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ABSTRACT

Equivariant neural networks (ENNs) have been shown to be extremely useful in many ap-
plications involving some underlying symmetries. However, equivariant networks are unable
to produce lower symmetry outputs given a high symmetry input. Spontaneous symmetry
breaking occurs in many physical systems where we have a less symmetric stable state from
an initial highly symmetric one. Hence, it is imperative that we understand how to sys-
tematically break symmetry for equivariant neural networks. In this work, we propose the
first symmetry breaking framework that is fully equivariant. Our approach is general and
applicable to equivariance under any group. To achieve this, we introduce the idea of sym-
metry breaking sets (SBS). Rather than redesign existing networks to output symmetrically
degenerate sets, we design sets of symmetry breaking objects which we feed into our network
based on the symmetry of our input. We show there is a natural way to define equivariance
on these sets which gives an additional constraint. Minimizing the size of these sets equates
to data efficiency. We show that bounding the size of these sets translates to the well studied
group theory problem of finding complements of normal subgroups. We tabulate solutions to
this problem for the point groups. Finally, we provide some examples of symmetry breaking
to demonstrate how our approach works in practice.
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Chapter 1

Introduction

Equivariant neural networks have emerged in recent years as an extremely promising class of

models, especially for geometric and scientific data. In particular, such data often has well

known underlying symmetries. For example, the coordinates of a molecule may be different

under rotations and translations, but the molecule remains the same. Traditional neural

networks must see many rotated examples to learn this symmetry. In contrast, equivariant

networks already incorporate such symmetries and can focus on learning the underlying

physics. Such models have been extremely successful in a large number of applications [1]–

[5].

As a consequence of the built in symmetries of equivariant networks, they are unable

to output a lower symmetry object given a higher symmetry input. This phenomena was

first pointed out in Smidt et. al. [6]. However, many physical systems exhibit spontaneous

symmetry breaking, from octahedral tilting of perovskites to the Higgs mechanism for giving

particles mass [7], [8]. In such situations, we may have some high symmetry input such as

an initial configuration or a Hamiltonian and require a lower symmetry output such as a

final configuration or ground state. We emphasize that while individual outputs may break

symmetry, the distribution of allowed outputs remains symmetric. Since the fundamental

physics is symmetric, we would still like to apply equivariant networks, but our networks
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will only output an average.

1.1 Related works

One approach to this problem is learning to break symmetry. This is especially useful when

there is a one lower symmetry output which is preferred over the others. For example, [6]

showed that the gradients of the loss function can be used to learn a symmetry breaking

order parameter. Another related approach is approximate and relaxed equivariant networks

[9]–[12]. These networks have architectures similar to those of equivariant ones, but are not

constrained to remain equivariant. Hence, they can learn the amount of symmetry they

need to preserve to achieve the desired output. However, this only works when there is

systematic symmetry breaking in the data. If all symmetrically related lower symmetry

outputs are equally likely and reflected in the data, then they will still fail. Further, since

equivariance is broken, there is no guarantee the method will work when shown data in a

different orientation.

Another attempt explicitly designs a planar symmetry detection algorithm for data with

mirror plane symmetry [13]. However, the methods in that paper are limiting and only works

for that specific type of symmetry. Crystals for example often have much higher symmetries.

Finally, Kaba and Ravanbakhsh [14] give a different definition of relaxed equivariance. They

derive modified constraints linear layers would need to satisfy for this relaxed equivariance

and argue such models would solve the symmetry breaking problem. However, they also

mention these conditions do not reduce as easily as for the usual equivariant linear layers.

1.2 Our contribution

In this work, we propose a novel solution to the symmetry breaking problem. Our approach

is similar to Smidt et. al. [6] in that we provide symmetry breaking parameters as input to

the model. However, rather than learning these parameters, we show that we can sample
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them from a symmetry breaking set (SBS) that we design based only on the input and output

symmetries. In particular, we prove bounds on the size of these SBSs, which characterizes

how difficult symmetry breaking is.

Compared to existing methods, our approach has the following advantages:

1. Equivariance: Our framework guarantees equivariance. That we can achieve this is

the key point of this work.

2. Simple to implement: Our approach only requires a designing a set of additional

inputs into an equivariant network.

3. Generalizability: We emphasize that our characterization of SBSs applies to net-

works which are equivariant under any groups.

The rest of this thesis is organized as follows. In section 3, we first examine the easier case

where we break all symmetries of our input data. We motivate the idea of a symmetry break-

ing set and show that imposing equivariance leads to an additional nontrivial constraint of

closure under the normalizer group. The intuition is that the normalizer group characterizes

all orientations of our data which do not change its symmetry. Next, we translate bounds on

the size of the equivariant SBSs into the purely group theoretical problem of finding comple-

ments of normal subgroups. We have tabulated these complements in Appendix B for the

point groups. In section 4, we generalize to the case where we may still share some symme-

tries with our input. Finally, in section 5, we introduce examples of symmetry breaking and

demonstrate how our method works in practice.
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Chapter 2

Background

2.1 Group theory

Group theory is the mathematical language used to describe symmetries. Here, we present

a brief overview of concepts from group theory we need to both define equivariance, and to

understand our proposed symmetry breaking scheme. For a more comprehensive treatment

of group theory, we refer to standard textbooks [15]–[17]. We begin by defining what a group

is.

Definition 2.1 (Group). Let G be a nonempty set equipped with a binary operator · : G ×

G → G. This is a group if the follwing group axioms are satsfied

1. Associativity: For all a, b, c ∈ G, we have (a · b) · c = a · (b · c)

2. Identity element: There is an element e ∈ G such that for all g ∈ G we have e · g =

g · e = g

3. Inverse element: For all g ∈ G, there is an inverse g−1 ∈ G such that g·g−1 = g−1·g = e

for identity e.

Some examples of groups include the group of rotation matrices with matrix multiplica-

tion as the group operation, the group of integers under addition, and the group of positive
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reals under multiplication. One very important group is the group of automorphisms on a

vector space. This group is denoted GL(V ) and we can think of it as the group of invertible

matrices.

2.1.1 Concepts for understanding equivariant neural networks

While abstractly groups are interesting on their own, we care about using them to describe

symmetries. Intuitively, the group elements abstractly represent the symmetry operations.

In order to understand what these actions are, we need to define a group action.

Definition 2.2 (Group action). Let G be a group and Ω a set. A group action is a function

α : G×Ω → Ω such that α(e, x) = x and α(g, α(h, x)) = α(gh, x) for all g, h ∈ G and x ∈ Ω.

Often, we may want to relate two groups to each other. This is done using group homo-

morphisms, a mapping which preserves the group structure.

Definition 2.3 (Group homomorphism and isomorphism). Let G and H be groups. A group

homomorphism is a function f : G → H such that f(u · v) = f(u) · f(v) for all u, v ∈ G. A

group homomorphism is an isomorphism if f is a bijection.

Because there are many linear algebra tools for working with matrices, it is particular

useful to relate arbitrary groups to groups consisting of matrices. Such a homomorphism

together with the vector space the matrices act on is a group representation.

Definition 2.4 (Group representation). Let G be a group and V a vector space over a field

F . A group representation is a homomorphism ρ : G → GL(V ) taking elements of G to

autmorphisms of V .

