3 > 0, the two solutions modulo 2π read

ϕ = arctan

x1x3∓
√
x2

2(x2
1+x2

2−x2
3)

x2
1 + x2

2
,
x2

2x3±x1
√
x2

2(x2
1+x2

2−x2
3)

x2(x2
1 + x2

2)

 ,
and the resulting two solutions for a′ are related by a reflection about a line spanned by a and b.
Note that a solution might not always exist (for more details refer to Section 3.3. of [65]).

In case of input-type 3pt, the two solutions of a′ in general result in two different crease curves.
We use the solution in which the points a, b, and a′ are oriented counter-clockwise. The other
solution can be obtained by exchanging the roles of a and b.

Type Tan. First we locate the initial crease tangent direction T by rotating the rule line direction
R of the ruling incident with A by α about the ruling’s normal plane normal N. Similarly, we
obtain its development t by rotating the incident developed ruling direction r about α. Define
β = ̸ (A′ − A,T). We locate the point a′ such that |a − a′| = |A − A′| and β = ̸ (a′ − a, t).
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Chapter 13

Analytic Parametrization of
Geometric Shapes

This chapter presents the results from two papers: “Folding the Vesica Piscis,” co-authored with Tony Wills,
which was presented at the Bridges Conference in 2018 [67], and “Curved Crease Folds of Spherical Polyhedra
with Regular Faces,” which was also presented at the Bridges Conference in 2019 [63].

Overview

The parametrization of shapes that incorporate curved creases can be challenging, as explicit
parametrizations are rarely obtained through Frenet-based methods. In the following, we parametrize
two families of shapes: generalizations of the folded Vesica Piscis and spherical regular polyhedra.
This work initiated the formalization of the patch-to-cylinder and patch-to-cone constructions.

13.1 Introduction
Analyzing real-world shapes created from flat materials presents challenges due to the potential in-
troduction of small imperfections during the fabrication process. Moreover, determining the rulings
of the involved developable surfaces is typically approached through trial-and-error methods, lacking
a straightforward analytical solution. As a result, describing these shapes mathematically becomes
non-trivial, and traditional Frenet-based methods often do not provide explicit parametrizations
for them. In this chapter, we present two families of shapes that allow an up to elliptic integrals
closed form parametrization, obtained by the patch-to-cylinder and patch-to-cone methods.

We first consider a family of shapes that generalize the folded Vesica Piscis, used in the sculpture
“Attraction” by Susan Latham; see Figure 13.1 (left) and Figure 13.3. These shapes are created
by folding two overlapping circles such that their boundaries align, resulting in configurations
composed of cylinders and cones. By determining the parametrizations of the crease curves, we
establish the geometric existence of these shapes. Moreover, we identify a one-parameter subfamily
of shapes that have circular creases.

In the second application, we examine shapes consisting of cylinders, cones, and planes that
resemble the structure of a spherical polyhedron with regular faces; see Figure 13.1 (right). We
provide explicit formulas to parametrize the crease curves of these shapes.
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(a) Reconstruction of Susan Latham’s
sculpture “Attraction”.

(b) Curved-crease design of an icosahedron.

Figure 13.1: Two shapes with curved creases discussed in Chapter 13.

13.2 Parametrization of the Folded Vesica Piscis

13.2.1 Vesica Piscis

The Vesica Piscis is a geometric shape formed by the intersection of two congruent circles, where
the centers of the circles lie on the respective other circle. This simple formation has found various
applications throughout history. For example, it is used in Euclid’s Elements to construct an
equilateral triangle, as shown in Figure 13.2.

Figure 13.2: Vesica Piscis in Euclid’s Elements.

Our interest in the folded Vesica Piscis shape was sparked by the sculpture “Attraction” created
by artist Susan Latham. In her sculpture, two Vesica Piscae are cut out of sheet bronze and
each folded along the inner circle segments in such a way that the outer segments coincide, as
depicted in Figure 13.3. While manually creating this shape may be relatively simple, its geometric
reconstruction is not supported in common CAD software. This led us to explore the design space
of closed shapes that are formed by gluing developable surfaces with curved creases along their
perimeters.

We initiated the analysis of the folded Vesica Piscis through numerical experiments, which pro-
vided indications that the object can be represented using cylindrical and conical surface patches.
To further investigate and confirm this observation, we proceed by determining explicit parametriza-
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Figure 13.3: Susan Latham’s “Attraction”, Santa Fe (2008). Figure from author’s homepage [49].
Not for reproduction.

tions for the shape.
In this section, we extend our analysis to developments composed of two overlapping discs with

varying overlap, allowing us to obtain a two-parameter family of closed shapes. The advantage of
this approach lies in the availability of (up to elliptic integrals) explicit parametrizations, enabling
us to explore the shapes of the developed crease curves. In particular, we demonstrate the existence
of a one-parameter family of shapes with circular creases.

13.2.2 Notation

In the following, we investigate the shapes consisting of one cylindrical and two conical surface
patches that are isometric to the union Du of two discs of unit radius and centers (±u, 0, 0) located
in the xy-plane. Assuming that the seam curve remains planar and the developed cones’ vertices
coincide with the origin, we determine the parametrization of the 3D seam and crease curves. Due
to the symmetry of this shape, we consider only the half of the region Du, which is bounded by
the y-axis and the circle

xu(t) = (cos t+ u, sin t, 0) with t ∈ [t0, t1] = [− arccos(−u), arccos(−u)].

The Vesica Piscis corresponds to the special case of u = 1
2 .

13.2.3 Parametrization of the Seam Curve

To begin, we determine the cone with an apex at Vh = (0, 0, h) and a planar boundary curve
Xu,h(t) that corresponds to the given half of Du. We employ the concept of sliding with a modified
parametrization assumption. Specifically, we use polar coordinates to parameterize Xu,h(t) as

Xu,h(t) = ru,h(t)(cosαu,h(t), sinαu,h(t), 0) and Xu,0(t) = xu(t).

As isometry preserves the lengths of the cones’ rulings we deduce

ru,h(t) =
√

x2
u(t) − h2 =

√
2u cos t+ u2 + 1 − h2 (13.1)
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Figure 13.4: Parametric setup for the folded configuration and development of Du|x≥0

Moreover, the parametrization speed of Xu,h(t) and xu,h(t) need to match, resulting in

|X′
u,h(t)|=

√
r′

u,h(t)2 + ru,h(t)2α′
u,h(t)2 = 1 = |x′

u(t)|.

From this, we deduce

α′
u,h(t)2 = 1

ru,h(t)2

(
1 − r′

u,h(t)2
)
.

Inserting the expression for ru,h(t) in Equation (13.1) and simplification yield that αu,h is up to
the orientation of parametrization and rotation determined by

α′
u,h(t) =

√
(u cos t+ h+ 1) (u cos t− h+ 1)

2u cos t+ u2 − h2 + 1 .

The corresponding integral is real-valued for 0 ≤ h ≤ hmax(u) = 1 − u2 and can be written as a
linear combination of elliptic integrals of the third kind1, namely

αu,h(t) = 1
2 (γ0Π(δ0, ϕ(t),m) + γ1Π(δ1, ϕ(t),m)) ,

where the Jacobi amplitude and elliptic modulus are given by

ϕ(t) = arctan

√1 − u+ h

1 + u+ h
tan t

2

 and m = 4uh
1 − (u− h)2 .

Additionally, the elliptic characteristics and coefficients read

δ0 = −2u
1 − u+ h

, δ1 = 2u
1 + u− h

, γ0 = 2(1 + u+ h)√
1 − (u− h)2 , γ1 = γ0

1 − u− h

1 + u+ h
.

1Π(l; ϕ, k) =
∫ ϕ

0
1

(1−l sin2 θ)
√

1−k sin2 θ
dθ
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Figure 13.5: Diagram representing the crease curves of the two-parameter family of closed shapes.
It follows from numerical computations that αu,h(s1) exceeds π for u ≤ 0.19 and high values of h.
The corresponding folded shapes exhibit self-intersections.

13.2.4 Parametrization of the Crease Curve

In the following, we use a modified approach to the patch-to-cylinder construction method. Specif-
ically, we assume that the crease curve Fh(t) and its development fh(t) are represented by

Fu,h(s) = (1 − tu,h(s))Vh + tu,h(s)Xu,h(s) and fu,h(s) = tu,h(s)xu,0(s), (13.2)

where tu,h(t) is an initially unknown length function.
When looking for the location of the crease that connects the cone with a cylinder with vertical

rulings, we are interested in the points of the ruling where the z-value of Fu,h(s) equals the x-value
of fu,h(s). Consequently, it follows that

tu,h(s) = h

cos s+ u+ h
. (13.3)

Note that the resulting crease curves are generally non-planar. Figure 13.5 provides an illustration
of the computed developed crease curves, showcasing their behavior dependent on the parameters
u and h, where u ∈ [0, 1] and h ∈ [0, hmax(u)].

13.2.5 Circular Crease Curves

Finally, we note that this construction results in a one-parameter family of circular crease curves;
see Figure 13.6 and Figure 13.5. Specifically, the creases are circular when the cone’s apices are at
height

hcirc(u) = 1 − u2

2u for u ∈
[1

2 , 1
]
.

The original folded Vesica Piscis is the special case of u = 1
2 and h = hcirc

(
1
2

)
= hmax

(
1
2

)
= 3

4 .
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Figure 13.6: Examples of folded closed shapes with circular creases.

13.3 Curved-Crease Designs from Spherical Polyhedra with Reg-
ular Faces

13.3.1 Spherical Polyhedra with Regular Faces

We now introduce the second class of shapes where the patch-to-cone construction can be used
to achieve an explicit parametrization. The resulting creases are not tangent-continuous. For
a discussion on a shapes with smooth creases that cover a wider range of polyhedra, refer to
Chapter 15.

We begin by providing an overview of the definitions and properties of the considered class of
polyhedra. A polyhedron is called regular or a Platonic solid if all its faces are identical regular
polygons. On the other hand, a polyhedron is called semi-regular or an Archimedean solid if all
its faces are regular polygons and all its vertices are equal. Finally, the dual polyhedra of the
Archimedean solids are called Catalan solids. It is important to note that the faces of Catalan
solids are not necessarily regular. It is known that the vertices of Platonic, Archimedean, and
Catalan solids lie on on a sphere.

When discussing a spherical polyhedron, we refer to a tessellation of a unit sphere (denoted as
S), in which the surface is divided into bounded regions known as spherical polygons using great
arcs on S. It is established that Platonic, Archimedean, and Catalan solids can be projected onto
the sphere, resulting in spherical polyhedra. However, in general, only Platonic and Archimedean
solids yield spherical polyhedra with regular faces.

In the following, we present a construction that transforms a spherical polyhedron with regular
faces into a modular curved-crease design; see Figure 13.7 and Figure 13.8.

13.3.2 Construction Overview

In the following, let P be spherical polyhedron with regular faces. Note that this implies that
all spherical “edges”, have the same length which we will denote by 2tmax. Furthermore, let
tini ∈ (0, tmax) be a user-specified parameter.

The construction of the curved-crease folded polygon can be broken down into three distinct
steps, as depicted in Figure 13.9:
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Figure 13.7: Curved-crease design from a icosidodecahedron. Left to right: The Archimedean solid
icosidodecahedron, its projection to a sphere, and a proposed curved-crease approximation.

Figure 13.8: Part of the curved-folded Icosidodecahedron’s development (darker gray depicts the
mountain, lighter gray the valley folds).

• Step 1: Initially, we align right circular cylinders along the edges of P and connect them
using planar patches. The size of these planar patches is determined by the user-specified
parameter tini.

• Step 2: Next, we use the patch-to-cone construction to compute the crease curves that connect
the given cylinders with cones with suitable apices.

• Step 3: As an optional step, we have the flexibility trim or introduce additional creases to
the cones, such as by reflecting them at planes.

The subsequent section provides a detailed description of each of these individual steps.

13.3.3 Construction Details

In the following section, we outline the process of incorporating a curved-crease design onto a single
face of the spherical polyhedron. By employing identical cylinders along each edge, we ensure that
the individual faces can be seamlessly connected to form the completed curved-crease design.

Step 1: Constructing the cylinders

Let P = (P1, . . . ,Pn) be a regular spherical n-gon of P. We parametrize the edges PiPi+1 of
P , which are the great circles of the underlying (unit) sphere S, using arc-length parametrized
curves Xi(t) for t ∈ [−tmax, tmax], such that Xi(−tmax) = Pi−1 and Xi(tmax) = Pi. Let Ri
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Figure 13.9: Illustration of the proposed three steps in the construction of a folded spherical regular
polygon.

denote the normal of the base plane of the curve Xi(t), pointing towards the interior of P . Then,
Si(t, u) = Xi(t)+uRi for u ≥ 0 and t ∈ [−tini, tini] parametrizes a cylindrical patch that is tangential
to S.

Next, we determine the intersection point Qi between the two adjacent rulings incident to
Xi−1(tini) and Xi(−tini), and fill the area between these rulings with a planar patch. It is important
to note that the connections between the cylindrical and planar patches are not tangent-continuous.
We represent the resulting poly-arc as Q = (Q1, . . . ,Qn).

We then sequentially unroll the composition of cylinders and planes into the xy-plane, resulting
in a polyline denoted by q = {q1, . . . ,qn}. We denote the development of Si(t, u) by si(t, u) =
xi(t) + uri.

Since the polyline q has equal edge lengths and angles, it possesses a circumcircle with center
v, which we will use as the developed cone apex. To determine the location of a suitable 3D apex
V, we locate the point V that satisfies |V − Qi| = |v − qi| for all 1 ≤ i ≤ n. Generally, there will
be two solutions, and we select the one that is closer to the center of the sphere.

Step 2: Folding the cylinders into cones

In the next step, we determine the crease between each cylinder Si(t, u) and a cone with a 3D apex
V and a 2D apex v. It is important to note that the points Qi lie on the crease curve, as their
distances to the apex are the same in 3D as in 2D.

To simplify the computation, we choose a local coordinate system. Specifically, we set Xi(t) =
(cos t, sin t, 0) and Ri = (0, 0, 1) for the 3D cylinder. For the development, we choose xi(t) = (t, 0, 0)
and ri = (0, 1, 0). Since both V and v lie in the perpendicular bisector of Xi(−tini) and Xi(tini) or
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(a) Spherical tetrahedron with curved creases.

(b) Spherical hexahedron with curved creases.

(c) Spherical octahedron with curved creases.

(d) Spherical dodecahedron with curved creases.

(e) Spherical icosahedron with curved creases.

Figure 13.10: Spherical Platonic solids with curved creases and their developments.
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Figure 13.11: Spherical icosahedron fabricated from Hylite, in collaboration with RnKOLEKTIVE,
displayed at the MIT MediaLab in Summer 2023.

xi(−tini) and xi(tini), we assume V = (Vx, 0,Vz) and v = (0,vy).
The length functions of the crease Fi(t) = Xi(t) + li(t)Ri and its development fi(t) = xi(t) +

li(t)ri can then be computed using Lemma 12.1 as follows

l(t) = 1
2

1 − t2 − 2Vx cos t+ V2
x + V2

z − v2
y

vy − Vz
.

We conjecture that the valid patch condition is always satisfied, that is, vy −Vz > 0. However, two
creases incident to the same cylinder might intersect. This can usually be prevented by choosing
a smaller parameter tini. It is important to note that since the cylindrical surfaces and adjacent
planes are not tangent-continuous, the computed crease curves will also not be tangent continuous.
Chapter 15 discusses an approach that results in tangent developable surfaces and creases.

Step 3: Adding further creases

Optionally, these hereby constructed cones can either be trimmed or folded. In our examples we
reflect the cones along planes that are perpendicular to the axis of P , that is, the line spanned by
the origin and the barycenter of P .

