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Abstract

Neurodegenerative diseases such as Parkinson’s and Alzheimer’s are incurable and
affect millions of people worldwide. Early diagnosis is critical for improving quality of
life for patients. Current methods rely on the use of tests administered and evaluated
by clinicians. The digital Symbol Digit Test (dSDT) is a novel cognitive test that aims
to distinguish between individuals with normal and impaired cognitive abilities. This
thesis will develop a framework for processing collected participant eye-tracking and
handwriting data and show its use in detecting specific multimodal learning behaviors.
Furthermore, this thesis will explore recommendations for working with eye-tracking
systems and outline future steps towards developing a multimodal classification model
to automate early diagnosis of neurodegenerative disease.
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Chapter 1

Introduction

According to the World Health Organization, approximately 50 million people suffer
from neurodegenerative disease [4]. Two of the most common types are Parkinson’s
and Alzheimer’s, for which no cures currently exist. Treatment consists primarily of
medication and physical therapy to manage symptoms and improve quality of life.
Early diagnosis is crucial for ensuring better outcomes for patients [7].

Typically, diagnosis consists of clinical evaluations and diagnostic tests adminis-
tered by trained physicians. However, these methods tend to be subjective and lack
reproducibility, with diagnoses varying from physician to physician [5].

In order to address these limitations, this thesis aims to create a data processing
pipeline for detecting specific learning behaviors from participants who have com-
pleted the digital Symbol Digit Test (dSDT), administered through the Cognitive
Health App on an iPad with a stylus. These learning behaviors are defined in terms
of participants’ point of gaze and handwriting activity throughout the duration of the
test. By acting as descriptors of learning, the detection of these behaviors will aid in
the further development of a multimodal classification model for the early detection
of neurodegenerative disease.

Eye-tracking data is collected via the ETVision system, developed by Argus Sci-
ence, which consists of the ETVision Headset and its accompanying desktop software
applications known as the ETVision App and the ETAnalysis App. Handwriting data
is collected via the Cognitive Health App.
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The detection of participant learning behaviors is broken down into four primary
data processing pipelines (Figure 1-1). Each modality is processed separately; the
eye-tracking data captured by the ETVision system is processed by the ETAnalysis
Pipeline and Vision Pipeline while the handwriting data captured by the Cognitive
Health App is processed by the Handwriting Pipeline. Finally, the output is processed
by the Behavior Detector pipeline. The remainder of this work will explore each step

in greater depth.
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| scene.wmy | | gaze.csv trial-2.ssk

|

anchors.maoi fixations.xml

trajectory.xlsx

trajectory.xlsx

behaviors.csv

Figure 1-1: Overview of the multimodal data processing pipeline for detecting learning
behaviors for a single participant.
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Chapter 2

Background

2.1 The Digital Symbol Digit Test

The Digital Symbol Digit Test (dSDT) is a cognitive test developed by Dr. Dana
Penny and Professor Randall Davis that highlights patterns of memory and learning
to differentiate between individuals with normal and neurologically impaired cognitive
states [3]. The test consists of three tasks (translation, copy, and recall) that are
administered back to back over the course of two trials.

In the translation task, participants are given a key of six symbol-digit associations
(Figure 2-1). A grid of cells is presented below the key, with each cell divided into
top and bottom regions. The top half depicts one of the six symbols from the key,
while the bottom half is blank. Participants must write the digit associated with the
symbol in each cell, according to the key. The first six cells in the first row serve as
the sample section, enabling participants to become familiar with the task, while the
remaining cells constitute the main section of the test.

The copy task follows the same structure with one exception: the key contains
digit-digit associations (Figure 2-2). The key pairs each digit with itself, allowing
for participants to disregard the key and directly copy the corresponding digit into
each cell. The recall task occurs directly after the copy task and consists of six cells,
each containing one of the six symbols from the translation task, but in a different

order. Participants are tasked with writing the digit associated with each symbol
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from memory.

The copy task acts as a baseline by showing how participants respond to a low
effort task that is similar to the translation task. Therefore, we can use a participant’s
response to the copy task as a control for their response in the translation task.

The recall task in the dSDT acts as a final measure of whether a participant has

indeed learned and remembered the symbol-digit associations encountered throughout

the test.

-0

Ol #|| [¥] 1O

&
S8 =+ O

Figure 2-1: Test form for the translation task in the dSDT.

1 2|3 (10]11 |12

1 2 13 11011 |12
Sample
2 (10123 |1 |11 2 111123 |10]11] 10
3023|122 I (11127100 3 (1011} 3|2
1121 (11 |12|10] 3 | 2 1 312110 2 |11

Figure 2-2: Test form for the copy and recall tasks in the dSDT.
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2.2 The Cognitive Health App

The Cognitive Health App is an iOS application developed for the iPad and Apple
pencil stylus [2, 1|. The purpose of the application is to allow users to self-administer
a series of different cognitive tests, one of which is the dSDT. The application uses
a generated voice, available in various languages, and guided animations to provide
verbal and visual instructions on how to complete the test.

The application is also responsible for capturing the user’s handwriting data,
which consists of timestamped coordinates of the stylus position. Upon the comple-
tion of the dSDT, the captured handwriting data is saved to what we call a SSK file

(symbol-digit sketch file). It is then encrypted and sent to a secure private server.

2.3 The ETVision System

The ETVision system is an eye-tracking system developed by Argus Science. The
system consists of the ETVision Headset and its accompanying hardware, as well as
two software applications known as the ETVision App and the ETAnalysis App.

The ETVision Headset uses two pupil-facing cameras and near infra-red LEDs to
track the user’s point of gaze using the Pupil to Corneal Reflections (CR) technique.
It also has a front-facing scene camera, allowing us to determine what they are looking
at.