Given any representation, there are often orthogonal subspaces which do not interact

with each other. If this is the case, we can break our representation down into smaller pieces

by restricting to these subspaces. Hence, it is useful to consider the representations which

cannot be broken down. These are known as the irreducible representations (irreps) and

often form the building blocks of more complex representations.
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Definition 2.5 (Irreducible representation). Let G be a group, V a vector space, and ρ :

G → GL(V ) a representation. A representation is irreducible if there is no nontrivial proper

subspace W ⊂ V such that ρ|W is a representation of G over space W .

There has been much work on understanding the irreps of various groups and many

equivariant neural network designs use this knowledge.

2.1.2 Concepts for understanding our symmetry breaking scheme

One natural question is whether there is a subset of group elements which themselves form

a group under the same group operation. Such a subset is a called a subgroup.

Definition 2.6 (Subgroup). Let G be a group and S ⊆ G. If S together with the group

operation of G · satisfy the group axioms, then S is a subgroup of G which we denote as

S ≤ G.

One particular feature of a subgroup is that we can use them to decompose our group

into disjoint chunks called cosets.

Definition 2.7 (Cosets). Let G be a group and S a subgroup. The left cosets are sets

obtained by multiplying S with some fixed element of G on the left. That is, the left cosets

are for all g ∈ G

gS = {gs : s ∈ S}.

We denote the set of left cosets as G/S. The right cosets are defined similarly except we

multiply with a fixed element of G on the right. That is, the right cosets are for all g ∈ G

Sg = {sg : s ∈ S}.

We denote the set of right cosets as G\S.

In general, the left and right cosets are not the same. However, for some subgroups they

are the same. Those subgroups are called normal subgroups.
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Definition 2.8 (Normal subgroup). Let G be a group and N a subgroup. Then N is a

normal subgroup if for all g ∈ G, we have gNg−1 = N .

It turns out that given a normal subgroup, one can construct a group operation on the

cosets. The resulting group is called a quotient group.

Definition 2.9 (Quotient group). Let G be a group and N a normal subgroup. One can

define a group operation on the cosets as aN · bN = (a · b)N . The resulting group is called

the quotient group and is denoted G/N .

For subgroups S which are not normal in G, it is often useful to consider a subgroup of G

containing S where S is in fact normal. The largest such subgroup is called the normalizer.

Definition 2.10 (Normalizer). Let G be a group and S a subgroup. The normalizer of S in

G is

NG(S) = {g : gSg−1 = S}.

Similar to orthogonal vector spaces, one can imagine an analogous notion for groups.

These are called complement subgroups.

Definition 2.11 (Complement). Let G be a group and S a subgroup. A subgroup H is a

complement of S if for all g ∈ G, we have g = sh for some s ∈ S and h ∈ H and S∩H = {e}.

It turns out that if S is a normal subgroup of G and H is a complement, then H is

isomorphic to the quotient group.

Finally, it is useful to define what we mean by symmetry of an object. These are all

group elements which leave the object unchanged and is called the stabilizer.

Definition 2.12 (Stabilizer). Let G be a group, Ω some set with an action of G defined on

it, and u ∈ Ω. The stabilizer of u is all elements of G which leave u invariant. That is

StabG(u) = {g : gu = u, g ∈ G}.
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One can check that the stabilizer is indeed a subgroup. Closely related to the stabilizer

is the orbit. This is all the values we get when we act with our group on some object.

Definition 2.13 (Orbit). Let G be a group, Ω some set with an action of G defined on it,

and u ∈ Ω. The orbit of u is the set of all values obtained when we act with all elements of

G on it. That is,

OrbG(u) = {gu : g ∈ G} = Gu.

It turns out one can show that the stabilizer of elements in the orbit are related. This

relation turns out to be conjugation which we define below.

Definition 2.14 (Conjugate subgroups). Let S and S ′ be subgroups of G. We say S and S ′

are conjugate in G if there is some g ∈ G such that S = gS ′g−1. We denote the set of all

conjugate subgroups by

ClG(S) = {gSg−1 : g ∈ G}.

2.2 Equivariant neural networks

We are now ready to formally describe how equivariant neural networks work. Suppose our

neural network maps inputs in some space X to some space Y . Now, suppose we have a

group G and that there are group actions of G defined on both the input space X and output

space Y . Then we can define equivariance as the following.

Definition 2.15 (Equivariance). Suppose we have spaces X and Y with group actions of G

defined on them. A function f : X → Y is said to be equivariant if for all g ∈ G, x ∈ X, y ∈

Y , we have

f(gx) = gf(x).

Intuitively, we can interpret this as rotating the input giving the same result as just

rotating the output. It is easy to check that the composition of equivariant functions is still
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an equivariant function. Hence, equivariant neural networks are designed using a composition

of equivariant layers.

There has been considerable study into how one should design equivariant layers. One

approach is to modify convolutional filters by transforming them with the elements of our

group [18]. This approach is known as group convolution and is based on the intuition that

convolutional filters are translation equivariant. In group convolution, one interprets our

data as a signal over some domain. The first layer is a lifting convolution which transforms

our data into a signal over the group. The remaining layers then just convolve this signal

with filters which are also signals over the group. This approach works well for finite groups

where we can represent signals using just a finite set of values.

One can further use group theory tools to break down the convolutional filters into

irreps. This leads to steerable convolutional networks [19]. These can be extended and used

to parameterize continuous filters which can be used for infinite groups [20]. It turns out the

irreps of the group are natural data types for equivariant networks. Further, we can express

the convolutions as tensor products of irreps. We can think of equivariant operations as

being composed of tensor products of irreps, linear mixing of irreps, and scaling by invariant

quantities. Combining these, we get tensorfield networks which works on point clouds and is

rotation equivariant [21]. For this project, we demonstrate our method using networks built

from the e3nn framework for O(3) equivariance [22].

2.3 Symmetry breaking problem

Consider the following simple task. Given a pair of nodes, color exactly one of them. Suppose

we attempt to solve this problem with a permutation equivariant network and show it an

example where the left node gets colored. The equivariant network will realize that swapping

the nodes gives the same input graph. However, swapping the outputs gives an equally valid

solution where the right node is colored. Hence, rather than giving exactly one node colored
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as output, it will output a graph where both nodes are half colored.

The reason this happens is because the output has lower symmetry than that of the

input. For the input, swapping the two nodes changes nothing, however swapping the nodes

for the valid outputs swaps between left and right nodes being colored. More formally, we

can describe the symmetry breaking problem with the following lemma.

Lemma 2.16. Let X be a set with a transitive group action by G defined on it. Let Y

be some set with a group action of G defined on it. Let f : X → Y be an G-equivariant

function. We can choose f such that f(u) = y if and only if StabG(y) ≥ StabG(u). Further

this f is unique.

Proof. First suppose we did have f(u) = y. For any g ∈ StabG(u), we have by equivariance

of f that

gy = f(gu) = f(u) = y.

So g ∈ StabG(y).

Next, suppose StabG(y) ≥ StabG(u). For any x ∈ X, there is some r ∈ G so that x = ru.

Let us pick exactly one such r for each X and form a set R. Hence any x is uniquely written

as x = ru for r ∈ R. Define

f(x) = f(ru) = ry.

We claim f is equivariant. For any g ∈ G and x ∈ X, let x = ru and gx = r′u for some

r, r′ ∈ R. Then,

f(gx) = f(gru) = f(r′u) = r′y.