13.3.4 Fabrication

As part of the RnKOLEKTIVE [69], we successfully fabricated a spherical icosahedron with a
diameter of 2.2m; see Figure 13.11. To construct this structure, we used Hylite, a 1.2mm aluminum
composite panel by 3A Composites. This panel consists of a 0.8mm polypropylene core sandwiched
between two layers of 0.2mm aluminum. The fabrication process involved milling the creases from
both sides using a Zünd machine, followed by manual folding.
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To optimize material usage during fabrication, we divided the crease pattern into pieces cor-
responding to the edges of the polyhedron. Each piece consisted of a cylindrical surface and four
conical patches. Additionally, thin flaps were added along the sides of the pieces to enhance struc-
tural integrity, assist in the fabrication process, and conceal the electronics used in the project.
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Chapter 14

Design of Conic Spirals with Planar
Creases

The content of this chapter is based on the paper “Design of Conic Spirals with Planar Creases”
that the thesis author coauthored with Erik Demaine, Robert Lang, and Tomohiro Tachi. This paper
appeared in the Bridges 2023 conference proceedings [66].

Overview

We describe two exact geometric constructions of origami spirals obtained by creasing a flat sheet
of paper along 2n curves, alternating mountain and valley, where the 2D crease pattern and result-
ing 3D folding are 2n-fold rotationally symmetric about the center. Both constructions use conical
developable surfaces and planar creases. In one construction (conical spirals), the cone patches all
share an apex (the center), effectively forming one big (creased) cone. In the second construction,
inspired by David Huffman’s “exploded vertex” designs, the cone apices are the vertices of a cen-
tral regular polygon. Both constructions have planar creases and, in addition to their rotational
symmetry, are reflectionally symmetric through the base plane.

14.1 Introduction
Origami with curved creases forms beautifully intricate geometries using relatively few creases. One
family of designs, which we call spirals, folds 2n rotationally symmetric curves, alternating mountain
and valley [53, 59]. While in many designs the curves meet at the center, David Huffman [43]
introduced a variation with an “exploded” central vertex, replacing the central vertex by a regular
2n-gon; see Figure 14.1.

Origami spirals are related to origami flashers, a family of straight-crease rigidly foldable de-
ployable structures that result from wrapping material around a polygonal base [47]. Their compact
folded state makes them suitable for applications such as star-shaders in space-exploration [6].

Material imperfections make it nontrivial to determine whether a real-world folded shape math-
ematically exists, i.e., preserves the intrinsic distances on the surface (no stretching or tearing). In
this chapter, we give two geometric constructions for spirals made from smooth or discrete cones
with planar creases, resulting in shapes that are guaranteed to (mathematically) exist. We con-
struct only the folded geometries, conjecturing that the constructed spirals in general do not have
rigid-ruling folding motions.
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Figure 14.1: David Huffman’s variations with (un)exploded vertices reconstructed by Duks Kos-
chitz. Figures 5, 7, and 8 in [19].

14.2 Triangle Wreaths
The first step in our construction is to position 2n congruent triangles in a rotationally symmetric
way; see Figure 14.2. Precisely, a triangle wreath consists of 2n congruent triangles (△0,△1, . . . ,△2n−1)
such that consecutive triangles △i,△i+1 share a vertex Pi and are related by the rotation Rn by
π
n about the z-axis and the reflection Mxy through the xy-plane:

△i+1 (mod 2n) = Mxy

(
Rn

(
△i (mod 2n)

))
for all 0 ≤ i < 2n.

Lemma 14.1. Given a triangle △ = (a, b, c), up to rotation about the z-axis, there exists a two-
parameter family of triangle wreaths in which the endpoints of triangle edge a are joined.

P0

P1

Q0△0

c

a

b

P2

P3

P4

P5

Figure 14.2: Triangle wreath.

Proof. Let P = (P0,P1, . . . ,P2n−1) be the polyline formed by consecutive vertices that coin-
cide with two triangles in a triangle wreath. Because P0 and P1 are related by rotation Rn

and reflection Mxy, their coordinates can be written as P0 =
(
r cos π

n ,−r sin π
n ,−h

)
and P1 =

Mxy (Rn (P0)) =
(
r cos π

n , r sin π
n , h

)
for some h > 0 and r > 0. Because |P0 − P1|= a, it follows
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Figure 14.3: Construction steps for the conical spiral (top) and the exploded-vertex spiral (bottom).

that r = 1
2
√
a2 − 4h2 (sin π

n

)−1 for h ∈ [0, a
2 ). Thus we have one degree of freedom for the config-

uration of the polyline P. In addition, we have another degree of freedom corresponding to the
location of the third vertex of the first triangle △0 = (P0,P1,Q0) of the wreath, corresponding to
a rotation about P0P1.

14.3 Curved Spiral Construction
We now discuss how to construct a conical or an exploded-vertex spiral by attaching cones to
the triangles of a triangle wreath and them reflecting appropriately. In the following, let Γ be a
(smooth or discrete) cone with developed opening angle π

n , specified by an apex V and a (smooth
or discrete) boundary curve C(t) where t ∈ [0, 1]. Without loss of generality, we assume that the
first and last ruling of Γ are of the same length, 1 = |V − C(0)|= |V − C(1)|. The two proposed
constructions of spirals with 2n cones can be divided into three steps:

• Step 1: Use points on Γ to define a triangle △ = (P0,P1,Q0). Using Lemma 14.1 and two
input parameters, we construct a wreath of triangles congruent to △. Position a copy Γ0 of
Γ at the corresponding points on the first triangle △0 of the triangle wreath. Define a second
cone Γ1 = Mxy (Rn (Γ0)).

– Conical spiral: Let P0 = C(0), P1 = C(1) and Q0 = V.
– Exploded-vertex spiral: Let P0 be some non-apex point on the first cone ruling, that is,

P0 = (1 − t)V + tC(0) for t ∈ (0, 1), P1 = V and Q0 = C(1). Because we extend the
cones in Step 3 anyhow, the choice of t influences the scale. In our implementation, we
use t = 1

4 .
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Figure 14.4: Examples of spirals designed using our plug-in and folded from paper.

• Step 2: Construct a plane to connect a subpatch of Γ0 with the other subpatch of Γ1 using a
planar crease. The crease curve can be computed using the considerations in Section 12.3.2.
Fold the other cone analogously.

– Conical spiral: Let Π0 be the bisecting plane of P0 and P1. We split Γ0 with Π0 into
two subpatches, and reflect the subpatch containing the apex by Π0.

– Exploded-vertex spiral: Define Π1 to be the bisecting plane of C0(1) and C1(0). We split
Γ1 with Π1 into two subpatches, and reflect the subpatch not containing the apex by
Π1.

Both reflections join a subpatch of Γ1 with the other subpatch of Γ0, resulting in four con-
nected surface patches.

• Step 3: Arrange copies of the two cones in a polar array to obtain a closed ring of 2n creased
cones. If possible, extend the creases to neighboring cones by using their incident planes for
splitting and reflecting, and trim the surfaces appropriately.

Note that this construction might fail for unrealistic parameter combinations, or result in inter-
secting cones. Upon success, this construction results in closed developable rings of patches joined
along creases; see Figure 14.4 and Figure 14.5. Note, that even if the involved cones are smooth, the
connection between Γ0 and Γ1 might not be tangent-continuous. In many cases, tangent continuity
can be achieved by tweaking the parameters of the wreath construction. We conjecture that the
conical spiral construction can be generalized to patches other than cones, in which singularities of
the surface might need special treatment. If the polyline of the wreath is planar, we can close the
center of the spiral with a planar polygonal face.
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Figure 14.5: Examples of more complex spirals designed using our plug-in.

14.4 Software Implementation

We implemented the described construction as an interactive design tool for Grasshopper / Rhino.
To construct smooth or discrete cones with appropriate opening angle, we use the sliding devel-
opable method (discussed in Section 11 and [64]) and its implementation described in [65]. The
position of the first triangle △0 = (P0,P1,Q0) of the wreath can be influenced by the user with
two angles: angle φ describes the inclination of P0P1 w.r.t. the xy-plane, angle ψ describes the
angle between △0 and the plane spanned by the x-axis and P0P1. We use an external plug-in
named Goat [79] to optimize for tangent continuity.
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Chapter 15

Rounded Corner Polyhedra

This chapter presents results from the paper titled “Curved Crease Edge Rounding of Polyhedral Surfaces”
that the thesis author coauthored with Rupert Maleczek and Tomohiro Tachi. This paper has been presented
at the Advances of Architectural Geometry Conference (AAG) [55], 2020.

Overview

We show a method to design a curved-crease folding that constructs the edge-rounded, i.e., filleted,
version of a given polyhedral surface. We replace each edge with a smoothly rounded cylinder
and each vertex with a generalized cone, such that the surfaces joined through curved creases
form a single developable surface. Because the curved crease can be explicitly computed from the
isometry of corresponding line segments for given locations of the cone apex in 2D and 3D, our
problem reduces to identifying the locations of the apices. We characterize the conditions for the
apex positions and provide a numerical scheme to find the apices for the given mesh by solving
a nonlinear optimization problem. In general, the rounding of edges reduces the surface area,
resulting in a shape that is not guaranteed to be foldable from a single piece of uncut paper. We
solve this problem by computing consistent material loss caused by rounding radii.

15.1 Introduction
Generating complex shapes with curved creases poses a significant challenge. While a patch-by-
patch folding technique offers design flexibility, the resulting shape’s complexity is often limited by
the time required for manual creation by a designer.

One approach to address this challenge is to automate the construction process by approxi-
mating a given shape using curved-crease designs. For instance, Chandra et al. [14] approximate
polyhedra by smoothing creases, while Jiang et al. [38] employ multiple curved pleats for surface
approximation through optimization.

In this chapter and the subsequent one, we introduce two design approaches that use polyhedra
to construct folded shapes, particularly modular ones. In the following, we present a method for
designing folded shapes that represent an edge-rounded or filleted version of the original polyhedral
surface (refer to Figure 15.1). Each vertex of the input polyhedron corresponds to a dimple sur-
rounded by closed curved creases, which function as structural ribs. Our method can be considered
a generalization of existing artworks in curved folding. For example, Mosely [61] computes mod-
ular origami from a rounded cube with circular dimples at the corners, and Section 13.3 (see also
Mundilova [63]) applies a similar approach to regular polyhedra. However, our method extends to
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Figure 15.1: Illustration of an edge-rounded icosahedron. From left to right: Input polyhedron;
edge-rounded version with curved creases; edge-rounded version with trimmed cones; and edge-
rounded version with additional planar creases.

non-regular (albeit not arbitrary) polyhedral surfaces and ensures tangent continuity of the surfaces
when they are not joined by a curved crease.

Overview

The overview of our design approach is as follows:

1. We first replace each edge of the polyhedron with a smoothly rounded cylinder.

2. We replace each vertex by a general cone meeting the incident cylinders and faces with curved
and straight creases respectively, such that the developability is maintained at the creases.
This further decomposes into two steps.

(a) For each vertex, we first locate the positions of the apex in 2D and 3D. A desirable
location results in a collection of valid, non-self-intersecting patches whose tangent-
continuous crease curve are in a valid range.

(b) We then compute the curved crease explicitly using the patch-to-cone construction in
Lemma 12.1.

Therefore, the main task is to locate the apices (2a) while maintaining the specified constraints.
In Section 15.3, we gather the necessary constraints to identify suitable apices, and subsequently,
in Section 15.4, we present a method for formulating a local optimization problem. It is important
to acknowledge that there might be instances where the intersection of valid regions, linked to
the established conditions, does not exist. Specifically, we demonstrate in Section 15.3.4 that our
construction cannot be applied to vertices with saddle shapes. To determine the positions of the
apices, we employ numerical techniques to solve a nonlinear constrained optimization problem based
on the given conditions. The particulars of this process are outlined in Section 15.4.

In general, the rounding of edges reduces the surface area, so the resulting curved folded surface
is not isometric to the original polyhedron. In particular, even if the original polyhedral surface
is developable, the resulting curved-crease surface is in general not closed around the cone apices.
In Section 15.5, we show the constraints for the valid rounding radii used in Step 1 so that the
resulting surface is also developable when applied to an originally developable surfaces. We solve
this problem as a linear constrained optimization problem for a given general polygonal mesh. In
particular, we prove the existence of a consistent edge-rounding and cone apex construction for a
limited class of polyhedral surfaces, namely, a conical convex mesh (Section 15.6).

244



(a) Step 1: Replace edges with
right circular cylinders.

(b) Step 2: Determine the cone that is connected to incident cylinders
with curved creases. The crease’s shape can be influenced by the user.

Figure 15.2: Overview of the proposed method for edge-rounding a polyhedron.

We implemented our construction method including the optimization as a component for
Grasshopper / Rhino [81, 57], so the designer can interactively design curved crease folding by
modeling an initial mesh and adjusting other design parameters. Section 15.7 shows how the
parameters in each process affect the results. Furthermore, we show design variations using our
methods that have potential architectural applications.

15.2 Notation
Let M be a user-specified mesh, which is defined by its vertices P and faces F . Additionally, let R
represent a list of rounding radii ri defined for each edge in the mesh. Note that it is important to
ensure that the rounding radii assigned to the edges incident to a face are compatible, in order to
avoid intersecting surfaces. Furthermore, we assume the availability of a half-edge data structure
for M .

In the following discussion, we focus on the 1-star neighboring vertices of a vertex Pk; see
Figure 15.3. For each half-edge of the mesh M that ends at vertex Pk and originates from a vertex
Pi, we attach a right-circular cylinder with a user-specified radius that is tangent-continuous to
its adjacent faces. These cylinders cover half of each edge and will be folded into a cone at the
end-vertex Pk.

Let Xik(t) represent the base curve of such a filleted cylinder, where t is an arc-length parameter
ranging from −tmax

ik to tmax
ik . This base curve is a circular arc that lies in the plane bisecting the

two endpoints Pi and Pk. Additionally, we define Rik as the normalized ruling direction, given by
Rik = Pk−Pi

|Pk−Pi| . Consequently, the parametric representation of the cylinders can be expressed as
Sik(t, u) = Xik(t) + uRik.
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Xik(t)

Mij

Xjk(t)
Rik

Pi

Pj

Pk

xik(t)
xjk(t)

rik

Figure 15.3: Illustration of the notation of the edge-rounded area around a vertex.

The first and last rulings of two neighboring cylinders, Sik(t, u) and Sjk(t, u), corresponding to
the same face, intersect each other. Let Mij represent the intersection of these rulings. We fill the
space between the two adjacent cylinders Sik(t, u) and Sjk(t, u) with planar patches τij .

To obtain the development of the constructed surfaces, we flatten and unfold the cylinders and
planes in the 1-star neighborhood of Pk. This involves sequentially positioning them in the xy-
plane. Note that the base curves Xik(t) for the cylinders Sik(t, u) result in straight line segments
when unfolded, represented as xik(t). The rulings rik associated with these unfolded line segments
are perpendicular to their respective tangents.

To apply the patch-to-cone construction, as described in Section 12.3, we need to determine the
positions of the apices Vk and vk that satisfy certain constraints for all cylinders associated with
half-edges whose endpoints are Pk.

15.3 Constraints on the Location of the Cone Apices

15.3.1 Valid Surface Patch Combinations and Valid Range

Let us first consider a single cylinder Sik(t, u). For an apex location Vk and its 2D counterpart
vk, the denominator and numerator of the length function lik(t) computed using the patch-to-cone
construction for the crease Fik(t) = Xik(t)+lik(t)Rik and its development, fik(t) = xik(t)+lik(t)rik,
have a geometric interpretation that is linked to the valid surface patch combination (discussed in
Section 12.3.3) and range of the length function.