The ETVision App is used in conjunction with the ETVision Headset for recording
eye-tracking data, which consists of the coordinates of the user’s point of gaze along
with other measurements. The system saves this data as a series of files: two pupil-
facing videos, a 1280x720px scene video (recorded at 30 frames per second) as a
WMV (Windows Media Video) file, and the eye-tracking data as a CSV (comma-
separated values) file recorded at a rate of 180 samples per second. The ETAnalysis
App provides additional tools for further analyze eye-tracking data. For example, it

allows us to detect fixations and track objects in the scene video.
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Chapter 3

Prior Work

The work outlined in this thesis involves the detection and visualization of learning

behaviors first described in the previous work cited below.

3.1 Learning Patterns and Behaviors

Prior work done by Sarkar outlines a series of behaviors observed by participants
undergoing the dSDT [6]. The presence and number of occurrences of these learn-
ing behaviors are useful in two ways: they can be used as higher-level features for
detection of neurodegenerative disease, and they can be used as a basis for further
development for quantifying real-time learning. Table 3.1 provides a summary of the

learning behaviors specific to the translation task.

The definitions of these behaviors depend on the knowledge of certain terms. The
stimulus cell is defined to be the cell in the dSDT that the participant is currently
trying to find the correct symbol-digit mapping for. Additionally, fizations are brief
intervals of time, typically in order of milliseconds, where eye gaze is relatively sta-

tionary.
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Behavior Description Types
Fixation on another cell
with the same symbol as key-match,
Visual Match Y cell-match,

the cell that has to be filled
out.

no-match-needed

Concentrated Match

Specific visual match with
respect to other cells.

concentrated

Forward and Backward Fixation

Looking back at cells to the
left or ahead at cells to the
right in the same row.

backward-fization,
forward-fization

Scans

Consecutive fixations
across three or more
adjacent cells.

right-key-scan,
right-same-row-scan,
left-key-scan,
left-same-row-scan

Back-and-Forth

Successive fixations in the
format: x-y-x, where x and
y are different cells.

key-key,

cell-cell,

key-cell,
confirmation

Spatial Association

First fixation in same
spatial section as cell to be
filled out.

spatial-association

Table 3.1: Previously defined learning behaviors in translation task.
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3.1.1 Visual Match

We define a "Visual Match" to mean the behavior in which the participant looks at a
cell that has the same symbol as the current stimulus cell. We have also defined three
subtypes of Visual Matches. A key-match is a visual match where the cell that the
participant looks at lies in the key portion of the test. A cell-match is a visual match
where the cell the participant looks at is not a key cell. A no-match-needed visual
match is when no visual match occurred for a particular stimulus cell, presumably
because the participant remembers what digit goes with that symbol and as a result,

does not need to find a match.

3.1.2 Concentrated Match

We define a "Concentrated Match" to mean the behavior in which a Visual Match
occurs immediately when starting a new stimulus cell. We have also defined two
subtypes of Concentrated Matches. A concentrated-key-match is when the Visual
Match in question is a key-match. A concentrated-cell-match is when the Visual

Match in question is a cell-match.

3.1.3 Forward and Backward Fixations

We define a "Forward Fixation" to mean the behavior of a participant fixating in a
cell that lies in the same row and to the right of the current stimulus cell. In contrast,
we define a "Backward Fixation" to mean the behavior of a participant fixating in a
cell that lies in the same row and to the left of the current stimulus cell. There are

no subtypes for these behaviors.

3.1.4 Scans

We define a "Scan" to mean the behavior of a participant making consecutive glances
across three or more adjacent cells in a single direction. We have also defined four

subtypes of this behavior. A right-key-scan is a scan that occurs in the key in a
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rightward direction. A right-same-row-scan is a scan that occurs in non-key cells in
a rightward direction. A left-key-scan is a scan that occurs in the key in a leftward
direction. A left-same-row-scan is a scan that occurs in non-key cells in the leftward

direction.

3.1.5 Back-and-Forth

We define a "Back-and-Forth" behavior as when a participant fixates on one cell, then
another cell, and then back to the first cell. We have also defined four subtypes for
this behavior. A key-key behavior is when all cells involved are in the key. A cell-cell
behavior is when all cells involved are non-key cells. A key-cell behavior is when the
participant looks back and forth between a cell in the key and a non-key cell. A
confirmation behavior is key-cell behavior where the non-key cell is the stimulus cell.
In this case, we hypothesize that the participant is looking at the stimulus cell in

order to confirm their answer.

3.1.6 Spatial Association

We define a "Spatial Association" behavior in terms of the spatial section of a partici-
pant’s first fixation after completing a cell. A spatial section is one of three regions of
a row in the dSDT: start, middle, and end sections. The start section consists of the
first five cells of a non-key cell row or the first two cells of the key. The end section
consists of the last five cells of a non-key cell row or the last two cells of the key. The
middle section are the remaining cells in the non-key cell row or key. There are no

subtypes for this behavior.
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Chapter 4

Data Collection

In April 2023 a total of 15 healthy participants from the MIT undergraduate pop-
ulation volunteered to undergo a series of different cognitive tests via the Cognitive
Health App, one of those being the dSDT. Each of the participants were fitted with
the ETVision Headset and eye-tracking data was recorded.

IPAD

& LAPTOP
STYLUS OPERATOR

ETVISION
HEADSET

PARTICIPANT

Figure 4-1: Typical experimental setup of a participant complete the dSDT with eye-
tracking via the ETVision system.

The general setup for conducting the cognitive tests with eye-tracking involved the
participant siting at a table with the iPad and stylus placed in front of them (Figure
4-1). To the side of the table, the operator sits with a laptop running the ETVision
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App software. The operator’s laptop is connected via cable to the ETVision Headset,
which is worn by the participant.

Prior to data collection, the participant must have the ETVision Headset worn
and setup properly. The ETVision Headset comes with various different nose-piece
attachments to ensure that the participant’s pupils are centered in the pupil-facing
cameras point-of-view, which is required for proper eye-tracking.