But note that gx = r′u implies r′−1gx = r′−1gru = u. So r′−1gr ∈ StabG(u) ≤ StabG(y).

Hence, we also have r′−1gry = y. So,

f(gx) = r′y = r′(r′−1gry) = gry = gf(x).

Hence, f is equivariant.
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Finally, for uniqueness, suppose f, f ′ are two equivariant functions such that f(u) =

f ′(u) = y. Then by equivariance, for any x = gu ∈ X we have

f(x) = f(gu) = gy = f ′(gu) = f ′(x).

The interesting part of this lemma is that there is a converse. When the output symmetry

is equal or higher than the input symmetry, we can construct an equivariant function. This

converse turns out to be crucial for understanding why the approach we present works.
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Chapter 3

Fully broken symmetry

First, we consider the case where we want to break all symmetry of our input data. Here,

our desired outputs y share no symmetry with x. In other words StabS(y) = {e}. This will

form the foundation for our analysis of the general case of partially broken symmetry. Let

the symmetry group of our data x be S.

3.1 Symmetry breaking set (SBS)

When there is symmetry breaking there are multiple equally valid symmetrically related

outputs. The purpose of a symmetry breaking object is to allow an equivariant network to

pick one of them. In principle, we want all symmetrically related outputs to be equally likely

so it makes sense to think of a set B of symmetry breaking objects we sample from rather

than a single object.

For any s ∈ S and b ∈ B, since sb is symmetrically related to b it is natural to include

it in B as well. Hence, acting with s on the elements of B should leave the set unchanged

and we naturally have a group action on B. Further, note that for any b ∈ B, we must

have sb ̸= b for any nontrivial s ∈ S. Otherwise, s would be a symmetry of the output of

our network. This is exactly the definition of a free group action. Hence, we can define a

symmetry breaking set as follows.
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Definition 3.1 (Symmetry breaking set). Let S be a symmetry group. Let B be a set of

elements which S acts on. Then B is a symmetry breaking set (SBS) if the action of S on

B is a free action.

3.2 Equivariant SBS

However, it turns out the above definition of a SBS is not sufficient when considering equiv-

ariant networks. To illustrate the problem, consider a network which is SO(3) equivariant

and a triangular prism aligned so that triangular faces are parallel to the xy plane. Suppose

our task was just to pick a point of the prism. A naive way to break the symmetry is to

have an ordered pair of unit vectors. The first vector is in the xy plane and points towards

one of the triangle vertices. The second vector is just in the z direction point up or down

corresponding to the upper or lower triangle.

(a) (b)

Figure 3.1: (a) Naive way to break symmetry in a triangular prism where one vector points
to a vertice of a triangle and a second vector points to the lower or outer triangle. (b) A
rotated version of the triangular prism in (a). Note that the same symmetry breaking objects
now point to edges of the triangle rather than vertices. However, both prisms have the exact
same symmetry elements.

However, consider the triangular prism which is rotated 180◦ around z. Looking only at

the symmetry group of the two prisms, we can check that they are exactly the same. But,

the symmetry breaking objects are related differently. In the second prism, the first vector

points to an edge rather than a vertex. From an equivariant point of view, we would want

our symmetry breaking objects to be related to our data in the same when no matter how

we rotate it. So in some sense, our choice of SBS was not equivariant.
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In this case, it is simple enough to choose a canonical orientation and decide that we will

rotate the original SBS by 180◦ in the latter case. However, our input data may be arbitrarily

complicated and it may be hard to choose a canonical orientation. Further, canonicalization

may introduce discontinuities. Hence, we would like to construct SBSs to be only dependent

on the symmetry of our data, not how our data is represented or its specific orientation. To

understand exactly what additional condition is necessary, we need to think carefully about

how the symmetry breaking scheme works.

Figure 3.2: Diagram of how we might structure our symmetry breaking scheme. From our
data x, we may obtain its symmetry S. This S is then fed into a function σ which gives
us the set of symmetry breaking objects needed. We sample a b from this set breaking the
symmetry of our input and feed this b along with the input x into our equivariant function
f . Finally we obtain an output y which has lower symmetry than the input x.

Let f be our function which is equivariant under a group G. Let x be our input data.

Suppose we know the symmetry S of our input. Let B be some set with a group action of G

defined on it. We would like to obtain our set of symmetry breaking objects based on just

information about the input symmetry. So suppose we have a function σ : Sub(G) → P(B)

that does so. This function takes in a subgroup symmetry and gives a set of symmetry

breaking objects composed of elements from a set B. Then the symmetry breaking step

happens when we take a random sample b from the SBS given by the function σ. This

symmetry breaking object is also fed into our equivariant function, allowing it to break

symmetry. A diagram of this process is shown in Fig. 3.2.

Certainly, since we break the symmetry of our input data, we break equivariance. How-

ever, imagine we give our function all possible symmetry breaking objects and collect at the

end the set Y of all outputs our model gives. This process shown in Fig. 3.3 then would
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not break any symmetry. The key insight now is that we can impose equivariance on this

operation.

Figure 3.3: Diagram of how we break symmetry, but now we keep all possible outputs.

It is well known that the composition of equivariant functions remains equivariant. Hence,

we just need to impose equivariance on σ. In order to do so, we must understand how the

input and output transform. Suppose we act on our data with some group element g ∈ G.

Then it becomes gx. Since S is the symmetry of our original data, we find gx = gsx =

(gsg−1)(gx) for any s ∈ S. So the symmetry of the transformed data is gSg−1. Hence,

the input of σ transforms as conjugation. Next, recall the output of σ is some subset B of

elements of B. Since there is a group action for G defined on B, we can define a natural

action on B by just acting on its elements and forming a new set. Fig. 3.4 shows how our

procedure would change if it were equivariant and our input was rotated by some group

element g.

Figure 3.4: Diagram of what happens when we act on the input with some group element g.

With this understanding, we can try to characterize when we can define an equivariant

σ. Note that the input of σ transforms under conjugation so we can split the domain into

ClG(S), the set of conjugate subgroups of S.
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Proposition 3.2. Let G be a group and S be a subgroup of G. Let B ∈ P(B) be a set

where there is some group action of G defined on B. Then there exists an equivariant

σ|ClG(S) : ClG(S) → P(B) such that σ|ClG(S) = B if and only if nB = B for all n ∈ NG(S).

Proof. Note that ClG(S) is a set where action by conjugation is a transitive one. Also note

by definition that StabG(S) for this action is precisely the definition of a normalizer NG(S).

Then by Lemma 2.16, we see such a function exists if and only B is also symmetric under

NG(S).

Now that we know invariance under the normalizer is sufficient to be able to consistently

define an equivariant σ|Cl, we can provide a proper definition for equivariant SBSs.

Definition 3.3 (Equivariant symmetry breaking sets). Let S be a subgroup symmetry of a

group G and B be a set with an action of G defined on it. Let B ⊂ B be a SBS. Then B

breaks the symmetry G-equivariantly if ∀g ∈ NG(S) we have B = gB.