Valid surface patch combination

First, we require that the cone apex location is such that the contraction happens on the desired
side of the cylinder. Using Lemma 12.3, we require the denominator to be positive, that is,

D(t) = (xik − vk) · rij − (Xik(t) − Vk) · Rik > 0.
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Valid range

Recall that we set the base curve at the midpoint of the rounded edge, so lik(t) ≥ 0 for all
t ∈ [−tmax

ik , tmax
ik ] ensures that the creases from two incident vertices of a rounded crease will not

affect each other. (However, this constraint is not always necessary, as is the case in Figure 15.10.)
Furthermore, we want to upper bound the length of the boundary rulings to not exceed the in-
tersection of cylinders around a vertex at the curve’s endpoints. In other words, we impose the
condition lik(±tmax

ik ) ≤ m±, where m± represent the corresponding maximum distances.

Apex locations that result in lik(t) ≥ 0. For valid surface patch combinations, the denominator
is positive and thus the sign of the length function lik(t) is determined by the numerator. The
numerator is positive, if and only if the distances between the base curve and apex contract after
folding, i.e., lik(t) ≥ 0 if

|vk − xik(t)|2 − |Vk − Xik(t)|2 ≥ 0.

Apex locations that result in lik(±tmax
ik ) ≤ m±. We can rewrite the desired inequality as

|vk − t±|2 − |Vk − T±|2 ≤ 0,

where t± = x(±tmax
ik ) +m±rik(±tmax

ik ) and T± = X(±tmax
ik ) +m±Rik(±tmax

ik )1. Consequently, the
distances between the apices and the upper bounds need to expand during folding to prevent the
crease from escaping the intended range at the first and last rulings.

Geometric interpretation

For the purpose of easier explanation, we temporarily position Sik(t, u) such that Xik(t) coincides
with the xy-plane and Rik is vertical. Similarly, we position sik(t, u) such that xik(t) aligns with
the x-axis, and rik = (0, 1, 0).

1This detail differs slightly from Maleczek et al. [55], where the bound was assumed to be symmetric.
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(a) Curved crease with self-intersections and top view of admissible and
forbidden regions for the location of the 3D apex (blue and red,

respectively) for a given cylindrical patch.

(b) Illustration of the
intersection of all admissible

regions.

Figure 15.5: Illustration of the considerations to prevent intersecting surfaces.

Given a developed apex vk = (vx, vy, 0), let SXik(t) denote the sphere with center at Xik(t)
and radius |vk − xik(t)|. Additionally, let ST± denote the spheres with centers at T± and radii
|vk − t±|, as illustrated in Figure 15.4. In the following, we refer to the interior of a sphere S is by
S+, and the exterior by S−.

An apex Vk satisfies the valid patch condition if it lies in the half-space defined by ε+ : z < vy.
Furthermore, an apex Vk satisfies the lower bound lik(t) ≥ 0 of the valid range condition if it lies
within the spheres SXik(t) for all t ∈ [−tmax

ik , tmax
ik ]. In the implementation, we approximate the

intersection of the spherical location constraints along the base curve by the intersections of three
spheres corresponding to the boundary and center points of the curve, that is, t = ±tmax

ik and t = 0.
Lastly, an apex Vk satisfies the upper bounds of the valid range condition at the first and last

rulings if it lies in the regions S−
T−

and S−
T+

, respectively.

15.3.2 Preventing Self-intersection

In addition to the valid patch and valid range constraints, an improper choice of the apex Vk

can cause intersections between the cylinder and cone as depicted in Figure 15.5. Consider, for
example, the construction of a crease curve on a cylinder, whose base curve is a half of a circle, for
an apex lying outside the cylinder as in Figure 15.5. As discussed in Section 12.5, directly applying
the above-mentioned geometric construction yields a self-intersection of the paper when the ruling
emanating from the apex goes past the point of tangency as the crease curve wraps around the
cylinder. At the points of tangency, the rulings emanating from the apex transition from the convex
to the concave side of the cylinder, and thus the crease assignment changes between mountain and
valley while passing through complete 180◦ folding.

As discussed in Section 12.5, locating such a transition point is equivalent to locating the shade
line of the cylinder when we put a point light source at the cone apex. Therefore the target cylinder
region needs to be constantly lit or shaded with respect to the light source. Denoting the surface
normals of the cylinders along Xik(t) by N(t), the non-intersection condition reads

(Vk − Xik(t)) · N(t) > 0 for all t ∈ [−tmax
ik , tmax

ik ] or,
(Vk − Xik(t)) · N(t) < 0 for all t ∈ [−tmax

ik , tmax
ik ]. (15.1)

For each rounded crease, this determines the feasible regions for the candidate apex as depicted in
Figure 15.5 (right).
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Consequently, the regions of admissible points the non-intersection condition are obtained by
taking the intersection of admissible regions for all incident rounded edges of an vertex. This is
equivalent to taking the apex consistently on the front normal side or back normal side measured
from any point on the surface. The existence of such a region depends on the types of vertices as
we illustrate in Section 15.3. We potentially get two portions of the solution space on the outside
and the inside of the vertex, corresponding to whether a light source constantly illuminates and
shades the surface, respectively; see Figure 15.5b. However, when combined with the valid patch
condition, at most one of these components is feasible as explained in Section 15.3.4.

15.3.3 Tangent Continuity

In our design, we are rounding edges of polyhedral surfaces with tangent-continuous cylinders.
Therefore, we are ultimately interested in crease curves between tangent-continuous combinations
of cylinders and planes and cones or triangles, respectively. To prevent possibly undesirable kinks
in the crease curve, we require the crease curve to be tangent-continuous in the transitions between
every cylinder and plane.

As discussed in Section 12.6.3, there are two cases to consider. If the development of the
combination of cylinders and planes has a gap, we need to choose the 2D cone apex to be the
center of rotation, which transforms one end ruling to the other end ruling. If on the other hand,
if the development is closed, the 2D apex can be freely specified.

15.3.4 Feasible Apex Directions

We characterize the feasible regions for Vk given by the intersection of constraints for each vertex,
namely the valid patch and the non-intersection conditions. We omit the valid range condition
because we can move the base curve sufficiently far away from the apex (or appropriately decrease
the rounding radii), as we consider each vertex separately. In addition, we focus on a simplified nec-
essary condition for those conditions under an assumption described below, which is also sufficient
in the limit case with rounding radius approaching to 0.

Here, we assume that the height to the developed apex position is smaller than or equal the
height of the original vertex position, that is,

(vk − xik(t)) · rik ≤ (Pk − Xik(t)) · Ri, (15.2)

for admissible t. We conjecture that the assumption is true for our construction in cases where
the vertices are non-developable and exhibit consistent material loss. This is due to the uniqueness
of the developed apex positions, which are derived from the tangent continuity constraint (as
described in Section 15.3.3) in combination with the material loss considerations (as explained in
Section 15.5).

Valid patch conditions. It follows from the assumption in Equation (15.2) that the intersection
of the valid patch conditions,

0 < (vk − xik(t)) · rik − (Vk − Xik(t)) · Rik,

is contained in

0 < (Pk − Xik(t)) · Rik − (Vk − Xik(t)) · Rik = (Pk − Vk) · Rik.
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Using D := Vk − Pk, the condition is represented as

D · (−Rik) > 0. (15.3)

Finding a vector D that satisfies Equation (15.3) is equivalent to finding a plane of normal D passing
through Pk such that all adjacent faces lie on one side of this plane. An important consequence
is that the construction does not work for saddle vertices, that is, a vertex without such a plane.
Note that while the sum of incident face angles of a saddle vertex is at least 2π and thus has
negative integral curvature, not all negative vertices are saddles. For example, consider a negative
vertex corrugated to approximate a convex vertex. In addition, since a developable vertex, that is,
a vertex whose sum of sector angles is 2π, folds to a half plane either by popping up or down as
shown in Abel et al. [1], it is always possible to find a direction D satisfying Equation (15.3).

Non-intersection approximations. In addition, we sample the non-intersection conditions
given by Equation (15.1) at the extrema s = 0 for each edge, where the surface normal equals
the face normal Ni,j between edges i and j adjacent to the same face. Because the corresponding
end point of Xij(t) and Pk are both on face i, j, Equation (15.1) yields

D · σNi,j > 0 for all i, j, (15.4)

for either σ = ±1. Note that at most one of the signs σ can be satisfied. The half-plane discussion
corresponding to Equation (15.3) predicts the correct candidate of σ as follows. Consider the solid
angle Ω of the vertex Pk on M on the front side defined by Ni, then the back side has solid angle
of 4π − Ω. Because of the half-plane property, the solid angle of the vertex on D side needs to be
smaller than 2π. So, we choose σ = 1 if Ω < 2π, and σ = −1 if Ω > 2π.

We call the direction D computed from both Equation (15.3) and Equation (15.4) the vertex
normal (Figure 15.6). In Section 15.4.1, we start our computation by constructing the normal from
given edge directions and face normals. Once a valid normal is found, the vector can be arbitrarily
scaled to find other candidates for apex positions. Because the effect of rounding becomes relatively
small by scaling up the vector, there is a sufficiently distant position of apex along the normal that
creates a valid folding.

15.4 Locating Cone Apices Through Optimization
For every interior vertex Pk of the mesh, we solve an optimization problem to find the location of

• the apex Vk, if the development is open, or

• the apices Vk and vk, if the development is closed,

that fold the incident cylinders and planes along tangent-continuous curves into cones and triangles.
We implement the constraints collected in Section 15.3 to avoid invalid surface patch combinations
and intersections.

15.4.1 Vertex Normals

Before we start the optimization, we determine a normal direction D of the vertex as explained
in Section 15.3.4 through optimization; we later locate the initial apex on the computed normal.
We find directions satisfying Equation (15.3) and Equation (15.4) by maximizing the minimum dot
product of a unit vector with the adjacent edge directions −Rik and face normal directions σNij .

250



−D1 −D2

(a) Non-saddle vertex. While the average D1 of face
normals does not satisfy Equation (15.3), D2 is a

valid vertex normal.

(b) Saddle vertex.

Figure 15.6: Illustration of the constraint for valid patch combinations.

Variables: The variables are the three coordinates of the vertex normal and a scalar b which is
going to be the lower bound that we maximize.

Equality constraint: To prevent unboundedness of variables, we keep D · D = 1.

Inequality constraint: We bound D · Rik ≥ b and D · (σNij) ≥ b for every adjacent edge and
face.

Objective: We maximize the lower bound b.

Initialization: As an initial guess, we take the normalized mean over all edge directions and
oriented face normals.

15.4.2 Optimization Setup

To locate the apices, we solve a non-linearly constrained optimization problem. We use hard
inequality constraints given from Section 15.3 and minimize the objective function to achieve reg-
ularity. Specifically, we sample the quadratic inequality constraints resulting from the valid range
condition, by evaluating the base curve at sampled points, e.g., at the beginning, middle and end of
a cylindrical arc. For every incoming edge, we let Xik(t0), Xik(t1) and Xik(t2) denote the points on
the central circle of the cylinder corresponding to the start, middle and end parameters, and xik(t0),
xik(t1) and xik(t2) denote their developed locations. Let furthermore T± be the intersection at the
start and end parameter of the cylinder with the neighboring cylinder and Rik the ruling direction
towards the vertex. The corresponding developments are again indicated by lower cases.

Variables: The variables are the three coordinates of Vk and the two coordinates of vk if the
development is closed.
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Inequality constraints: For every adjacent edge, we add five quadratic and two linear inequality
constraints, namely:

• We require that the developed height of the cone apex vk to with respect to the base plane
of the cylinder is larger than the corresponding distance in 3D. As all profile curve points lie
in the base plane, we can enforce this constraint by specifically applying it to t = 0 only. In
other words, we require

(Vk − Xik(0)) · Rik ≤ (vk − xik(0)) · rik.

• We require that the current combination for (Vk,vk) lies in the respective spheres S+(ti) at
the three parameter values, i.e.,

|Vk − Xik(tj)|2 ≤ |vk − xik(tj)|2 for j ∈ {0, 1, 2}.

• We require that the lengths do not exceed the distance between the base point to the inter-
section of cylinders, i.e., lik(tj) ≤ |T± − Xik(tj)| for j ∈ {0, 2}, or equivalently,

|vk − t±|2 ≤ |Vk − T±|2 .

• We linearize the rounding depicted in Figure 15.5 by a plane through X(t0) or X(t2) and T−
or T+. We believe that this is not too constraining as candidates close to the cylinders are
not very desirable. This yields

(Vk − T−) · σNe > 0 where Ne = (Xik(t2) − Xij(t0)) × (T− − Xik(t0))
|(Xik(t2) − Xik(t0)) × (T− − Xik(t0))| .

Furthermore, for every adjacent face, we want the vertex to lie on the correct side of the faces
to ensure non-intersections as described in 15.3.2. This amounts in

(Vk − T±) · Nij > 0,

where T+ or T− is the corresponding is the intersection of cylinders in the current face.

Initialization: We initialize the the spatial apex Vk as Vini = Vk + dD on the vertex normal,
where d > 0 is the user-specified depth along the vertex normal. If the development is closed, we
initialize vk as the intersection vini of the central rulings of two consecutive developed cylinders.

Objective: We use the objective for regularization. Depending whether the development is open
or closed, we minimize

min
Vk

(Vk − Vini)2 or min
(Vk,vk)

(Vk − Vini)2 + (vk − vini)2 .

This objective function tries keep the original depth d; Figure 15.2b shows the same rounding using
another initial vertex depth.
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Figure 15.7: Edge-rounded low-poly Stanford bunny computed with our Grasshopper component.
Notice that only non-saddle shaped vertices can connected to cones with curved creases.

15.5 Consistent Material Loss
Through edge rounding, the intrinsic distance between adjacent faces on a polyhedral surface
decreases. As a result, the target polyhedral surface can be visualized as the folding of a “shrunk”
version of the original surface. However, it is crucial to ensure that a consistent “shrunk” paper can
be defined. This consistency is disrupted if the material loss around each rounded edge adjacent
to a vertex is not uniform. When there is arbitrary material loss, the original sheet of paper loses
its consistent disk topology, resulting in a non-fillable hole around the vertex.

In this section, our goal is to determine a consistent material loss that enables the “shrunk”
polyhedral paper to fold into the desired rounded and curved-creased shape without requiring any
cuts. This consistency is particularly important when the target polyhedral surface is initially a
developable surface, such as an origami tessellation, as it allows the entire shape to be created by
folding a single sheet of paper while preserving its developability.

15.5.1 Material Loss

First, we compute the material loss when rounding an edge with a right circular cylinder; see
Figure 15.8a. Let us denote the half angle between the adjacent surface normals by γ and the
radius of rounding by r. Then the length a of the rounded edge and the original length A can be
expressed as

a = 2rγ and A = 2r tan γ.
We call w = A−a the material loss induced by rounding an edge. In the following process, we first
compute a consistent amount of material loss, which conversely, determines the radius of rounding.
For given w and γ, the remaining quantities read

a = wγ

tan γ − γ
, A = w tan γ

tan γ − γ
, r = w

2(tan γ − γ) .
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(a) Illustration of the material loss
induced by rounding an edge.

(b) Developable tessellation with contracting cycles and
regions before and after contraction.

Figure 15.8: Illustrations highlighting considerations to achieve consistent material loss during the
edge-rounding step.
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Figure 15.9: Illustration showcasing the notation used for constraints at a vertex.

15.5.2 Consistency Condition

The central concept is as follows: Imagine walking on the surface around a vertex in a direction per-
pendicular to the adjacent edges, covering a distance equal to the material loss. For the contracted
distances to result in consistent material loss, our objective is to return to the same starting point;
see Figure 15.8b. This forms a closed polygonal cycle around each vertex. For each polyhedral
edge, we can draw a rectangular region (colored green in Figure 15.8b) between the corresponding
congruent edge of the cycles on both ends. The material loss is equivalent to contracting these
cycles to points and rectangles to segments, where points and segments correspond to vertices and
edges of polyhedral sheet of paper that is then folded to a curved-crease folding.

