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Abstract
Humans have extraordinary capabilities of comprehending and reasoning about our
3D visual world. With just a few casual glances, we can grasp the 3D structure and
appearance of our surroundings and imagine all sorts of “what-if” scenarios in our
minds. Existing 3D systems, in contrast, cannot. They lack structural understanding
of the world and often break apart when moved to unconstrained, partially-observed,
and noisy environments. To alleviate the challenge, this thesis focus on developing
robust computational tools that can effectively perceive, model, and simulate the
3D world from unconstrained sensory data. We investigate the full spectrum of
dynamic 3D world understanding: from robot localization to recognition, from static
3D reconstruction to dynamic motion estimation, and from closed-loop simulation to
3D generation. By examining these tasks not only in controlled settings, but also in
sparse, noisy, and sometimes even extreme real-world settings, we aim to answer the
following two questions: (i) how to robustly model and reason about the visible world
that we see; and (ii) how to hallucinate the unseen and imagine novel scenarios in a
realistic fashion.
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Chapter 1

Introduction

Demand for robust and automated reasoning of our three-dimensional (3D) physical

world is higher than ever. To navigate traffic safely, autonomous vehicles must perceive

their surroundings and predict how it will evolve over time. Augmented reality (AR)

and virtual reality (VR) systems must understand the scene’s geometry, material,

and lighting to manipulate the scene and produce new photorealistic visual content.

Personal robots need to recognize the poses and affordances of everyday objects to

interact with them effectively. Unfortunately, despite substantial recent progress

on 3D modeling and simulation, most algorithms still assume relatively controlled

setups (e.g., assuming well-calibrated poses or dense overlapping images) or require

a large amount of supervision to span all scenarios. With limited data, they fail to

generalize to unconstrained, partially-observed, noisy environments often encountered

by real-world applications.

Indeed, data captured in real-world settings presents a set of unique difficulties

when compared to data designed in the lab. The sensory data (e.g., images, LiDAR

point clouds) varies significantly (e.g., illumination change, point density difference)

and are often noisy (e.g., due to weather, motion); the observations are usually sparse

and only provide incomplete views of the world. These factors pose severe challenges

to existing machinery. Interestingly, even under such challenging conditions, humans

can effortlessly exploit priors for 3D modeling and reasoning to make good predictions.

With just a few casual glances, we can grasp the 3D structure and appearance of our
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surroundings and imagine all sorts of “what-if” scenarios. Such a capability, while

intrinsic to humans, remains challenging for state-of-the-art computational models.

The goal of this thesis is to equip intelligent systems with similar abilities. We

aim to develop computational tools that can effectively perceive, model, and simulate

the 3D world from unconstrained sensory data. Towards this goal, we first study

how to combine the flexibility of deep neural networks with structured inductive biases,

which allows us to significantly improve the performance, robustness, computational

efficiency, and data dependency across a variety of 3D tasks and generalize to in-the-

wild variation with minimal amounts of information. Our key insight is to leverage

geometric and physical structure into learning frameworks. By integrating top-down

structural reasoning (e.g., optimization) with bottom-up computational models (e.g.,

deep networks), our models become more robust to data variation, less data-hungry,

and, most importantly, can guarantee physically-plausible results during inference.

This is crucial to applications such as self-driving since it is impossible to cover all

scenarios during training, and the estimated output (e.g., free space, localization, 3D

motion) will be fed into downstream physical-based planners and controllers.

Next, we explore how to construct composable, editable, and actionable 3D rep-

resentations that allow robotic systems (e.g., self-driving vehicles, robot arms) to

simulate counterfactual scenarios for better decision-making. By realistically simu-

lating temporally and spatially consistent sensory data (e.g., images, LiDAR point

clouds) at novel viewpoints and for different scene configurations (e.g., actors at new

placements), we can generate potentially infinite synthetic yet realistic training data

for machine learning models and test the policy of autonomous systems on a variety

of scenarios, including hazardous long-tail situations that are difficult to test safely,

without needing to deploy to the real world.

We investigates the full spectrum of dynamic 3D world understanding: from

robot localization to recognition, from static 3D reconstruction to dynamic motion

estimation, and from closed-loop simulation to 3D generation. We examine these tasks

not only in controlled settings, but also in sparse, noisy, and sometimes even extreme

real-world settings where the models will be deployed in. In the following, we will
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present our research contributions along two main axes: (i) robust and efficient 3D

reasoning in the wild, and (ii) building digital replicas of the world.

