
A Framework for LLM-based Lifelong Learning in Robot
Manipulation

by

Jerry W. Mao

S.B. in Electrical Engineering and Computer Science and in Mathematics
Massachusetts Institute of Technology (2023)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2024

© 2024 Jerry W. Mao. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Jerry W. Mao
Department of Electrical Engineering and Computer Science
January 19, 2024

Certified by: Pulkit Agrawal
Assistant Professor, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

A Framework for LLM-based Lifelong Learning in Robot
Manipulation

by

Jerry W. Mao

Submitted to the Department of Electrical Engineering and Computer Science
on January 19, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

While robotic agents have become increasingly adept at low-level manipulation skills,
increasingly they are being guided by large language model planners that decompose com-
plex tasks into subgoals. Recent works indicate that these language models may also be
effective skill learners. We develop HaLP 2.0, a modular and extensible framework for life-
long learning in human-assisted language planning, using GPT-4 to propose a curriculum of
skills that is learned, used, and intelligently reused. Our system is designed for large-scale
experiments, is equipped with a user-friendly interface, and is extensible to new skill learning
frameworks. We demonstrate extensibility by comparing alternative implementations of our
abstractions and improving overall performance by incorporating novel frameworks. More-
over, we conduct a focused study of GPT-4, using crowd-sourced scene and task datasets,
finding that language models are capable agents of skill reuse and adaptation. We observe
that while performance is dependent on language context, supplying optimized prompts can
yield exceptional skill reuse behaviors. We envision that as manipulation primitives and large
language models become more powerful, our system will be ready to synthesize their capa-
bilities to create an autonomous system for lifelong learning, that can one day be deployed
in the real world.

Thesis supervisor: Pulkit Agrawal
Title: Assistant Professor

3

4

Acknowledgments

This work would not have been possible without the unwavering support of my mentors and

advisors. I cannot express enough thanks to Professor Pulkit Agrawal for his belief in me

over the years; for the opportunity not only to learn, but also to grow from his wisdom. I am

also grateful to Anthony Simeonov for his confidence in me, and for his continued guidance

in my work and beyond.

I would also like to acknowledge my colleagues at the Improbable AI lab, especially

Marcel Torne, Anurag Ajay, Bipasha Sen, and Younghyo Park, for their many valuable

words of advice.

During my studies I was fortunate to serve as a Teaching Assistant for course 6.1220,

Design and Analysis of Algorithms. I would like to express my sincere thanks to Professors

Srinivasan Raghuraman, Bruce Tidor, Aleksander Mądry, Virginia Vassilevska Williams,

Jonathan Kelner, and Julian Shun for trusting this opportunity to me, and for the wondrous

experience of sharing in knowledge.

Throughout this chapter of my time at MIT, Myriam Berrios and Aurora Brulé offered

me their constant support and advice. They brought periods of order and calm when I was

most in need, and I am very appreciative for everything they have done for me.

Thank you also to all my communities here at MIT, who have brought me so much

happiness. I would also like to express my appreciation for the companionship of Battlecode,

Next Act, Next House and Sidney-Pacific. And to all of my friends, especially to Cindy,

Michael, Ashhad, Ian, Mark and Nathaniel: thank you so, so much for every adventure, and

5

for every laugh, and simply for being there for me.

Finally, I am grateful for my family, for being with me along every step of this journey.

Thank you for your words of encouragement, for your energy and motivation, for the comfort

of your company, and for all the shared moments of joy.

6

Contents

1 Introduction 13

2 Background 16

2.1 Primitive skills for robot manipulation . 16

2.2 Large language models for zero-shot task planning 17

3 HaLP 2.0 System Architecture 19

3.1 Language-powered robot manipulation . 20

3.1.1 Connection to physics backend . 22

3.1.2 Scene perception and object segmentation 24

3.1.3 Natural language scene annotation 25

3.1.4 Large language model connection . 25

3.1.5 Skill classes . 26

3.1.6 Saving demonstrations . 28

3.1.7 Recording interactions for further analysis 28

3.1.8 Whole system pipeline . 30

3.2 Web-based user interaction interface . 31

3.2.1 User interface design . 32

3.2.2 Skill demonstration interface . 35

3.2.3 Message protocol between orchestrator and robot system 36

3.2.4 Concurrency management . 38

7

4 Evaluation of System Modules 40

4.1 Semantic segmentation performance . 40

4.2 Collision-free motion planning . 43

4.3 LLMs as lifelong learners . 44

4.3.1 Experiment design . 45

4.3.2 Metrics for lifelong learning performance 47

4.3.3 Characterization of large language model behavior 49

5 Limitations and Further Work 53

5.1 Evaluation of skill and plan correctness . 53

5.2 System component extensions . 54

5.3 Even larger scale studies . 55

6 Conclusions 56

A Scene and Task Crowd-sourcing Survey 57

A.1 Survey content . 57

A.2 Scene characteristics . 59

B LLMs in Long Task Progressions 60

References 67

8

List of Figures

3.1 System architecture diagram for HaLP 2.0. 21

3.2 Sample images of scene renderings from PyBullet and Isaac Sim. 23

3.3 Detic and Segment Anything pipeline for object perception and segmentation. 24

3.4 System execution pipeline diagram for HaLP 2.0. 30

3.5 Sample screenshot of the web-based user interaction interface. 32

3.6 Different input modes supported by the web-based user interface. 34

3.7 Sample screenshot of the skill demonstration interface. 35

3.8 HTTP protocol between the user interface and the orchestrator. 36

4.1 Object detection success rates under different simulator renderings. 42

4.2 Sample Isaac Sim images where Detic fails to detect the object. 42

4.3 Pick object success rate using various motion planners. 44

4.4 Sample ShapeNet objects that induce failure modes in cuRobo grasping. . . 45

4.5 Skill growth and learning frequency for tasks in sample task progressions. . . 50

A.1 Sample kitchen image shown to survey-takers as an example of a robot scene. 58

9

10

List of Tables

3.1 Interface methods for classes in the world module. 23

3.2 Higher-level abstractions for instantiations of the chat module. 26

3.3 Protocol of messages and their fields, used to communicate between the robot

system and the user web interface. 37

4.1 Pairwise confusion scores for semantic labeling under different simulator ren-

derings. 42

4.2 Quantitative metrics for the evaluation of skill reuse in large language model

lifelong learning. 47

4.3 An approximate categorization of the types of skill verbs learned by the large

language model. 49

4.4 Proportion of unnecessary skills learned under differently engineered docstrings. 51

A.1 Number of scenes and tasks of each category in the crowd-sourced dataset. . 59

B.1 Skills learned (marked with asterisk) and used in crowd-sourced tasks pro-

posed for kitchen scenes. 62

B.2 Skills learned (marked with asterisk) and used in crowdsourced tasks proposed

for kitchen scenes. 64

B.3 Skills learned (marked with asterisk) and used in crowd-sourced tasks pro-

posed for laundry scenes. 66

11

12

Chapter 1

Introduction

Humans have the very unique ability of easily solving complex spatial reasoning problems.

When encountering a new environment for the first time, humans can efficiently adapt

prior experience to manipulate their surroundings effectively. For example, when enter-

ing a kitchen, it is very easy for us to perceive individual utensils and to locate the many

positions where they may belong in a drawer, shelf, or dishwasher.

Moreover, humans exhibit what we call “lifelong learning”: the ability to accumulate and

remember skills as they are learned over time. Rather than having to repeatedly learn the

same skill each time it is required, humans retain this knowledge and compose them in novel

combinations. Someone who has once loaded a dishwasher and once learned how to empty

a mug, can logically deduce the steps for cleaning a mug that is still full—even if they have

never performed this sequence of actions before.

Whether intelligent systems can also achieve lifelong learning has for a long time been

an interesting problem to robotics researchers. Recent advances in Large Language Models

suggest that this is a promising field; these language models demonstrate superior knowl-

edge retention and reasoning abilities [1–3]. It is natural to conjecture that by equipping a

LLM with the ability to perceive an environment, it can also learn to decompose high-level

tasks into learnable skills. Indeed, systems have already been developed for mastering some

13

computer games that involve complex skill progressions [4].

While many systems based on language use an fixed class of skill types or policy architec-

tures [5–8], limiting their learning potential, recent work involving robot manipulation has

suggested that a LLM-based agent may also be effective in settings where the skill library

is open. That is, LLMs may be capable of prompting for assistance when its skillset is defi-

cient, and moreover learn to reuse those skills for subsequent tasks [9–11]. This is a unique

challenge as the agent needs to be capable not only of solving tasks, but also of being aware

of its own limitations in order to identify when new skills must be requested. Attaining a

balance between skill acquisition (requesting new skills when needed) and data efficiency

(not requesting new skills when not needed) is crucial to the usefulness of the system.

Our work is founded on HaLP [9], one such system for robotic lifelong learning. We

posit that there is a wealth of knowledge to be gained from scaling up empirical studies of

these systems, to more thoroughly characterize the lifelong learning capabilities of language

models. As such, we build HaLP 2.0, a system that is more modular and more extensible,

and ready to be run at scale, and we conduct focused studies on its individual modules to

understand its behavior. In particular, our main contributions are:

• A new system architecture design. We design HaLP 2.0 to maximize system

modularity across its many components. Modularity enables easy ablation studies for

algorithm choices in those components, including the perception, scene annotation,

and robot primitive behaviors. Furthermore, this would support using different skill

implementations that rely on different foundational models, enabling wider support for

a variety of skills that may be requested for the open skill library. We demonstrate

this property by introducing support for a selection of new algorithms.

• System interaction interface. We create a user interface for easily interacting with

the system in a simulated physics environment. Large-scale studies of our system

require a user-friendly interface in order to elicit useful human prompts. We create a

web interface that allows a streamlined user experience for supplying task commands,

14

execution feedback, and skill demonstrations to a virtual robotic agent.

• System evaluation and crowd-sourced data collection. We perform further

studies on the performance of individual system components to complement and ex-

tend the results presented in HaLP [9]. We evaluate new choices of algorithms in

separate modules, and also perform a large-scale crowd-sourced data collection exper-

iment to characterize the lifelong learning capabilities of large language models. Our

experiments demonstrate that language models are capable of very efficient skill reuse,

and that while their behavior is dependent on context-engineering efforts, they have

significant potential as agents of lifelong learning.