The ETVision system must also be properly calibrated for each participant in
order to ensure an accurate correlation between the participant’s true point of gaze
and the point of gaze measured by the system. The calibration procedure uses a
physical plastic target that is placed in front of the participant. They are instructed
to stare at its center while the operator clicks on its center in the ETVision App,
which displays a live recording of the ETVision Headset’s front-facing scene camera.
This may need to be repeated multiple times for greater accuracy.

It is important to note that the typical use case of the ETVision system is for
the eye-tracking of users that are looking forward at the world with a horizontal line-
of-sight. However, the entirety of our participants’ time with the ETVision system
involves looking downward. Therefore, our use of this system on participants taking
cognitive tests on an iPad is atypical.

Due to these difficulties, four out of the fifteen total participants tested contained
data in the translation task with reliable eye-tracking for the detection of learning
behaviors. All of these participants were healthy controls. Recommendations for

better calibration and eye-tracking results are discussed in sections 7.2 and 7.3.
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Chapter 5

Data Processing

This chapter describes the data processing pipelines developed for processing the eye-
tracking and handwriting data in order to detect the learning behaviors described in
section 3.1. This ultimately comes down to determining what cells in the dSDT a
participant is looking at and writing in for the duration of the test.

A single recording session of a participant taking the dSDT involves two trials
of the translation, copy, and recall tasks. For the purposes of detecting learning
behaviors, we consider only the translation task, as neither the copy or recall tasks
involve learning.

The overview described in Figure 1-1 depicts four separate data processing pipelines.

The following sections describe each in greater detail.

5.1 ETAnalysis Pipeline

After the eye-tracking recording session for a participant taking the dSDT is com-
pleted, the ETVision system saves the resulting eye-tracking data to a series of files,
including the scene video and the eye-tracking data file. While the eye-tracking data
file contains multiple fields for each data sample, the fields most relevant to this work
are listed in Table 5.1.

Both the scene video and the eye-tracking data file serve as the primary inputs to

the ETAnalysis Pipeline. The processing done in this stage is done entirely within
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FIELD DESCRIPTION

Time elapsed since start of ETVision record-
ing, in seconds.

Current sample number since start of ETVi-
sion recording.

Horizontal coordinate of computed point of
gaze within the scene video, in pixels.
Vertical coordinate of computed point of gaze
within the scene video, in pixels.

start of record

sample number

horz gaze coord

vert gaze coord

Table 5.1: Most relevant fields in the eye-tracking data file created by the ETVision
system after a recording session for a single participant.

the ETAnalysis App, outlined in Figure 5-1.

ETAnalysis Pipeline

scenc.wmv

Track MAOI

gaze.csv

Detect fixations

anchors.maoi fixations.xml

Figure 5-1: An overview of the processing done in the ETAnalysis Pipeline.

5.1.1 Computing Fixations

One of the features provided in the ETAnalysis App is a fixation detector. By using
fixations (intervals of time where the point of gaze is relatively stationary) rather than
point of gaze for determining participant dSDT cell locations, we prioritize instances
where the participant’s point of gaze is focused and intentional.

Fixation detection algorithms involve the use of various manually determined

thresholds. This work uses the default thresholds and algorithm provided in the
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ETAnalysis App, implemented by Argus Science. The detected fixations are saved as
a separate fizxations file in XML format. The fields in the fizations file most relevant
to this work are listed in Table 5.2.

FIELD DESCRIPTION
. Current fixation number since start of ETVi-
FixNumber . .
sion recording.
. start_of_record field value of the first
StartTime : .
sample in the current fixation sequence.
. Difference between stop and start time of
Duration . .
current fixation sequence, in seconds.
) start_of record field value of the last
StopTime ) .
sample in the current fixation sequence.
Horizontal coordinate of average point of
HorzPos gaze during fixation within the scene video,
in pixels.
Vertical coordinate of average point of gaze
VertPos during fixation within the scene video, in pix-
els.
1 field val f the first
StartSampleNumber Sanmp 'e_number ¢ \.’a ne o ¢ A
record in the current fixation sequence.
sample_number field value of the last
t leNumb . .
StopSampleNumber record in the current fixation sequence.

Table 5.2: Most relevant fields in the fizations file created by the ETAnalysis fixation
detector.

5.1.2 Tracking Moving Areas of Interest

Another important feature in the ETAnalysis App is the ability to define and track
a moving area of interest (MAOI). This is done by defining the corner points of a
convex polygon on any frame in the scene video. The application can then track the
movement of these points across every four frames for the duration of the scene video.
This data can be saved to a MAOI file, which contains the coordinates of the corner
points of the MAOI along with its associated frame number.

These tracked MAQOIs act as natural fiducial markers that will be used for trans-
forming the reference frame of the fixation coordinates (see section 5.2.2). Certain

structures in the dSDT (e.g. the symbol-digit key, the first cell in the sample section,
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etc.) tend to remain visible during the relevant portions of the scene video. These
are the structures that are selected for MAOI tracking.

As a consequence of using the ETAnalysis App for MAOI tracking, the coordinates
are generated only every four frames. For every pair of frames with MAOI coordinates,
data for the frames in between are interpolated in order to ensure coverage for every
frame. The exact information saved for each frame in the MAOI file is can be viewed

in Table 5.3.

FIELD DESCRIPTION
Current frame number since start of ETVi-
frame number | .
- sion recording.
name Type of MAOI to use for tracking.
maoi x1 Horizontal coordinate of top-left corner of
- MAOI within the scene video, in pixels.
maoi_y1 Vertical coordinate of top-left corner of
- MAOI within the scene video, in pixels.
maoi X2 Horizontal coordinate of top-right point of
- MAOI within the scene video, in pixels.
maoi y2 Vertical coordinate of top-right corner of
- MAOI within the scene video, in pixels.
maoi <3 Horizontal coordinate of bottom-right corner
- of MAOI within the scene video, in pixels.
maoi_ y3 Vertical coordinate of bottom-right corner of
- MAOI within the scene video, in pixels.
maoi x4 Horizontal coordinate of bottom-left corner
- of MAOI within the scene video, in pixels.
maoi_y4 Vertical 'Coo‘rdinate of bo?:tom—‘left corner of
- MAOI within the scene video, in pixels.

