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ABSTRACT

Wind power plant operators are exposed to financial risk in wholesale electricity markets
due to the uncertain nature of wind forecasts, day-ahead electricity prices, and real-time
electricity prices. In the event of a shortfall compared to the production forecast, the wind
generator may have to repurchase power at a higher price in the real-time market. Based
on this consideration, this thesis formulates a mixed-integer quadratic program which uses
conditional value at risk to create a hedged “risk-aware” offer curve for the wind generator to
submit into the day-ahead electricity market. The formulated program additionally considers
specific concerns around the offer optimization process being negatively interpreted as using
physical withholding to increase profits. We also exploit the structure of the problem to
introduce additional constraints to improve computation time and demonstrate that despite
the complexity of mixed-integer variables it can be solved within an acceptable operating
timeframe under realistic conditions. We simulate the impacts on financial returns for the
generator of applying such an approach for a wind farm in the New York City region; the
program can be successfully tuned to adjust the variability in returns based on the agent’s
preferences, but does not outperform a more naive strategy of simply cutting off the quantity
based on a percentile of the forecast distribution. Finally, we provide some discussion on
how the act of “active” price creation through these risk-aware offer curves could come into
conflict with the current regulatory environment, especially around the concept of exercise
of market power, which has long relied on tying fair prices to ones that represent marginal
fuel costs for generators.

Thesis supervisor: Marija D. Ilic
Title: Adjunct Professor of Electrical Engineering and Computer Science and Senior Re-
search Scientist in the Laboratory for Information and Decision Systems
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Nomenclature

Sets and Indices

Ω Set of price and wind forecasts.

ω Index over forecast scenarios.

t Time indexer.

i Offer curve segment indexer.

Nseg Total number of offer curve segments.

NΩ Total number of scenarios considered.

Decision Variables

ptioffer Power offered in segment i (MW).

λtioffer Price of the power offered in segment i ($/MWh).

Auxiliary Variables

ptωCL Power cleared in day-ahead under scenario ω.

∆tω Shortfall between the day-ahead clearing amount and the real-time

forecast realization; negative if there is a repurchase in real-time.

utωi Indicator if segment i clears the market.

Random Variables

λtωDA, λtωRT Day-ahead and real-time prices in scenario ω.

ptωmax Maximum dispatchable wind power in scenario ω.

Parameters

β Risk factor for conditional value at risk.

M Arbitrarily large constant for indicator constraints.

ϵ Arbitrarily small constant for indicator constraints.
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Chapter 1

Introduction

The North American power grid is the largest and most complex machine in the world and
is integral to almost every aspect of society. The production and consumption of electricity
across much of the continent occurs in the context of wholesale electricity markets where
buyers and sellers make financial offers and bids for electricity. Unlike other commodities,
however, electricity cannot be practically stored at scale and must be consumed as soon as it
is generated. To accomodate this degree of coordination required to ensure reliability, most
wholesale electricity markets in the United States are administered by a system operator
which runs the market by setting prices, facilitating financial settlement and transfers, and
choosing where and how generating resources should be run to balance the system, subject to
least-cost and reliability objectives. Grid operations and electricity markets have re-entered
the public and research spotlight as entities around the world set decarbonization targets in
the electricity sector for climate goals, as well as due to exogenous shocks such as Winter
Storm Uri in 20211 and increased natural gas prices due to the Russian invasion of Ukraine
in February 2022.2 In this context, we provide an optimization procedure for how individual
generating agents on the grid can make offers into the day-ahead market to manage their
short-term financial uncertainties, as well as some discussion of how this procedure, and
bidding behavior in general, interact with the current regulatory environment of electricity
markets.

1 Although Uri affected grid operations across the United States, its effects were most notable in Texas,
where more than 4.5 million homes and business lost power, some for several days. Compounding the crisis
was the additional lack of gas and water delivery due to downstream infrastructure effects.
2 The impact of gas prices stemming from the 2022 invasion on electricity prices motivated a session at
the 2023 IEEE Power & Energy Society titled “Is Marginal Cost Pricing still the ideal electricity market
design?”. Panel participants strongly agreed that marginal pricing should still be used, although there was
much more mixed discussion on how short-term marginal prices influenced longer-term investment.
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1.1 Restructuring: From Vertical Integration to Whole-

sale Markets

For the majority of the 20th century, most electricity service was provided by vertically-
integrated utility monopolies which owned both transmission and generating assets. The
costs of construction and operation, along with a premium for investors, was recovered
through retail prices approved through a public regulatory body. Beginning in the 1990s,
various countries, including the United States, began a process of transitioning electricity
production away from a vertically integrated model. This process of “restructuring”3 was
driven by consumer dissatisfaction with increases in retail prices needed to cover high fuel
costs and unexpectedly stranded generation assets [1], [2]. The deregulation process of
replacing rate-of-return pricing with wholesale competition was i) nominally supported by
the hope that future market competition would bring down prices and spur innovation and
ii) materially supported by the fact that ratepayers would be able to shift the responsibility
for recovering the sunk costs of stranded4 assets to stockholders.

One of the largest impacts of restructuring was the creation of larger regional wholesale
markets for electricity (Fig. 1.1). In several regions, these wholesale markets are managed by
an Independent System Operator (ISO) or a Regional Transmission Organization (RTO).5

These system operators are tasked with maintaining short-term reliability, facilitating com-
petitive electricity markets, and monitoring for exercise of market power. 6 To address
the first two tasks, system operators procure energy and ancillary service products through
a unit commitment (UC) process. Although the specifics of the market design vary across
3 The terms “restructuring” and “deregulation” are both used to refer to the changes in the industry in
the 90s, and 2000s. It is most correct to only use deregulation to refer to the changes to generation service.
4 Borenstein and Bushnell note that while many of the nuclear and coal plants were considered “stranded”
in the 1990s, by 2007 they were once again profitable due to later increases in natural gas prices [2].
5 For the purpose of this work, we will refer to a generic “system operator”, since both ISOs and RTOs
manage markets for economic dispatch.
6 Market power is “the ability to alter profitably prices away from competitive levels”[3]. See [4] for a
description of practical tests for market power.
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Figure 1.1. A US map of the ISOs/RTOs (CAISO, SPP, ERCOT, MISO, PJM, NYISO,
and ISO-NE) and regions where traditional wholesale markets still operate
(Northwest, Southwest, and Southeast).
Reproduced from FERC.

system operators, the idealized day-ahead electricity market broadly runs as follows:

1. Generators submit hourly offers specifying their supply functions of price vs.
energy produced and loads submit bids specifying their demand functions of
price vs. energy consumed. On a longer recurrance (e.g. weeks), generators
also specify constraints such as ramp limits from hour-to-hour, minimum run
times, and startup costs.