15

Chapter 2

Background

There have been many advances in the area of equipping robotic primitives with the planning

capabilities of a language model. In this chapter we discuss some of the most relevant results

that relate to our work, and formally define our objectives.

2.1 Primitive skills for robot manipulation

We focus on achieving complex tasks through applying sequences of pre-trained models for

primitive skills. There are many end-to-end frameworks for executing pick-and-place actions

in scene rearrangement tasks.

TransporterNets [12] are an imitation learning model for table-top pick-and-place rear-

rangement tasks. Whereas TransporterNets use a suction gripper to move objects to their

destination, there are also solutions for other robot grippers. Contact-GraspNet [13] can

generate grasps to execute “pick” actions on objects with complex geometries. Neural De-

scriptor Fields [14] generalize to arbitrary relational alignments, capable not only of aligning

a robot end-effector to an object, but also of objects to each other [15].

These models can be extended with language models to create language-conditioned

policies. CLIPort [16] combines TransporterNets with CLIP [17] to execute table-top ma-

nipulation tasks specified in natural-language. PerAct [18] is a behavior-cloning agent that

16

uses a transformer to convert language commands into voxel features that can be decoded

into robot policies.

While these models are effective at executing individual skills from natural language

commands, there is promise that large language models may also be capable at decoding

complex tasks into planned sequences of skills.

2.2 Large language models for zero-shot task planning

A common paradigm for performing complex natural-language tasks is to train a system for

decomposing such tasks into lower-level steps. The goal is to have these individual skills be

simple enough to learn a policy for. Equipped with a collection of these primitives, as well

as algorithms for language-conditioned manipulation, we turn our attention to the problem

of planning the sequence of skills.

Large language models are well-suited for this problem; they are capable of providing

task plans in a natural language format [5, 19], as symbolic task plans [6], as sequences of

calls to high-level skill primitives [8, 9, 20], or even as computer programs with lower-level

code [21]. At the same time, vision-language models have been used to learn symbolic plans

from videos of human demonstrations [22].

Inner Monologue [8] demonstrates that large language models can be particularly effective

when additionally provided with environmental feedback. Voyager [4] utilizes feedback to

learn complex skill progressions, proposing its own curriculum as a sequence of intermediate

subgoals. This yields more complex skills as existing abilities are composed; by learning

its own skills, the system becomes increasingly capable over time. Likewise, in real-world

systems, HaLP requests human demonstrations for learning new skills when existing ones

are deficient [9–11].

In our work, we create HaLP 2.0, a remodelled design of HaLP that is more extensible

and scalable to large-scale experiments. We perform a large-scale analysis of the capacity

17

for LLMs to effectively engage in lifelong learning and characterize model behavior when

presented with novel real-world tasks. Additionally, we provide new module implementations

and evaluate the resultant improvement in system performance.

18

Chapter 3

HaLP 2.0 System Architecture

In this chapter we present the system architecture for HaLP 2.0. HaLP 2.0 is a system that

equips robotic manipulation frameworks with the knowledge of large language models such

as GPT-4, so that high-level natural language commands can be decomposed into individual

manipulation skills. This allows complex tasks to be autonomously executed on a robotic

system. We additionally provide the LLM with an interface for requesting new skills when

the existing skillset is deficient; the system can then acquire these skills via imitation learning

from human demonstrations. The system accumulates a growing skillset over time, and by

evaluating how effectively those skills are used we can demonstrate the system’s ability for

lifelong learning.

HaLP 2.0 is designed to be suitable for large-scale research on robotic manipulation and

lifelong learning tasks. Therefore, our system design is optimized for several objectives:

• Modularity. The full pipeline for executing a high-level natural language command

consists of several components, including the large language model, scene perception,

low-level manipulation, among many others. As detailed in Section 3.1, there are many

suitable implementations for each of these modules, each of which may be of interest.

We therefore seek to maximize extensibility to accommodate these alternatives, as well

as to enable ablation studies.

19

• Reproducibility. Certain behaviors in the system may be stochastic. For ease of

post-hoc analysis, we aim to make experiment results easily reproducible. This allows

alternative algorithms to be reliably compared on the same scenes.

• Scalability. We envision that HaLP 2.0 may be used to conduct large-scale robotics

experiments. To do so, we require the ability to record data while multiple users

concurrently interact with the system.

• Usability. Large-scale robotics experiments involve collecting robot interaction data

with non-expert users. This requires a user-friendly interface so that non-experts can

have a streamlined experience, yielding higher quality data.

HaLP 2.0 is designed with these objectives in mind; the details of its architecture are ex-

plained in Section 3.1. We then further equip it with a web-based user-interface suitable for

experiments with non-expert users, as detailed in Section 3.2.

3.1 Language-powered robot manipulation

In this section we describe the system architecture for robotic manipulation with a LLM-

based task planner. This is the core functionality of HaLP 2.0, and can be commanded by

a human via a simple terminal-based interface.

HaLP 2.0 consists of multiple components that interact with the various foundational

models that comprise the entire system. These components are isolated into individual

modules that interface with each other; some components may support alternative imple-

mentations as needed. Figure 3.1 shows the relationships between these various modules,

which are outlined below.

• The world module (Section 3.1.1) is the physics backend in which the robot and the

scene are loaded. All robot actions are executed in the world.

20

Figure 3.1: System architecture diagram for HaLP 2.0.

• The perception module (Section 3.1.2) detects, segments and labels objects in the

scene, using cameras in the world.

• The narrator module (Section 3.1.3) writes scene descriptions in natural language.

These annotations can be used as context for text-based language models.

• The chat module (Section 3.1.4) interacts with the LLM and prompts it for text and

executable code.

• The skill module (Section 3.1.5) implements various actions the robot can perform.

• The demonstration module (Section 3.1.6) stores and retrieves skill demonstrations

in a canonical format.

• The recorder module (Section 3.1.7) saves and replays system interaction logs.

The following sections describe each of these modules in more detail. We finally summarize

how they are combined in Section 3.1.8.

21

3.1.1 Connection to physics backend

The world module connects the system to a physics backend. It exposes an interface for the

system to execute low-level robot commands and to obtain observations from the camera

system. Instantiations of the world module can be a physics simulator, or the option to link

to a real-world robotic system, such as via Polymetis [23].

The predecessor HaLP was implemented purely for the PyBullet simulator [24]. We con-

tinue support for PyBullet using the AIRobot library for robot control [25] and the ShapeNet

universe of objects [26]. On the other hand, we additionally provide an implementation for

NVIDIA Isaac Sim with the Orbit framework [27, 28]. We choose to provide Isaac Sim

because we believe its scene rendering looks more realistic; we include some sample visual-

izations in Fig. 3.2. This is a useful property because most image segmentation models are

trained to work on real-world images; better rendering quality may lead to better system

performance. We refer to Section 4.1 for a further discussion and analysis of this hypothesis.

Each world implementation conforms to the same interface, allowing the same algorithms

to easily be deployed in different environments. In particular, it contains a WorldController

that allows scene-level operations, and a RobotController that allows low-level robot manip-

ulations. Their methods are described in Table 3.1. RobotController also provides default

implementations for some slightly higher-level methods such as grasping given a gripper pose

and placing given an object pose. These are stateful compositions of the interface methods

that store the relative pose between the robot gripper and the grasped object.

We provide two different implementations of the RobotController.goto method. First,

the Orbit framework provides a differential inverse kinematics controller for commanding

the robot to target poses. This is a relatively simple controller; it does not consider any

obstacles in the scene. As a result, motion plans from this controller may cause the robot to

collide with objects in the scene, perhaps even hitting out of reach an object intended to be

grasped.

22

(a) Sample scenes from PyBullet. (b) Sample scenes from Isaac Sim.

Figure 3.2: Sample images of scene renderings from PyBullet and Isaac Sim.

Method Return type and description

WorldController
.generate_scene(n: int) None

Reset the scene to a new procedurally-generated config-
uration, consisting of n objects on a table.

.get_camera_images() CameraImage[]
Capture images from each camera in the scene. Each
camera returns a RGBD image, the unprojected point-
cloud, and any available ground-truth scene segmenta-
tion (if any).

.get_objects() ObjectGroundTruthInfo[]
Return the ground truth information about the objects in
the scene. Each object returns its ground-truth semantic
category, and its ID in the world.

.get_robot() RobotController
Return the robot controller for this world.

RobotController
.goto(pose: Pose) None

Move the robot end-effector to the given pose.

.go_home() None
Return the robot home by resetting the joints to their
home state.

.set_gripper(open: bool) None
Open or close the robot gripper.

Table 3.1: Interface methods for classes in the world module.

23

Figure 3.3: Detic and Segment Anything pipeline for object perception and segmentation.

Our second implementation uses cuRobo, a framework for collision-free motion genera-

tion [29]. While cuRobo has a specialized interface for Isaac Sim environments, it is also

extensible to other physics backends. We posit that using a collision-free motion planner will

improve system performance, by mitigating the failure mode of the robot arm pushing an

object out of reach while attempting to grasp it. We evaluate this hypothesis in Section 4.2.

3.1.2 Scene perception and object segmentation

The perception module receives camera images from the world module and returns object

segmentation information. This data includes image crops of segmented objects, pointcloud

geometries lifted from a depth map, and semantic object class labels.

We provide an implementation using a similar pipeline as in HaLP of Detic [30] and

Segment Anything (SAM) [31]. This pipeline is illustrated in Fig. 3.3. Given camera images

from the world module, we first use Detic to detect objects and return their bounding boxes

and category labels. Then, an image crop is generated and an exact segmentation is inferred

using SAM. The pointcloud geometry can then be lifted from the segmentation. For Detic,

we choose to use a closed vocabulary consisting only of the object categories we are working

with. We find that an open vocabulary leads to many spurious objects being output.

When evaluating the performance of other modules, it is desirable to have perfect seg-

mentation performance so that results are not impacted by perception failure. We therefore

provide an alternative implementation. As simulators in the world module provide camera

images with ground-truth information, the alternative implementation directly returns the

24

ground-truth segmentation, ready for use in such studies.

3.1.3 Natural language scene annotation

The narrator module receives segmented object data from the perception module and writes

a natural language annotation of the scene. We provide an implementation based on the

algorithm from HaLP, and refer to the original paper for details [9]. Objects are assigned

graph vertices with edges representing geometric relations between them; the scene descrip-

tion consists of a natural language transcription of each edge in depth-first traversal order.