Table 5.3: Data represented in a MAOI file created by the ETAnalysis App.

5.1.3 Configurations

Because the test-taking process involves a number of different cognitive tests that
must be visually and verbally explained to the participant, the screen of the Cognitive
Test App changes during these instructional periods. As a consequence, the MAOI

structures used for tracking are not displayed on the screen. Therefore the session
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must be divided into each trial and task’s sample and main sections. The capability
to do this is provided by the ETAnalysis App. As a result, for a single participant
eye-tracking session there are a total of four MAOI files generated for the translation
task. Each (trial, section) pair is referred to as a "config" or configuration, which

serves as the unit of data that all data processing pipelines operate on.

5.2 Vision Pipeline

Vision Pipeline

anchors.maoi |ﬁxations.xml| | gaze.csv |

Interpolate Compute timestamps
coordinates

Transform coordinates from
“image space” to “document space”

Categorize coordinates to cells
in dSDT document

trajectory.xlsx

Figure 5-2: An overview of the processing done in the Vision Pipeline. The pipeline
receives as input the eye-tracking data file (gaze.csv), fizations file (fixations.xml),
the MAOI file (anchors.maoi) and outputs a single trajectory file (trajectory.xlsx).

This section describes the processing done to the eye-tracking data that will result

in the categorization of each fixation to a particular cell on the dSDT. An overview
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of this pipeline is depicted in Figure 5-2

The eye-tracking data file provided by the ETVision App does not contain a
timestamp for each sample. However, the file does contain a timestamp indicating
the moment when the ETVision system starts recording. Using this information along
with the start_of_record field (which measures elapsed time since the start of

recording), a new t imestamp field can be created for each sample in the eye-tracking

data file.

In order to incorporate fixation information from the fizations file into the eye-
tracking data file, the startSampleNumber and stopSampleNumber fields of
each fixation are used to locate their corresponding data in the eye-tracking data file,
from which the relevant fixation-specific fields (such as the fixation’s coordinates) are

appended to.

5.2.1 Downsample

Prior to using the frame-level MAOI file (now at 30 frames per second after interpo-
lation), the eye-tracking data (recorded at 180 samples per second) must be down-
sampled. This corresponds to sequences of roughly six data samples being mapped
to a single sample for a single frame. We do this by using only the most recent eye-
tracking sample since it was recorded closest to the start of the sequence. A depiction

of this can be seen in Figure 5-3.

Original dataframe

Downsampled dataframe

Figure 5-3: Downsampling point of gaze data from 180 samples per second to 30
samples per second, where only the earliest of the original samples is kept.
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5.2.2 Reference Frame Transformation

The original fixation points provided by the ETVision system are in terms of x and
y coordinates in units of pixels of the 1280x720px scene video. This reference frame
follows the standard convention where (0,0) lies in the top-left corner. However, in
order to categorize the participant’s fixation points to dSDT cells they must lie in a
reference frame relative to the iPad screen displaying the test document. This section
will describe the method used for transforming fixation coordinates from a reference
frame of the scene video ("image space") to a reference frame of the iPad screen

("document space"), depicted in Figure 5-4.

Image Space Document Space

>
»

[DIEdIES

2 s

Perspective
Transform

720 px
1620 px

|
|
>8]+ >[0T <>\X{8\X\U o ¢>{
|
|

; 1280 px | | 2160 px |

(X, ¥) ' x’,y)

Figure 5-4: Desired reference frame transformation from image space (depicted in
red) to document space (depicted in blue) for fixation points (depicted in green).

In previous work involving eye-tracking, this was achieved by utilizing physical
fiducial markers attached to the four corners of the paper version of the dSDT [6]. This
would allow for straightforward object tracking via the ETAnalysis App. Perspective
geometry could then be used to create a transformation matrix that maps points from
image space to document space.

However, this method will not work for the purposes of this data processing
pipeline because we want to be able to handle participant self-administration of the

dSDT with the Cognitive Health App, which was designed to be taken in natural and
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flexible settings. Moreover, using fiducial markers requires all corners remain visible.
This is almost never the case in a natural setting. Additionally, the fiducial markers
are large and would likely be distracting to participants using the iPad.

Instead, this work explores using specific substructures in the dSDT document
itself as natural fiducial markers. These substructures (e.g. the symbol-digit key,
the first cell in the sample section, etc.) tend to remain visible during the relevant
portions of the scene video and are tracked as MAOI with the ETAnalysis App as
discussed in section 5.1.2.

For each frame with fixation coordinates from the eye-tracking data file and MAOI
coordinates from the MAOI file, three transformation matrices are computed: M;
(transforms image space to MAOI space), My (transforms MAOI space to an inter-
mediate space), Mj (transforms the intermediate space to document space). When
each matrix is multiplied in sequence, the result is a single transformation matrix
that maps coordinates from image space to document space. This sequence can be

seen in Figure 5-5.

Image MAOI Intermediate Document

Space Space Space
CEIEIE pm—
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Figure 5-5: The sequence of transformation matrices to map from image space to
document space, using the symbol-digit key as the MAOL.

5.2.3 Categorization to dSDT Cell

To categorize each transformed fixation coordinate to a dSDT cell, we need the posi-
tions of bounding boxes for each cell in the dSDT. Each cell is assigned a unique name

for identification. These cell assignments can be seen in Figure 5-6 for the translation
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task.