3.3 Ideal case and complement of normal subgroups

Now that we know what it means to equivariantly break a symmetry, we would like to

understand how to do so efficiently. Intuitively, we expect a smaller SBS to be better and

this is indeed true. If we have a larger SBS, multiple symmetry breaking objects might map

to the same output so the network needs to learn that these are the same. Reducing the SBS

would then decrease the equivalences our network needs to learn. In the ideal case, exactly

one symmetry breaking parameter corresponds to each output. Since our outputs are related

by symmetry transformations (transitive) under S, this corresponds to the equivariant SBS

being transitive under S. It turns out we can equate the existence of an ideal equivariant

SBS to the existence of complements of normal subgroups. A slightly weaker version of this

statement can be found in Theorem 3.1.4 of [17].

Theorem 3.4. Let G be a group and S a subgroup. Let B be a G-equivariant SBS for S.

Then it is possible to choose an ideal B if and only if S has a complement in NG(S).
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Proof. Suppose B is transitive under S and pick b ∈ B. Consider the stabilizer group

StabNG(S)(b). For any g ∈ NG(S), by transitivity under S we must have gb = sb for some

s ∈ S. So, s−1gu = u implying that h = s−1g ∈ StabNG(S)(b). So we find that we can write

any g as g = sh for some s ∈ S and h ∈ StabNG(S)(u) so

NG(S) = S · StabNG(S)(u).

But note that since B is symmetry breaking, S ∩ StabNG(S)(u) = {e}. Hence, StabNG(S)(u)

is indeed a complement.

For the converse, suppose H is a complement of S in NG(S). We claim B = NG(S)/H is

the equivariant SBS we desire. Note that clearly by construction, this is closed under NG(S)

so we satisfy the equivariance condition. Further, note that StabS(H) = StabNG(S)(H)∩S =

H∩S = {e}. Since B is transitive under NG(S), stabilizers of all other elements are obtained

by conjugation and hence also trivial. Hence, it is indeed symmetry breaking. Finally, any

g ∈ NG(S) is uniquely written as sh for some s ∈ S, h ∈ H so gH = shH = sH. So B is

transitive under S as well.

Remark 3.5. It turns out the complement if it exists is isomorphic to NG(S)/S. Further,

we can intuitively think of NG(S)/S as giving all possible orientations of our data such that

its symmetry remains unchanged.

Finding complements of normal subgroups is a well studied problem in group theory

[17]. In the case of point groups, which are the finite subgroups of O(3), we have explicitly

tabulated in Appendix B whether we can achieve an ideal equivariant SBS.

3.4 Nonideal equivariant SBSs

In the case where we cannot achieve an ideal equivariant SBS, we would still like to charac-

terize how efficient it is. To do this, we define what we call the degeneracy of an equivariant
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SBS. In general, each orbit under S gives us one SBS which can be matched one to one to

our outputs.

Definition 3.6 (Degeneracy). Let B be a G-equivariant SBS for S. We define the degeneracy

to be

DegS(B) = |B/S|.

Note that an ideal equivariant SBS Bideal (if it exists) is has exactly 1 orbit of S so

DegS(Bideal) = 1. We would also like to understand how small we can make the degeneracy

if we cannot make it 1. It turns out Theorem 3.4 allows us to convert this to a group theory

problem.

Corollary 3.7. Let G be a group and S a subgroup. Let M be such that S ≤ M ≤ NG(S).

Let B be a G-equivariant SBS for S which is transitive under NG(S). Then it is possible to

choose B such that every M-orbit is also transitive under S if and only if S has a complement

in M . In particular, such a B has

DegS(B) ≤ |NG(S)/M |.

Proof. Suppose we have such a B and pick any b ∈ B. By transitivity of the orbit under S,

we have Mb = Sb. Let B′ = Mb. We can check that this is in fact an ideal M -equivariant

SBS for S. That it is a symmetry breaker follows since B is symmetry breaking. That it is

M -equivariant and transitive follows since Mb = Sb and NM(S) = M . By Theorem 3.4 this

implies S has a complement in M .

Next, suppose we have a complement of S in M . By Theorem 3.4 we can construct B′

which is an ideal M -equivariant SBS for S. We can lift this to a G-equivariant SBS for S by

just taking B = NG(S)B
′.

Finally, to compute the order, we note that every S-orbit is also a M orbit. Since B is

transitive under NG(S), there are at most |NG(S)/M | number of M -orbits and hence only
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that many S-orbits. So

DegS(B) ≤ |NG(S)/M |.

In the ideal case we can make M to be NG(S) so the above formula gives an degeneracy

of 1.

29



Chapter 4

Partially broken symmetry

We can now use our framework for full symmetry breaking to understand the case of partial

symmetry breaking. In this case, our desired output may share some nontrivial subgroup

symmetry K ≤ S with our input. Note the case of K = 1 corresponds to full symmetry

breaking and K = S corresponds to no symmetry breaking.

4.1 Partial SBS

Similar to the full symmetry breaking case, we would like to create a set of objects which we

can use to break our symmetry. Now we can relax the restriction of free action. Intuitively,

we want to allow our symmetry breaking objects to share symmetry with our input, as long

as it is lower symmetry than our outputs. However, the symmetrically related outputs may

be invariant under different subgroups of S. Recall that if some element y gets transformed

to sy, its stabilizer K gets transformed to sKs−1. Hence, the stabilizers of the outputs are

from ClS(K), the subgroups conjugate to K under S. Based on this intuition, we can define

partial SBS as follows.

Definition 4.1 (Partial SBSs). Let S be a symmetry group and K a subgroup of S. Let P

be a set of elements with an action by S. Then P is a K-partial SBS if for any p ∈ P , there
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exists some K ′ ∈ ClS(K) such that K ′ ≥ StabS(p).

Certainly, a full SBS is a partial one as well since the stabilizers of all its elements under

S is the trivial group. In general, we can always break more symmetry than needed and still

obtain our desired output. However, it is useful to consider the case where we only break

the necessary symmetries.

Definition 4.2 (Exact partial SBS). Let S be a symmetry group and K a subgroup of S. Let

P be a K-partial SBS for S. We say P is exact if for all p ∈ P , we have StabS(p) ∈ ClS(K).

4.2 Equivariant partial SBS

Similar to before, we can define equivariant partial SBSs. The idea is the same, but now

we need to identify the symmetry of the input and the set of conjugate symmetries for the

output. Define

SubCl(G) = {(S,ClS(K)) : S ∈ Sub(G), K ≤ S}.

Let P be a set with a group action of G defined on it. As before, the idea is that we have an

function π : SubCl(G) → P(P) which outputs our partial SBS. The condition of equivariance

for our partial SBS is imposing equivariance on π.

Figure 4.1: Diagram of how we perform partial symmetry breaking. Here, we need to specify
not just the symmetry of our input but also the symmetries of our output. Since any of our
outputs are equally valid, it only makes sense to specify the set of conjugate subgroups
ClS(K) our outputs are symmetric under.

The symmetry breaking scheme is depicted in Figure 4.1. As before, we can impose

equivariance on this diagram. We need to know how ClS(K) transform. Note that if our
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input gets acted by g, we expect the outputs to also get acted by g. Since K is the stabilizer

of one of the outputs, we expect K to transform to gKg−1. Hence we have the transformation

ClS(K) → ClgSg−1(gKg−1).

Similar to before, by Lemma 2.16 we need the output of π to also be invariant under the

stabilizer of the input. Noting that the normalizer is defined as the stabilizer of S under

conjugation, we can define a generalized normalizer as the stabilizer of S,ClS(K).