3.1.4 Large language model connection

The chat module facilitates communication with a large language model API, taking its

name from OpenAI’s ChatGPT [32]. Each implementation of the module may use a different

underlying transport method for handling queries, allowing a choice of a different language

models or APIs. For example, we allow GPT-4 [2] and GPT-4V [3] via API, and ChatGPT

via web interface. On top of the transport “layer” is a collection of methods that provide

higher-level abstractions; they are always available, as outlined in Table 3.2.

We use the chat module to ask the language model for task plans and executable code;

code is executed on the robot. The specific interactions are outlined in Section 3.1.8.

Our default implementation of the chat module uses the OpenAI chat completion API

to interact with models online. We predominantly use the GPT-4 [2] and the GPT-4V

models [3]. We also provide support for users who wish to run HaLP 2.0 but do not have

access to the OpenAI API. In this case, we allow them to work directly with ChatGPT in their

browser, such as the OpenAI GPT-3 model [1]. This alternative implementation directly

outputs prompts to the standard output stream for users to copy-paste into ChatGPT;

responses from the LLM are then read back into the system via file input.

As such, this implementation provides a convenience for users who prefer a simpler setup

procedure. However, we recommend using the online API for a more streamlined workflow.

25

Method Return type and description

ChatInterface
.add_feedback(feedback: str) None

Records a piece of feedback. This feedback is
prepended to the prompt during the next query to
the large language model.

.get_text(prompt: str) str
Send the prompt with any undelivered feedback
to the implementation-specific transport, returning
the large language model’s text response.

.get_code(prompt: str) str
Perform the same query as get_text, but return
only executable code snippets found in the re-
sponse. Code snippets are found via a regex search
for triple-backtick delimiters (```) as we assume
the large language model provides a response type-
set in Markdown.

.clear_context() None
Clears all chat history so that subsequent requests
start with an empty context.

Table 3.2: Higher-level abstractions for instantiations of the chat module.

3.1.5 Skill classes

The skill module provides implementations for each of the skills we expect the robot system

may require. Each skill can be called by code written by the chat module, and is executed

in the world where its effects can then be observed.

The system is initialized with a “base” skillset consisting of some simple primitives. These

enable it to perform the most basic actions such as grasping and placing. These are included

in our skill implementations, in addition to imitation-learning frameworks that allow new

skills to be acquired via human demonstrations.

The base skillset also includes methods that perform only perception-related tasks that

observe the scene. These initial skills are based on those described in [9, 10], and we sum-

marize them here.

26

• find(object_name: str, visual_desc: str, place_desc: str): int. This skill

finds an object that best matches the given search terms. We support searching given

at least one of an category name, a visual description, or a description of where the

object is located.

To handle visual descriptions, we use CLIP [17] to embed image crops for each object,

and determine which object has the highest correspondence with the text search term.

For object names and place descriptions, we generate a natural-language sentence

describing each object, and match the search terms using sentence similarity scores

from BERT [33].

• get_location(obj_id: int): [x,y,z]. This method returns the location of the

specified object. It is inferred as the mean coordinate of the object’s pointcloud.

• pick(obj_id: int): None. This skill navigates the robot manipulator to the specified

object and carefully grasps it, lifting the object off the table. To find a valid grasp, we

use a pre-trained Contact-GraspNet model [13].

• get_place_position(obj_id: int, reference_id: int, desc: str): [x,y,z].

This method determines a placement position of an object relative to a given reference

object, matching the given description. For example, it can be used to determine the

coordinates for placing an apple inside a bowl; in this case, the refernce object is the

bowl, and the description is “inside”.

• place(obj_id: int, position: [x,y,z]): None. This skill places the object in the

given location. It is a simple implementation unaware of collisions: it moves the object

above the given coordinate and releases it.

• learn_skill(skill_name: str, docstring: str): Skill. This method requests

that a new skill is added to the robot’s library. The skill is instantiated from an

imitation-learning agent, with any human demonstrations collected as necessary.

27

For few-shot imitation learning, we provide Neural Descriptor Fields [14] for object grasping

and placing, as well as NDF-based relational rearrangement [15]. These frameworks are used

by learn_skill. Learnt skills are stored in the same Python namespace as the execution

environment and can be directly called as the LLM sees fit.

We note that we decouple skill demonstration collection from skill acquisition requests.

This allows demonstrations to be collected in advance, and reused as needed across multi-

ple experiment trials. We detail saving demonstrations in Section 3.1.6 and the collection

workflow in Section 3.2.2.

3.1.6 Saving demonstrations

The demonstration module contains protocols for reading and writing serialized human

expert demonstrations as required by imitation-learning skills.

All demonstrations are saved as a collection of files; the main specification file describes

the type of model the demonstration is for, along with other key information. At present, we

only collect demonstrations for Neural Descriptor Field models, but the framework is easily

extensible to support other varieties.

Each demonstration for an NDF model is saved as a pair of the two objects in the relation.

For example, grasping skills involve the robot gripper and an object; placement skills involve

an object and a tabletop. We save a “.obj” mesh for each object in a canonical pose;

this allows pointclouds to be extracted necessary. We also save the geometric transforms

that place both objects in the final configuration, to complete the demonstration. These

transforms are the ones used by NDFs.

3.1.7 Recording interactions for further analysis

The recorder module is responsible for recording and replaying all system interactions.

In order to perform post-hoc analysis on user interaction data, we equip the entire system

with the ability to log and recreate all interaction sequences. Saving complete experiment

28

metadata allows us to make results reproducible.

We maintain modularity despite the each module having its own unique combination of

data to be saved. Our main feature is a Python decorator that marks a method as recorded;

as such, the recorder is minimally invasive to the other modules. Recorded methods generate

log entries that can be reloaded; each log entry contains the fully-qualified name of the

method being called, all function arguments, and the function outcome. Specifically:

• When running in regular mode, the recorder executes the method and saves its outcome

to an experiment log. This outcome may be either a return value (which is saved), or

an exception (which is saved and re-raised).

• When running in replay mode, the recorder seeks forward through the experiment log

for a matching call. It returns the corresponding outcome (that is, it returns a saved

value or raises a saved exception).

These log entries are saved to disk as a series of pickled log objects. We apply the recorder

to save all human commands and feedback, as well as outputs from the chat and percep-

tionmodules, and intermediate foundational model predictions from any skills.

We note that HaLP 2.0 is inherently stochastic: this is true not only of the models

being used, but also of the physics simulator, in which individual steps may behave non-

deterministically. However, reproducability requires being able to replay robot trajectories

so that subsequent actions have consistent effects. To address this:

• The recorder saves the random seed, and resets it during replay.

• The recorder also allows arbitrary log lines to be written; the RobotController uses

this feature to regularly save intermediate states along motion trajectories. During re-

play, all object poses are constrained to follow this sequence of waypoints and therefore

have the same motion.

29

Figure 3.4: System execution pipeline diagram for HaLP 2.0.

3.1.8 Whole system pipeline

In this section we describe how all the individual sections are combined to form the full

execution pipeline. This pipeline is the main entrypoint for the HaLP 2.0 and its experiments;

we show it schematically in Fig. 3.4. Specifically, the user begins by creating a scene and

selecting a task. Then:

1. We generate a natural-language plan for how the task is to be performed. The language

model is given the scene description (from the narrator) and the task, and asked to

provide a plan. If there is any human critique, the plan is iteratively improved by the

language model; once approved, the planning step is complete.

2. We generate a Python code snippet for executing one step of the plan by querying the

language model. If there is any human critique, the code is iteratively improved by the

language model; once approved, the code is executed.

30

3. The human is asked to critique the outcome of the action, which is added to the

language model’s context before subsequent steps continue. This process repeats until

the task is finished.

At runtime, the user is able to select which implementation of each module they would like,

by supplying an appropriate command-line flag. As a result, conducting ablation studies on

these modules is very streamlined.

Additionally, we allow the pipeline itself to be customized with different implementations

as needed for other styles of experiments. Therefore, it also functions as an extensible

module, and we call it the experiment module.

3.2 Web-based user interaction interface

We aim to make the fruits of robotics research accessible to the general public. While

hardware logistics limit the possibility of distributing physical robots, we can use a user-

friendly web interface to enable simulated interaction. We hope that learnings from data

collected through this interface will fuel rapid research development, that will eventually

enable large-scale physical deployments.

To this end, we design and publish a user-friendly webpage that allows non-expert users

to remotely interact with HaLP 2.0. Fig. 3.5 shows a screenshot of this interface. As pre-

viously discussed, our objectives for the interface prioritize system scalability and usability;

in this section we discuss these design choices. Section 3.2.1 describes the user interface,

which also supports a skill demonstration interface (Section 3.2.2). The interface connects

to a Flask webserver [34] and application orchestrator, which manages multiple HaLP 2.0

instances running in parallel. It communicates with those instances via a message-passing

protocol (Section 3.2.3), while keeping them in parallel processes to maximize throughput

while subject to resource constraints (Section 3.2.4).

31

Figure 3.5: Sample screenshot of the web-based user interaction interface.

3.2.1 User interface design

The user interface arranges into a friendly layout the elements that would normally be

accessed from a researcher’s terminal prompt. These consist of a connection status indicator,

a robot scene visualizer, an interaction panel, and a system status log. Together, they provide

the user with a streamlined experience.

Connection status indicator. The connection status indicator provides buttons for con-

necting and disconnecting from HaLP 2.0. We aim to ensure active engagement before any

resource-intensive physics environment is assigned.

When the webpage loads, the user is instructed to click on the green “connect” button.

This button assigns the user to a simulated environment in which they can interact with a

robot; details of robot assignment are discussed further in Section 3.2.4. Once assigned, the

user will be able to see the robot in the visualizer and command it through the interaction

32

panel. They will remain connected until they have completed all their desired interactions.

At the conclusion of their interactions, disconnection is automatic upon window close,

even if not explicitly requested through the red “disconnect” button. This design minimizes

resource wastage due to users who are not actively engaged.

Robot scene visualizer. The robot scene visualizer is the main element of the page. This

allows the user to inspect a live rendering of the scene and determine the most interesting

tasks and the most useful feedback for the robot.

This visualizer is implemented using Meshcat, an open-source scene rendering webserver.