The categorization is computed by a straightforward approach of checking all cell
bounding boxes and selecting the one in which the fixation point lies, if any. The
unique cell name for each gaze point and fixation point is saved as a new entries in the
doc_gaze_cell and doc_fix_cell fields, respectively. The update eye-tracking

data is then saved as an Excel spreadsheet known as a trajectory file.

SD SD | SD SD SD SD
KEY | KEY | KEY | KEY | KEY | KEY

Tlrt|lTrt]lrt|T|T]lT|lTlT]lT|T|T|T]|T
L1213l a]s|ue] 7] L8] L9 10| L12]1,13)1,14

T|lrt|lrt]lr]lTr|rlr|Trc]lT|lT|T|T|T]|T
200220232425 26)27]28]29]210]211]2,12]2,13]2,14

TI|T T T| T T| T T T T| T T T| T
31132)133]|34|35]36]37]38]3,9]3,10]3,11}3,12]3,13|3,14

T|lrt|Tt]lrc]lTr|T]lT|T]lT|lT|T]|T
41 42|43 44|45 4a6|47]|48)]49]4,10]411]4,12

Figure 5-6: Assigned cell labels in test form for the translation task in the dSDT.

5.3 Handwriting Pipeline

This section describes the processing done to the handwriting data that will result
in the categorization of each stylus position to a particular cell on the dSDT. An
overview of this pipeline is depicted in Figure 5-7.

Upon a participant’s completion of the dSDT via the Cognitive Health App, a
timestamped record of their stylus positions is saved in the form of an SSK file.
Each trial of the dSDT saves its associated handwriting data in a separate SSK
file. The primary fields for each data sample in this file include the timestamp and
stylus coordinates, along with additional measurements such as altitude, azimuth,

and pressure.

37



(trajectory.xlsx).

Handwriting Pipeline

trial-1.ssk

trial-2.ssk

Parse to dataframe

Preprocess

Extract relevant data

Downsample

Categorize coordinates
to cells in dSDT
document

trajectory.xlsx

Figure 5-7: An overview of the processing done in the Handwriting Pipeline. The

pipeline receives as input the trajectory file (trajectory.xlsx), the trial 1 SSK file
(trial-1.ssk), the trial 2 SSK file (trial-2.ssk) and outputs the updated trajectory file

5.3.1 Preprocessing

Initially, the x and y coordinates of the stylus positions are in units of points. To
convert them to units of pixels within the 2160x1620px iPad screen, scaling factors
from metadata in the SSK file are used to convert the coordinates to pixels. Moreover,

since the Cognitive Health App presents the dSDT in landscape mode on the iPad (by
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default x and y positions assume a portrait mode orientation) the x and y positions
must be swapped for correctness. A sample of the handwriting data for a participant

can be seen in Figure 5-8.

1 1012 2 & u ) g u iz 2 (o g 10

T 22 1 91 2o 2 0T |

0 (2 0 Hl (L (0 2 | 0 2 t2 40 1 N

I g 190 v o0 (v 1 0 o0

Figure 5-8: Example of a participant’s stylus positions saved in an SSK file.

5.3.2 Segmentation

The data in the SSK file spans the duration of a single trial of the dSDT. There is
no distinction between data samples which occur in the sample section or the main
section of the translation task. Moreover, there is no distinction between data samples
that occur in the copy or recall tasks. In order to distinguish between these various
sections, the timestamped handwriting data must be segmented.

By plotting pressure vs timestamp data for multiple SSK files (see Figure
5-9), it was observed that there is an interval of time (approximately 15 seconds)
with no handwriting activity from participants. This occurs between the sample and
main sections and between the copy and recall sections. These are periods where the
Cognitive Health App provides verbal and visual instructions on how to complete the
test. During these periods, the Cognitive Health App prevents the participant from

writing with the stylus. As a result, constants for these brief periods of inactivity
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where empirically determined. By detecting the timestamps where this period of
inactivity occurs, the data samples can be separated and categorized into their proper

sections.

Min Max Dist. 15 secs
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N

o

o
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1000 A

elapsed_time (sec)

Figure 5-9: Empirical determination of threshold value for separation of sample and
main sections in SSK files.

5.3.3 Downsample

Similar to the eye-tracking data, the handwriting data is also downsampled to the
frame-level at 30 frames per second. This is done using the same method described
in section 5.2.1, where only the earliest sample of the binned handwriting samples is

selected for each frame.

5.3.4 Categorization to dSDT Cell

We categorize stylus positions to dSDT cells using the same technique described in
section 5.2.3 for fixation points, where the cell is determined by checking all cell

bounding boxes and selecting the one in which the stylus position lies.

40



Chapter 6

Behavior Detection

A central goal of the dSDT is to detect higher-level learning behaviors, as these
behaviors are expected to be indicative of participants’ learning and cognitive abilities.
These behaviors may serve as components for training classifier models in future work.

The following sections describe how these behaviors are detected using the pro-

cessed eye-tracking and handwriting data in the trajectory file.

6.1 Modality Synchronization

The processed eye-tracking data from the Vision Pipeline and the processed hand-
writing data from the Handwriting Pipeline both contain timestamped data. For
synchronization, the data from both modalities must be downsampled to the level
of frames (as described in section 5.2.1), after which they can be joined along their
frame_number field. !

After synchronizing the eye-tracking and handwriting data, we are left with a
single sequence of frame data containing fixation and stylus positions categorized to
cells in the dSDT document. This resulting data is saved as the trajectory file, whose
relevant fields are listed in Table 6.1.