If the original polyhedron is developable, the process of constructing such polygonal cycles
perpendicular to the edges of the polyhedral surface is analogous to creating a reciprocal diagram
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on the polyhedral development. Specifically, the edge graph must form a spiderweb configuration,
that is, a reciprocal diagram with positive edge lengths.

15.5.3 Optimization Setup

The consistent material loss is given as the following linear programming problem.

Variables: We identify the contracting regions by determining cycles around each vertex, as illus-
trated in Figure 15.9. In each sector, the corner of a cycle can be represented by the perpendicular
distances w−

i and w+
i to the incident edges.

For interior edges connecting sectors i and j, the variables w−
i and w+

j represent the material
loss on the respective sides of the edges, contributing to the overall material loss of the edge
w = w−

i +w+
j . We adopt the notation based on the half-edge data structure, where w+

i corresponds
to the incoming adjacent oriented edge and w−

i corresponds to the outgoing adjacent edge associated
with a sector angle αi of a vertex.

Additionally, we introduce a variable b as a lower bound that we aim to maximize.

Linear equality constraints: Along every vertex, the perpendicular widths should close up.
For every adjacent face, we set the widths uij along the quad to be the same, see Figure 15.9. This
results in the linear equality constraint(

w+
i + w−

i cosαi

) 1
sinαi

=
(
w−

j + w+
j cosαj

) 1
sinαj

.

Linear inequality constraints: Before we start the optimization problem, we compute the
maximal rounding width for every edge and upper bound the sum of the widths of two opposite
half edges by this maximal rounding loss. Furthermore, we require the widths wi > b.

Objective function: We maximize b subject to the above constraints. The solution is feasible,
if b > 0.

(a) Computed material loss. (b) Computed developable
edge-rounded shape.

(c) Development.

Figure 15.10: Developable edge-rounded chicken wire tesselation.
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(a) Computed material loss. (b) Computed developable
edge-rounded shape.

(c) Development.

Figure 15.11: Developable edge-rounded Miura-ori tessellation. Note how the cylinder radii decrease
or increase in one direction, limiting the number of possible rows.

15.6 Conical Convex Mesh
In the special case of conical convex meshes, we can construct the consistent material loss along
vertices and location of apices, see Figure 15.12.

Conical meshes are characterized by having faces tangent to a cone of revolution whose axis is
the intersection of the bisectors of two neighboring faces. This in particular implies, that conical
meshes have a family of constant face offsets whose vertices lie on the axes of the tangent cones.
We use the offset mesh to construct the consistent material loss and the axis as the vertex normal
to locate the apex.

Suppose we fix an offset distance and project the faces perpendicular to the original faces. Then,
this locates the contracting regions, from which we compute the rounding applied to the original
mesh, so the offset mesh is the piece of paper we fold.

For this material loss, we find good candidates for apices on the axis. By the tangent continuity
condition, the developed apex corresponds to the vertex of the offset mesh. If we intersect the
common lines of the cone and the offset faces with a plane perpendicular to its axis, we find that
the intersection points pi lie on a circle of radius r with center on the axis. If this plane is sufficiently
far away from the apex, we can find a point on the axis whose distance to the corresponding points
Pi on the original surface is again r.

v = u′

pi

Pi

V

Figure 15.12: Illustration of the construction of consistent material loss and apex location.
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Figure 15.13: Variation of the edge-rounded icosahedron in Figure 15.1, crafted from oak veneer,
in collaboration with Alfonso Parra Rubio and other participants of Haystack Labs 2023.

15.7 Design Examples, Limitations, and Future Work

We implemented our construction method as a component for Grasshopper / Rhino [81, 57] to cre-
ate an interactive design system. The user specifies the input mesh, the preferred rounding radii,
preferred depth of apex, which are used as the initial conditions for the optimization. We imple-
mented the component in C# using ALGLIB [10] for optimization using Augmented Lagrangian
(AUL). Furthermore, we used the half-edge data structure of Plankton [73] for mesh operations.

Figure 15.7 illustrates the application of the method to a low-resolution version of the Stanford
bunny. Note that at the saddle points, it is not possible to locate the normal and thus the apices
as described in Section 15.3.4.

Figure 15.10 showcases a developable curved folded origami, which was computed from a folded
shape of the chicken-wire tessellation. It is worth highlighting that there is a noticeable difference
between the rounding radii in this case. Exploring the impact of material loss and investigating
additional heuristics the optimized material loss could be beneficial in future research.

Figure 15.11 exhibits another developable curved folded origami, which was computed from a
folded shape of a part of the Miura-ori origami tessellation. In addition to significant differences in
rounding radii, it is notable that the rounding radii decrease in one direction, potentially hindering
rounding additional columns of the pattern. One possible solution could involve working with
cone-rounded edges. Again, this remains a topic for future investigation.
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Figure 15.14: Curved origami based shell structure and folded model.
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Chapter 16

Wrinkling Paper

This chapter presents results from the paper titled “From Quad Filling to Wrinkled Surfaces” that the thesis
author coauthored with Robby Kraft, Rupert Maleczek, and Tomohiro Tachi. This paper has been accepted to
the Advances of Architectural Geometry Conference (AAG) [46], 2023.

Overview

Inspired by David Huffman’s curved-crease lens tessellations, we present an approach for trans-
forming polyhedral shapes into modular smooth or discretized curved-crease designs. Specifically,
we use two types of molecules, the lens and the cone-cone molecule, to fill the faces of a non-planar
quad mesh. Furthermore, we investigate techniques for optimizing the target shape to achieve a
global origami development, eliminating the need for additional slits or holes.

16.1 Introduction

David Huffman’s design collection [19] features a variety of captivating designs, including curved-
crease tessellations. Among these tessellations, one notable example is Huffman’s creation that
incorporates repeated horizontal lenses formed by circular arcs. Demaine et al. [17] further ex-
plore and analyze a generalized version of these curved-crease lens tessellations. Their research
demonstrates the existence of such tessellations for convex curved-crease lenses. Within their in-
vestigations, the authors identify individual quadrangular kite molecules composed of cylinders and
cones.

Subsequent work by Stern et al. [94] explores architectural applications of a freeform assembly
using these kites as molecules. Building upon their work, we further extend the research by using
the patch-to-cone construction to fill non-planar quadrangular faces of a polyhedron with two types
of quadrangular molecules: the lens molecule and the cone-cone molecule; see Figure 16.1. Our
contribution includes the development of a plug-in for Grasshopper/Rhino [81, 57], which enables
users to customize these molecules using multiple parameters. The individual molecules possess
polygonal boundaries and consist of either two cones or a cylinder and two cones, pairwise joined
along creases. In both cases, the cylinders or cones can be smooth or discrete. In addition, we
demonstrate constraints for the generation of globally developable freeform tessellated shapes.

This chapter is organized as follows. In Section 16.2, we show how to fill a quadrangular face
with two curved-crease designs: the cone-cone and the lens. We then propose a subdivision scheme
to prepare an arbitrary mesh for our surface-filling algorithm in Section 16.3. Finally, we explain
how to optimize towards global development without holes in Section 16.4.

259



(a) Smooth and discrete cone-cone molecule. (b) Smooth and discrete lens molecule.

Figure 16.1: Illustration of the two molecule types suitable for filling a non-planar quad.

16.2 Quad Filling

In this section, we show how to fill a single non-planar quad Q = {V1,V2,V3,V4} with a (smooth
or discrete) curved-crease design. In particular, we consider two developable surface layouts (see
Figure 16.2):

• Cone-cone: A smooth or discrete cone with apex V1 and rulings V1V2 and V1V4 is folded
into a cone with apex V3 such that the crease passes through the points V2 and V4.

• Lens: A smooth or discrete central cylinder is folded into two cones with apices V1 and V3
such that both creases between the cylinder and the cone pass through points V2 and V4.

In both cases, our method consists of two steps:

1. Construct first surface: First, we construct a smooth or discrete cylindrical or conical surface
S(t, u) inside the quad. A curve which defines the shape of this surface and further parameters
can be specified by the user. Details are provided in Section 16.2.1.

2. Construct remaining surface(s): Then, we construct the fold between S(t, u) and a cone with
apex V4 (cone-cone), or two cones with apices V1 and V4 (lens). Details are provided in
Section 16.2.4.

16.2.1 Construction of the First Surface

Intuitively, we obtain the first surface S(t, u) by extruding a not self-intersecting smooth or discrete
planar curve P(t) with start point V2 and end point V4. In the following, we will call P(t) the base
curve. In particular, when constructing a cone, P(t) is extruded to the point V1. When constructing
a cylinder, P(t) is extruded in the direction that is perpendicular to the curve’s incident plane.
The resulting surface can therefore be parametrized as

S(t, u) = X(t) + uR(t),
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Figure 16.2: Two steps of the quad filling method for the cone-cone molecule (left) and the lens
molecule (right).

where in case of a cone we set X(t) = V1 and R(t) = P(t)−V1
|P(t)−V1| , and in case of a cylinder we set

X(t) = P(t) and R to be the normalized vector perpendicular to Π.
The choice of P(t) influences not only the shape of the first surface S(t, u), but also the shape

of the second, constructed cone S2(t, u) that connects to S(t, u) with a curved crease. When
choosing the planar curve P(t) arbitrarily, we might observe some undesired artifacts, such as local
self-intersections of S2(t, u); see Figure 16.3 (left).

In the following, we discuss how to apply the theory of Section 12.5 to modify a user-specified
input curve Q(t) using projective transformations.

V

S

S2

(a) Intersecting surfaces.

Z′

Q′
i P′

i

(b) Projective mapping used for the construction of the base curve of
the first surface.

Figure 16.3: Illustration highlighting considerations to avoid creating intersecting surfaces.

16.2.2 Non-Self-Intersecting Cones and Central Functions

Suppose we aim to determine the fold between a developable surface S(t, u) and a cone with apex
V. As discussed in Section 12.5, the ruling planes form a pencil of planes T . If S(t, u) is a conical
surface with apex V1, the family of planes constitutes a pencil of planes with the axis V1V. On
the other hand, if S(t, u) is a cylindrical surface with a ruling direction R, the family of planes is
a pencil of planes with its axis passing through V and having the direction R.

Since the rulings continuously vary along S(t, u), the planes in the pencil also vary. To avoid
self-intersections of the second surface, it is crucial that all planes in the pencil are distinct and
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V4

V3

Π
Z

Figure 16.4: Illustration of the pencil of ruling planes used in the argumentation in Section 16.2.2
for the cone-cone molecule (left) and lens molecule (right).

do not “double back”, as illustrated in Figure 16.3 (left). To check for repeating ruling planes,
we consider a planar section of the pencil of planes using a plane Π that passes through V and
intersects all surfaces at least once. If all intersecting lines of Π ∩ T are unique, the planes in the
pencil are also unique.

Consequently, when locating the base curve P(t), our objective is to induce non-repeating
planes, resulting in a curve that has unique connecting lines with the apex. In the following, we
refer to such a curve as a central function1. To obtain a central function with center Z, we can
transform the graph of a function using a projective transformation that maps the ideal point of
the y-axis to the center Z, as depicted in Figure 16.3 (right).

In case of the cone-cone design, we construct the first surface S(t, u) such that its base curve
is a V3-central function. In case of a lens design, we determine the fold between the cylinder
and two cones on either side. Thus we would need a central function with respect to two centers
(the orthogonal projections of V1 and V3 on Π). If the orthogonal projections are not the same,
we observed in our experiments that it is usually sufficient to approximate this “doubly-central”
function by a Z-central function, where Z is the intersection of the line spanned by V1 and V3
with Π.

16.2.3 Surface Fitting

On a high level, the construction of the first conical or cylindrical surface involves locating a plane
Π and constructing an appropriate central base curve P(t) ∈ Π that resembles the shape of a given
input curve.

In addition to the coordinates of the 3D quad, the input for the surface fitting includes:

• A shape-defining curve, that is a curve Q(t) = (t, f(t), 0) where f(t) is a function with
f(0) = f(1) = 0.

• A scale parameter s.

• When constructing the lens design, an additional parameter ϕ that influences the orientation
of Π.

Although the following operations can be performed analytically, we explain the following in
terms of our implementation using a sampling of the input curve. Our proposed algorithm works
as follows, see Figure 16.5:

1This terminology is based on the concept of “common” 2D functions, which are central functions with respect to
the point at infinity of the z-axis.
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(a) (b) (c)

Q(t) P(t)
Z

Π

(d)

S(t, u)

Figure 16.5: Surface fitting. Illustration of the construction steps 1(a) – 1(d).

(a) Locate plane Π: For a given 3D quad, we define the design-dependent base plane Π. In case
of a cone, let Π be the plane containing the points V2, V3 and V4. In case of a cylinder, let Π
be a plane containing V2 and V4, whose orientation can be influenced by a parameter ϕ (the
rotation about V2V4). In both cases, let V be the intersection of Π with the line spanned
by V1 and V3 (in the cone design, Z = V3).

(b) Scale and orient Q(t): We scale the user defined curve so that the distance between its
endpoints equals |V2 −V4|. In addition, we scale the curve in y-direction by the user-specified
parameter s. Finally, we move the curve from the xy-plane to Π, such that Q(0) = V2 and
Q(1) = V4, such that Z lies in the y > 0 half-plane. Note that the resulting polyline might
not be Z-central and thus not suitable for the fold construction without self-intersections.

(c) Projective transformation: We apply a projective mapping to transform Q(t) into a Z-central
function. In the following, we use a local 2D coordinate system where V2 corresponds to
the origin, V4 − V2 to the x-axis, and Z lies on the half-plane with y > 0. Let Z′ denote
the coordinates of Z in this local coordinate system. Moreover, let Q′ = (Q′

1,Q′
2, . . . ,Q′

n)
be a sampling of curve Q(t) in this local coordinate system (if the curve is a polyline, let Q

contain its vertices). We use the following projective transformation to turn Q′ in a Z′-central
polyline P′ = (P′

1,P′
2, . . . ,P′

n), that is,

(Q′
x,Q′

y) 7→ P′ =
(
kQ′

x + Z′
xQ′

x

k + Q′
y

,
Z′

yQ′
y

k + Q′
y

)
where k = Z′

y − min
i

Q′
i,y.

Note that because of the choice of k, the points are bounded. In particular, the lowest
y-coordinate of P′

i is the lowest y-coordinate of

(d) Finally, depending on the application, we can either smoothly or linearly interpolate the
points of P to obtain X(t) (in world-coordinates) and construct the design-dependent initial
surface S(t, u).

16.2.4 Construction of the Remaining Surface(s)

Lastly, we employ the patch-to-cone method, as described in Lemma 12.1, to determine the location
of the crease between the constructed patch S(t, u) and a cone with apex V3. This is achieved by
utilizing the user-input 3pt, to ensure that V2 and V4 lie on the crease.

When creating a lens molecule, we calculate an additional crease that connects the cylindrical
patch S(t, u) with a cone having apex V1. This is done using the user-input 3pt to ensure that the
crease is incident with V2 and V4.

As discussed in Section 12.3 in more detail, a “good” crease point connecting a developable
surface patch and a cone has the following characteristics:

• Valid patch combination: The computed crease separates a the given developable surface
and the constructed cone into four surface patches. Out of the four possible combinations,
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Figure 16.6: Pavilion structure designed with modular quads with lenses.

only two are developable. As discussed in Section 12.3.3, we require that the denominator is
greater zero for the values of each ruling, resulting in (v − xi) · ri > (V − Xi) · Ri, where Xi

is a sampled point of X(t) and xi its development.

• Valid range: We want to make sure that the crease exists in a suitable range of the developable
surface (e.g., does not pass through the apex to the other part of the cone). This property
translates to the numerator of l(t) being greater than zero, that is, |v − xi|2> |V − Xi|2,
where Xi is a sampled point of X(t) and xi its development.