Meshcat provides mouse controls to let the user zoom or pan the scene and accurately

perceive relative object poses. On each timestep in the simulated physics world, the system

tracks changes to object poses and renders any changes in Meshcat.

As each Meshcat server instance only displays one scene, each HaLP 2.0 instance au-

tomatically creates a new Meshcat server for itself. Each server uses a different port, and

only the relevant URL is provided to the interface. Finally, the user interface embeds the

rendering into the webpage via an HTML iframe.

Interaction panel. The interaction panel prompts the user for robot instructions and

feedback. It is activated whenever the system seeks human input.

To respond, the user only needs to complete the form in the panel. Whereas a terminal

screen can typically only support text input, a web-based form is much more diverse. As

shown in Fig. 3.6, this panel will show either a free-response text field or a multiple-choice

selection depending on the nature of the requested feedback, which is specified in the message

protocol (Section 3.2.3).

Additionally, the interaction panel launches the skill demonstration interface when re-

quired for the system to learn a new skill (Section 3.2.2). This dialog is depicted in Fig. 3.6c:

the system can prompt the user for a collection demonstrations, which the user then provides

through the pop-up demonstration interface.

33

(a) Arbitrary text entry mode. (b) Multiple choice mode. (c) Skill demonstration mode.

Figure 3.6: Different input modes supported by the web-based user interface.

As such, the interaction panel initiates all interaction between the human user and the

robot system. To ensure the user is aware a response is being requested, the entire webpage

darkens with the exception of this panel, drawing the user’s attention.

System status log. The system status log gives the user live updates on HaLP 2.0’s ac-

tivity. Some models in the system may take considerable time to initialize or run. Therefore,

feedback is important, not only for researchers to determine that the system hasn’t entered

an infinite loop or other fatal bug, but also for end users whose attention span may be

more limited. Providing these updates gives a reassurance that the system is functioning as

normal.

The status log is populated with milestone events such as the start and end of running

each foundational model. These events are published via the message protocol described in

Section 3.2.3 so that they may be displayed to the user.

Layout. These various components are arranged on the webpage using Bootstrap [35], a

common open-source CSS framework for responsive web design. Responsiveness allows users

on mobile devices to also have a pleasant experience interacting with the system. While we

currently expect the current predominant use case to involve researchers and crowd-sourced

users on desktops or laptops, we design this interface with the vision of it being readily

accessible to users on a variety of platforms.

34

Figure 3.7: Sample screenshot of the skill demonstration interface.

3.2.2 Skill demonstration interface

The skill demonstration interface is a separate web application for demonstrating object

rearrangement skills. Its primary purpose is to make it easy for users to move, rotate, and

align objects in arbitrary poses, so that those objects and poses may be recorded for an

imitation learning algorithm. It is versatile, running directly out of a web browser; we show

a screenshot in Fig. 3.7.

The interface is based on a ThreeJS application developed for scene construction in the

Improbable AI lab. We load a set of objects from the Objaverse collection [36] and allow the

user to manipulate objects as they wish, without being hindered by any simulated gravity

or collisions as we do not provide a physics server.

Once the user is happy with the orientation of their objects, they select the two objects

involved in the manipulation; for example, the robot gripper and the mug being grasped.

The object meshes and their poses are sent to the orchestrator via HTTP POST to be saved

by the demonstration module. To respect size limits on HTTP requests, the mesh data is

compressed using GZIP before being sent.

35

Figure 3.8: HTTP protocol between the user interface and the orchestrator.

3.2.3 Message protocol between orchestrator and robot system

Communication between the orchestrator and each HaLP 2.0 instance is facilitated by inter-

process message-passing. The user interface initiates then communicates with the orchestra-

tor over HTTP, where each request either sends a user action to the robot system, or asks

for a feed of the latest events that have occurred.

More specifically, the web interface sends a POST request each time the user takes an

action. Meanwhile, it also uses short polling with GET requests to retrieve events from

the robot system. This protocol is illustrated in Fig. 3.8. In these requests, each event is

described as a message; a message is a typed data structure consisting of multiple fields that

fully describe the event. There are different classes of messages, corresponding to different

types of events. These include prompting the user to answer a question, or notifying the

interface that the Meshcat visualizer is ready.

The same message datatype is used to communicate between the orchestrator and HaLP

2.0; the orchestrator acts as an intermediary, and as a buffer storing the latest messages from

HaLP 2.0 until they are requested by the interface. All messages include a timestamp, a class

36

Class Direction Description

visualizer HaLP 2.0 to interface The Meshcat robot scene visualizer is ready.

• URL: the visualizer URL that should be embedded into the interface webpage.

question HaLP 2.0 to interface System has a question for the user.

• Prompt: a string containing the question being asked.
• Choices: an optional field containing multiple-choice options. Each choice has

a display color, a text description, and a unique identifier.
• Allow Empty: a boolean field indicating whether a blank response is valid.

response Interface to HaLP 2.0 User has responded to the question.

• Question ID: the question to which this response corresponds.
• Data: a string containing the user’s response. Must match one of the response

identifiers if the question was multiple-choice.

stage-begin HaLP 2.0 to interface A new milestone stage has started.

• Stage: a text description of the milestone, for display in the system status log.

stage-end HaLP 2.0 to interface The previous milestone stage has ended.

• Stage: a text description of the milestone, for display in the system status log.
• Elapsed: the running time that elapsed during this stage, in seconds.

skill-request HaLP 2.0 to interface System requires a new skill to be taught.

• Skill Name: the name of the skill being requested.
• Num Keys: the quantity of demonstrations being requested.

skill-demo Interface to HaLP 2.0 User has provided a set of demonstrations.

• Request ID: the skill request to which this demonstration corresponds.
• Skill Name: the skill being demonstrated.
• Keys: the list of keys returned by the demonstration interface.

poison Interface to HaLP 2.0 User has requested to disconnect.

Table 3.3: Protocol of messages and their fields, used to communicate between the robot
system and the user web interface.

37

field, and an ID field, which is a unique identifier for the message. The full specifications for

the message classes and their fields is presented in Table 3.3. For each message, its class is

checked to route it to the appropriate interface component for handling. To receive up-to-

date messages, the interface issues a GET request with the ID of the latest message it has

received. The orchestrator responds with an ordered list of all subsequent messages.

3.2.4 Concurrency management

As individual users should be able to interact with distinct environments, we use a pool of

processes running separate instances of HaLP 2.0. These processes communicate with the

orchestrator via the previously-defined message protocol.

However, the simulator and the neural network models are all very resource intensive.

To concurrently run models such as Neural Descriptor Fields, GraspNet, and BERT, in

addition to the IsaacSim physics simulator, relies on access to a large amount of GPU

memory. Empirically, running the full system requires over 14 GiB of GPU RAM, more

than one-fourth the capacity of a NVIDIA RTX A6000 GPU.

Therefore, it is imperative to limit concurrent use. We achieve this by programmati-

cally throttling the system to an allotted quota of simultaneous users. Moreover, as system

initialization can be lengthy to load the various models, we pre-emptively start as many pro-

cesses as possible and aim to assign new users to instances that are already fully initialized.

Specifically:

• Whenever there are fewer instances running than the maximum capacity, a new one

is started. Its state is recorded as “uninitialized”. If there is any user waiting for an

instance, they are immediately assigned this instance and it enters the “assigned” state.

• Otherwise, it enters the “initialized” state once it is ready to take human input. Once

a user clicks the “start” button on the web interface, they can receive this instance and

it enters the “assigned” state.

38

• Instances in the “assigned” state will continue running until killed by the user either

manually or by timeout, which occurs after 10 seconds without any short polling re-

quest. At that time, the instance is sent the poison message and allowed to terminate

gracefully.

Correspondingly, the full lifecycle of a user session is as follows.

• Users who navigate to the web interface are ignored by the orchestrator until they click

the “start” button. At that time, they enter the “waiting” state.

• If an “initialized” instance is available, they immediately receive that one. As a second

option, they receive an “uninitialized” instance if one is available. The user then enters

the “running” state.

• The user will stay in this state until they disconnect, at which point they will enter

the “exited” state. The user’s session will eventually be garbage-collected.

Together, these mechanisms try to ensure that as many instances are available as possible;

instances are pre-emptively initialized ahead of time before users arrive so that they do not

waste time waiting for the startup sequence. As such, the system is able to maximize its

throughput.

39

Chapter 4

Evaluation of System Modules

In this chapter we study the performance of our system as a result of its new designs.

For our system, we provide three main dimensions of analysis: the performance of the scene

perception algorithms (Section 4.1), the performance of the new motion planner (Section 4.2),

and the capacity for large learning modules to perform lifelong learning (Section 4.3).

4.1 Semantic segmentation performance

Most vision models are trained to solve perception tasks in real-world scenes. While our

ultimate goal is to see HaLP 2.0 thrive in the real-world, large-scale experiments based in

simulations may only be reliable if vision models perform well on simulated scenes too.

HaLP 2.0 supports NVIDIA Isaac Sim as its main physics simulator. It was hypothesized

that its higher-quality renderings lead to improved semantic segmentation performance, when

compared to the PyBullet simulator used in the predecessor. In this section we evaluate this

choice by comparing the accuracy of vision models using renderers from each simulator.

To do so, we quantify metrics for the two main types of failure modes in perception:

1. Misclassified object. The semantic labeler assigned the incorrect object category.

2. Missing object. The segmentation model did not detect the object at all.

40

To address the first failure mode, we define a concept we call confusion. Consider two object

categories: a ground-truth category x of interest to a planner, and a distractor category

y distinct from x. Suppose a scene contains objects of both categories. We define the

confusion of x as y to be the probability that, when the planner asks for x, the semantic

labeler erroneously returns the object of category y. Informally, confusion is a measure of

how likely category x can suffer from an “imposter” of category y.

Naturally, a simulator that minimizes confusion has better system performance. We em-

pirically measure confusion by generating sequences of random scenes containing precisely

one object from each of the two categories, taking image crops from ground-truth segmen-

tations, and observing the CLIP misclassification rate in the find method. We perform 100

trials each for all pairs of categories out of bottles, bowls, containers and mugs.

Table 4.1 presents the pairwise confusion scores across a set of categories. We note that

in some cases, the objects may return a low similarity score on all object classes below the

detection threshold, and therefore return no match at all. We also consider that a failure of

the detection system. The results show that for this object classification task, scenes rendered

by Isaac Sim may generally lead to improved performance than PyBullet, especially in the

case of mug distractor objects.