'Due to a now resolved bug in the Cognitive Health App, the recorded timestamps in the SSK
files for the handwriting data were incorrect by a constant factor. To account for this, an empirically
defined offset was added to all SSK file timestamps. This will not be necessary for future sessions
with the Cognitive Health App, however all examples shown in this work will have this offset.
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FIELD

DESCRIPTION

timestamp

Timestamp (as a datetime string) of when
current data was collected.

frame number

Frame number since start of ETVision
recording.

is_fix

True if part of a fixation sequence.

doc_horz_gaze

Horizontal coordinate of gaze within test
document, in pixels.

doc_vert gaze

Vertical coordinate of gaze within test docu-
ment, in pixels.

doc_horz fix

Horizontal coordinate of fixation within test
document, in pixels.

doc_vert fix

Vertical coordinate of fixation within test
document, in pixels.

gaze cell

Cell within test document that contains cur-
rent gaze.

fix cell

Cell within test document that contains cur-
rent fixation.

cell position

Integer representing the position of
fix_cell in the sequence of cells in
the test document.

pen_ cell

Cell within test document that contains cur-
rent stylus position.

Table 6.1: Relevant fields in the trajectory file.
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Using the fix_cell and pen_cell fields of the trajectory file, we now have
a determination of what cells in the dSDT a participant is looking at and writing
in for the given (trial, section) configuration in the test’s translation task. Using
this information, learning behaviors can be detected by searching for the fixation and

handwriting patterns described below.

6.2 Defining Search Space Intervals

The learning behaviors defined in section 3.1 can be divided into two main types of
behaviors: those that depend on the current stimulus cell (stimulus-cell behaviors)
and those that do not (non-stimulus-cell behaviors). The stimulus cell is defined to
be the current cell that the participant is trying to find the symbol-digit mapping for.
Visual Match, Concentrated Match, Forward and Backward Fixations, and Spatial
Association behaviors all depend on knowing the current stimulus cell for detection.
In contrast, Scans and Back-and-Forth behaviors depend solely on the processed eye-
tracking data, i.e. the fix_cell field of the trajectory file. > As a consequence, the

detection of each of these type of behaviors are handled differently.

6.2.1 Non-Stimulus-Cell Behaviors

Since non-stimulus-cell behaviors such as Scans and Back-and-Forth are dependent
only on specific patterns of a participant’s fixations, detection of these behaviors

consists of searching the fix_cell field for every frame in the trajectory file.

6.2.2 Stimulus-Cell Behaviors

To detect stimulus-cell behaviors, the current stimulus cell must be known for every
frame in the trajectory file. Due to the fact that the Cognitive Health App enforces

users to write in each cell before advancing, each cell in the dSDT will be a stimulus

2The only exception to this is the confirmation subtype of the Back-and-Forth behavior, which
does depend on the stimulus cell.
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cell for some interval of time. This interval is defined as the stimulus cell interval for
a given cell.

The pen_cell field of the trajectory file is used to determine the interval [f; start, fistop]
for each cell, where f; s1qr¢ is the frame number when the participant starts writing
their response for cell; and f; s0p is the frame number when the participant finishes
writing their response. This interval is known as the cell response interval for a given
cell.

In order to determine the start and end frame numbers defining a cell’s stimulus
cell interval, we use the assumption that when the cell response interval starts, the
stimulus cell interval ends. In other words, when a participant starts writing their
response to a cell, that cell’s stimulus cell interval ends. This is because they are no
longer trying to determine that cell’s symbol-digit mapping.

We also use the assumption that when one cell’s stimulus cell interval ends, the
stimulus cell interval of its consecutive neighbor begins. Therefore, the stimulus
cell interval for cell; is [fi—1 starts fistart). In other words, detection of stimulus-cell
behaviors consists of searching the fix_cell field for every frame in the trajectory
file within that cell’s stimulus cell interval.

An example of the the stimulus cell interval (labeled as Sy) for celly is depicted
in Figure 6-1.

One potential issue with using the stimulus cell interval of a cell as the sole search
space to detect stimulus-cell behaviors is that it fails to account for instances where
participants are able to learn multiple symbol-digit mappings at once. Take the
example of detecting a Visual Match behavior. After a participant has written their
response for cell; and is looking for the symbol-digit mapping for celly, they may look
at the corresponding key cells for both cell, and cell;. Then when they write their
response for celly, they immediately write their response for cells without looking at
another cell. If we search only within the stimulus cell interval, then there would be
no visual match detected for cells, even though there was one.

In order to detect these earlier behaviors, we define a second interval for cell;

known as the long-term stimulus interval = [fo, fi—1,start — 1] that starts from the
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Figure 6-1: Definition of stimulus cell interval S, and long-term stimulus cell interval
S, to search for behaviors with Cell / as the current stimulus cell. Shaded intervals
in the handwriting data represent frames with stylus positions in the labeled cell.

first frame number in the trajectory file and stops at the frame number before the
cell’s stimulus cell interval starts. Any behaviors detected in the long-term stimulus
interval are prefixed by "early-". For example, early-key-match or early-confirmation.

An example of the the long-term stimulus interval (labeled as Sy) for celly is

depicted in Figure 6-1.

6.2.3 Trajectory Data Preprocessing

The trajectory file has dSDT cell locations for fixations and handwriting stylus posi-
tions for every frame in its particular (trial, section) configuration in the translation
task. The detection of learning behaviors depends on the sequence of individual cells
located in the fix_cell field. Whether a participant fixates on a particular cell
for one frame or five frames is not important for behavior detection. As a result, we
can simplify the detection process by transforming the trajectory file such that sam-
ples from adjacent frames with the same value in the fix_cell field are aggregated

(Figure 6-2).
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Figure 6-2: The process by which adjacent rows of a participant’s trajectory data
with fixations in the same cell are aggregated for a simplified view of the data.

6.3 Detecting Non-Stimulus-Cell Behaviors

The following subsections describe the detection of non-stimulus-cell behaviors by

searching all frames in the trajectory file.

6.3.1 Scans

Scan behaviors occur when a participant has consecutive fixations across three or more
adjacent cells in a single direction. Its various subtypes are dependent on whether
the scan occurred in a rightward or leftward direction and whether it occurred within
the key or not.