Figure 4.2: Diagram of how our symmetry scheme changes when we transform our input by
some group element g ∈ G.

Definition 4.3 (Generalized normalizer). Define the generalized normalizer NG(S,K) to be

NG(S,K) = {g : gKg−1 ∈ ClS(K), g ∈ NG(S)}.

Proposition 4.4. Let G be a group, S a subgroup of G, and K a subgroup of S. Let P

be a set with a group action of G defined on it and P ⊂ P. There exists an equivariant

π|OrbG((S,ClS(K))) : OrbG((S,ClS(K))) → P(P) such that π|OrbG((S,ClS(K)))((S,ClS(K))) = P

if and only if NG(S,K) leaves P invariant.

Proof. By Lemma 2.16, we need P to be closed under the stabilizer of the input. But the

generalized normalizer NG(S,K) is precisely this stabilizer.

We can now define equivariant partial SBSs as follows.

Definition 4.5 (Equivariant partial SBSs). Let S be a subgroup symmetry of a group G.
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Let P be a K-partial SBS. Then P breaks the symmetry G-equivariantly if ∀g ∈ NG(S,K)

we have P = gP .

Note that closure under NG(S,K) is a weaker condition than closure under NG(S). Hence

any full equivariant SBS is also an equivariant K-partial SBS for any K.

4.3 Ideal equivariant partial SBS

Similar to the full symmetry breaking case, we ideally would like to have a one to one

correspondence between elements in our equivariant SBS and our symmetrically related

outputs. For this to happen, we clearly need our SBS to be exact and for our SBS to be

transitive under S. We can generalize Theorem 3.4 to obtain a necessary and sufficient

condition to have an ideal equivariant partial SBS.

Theorem 4.6. Let G be a group and S and K be subgroups K ≤ S ≤ G. Let P be a

G-equivariant K-partial SBS. Then we can choose an ideal P (exact and transitive under S)

if and only if NS(K)/K has a complement in NNG(S,K)(K)/K.

Proof. Let P = Su where u has symmetry StabS(u) = K. We can define an action of any

coset NG(S,K)/K on u as just the action of a coset representative on u. This is consistent

since u is invariant under K. In particular, note that K is a normal subgroup of NS(K) so

NS(K)/K is a quotient group. Let B′ = (NS(K)/K)u. Since u is in a K-partial SBS, we

must have su ̸= u for any s ∈ S − K. Hence, for any coset gK ∈ NS(K)/K, gu ̸= u if

g /∈ K. Therefore, B′ must be a SBS for NS(K)/K.

Next, consider any coset gK in NNG(S,K)(K)/K. Then we know gu ∈ Su so gu = su for

some s ∈ S. Since K was a symmetry of u, gKg−1 = sKs−1 is a symmetry of gu = su. So

the stabilizer of su must be sKs−1 = K. Hence, s must be in NS(K). Therefore the action of

gK on u gives us an element of B′ = (NS(K)/K)u. Hence B′ is NNG(S,K)(K)/K-equivariant.

By Theorem 3.4, the existence of an ideal NNG(S,K)(K)/K-equivariant SBS for NS(K)/K

implies that NS(K)/K has a complement in NNG(S,K)(K)/K.
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For the converse direction, suppose that A is a complement of NS(K)/K in NNG(S,K)(K)/K.

Note the elements of A are cosets of K so we can define a set of elements of NG(S,K) as

H =
⋃
C∈A

C.

Define P = OrbS(H). We claim that P is a transitive exact equivariant partial SBS.

We first show that P is exact K-partial symmetry breaking. Consider s ∈ S. We can

write

sH =
⋃
C∈A

sC =
⋃

C∈sA

C.

Now we see if s ∈ K, then since K is the identity in the quotient group sA = A. Hence

sH = H in this case. If s ∈ NS(K)−K, then sK is not the identity in NS(K)/K. But A is a

complement so sA ̸= A implying sH ̸= H. Finally, if s /∈ NS(K) then sK /∈ NNG(S,K)(K)/K.

So sH ̸⊂ NNG(S,K)(K). But H ⊂ NNG(S,K)(K) so sH ̸= H. Hence, StabS(H) = K and since

the rest of P is just the orbit of H, stabilizers of the other elements are in ClS(K). Hence,

P as we constructed is an exact K-partial SBS.

For equivariance consider any n ∈ NG(S,K) giving a coset

nH =
⋃
C∈A

nC =
⋃

C∈nA

C.

If n ∈ NNG(S,K)(K) then since A is a complement, (nK) = (sK)(aK) for some sK ∈

NS(K)/K and aK ∈ A, so nA = (nK)A = (sK)(aK)A = (sK)A = sA for some s ∈

NS(K) ⊂ S. Hence, nH = sH for some s ∈ S. If n /∈ NNG(S,K)(K), then there is some s so

that nKn−1 = sKs−1. Therefore, s−1nKn−1s = K so s−1n ∈ NNG(S,K). But we saw before

that this means there is some s′ such that s−1nH = s′H. Thus, nH = ss′H and ss′ ∈ S. So

nH ∈ P so P is indeed closed under action by NG(S).
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4.4 Nonideal equivariant partial SBS

Similar to the full symmetry breaking case, when we cannot achieve an ideal equivariant

partial SBS we want to characterize how efficient our nonideal partial SBS is. Again, the

idea is that in the nonideal case, our network will need to map multiple symmetry breaking

objects to the same output and we define the degeneracy of P to quantify this multiplicity.

Definition 4.7 (Degeneracy). Let G be a group, S be a subgroup, and K a subgroup of S.

Let P be a G-equivariant K-partial SBS for S. Let T be a transversal of S/K. Let Pt be

such that every p ∈ P is uniquely written as p = tpt for some t ∈ T and pt ∈ Pt. Then we

define

DegS,K(P ) = |Pt|.

The intuition for this definition is that Pt is the set of objects which together with our

input may get mapped to some output y by our equivariant network. In other words, we may

have f(x, Pt) = {y} for equivariant f and all other P get mapped to different symmetrically

related outputs. Without loss of generality we can assume y has StabS(y) = K. Then for

any symmetrically related output ty (where t ∈ T ), we can see from equivariance of f that

f(x, tPt) = {ty}. It is now clear that the size of Pt counts how many symmetry breaking

objects must be mapped to the same output.

Note that in the case K = 1, then S/K = S so Pt just consists of representatives from

P/S. So this reduces to the degeneracy defined for full SBS. Also, note that in the ideal

case, there is exactly one symmetry breaking object for each output. So degeneracy is 1 in

that case.

As before, we would like to know how small we can make the degeneracy of our equivariant

partial SBSs. Similar to the full symmetry breaking case, we can use Theorem 4.6 to convert

this into a group theory question.

Corollary 4.8. Let G be a group, S a subgroup, and K a subgroup of S. Let K ′ be a
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subgroup of K and M a subgroup of NG(S,K) ∩NG(S,K
′) which contains S. Suppose P is

a G-equivariant K-partial SBS for S which is transitive under NG(S,K). We can choose P

such that StabS(p) ∈ ClNG(S,K)(K
′) for all p and all M-orbits in P are transitive under S if

and only if NS(K
′)/K ′ has a complement in NM(K ′)/K ′. Further, such a P has

DegS,K(P ) ≤ |K/K ′| · |NG(S,K)/M |.