2. The system operator takes the bids and offers and runs a UC engine to deter-
mine which generators will start up and what levels they should produce at to
minimize production costs or maximize total welfare. The UC problem takes
into account transmission constraints and aforementioned generator constraints
when producing the dispatch schedule.

3. The system operator issues a set of hourly dispatch levels to generators and a
load-consumption “schedule” based on the UC results.

4. In addition to the production and consumption levels, the system operator also
generates a set of locational marginal prices against which suppliers will be paid
or consumers will be charged for the energy transacted in the day-ahead market.

17
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1.1.1 The Two-Settlement System

The system operator runs the electricity market as a two-settlement system, with a day-ahead
and real-time market.7 Fig. 1.2 gives an overview of the events and the times they occur at
for the New York market as a representative example. The day-ahead market is a forward
market that is settled before the operating day; the real-time market occurs much closer
to the actual operating hour. The two-settlement system is intended to help coordinate an
optimal combination of resources in advance of the real-time market, since some generators
may have startup times well exceeding the real-time market timeframe of a few hours.

Typically, the day-ahead market operates on a once-a-day cycle and clears all twenty-
four hours of the operating day in hourly intervals, and the real-time market runs on an
hourly cycle with fifteen minute intervals. In each interval, the system operator calculates
a dispatch schedule for each generator (when to turn on/off and how much power will be
produced in each interval), as well as a price for the contracted power. Financial payment to
generators is based on the quantity contracted in the day-ahead market and the difference
in quantity between the day-ahead and real-time contracts.

If a generator is paid λ for power p, then the total payment is:

λRT (pRT − pDA) + λDApDA (1.1)

where λ and p represent the clearing price and quantity contracted, respectively.

Since the RT market is settled by considering the deviations in quantities cleared between
the two markets, under the assumption of perfect competition, suppliers and consumers have
the same performance incentives in both markets as if only the real-time market existed [3].
Put another way, the forward contract resulting from the day-ahead market should not have
an impact on the generator’s offer behavior in real-time, with the assumption that the RT
market is competitive.
7 Electricity is also traded in bilateral forward markets which are not managed by the system operator;
these markets are outside the scope of this work’s discussion.
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Figure 1.2. Timeline of two-settlement market events in NYISO.
Reproduced from the NYISO Day-Ahead Scheduling Manual [5].

1.2 Decarbonization and Variable Renewable Energy

Decarbonization to meet climate objectives will require a massive buildout of new generating
resources, both to replace carbon-emitting generation facilities and accomodate increased
demand for electrification as sectors such as heating and transportation shift away from
fossil fuels. Much of this carbon-free generation will be in the form of solar and wind
resources. This variable renewable energy (VRE) production is tied to intermittent weather
conditions; the maximum available output is dependent on weather, although within the
weather-dependent production cap, the output may be to an extent curtailed or downwards-
dispatched. This is in contrast to conventional generation resources, which are relatively
more dispatchable within a known operating range. 8

Handling forecast uncertainty is not a new problem to the field. System operators have
been forecasting demand for decades and are able to consistently achieve forecasts within 3%
8 There is an often-repeated view is that VRE is not controllable whereas other generators are controllable,
but the reality is that certain fossil-based technologies such as combined-cycle plants and block-loaded
gas turbines may have nontrivial operating constraints that limit their output within restrictive ranges of
nameplate capacity.
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Hourly Error MW: Value of the difference between the hourly average actual load demand
and the average hour ahead forecast load demand
Average Hourly Error %: Average value of the ratio of hourly average error magnitude to
hourly average actual load demand.
Day-Ahead Average Hourly Error %: Average across all hours of the month of the absolute
value of the difference between actual load demand and the Day-Ahead forecast load demand,
divided by the actual load demand.

Figure 1.3. Load Forecast Performance, NYISO [8].

of actual demand (Fig. 1.3). This uncertainty has historically been operationally managed
by operating reserves [6]. In the case of large imbalances between day-ahead and real-time
markets, extra capacity may be redispatched in the real-time market. The increasing addition
of VRE resources to the grid has also led system operators to account for VRE production
forecasts in grid operations and markets.

The uncertainty of VRE forecasts does not contradict the basic features of restructured,
competitive wholesale markets — uncertainty management (albeit moreso on managing un-
certainties in demand) has been part of the restructured industry since its conception. How-
ever, accounting for the magnitude of production uncertainty under higher levels of VRE
penetration does pose new market challenges. As an analagous example, capacity markets,
originally introduced to encourage longer-term generation investment in thermal generation
capacity, have increasingly incorporated resource contribution ratings based on Effective
Load Carrying Capacity (ELCC) and other probabilistic modeling to account for the inter-
mittency of VRE.9

9 Previously, the main consideration for supply variability was forced outages of thermal generation, which
some capacity markets accounted for through seasonal derate factors [7].
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1.2.1 What’s in a Price?

Of particular relevance to this work is the question about how short-term (i.e. day-ahead
timescale) markets and prices should accomodate the increased variability from greater pene-
tration of VRE. One of the responsibilities of the system operator is to facilitate competitive
and economically efficient10 electricity markets. This is done in part by calculating and
posting prices that reflect the conditions on the system. In an efficient market without
nonconvexities and inelastic demand, the canonical assumption is that the marginal price
of electricity should be equal to the marginal cost of generation to meet demand at lowest
system costs. However, considerations around uncertainty, reliability, and nonconvexities
such as startup costs complicate the question of what constitutes an “efficient” price.11

Unlike conventional fossil generators which incur fuel costs as part of production, VRE
resources have no marginal fuel costs but do impose additional costs on the system if forecast
deviations force another generator, such as a natural gas peaker, to start up and compensate
for the shortfall in real-time. Zero marginal fuel costs are compatible with marginal prices
under convex conditions, but an increase in supply variability due to increased VRE enhances
the need for consideration of how prices are “formed”, given that fully controllable generators
will need to be started and stopped more frequently to balance out the volatility and thus
increase the share of costs associated with nonconvexities. Similar to the application of ELCC
to capacity markets, the question of what clearing prices should achieve is a preexisting
question, 12 which will become more relevant as the amount of VRE on the system increases.