When the above inequalities are satisfied for all sampled points, we have found a valid curved
crease. In case of a cone-cone design, we then (smoothly or linearly) interpolate the crease and
construct extrusions to V1 and V2. In case of the lens design, we compute the crease for the other
cone with apex V = V1. We then extrude both creases to the corresponding cone apices and
construct the cylinder as a loft with parallel rulings between the two curves.

16.3 Modular Curved-Crease Designs
Equipped with the theory of the previous section, we apply the quad-filling method to each face
of a non-planar quad mesh. If the faces of the mesh are planar or not all quads, we can apply the
following planarity-breaking “subdivision” scheme to construct a mesh M ′ with non-planar faces
from the given mesh M .

1. Initialize M ′ with the set of vertices of M and an empty face set.

2. For every face, add a new vertex at a user-specified amount in normal direction from the
face’s center. The corresponding parameter establishes the degree of non-planarity.

3. For every interior edge, create a face containing the edge’s endpoints and the two vertices
corresponding to its adjacent faces.
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(a) (b) (c) (d)

22×

24×

Figure 16.7: Illustration of the modular curved-crease design workflow: (a) Initial mesh M . (b)
Subdivided mesh M ′. (c) Quads filled with curved-crease molecules. (d) Development consisting
of two different types of developed molecules.

Development. Applying the quad-filling method from Section 16.2 to a non-planar quad mesh
results in a shape comprised of curved-crease modules. Each curved-crease module can be unrolled,
resulting in a set of curved-crease patterns with quadrangular boundaries. However there is no
guarantee that the sum of intrinsic angles incident to a common vertex is exactly 2π, and thus the
shape might not be globally developable. For fabrication purposes, the decomposition into smaller
pieces can be beneficial. Alternatively, knowing the dimensions of the unrolled quads allows the
use of other positioning heuristics of the quads, such as polygon nesting [7] or Origamizer-based
Kirigami patterns [22].

Design variations. Tiling entire surfaces with foldable modules is a design approach used in
many fields. Some design variations of foldable lenses are shown in Maleczek et al. [94]. In our
setup, each non-planar quad of a mesh can be filled with one of six curved-crease molecule types
(see Figure 16.8). In addition, there is the freedom of changing the shape-defining curve. Our
implementation can be used to explore patterns generated by the composition of curved creases in
quads.

Figure 16.8: For each non-planar quad and fixed curve, we can select the molecule’s orientation
and type. This leads to six potential curved crease molecule designs (four cone-cone molecules and
two lens molecules).

16.4 Towards Global Origami Development
In the previous sections, we considered the non-planar faces of a quad mesh as individual folded
patches, the final mesh being a joining of these parts. However, for admissible shapes, we might
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Figure 16.9: Patters generated by subdivision and quad filling. From left to right: initial pattern,
subdivided pattern, filled cone-cone molecules, and filled lens molecules.

aim for a globally developable design that can be fabricated from a single large sheet of material
without any slits. To accomplish this, we formulated an optimization problem and implemented
it using Kangaroo, a dynamic relaxation engine plugin for Rhino/Grasshopper. Upon success, the
resulting shape often times looks wrinkled, hence the name; see Figure 16.10.

To begin, we must generate a topologically identical mesh to our given 3D mesh to serve as
our crease pattern. This mesh must be planar and should not contain overlapping faces or edges.
For simple geometries, this can be manually generated, or it can be obtained through a Tutte
embedding [106] or the ARAP method [89, 52].

The variables in the optimization problem include the positions of the 3D mesh vertices, and
optionally, the positions of the vertices in the developed mesh. In certain cases, it is desirable to
find a mesh that is compatible with a predetermined crease pattern, further limiting the space of
feasible solutions.

16.4.1 Constraints

To obtain suitable geometries, we impose the following constraints on the 3D (and optionally 2D)
vertices of the meshes:

1. Every mesh edge must have identical length in 3D and 2D.

2. Corresponding quad diagonals must be shorter in 3D than in 2D.

3. Every 2D quad’s diagonal length should be bounded by above to ensure that the constructed
first surface can be realized from a suitable Z-central function.

To prevent significant deviations from the initial configuration, we incorporate regularization
constraints into the optimization process, such as anchoring certain points to their original positions.
Moreover, it can be beneficial to restrict a sparse set of vertices to remain on the design surface,
preserving proximity to the original shape. Similarly, constraining boundary vertices to stay on
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Figure 16.10: Three globally developable curved-crease designs that are based on the same mesh
and their crease patterns.

the boundary edges helps prevent them from collapsing to a single point. For more details on the
implementation, refer to Kraft et al. [46].

16.4.2 Filling a 3D Quad with a Prescribed Development

Upon success of the above described optimization process of the 3D and 2D mesh, we aim to fill each
3D non-planar quad with a curved-crease molecule whose development fits the corresponding 2D
face. The scale parameter s, as discussed in Section 16.2.3, provides a degree of design flexibility.
Adjusting this scale parameter affects the intrinsic opening angle of the cone in the case of the
cone-cone design, or the intrinsic distance between two points on a cylinder in the case of a lens
design.

Determining an appropriate scale parameter that corresponds to the desired opening angle or
diagonal distance of the target 2D quad can be framed as finding the root of a scalar function.
We have observed that in most valid configurations, this scalar function demonstrates monotonic
behavior.

16.5 Fabrication
Figure 16.12 displays two shapes designed by the methods of this chapter that were fabricated using
paper-backed veneer.

In collaboration with the RnKOLEKTIVE [69], our implementation was used to construct a
tower using discretized folded panels made from 1.2mm Hylite. The tower was fabricated using
milling on the Zünd machine and was showcased at the MIT MediaLab in Summer 2023, as depicted
in Figure 16.11.
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Figure 16.11: A tower with discretized lens molecules, displayed at the MIT MediaLab during
summer 2023.
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(a) A curved-crease icosahedron made from oak
veneer consisting of 30 trimmed lenses.

(b) An ornament fabricated from four types of
paper-backed veneer.

Figure 16.12: Two shapes made from paper-backed veneer.
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Chapter 17

Developable Regular Planar Quad
Mesh Subdivision

This chapter presents unpublished results of discussions with Erik Demaine and Tomohiro Tachi.

Overview

In this chapter, we present an approach for subdividing regular planar quad (PQ) meshes while
preserving the planarity of faces without requiring an additional optimization step. Our method
involves replacing each face of the mesh with a generalized cylinder or cone. We demonstrate
how our approach can be modified using the patch-to-projective-cone construction to maintain the
overall developability of the PQ mesh when the input mesh is close to being developable.

By using this construction technique, we propose a framework for the interactive design of
precise discretizations of curved folding. Specifically, we use a coarse PQ mesh as the control
geometry to efficiently compute the subdivided approximation. The time required for our approach
scales linearly with the number of rulings, which eliminates the typical trade-off between surface
fineness and interactivity encountered in optimization-based methods.

17.1 Introduction
Curved-crease origami is widely used for design and engineering applications given its simplicity
of fabrication and aesthetic expression [31, 15], resulting in demand for interactively exploring the
design space of shapes possible by folding sheets along curves. However, the curved-crease design
process is challenging given the complicated geometric constraints on feasible solutions [17, 18].

Past work has developed constructive and optimization-based approaches for interactively de-
signing curved folding. Constructive approaches can robustly produce precise and fine results but
have been limited to a small family of curved folding, namely, curved origami that can be con-
structed by reflection of a single developable surface [60], curved folding produced from a single
curve [100], or curved folding with a prescribed position of singularities of rulings using the patch-to-
cylinder and patch-to-cone constructions [64]. Optimization-based approaches can handle a wider
variety of origami patterns through the discretization of developable surfaces. Planar-quad (PQ)
meshes are discrete analogues of developable surfaces [82], but they are generally prone to jaggy
artifacts and computation instability when rulings change drastically. Despite various approaches
to tackle these problems, there is a persistent trade-off between the fineness of the surface and
interactivity.
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Figure 17.1: Illustration of the robust behavior of our method for significantly changing rulings.

In this chapter, we present a constructive approach for subdividing a coarse regular origami
pattern, resulting in a finely discretized curved-crease origami design without the need for further
optimization. Using a coarse pattern as the control geometry, this approach efficiently computes
exact developable PQ meshes in linear time. Through this method, we achieve improved inter-
activity, both in terms of computation time and robustness, as illustrated in Figure 17.1. This
advancement significantly broadens the range of achievable curved-crease origami designs using
constructive techniques.

To begin, we demonstrate how scaling transformations can be used for the subdivision of a PQ
strip in Section 17.2. Next, we showcase how the subdivision of the PQ strip can be propagated
throughout the regular PQ mesh without the requirement of additional optimization in Section 17.3.
Finally, we explore the application of the patch-to-projective-cone construction in Section 17.4,
enabling the generation of developable meshes when the input mesh is already close to being
developable.

Figure 17.2: Illustration of the proposed subdivision scheme on a PQ strip in the shape of a trefoil
knot.

17.2 PQ Strip Subdivision
We first consider a construction that subdivides a PQ strip using a sequence of discrete cylinders
and cones.

The main idea of the proposed construction is to subdivide one of the boundary curves of the
PQ strip using scaling with respect to the intersection of the incident interior edges. This process
determines the subdivided edge directions, resulting in rulings of piece-wise discrete cylinders and
cones. This idea can be formalized as follows:

Let P1 = {P1,0, . . . ,P1,n−1} and P2 = {P2,0, . . . ,P2,n−1}, where n > 3, represent the bounding
polylines of the strip, and let m be the desired number of subdivisions we aim to introduce per face.
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Figure 17.3: Illustration of the PQ strip subdivision notation.

As a result of this subdivision process, the subdivided PQ strip’s boundary polylines will possess
(n− 1)m+ 1 vertices.

First, we interpolate the boundary polylines P1 and P2 with two smooth cubic splines X1(t) and
X2(t) such that X1(t1,i) = P1,i and X2(t2,i) = P2,i for 0 ≤ i < n, where tj,i are some appropriately
chosen knot values.

We then evaluate the curves at intermediate parameters, resulting in polylines Q1 and Q2 with
(n− 1)m+ 1 vertices. Specifically, we evaluate the curve at m equidistant convex combinations of
the interpolated parameter values, that is, for 0 ≤ im+ j < (n− 1)m+ 1, where 0 ≤ i < n− 1 and
0 ≤ j ≤ m, define for k ∈ {1, 2}

Qk,im+j = Xk

(
m+ 1 − j

m+ 1 tk,i + j

m+ 1 tk,i+1

)
.

Note that the original input points are contained in the subdivided polylines.
The mesh obtained by lofting Q1 and Q2 does not necessarily have planar faces. Instead of

choosing both boundary polylines, we choose one of them to be the shape-defining polyline QA, and
the other to be the length-defining polyline QL. The points of the shape-defining polylines will be
the vertices of the final subdivided mesh, and we use scale transformation to obtain the points of
the second boundary curve QB of the subdivided PQ mesh.

For each face, consider a scale transformation defined by two corresponding pairs of points (as
discussed in Lemma 12.4): P1,i 7→ P2,i and P1,i+1 7→ P′

1,i+1, where P′
1,i+1 denotes the intersection

of P1,i+1P2,i+1 with the line parallel to P1,iP1,i+1 incident to P2,i. For each point QA,l ∈ QA

corresponding to that face (resp. interval [tA,i, tA,i+1]), we choose the incident ruling to be spanned
by QA,l and its scaled counterpart Q′

A,l.
We then use the length-defining polyline to appropriately “trim” the computed ruling, resulting

in the corresponding point QB,l ∈ QB. For example, we can choose QB,l to be the closest point

273



Figure 17.4: Illustration of a problematic input for the PQ strip subdivision scheme.

of QL,l to QA,lQ′
A,l. Depending on the input and design requirements, other heuristics for the

locations of the points of QB might be more appropriate.
Although the constructed points QB,im+j do not generally lie on the the length-defining curve,

the vertices of the original polyline will be a subset of QB. Lastly, we construct the subdivided
mesh as a loft between the two polylines QA and QB.

Note that since the subdivided edges are obtained by scaling with respect to the intersection
of adjacent interior input mesh edges, their extensions pass through the center of scaling of the
corresponding face and are therefore pairwise coplanar:

Corollary 17.1. The faces of the subdivided strip spanned by the polylines QA and QB are planar.
Furthermore, the input strip and the subdivided strip have the same set of singularities.

The preservation of the same set of singularities is especially advantageous. as it ensures that
no new singularities are introduced during the subdivision process.

The overall computational complexity is Θ(nm): Cubic spline interpolation amounts in solving
a tridiagonal system of linear equations, which can be solved in linear time ([72], Section 9.2.3) in
the number of interpolated points. The remaining construction is linear in the number of sampled
rulings.

17.2.1 Limitations

The success of the proposed construction heavily depends on the input. Specifically, when dealing
with “thin” faces, the resulting subdivisions may not yield desirable outcomes, as depicted in
Figure 17.4. However, in certain instances, this issue can be mitigated by making adjustments to
the chosen knots or choosing a different trimming heuristic.

17.3 Regular PQ Mesh Subdivision
We experimented with propagating this method along the rows of a regular PQ mesh, resulting in
a constructive subdivision approach for regular PQ meshes; see Figure 17.5.

Specifically, given a regular PQ mesh, we select one row of consecutive planar quads and subject
this strip to the PQ strip subdivision discussed in Section 17.2; see Figure 17.5(b). Subsequently,
we sequentially propagate this subdivision to adjacent rows, using the points on the common curve
as the sampled points of the shape-defining curve; see Figure 17.5(c)-(d). Upon success, this
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Figure 17.5: Illustration of the proposed regular PQ mesh subdivision construction. From left to
right: Input mesh; Subdivision of first PQ strip with m = 3; Two propagations of the subdivision
to neighboring strips; Subdivision of the resulting mesh in the other direction.

process yields a watertight, one-directional subdivision with planar faces; see Figure 17.5(d) and
Figure 17.6a (top).

By performing these one-directional subdivision procedures in both directions with the same
number of subdivisions, we obtain a subdivision scheme, wherein upon success each planar quad is
replaced with (m+1)×(m+1) planar faces, as shown in Figure 17.5(e) and Figure 17.6a (bottom).

17.3.1 Limitations

In contrast to well-established subdivision schemes, our method lacks a guarantee for convexity
and overall success. In particular, the possible issues discussed in the Section 17.2.1 can now
occur at each sampled row. However, despite this limitation, the experimental results have been
surprisingly promising, demonstrating a high level of well-behavedness; as illustrated in Figure 17.6a
and Figure 17.6b.

17.4 Developable PQ Mesh Subdivision
Note, however, that the proposed subdivision scheme does not, in general, preserve the developabil-
ity of vertices, even if the initial mesh corresponds to a developable coarse counterpart of a curved
origami pattern; see Figure 17.5. In the following, we will discuss how to use the patch-to-patch
approximation with ruling planes, as discussed in Section 12.7, to construct a subdivided mesh
with developable vertices that approximates the input mesh.

Input. The input to our scheme is an almost developable regular PQ mesh, where one family of
edges represents rulings, and the other family corresponds to discretized curves. It is essential to
ensure that the mountain-valley assignment along the discretized curves is consistent.

Without loss of generality, we denote the vertices of the input mesh as Pi,j for 0 ≤ i < r and
0 ≤ j < n, where the edges Pi,jPi+1,j represent rulings, and the polylines Pi = (Pi,0, . . . ,Pi,n−1)
correspond to the discretized curves.
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(a) First row: Input mesh and the proposed one-directional subdivisions.
Second row: Two-directional subdivision with m ∈ {2, 4, 8}.

(b) Bidirectional subdivision with m ∈ {2, 4, 8} of the freeform eggbox origami variation.

Figure 17.6: Examples of the proposed regular PQ mesh subdivision.

Subdiving the first PQ strip. Similarly to before, we begin by constructing a subdivision of
the PQ strip that connects the polylines P1 with P0, where we select the subdivision of P1 to
specify the shape-defining polyline. Let Q1 and Q0 denote the corresponding subdivided polylines.