1.1 Dissertation Outline

The remainder of the thesis is organized as follows. We start by discussing how to

robustly model and reason about the visible world, addressing a wide array of 3D

challenges. Then, we delve deeper, presenting methods to hallucinate the unseen and

imagine new scenarios with a touch of realism. More specifically:

– Chapter 2 investigates the rigidity property in 3D motion estimation. We find

that by integrating deep learning techniques with strong priors specific to our

application domain – wherein the scene’s motion is a composite of both the

robot’s movement and the 3D motion of the actors within the scene – we can

effectively and robustly recover the underlying 3D motion. Specifically, we frame

the problem as an energy minimization task within a deep structured model.

The formulation allows us to solve the problem efficiently on the modern GPU.

Compared to the state-of-the-art approaches, our method achieves superior

performance while being 800 times faster.

– Chapter 3 investigates the importance of semantics within robot localization

tasks and proposes a novel, lightweight semantic localization algorithm that

exploits multiple sensors and has precision on the order of a few centimeters.

We find that exploiting semantic cues such as lanes and traffic signs, together

with vehicle dynamics, is sufficient to localize a self-driving vehicle robustly with

respect to a sparse semantic map. This significantly reduces the need for detailed

knowledge about the world’s appearance in advance. Additionally, it requires

significantly less storage than maps utilized by traditional geometry- and LiDAR

intensity-based localizers. We validate the effectiveness of our method on a new

highway dataset and demonstrate superior performance while taking up only a

fraction of memory.
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– Chapter 4 investigates how to leverage physical processes as supervisory training

signals and equip models with better understanding of our world. We focus

on inverse problems where the forward process is well-defined and leverage the

feedback signal provided by the physical forward process to learn an iterative

update model. Through the feedback information, our model not only can

produce accurate estimations that are coherent to the input observation but

also is capable of recovering from early incorrect predictions. On various inverse

problems, our method achieves comparable or better performance while being

two to three orders of magnitude faster than traditional approaches.

– Chapter 5 explores the potential of using prior knowledge of the objects within

the scene for extreme-view 3D reconstruction. In particular, we study how to

combine shape priors from recognition-based single-view methods with geometry-

based multi-view methods. We find that by hallucinating what objects would

look like from other viewpoints and then matching them with the visible regions

from other images, we can associate the pixels geometrically even if they have

completely different semantics and appearances. We further incorporate these

new correspondences into classic 3D reconstruction pipelines and demonstrate

significantly better performance in challenging scenarios and comparable results

in the traditional setup.

– Chapter 6 further explores our knowledge of the world to reason about both the

underlying geometric and physical properties under extreme conditions. Based

on the observations that our world is full of identical objects (e.g., cans of

coke, cars of the same model) and these duplicates, when seen together, provide

additional and strong cues for us to effectively reason about 3D properties, we in-

troduce a novel inverse graphics framework that reconstructs geometry, material,

and illumination from a single image containing multiple identical objects. By

utilizing repetitive patterns in images to extract and utilize multi-view informa-

tion, we can significantly outperform existing single-image reconstruction models

and multi-view reconstruction approaches with a similar or greater number of
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observations.

– Chapter 7 describes our efforts to build editable, composable, and interpretable

digital twins of the 3D world. We draw inspiration from the latest advances in

neural rendering and generative modeling and present two distinct approaches

that can not only faithfully reproduce what it “sees,” but also synthesize novel,

high-fidelity observations of the world. We test our systems on a wide variety of

downstream tasks and also conduct human evaluation. Experiments show that

our synthesized results are much more realistic, exhibit a significantly reduced

domain gap, and unlock the potential of training and evaluation of autonomous

systems in simulation.
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Chapter 2

Deep Structured Motion Estimation

Deep Rigid Instance Scene Flow
Wei-Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, Raquel Urtasun;

CVPR 2019.