1.3 Managing Uncertainties

System operators mainly manage short-term uncertainties in supply and demand by procur-
ing a variety of operating reserve products. These reserve products are procured for a vari-
ety of requirements such as compenstating for the loss of a generator (contingency reserve),
variablility in supply/demand at timescales shorter than that of the energy market intervals
(regulation reserve), and keeping headroom/footroom available for accomodating ramping
conditions in the net load profile (ramping reserve) [6]. This work, however, considers the
question of uncertainty management from the individual agent’s perspective instead of the
system operator. Whereas the system operator’s concern for uncertainty management is to
10 “Efficiency is the state of having maximized the sum of consumer and producer surplus; productive
efficiency means production costs have been minimized... for the given level of output” [3].
11 For a brief graphical and mathematical description of the complications of determining optimal marginal
prices under nonconvexity of block-loaded generators, refer to Chapter 3-8 of [3].
12 One such early example of the clearing price problem, before any consideration of renewables, was when
NYISO modified its pricing rules as a result of the nonconvexities of block-loaded gas turbine generators [9].
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ensure reliability of system service by means of the centrally determined reserve product re-
quirements, the generator’s concern for uncertainty of a financial nature. In theory, it is the
generator’s offer curve that links these two uncertainty considerations: the central reserve
requirement changes the total energy dispatched (and thus, the clearing price of energy)
through spillover effects, 13 while changes in energy offer prices affect the opportunity cost
payout to generators providing reserves.

Currently, market monitoring to mitigate the exercise of market power is primarily based
on checks against the generator’s short-run marginal costs [11]. This is commonly taken
to mean the fuel costs and operations & maintenance costs. However, as noted in Section
1.2.1, the variable costs of a wind generator, when considering system costs in both the
day-ahead markets and real-time markets, also have a component associated with possible
underdelivery at the tail end of the wind forecast distribution. Allowing individual agents to
express risk preferences through active offer curve creation will also necessitate a thorough
regulatory consideration (one that is beyond the scope of this thesis) of what constitutes a
reasonable market offer, and by extension, a just and reasonable price. 14

13 On December 1, 2023, PJM changed its regulation reserve requirement from a percentage of peak &
valley load to a fixed amount of 700MW and 525MW during peak and off-peak hours, respectively. Based on
this change, it is empirically estimated that a 100MW change in the regulation market had an approximately
400 MWh change on the energy market [10].
14 It is a common maxim that economic competition will encourage “fair” prices. However, prices are
emergent from the techniques of market participants and the rules and assumptions in a market design.
“Prices, and the ways of price making that stand behind them, are never simply facts or things that emerge
out of markets, but instead are ongoing objects of struggle [among market stakeholders]... it is in this
‘hidden abode’ of price making that some of the most intense forms of rent seeking and conflict between
market participants now occur” [11].
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Chapter 2

Problem Framework

We consider the problem of a wind generator optimizing its offer into the day-ahead electricity
market while taking into account potential real-time penalties for underproduction under a
risk measure (conditional value at risk).

2.1 Optimization Problem Formulation

The conventional treatment of generator offers requires a convex offer function consisting of
blocks of power offered at discrete marginal prices. We make the following considerations
for the wind generator in our problem:

• The agent takes the day-ahead and real-time price scenarios as predicted (price-
taker behavior) and also has a set of discrete forecast scenarios of its real-time
wind production.

• All power quantities offered at a price below the day-ahead price clear the
market and are sold at that day-ahead price.

• In the day-ahead optimization, the agent should not consider any profits from
selling or repurchasing electricity in the real-time market to address any concern
that the generator is engaging in physical withholding 1 and could potentially
be exercising market power.

• If the realized wind power is less in real-time than was contracted for dispatch in
the day-ahead market, the generator must buyback the shortfall at the real-time

1 “Physical withholding is a decision by a firm not to offer available generation capacity that it owns
or controls into the market, when the short-run marginal cost of the capacity is less than or equal to the
competitive market price.” [12]
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price.

• The generator is downwards dispatchable to 0 MW from any realized wind
scenario and such downwards dispatch incurs no operating cost.

2.1.1 Related Work

The question of creating optimal supply and demand curves given technology constraints
has been thoroughly examined in the literature since the beginning of restructuring and as
focuses on different generation and load technologies have changed. In particular, we situate
this work among the following related works:

• [13] describes a mixed integer linear program for a thermal generator calculating
day-ahead offer prices and quantities while considering nonconvex operating
constraints. It assumes price-taker behavior and a lognormal distribution of
electricity prices.

• [14] considers the problem of constructing offer curves when considering the
financial risk of correlated real-time prices and wind underdelivery for wind
generators, but constructs smooth offer curves instead of the industry-standard
piecewise linear offer.

• [15], [16] describe processes for creating piecewise linear bid curves for electricity
consumers when considering, shortfall/surplus penalties, albeit with a different
curve structure since the market format for demand-side curves differs from
supply-side curves.

• [17] considers the scenario where “slow” thermal generators internalize their
redispatch costs using conditional value at risk when making offers and evaluates
the overall effects on market efficiency

• Finally, this work expands on some of the discussion in [18], which highlights
the role of individual agents internalizing the impact of parameters such as
operating constraints that are not necessarily visible to the system operator. In
this case, the generator’s individual risk preference for financial returns under
different future wind and price scenarios (the “internal” parameter) is expressed
through changes in the day-ahead offer curve.

24



−0.2 0.0 0.2 0.4 0.6 0.8

loss

0

1

2

3

li
ke
li
h
o
o
d

V aRβ

probability 1− β

CV aRβ

1
Figure 2.1. Graphical representation of value at risk (VaR) and conditional value at risk

(CVaR). Outcomes to the right side of the x axis are less desirable.