Each cell in the symbol-digit and digit-digit test forms are given an ordering from
one to the total number of cells in the form, increasing from left to right and top
to bottom. FEach cell in the fix_cell field can be mapped to an integer value
representing its place in the ordering, which is stored in the cell_position field.

Detecting rightward scans involves looking for groups of three or more adjacent
trajectory file entries with consecutively increasing cell_position values. If all
the cells in this group are key cells, it is a right-key-scan, otherwise it is a right-same-
row-scan.

Similarly, detecting leftward scans involves looking for groups of three or more
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Figure 6-3: Detection of a) rightward scans and b) leftward scans located in a segment
of the trajectory file with only the fix_cell and cell_position fields shown.

adjacent rows with consecutively decreasing cell_position values. If all the cells
in this group are key cells, it is a left-key-scan, otherwise it is a left-same-row-scan.
The occurrences of the different variants of this behavior that can be found is

illustrated in Figure 6-3.

6.3.2 Back-and-Forth

Back-and-Forth behaviors occur when a participant fixates on one cell, then another
cell, and then back to the first cell. Its various subtypes are dependent on whether
the cells involved are key cells or test cells.

Since Back-and-Forth behaviors involve sequences of three consecutive fixations, a
sliding window of length three is used to inspect the fix_cell field of the trajectory
file. For every triplet of fixated cells (z y, z) in the window, a Back-and-Forth behavior
has occurred if z is the same cell as z.

When a Back-and-Forth behavior has been detected, its specific subtype is deter-

mined as follows: if x and y are both key cells the subtype is key-key, otherwise if x
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Figure 6-4: Detection of Back-and-Forth behavior subtypes: a) key-key, b) cell-cell,
c) key-cell, and d) confirmation located in a segment of the trajectory file with only
the fix_cell field shown. NOTE: SC refers to the current stimulus cell

and y are both test cells the subtype is cell-cell, otherwise if z and y consist of one

key cell and one test cell the subtype is key-cell.

While the Back-And-Forth behavior is categorized as a non-stimulus-cell behavior,
there is one final subtype that does depend on the current stimulus cell: the confirma-
tion subtype. This subtype is equivalent to the key-cell subtype with the additional
constraint that the test cell involved is the current stimulus cell. This subtype in
particular is only detected in the stimulus cell intervals, as defined in section 6.2.2,

of the trajectory data.

The occurrences of the different variants of this behavior that can be found is

illustrated in Figure 6-4.
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6.4 Detecting Stimulus-Cell Behaviors

Similar to when detecting non-stimulus-cell behaviors, the data in the trajectory file is
first transformed such that adjacent rows with the same value in their fix_cel1l field
are aggregated. This is done to simplify behavior detection. Detection of stimulus-
cell behaviors involves searching only the frames within the stimulus cell interval for
every stimulus cell in the trajectory file. To detect potential early occurrences of
these behaviors, additional searching is done in the long-term stimulus cell intervals

for each cell.

6.4.1 Visual & Concentrated Matches

The process for detecting Visual Matches and Concentrated Matches are very similar
and so will be discussed together (in fact, Concentrated Matches can be seen as a
special-case of Visual Matches).

A Visual Match occurs when a participant fixates on a cell that has the same
symbol as the current stimulus cell. Likewise, a Concentrated Match occurs when the
first fixated cell has the same symbol as the stimulus cell, i.e. is a visual match.

For each stimulus cell, its associated symbol in the dSDT is used to filter out all
cells in the fix_cell field of the trajectory file that do not share the same symbol.
Any fixations in the stimulus cell itself are also filtered out. The remaining cells
are therefore considered Visual Matches, i.e. cells that have the same symbol as the
stimulus cell.

For each of these matches, their specific subtype is determined according to the
following rules: if the matching cell is a key cell then it is a key-match, otherwise if
the matching cell is a test cell it is a cell-match.

A Concentrated Match occurs when the very first fixated cell in a stimulus cell’s
stimulus cell interval is a Visual Match. It’s subtype is either concentrated-key-match
or concentrated-cell-match, depending on the subtype of the Visual Match in question.

The occurrences of the different variants of this behavior that can be found is

illustrated in Figure 6-5.
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Figure 6-5: Detection of a) Visual Matches and b) Concentrated Matches located in
a segment of cell T 1 6’s stimulus cell interval in the trajectory file with only the
fix_cell and symbol fields shown. NOTE: Grayed out cells represent cells that
have been filtered out based on their symbol.

6.4.2 Forward and Backward Fixations

A Forward Fixation occurs when the participant fixates on a cell in the same row and
to the right of the current stimulus cell, while a Backward Fixation occurs when the
participant fixates in a cell in the same row and to the left of the current stimulus
cell.

For each stimulus cell, we use its row and column number to create a list of all
the cells in the same row as the stimulus cell. This list of cells can be separated into
two sets: the set of cells that occur to the left of the current stimulus cell, and those
that occur to the right of it. These are referred to as Backward Cells and Forward
Cells, respectively.

Upon iterating over each fixated cell in the fix_cell field of the trajectory file,
if a cell is in the set of Forward Cells, it is a Forward Fixation. Likewise, if a cell is

in the set of Backward Cells, it is a Backward Fixation.
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Figure 6-6: Detection of Forward and Backward Fixations located in a segment of cell
T 1 6’s stimulus cell interval in the trajectory file with only the fix_cell field
shown. NOTE: Grayed out cells represent cells that do not lie on the same row as
the stimulus cell.

The different variants of this behavior is illustrated in Figure 6-6.

6.4.3 Spatial Association

Each row of cells in the dSDT, along with the key, can be divided into three spatial
sections: START, MIDDLE, and END. Each section corresponds to roughly one third

of the cells that make up the row. These spatial sections are identified in Figure 6-7

for a single cell row and the key.