Propagating the subdivision. We will now discuss how to connect a given subdivided PQ strip
between Qi−1 and Qi with the next row using a patch-to-patch approximation with ruling planes.
This process will yield new locations for points of Qi and incident rulings of the second surface,
ensuring that the vertices of Qi become developable; see Figure 17.7.

To achieve this, we define the ruling planes Ei as the planes spanned by Pi+1,j and the strip’s
rulings corresponding to the mesh edges Pi−1,jPi,j . Additionally, we set A0 = Pi,0 and A′

0 =
Pi+1,0. Furthermore, we define the initial tangent direction as the projection of the tangent of the
curve interpolating Pi at A0 to the first quad of the PQ strip connecting Qi−1 with Qi. Note that
this uniquely defines the corresponding 2D inputs a0 and a′

0, as discussed in Section 12.4.4.
Now, using the patch-to-patch approximation, we update the location of the points Qi to the

computed crease points. Additionally, we determine the ruling directions of the second patch and
the points Qi+1 corresponding to the second boundary of the next strip.

It is important to note that the constructed rulings, in general, may not align with the ruling
edges of the mesh. However, based on our experiments, we observed that for suitable, almost
developable meshes, this deviation is not significant.

276



A0

A′
0

P0,0

P1,0

P0,1

A0

A′
0

E1
E1

Figure 17.7: Illustration of the proposed developable regular PQ mesh subdivision construction.
From left to right: Developable input mesh; Subdivision of the first PQ strip with m = 3; Patch-
to-patch constructions using ruling planes; Subdivided developable PQ mesh.

Retrieving the mesh. By performing this construction sequentially for the r − 2 interior rows
of the mesh, we obtain r subdivided polylines Qi. Finally, we construct the subdivided mesh by
lofting between consecutive polylines. Due to this construction, the mesh possesses planar quad
faces and developable vertices. Moreover, this entire process runs in linear time with respect to the
number of sampled rulings, making it well-suited for interactive design.

Geodesic folds. Finally, note that a variation of this approach can be used to construct strips
that compose a geodesic strip model; see Figure 17.9.

17.4.1 Results

We implemented our design system as a custom component for Grasshopper / Rhino [81, 57]. In
combination with Crane [96] and Freeform Origami [99] software tools, we interactively design the
coarse mesh while computing its smooth refinement.

Although the crease points have the possibility to move away from the initial mesh vertices,
the singularities and vertices of the input and output mesh usually do not deviate too much (see
e.g. Figure 17.1). We observed good results, which have numerically planar faces and numerically
developable vertices.

17.4.2 Limitations and Future Work

We limit our input to a regular (degree-4) quadrangular mesh that is homeomorphic to a disk.
Although adding singularities by inserting interior vertices with other valences can increase design
possibilities, the application of our method is still restricted to symmetric cases (as shown in
Figure 17.12).

Generic non-degree-4 meshes cause the sequential construction to loop back to the original
position, and our current construction does not support closure constraints. However, we believe
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Figure 17.8: Left: A freeform variation of the Miura-ori origami pattern optimized for planarity of
faces and developability of vertices. Right: One-directional developable refinement.

Figure 17.9: Left: A freeform variation of the flat-foldable eggbox origami pattern optimized for
planarity of faces and bidirectional flat-foldability of vertices (BDFFPQ, [98]). Right: Refinement
resulting in two one-directional flat-foldable PQ meshes, that is, discrete counterparts of geodesic
strip models.

that some closure constraints can potentially be solved by optimization on the coarse mesh, thus
preserving the overall efficiency of the constructive method. Nonetheless, characterizing reasonable
closure constraints and implementing an interactive solver remain as future work.

Extending our method to algebraically defined smooth surfaces, possibly combining with [51], is
also interesting future work. Because the ruling-length-based construction works for each sampled
ruling, we may extract the positions of rulings for a parameter u whenever it is necessary. The only
unsolved issue for the smooth representation is the need for computing the exact development, for
which we currently rely on the PQ mesh.
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Figure 17.10: Application of the developable PQ mesh subdivision to a mesh approximating an
open curve in shape of a trefoil knot with pleats.

Figure 17.11: Application of the developable PQ mesh subdivision to a mesh approximating an
open curve with pleats.

Figure 17.12: The motion of a subdivided tripod demonstrates a limitation of our method on a
non-regular PQ mesh. Here, the method is applied to only one half of one arm and then mirrored
using symmetry.
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Chapter 18

Conclusion

18.1 Summary and Limitations
This dissertation examines shapes achieved by gluing or creasing flat sheets of material, like pa-
per, along curves. The research advances existing theory for their computation, considers specific
example shapes, and introduces novel tools for their computational design.

18.1.1 Theory of Gluing and Creasing Developable Patches

Summary of contributions

• We generalize the statement that C2 ruled surfaces are developable if and only if their rulings
are torsal to surfaces that are only C1.

• For developable surfaces with C2 directrices, we adapt the description of developable ruled
surfaces and introduce patch developables.

• We generalize the approach of creasing along a curved crease with specified rulings to gluing
two developed patches with specified rulings.

• We show how to join three patches with only partial ruling information.

• We show that gluing patches along tangent-parallel curves with parallel rulings of every
second-to-next patch results in rigidly foldable structures.

• We formulate the join-and-fan method, a simplified computation for the case of gluing two
smooth or discrete patches that are either cylinders or cones. We provide necessary and
sufficient conditions for the existence of a rigid folding motion in the case of discrete creases.

• We discover two rigidly foldable discretizations of conic crease patterns and classify when
they are flat-foldable.

• We formulate the patch-to-cylinder and patch-to-cone constructions that determine the crease
between a smooth or discrete developable patch and a cylinder or a cone. By combining
multiple constructions, we obtain a construction of a crease where the second surface consists
of a sequence of cylinders and cones.
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Limitations

Limited connectivity. The presented computations are applicable only sequentially. As such,
they are limited to shapes with a tree-like connectivity of patches. Patches that form closed loops
and glue or crease points incident to multiple glue or crease curves require special considerations.

Limited by algebraic complexity. The curvature-based approach for joining general devel-
opable patches leads to systems of differential equations that may become increasingly challenging
to solve as the glue or crease pattern becomes more complex. In many cases, numerical differential
solvers may accumulate numerical errors.

Computational limitation of partial ruling information. The presented method for joining
three patches with only partial ruling information is restricted to combinations of curves where the
relationship between the arc-length parametrization and curvature of one pair of joined curves is
explicitly known. This limitation arises from the practical difficulty of solving for the input function
of a numeric function.

Limited information on folding motion. While we have identified some valid combinations
of glue or crease curves that result in rigidly-foldable crease or glue patterns, determining how
the folding motion progresses is generally challenging. Real-life experiments can sometimes be
misleading, as actual paper is forgiving and permits imperfections during folding.

18.1.2 Parametric Construction of Shapes Obtained by Gluing or Creasing
Patches

Summary of contributions

• We determine a closed-form expression for the parametrization of some variations of the gluing
of a polygon and a circle, and identify unique convex gluings.

• Up to elliptic integrals, we determine the parametrization of the Vesica Piscis and conic
creases of constant fold angle.

• Up to numeric integrals and the integration of the Frenet-Serret equations, we compute ap-
proximations of numerous shapes, including families of elliptic Anti D-forms, pleated creases
of closed curves, some variations of the gluing of a square and a circle, Klammer’s kinetic
sculpture, and David Huffman’s hexagonal column.

Limitations

Need good guess for rulings. Currently, for the reconstruction of shapes achieved through
gluing or creasing paper, we depend on the availability of appropriate initial guesses for ruling
directions for at least some parts of the shape.

Challenges with spiraling rulings. When investigating shapes like D-forms or general spirals,
none of the previously mentioned techniques were successful. We conjecture the existence of a
category of shapes with rule segments exhibiting spiraling behavior, which cannot be effectively
addressed using the methods developed in this thesis.
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Numerical existence. Concerning the most general approach, which involves the integration of
the Frenet-Serret equations, we currently lack the necessary tools to estimate numerical error and
deduce (numerical) existence for certain shapes.

18.1.3 Computational Design Tools for Shapes Obtained by Gluing or Creasing
Patches

Summary of contributions

• We implement the presented variations of the patch-to-cylinder and patch-to-cone construc-
tions as an interactive design tool for constructing shapes with multiple curved creases.

• We implement a design tool for creating origami spirals from cones with planar creases.

• We propose two algorithmic design strategies to approximate a polyhedral shape with curved
crease designs. The first method replaces polyhedron edges with right circular cylinders and
vertices with cones connected to adjacent cylinders via smooth curved creases. The second
method fills non-planar quad faces of a polyhedron with curved-crease molecules.

• We introduce a linear-time subdivision scheme for regular, developable planar quad meshes
by replacing the faces of the mesh with discretized cylinders or cones.

Limitations

Limited connectivity. The additive constructions work only for tree-like connectivity of patches.
Consequently, closing a circular array of patches relies on a careful setup or symmetry of the target
shape.

Geometry limited to cylinders and cones. Our algorithmic design tools exploit the simplicity
of cylinders and cones. General tangent developables are approximated by a series of cylinders and
cones.

Software tools support only zero-thickness surfaces. In many applications, material thick-
ness significantly impacts the behavior of the shape. The presented tools consider only zero-
thickness surfaces, and are thus, in some cases, misleading when it comes to real-world behavior.

Limited support for fabrication. Some of the implemented tools could use more work on the
workflow of actually obtaining a manufacturable cut and crease file or latches for connections of
patches.

Not universal. The proposed design tools are limited to specific families of shapes and do not
support the desirable feature of starting from a planar pattern and computing a valid ruling layout
and corresponding 3D shape.

18.2 Open Problems and Future Work
We believe that shapes obtained by gluing or creasing planar sheets hold significant potential in the
fabrication of versatile, functional, and material-efficient structures. One of our primary objectives
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is to bridge the gap between theory and practical applications by providing easy access to the
design and knowledge required for the computation and creation of such shapes.

In addition to encouraging further interdisciplinary research on the materialization and proper-
ties of these shapes, we have identified the following list of potential theoretical research directions
that build upon the contents of this thesis.

18.2.1 Theoretical Background

Further analysis of C1 developable patches. In Section 2.2.1, we demonstrate that ruled
surfaces are developable surfaces if and only if their rulings are torsal. However, in the general, non-
cylindrical, and non-conical cases, the singular curve might be only continuous and not continuously
differentiable. In future work, we aim to investigate this special case in more detail and develop an
approach to visualize examples of such surfaces.

Gluing without patch characteristics. In Section 2.2.1, we illustrate how to compute the
development of C1 developable ruled surfaces. Based on our discoveries, we intend to explore how
gluing and creasing along directrices of general developables can be formulated without the need
for the curvature-based approach presented in Part I of the thesis.

18.2.2 Part I: Curvature-Based Computation of Configurations

Special cases of gluing two patches with specified rulings. In Section 3.3, we extend the
concept of creasing two patches to gluing. While two known special cases exist for creasing along a
single curve, namely planar creases and creases with a constant fold angle, we leave the exploration
of special cases for when two patches are glued along non-congruent curves as a subject for future
work.

Rigid-ruling folding of planar and constant-angle creases. In Section 3.5.2, we demonstrate
that tangent-parallel creases enable rigid-ruling folding motions. In generic discrete scenarios,
tangent-parallel curves are the only curves compatible with planar creases, resulting in rigidly
foldable crease-rule patterns. Interpreting smooth patches as the limit of a fine sampling of the
discrete case, it is plausible that this property remains true in the smooth case. However, when
dealing with constant-angle creases, there may be configurations that are not tangent-parallel, as
illustrated in Section 6.3 by the logarithmic spiral example or Chapter 10 by compatible conic
crease combinations with reciprocal eccentricity. Further exploration of compatible curves and an
explanation of the difference between planar creases and creases with a constant fold angle are
subjects for future research.

Closure constraints and spiraling rulings. As pointed out in Section 7.3, we conjecture that
certain closed shapes, such as some spirals or D-forms derived from ellipses, have rulings that
exhibit spiraling behavior, making the tools presented in this thesis inapplicable. Furthermore, the
presented tools are limited to patches with tree-like connectivity, and closure of a circular array of
patches currently relies on the symmetry of the shape. In future work, we aim to investigate tools
for the parametric reconstruction of such shapes.

Numerical tools for existence proofs. As it is probably very unlikely to obtain closed-form
solutions for some of the studied shapes, it would be desirable to seek alternative forms for math-
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ematical existence claims. In future work, we aim to develop tools to rigorously establish the
numerical existence of shapes.

Ruling solver. The ultimate goal in the study of shapes made from developable patches is to
develop a strategy to determine a valid ruling layout for any given glue or crease pattern.

Exploring gluing and creasing of other surface types. We would be interested in exploring
the concept of gluing and creasing of other families of surfaces, such as ruled surfaces or surfaces
with constant Gaussian curvature.

18.2.3 Part II: Ruling-Length-Based Computation of Configurations of Joined
Cylinders and Cones

Rigidly foldable combinations of projective cones with collinear apices. In Chapter 8,
we address the special case of computing rigidly foldable configurations of glued or folded cylinders
and cones using the join-and-fan method. Building upon Chapter 10, we aim in future work to
classify combinations of triples of projective cones with collinear apices that result in rigidly foldable
structures.

Design tool for rigidly foldable patterns from conics. Similar to Section 17.4, we aim to
explore how a user-specified crease pattern can be approximated using a series of compatible conic
crease combinations, not necessarily with collinear apices, to create flat and rigidly foldable crease
patterns.

18.2.4 Part III: Ruling-Length-Based Computation of Creases

Generalization of patch-to-cylinder and patch-to-cone constructions to gluing. In Chap-
ter 12, we discussed how to use a ruling-based approach to compute the crease between a cylinder
and a cone with a specified cylinder base plane or cone apex. We wonder whether similar consid-
erations can be applied to computing the glue curve between a patch and a cylinder or cone with
a given ruling length.

Differently constraining curve in patch-to-patch construction. Additionally, we would
like to explore variations of the patch-to-projective-cone construction by constraining the crease
curve differently, such as by constraining it to lie on a Monge patch.

Variations of conic spirals. In Chapter 14, we demonstrate the construction of conic spirals
using a circular array of an even number of curves. We would also like to explore alternative
construction methods, including the possibility of creating rigidly foldable spirals. Additionally,
inspired by Huffman, we aim to investigate spirals in which the creases are formed by an array of
pairs of appropriate curves. Furthermore, drawing inspiration from Lukascheva’s tessellation, we
leave the exploration of methods for tessellating the spirals to future work.

Other pattern design tools. In Chapter 16, we discussed how to fill non-planar quads with
curved-crease elements. In future work, we plan to explore other tessellations to approximate a
given 3D shape using curved-crease elements.
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Generalize regular PQ mesh subdivision. As of now, the subdivision method presented in
Chapter 17 is limited to regular planar quad meshes. We aspire to investigate high-level optimiza-
tion approaches to extend the method’s applicability to meshes with more general connectivity.

Algorithmically streamlined production. In the future, we plan to further develop our im-
plementation to facilitate the fabrication and design of computed shapes, including considerations
for thickness, surface development, and the labeling of corresponding patches.

288



Bibliography

[1] Zachary Abel, Jason Cantarella, Erik D. Demaine, David Eppstein, Thomas C. Hull, Jason S.
Ku, Robert J. Lang, and Tomohiro Tachi. Rigid origami vertices: Conditions and forcing
sets. Journal of Computational Geometry, 7(1):171–184, 2016.

[2] Esther Dora Adler. “A new unity!”: The art and pedagogy of Josef Albers. University of
Maryland, College Park, 2004.

[3] Leonardo Alese. Propagation of curved folding: the folded annulus with multiple creases
exists. Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 63(1):19–
43, 2022.