2.1.2 Risk Measure: Conditional Value at Risk

In expectation, a certain offer strategy may yield seemingly good profits. However, due to
the lack of storage at scale, electricity prices are substantially more volatile than that of
other commodities. Hence, it may be necessary to consider a more conservative measure of
evaluating the success of a certain strategy. To address the impact of tail events, we use
conditional value at risk (CVaR) [19] to formulate our optimization objective.

Value at risk (VaR) and conditional value at risk are popular risk measures which consider
the worst-case outcomes in decision making, such as when constructing a portfolio of stocks.
For a given cutoff probability β, the V aRβ quantifies a value α for the losses. The probability
of incurring a loss above α is equal to 1 − β. The conditional value at risk is equal to the
expectation of incurring losses exceeding α = V aRβ. This is depicted graphically in Fig.
2.1, with α = 0.2 and CV aRβ equal to the expectation of the blue shaded region.

In addition to its focus on “extreme” tail events to consider the volatile nature of electricity
markets, CVaR is also a convex risk measure, making it more well-behaved in optimization
problems (VaR is not convex).
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Let f(x, y) be the loss associated with a decision x subject to the impact of a random
variable y. Let ρ(y) represent the probability density of y. If αβ(x) = V aRβ and ϕβ(x) =

CV aRβ, then [19]:

αβ(x) = min{α ∈ R : ψ(x, α) ≥ β} (2.1)

ϕβ(x) =
1

1− β

∫
f(x,y)≥αβ(x)

f(x, y)ρ(y)dy (2.2)

Where ψ(x, α) is the probability that the loss f does not exceed a threshhold α.

For the context of this thesis, the distribution ρ(y) is not known in closed form. We
assume the distribution of price and wind forecast random variables is represented as a
collection of samples from an exogenous source, with NΩ total scenarios. If each scenario
yω has an associated loss f(x, yω) and assuming m = (1 − β)NΩ is an integer, then by
using the optimization recipe for the m largest entries of a vector [20] we can calculate the
CV aRβ(f(x, y)) = ϕβ(x) with a sample average approximation as:

min
t,u

mt+
∑
ω

uω (2.3)

subject to uω + t ≥ f(x, yω) ω = 1...NΩ (2.4)

uω ≥ 0 ω = 1...NΩ (2.5)

2.1.3 Offer Curve

All ISO-run electricity markets in the United States require generator offers to be in the
form of piecewise linear offer curves, where each “piece” specifies a quantity of energy for the
dispatch interval. There is much variety in the academic literature about the representation
of the curves (e.g. quadratic functions for marginal cost vs. output, continous piecewise
linear functions for marginal cost vs. output, discontinous piecewise linear functions for
marginal cost vs. output, etc.). For clarity, we briefly present here a description of the offer
curves described in this work which are identical to the current offer structure in use for
producers.

Table 2.1 is reproduced from the CAISO Business Practices Manual and describes the
segments of how generators submit offer curves.2 For a given operating level segment there
2 In addition to marginal prices for energy, CAISO and other system operators allow generators to submit
startup costs based on their startup condition (i.e. warm, intermediate, and cold) and cost to run at minimum
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is a corresponding marginal price the energy in that segment is offered at. Segment 1
corresponds from 70.01MW to 150.00 MW at a price of $25/MWh, Segment 2 corresponds
from 150.01MW to 200.00 MW at a price of $30/MWh, etc. Fig. 2.2 shows the equivalent
marginal-cost offer curve (top) and total cost curve (bottom) for the data in Table 2.1,
assuming the unit’s minimum load cost is zero. For the purpose of this work, we will use the
marginal cost curve representation in the problem formulation (the top graph in Fig. 2.2).

MIQP Formulation: Row Echelon Constraints

The task from the wind generator’s point of view is to determine the prices and quantities at
which it will offer power into the market. The full expression giving the optimal offer under
CV aRβ, with no consideration of profits in the real-time market (but with consideration of
underdelivery penalties) along with the assumptions in Section 2.1 is:

max
x

CV aRβ

(
λtDA p

t
CL + λtRT∆

t
)

(2.6a)

subject to ptωCL =

Nseg∑
i

utωiptioffer (2.6b)

max(ptωCL) ≤ max(ptωmax) (2.6c)

∆tω = min(0, ptωmax − ptωCL) (2.6d)

utωi ≤ 1−
λtioffer − λtωDA

M
(2.6e)

utωi ≥ ϵ+
λtωDA − λtioffer

M
(2.6f)

utωi ∈ {0, 1} (2.6g)
Nseg∑
i

utωi ≤
Nseg∑
i

ut(ω+1)t (2.6h)

λtioffer ≤ λ
t(i+1)
offer (2.6i)

u(i+1)ωt ≤ utωi (2.6j)

where x = λtioffer, p
ti
offer

Variables λtioffer and ptioffer specify the price and quantity characteristics of each block in
the offer curve (Fig. 2.3). utωi is 1 if a block i clears in a specific scenario and 0 otherwise.

load. This additional information is used to calculate potential uplift payments if the payment from energy
sales does not cover these additional costs.
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Table 2.1. “Example of energy bid component for a generating unit with a PMin of 70 MW
and a PMax of 500 MW” [21]

Segment Operating Level (MW) Energy Price ($/MWh)

1 70 25
2 150 30
3 200 35
4 250 40
5 300 45
6 340 50
7 375 55
8 400 60
9 450 65
10 475 75
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Figure 2.2. Example energy offer curve based on segments in Table 2.1. The top graph is
the representation of the marginal cost of each block, while the bottom graph
is the total production cost. Both graphs show the same information.
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Figure 2.3. Representation of offer curve parameters and corresponding optimization vari-
ables under the row-echelon constraint method. Observe that based on the
indicated forecast price in scenario ω, only segments 1 and 2 would clear and
[utω1, utω2, utω3] = [1, 1, 0]

The program can be understood by breaking it down into the following components:

• Calculating power sold in the day-ahead market.

• Calculating penalty for real-time underdelivery.

• Reducing solution space with row-echelon structure.