Proof. Suppose we had such a P . Pick some p ∈ P such that StabS(p) = K ′. Since M -orbits

are transitive under S, we have Mp = Sp. Let P ′ = Mp. We can check then that this is

a M -equivariant set. Further, since M ⊂ NG(S,K
′), we see that this is an exact K ′-partial

symmetry breaking set. Hence, it is an ideal M -equivariant K ′-partial SBS. Also note that

since M ⊂ NG(S,K
′), we have M = NM(S,K ′). So by Theorem 4.6, NS(K

′)/K ′ must have

a complement in NM(K ′)/K ′.

Conversely, suppose NS(K
′)/K ′ has a complement in NM(K ′)/K ′. Again, we note M =

NM(S,K ′) so by Theorem 4.6 we have an ideal M -equivariant K ′-partial SBS for S. We can

lift this to G-equivariance by taking the orbit under NG(S,K).

To see the order of such a P , we consider the S-orbits. Let T be a transversal of S/K.

For each S-orbit, we can pick some p in that orbit so that StabS(p) ≤ K. We put the

elements of Kp in our Pt. Within each S-orbit, any p′ can be written as sp for some

s ∈ S and any s is uniquely written as s = tk for some t ∈ T and k ∈ K. So p′ = tkp.

However, note that any other s′ where p′ = s′p = sp can be written as s′ = sk′ for some

k′ ∈ StabS(p). Hence, p′ is uniquely written as p′ = t(kp) since kk′p = kp. So each S-orbit

contributes |K/StabS(p)| elements to Pt. However, since StabS(p) ∈ ClNG(S,K)(K
′), we must

have |K/StabS(p)| = |K/K ′|. Finally, we know each S-orbit is also an M -orbit, since P is
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transitive under NG(S,K), there are at most |NG(S,K)/M | different S-orbits. So

DegS,K(P ) = |Pt| ≤ |K/K ′| · |NG(S,K)/M |.

4.5 Optimality of exact partial symmetry breaking

Note that in the previous section, we have been very careful to allow our partial SBS to break

more symmetry than needed. Intuitively, we would like to say that it is always optimal to

break down exactly to the symmetry of our output. That is we only need to consider exact

partial SBSs.

Certainly, ignoring any equivariance constraints, given any non-exact K-partial SBS, we

can construct an exact K-partial SBS by picking an element b with StabS(b) ≤ K and

identifying its orbit under K together as one partial symmetry breaking object p = Kb. We

construct the orbit of p under action by S as our K-partial SBS.

We might expect there to be some modification of this construction to convert an non-

exact equivariant K-partial SBS into an exact equivariant K-partial symmetry breaking one.

Naively, we just take the orbit of the elements in the construction above under NG(S,K) to

obtain G-equivariance. However, we can come up with a contrived explicit example where

no exact equivariant K-partial SBS is smaller than the best equivariant full SBS.
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Chapter 5

Experiments

Here we provide some example tasks where we apply our framework to full symmetry break-

ing and partial symmetry breaking cases. We consider the cases where we can find an ideal

equivariant SBS or partial SBS. We explicitly work through how to obtain the equivariant

SBS in each case.

For each of our tasks, we trained a equivariant convolutional message-passing graph neural

network (GNN) to output a vector pointing to a vertex of the prism. We use a modified

version of the default network from the e3nn library [22]. In our modified version we input

the graph edges instead of automatic graph generation based on a radius cutoff. Each

layer consists of the equivariant 3D steerable convolutions followed by gated nonlinearities

described in [23]. We use a gaussian basis for our radial network.

5.1 Full symmetry breaking: chiral triangular prism

For an example of full symmetry breaking, we consider the task of pointing to a vertex of

a triangular prism, similar to that described in section 3.2. Our input is a graph with 6

nodes with edges given by the edges of the prism. We have position features at the nodes

corresponding to the positions of the vertices. Since we want this to be a full-symmetry

breaking task, we require chirality in our prism. In order to make it chiral, we also have
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pseudoscalar features of value 1 at all the vertices. We want our model to output a vector

which points to the position of a vertex from the center of the prism.

For this task, the hidden features in our model are up to l = 2 of both parities and our

convolutional filters use up to l = 4 spherical harmonics. For our radial network, we use a

3 layer fully connected network with 16 hidden features in each layer. If we need to break

symmetry, we add our symmetry breaking object as an additional feature to all nodes of the

graph.

5.1.1 Obtaining an equivariant SBS

(a) (b)

Figure 5.1: (a) Triangular prism with D3 symmetry and patterned cylinder with D6h sym-
metry. The generators are a, b,m where a is a 2π/6 rotation about the blue axis, b is a π
rotation about the red axis, and m is a reflection across the orange plane. (b) An ideal sym-
metry breaking set for the triangular prism. A complement of D3 in D6h is generated by the
mirror planes shown here in yellow and purple. The vector in red is a symmetry breaking
object with this complement as stabilizer. The orbit of this vector under the normalizer
generates the other vectors shown in black.

In this case, it turns out a choice of ideal equivariant SBS is the set of unit vectors parallel

to an edge of the triangular faces of the prism. Table B.3 tells us D3 is generated by a2, b and
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that a complement H is generated by am, bm. By Theorem 3.4, we know that if we can pick

some object v with stabilizer StabD6h
(v) = H, then the orbit of v under D3 gives an ideal

equivariant SBS. In this case, one such v that works is a vector parallel to the triangular

faces of the prism and one of the sides of the prism. This is shown in Figure 5.1b. Note

reflection across the yellow plane corresponds to am and across the purple plane corresponds

to bm. It is clear the arrow in red is stabilized by this complement. One can further check it

shares no symmetries with the triangular prism. The other 5 arrows in black are the other

symmetry breaking objects we obtain by taking the orbit of the red arrow under action by

D6h.

5.1.2 Training results

(a) (b)

Figure 5.2: (a) Output (red) generated by our model and symmetry breaking object (blue)
given. (b) The set of all the outputs generated by our model if we feed in all symmetry
breaking objects.

We first fix a choice of one symmetry breaking object from our equivariant SBS and

one of the vertices of the triangular prism. We then give the chosen symmetry breaking

object as an additional input to our equivariant GNN and train it to output a vector (odd
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l = 1) feature pointing to our chosen point from the center. An example of the result of this

training is shown in Figure 5.2a. We also observe that no matter which choices of vertex

and symmetry breaking object we pick, our equivariant network is able to learn to output

the vector pointing that that vertex. In practice, this means that we can choose any of our

symmetry breaking objects as additional input.

Once trained on one pair of symmetry breaking object and vertex, the equivariance of

our GNN means that inputting the other symmetry breaking objects in our SBS gives the

other symmetrically related outputs. This is shown in Figure 5.2b.

Further, rather than picking one vertex, we also tried modifying our loss so that we

compute the loss for all choices of vertex and take the minimum. Hence, our network can

learn which vertex to pair with each symmetry breaking object. In this prism example, our

pairing is random. This is method of taking the minimum loss is especially useful when we

have multiple instances of symmetry breaking in our data.