[4] Alexander D. Alexandrov. Convex Polyhedra. Springer, Berlin, 2005.

[5] Carlos Martinez Architekten. Knies Zauberhut, 2018–2020. https://carlosmartinez.ch/
arbeiten/knies-kinderzoo/.

[6] Manan Arya, David Webb, Samuel C. Bradford, Louis Adams, Velibor Cormarkovic, Gary
Wang, Mehran Mobrem, Kenzo Neff, Neal Beidleman, John D. Stienmier, Gregg Freebury,
Kamron A. Medina, David Hepper, Dana E. Turse, George Antoun, Cory Rupp, and Laura
Hoffman. Origami-inspired Optical Shield for a Starshade Inner Disk Testbed: Design, fab-
rication, and analysis. In AIAA Scitech 2021 Forum, 2021.

[7] Julia A. Bennell and Jose F. Oliveira. The geometry of nesting problems: A tutorial. European
Journal of Operational Research, 184(2):397–415, 2008.

[8] Marcel Berger and Bernard Gostiaux. Differential Geometry: Manifolds, Curves, and Sur-
faces, volume 115. Springer Science & Business Media, 2012.

[9] Alexandre Binninger, Floor Verhoeven, Philipp Herholz, and Olga Sorkine-Hornung. Devel-
opable approximation via Gauss image thinning. Computer Graphics Forum, pages 289–300,
2021.

[10] Sergey Bochkanov. ALGLIB, 1999–2020. https://www.alglib.net/.

[11] Vincent Borrelli, Saïd Jabrane, Francis Lazarus, and Boris Thibert. Flat tori in three-
dimensional space and convex integration. Proceedings of the National Academy of Sciences,
109(19):7218–7223, 2012.

[12] H. Brauner. Differentialgeometrie, Vorlesung im WS 1966/1967. Technische Hochschule
Stuttgart, Mathematisches Institut B, 1966/67.

[13] Julie Steele Chalfant. Analysis and design of developable surfaces for shipbuilding. PhD thesis,
Massachusetts Institute of Technology, 1997.

289

https://carlosmartinez.ch/arbeiten/knies-kinderzoo/
https://carlosmartinez.ch/arbeiten/knies-kinderzoo/
https://www.alglib.net/


[14] Suryansh Chandra, Shajay Bhooshan, and Mustafa El-Sayed. Curve-folding polyhedra skele-
tons through smoothing. In Origami6: Proceedings of the 6th International Meeting on
Origami in Science, Mathematics and Education (OSME 2014), pages 231–240, 2015.

[15] Erik D. Demaine, Martin Demaine, Duks Koschitz, and Tomohiro Tachi. A review on curved
creases in art, design and mathematics. Symmetry: Culture and Science, 26(2):145–161, 2015.

[16] Erik D. Demaine, Martin L. Demaine, Vi Hart, Gregory N. Price, and Tomohiro Tachi.
(Non)existence of pleated folds: how paper folds between creases. Graphs and Combinatorics,
27(3):377–397, 2011.

[17] Erik D. Demaine, Martin L. Demaine, David A. Huffman, Duks Koschitz, and Tomohiro
Tachi. Characterization of curved creases and rulings: Design and analysis of lens tessel-
lations. In Origami6: Proceedings of the 6th International Meeting on Origami in Science,
Mathematics and Education (OSME 2015), pages 209–230, 2015.

[18] Erik D. Demaine, Martin L. Demaine, David A. Huffman, Duks Koschitz, and Tomohiro
Tachi. Conic crease patterns with reflecting rule lines. In Origami7: Proceedings of the 7th
International Meeting on Origami in Science, Mathematics and Education (OSME 2018),
pages 573–590, 2018.

[19] Erik D. Demaine, Martin L. Demaine, and Duks Koschitz. Reconstructing David Huffman’s
legacy in curved-crease folding. In Origami5: Proceedings of the 5th International Meeting
on Origami in Science, Mathematics and Education (OSME 2011), pages 39–52. 2011.

[20] Erik D. Demaine, Klara Mundilova, and Tomohiro Tachi. Locally flat and rigidly foldable
discretizations of conic crease patterns with reflecting rule lines. In ICGG 2022-Proceedings
of the 20th International Conference on Geometry and Graphics, pages 185–196. Springer,
2022.

[21] Erik D. Demaine and Gregory N. Price. Generalized D-Forms have no spurious creases.
Discrete & Computational Geometry, 43(1):179, 2010.

[22] Erik D. Demaine and Tomohiro Tachi. Origamizer: A practical algorithm for folding any
polyhedron. In 33rd International Symposium on Computational Geometry (SoCG 2017),
2017.

[23] Hans Dirnböck and Hellmuth Stachel. The development of the Oloid. J. Geom. Graph,
1:105–118, 1997.

[24] Thomas A. Evans, Robert J. Lang, Spencer P. Magleby, and Larry L. Howell. Rigidly foldable
origami twists. Origami6: Proceedings of the 6th International Meeting on Origami in Science,
Mathematics and Education (OSME 2015), 6(1):119–130, 2015.

[25] Riccardo Foschi, Robby Kraft, Rupert Maleczek, Klara Mundilova, and Tomohiro Tachi. How
to use parametric curved folding design methods – a case study and comparison. Proceedings
of IASS Annual Symposia, 2020(23):1–11, 2020.

[26] Dmitry Fuchs and Serge Tabachnikov. More on paperfolding. The American Mathematical
Monthly, 106(1):27–35, 1999.

[27] Flux Furniture. Flux Chair. https://www.fluxfurniture.com/items/chair/.

290

https://www.fluxfurniture.com/items/chair/


[28] J.M. Gattas and Z. You. The behaviour of curved-crease foldcores under low-velocity impact
loads. International Journal of Solids and Structures, 53:80–91, 2015.

[29] Karl F. Gauss and Peter Pesic. General investigations of curved surfaces. Courier Corpora-
tion, 2005.

[30] Frank Gehry Architects. Fondation Louis Vuitton. https://www.fondationlouisvuitton.fr/
en/fondation/the-building.

[31] Georg Glaeser and Franz Gruber. Developable surfaces in contemporary architecture. Journal
of Mathematics and the Arts, 1(1):59–71, 2007.

[32] Zaha Hadid. Arum (Venice Biennale 2012), 2012. https://www.robofold.com/make/
consultancy/projects/arum-for-zaha-hadid-architects0.

[33] Philip Hartman and Aurel Wintner. On the fundamental equations of differential geometry.
American Journal of Mathematics, 72(4):757–774, 1950.

[34] David A. Huffman. Curvature and creases: A primer on paper. IEEE Transactions on
computers, 25(10):1010–1019, 1976.

[35] Victor C. Inza, Florian Rist, Johannes Wallner, and Helmut Pottmann. Developable quad
meshes. ACM Trans. Graph., (6), December 2022.

[36] Alexandra Ion, Michael Rabinovich, Philipp Herholz, and Olga Sorkine-Hornung. Shape
approximation by developable wrapping. ACM Trans. Graph., 39(6), November 2020.

[37] Ivan Izmestiev, Arvin Rasoulzadeh, and Jonas Tervooren. Isometric deformations of discrete
and smooth T-surfaces. arXiv preprint arXiv:2302.08925, 2023.

[38] Caigui Jiang, Klara Mundilova, Florian Rist, Johannes Wallner, and Helmut Pottmann.
Curve-pleated structures. ACM Trans. Graph., 38(6):169:1–169:13, November 2019.

[39] Caigui Jiang, Cheng Wang, Florian Rist, Johannes Wallner, and Helmut Pottmann. Quad-
mesh based isometric mappings and developable surfaces. ACM Trans. Graph., 39(4), August
2020.

[40] Daniel Kane, Gregory N. Price, and Erik D. Demaine. A pseudopolynomial algorithm for
Alexandrov’s Theorem. In Algorithms and Data Structures: 11th International Symposium,
WADS 2009, Banff, Canada, August 21-23, 2009. Proceedings 11, pages 435–446. Springer,
2009.

[41] Martin Kilian, Simon Flöry, Zhonggui Chen, Niloy J. Mitra, Alla Sheffer, and Helmut
Pottmann. Developable surfaces with curved creases. Advances in Architectural Geometry
2008, pages 33–36, 2008.

[42] Maximilan Klammer. Polyannular cyclide: Challenging static architectures, an exploration
on cyclic processes, shapes and movements. Master’s thesis, Academy of Fine Arts Vienna,
2019.

[43] Duks Koschitz. Computational design with curved creases: David Huffman’s approach to
paperfolding. PhD thesis, MIT, 2014.

291

https://www.fondationlouisvuitton.fr/en/fondation/the-building
https://www.fondationlouisvuitton.fr/en/fondation/the-building
https://www.robofold.com/make/consultancy/projects/arum-for-zaha-hadid-architects0
https://www.robofold.com/make/consultancy/projects/arum-for-zaha-hadid-architects0


[44] Duks Koschitz. Curved-crease paperfolding shell. In Proceedings of IASS Annual Symposia,
number 13, pages 1–8, 2019.

[45] Leon Kotin. Solutions of systems of periodic differential equations. Journal of Mathematical
Analysis and Applications, 8(1):52–56, 1964.

[46] Robby Kraft, Rupert Maleczek, Klara Mundilova, and Tomohiro Tachi. From quad filling to
wrinkled surfaces. Advances in Architectural Geometry 2023, 6:327, 2023.

[47] Robert J. Lang, Spencer Magleby, and Larry Howell. Single degree-of-freedom rigidly foldable
cut origami flashers. Journal of Mechanisms and Robotics, 8(3):031005, 2016.

[48] Robert J. Lang, Todd Nelson, Spencer Magleby, and Larry Howell. Kinematics and discretiza-
tion of curved-fold mechanisms. In International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, volume 5B. American Society of
Mechanical Engineers, 2017.

[49] Susan Latham. https://susanlatham.net/.

[50] Ting-Uei Lee, Yan Chen, Michael T. Heitzmann, and Joseph M. Gattas. Compliant curved-
crease origami-inspired metamaterials with a programmable force-displacement response. Ma-
terials & Design, 207:109859, 2021.

[51] Stefan Leopoldseder and Helmut Pottmann. Approximation of developable surfaces with cone
spline surfaces. Computer-Aided Design, 30(7):571–582, 1998.

[52] Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J. Gortler. A local/global
approach to mesh parameterization. In Computer Graphics Forum, volume 27:5, pages 1495–
1504, 2008.

[53] Ekaterina Lukasheva. Curved Origami. New Origami Publishing, 2021.

[54] Rupert Maleczek. https://maleczek.info/.

[55] Rupert Maleczek, Klara Mundilova, and Tomohiro Tachi. Curved crease edge rounding of
polyhedral surfaces. In Advances in Architectural Geometry 2020, pages 130–153, 2020.

[56] Peter Mayrhofer. 3D-Modelling of special D-Forms made from elliptic shaped developments.
In ICGG 2010: Proceedings of the 8th International Conference on Geometry and Graphics,
2010.

[57] McNeel. Rhinoceros3D. https://www.rhino3d.com/.

[58] Jun Mitani. Column-shaped origami design based on mirror reflections. Journal for Geometry
and Graphics, 16(2):185–194, 2012.

[59] Jun Mitani. Curved-Folding Origami Design. CRC Press, 2019.

[60] Jun Mitani and Takeo Igarashi. Interactive design of planar curved folding by reflection. In
Pacific Graphics Short Papers, 2011.

[61] Jeannine Mosely. The validity of the Orb, an Origami Model. In Third International Meeting
of Origami Science, Mathematics, and Education, AK Peters, Ltd, pages 75–82, 2002.

292

https://susanlatham.net/
https://maleczek.info/
https://www.rhino3d.com/


[62] Fabian Muhs, Simon Thissen, and Peter Middendorf. Virtual process chain for optimization
of sandwich foldcores under flatwise compression. Thin-Walled Structures, 157:107121, 2020.

[63] Klara Mundilova. Curved crease folds of spherical polyhedra with regular faces. In Proceedings
of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture, pages 423–426,
2019.

[64] Klara Mundilova. On mathematical folding of curved crease origami: Sliding developables
and parametrizations of folds into cylinders and cones. Computer-Aided Design, 115:34–41,
2019.

[65] Klara Mundilova, Erik D. Demaine, Riccardo Foschi, Robby Kraft, Rupert Maleczek, and
Tomohiro Tachi. Lotus: A curved folding design tool for Grasshopper. In Proceedings of
the 41st Annual Conference of the Association of Computer Aided Design in Architecture
(ACADIA), pages 194–203, 2021.

[66] Klara Mundilova, Erik D. Demaine, Robert Lang, and Tomohiro Tachi. Curved-crease origami
spirals constructed from reflected cones. In Proceedings of Bridges 2023: Mathematics, Art,
Music, Architecture, Education, Culture, 2023.

[67] Klara Mundilova and Tony Wills. Folding the Vesica Piscis. In Proceedings of Bridges 2018:
Mathematics, Art, Music, Architecture, Education, Culture, pages 535–538, 2018.

[68] John Nash. c1 isometric imbeddings. Annals of mathematics, pages 383–396, 1954.

[69] Alfonso Parra Rubio, Camron Blackburn, Eyal Perry, Jan Tiepelt, Jurgis Ruza, Klara
Mundilova, Quentin Bolsée, Rebecca Lin, Vera ven de Seyp, and Vlasta Kubusova. RnKolek-
tive. https://www.rnkol.art/.

[70] Francisco Pérez and José Antonio Suárez. Quasi-developable B-spline surfaces in ship hull
design. Computer-Aided Design, 39(10):853–862, 2007.

[71] Martin Peternell. Developable surface fitting to point clouds. Computer Aided Geometric
Design, 21(8):785–803, 2004.

[72] Les Piegl and Wayne Tiller. The NURBS book. Springer Science & Business Media, 1996.

[73] Daniel Piker and Will Pearson. Plankton, 2013. https://github.com/meshmash/Plankton.

[74] Helmut Pottmann, Alexander Schiftner, Pengbo Bo, Heinz Schmiedhofer, Wenping Wang,
Niccolo Baldassini, and Johannes Wallner. Freeform surfaces from single curved panels. ACM
Trans. Graph., 27(3):1–10, August 2008.

[75] Helmut Pottmann and Johannes Wallner. Computational Line Geometry. Mathematics and
Visualization. Springer Berlin Heidelberg, 2010.

[76] Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. Discrete geodesic nets for
modeling developable surfaces. ACM Transactions on Graphics (TOG), 37(2):1–17, 2018.

[77] Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. The shape space of discrete
orthogonal geodesic nets. ACM Transactions on Graphics (TOG), 37(6):1–17, 2018.

[78] Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. Modeling curved folding
with freeform deformations. ACM Transactions on Graphics (TOG), 38(6):1–12, 2019.

293

https://www.rnkol.art/
https://github.com/meshmash/Plankton


[79] Rechenraum. Goat. https://www.rechenraum.com/en/goat.html.

[80] Ron Resch. http://www.ronresch.org/.

[81] David Rutten. Grasshopper. https://www.grasshopper3d.com/.

[82] Robert Sauer. Differenzengeometrie. Springer, 1970.

[83] Silvia Sellán, Noam Aigerman, and Alec Jacobson. Developability of heightfields via rank
minimization. ACM Trans. Graph., 39(4), August 2020.

[84] Kiumars Sharifmoghaddam, Rupert Maleczek, and Georg Nawratil. Generalizing rigid-
foldable tubular structures of T-hedral type. Mechanics Research Communications, page
104151, 2023.

[85] Kiumars Sharifmoghaddam, Georg Nawratil, Arvin Rasoulzadeh, and Jonas Tervooren. Using
flexible trapezoidal quad-surfaces for transformable design. In Proceedings of IASS Annual
Symposia, number 28, pages 1–13, 2020.

[86] John Sharp. D-forms and developable surfaces. In Renaissance Banff: mathematics, music,
art, culture, pages 121–128, 2005.