Figure 6-7: START, MIDDLE, END spatial sections for key and test cell rows.
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A Spatial Association behavior occurs when the participant’s first fixation in the
stimulus cell interval lies in a cell that belongs to the same spatial section as the
stimulus cell.

A list of all the cells belonging to each spatial section across the dSDT are com-
puted and defined as START Cells, MIDDLE Cells, and END Cells. To map any
particular cell to its spatial section, it’s simply a matter of determining what list the
cell is contained in.

Each stimulus cell’s spatial section is determined, along with the spatial section
of the first fixated cell in their corresponding stimulus cell interval.

The occurrence of one of the variants of this behavior is illustrated in Figure 6-8.

MIDDLE

Stimulus _ | T Spatial _ |t |1 |17

Cell 1,6 Association | 16| L7 | 18 | 19
~ =

T

fix_cell 1.8

Figure 6-8: Detection of a MIDDLE Spatial Section located in a segment of cell
T 1 6’s stimulus cell interval in the trajectory file with only the fix_cell field
shown. NOTE: Grayed out cells represent cells that do not lie in the same spatial
section as the stimulus cell.

6.5 Visualization

Results of the behavior detection are saved to the behaviors file in a CSV file format.
The data collected for each behavior is listed in Table 6.2.

In order to better study and analyze participants’ learning behavior, we developed
a visualization tool.

Using the data from the trajectory file and behaviors file, this tool allows one
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to explore a simulation of a participant’s test session frame by frame. The detected
learning behaviors can be overlaid on the dSDT document along with the current gaze

or fixation point, and stimulus cell. Figure 6-9 shows a screenshot of the visualization

tool.
FIELD DESCRIPTION
behavior Name of the detected behavior.
subtype Subtype of the detected behavior.
) Current stimulus cell of the detected behav-
stimulus_ cell ‘or.

frame number field value of the first sam-
ple of the detected behavior.
frame_number field value of the last sam-
ple of the detected behavior.

Sequence of cells involved in detected behav-
ior.

start frame number

stop frame number

cells involved

Table 6.2: Fields in the behaviors file.
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Chapter 7

Conclusion

This work has made useful contributions in facilitating the collection and analysis of

mutimodal data suggestive of human cognitive behavior.

7.1 Contributions

We developed a data processing pipeline that ingests eye-tracking data captured by
Argus Science’s ETVision system in order to categorize point of gaze and fixation
coordinates into cells on the dSDT (ETAnalysis Pipeline, Vision Pipeline and Hand-
writing Pipeline). Moreover, this work develops a behavior detector (Behavior De-
tector Pipeline) that acts on synchronized eye-tracking and handwriting dSDT cell
sequences to detect and visualize specific learning behaviors that were defined in pre-
vious work. Finally, this work provides data on detected behaviors from a subset of

the healthy participants tested.

7.2 Limitations

Managing the trade-off between eye-tracking quality and the participant test-taking
experience played a central role in the challenges encountered in this work. The
ideal use case of eye-tracking systems such as the ETVision system rely on users

looking straight ahead with a horizontal line-of-sight and the avoidance of harsh
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angles. Examples may include actions such as driving a car or staring at a computer
monitor.

When participants are instructed to complete the dSDT on the Cognitive Health
App on an iPad, these ideal conditions are rarely met. Typically, participants let
the iPad rest on the table and hunch over to look down as they complete the test.
While it would be possible to instruct participants to restrict their motion in order
to improve eye-tracking quality, since the dSDT involves writing with the stylus, it
would likely make the test-taking process awkward and more difficult.

Another pain point where this trade-off becomes apparent lies in the need for
MAOI tracking. Assuming a scenario where the eye-tracking quality is perfect, fidu-
cial markers must still be used in order to map the point of gaze coordinates from
image space to document space. While physical fiducial marker attachments to the
iPad would improve MAOI tracking quality (a method previous work has used), one
of the goals of this work was to explore a method that could circumvent this on the
grounds of physical fiducial markers being too distracting, requiring additional setup,
and forcing participants to restrict their movements in order to ensure the markers
stay in the field of view of the ETVision scene camera. A major concern is that these
additional distractions and constraints on participants may affect their concentration
(particularly more for those with neurodegenerative disease). To prevent this, vi-
sual structures in the dSDT were used as fiducial markers, however this resulted in
the increased reliance of object tracking and the introduction of some manual data

processing.

7.3 Future Work

Future work should involve gathering additional data from healthy participants in
order to increase the robustness of eye-tracking with the ETVision system and detect
additional learning behaviors. This work proposes some recommendations. Keep
ETVision eye-tracking recordings short seems to be a good idea. In the eye-tracking

recordings used in this work, the dSDT was the second cognitive test completed by
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participants. The first cognitive test, which involved the rotation of the iPad, may
have played a part in the deterioration of the eye-tracking quality. Future work should
experiment with only recording the dSDT or having separate recordings for each trial
of the dSDT, recalibrating before each. Additionally, since requiring participants to
wear an eye-tracking headset (which is already potentially distracting), for the long-
term, it may be useful to eventually explore other eye-tracking systems. Particularly,
those that use the iPad itself, as this could eliminate the need for fiducial markers.

Ultimately, being able to collect multimodal data from both classes of participants
(those with neurodegenerative disease and healthy controls) would be necessary to
examine the differences in the counts and distributions of learning behaviors. Metrics
such as behavior counts, handwriting speed, duration of gaze in key vs non-key cells,
etc. may serve as useful components for the larger goal of defining features to be used
in the development of a classification model.

This work provides software specific to the ETVision system for processing eye-
tracking data, as well as more general software for detecting and visualizing learning
behaviors from multimodal trajectory data. It is our hope that these tools and recom-
mendations will play a role in deepening our understanding of participants’ learning
abilities in the dSDT and support the development of models for the early-detection

of neurodegenerative disease.
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