Calculating power sold in the day-ahead market

The first task is to calculate the power sold in the day-ahead market in each scenario ω. We
assume that all power at a price at or below the day-ahead market price of energy λtωDA

3

clears the market and is sold at the day-ahead price. 4

To determine which segments clear the market, we introduce a set of binary auxiliary
variables utωi (2.6g) which have a value of 1 if that segment’s price is at or below the
day-ahead price ( λtωDA − λtioffer ≥ 0) and 0 otherwise. For a curve with Nseg segments and
consideringNΩ total scenarios, there would beNseg∗NΩ auxiliary variables utωi . Constraints
3 If the price is at the offer, that implies the offer is marginal and would only partially clear, but it would
be impossible to determine the quantity cleared without modeling the demand curve. Thus, for simplicity
we assume the entire offer clears.
4 We also assume here that the agent has information about the energy price component of the locational
marginal price; the “total” locational marginal price of energy is a combination of prices from energy, trans-
mission congestion, and transmisson losses. Transmission congestion substantially complicates whether a
resource actually clears in “merit order” based solely on energy prices, and so we do not consider its effect
here, assuming instead that transmission effects are negligible in the agent’s consideration of the clearing
process.

29



(2.6e) and (2.6f) use the big-M trick to enforce this behavior. Once the “active” segments in
each scenario are determined, one can sum up the output associated with each segment to
find the total amount of power cleared in the day-ahead interval (2.6b).

Finally, we impose an additional constraint on the offer curve that in no scenario can we
clear more power than the maximum forecast sample (2.6c).

Calculating penalty for real-time underdelivery

Once we have derived an expression for power cleared in the day-ahead market ptωCL , we can
use it to calculate the real-time penalty, which only applies if there is a shortfall (2.6d); this
prevents the strategy from explictly considering withholding day-ahead capacity for real-
time profits. To represent this constraint as a linear program, we can transform it into two
constraints: one specifying ∆tω ≤ 0 and another specifying ∆tω ≤ ptωmax − ptωCL. These two
constraints satisfy the spirit of the expression (2.6d) and the problem objective based on the
following observations:

• When ptωmax − ptωCL is positive (not all the forecast power cleared in DA), then
∆tω has a tight upper bound of 0.

• When ptωmax − ptωCL is negative (need to buy back in RT), then ∆tω has a tight
upper bound of ptωmax − ptωCL

• When λtωRT is positive, then the solver tries to maximize the value of ∆tω since
the overall program is a maximization problem.

• When λtωRT is negative, then the problem may be unbounded and the program
could try to repurchase energy from the real-time market. In this case, we could
add an indicator variable which sets ∆tω to zero. However, since CVaR only
considers the worst-case scenarios, such behavior would not affect the objective
unless a substantial portion of the scenarios have negative real-time prices. If
this were true, then the overall problem becomes trivial, as there is no need to
hedge against underdelivery risk as there is no penalty for underdelivery. 5

Reducing solution space with row-echelon structure

Integer constraints add significant complexity for a solver. We can significantly reduce the
feasible space by exploiting the fact that although the overall task to to determine a schedule
5 Negative prices can result from an overproduction of electricity such as from midday solar or from a
lack of supply/demand flexibility combined with generator ramp constraints. CAISO reported a frequency
of 11.4% for negative prices in the 15m market for Q2 2023, so such a scenario is not necessarily uncommon
[22].
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for every hour of the day-ahead market, from the perspective of the optimization problem
each time interval’s offer curve is not influenced by the solution in other intervals. 6

Consider the matrix U t ∈ RNΩ×Nseg that collects all of the auxiliary variables utωi. If we
order the rows by increasing day-ahead price in the corresponding scenario ω and constrain
each column to represent a block with a higher price than the column preceding it (2.6i),
then in each row there must be a cutoff point where all utωi to the left which are smaller
than the price λtωDA have a value of 1 and all to the right have a value of 0. In other words,
the values of utωi in a row are decreasing (2.6j). Since the scenarios are ordered by increasing
λtωDA, we also know that each row must have at least as many active segments compared to
the row above it (2.6h). Taken together, these constraints restrict U t to have a row-echelon
structure.

MIQP Formulation: Special Ordered Sets

There was an attempt to formulate a version of the problem using special ordered set con-
straints to potentially speed up the solver. However, this formulation was unable to fully
specify the problem without adding heuristic constraints and so is not guaranteed to give an
optimal solution. For this reason, this method is not demonstrated in the results, but the
formulation attempt is still presented here for completeness.

Special ordered sets (SOS) are a way to specify constraints that aid the solver software
in implementing better branching heuristics for exploring the search space. For a set of
variables, a special ordered set of type 1 (SOS1) means that at most one of the variables in
the set can be nonzero. We can slightly reformulate the setup as described in Section 2.1.3
to use a SOS1:
6 This assumption would not hold if there were intertemporal effects such as ramp rate limits or if the
price-taker assumption was not true and the quantity sold in an interval influenced the energy prices in
another interval.
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max
x

CV aRβ

(
λtDA p

t
CL + λtRT∆

t
)

(2.7a)

subject to ptωCL =

Nseg∑
i

utωiptioffer (2.7b)

max(ptωCL) ≤ max(ptωmax) (2.7c)

∆tω = min(0, ptωmax − ptωCL) (2.7d)

utωi ≤ 1−
λtioffer − λtωDA

M
(2.7e)

utωi ∈ {0, 1} (2.7f)
Nseg∑
i

utωi ≤ 1 ω = 1...NΩ (2.7g)

λtioffer ≤ λ
t(i+1)
offer (2.7h)

where x = λtioffer, p
ti
offer

Variables λtioffer and ptioffer specify the price and quantity characteristics of each block
in the offer curve, but instead of ptioffer specifying the quantity of energy offered at a given
price, it instead gives the total quantity that would clear at a given price (Fig. 2.4). utωi is
1 if the quantity ptioffer clears in a specific scenario and 0 otherwise. In the matrix U t each
row would sum to one or zero; constraint (2.7g) represents the SOS1 constraint.