We also evaluate the second failure mode for Detic object detection, reporting results in

Fig. 4.1. We find that segmentation performs comparably on Isaac Sim in cases where it

is already good on PyBullet (Fig. 4.2), and can also outperform in certain categories such

as bottles. We examine some failure cases, showing representative examples in Fig. 4.2.

Specifically, in these cases objects nevertheless appear out-of-distribution with respect to

real-world items. The ShapeNet object itself may be unrealistic (Fig. 4.2a); the default

Isaac Sim material may also look unrealistic (Fig. 4.2b). We note that custom textures are

an Isaac Sim feature that we have not yet availed. Therefore, these results show only a

baseline level of performance; with additional enhancements to textures and lighting, we

expect further improvements are well within reach.

41

Distractor category y

Ground truth
category x

bottle bowl container mug Not found

Isaac PyB Isaac PyB Isaac PyB Isaac PyB Isaac PyB

bottle - - 1% 3% 6% 14% 11% 44% 7% 10%

bowl 1% 2% - - 1% 3% 10% 16% 12% 29%

container 0% 0% 0% 2% - - 5% 23% 24% 19%

mug 1% 3% 1% 9% 0% 1% - - 2% 12%

Table 4.1: Pairwise confusion scores for semantic labeling under different simulator render-
ings.

bottle bowl container mug
0.6

0.7

0.8

0.9

1

0.91 0.91

0.99

0.94
0.93

0.76

1

0.93

P
ic

k
su

cc
es

s
ra

te

Isaac Sim renderer
PyBullet renderer

Figure 4.1: Object detection success rates under different simulator renderings.

(a) ShapeNet bowl that doesn’t look
like a bowl.

(b) Bowl with unrealistically shiny
texture.

Figure 4.2: Sample Isaac Sim images where Detic fails to detect the object.

42

4.2 Collision-free motion planning

Another new addition to the system is cuRobo [29], a collision-free robot motion generator.

HaLP 2.0 provides cuRobo as an alternative to other motion planning algorithms such as

differential inverse kinematics, which is provided by the Orbit library [28]. Qualitatively,

cuRobo provides several advantages. These include:

• Collision-free in cluttered scenes. As the primary purpose of cuRobo is to provide

collision-free motion plans, we can rely on it to control a robot arm in a cluttered scene.

Simpler algorithms for inverse kinematics may disregard obstacles and return a path

that collides with the clutter.

• Waypoint-free. For our collision-prone controllers, we use a sequence of manually-

designed waypoints to help guide the robot gripper into grasping and placing poses.

These waypoints have generally been successful at avoiding collisions with the object

of interest. However, hardcoded waypoints are naturally not robust. Collision-free

planners such as cuRobo allow us to eliminate the need for waypoints.

• Execution-free pose feasibility. The cuRobo algorithm detects whether the target

pose is infeasible instead of returning an incomplete and unsuccessful plan. This is

unlike the differential inverse kinematics controller, which will continuously output

robot actions. Detecting feasibility ahead of time is helpful for avoiding unnecessary

collisions, and may also be used to help in pose selection when multiple target poses

are valid. We use this attribute with Contact GraspNet [13], which generates several

suitable grasp poses.

To measure the degree of improvement, we compare cuRobo and the Orbit differential inverse

kinematics controller in a sequence of grasping tasks. In each task, we generate a scene

containing a single object, and use each planner with Contact GraspNet to pick up the

object. We run trials over the bottle, bowl, container and mug object classes; Fig. 4.3 shows

43

bottle bowl mug
0

0.2

0.4

0.6

0.8

1

0.04
0.1

0.49

0.24

0.64

0.84

P
ic

k
su

cc
es

s
ra

te
Orbit DiffIK
cuRobo

Figure 4.3: Pick object success rate using various motion planners.

the rate of success of each controller over 100 trials. It is evident that cuRobo’s performance

is far above that of the differential inverse kinematics controller, even in these uncluttered

scenes. This improvement can be attributed to cuRobo’s ability to select motion plans that

avoid colliding into and disturbing the object to pick.

Nevertheless we note that cuRobo’s success rate is low in some object categories. We

attribute this to the following causes:

• Some ShapeNet objects do not admit valid grasps. For example, bottles may be too

wide for the robot gripper (Fig. 4.4a). There are also many bowls that are “full”; that is,

filled with a solidified “soup”. These bowls also cannot be grasped by a robot gripper.

• Some objects can be grasped but difficult to lift without slipping. For example, bottles

have narrow bottlenecks (Fig. 4.4b), and grasps on that bottleneck are difficult to

maintain. If the bottle falls out of the grasp during the trial, it is counted as a failure.

4.3 LLMs as lifelong learners

In this section we present the design and results of the experiments used to evaluate large

language models at lifelong learning. This is the primary function of HaLP 2.0: to facilitate

44

(a) A bottle too wide to be grasped. (b) A bottle too narrow to be lifted.

Figure 4.4: Sample ShapeNet objects that induce failure modes in cuRobo grasping.

the accumulation of skills to create an increasingly capable agent over time. To evaluate this,

we create progressions of tasks that form a curriculum for learning skills that can be reused

in new task contexts, and demonstrate that large language models are capable of effective

skill construction and reuse.

4.3.1 Experiment design

Although HaLP 2.0 is a full-stack pipeline for performing LLM-guided robotic manipulation

tasks, a direct evaluation on this system does not reflect the performance of the language

model planner as its components are prone to failure. We refer to [9] for the results of

evaluating the HaLP pipeline and some of its modules. We wish to conduct a focused

analysis of the language model’s lifelong learning ability.

Yet this itself poses many challenges: whether a skill is appropriate is in itself an ill-

defined concept. For instance, consider a scenario in which the robot is asked to pour out

the contents of a mug. A seemingly reasonable skill request in this case may be “rotate mug”.

In another scenario where a robot is asked to place a mug upside down on a rack to dry,

“rotate mug” sounds like a valid and wholly relevant skill. But the geometric configuration

of the mug is entirely different in this case. Fundamentally, this skill is underspecified and

is not teachable or actionable.

45

A plan consisting of valid tasks may also be underspecified as a whole. For the same

pouring task, the robot may need to start with “grasp mug” as its first skill. This is seemingly

correct until the robot holds the mug by the rim; only at that point do we realize we needed

to specify a grasp by the handle.

These levels of detail are subtle, subjective, and difficult to evaluate for correctness. A

level of detail that may seem appropriate in one case may seem absurd or problematic in

another. We posit that evaluating the correctness of an effectively symbolic task plan is

challenging. Instead of analyzing plan correctness, we focus instead on the system’s effec-

tiveness at skill reuse. We defer to works such as [6] for a discussion of the planning abilities

of language models, opting to focus on the learning aspect of our system. The discussion of

evaluation’s limitations is continued in Section 5.1.

To do so, we crowd-source a large collection of natural scenes and tasks on the Prolific

research platform [37]; we clarify that this study was approved by the Institutional Review

Board. With this dataset, we perform the following evaluations.

A quantitative evaluation of how effectively skills are created and reused. This

evaluation measures whether the large-language model can verify that the skills it proposes

are useful.

In particular, we query the model with each scene-task pair twice. On the first run,

we allow it to make arbitrary calls to learn_skill, effectively assembling an entire symbol

universe for a symbolic task plan. On the second run, we add the new symbols to the skill

library and provide a new language context. We expect that well-selected skills will all be

reused in this re-run, and no additional skills should be requested.

A qualitative characterization of the types of skills being proposed. This evalua-

tion considers longer task progressions that enable the system to accumulate and reuse skills

over multiple tasks. We choose sequences of tasks of increasing difficulty, sharing common

scene elements so that we can observe the system’s behavior. We present some of these

46

Metric Score

Task skill-sanity 88.5%
Task skill-completeness 86.2%
Task skill-efficiency 100.0%
Skill-wise sanity 92.4%
Skill-wise efficiency 100.0%

Table 4.2: Quantitative metrics for the evaluation of skill reuse in large language model
lifelong learning.

sequences below.

4.3.2 Metrics for lifelong learning performance

Our crowd-sourcing efforts yield a total of 71 usable scenes with 213 corresponding tasks.

The details of the survey prompts and a categorized breakdown of these scenes is included

in Appendix A. We take a sample of these tasks to run the quantitative evaluation.

We specifically measure the following metrics in this evaluation:

• Task skill-sanity. The fraction of tasks in which all skills requested on the first run

are actually called.

• Task skill-completeness. The fraction of tasks in which the second run does not

require new skills absent in the first run.

• Task skill-efficiency. The fraction of tasks in which the second run uses all of the

skills learned and used in the first run.

• Skill-wise sanity. The fraction of requested skills that are actually called.

• Skill-wise efficiency. The fraction of requested skills that are used in both runs.

Clearly an efficient system should score highly on all five metrics. We report the results of this

evaluation in Table 4.2. Notably, the system achieves perfect skill-efficiency, indicating that

all skills used in the first run are deemed necessary by the second run. For the other metrics,

47

the overall performance is over 85% at a per-task level, with skill-wise metrics scoring over

90%. Among those tasks where the system failed, we highlight some key findings.

Extraneous unused skills. Sometimes the language model is “perfectionist” and attempts

to perform extraneous actions that are not required to minimally complete the task. These

skills are “cleanup” actions that are recommended but which the model chooses not to per-

form. For example:

• In a task “turn on faucet”, the model learns the skill rotate_faucet_off.

• In a task “wash dishes”, the model learns the skill put_away.

• In a task “put clothes away”, the model learns the skill sort_clothes.

Most skills that fail the skill-sanity metric have skills of this form. In these cases, it appears

that the learning of additional skills is intentional; they are neither required nor used for the

task. A similar trend explains the skill-completeness metric. As language model rollouts are

stochastic, there are times when these cleanup actions are not suggested until the second

run. This leads to an apparently lowered skill-completeness score.

Redundant skill-learning. Very occasionally, the language model learns skills that are

redundant given the existing ones. This comes in two forms; first, GPT-4 emphasizes safety,

and may choose to learn special skills for fragile or hazardous items such as mugs and knives.