5.2 Partial symmetry breaking: octagon to rectangle

For an example of partial symmetry breaking, we consider the task of deforming an octagon

to a rectangle. We choose to make our octagon chiral and impose chirality on our octagon by

adding pseudoscalar features of value 1 to all vertices. We select this example this because

the construction of the stabilizer for a single symmetry breaking object illustrates the general

procedure. The nodes of the input graph are just the vertices of the octagon and the edges

are just the sides.

We use the exact same architecture as for the triangular prism experiment. Here, we

output vector (l = 1) features on each vertex which represent how much we should distort

that vertex.
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5.2.1 Obtaining an equivariant partial SBS

One choice of ideal equivariant SBS for this case consists of l = 2 objects aligned to be

parallel to an edge of the octagon. In this scenario, we want G-equivariance for G = O(3)

and we have S = D8 and partial symmetry K = D2.

(a) (b)

Figure 5.3: (a) Octagon with D8 symmetry we input and patterned cylinder with NG(S,K) =
D8h symmetry. The generators are a2, b,m where a2 is a 2π/8 rotation about the blue axis,
b is a π rotation about the red axis, and m is a reflection across the orange plane. (b) A
symmetry breaking object which generates an ideal partial SBS. Note that in addition to the
D2 symmetry, this object is also symmetric under reflections across the purple and yellow
planes.

The octagon has D8 symmetry and we know from Table B.1 that its normalizer is D16h.

We also know from Appendix B.3 that a presentation of this normalizer is

⟨a, b,m|a16, b2,m2, (ab)2, (am)2, (bm)2⟩.

Note the symmetry of the octagon S is generated by a2, b and that of a rectangle K by a8, b.

Next, we can check by brute force that NG(S,K) is generated by a2, b,m.
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We then need to compute NS(K) and NNG(S,K)(K). We note from Table B.1 that

NG(K) = D4h and in particular, it is not hard to see the specific copy of D4h is generated by

a4, b,m. We now just have NS(K) = S∩NG(K). Looking at the generators, we can check that

m is not present in S so NS(K) = D4 and is generated by a4, b. For NNG(S,K), from the gen-

erators of NG(S,K) we can see that NG(K) is a subgroup so NNG(S,K)(K) = NG(K) = D4h

and is generated by a4, b,m.

Finally, from Theorem 4.6, we need to look at the quotient groups NS(K)/K and

NNG(S,K)(K)/K. For the latter, we can set the cosets

X = {a4, a12, a4b, a12b} Y = {m, a8m, bm, a8bm}

which we can check generate the quotient group. In particular we have relations X2 = Y 2 =

(XY )2 = 1 so a presentation is given by just

⟨X, Y |X2, Y 2, (XY )2⟩.

For NS(K)/K which is a subgroup of this, we can see that it is just generated by X. But it

is easy to see that the quotient group generated by Y forms a complement.

Following the argument in Theorem 4.6, we see that we need a symmetry breaking object

with stabilizer generated by group elements in the cosets of the complement of NS(K)/K.

Since here the complement is generated by coset Y , we need the stabilizer to be generated

by m, a8m, bm, a8bm. It is not hard to check we can simplify the list of generators to a8, b,m.

We note that an l = 2 irrep with even parity works in this case.

5.2.2 Training results

Similar to the prism case, we try training by matching a specific symmetry breaking object

to a rectangle. When the symmetry breaking object and rectangle are compatible (share

the same symmetries), then our model has no problem learning to deform the octagon
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(a) (b)

(c)

Figure 5.4: (a) Output (blue) of our model when we match a symmetry breaking object
with a compatible rectangle. (b) Output (blue) of our model when we match a symmetry
breaking object with a different compatible rectangle. (c) Output (blue) when we attempt
to match the symmetry breaking object with an incompatible rectangle (green). Note the
square has symmetries of both the symmetry breaking object and the target rectangle.

into the rectangle. This is shown in Figures 5.4a and 5.4b. An interesting failure case

occurs when we try to match a symmetry breaking object and rectangle with incompatible
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symmetries. This is shown in Figure 5.4c. Here, the D2 symmetry of the rectangle and of the

symmetry breaking object are misaligned. As a result, our model predicts an output which

has symmetry of D4 which is the group generated when we include the symmetry elements

of both the target rectangle and the symmetry breaking object. Hence, the resulting shape

is a square.

As with the triangular prism case, we also tried letting the model choose which rectangle

to deform to given a symmetry breaking object. In this case, our model computes loss

separately for all 4 possible rectangles and takes the minimum. We note that for a given

symmetry breaking object, 2 of the possible rectangles are symmetrically compatible while

2 are not. Over 200 random initializations, we find roughly 30% of the time our model

attempts to match symmetrically incompatible symmetry breaking objects to a rectangle.

This is better than the 50% we would expect if it matches pairs randomly.

5.3 BaTiO3 phase transitions

(a) (b)

Figure 5.5: (a) Initial high symmetry crystal structure of BaTiO3. (b) Target low symmetry
crystal structure of BaTiO3.

Finally, we demonstrate our framework on a more realistic example. For this, we examine
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the crystal structure of barium titanate (BaTiO3). In particular, as we decrease temepera-

ture, there is a phase transition from a high symmetry state with Oh symmetry to a lower

symmetry state with C4v symmetry at 403K [24], [25]. The high and low symmetry states

are shown in Figures 5.5a and 5.5b respectively. For this task, we seek to deform a high

symmetry state into the lower symmetry one. Data for the high and low symmetry BaTiO3

crystals are obtained from materials project database [26]. For our demonstration, we focus

on breaking point group symmetries. Hence, we set the unit cell of both crystals to be a

cube with side length 4Å, which is close to the real unit cells.

The model used for this task has a similar architecture as the previous ones, with the

modification of incorporating periodic boundary conditions because we are modelling a crys-

tal. Similar to the octagon distortion task, we output vector (l = 1) features at each node

which tells us how much to distort the corresponding atom.

It turns out that any object with C4v symmetry works for generating an ideal equivariant

partial SBS. This is because Oh has itself as normalizer in O(3) so the symmetry completely

determines orientation. A simple choice consists of a spherical harmonic with appropriate

nonzero l = 1 and l = 4 terms.

The result of our training is shown in Figure 5.6. In Figure 5.6a, we have the symmetry

breaking parameter which our model matches to the observed tilted output. We see that

feeding the rest of the symmetry breaking parameters lets our model recover the other

distortions.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Distortions of a highly symmetric crystal structure of BaTiO3 when provided
with each of the possible symmetry breaking objects in our ideal equivariant partial SBS.
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Chapter 6

Conclusion

We propose the idea of equivariant symmetry breaking sets which allows equivariant networks

to sample or generate all possible symmetrically related outputs given a highly symmetric

input. We show that bounding the size of these sets is intimately connected to a well studied

group theory problem and tabulate solutions for the ideal case for the point groups. We

demonstrate how our symmetry breaking framework on toy example problems.

One future direction is to include translations and tabulate complements for the space

groups in their respective normalizers. This would be particularly useful for crystallogra-

phy applications. Another direction is to automate finding stabilizers for partial symmetry

breaking objects. Finally, our method assumes we can efficiently detect the symmetry of our

input and outputs. Designing fast symmetry detection algorithms would also be extremely

beneficial.
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Appendix A

Notation and commonly used symbols

Here, we present the notation we use throughout this paper.