However, while (2.7e) guarantees that the active segment will have a price lower than
the day-ahead price scenario, it does not guarantee that the price in the active segment will
be the closest out of all segments’ prices to the day-ahead price scenario. Under certain
combinations of scenarios, the optimizer will set the active price segment to a looser bound
which violates the assumption that all quantity offered at a price below the day-ahead price
clears the market. This could be addressed by a heuristic to the objective that penalizes the
difference between the active price segment in each scenario and the day-ahead price scenario,
but this gives no guarantee of optimality under the original problem intention. Additionally,
in informal testing, the SOS1-constrained formulation solved at least three times slower than
the row-echelon-constrained formulation.
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Figure 2.4. Representation of offer curve parameters and corresponding optimization vari-
ables under the SOS1 constraint method. Observe that based on the indi-
cated forecast price in scenario ω, an amount equal to pt2offer should clear and
[utω1, utω2, utω3] = [0, 1, 0]
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Chapter 3

Results

This section presents the results of applying the formulation described in Section 2.1.3 to
various contexts. We examine the offer curves produced from the program under Gaussian
distributions and provide intuition for the effect of the random variables on the curve shapes,
examine the performance of the formulation on a real-world example using data from NYISO,
and evaluate the runtime performance. The program was formulated in Julia v1.9.2 with
the aid of the JuMP library (v1.15.1) and solved using Gurobi v10.0.3. A sample of the
Julia code used to formulate the problem is provided in Appendix A. A L2 regularization
norm was also added to the price and quantity decisions to improve the conditioning of the
program.

3.1 Curve Interpretation

The MIQP described in Section 2.1.3 was run on two different synthetic Gaussian distri-
butions of scenarios to examine the behavior of the program and demonstrate a qualitative
method of interpreting the curve shapes. Table 3.1 describes the simulation parameters for
the multivariate Gaussian used to generate the two cases. We denote the case where wind
and real-time prices are negatively correlated as Case 1, and the case where they are pos-
itively correlated as Case 2. Case 1 is the “worst-case” since when a shortfall of wind in
real-time is more likely, real-time prices are also more likely to be higher, while Case 2 is a
“best-case” since any shortfall will in expectation not have a financial impact, as real-time
prices will on average be lower than day-ahead prices. For both cases, we set the program to
generate six offer curve segments and then removed segments that are smaller than 1 MW
in width to improve readability.

Fig. 3.1 shows the offer curves created by running the MIQP for Cases 1 and 2. In both
cases, the right side of the offer curve reflects the nonzero variable costs associated with
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buyback uncertainty, as would be expected.
For Case 1, increasing β (more risk averse) reduces the amount of total power offered in

the day-ahead; the total amount offered is larger than would come from just truncating the
marginal wind distribution at the corresponding β alone since there are scenarios where a
power shortfall may not result in significant financial loss if the real-time price is also not
high in such a scenario.

For Case 2, increasing β decreases the price offered at the right side of the curve when
compared to a lower risk aversity (a smaller β value). This result is initially counterintuitive;
one would generally expect that a higher risk aversity would result in the uncertain wind
portion in the 100 - 125MW range to be priced higher, since that portion will be more likely
to be subject to buyback. However, in Case 2, real-time prices and wind are positively
correlated, meaning that any wind shortfall will generally be repurchased a lower price
in real-time than the price in the day-ahead market; put differently, in expectation there
is no financial penalty for underdelivery, and the bulk of the “loss” which is targeted by
optimizing CVaR consists of insufficient revenue that clears in the day-ahead market. We
can qualitatively justify this claim by examining the joint distribution plot in Fig. 3.1d, which
shows the “active” samples of day-ahead price, real-time price, and wind that constitute the
tail of the profit distribution that CVaR is calculated from. At the higher β values, the
active samples are clustered where day-ahead prices, real-time prices, and wind outputs are
all lower than the mean. Since the positive covariance means that there is less penalty for
underdelivery, the offer curve is constructed to clear power that may not be deliverable in
the real-time market to gain the additional day-ahead revenue.

3.2 NYISO Performance

To investigate the real-world performance of the program, the MIQP was run on real-world
price data from the New York Independent System Operator and synthetic wind forecast
data corresponding to a wind farm in the NYC price zone. We compare the profits generated
when the MIQP is run for varying β against a naive offer strategy that offers at zero marginal
price in the day-ahead market, up to a percentile quantity of the forecast wind powers ptωmax.
Hourly-level simulations are run for the period of October 1st – 31st, 2019, with this specific
date range chosen since ensemble wind forecasts were available in the year 2019 and October
empirically had high variability in electricity prices.
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Table 3.1. Simulation parameters for synthetic Gaussian data cases

Parameter Symbol Value

Mean day-ahead price µDA 30 $/MWh
Mean real-time price µRT 30 $/MWh
Mean wind forecast µwind 100 MW
Variance, day-ahead price σ2

DA 100
Variance, real-time price σ2

RT 100
Variance, wind forecast σ2

wind 100
Covariance*, RT price & wind covRT,wind ± 80
Number of scenarios generated NΩ 250

*All other covariances are zero.

3.2.1 Data Inputs

For each operating day, we generate price samples by taking the historical day-ahead and
real-time prices in the corresponding hour over the preceeding fifty calendar days. These
price scenarios are paired with one hundred wind forecast scenarios generated from historical
forecast data using PGscen 1 [23] to create one hundred total scenarios for the hour of interest.

3.2.2 Regret Comparison

For both the “MIQP CVaR” offer strategy and the “forecast percentile” strategy, the cor-
responding offer strategy is used to create the day-ahead offer curve. After the day-ahead
clearing quantity is determined from the actual day-ahead price2, the shortfall (or excess)
wind production relative to the day-ahead clearing quantity is bought-back (sold) at the
real-time price.

To account for natural day-to-day variability in revenue, we subtract the total profit
from the day-ahead and real-time markets under these two strategies from an idealized
profit number calculated by selling all the realized wind production in whichever market is
more profitable in hindsight.3 We refer to this difference as the regret. For example, if the
1 PGScen is an open-source Python package which uses a graphical model to generate wind, solar, and
demand forecasts while preserving conditional dependencies between the three variables.
2 We assume all power priced at or under the day-ahead price clears the market.
3 This profit is lower than the absolute maximum profit of offering the generator’s entire nameplate
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Figure 3.1. Offer curves and pairwise visualizations of distributions. The diagonal plots on
the lower figures show the marginal distribution of active scenarios correspond-
ing to a single random variable. Countours on the off-diagonal represent the
level set of the joint probability density function for the corresponding label
on the row and column.

actual day-ahead hourly price was $10/MWh, the actual real-time price was $20/MWh, and
the actual maximum wind production was 100 MW for that hour, the ideal profit would
be $200 for that hour. If in that hour the MIQP CVaR strategy yielded a total profit of
$150, the regret would be $50 = $200−$150. Smaller regret values are indicative of a better

capacity in the most profitable market instead of the realized wind power, but in practicality such a strategy
could be penalized by the market monitors for misrepresenting actual production.
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(b) Strategy performance considering the standard deviation of regret.