Context-engineering to highlight that built-in skills are already cautious do not successfully

eliminate this behavior. Second, GPT-4 learns specializations, such as storing cookware in-

stead of generic placing. These specializations are indeed redundant, but subject to context-

engineering; we discuss mitigation further in our qualitative studies in Section 4.3.3.

Lastly, we summarize the types of skills learned in this evaluation. As skills function as

imperative commands in a symbolic plan, the first word in each skill is a verb. We show the

distribution of these verbs in Table 4.3.

48

Skill type Verbs used

Concrete low-level action,
learnable as a primitive

close, fold, grasp, hang, move, navigate, pour, press, put,
remove, rotate, stack, tilt, turn

Higher-level action, a
combination of primitive
actions

add, dispense, dry, dump, dust, fill, fluff, rinse, scrub,
smooth, spray, spread, straighten, submerge, throw, tuck,
unplug, wipe, wring

Abstract action, requiring
extensive planning

activate, adjust, apply, deactivate, drain, load, sort,
start, store, tidy, use, vacuum, wash

Table 4.3: An approximate categorization of the types of skill verbs learned by the large
language model.

4.3.3 Characterization of large language model behavior

For the qualitative characterization, we create progressions by grouping scenes by category,

such as kitchen or laundry scenes. Tasks are ordered in the suggested difficulty rating given by

the crowd-source survey participants. Emergent behaviors in this experiment are surprising

and demonstrate extraordinary attempts to use skills effectively. For example, on a kitchen

task to load a dishwasher, the language model tries to repurpose a skill previously learned

for opening a refrigerator—a similar kitchen appliance.

1 # Pick the dirty dish

2 pick(dish_id)

3 # Open the dishwasher - could repurpose the "open_refrigerator" skill

4 # for opening things

5 open_refrigerator () # Repurposing this skill to open the dishwasher

Even more astoundingly, a kitchen task to “take stems off tomatoes” after previously learning

how to open a milk bottle yielded the following code snippet:

1 # Assuming "open_milk_bottle" simulates the twisting/pulling motion

2 # needed to remove a stem.

3 detach_stem = open_milk_bottle # Renaming the function for clarity

These examples show that the language model is capable of adapting skills to novel contexts

49

0 10 20 30
0

5

10

15

20

25

Task #

N
um

be
r

of
sk

ill
s

new skills used old skills unused old skills

(a) Skill statistics for kitchen tasks.

0 5 10 15 20
0

2

4

6

8

10

12

Task #

N
um

be
r

of
sk

ill
s

new skills used old skills unused old skills

(b) Skill statistics for laundry tasks.

Figure 4.5: Skill growth and learning frequency for tasks in sample task progressions.

outside of where they were first seen. We include some more examples of skill reuse interac-

tions in Appendix B. Generally these interactions demonstrate that the system is effective

at remembering and reusing skills even over long task progressions, appropriately selecting

skills that are suitable for the task. We find that the system continually reuses skills as the

size of the skill library increases, requiring fewer new ones as some tasks become repetitive.

We summarize the use and growth of the skill library of these sequences in Fig. 4.5.

HaLP 2.0 allows for human-in-the-loop feedback to refine code before it is executed, and

we remark that this is very necessary in order to obtain symbolic plans that are syntactically

correct. We empirically observe that GPT-4V is susceptible to ignoring explicit docstring

directions at times, leading to function calls that violate the prescribed specifications. We

enumerate some of these below.

• Using the find skill to return a list of all objects matching a filter, even though we

explicitly specify that it only returns a single object.

• Using learn_skill to obtain a function, only to immediately overwrite it with a def

function-definition of the same name and an empty body. It appears that the model

is attempting to provide a stub to prompt the human for an implementation, even

50

Proportion of unnecessary skills

Type of learn_skill docstring # skills GPT evaluation Manual evaluation

Instruction to avoid call 26 19% 15%
No instruction to avoid calling 41 54% 27%

Table 4.4: Proportion of unnecessary skills learned under differently engineered docstrings.

though we explicitly tell it not to do so.

• Attempting to learn “skills” that observe the scene rather than manipulate it, such

as is_dirty for cleaning tasks. Our interface specifies that skills should be used to

command robot actions. The interface provides find which should be used instead to

filter for the desired objects.

• Learning redundant (unnecessary) skills, such as store_cookware or pick_knife when

a simple pick or place would suffice. We find that engineering the docstring for

learn_skill has a noticeable effect on the proportion of redundant skills, by instruct-

ing the language model not to learn skills unless absolutely necessary; the docstring is

included in Appendix B. In our post-hoc analysis, we ask GPT-4 to compare method

docstrings and identify skills that are merely more specific versions of other skills. We

also perform this evaluation manually as GPT-4 may be overaggressive as it is not

familiar with our skill framework, finding redundancy in skills that sound similar but

are actually very different, such as the pair turn_on_faucet and turn_on_kettle.

We report the results in Table 4.4; they show that trials with engineered contexts

yielded far fewer redundant skills, such as in the interaction presented in Table B.1.

On the other hand, when not instructed to avoid skill-learning, the language is much

more liberal, yielding much more skills that were redundant. We refer to the rollout

in Table B.2 as an example.

We provide feedback whenever the language model writes code that violates any of these

rules. This is only to ensure that the code being produced is syntactically valid and therefore

51

parseable by our verifier; we suggest that prompting models to write perfect code without

human interaction is out of scope. We do not provide any feedback other than correcting

syntax errors.

Nevertheless, we note that these failures are relatively rare, occurring in less than 10%

of tasks, and that the vast majority of new skills are meaningful and productive. We believe

our results show that language models are promising for more complex planning tasks and

for lifelong learning, and that once we have the ability to train policies for these new skills,

it is possible to create very capable robotic agents.

52

Chapter 5

Limitations and Further Work

Our studies of HaLP 2.0 provide insights to a number of questions about the performance of

large language models in lifelong learning, as well as foundation models for perception and

control in simulated environments. However, some questions yet remain unanswered, some

being too complex to understand with the current framework. We also open a plethora of

avenues for further exploration, some of which we discuss below.

5.1 Evaluation of skill and plan correctness

In Section 4.3 we evaluated lifelong learning based on the system’s ability to construct a set

of skills that, on an independent run, is classified as sufficient by a large language model. We

remark that the results are highly dependent on the distribution of tasks used in evaluation:

inevitably, there may be some tasks that the system will find easier or harder than others.

Accordingly, we do not base our evaluation on tasks and scenes of our own creation.

We expect that crowd-sourced tasks will largely eliminate any bias in the distribution of

the evaluation dataset; moreover, they will be more realistic in evaluating the potential for

HaLP 2.0 to actually be useful in a real-world deployment. As such, we suggest that the

results of this evaluation are indicative of the system’s potential.

Nevertheless, we are limited to these symbolic evaluations: attempting to execute task

53

plans in all these crowd-sourced scenes is largely infeasible. It is not only time-consuming

to train all the requisite policies and to collect the demonstration data, but also extremely

error-prone in execution. As was discussed, evaluating the correctness of a symbolic plan can

also be problematic due to the subjectivity of understanding the nuance of under- and over-

specified skills. Our study focuses on the objective evaluation of skill reuse; we remark that

a rigorous evaluation mechanism for skill correctness is challenging, but may be especially

insightful.

5.2 System component extensions

The modularity of the HaLP 2.0 system makes it extremely easy to add new extensions. We

believe the addition of new alternative implementations to these modules can continue to

expand the system’s capabilities. We enumerate some of these possibilities below.

New types of learnable skills. So far, we have used Neural Descriptor Fields for pose

inference and object relational rearrangement with category-conditioned models [14, 15].

We additionally recommend Local Neural Descriptor Fields [38], a category-agnostic variant

based on local “part” geometries, which may further reduce the volume of human interaction

required to train the system. Diffusion-based policies may also be effective at handling

situations where there are multiple valid task plans [39]. At the same time, skills are versatile

enough to also allow the inclusion of closed-loop controllers such as reinforcement learning

agents.

New types of model pipeline. HaLP 2.0 currently relies on human feedback between

consecutive steps of an execution plan. It is feasible to draw inspiration from works such

as Inner Monologue [8], which provide automated feedback mechanisms. This would allow

HaLP 2.0 to become even more autonomous. Feedback mechanisms we may consider include

updated scene descriptions in symbolic or natural language format, or in the case of vision-

54

language models, taking new camera images of the scene.

5.3 Even larger scale studies

HaLP 2.0 is designed for scale. As a full-stack system with a user-friendly interface and

built-in support for concurrency, it is ready to be deployed to large crowd-sourcing data

applications. This enables novel studies of the system’s end-to-end performance on a large

assortment of scenes, tasks, and skillsets. We believe that such a study would be even

more illuminating about the lifelong learning capabilities of large language models, and the

potential future applications of the system as a whole in human assistance settings.

At the same time, HaLP 2.0 can also be used for pure data collection to generate massive

robot trajectory datasets. These datasets can consist of LLM-guided robot manipulation

tasks, and be used downstream in end-to-end training of a new generation of behavior cloning

and reinforcement learning agents that can perform increasingly complex tasks.

55

Chapter 6

Conclusions

HaLP 2.0 is a modular and scalable system for integrating robotic manipulation algorithms

with the lifelong learning capabilities of large language models. We provide a user-friendly

interface for running reproducible large-scale experiments and commanding robots through

natural language.

Our evaluations show that HaLP 2.0 provides module implementations that improve

system performance over its predecessor HaLP. We also run a focused study on large language

models, showing that they have significant lifelong learning potential to be harnessed. But,

the journey doesn’t end here: we design HaLP 2.0 to be extensible, because the possibilities

are many. Our system is ready to incorporate new skills, new pipelines, and even larger scales

of crowd-sourced studies, to probe the limits of what large language models can do, however

improbable those goals may be. Lifelong learning can enable our robots to acquire skills of

ever-increasing complexity, and once ready for the real-world, to become the ultimate human

assistant.

56

Appendix A

Scene and Task Crowd-sourcing Survey

Our crowd-sourcing survey for collecting a scene and task dataset was hosted on Prolific [37].

This study was approved by the Institutional Review Board of the Massachusetts Institute of

Technology protocol E-5443. Below we include the exact survey text and some representative

statistics about the types of scenes submitted.

A.1 Survey content

Teach our robots to be your assistants.

We are teaching some robots to be good human assistants. Imagine a robot that

could help you around your house: in your kitchen, in your living room, in your

laundry, in your yard! We need your help to tell us, what sorts of things you’d

like your robot to do.