We start by exploring how infusing structural priors into computational models can

improve the overall robustness, efficiency, and performance of various intelligent 3D

systems. We begin with dynamic motion estimation, a fundamental and critical

building block for understanding the dyanmics and evolvement of the 3D scene. Since

in-the-wild motion data is often scarce and noisy, naively applying deep learning

will result in infeasible estimations where different parts of an object will move

inconsistently. We thus explicitly encode various constraints (e.g . 2D-3D consistency)

into a neural network to ensure that all parts move as a whole. The result is

a differentiable and end-to-end learnable pipeline, enabling improved performance

while guaranteeing physically-feasible output. It was one of the earliest works that

incorporated optimization processes into deep learning architectures for 3D reasoning.

This framework has set the stage for follow-up work on scene flow estimation, and has

inspired other optimization-inspired 3D neural networks.
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2.1 Introduction

Scene flow refers to the problem of estimating a three-dimenional motion field from a

set of two consecutive (in time) stereo pairs. It was first introduced in [355] to describe

the 3D motion of each point in the scene. Through scene flow, we can gain insights

into the geometry as well as the overall composition and motion of the scene. It is of

particular importance for robotics systems, such as self-driving cars, as knowing the 3D

motion of other objects in the scene can not only help the autonomous systems avoid

collision while planing its own future movements, but also improve the understanding

of the scene and predict the intent of others. In this work, we focus on estimating the

3D scene flow in autonomous driving scenarios.

In the world of self-driving, the motion of the scene can be mostly explained by the

motion of the ego-car. The presence of dynamic objects which typically move rigidly

can also be utilized as strong priors. Previous structure prediction approaches often

exploit these facts and fit a piece-wise rigid representations of motion [358, 397, 243, 27].

While these methods achieve impressive results on scene flow estimation, they require

minutes to process each frame, and thus cannot be employed in real-world robotics

systems.

On the other hand, deep learning based methods have achieved state-of-the-art

performance in real time on a variety of low level tasks, such as optical flow prediction

[79, 288, 332] and stereo estimation [416, 242, 227]. While they produce ‘accurate’

results, their output is not structured and cannot capture the relationships between

estimated variables. For instance, they lack the ability to guarantee that pixels on a

given object produce consistent estimates. While this phenomenon may have little

impact in photography editing applications, this can cathastrophic in the context

of self-driving cars, where the motion of the full object is more important than the

motion of each individual pixel.

With these problems in mind, we develop a novel deep rigid instance scene flow (DR-

ISF) model that takes the best of both worlds. The idea behind is that the motion

of the scene can be composed by estimating the 3D rigid motion of each actor. The
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Figure 2-1: Performance vs runtime on KITTI SceneFlow dataset: Our ap-
proach is much faster and more accurate.

static background can also be modeled as a rigidly moving object, as its 3D motion

can be described by the ‘ego-car’ motion. The problem is thus reduced to estimating

the 3D motion of each traffic participant. Towards this gaol, we first capitalize on

deep neural networks to estimate optical flow, disparity and instance segmentation.

We then exploit multiple geometry based energy functions to encode the structural

geometric relationship between these visual cues. Through optimizing the energy

function, we can effectively reason about the 3D motion of each traffic participant. As

the energy takes the form of weighted sum of squares, it can be efficiently minimized

via Gaussian-Newton (GN) algorithm [33]. We implement the GN solver as layers in

neural networks, thus all operations can be computed efficiently on the GPU in an

end-to-end fashion.

We demonstrate the effectiveness of our approach on the KITTI scene flow dataset

[243]. As shown in Fig. 2-1, our deep rigid instance scene flow model outperforms all

previous methods by a significant margin in both runtime and accuracy. Importantly,

it achieves state-of-the-art performance on almost every entry. Comparing to prior
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each instance are then encoded as energy functions (Sec. 2.3.2) and passed into the
Gaussian-Newton (GN) solver to find the best 3D rigid motion (Sec. 2.3.3). The GN
solver is unrolled as a recurrent network.

art, DRISF reduces the D1 outliers ratio by 43%, the D2 outliers ratio by 32%, and

the flow outliers ratio by 24%. Comparing to the existing best scene flow model [27],

our scene flow error is 22% lower and our runtime is 800 times faster.

2.2 Related Work

Optical flow: Optical flow is traditionally posed as an energy minimization task. It

dates back to Horn and Schunck [138] where they define the energy as a combination

of a data term and a smoothness term, and adopt variational inference to solve it.