Figure 3.2. Strategy performance on NYISO data. For the CVaR MIQP approach (blue
columns), risk aversity increases from left to right. For the percentile cutoff
approach, risk averisty increases from right to left. Lower regret scores are
more desirable.

strategy.
Fig. 3.2a shows the total regret over different choices of risk preference β. There is no

directional influence of β on the total regret. The MIQP CVaR strategy also underperforms
the percentile-based offer strategy in the day-ahead market.

Fig. 3.2b shows the average of the standard deviations of the daily regret. Increasing the
β value (more risk averse) decreases the variance of the daily regret, as expected. However,
the MIQP CVaR strategy still underperforms the naive 25% and 50% forecast percentile
strategies in both total regret and variance of regret, indicating that there is still room for
improvement in the MIQP CVaR approach, possibly through improved scenario creation.

Furthermore, under a perfectly characterized forecast distribution (for both prices and
wind power), one would expect there to be a Pareto frontier along which variance in market
performance could be traded off against the expectation of overall performance (the “bias-
variance tradeoff” in statistics and machine learning). The observation that increasing the
risk aversity parameter does not lead to decrease in the total regret indicates that there are
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Table 3.2. Runtime performance for CVaR MIQP formulation. Runtime is the median out
of six test cases.

Curve
Segments

Scenarios
W/out Row Echelon Constraints With Row Echelon Constraints

Runtime1(s)
Standard

Deviation2(s)
Runtime1(s)

Standard
Deviation2(s)

3 50 0.4 0 0.4 2.9
100 0.9 0.1 1.3 0.3
250 3.4 4.1 5.8 0.8
500 16.1 9.4 22.5 15.9

6 50 4.6 2.4 5.5 4.3
100 9.6 7.3 35.7 11.5
250 97.7 61.3 175.5 75.2
500 1440.7 947.7 1537.2 927.4

9 50 22.8 12.1 29.9 7.8
100 99.1 197.7 107.5 246.6
250 2700 n/a 1848.4 n/a
500 2700 n/a 2700 n/a

1 Solver timelimit was set to 2700 seconds; cases that terminated with status exceeding the
timelimit were recorded as 2700 s.

2 Standard deviation was not calculated for instances where at least two out of the six cases
terminated due to exceeding the optimizer time limit.

additional performance gains to be made in reducing total regret without comprimising the
hedging performance of the program. Since the forecasting method for prices is crude, a
substantial improvement in performance could probably be achieved through better price
predictions and having these price predictions be linked to the wind forecast instead of the
two being generated independently.

3.3 Runtime Performance

Integer variables add significant computation complexity for solvers; linear programs can be
solved in polynomial time while integer programming is NP-hard. Table 3.2 and Figure 3.3
show the runtime statistics for a set of six test cases. Price and wind scenarios in each test
case are generated by sampling a multivariate Gaussian distribution. When the program was
run for a curve with nine segments with 250 scenarios, at least half of the cases terminated
without an optimal solution because they reached the preset solver time limit of 2700 seconds.
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Figure 3.3. CVaR MIQP formulation runtime statistics corresponding to Table 3.2

All computations were performed on a laptop with an Intel Core i5-8300H CPU (2.30GHz)
and 31.2 GB of memory. Figure 3.3 shows the trend in median runtime as the problem
difficulty increases through adding more curve segments and price & wind scenarios. For
curves of three or six segments, adding the additional row-echelon constraints increases
the runtime a small amount. However, as the problem becomes more difficult adding the
additional row-echelon constraints decreases the solution time. The data is incomplete since
at the most difficult level there were several instances in which the solver did not terminate
before the time limit, but it is likely that the row-echelon constraints positively interact with
Gurobi’s branch and bound algorithm to reduce solution time as the problem becomes more
difficult with more integer variables.

Day-ahead market offers need to be calculated and submitted within a period on the order
of hours. Since the offer for each hour can be calculated independently of the other offers,
it is conceivable that with parallel solver instances, a generator could practically utilize this
formulation to calculate its day-ahead offers.4

4 The runtime will be strongly dependent on the number of scenarios considered. Such a number is
typically determined heuristically based on the application and actuarial experience, but a credible estimate
would be on the order of 103 [24]
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Chapter 4

Conclusion

The electricity industry is faced with the monumental task of integrating significant quan-
tities of variable renewable generation and managing increasingly volatile loads within the
next decades. Due to physical constraints and lack of large-scale storage, electricity as a
commodity has a high price volatility. This price volatility will likely only increase as VRE
penetration increases. In the face of increased volatility, generators may want to hedge their
financial risks; this is especially true of VRE generators, which will have a buy-back penalty
if they are dispatched for an amount of energy that exceeds their actual real-time output.
This thesis presents a mixed-integer quadratic program that utilizes conditional value at
risk to determine a piecewise linear offer curve for the day-ahead market which follows the
standard format of the piecewise supplier offer used in the current electricity market design
(Section 2.1.3).

Mixed-integer programs can be computationally intractable. Previous works instead
approximated the problem as one where quantities are fixed and the only decision variable
is price. This leads to a mixed-integer linear program (MILP). In this work, we present
a mixed-integer quadratic program (MIQP) where both quantity and price are decision
variables. Under realistic input complexity the MIQP approach presented is empirically
solvable on the timescale of hours that a generator in the day-ahead market would have
to make its offer decision (Section 3.3). Further computation speedup could be achieved
by reducing the problem to a MILP by fixing a large number of offer quantities and then
reducing the number of segments to the standard offer amount by merging approximately
colinear segments as in as in [16]. It is unclear how much benefit is gained under specific
applications and realistic conditions from not adopting the MILP approximation; future work
should consider the tradeoff in solve time with any decreased financial performance, if any.
Additionally, if intertemporal effects such as ramp constraints or intertemporal price maker
effects are to be considered, then the additional computational complexity would practically
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necessitate a MILP formulation.
Under some illustrative distributions for price and wind, joint distribution plots marking

the scenarios under consideration can qualitatively illustrate how changes in the scenario
distributions and generator risk aversity influence the curve shape (Section 3.1).