For example, here’s something that I’d like! Take a look at this kitchen. Three

things I might like a robot to do are:

• Put the small red bowl into the orange bowl on the shelf.

• Wash the pink mug.

• Tidy up everything in the top-right shelf.

57

Figure A.1: Sample kitchen image shown to survey-takers as an example of a robot scene.

So, what would you find helpful? Please:

• Give us a photo of a place you think a robot would be helpful. You can

either find a photo online, or take a photo of somewhere around you.

• Look at your photo and imagine there’s a robot there! Tell us three different

tasks you think a robot could help you with.

• Please give your tasks in order of how hard you think they are—easiest first!

Please make sure your tasks only involve things you can see in the

photo. The robot must be able to see all the tools it will need! That is:

• If your photo is in the living room, don’t ask it to fetch a coke from the

fridge. The robot can’t see the fridge, and it can’t see the coke.

• If your photo is in a completely empty kitchen, don’t ask it to make you

breakfast. The robot can’t see the ingredients, and it can’t see any frying

pans.

• If you want the robot to clean something, make sure it can see cleaning

supplies.

That’s all we’ve got to say! Now it’s your turn.

58

A.2 Scene characteristics

The collected dataset contains 100 responses, each consisting of an image and three tasks.

We manually process those responses to filter out ones with obviously invalid tasks that are

infeasible in the scene. Most commonly, this involved a cleaning task without any visible

janitorial supplies.

Of those remaining, we categorize the tasks depending on the scene type, with the expec-

tation that similar scenes may require similar skills. These statistics are shown in Table A.1.

The most common tasks involved loading a dishwasher, putting clothes into a washing ma-

chine, and tidying an unorganized assortment of toys and tools.

Category Number of scenes Number of tasks

Bathroom 2 6
Bedroom 7 21
Floor only 1 3
Kitchen 21 63
Laundry 8 24
Living room 16 48
Puzzle 1 3
Outdoor 2 6
Shelf rearrangement 8 24
Study desk 5 15

Total valid 71 213
Total invalid 29 87

Table A.1: Number of scenes and tasks of each category in the crowd-sourced dataset.

59

Appendix B

LLMs in Long Task Progressions

Here we present some of the tasks evaluated in the longer task progressions along with the

skills learned and used by the language model. We begin with tasks corresponding to scene

belonging to the kitchen category in Table B.1. Due to confidentiality obligations we are

unable to reproduce any of the submitted scene images. This dataset was obtained with the

following docstring for learn_skill directing its use to be avoided.

learn_skill(skill_name: str,docstring: str): Callable

Adds a new skill to the current list of skills. Skills must be used to move objects.

Do not use a skill to find objects. Attempts to find or observe an object will fail.

Skills have no return value. Only ever learn a new skill if it is impossible to

achieve using existing ones. For example, if you already know how to

pick up items, then do not additionally learn how to pick up a bottle.

You can assume that the skill implementation will be automatically provided.

Do not provide any implementation of your own for skills that you learn. For

example, to open a drawer, you can use:

learn_skill(skill_name="open_drawer", docstring="Pulls a drawer open.")

open_drawer(drawer_id)

60

We note the following insights about this dataset:

• Many new skills are learned within the first tasks. As the skill library accumu-

lates, many skills are continually reused, such as open_cabinet_door (task 8) or

turn_on_faucet (task 11). Skill learning can become less frequent in later tasks as

the agent’s capabilities grow.

• As discussed in Section 4.3.2, some extraneous skills are learned. An example of this is

store_cookware (task 7), which we see to be an instance of unnecessary skill special-

ization being performed by the language model. However, comparing to the discussion

in Table B.2, these extraneous skills are much rarer.

• Some other skills are similar and may be redundant with each other, although this is

model-dependent. Examples include open_fridge_door (task 2), open_cabinet_door

(task 8), and open_oven_door (task 14), which all involve opening doors.

Task Skills used

1 put all dirty dishes in the sink
2 take out bottle of milk and

open it
*close_fridge_door *open_fridge_door
*open_milk_bottle

3 wash dishes *fill_sink_with_water *rinse_dish
*scrub_dish

4 take stems off tomatoes *cut_stems
5 put dishes in sink fill_sink_with_water
6 clean the countertops *wipe_counter fill_sink_with_water

rinse_dish scrub_dish
7 clean up pots and pans *empty_contents *store_cookware

fill_sink_with_water rinse_dish scrub_dish
wipe_counter

8 put salt in cabinet *close_cabinet_door *open_cabinet_door
9 place the empty jug into the recycling bin

10 wash dishes *pre_rinse_dish fill_sink_with_water
rinse_dish scrub_dish store_cookware

11 turn on water *turn_on_faucet pre_rinse_dish
continued . . .

61

Task Skills used

12 move the glass cup from the
counter to the shelf

close_cabinet_door open_cabinet_door

13 remove the pots and pans
from the sink

store_cookware

14 take potatoes out of oven *close_oven_door *open_oven_door
*remove_from_oven

15 throw away all expired food
in the refrigerator

close_fridge_door open_fridge_door

16 preheat the oven to 350
degrees

*set_oven_temperature close_oven_door
open_oven_door

17 clean the knife and put it
away

*turn_off_faucet pre_rinse_dish rinse_dish
scrub_dish turn_on_faucet

18 put away clean dishes close_cabinet_door open_cabinet_door
19 take a styrofoam cup
20 rinse dishes in sink and load

dishwasher
fill_sink_with_water pre_rinse_dish
rinse_dish scrub_dish turn_off_faucet

21 dump out all the liquids in
the cups before trashing
them

empty_contents

22 dump out bowl of cherries
from top shelf

*tilt_to_empty close_fridge_door
open_fridge_door

23 clean counter wipe_counter
24 pick up knife and cut up

tomatoes
cut_stems

25 turn on faucet turn_on_faucet
26 load the dishwasher *close_dishwasher_door pre_rinse_dish
27 remove stove covers *lift_stove_cover *move_cover_to_side
28 put olive oil in cabinet close_cabinet_door open_cabinet_door
29 put the sauce bottle into

the cabinet above
close_cabinet_door open_cabinet_door

30 put the dishes on the drying rack
31 turn on kettle *turn_on_kettle
32 remove one cup from the stack
33 use the orange towel to dry

off the plates in the sink
*dry_plate_with_towel

34 clean the plates with food
on them

fill_sink_with_water pre_rinse_dish
rinse_dish scrub_dish store_cookware
turn_off_faucet turn_on_faucet

Table B.1: Skills learned (marked with asterisk) and used in crowd-sourced tasks proposed
for kitchen scenes.

62

On the other hand, we compare with a version in which learn_skill does not instruct the

LLM to avoid creating new skills. In particular, the bolded statements from the previous

docstring was omitted. In this case, we see several more redundant skills in Table B.2,

including pick_knife, pick_cup, pick_plate, as well as store-item counterparts for each

of these skills.

Task Skills used

1 put all dirty dishes in the sink
2 take out bottle of milk and

open it
*close_refrigerator *open_milk_bottle
*open_refrigerator

3 wash dishes close_refrigerator open_refrigerator
4 take stems off tomatoes *cut_stem *dispose_stem
5 put dishes in sink
6 clean the countertops *discard_trash *spray_cleaner *wipe_surface
7 clean up pots and pans discard_trash spray_cleaner wipe_surface
8 put salt in cabinet *close_cabinet *open_cabinet
9 place the empty jug into

the recycling bin
close_cabinet open_cabinet

10 wash dishes *apply_soap *dry_dish *rinse_dish
*scrub_dish close_cabinet open_cabinet

11 turn on water *turn_on_faucet
12 move the glass cup from the

counter to the shelf
close_cabinet open_cabinet

13 remove the pots and pans from the sink
14 take potatoes out of oven *close_oven *open_oven *pick_baking_tray

*place_baking_tray
15 throw away all expired food

in the refrigerator
close_refrigerator discard_trash
open_refrigerator

16 preheat the oven to 350
degrees

*set_oven_temperature close_oven open_oven

17 clean the knife and put it
away

*dry_knife *pick_knife *store_knife
apply_soap rinse_dish scrub_dish
turn_on_faucet

18 put away clean dishes *pick_cup *pick_plate *store_cup
*store_plate close_cabinet dry_knife
pick_cup pick_knife pick_plate store_cup
store_knife store_plate

19 take a styrofoam cup store_cup
continued . . .

63

Task Skills used

20 rinse dishes in sink and load
dishwasher

*close_dishwasher *open_dishwasher
*start_dishwasher *turn_off_faucet
rinse_dish turn_on_faucet wipe_surface

21 dump out all the liquids in
the cups before trashing
them

*empty_cup discard_trash turn_off_faucet
turn_on_faucet

22 dump out bowl of cherries
from top shelf

*tilt_bowl close_refrigerator
open_refrigerator

23 clean counter spray_cleaner wipe_surface
24 pick up knife and cut up

tomatoes
*cut_tomato *pick_tomato pick_knife

25 turn on faucet turn_on_faucet
26 load the dishwasher *add_detergent_to_dishwasher

close_dishwasher open_dishwasher rinse_dish
start_dishwasher turn_off_faucet
turn_on_faucet

27 remove stove covers *remove_stove_cover
28 put olive oil in cabinet close_cabinet open_cabinet
29 put the sauce bottle into

the cabinet above
*close_upper_cabinet *open_upper_cabinet

30 put the dishes on the
drying rack

dry_dish

31 turn on kettle *turn_on_kettle
32 remove one cup from the stack
33 use the orange towel to dry

off the plates in the sink
*dry_plate_with_towel *pick_orange_towel

34 clean the plates with food
on them

apply_soap discard_trash
dry_plate_with_towel pick_orange_towel
rinse_dish scrub_dish store_plate
turn_off_faucet turn_on_faucet

Table B.2: Skills learned (marked with asterisk) and used in crowdsourced tasks proposed
for kitchen scenes.

Additionally, we show a sample interaction sequence in some laundry-room scenes in

Table B.3. We note that once the system has accumulated sufficiently many skills, the in-

struction to “tidy up mess” causes the model to use every skill it has, enough to autonomously

perform an entire laundry day.