[87] John Sharp. D-forms: Surprising new 3-D forms from flat curved shapes. Tarquin Publica-
tions St. Albans, 2009.

[88] Justin Solomon, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. Flexible developable
surfaces. Computer Graphics Forum, 31(5):1567–1576, 2012.

[89] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In Symposium on
Geometry processing, volume 4, pages 109–116, 2007.

[90] Michael D. Spivak. A comprehensive introduction to differential geometry, volume 3. 1999.

[91] Hellmuth Stachel. Two examples of solids constructed from given developments. J. Geom.
Graph, 20:225–241, 2016.

[92] Oded Stein, Eitan Grinspun, and Keenan Crane. Developability of triangle meshes. ACM
Trans. Graph., 37(4), July 2018.

[93] Jacob Steiner. Die Theorie der Kegelschnitte in elementarer Darstellung Theil 1. Jacob
Steiner’s Vorlesungen über synthetische Geometrie, 1875.

[94] Gabriel Stern and Rupert Maleczek. Lens tesselation inspired surface approximation. In
Origami7: Proceedings of the 7th International Meeting on Origami in Science, Mathematics
and Education (OSME 2018), pages 865–876, 2018.

[95] Saadya Sternberg. Sculptural Origami: Innovative Models, Plus a Gallery of the Artist’s
Work. Dover Publications, 2011.

[96] Kai Suto, Yuta Noma, Kotaro Tanimichi, Koya Narumi, and Tomohiro Tachi. Crane: An
integrated computational design platformfor functional, foldable, and fabricable origami prod-
ucts. ACM Transactions on Computer-Human Interaction, 2022.

[97] Richard Sweeney. https://richardsweeney.co.uk/.

294

https://www.rechenraum.com/en/goat.html
http://www.ronresch.org/
https://www.grasshopper3d.com/
https://richardsweeney.co.uk/


[98] Tomohiro Tachi. Freeform rigid-foldable structure using bidirectionally flat-foldable planar
quadrilateral mesh. In Advances in Architectural Geometry 2010, pages 87–102, Vienna, 2010.
Springer Vienna.

[99] Tomohiro Tachi. Freeform variations of origami. Journal for Geometry and Graphics,
14(2):203–215, 2010.

[100] Tomohiro Tachi. One-DOF rigid foldable structures from space curves. In Proceedings of the
IABSE-IASS Symposium, pages 20–23, 2011.

[101] Tomohiro Tachi. Composite rigid-foldable curved origami structure. Proceedings of Trans-
formables, pages 18–20, 2013.

[102] Tomohiro Tachi and Thomas C. Hull. Self-foldability of rigid origami. Journal of Mechanisms
and Robotics, 9(2), 2017.

[103] Chengcheng Tang, Pengbo Bo, Johannes Wallner, and Helmut Pottmann. Interactive design
of developable surfaces. ACM Trans. Graph., 35(2), jan 2016.

[104] Russell E. Todres. Translation of W. Wunderlich’s “On a developable Möbius band”. Journal
of Elasticity, 119:23–34, 2015.

[105] Godfried Toussaint. Simple proofs of a geometric property of four-bar linkages. The American
mathematical monthly, 110(6):482–494, 2003.

[106] William T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society,
pages 743–767, 1963.

[107] Floor Verhoeven, Amir Vaxman, Tim Hoffmann, and Olga Sorkine-Hornung. Dev2PQ: Planar
quadrilateral strip remeshing of developable surfaces. ACM Trans. Graph., 41(3), March 2022.

[108] Tony Wills. D-Forms: 3D forms from two 2D sheets. In Proceedings of Bridges 206: Mathe-
matics, Art, Music, Architecture, Education, Culture, pages 503–510, 2006.

[109] Hans M. Wingler. The Bauhaus: Weimar, Dessau, Berlin, Chicago. MIT Press, Cambridge,
Massachusetts, 1969.

[110] Steven Woodruff. How Curved Creases Enhance the Stiffness and Enable Shape Morphing of
Thin-Sheet Structures. PhD thesis, University of Michigan, 2022.

[111] Walter Wunderlich. Über ein abwickelbares Möbiusband. Monatshefte für Mathematik,
66(3):276–289, 1962.

[112] Chao Yuan, Nan Cao, and Yang Shi. A survey of developable surfaces: From shape modeling
to manufacturing. arXiv preprint arXiv:2304.09587, 2023.

295


	Table of Contents
	List of Figures
	List of Tables
	Prologue
	1 Introduction
	1.1 Motivation
	1.2 Basic Definitions
	1.3 Contributions and Related Work
	1.3.1 Theory of Gluing and Creasing Developable Patches
	1.3.2 Parametric Construction of Shapes Obtained by Gluing or Creasing Patches
	1.3.3 Computational Design Tools for Shapes Obtained by Gluing or Creasing Patches

	1.4 Thesis Overview
	1.4.1 Part I: Curvature-Based Computation of Configurations
	1.4.2 Part II: Ruling-Length-Based Computation of Configurations of Joined Cylinders and Cones
	1.4.3 Part III: Ruling-Length-Based Computation of Creases


	2 Preliminaries on Smooth and Discrete Developable Surfaces
	2.1 Ruled Surfaces
	2.1.1 Smooth Ruled Surfaces
	2.1.2 Discrete Ruled Surfaces

	2.2 Developability Condition and Development
	2.2.1 Smooth Developability Condition and Development
	2.2.2 Discrete Developability Condition and Development

	2.3 Singularities
	2.3.1 Singularities on Smooth Patches
	2.3.2 Singularities on Discrete Patches

	2.4 Tangent-Parallel Curves
	2.4.1 Tangent-Parallel Curves on Smooth Patches
	2.4.2 Tangent-Parallel Polylines on Discrete Patches



	I Curvature-Based Computation of Configurations
	3 Gluing and Creasing Using Patch Characteristics
	3.1 Introduction
	3.2 Patch Characteristics
	3.2.1 Parametrization of Ruled Patches
	3.2.2 Developability Condition and Development
	3.2.3 Developed Curvature of the Directrix
	3.2.4 Singularities
	3.2.5 Tangent-Parallel Curves
	3.2.6 Ruling Curvature
	3.2.7 Bending a Developed Patch with Specified Rulings
	3.2.8 Gluing a Patch to a Specified Curve

	3.3 Joining Two Patches Patches with Specified Rulings
	3.3.1 Notation
	3.3.2 Constraints
	3.3.3 Gluing: Joining Along Two Curves
	3.3.4 Creasing: Joining Along Two Matching Curves 
	3.3.5 Practical Considerations

	3.4 Joining Three Patches with Partial Ruling Information
	3.4.1 Notation
	3.4.2 Constraints
	3.4.3 Gluing: Joining Two Pairs of Curves
	3.4.4 Creasing: Joining two Pairs of Matching Curves
	3.4.5 Towards Joining More Surfaces

	3.5 Gluing Patches along Curves on Patches
	3.5.1 Gluing a Patch with Unspecified Rulings to a Curve on a Patch
	3.5.2 Gluing Along a Tangent-Parallel Curve on a Patch
	3.5.3 Practical Considerations


	Applications
	4 Gluing and Creasing Ellipses
	4.1 Introduction
	4.2 Joining two Ellipses to an Anti D-Form
	4.2.1 Computation
	4.2.2 Remarks on the Closure of the Gluing Curve
	4.2.3 Further Variations

	4.3 Elliptic Creases
	4.3.1 Computation of the First Curve
	4.3.2 Remarks on the Closure of the Crease Curve
	4.3.3 Adding Pleats
	4.3.4 Further Variations

	4.4 Final Remarks

	5 Connecting Two Patches with Specified Rulings to a Central Patch with Unspecified Rulings
	5.1 Introduction
	5.2 Variations of the Squaricle
	5.2.1 Ruling Analysis
	5.2.2 Computation
	5.2.3 Conclusion

	5.3 Huffman's Hexagonal Tower
	5.3.1 Ruling Analysis
	5.3.2 Computation 
	5.3.3 Conclusion


	6 Connecting Two Planar or Constant Fold Angle Creases
	6.1 Introduction
	6.2 Kinetic Sculpture from Annuli
	6.2.1 Computation
	6.2.2 Kinetic Motion

	6.3 Constant Angle Creases Along Logarithmic Spirals
	6.3.1 Computation
	6.3.2 Conclusion


	7 Parametrization of Ruling Polylines
	7.1 Introduction
	7.2 Pleated Annulus
	7.2.1 Computation
	7.2.2 Remarks on the Closure of the Shape
	7.2.3 Limitations

	7.3 Circular Spiral
	7.3.1 Ruling Analysis
	7.3.2 Computation
	7.3.3 Conclusion



	II Ruling-Length-Based Computation of Configurations of Cylinders and Cones
	8 Join-and-Fan Method
	8.1 Introduction
	8.2 Smooth Join-and-Fan Method
	8.2.1 Input
	8.2.2 Unknowns
	8.2.3 Constraints
	8.2.4 Computation Details
	8.2.5 Limitations

	8.3 Discrete Join-and-Fan Method
	8.3.1 Input
	8.3.2 Unknowns
	8.3.3 Constraints

	8.4 Rigid-Ruling Folding Motions
	8.5 Rigid Foldability of Discrete Creases between Cylinders and Cones
	8.5.1 Diagonal Property of Four-bar Linkages
	8.5.2 Extracting Linkages from Crease Pattern
	8.5.3 Collinear Linkage Configurations
	8.5.4 Linkage Motions and the Joining Step
	8.5.5 Linkage Motions and the Fanning Step

	8.6 Selected Proofs from Section 8.5

	Applications
	9 Rotationally Symmetric Polygircles
	9.1 Introduction
	9.2 Notation
	9.3 Convex Gluing of a Cylindrically-ruled Circle and Polygon
	9.4 Gluing of a Conically-ruled Circle and a Cylindrically-ruled Polygon
	9.5 Gluing of a Cylindrically-ruled Circle and a Conically-ruled Polygon
	9.6 Gluing of a Conically-ruled Circle and Polygon

	10 Conic Creases with Reflecting Rule Lines
	10.1 Introduction
	10.2 Review of Properties of Conic Sections
	10.2.1 Conics as Loci of Points
	10.2.2 Parametrization of Conics with Polar Coordinates
	10.2.3 Intersections of Tangents of Conics
	10.2.4 Reflection Properties of Conics

	10.3 Smooth Conic Crease Patterns with Reflecting Rule Lines
	10.4 Discretized Conic Crease Patterns with Reflecting Rule Lines
	10.5 Local Flat Foldability of Discretized Conic Crease Patterns
	10.5.1 Circumscribed Discretizations
	10.5.2 Inscribed Discretizations

	10.6 Conic Creases and the Join-and-Fan Method
	10.6.1 Input
	10.6.2 Joining Step
	10.6.3 Smooth Fanning Step: Parametrization of Conic Creases
	10.6.4 Discrete Fanning Step: Rigidly Foldable Discretizations

	10.7 Compatibility of Conic Creases
	10.7.1 Conic Creases Connected by a Cylinder
	10.7.2 Conic Creases Connected by a Cone

	10.8 Implementation
	10.9 Selected Proofs from Chapter 10

	11 Sliding Developables and Planar Creases
	11.1 Introduction
	11.2 Sliding Cylinders and Cones and the Join-and-Fan Method
	11.2.1 Input
	11.2.2 Joining Step
	11.2.3 Discrete Fanning Step: Existence of a Motion
	11.2.4 Smooth Fanning Step: Existence of a Motion

	11.3 From Sliding Cones to Sliding Tangent Developables
	11.3.1 Discrete Case
	11.3.2 Smooth Case

	11.4 Folding Motion of Planar Creases


	III Ruling-Length-Based Computation of Creases
	12 Patch-to-Patch Construction
	12.1 Introduction
	12.2 Notation
	12.3 Patch-to-Cylinder and Patch-to-Cone Constructions
	12.3.1 Locating the Crease
	12.3.2 Planar Creases
	12.3.3 Valid Patch Combinations
	12.3.4 Alternative User Input
	12.3.5 Lotus 1.0

	12.4 Patch-to-Projective-Cone
	12.4.1 Scaling Transformations
	12.4.2 Locating the Crease
	12.4.3 Valid Patch Combination
	12.4.4 Alternative User-Input

	12.5 Preventing Local Surface Intersections
	12.6 Tangent Continuity
	12.6.1 Computing Tangents
	12.6.2 Combinations of Patch-to-Projective-Cone Constructions
	12.6.3 Closed Developable Rings and Tangent-continuous Creases

	12.7 Patch-to-Piecewise-Projective-Cone Construction
	12.7.1 Input
	12.7.2 Patch-to-Piecewise-Projective-Cone Construction using Ruling Planes
	12.7.3 Patch-to-Piecewise-Projective-Cone Construction using Crease Points
	12.7.4 Lotus 2.0

	12.8 Selected Proofs from Chapter 12

	Applications
	13 Analytic Parametrization of Geometric Shapes
	13.1 Introduction
	13.2 Parametrization of the Folded Vesica Piscis
	13.2.1 Vesica Piscis 
	13.2.2 Notation
	13.2.3 Parametrization of the Seam Curve
	13.2.4 Parametrization of the Crease Curve
	13.2.5 Circular Crease Curves

	13.3 Curved-Crease Designs from Spherical Polyhedra with Regular Faces
	13.3.1 Spherical Polyhedra with Regular Faces
	13.3.2 Construction Overview
	13.3.3 Construction Details
	13.3.4 Fabrication


	14 Design of Conic Spirals with Planar Creases
	14.1 Introduction
	14.2 Triangle Wreaths
	14.3 Curved Spiral Construction
	14.4 Software Implementation

	15 Rounded Corner Polyhedra
	15.1 Introduction
	15.2 Notation
	15.3 Constraints on the Location of the Cone Apices 
	15.3.1 Valid Surface Patch Combinations and Valid Range
	15.3.2 Preventing Self-intersection
	15.3.3 Tangent Continuity
	15.3.4 Feasible Apex Directions

	15.4 Locating Cone Apices Through Optimization
	15.4.1 Vertex Normals
	15.4.2 Optimization Setup

	15.5 Consistent Material Loss
	15.5.1 Material Loss
	15.5.2 Consistency Condition
	15.5.3 Optimization Setup

	15.6 Conical Convex Mesh
	15.7 Design Examples, Limitations, and Future Work

	16 Wrinkling Paper
	16.1 Introduction
	16.2 Quad Filling
	16.2.1 Construction of the First Surface
	16.2.2 Non-Self-Intersecting Cones and Central Functions
	16.2.3 Surface Fitting
	16.2.4 Construction of the Remaining Surface(s)

	16.3 Modular Curved-Crease Designs
	16.4 Towards Global Origami Development
	16.4.1 Constraints
	16.4.2 Filling a 3D Quad with a Prescribed Development

	16.5 Fabrication

	17 Developable Regular Planar Quad Mesh Subdivision
	17.1 Introduction
	17.2 PQ Strip Subdivision
	17.2.1 Limitations

	17.3 Regular PQ Mesh Subdivision
	17.3.1 Limitations

	17.4 Developable PQ Mesh Subdivision
	17.4.1 Results
	17.4.2 Limitations and Future Work



	Epilogue
	18 Conclusion
	18.1 Summary and Limitations
	18.1.1 Theory of Gluing and Creasing Developable Patches
	18.1.2 Parametric Construction of Shapes Obtained by Gluing or Creasing Patches
	18.1.3 Computational Design Tools for Shapes Obtained by Gluing or Creasing Patches

	18.2 Open Problems and Future Work
	18.2.1 Theoretical Background
	18.2.2 Part I: Curvature-Based Computation of Configurations
	18.2.3 Part II: Ruling-Length-Based Computation of Configurations of Joined Cylinders and Cones
	18.2.4 Part III: Ruling-Length-Based Computation of Creases


	Bibliography