Table A.1: Notation used throughout this paper

StabG(x) Stabilizer of an element x under a group G
NG(S) Normalizer of group S in group G
ClG(S) Set of groups obtained by conjugating group S with elements in G

OrbG(x) Orbit of an element x under action by elements of group G
P(X) Set of all subsets of X
G/S Set of left cosets. If S is a normal subgroup, this also denotes the quotient

group
S ≤ G If S and G are groups, this denotes that S is a subgroup of G

f |X Function f with domain restricted to X

Table A.2: Commonly used symbols

G Group our network is equivariant under
e Identity element of a group
x Input
y Output
S Symmetry of our input, more precisely StabG(x)
K Symmetry of our output, more precisely StabS(y)

52



Appendix B

Classification of full symmetry breaking

cases for O(3)

Here we tabulate the cases for full symmetry breaking for the finite subgroups of O(3).

These are the point groups and the normalizers are tabulated in the International Tables for

Crystallography in Hermann–Mauguin notation [27]. We have translated these to Schönflies

notation in Table B.1.

Table B.1: Normalizers of the point groups in Schönflies notation. Note we have the equiv-
alences C1 = 1, S2 = Ci, C1h = C1v = Cs, D1 = C2, D1h = C2v, D1d = C2h.

Normalizer: Groups:
Kh 1, Ci

D∞h Cn, S2n ∀n ≥ 2; Cnh, Cs

D(2n)h Cnv, Dnd, Dnh ∀n ≥ 2; Dn ∀n ≥ 3
Ih I, Ih
Oh D2, D2h, T , Td, Th, O, Oh

In the following subsections we do casework by normalizers. For each, subgroup with

a given normalizer, we give a valid complement by name if it exists. In some normalizers,

the name of a subgroup is not sufficient to identify it. This is because there are multiple

copies of subgroups with that name in the normalizer. In such cases, we must identify

which copy of the subgroup we care about. To do so, we give the normalizers in terms of a
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group presentation found with the help of [28]. Group presentations are essentially a set of

generators and relations among the generators. We can then specify any specific subgroups

of the normalizer using the generators of the normalizer.

B.1 Normalizer: Kh

All the groups with this normalizer do have complements. Note that in Schönflies notation,

Kh is just the entire group O(3). The only subgroups with O(3) as normalizer are the

trivial group C1 and inversion Ci. Clearly for the trivial group the complement is O(3). For

inversion, the complement is just SO(3).

Table B.2: Groups with normalizer Kh = O(3) and their complements.

Group Complement
1 Kh = O(3)
Ci K = SO(3)

B.2 Normalizer: D∞h

Unfortunately, none of the groups in this case have complements.

B.3 Normalizer: D(2n)h

All groups with this normalizer do have complements. We list the subgroup and its comple-

ment in Table B.3. One presentation of D(2n)h is

⟨a, b,m|a2n, b2,m2, (ab)2, (am)2, (bm)2⟩.

Figure B.1 depicts an example of a D10h object. The element a correspond to a 2π/10

rotation about the blue vertical axis, b corresponds to a π rotation about the red axis, and
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m corresponds to a reflection across the mirror plane shown in orange.

Figure B.1: Object with symmetryD10h. We can identify generator a as the 10-fold rotation
about the blue axis, generator b as the 2-fold rotation about the red axis, and m as the
reflection over the plane shown in orange.

Table B.3: Groups with normalizer D(2n)h and their complements.

Group Generators of group Complement Generators of a complement
Cnv a2,m C2v am, bm
Dnd a2, abm,m Cs bm
Dnh a2, b,m Cs am
Dn a2, b C2v am, bm

B.4 Normalizer: Ih

This case is simple, we either have I or Ih. Clearly we just need to add inversion to get a

complement in the former case and in the latter case we can just take the trivial group.
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Table B.4: Groups with normalizer Ih and their complements.

Group Complement
I Ci

Ih 1

B.5 Normalizer: Oh

All subgroups in this case have complements as well. One presentation of Oh is

⟨a, b, i|a4, b4, i2, (aba)2, (ab)3, iaia−1, ibib−1⟩.

Here, a and b are π/2 rotations about perpendicular axes and i is just inversion.

Table B.5: Groups with normalizer Oh and their complements.

Group Generators of group Complement Generators of a complement
D2 a2, b2 D3d ab, ba2, i
D2h a2, b2, i D3 ab, ba2

T ab, ba S4 a2b, i
Td ab, ba, ai C2 a2b
Th ab, ba, i C2 a2b
O a, b Ci i
Oh a, b, i 1 ϕ
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Appendix C

Equivariant full SBS better than exact

partial SBS

We provide an outline of the construction of the counterexample. It is easiest to explain this

by introducing the concept of a wreath product on groups.

Definition C.1 (Wreath product). Let H be a group with a group action on some set Ω.

Let A be another group. We can define a direct product group indexed by Ω as the set of

sequences (aω)ω∈Ω where aω ∈ A. The action of H on Ω induces a semidirect product by

reindexing. In particular, for all h ∈ H and sequences in AΩ we define

h · (aω)ω∈Ω = (ah−1ω)ω∈Ω.

The resulting group is the unrestricted wreath product and denoted as A WrΩ H.

If rather than a direct product group AΩ, we restrict ourselves to a direct sum where all

but finitely many elements in our sequence is not the identity, then we get the restricted

wreath product denoted as A wrΩ H.

Note that the direct sum and direct product are the same for finite Ω so the restricted and

unrestricted wreath products also coincide in those cases.
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Consider the space Ω = {1,−1} and an action of D4 on Ω corresponding to the A2

representation. Intuitively, if we think of D4 as the rotational symmetries of a square in the

xy-plane, this corresponds to how the z coordinate transforms by flipping signs. Define a

group G′ as G′ = C2 wrΩ D4. This is a group of order 32 and is SmallGroup(32,28) in the

Small Groups library [28]. One presentation of this group is

⟨a, b, c|a2, b4, (ab)4, c2, bcb−1c, (ac)4⟩. (C.1)

In this presentation, we can interpret a, b as generators of D4 and c as the generator of C2.

Consider the group G = G′×G′ defined using the direct product. We can write generators

of G as a1, b1, c1, a2, b2, c2 corresponding to two copies of those in the presentation given in

(C.1). Define S as the subgroup generated by a1, b
2
1, c1, a2, b

2
2, c2 and K as the subgroup

generated by c1c2.

We can check that NG(S) = NG(S,K) = G. It is also not hard to check that a1b1, a2b2

generate a complement for S in G. Hence, by Theorem 3.4, we know that an ideal G-

equivariant SBS is possible for S. Hence, we know the size of the equivariant full SBS is

|S| = 256.

Next, suppose we wanted a G-equivariant exact partial SBS. We can always generate

this partial SBS by taking the orbit of some element p where StabS(p) = K under action

by NG(S,K) = G. I claim we must also have StabG(p) = K. Suppose not, then there must

be some g ∈ StabG(p) such that g /∈ S. However, we can check through casework or brute

force that for all such g, either gKg−1 ̸= K or g2 ∈ S −K. But would mean that there are

elemeents not in K which stabilize p so StabS(p) ̸= K, a contradiction. Hence, no such g

can exist so StabG(p) = K. Finally, by Orbit-Stabilizer theorem, this means the set must

have size |P | = |OrbG(p)| = |G|/|StabG(p)| = (82 · 24)/2 = 512. This is larger than the

equivariant full SBS.
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