In a test on historical NYISO price data, the generator can successfully reduce the vari-
ance of total profits from electricity sales by increasing its risk aversity through varying the
CVaR β parameter. However, the MIQP CVaR strategy does not outperform a naive ap-
proach wherein the generator takes a percentile of the forecast as the quantity offered and
fixes the price at zero. It is hypothesized that the underperformance is due to insufficiently
accurate scenario forecasts as well as a lack of sufficient price volatility in present electricity
markets to reward hedging strategies (Section 3.2).

It is an economic orthodoxy that in a competitive market suppliers should price their
offers at their marginal costs. In the context of generators in electricity markets, this has
sometimes been taken as generators’ offer curves should reflect their fuel costs. If, instead,
one considers the variable costs of underdelivery in real-time, the MIQP CVaR program
presented here can be interpreted as valuing the variable costs associated with buyback risk
for wind generators at different levels of their output. Such a valuation effort could tend to
increase electricity prices in the day-ahead market if that segment of energy previously offered
at zero price was marginal, but is now offered at a positive price. Such an effect could be
interpreted as an attempt by a generator to exercise market power, but conversely one could
also make the case that this price better reflects the generator’s risk preferences which would
otherwise be lost if generators were forced to offer at prices reflecting their fuel costs. This
financial risk could be financially managed through a series of private instruments instead of
through the ISO-run day-ahead markets. However, the market for electricity derivatives is
relatively illiquid and relying on a separate market outside of the system operator’s wholesale
market could also obscure risk information from the system operator.1 If generators (and
loads) create offer curves that reflect some level of strategization which considers the financial
risks arising from uncertainty inherent to the technology, new frameworks for monitoring
and mitigating market power will also need to be considered to delinate between acceptable
hedging and smart bidding behavior and unacceptable attempts to excessively profit off of
changing system prices. Key to such consideration will be if the encouragement of individual
generators’ hedging behavior ultimately has positive impacts for general system reliability
and the public interest.

1 If the generator were to manage its financial risk using private means, the price information and thus
the generator’s understanding of its financial uncertainty would be obscured from the system operator and
other market participants. It is an open question whether representing such risks through an ISO-run market
would align with the public interest.
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Appendix A

Code

� �
using JuMP

using Gurobi

using TensorCast

struct Scenarios

prices_dayahead::Union{Matrix,Vector}

prices_realtime::Union{Matrix,Vector}

wind_powers::Union{Matrix,Vector}

end

function risk_aware_offer(

scenarios::Scenarios, beta::Number, n_segments::Int;

regularization=1e-9, row_echelon_constraints=true)

N = size(scenarios.prices_dayahead)[1]

# Handle 1D vectors

prices_dayahead = prices_dayahead[ordering]

prices_realtime = prices_realtime[ordering]

wind_powers = wind_powers[ordering]

# Tx1

pmax, _ = findmax(wind_powers, dims=1)

n_cvar = convert(Int, round((1 - beta) * N))

model = Model()

set_optimizer(

model,

optimizer_with_attributes(Gurobi.Optimizer)

)

# Dynamically set big M based on the prices

M = maximum(abs.(prices_dayahead))

ϵ = 1e-6

# Regularization term
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λ = regularization

@variable(model, 0 <= quantities[1:T, 1:n_segments], start = 1)

@variable(model, 0 <= prices[1:T, 1:n_segments])

# Force the offer prices to be increasing so we dont have to manually

# order them later

@constraint(model, [i = 1:n_segments-1],

prices[:, i] .+ ϵ <= prices[:, i+1])

@constraint(model, quantity_max,

sum(quantities, dims=2) .<= reshape(pmax, (:, 1)))

# Binary indicator variable with dimensions N x T x n_segments of which

# segments of the offer curve clear.

@variable(model, active[1:N, 1:T, 1:n_segments], binary=true)

# How much power must be repurchased as real-time shortfall, negative if

# purchase is required.

@variable(model, buyback_rt[1:N, 1:T] .<= 0)

# The power quantity cleared in each scenario, final dimension N x T

@cast quantity_cleared[i, j, k] := active[i, j, k] .* quantities[j, k]

@expression(model, quantity_cleared, quantity_cleared)

# Quantity cleared is in the day-ahead market

quantity_cleared_total = dropdims(sum(quantity_cleared, dims=3), dims=3)

@expression(model, quantity_cleared_total, quantity_cleared_total)

@constraint(model, constraint_balance,

quantity_cleared_total .+ buyback_rt .<= wind_powers)

profits = dropdims(

sum(

prices_dayahead .* quantity_cleared_total +

prices_realtime .* buyback_rt,

dims=2

), dims=2

)

# As a generator, cannot end up purchasing power on balance in real time

@constraint(model, constraint_rt_positive,

quantity_cleared_total .+ buyback_rt .>= 0)

# Constraints for the indicator variable of which segment is active;

# Non-neg price difference means that segment is active

@cast pricediff[i, j, k] := (

(prices_dayahead[i, j] - prices[j, k])

)

@expression(model, pricediff, pricediff)

@constraint(model, constraint_active_zero, 1 .+ pricediff ./ M .>= active)

@constraint(model, constraint_active_one, pricediff ./ M .+ ϵ .<= active)

# Impose row-echelon constraints on active segment matrix

if row_echelon_constraints

for i = 1:N

for j = 1:(n_segments-1)

@constraint(
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model, active[i, 1, j] >= active[i, 1, j+1]

)

end

if i != N

@constraint(

model, sum(active[i, :, :]) <= sum(active[i+1, :, :])

)

end

end

end

@variable(model, quantity_reg >= 0)

@constraint(model, quantity_reg >= sum(quantities .ˆ 2))

@variable(model, price_reg >= 0)

@constraint(model, price_reg >= sum(prices .ˆ 2))

# Take the n worst cast scenarios.

@variable(model, u[1:N] >= 0)

@variable(model, t)

@constraint(

model, u .+ t >= -profits)

@objective(model, Min,

n_cvar * t + sum(u) + λ * (quantity_reg + price_reg))

return model, prices_dayahead, prices_realtime, wind_powers

end� �
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