64

Task Skills used

1 fold the clothes in the front
pile

*fold_clothes

2 put clothes in washer *close_washing_machine
*open_washing_machine
*start_washing_machine fold_clothes

3 put clothes in washer or
dryer

close_washing_machine open_washing_machine
start_washing_machine

4 fold the sheets in the upper
left corner of the shelf

fold_clothes

5 fold the clothes fold_clothes
6 load clothes in the washer close_washing_machine open_washing_machine
7 fold all the bun cloths fold_clothes
8 iron the shirt and pants for

work tomorrow
*hang_clothes *iron_clothes *plug_in_iron
*set_up_ironing_board *unplug_iron

9 start the washer with the
soaps in the top of the
shelves

close_washing_machine open_washing_machine
start_washing_machine

10 put clothes in dryer close_washing_machine open_washing_machine
11 fold dry clothing fold_clothes
12 organize everything on the

top shelf
fold_clothes

13 transfer clothes from
washer to dryer

close_washing_machine open_washing_machine

14 add detergent and softener
from bottles on shelf

*pour_detergent *pour_softener

15 hang the bibs on the side of the cart
16 vacuum the red carpet *operate_vacuum fold_clothes
17 load clothes into the washer

like the pile in the front of
the picture

close_washing_machine open_washing_machine
pour_detergent start_washing_machine

18 fold clothes fold_clothes
19 tidy up mess close_washing_machine fold_clothes

hang_clothes iron_clothes
open_washing_machine operate_vacuum
plug_in_iron pour_detergent pour_softener
set_up_ironing_board start_washing_machine
unplug_iron

20 sort clothing by color,
length, and garment type

fold_clothes

continued . . .

65

Task Skills used

21 organize laundry room close_washing_machine fold_clothes
open_washing_machine operate_vacuum
pour_detergent pour_softener
start_washing_machine

22 start the washer close_washing_machine open_washing_machine
pour_detergent pour_softener
start_washing_machine

Table B.3: Skills learned (marked with asterisk) and used in crowd-sourced tasks proposed
for laundry scenes.

66

References

[1] T. Brown et al., “Language models are few-shot learners,” in Advances in Neural
Information Processing Systems, vol. 33, 2020, pp. 1877–1901.

[2] OpenAI, GPT-4 technical report, 2023. arXiv: 2303.08774 [cs.CL].

[3] OpenAI, GPT-4V(ision) system card,
https://cdn.openai.com/papers/GPTV_System_Card.pdf, 2021.

[4] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and
A. Anandkumar, “Voyager: An open-ended embodied agent with large language
models,” in NeurIPS 2023 Foundation Models for Decision Making Workshop, 2023.

[5] B. Ichter et al., “Do as I can, not as I say: Grounding language in robotic
affordances,” in 6th Annual Conference on Robot Learning, 2022.

[6] N. Wake, A. Kanehira, K. Sasabuchi, J. Takamatsu, and K. Ikeuchi, “ChatGPT
empowered long-step robot control in various environments: A case application,”
IEEE Access, pp. 1–1, 2023.

[7] S. Li et al., “Pre-trained language models for interactive decision-making,” in
Advances in Neural Information Processing Systems, vol. 35, 2022, pp. 31 199–31 212.

[8] W. Huang et al., “Inner monologue: Embodied reasoning through planning with
language models,” in 6th Annual Conference on Robot Learning, 2022.

[9] M. Parakh, A. Fong, A. Simeonov, T. Chen, A. Gupta, and P. Agrawal, “Lifelong
robot learning with human assisted language planners,” 2023. arXiv: 2309.14321
[cs.RO].

[10] M. Parakh, “Building a language conditioned system for 6-DoF tabletop
manipulation,” Master’s Thesis, Massachusetts Institute of Technology, 2023.

[11] A. Fong, “NDF-based API for human-assisted language planning (HaLP),” Master’s
Thesis, Massachusetts Institute of Technology, 2023.

[12] A. Zeng et al., “Transporter networks: Rearranging the visual world for robotic
manipulation,” in 4th Annual Conference on Robot Learning, 2020.

[13] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-GraspNet:
Efficient 6-DoF grasp generation in cluttered scenes,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021, pp. 13 438–13 444.

67

https://arxiv.org/abs/2303.08774
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://arxiv.org/abs/2309.14321
https://arxiv.org/abs/2309.14321

[14] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal,
and V. Sitzmann, “Neural descriptor fields: SE(3)-equivariant object representations
for manipulation,” in 2022 International Conference on Robotics and Automation
(ICRA), 2021, pp. 6394–6400.

[15] A. Simeonov, Y. Du, Y.-C. Lin, A. R. Garcia, L. P. Kaelbling, T. Lozano-Pérez, and
P. Agrawal, “SE(3)-equivariant relational rearrangement with neural descriptor
fields,” in 6th Annual Conference on Robot Learning, 2022.

[16] M. Shridhar, L. Manuelli, and D. Fox, “CLIPort: What and where pathways for
robotic manipulation,” in 5th Annual Conference on Robot Learning, 2021.

[17] A. Radford et al., “Learning transferable visual models from natural language
supervision,” in Proceedings of the 38th International Conference on Machine
Learning, 2021.

[18] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-actor: A multi-task transformer for
robotic manipulation,” in 6th Annual Conference on Robot Learning, 2022.

[19] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents, 2022. arXiv:
2201.07207 [cs.LG].

[20] Z. Zhao, W. S. Lee, and D. Hsu, “Large language models as commonsense knowledge
for large-scale task planning,” in NeurIPS 2023 Foundation Models for Decision
Making Workshop, 2023.

[21] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei, “VoxPoser: Composable
3D value maps for robotic manipulation with language models,” in 7th Annual
Conference on Robot Learning, 2023.

[22] N. Wake, A. Kanehira, K. Sasabuchi, J. Takamatsu, and K. Ikeuchi, GPT-4V(ision)
for robotics: Multimodal task planning from human demonstration, 2023. arXiv:
2311.12015 [cs.RO].

[23] Y. Lin, A. S. Wang, G. Sutanto, A. Rai, and F. Meier, Polymetis,
https://facebookresearch.github.io/fairo/polymetis/, 2021.

[24] E. Coumans and Y. Bai, PyBullet, a Python module for physics simulation for
games, robotics and machine learning, https://pybullet.org, 2021.

[25] T. Chen, A. Simeonov, and P. Agrawal, AIRobot,
https://github.com/Improbable-AI/airobot, 2019.

[26] A. X. Chang et al., “ShapeNet: An Information-Rich 3D Model Repository,” Stanford
University — Princeton University — Toyota Technological Institute at Chicago,
Tech. Rep. arXiv:1512.03012 [cs.GR], 2015.

[27] NVIDIA, NVIDIA Isaac Sim, https://developer.nvidia.com/isaac-sim, 2022.

[28] M. Mittal et al., “Orbit: A unified simulation framework for interactive robot learning
environments,” IEEE Robotics and Automation Letters, vol. 8, no. 6, pp. 3740–3747,
2023.

68

https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2311.12015
https://facebookresearch.github.io/fairo/polymetis/
https://pybullet.org
https://github.com/Improbable-AI/airobot
https://developer.nvidia.com/isaac-sim

[29] B. Sundaralingam et al., “CuRobo: Parallelized collision-free robot motion
generation,” in 2023 IEEE International Conference on Robotics and Automation
(ICRA), 2023, pp. 8112–8119.

[30] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra, “Detecting
twenty-thousand classes using image-level supervision,” in European Conference on
Computer Vision, 2022.

[31] A. Kirillov et al., “Segment anything,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2023, pp. 4015–4026.

[32] OpenAI, Introducing ChatGPT, https://openai.com/blog/chatgpt, 2022.

[33] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding,” in North American Chapter
of the Association for Computational Linguistics, 2019.

[34] M. Grinberg, Flask web development: developing web applications with Python.
O’Reilly Media, Inc., 2018.

[35] Bootstrap, Build fast, responsive sites with Bootstrap, https://getbootstrap.com,
2024.

[36] M. Deitke, D. Schwenk, J. Salvador, L. Weihs, O. Michel, E. VanderBilt, L. Schmidt,
K. Ehsani, A. Kembhavi, and A. Farhadi, “Objaverse: A universe of annotated 3D
objects,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2023, pp. 13 142–13 153.

[37] Prolific, Easily find vetted research participants and AI taskers at scale,
https://www.prolific.com, 2014.

[38] E. Chun, Y. Du, A. Simeonov, T. Lozano-Perez, and L. Kaelbling, “Local neural
descriptor fields: Locally conditioned object representations for manipulation,” in
2023 International Conference on Robotics and Automation (ICRA), 2023.

[39] A. Simeonov, A. Goyal, L. Manuelli, Y.-C. Lin, A. Sarmiento, A. R. Garcia,
P. Agrawal, and D. Fox, “Shelving, stacking, hanging: Relational pose diffusion for
multi-modal rearrangement,” in 7th Annual Conference on Robot Learning, 2023.

69

https://openai.com/blog/chatgpt
https://getbootstrap.com
https://www.prolific.com

	Table of Contents
	1 Introduction
	2 Background
	2.1 Primitive skills for robot manipulation
	2.2 Large language models for zero-shot task planning

	3 HaLP 2.0 System Architecture
	3.1 Language-powered robot manipulation
	3.1.1 Connection to physics backend
	3.1.2 Scene perception and object segmentation
	3.1.3 Natural language scene annotation
	3.1.4 Large language model connection
	3.1.5 Skill classes
	3.1.6 Saving demonstrations
	3.1.7 Recording interactions for further analysis
	3.1.8 Whole system pipeline

	3.2 Web-based user interaction interface
	3.2.1 User interface design
	3.2.2 Skill demonstration interface
	3.2.3 Message protocol between orchestrator and robot system
	3.2.4 Concurrency management

	4 Evaluation of System Modules
	4.1 Semantic segmentation performance
	4.2 Collision-free motion planning
	4.3 LLMs as lifelong learners
	4.3.1 Experiment design
	4.3.2 Metrics for lifelong learning performance
	4.3.3 Characterization of large language model behavior

	5 Limitations and Further Work
	5.1 Evaluation of skill and plan correctness
	5.2 System component extensions
	5.3 Even larger scale studies

	6 Conclusions
	A Scene and Task Crowd-sourcing Survey
	A.1 Survey content
	A.2 Scene characteristics

	B LLMs in Long Task Progressions
	References