Since then, a variety of improvements have been proposed [36, 31, 269]. Recently,

deep learning has replaced the variational approaches. Employing deep features for

matching [15, 369] improved performance by a large margin. However, as the matching

results are not dense, post-processing steps are required [296]. This not only reduces

the speed, but also limits the overall performance.

Pioneered by Flownet [79], various end-to-end deep regression based methods have

been proposed [147]. Flownet2 [146] stacks multiple networks to iteratively refine the

estimated flow and introduces a differentiable warping operation to compensate for

large displacements. As the resulting network is very large, SpyNet [288] propose to

36



R
G

B
R

G
B

D
1

D
2

Fl
ow

E
rr

or

Figure 2-3: Qualitative results on validation set: Our model can estimate the
background motion very accurately. It is also able to estimate the 3D motion of
foreground objects in most scenarios. It fails in challenging cases as show in last
column.

use spatial pyramid network to handle large motions. They reduce the model size

greatly, yet at the cost of degrading performance. Lite-Flownet [143] and PWC-Net

[332, 333] extend this idea and incorporate the traditional pyramid processing and

cost volume concepts into the network. Comparing to previous approach, the resulting

model is smaller and faster. In this work, we adapt the latest PWC-Net as our flow

module.

Stereo: Traditional stereo methods [135, 161] follow three steps: compute patch-

wise feature, construct cost volumes, and final post-processing. The representation

of the patch plays an important role. Modern approaches leverage CNNs to predict

whether two patches are a match [413, 416]. While they showed great performance

in challenging benchmarks, they are computationally expensive. To speed up the

matching process, Luo et al . [227] propose a siamese matching network which exploits

a correlation layer [60] to extract marginal distributions over all possible disparities.

While the usage of the correlation layer significantly improves efficiency, they still

require post-processing techniques [133, 417] to smooth their estimation, which largely
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limits their speed. In light of this, networks that directly regress sub-pixel disparities

from the given stereo image pair have been proposed. DispNet [242] exploits a 1D

correlation layer to approximate the stereo cost volumes and rely on later layers for

implicit aggregation. Kendall et al . [170] incorporate 3D conv for further regularization

and propose a differentiable soft argmin to enable sub-pixel disparity from cost volumes.

PSM-Net [53] later extend [170] by incorporating stacked hourglass [257] and Pyramid

spatial pooling [433, 127]. In this work, we exploit PSM-Net as our stereo module.

Scene flow: Scene flow [355] characterizes the 3D motion of a point. Similar to

optical flow estimation, the task is traditionally formulated as a variational inference

problem [353, 276, 142, 24]. However, the performance is rather limited in real

world scenarios due to errors caused by large motions. To improve the robustness,

slanted-plane based methods [397, 243, 358, 228] propose to decompose the scene into

small rigidly moving planes and solve the discrete-continuous optimization problem.

Behl et al . [27] build upon [243], and incorporate recognition cues. With the help of

fine-grained instance and geometric feature, they are able to establish correspondences

across various challenging scenarios. Similar to our work, Ren et al . [295] exploit

multiple visual cues for scene flow estimation. They encode the features via a cascade

of conditional random fields and iteratively refine them. While these methods have

achieved impressive performance, they are computationally expensive for practical

usage. Most methods require minutes to compute one scene flow. This is largely

due to the complicated optimization task. In contrast, our deep structured motion

estimation model is able to compute scene flow in less than a second, which is two to

three orders of magnitude faster.

2.3 Deep Rigid Instance Scene Flow

In this chapter we are interested in estimating scene flow in the context of self-driving

cars. We build our model on the intuition that in this scenario the motion of the scene

can be formed by estimating the 3D motion of each actor. The static background can
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Dispairty 1 Dispairty 2 Optical Flow Scene Flow
Methods Runtime bg fg all bg fg all bg fg all bg fg all
CSF [228] 1.3 mins 4.57 13.04 5.98 7.92 20.76 10.06 10.40 25.78 12.96 12.21 33.21 15.71
OSF [243] 50 mins 4.54 12.03 5.79 5.45 19.41 7.77 5.62 18.92 7.83 7.01 26.34 10.23
SSF [295] 5 mins 3.55 8.75 4.42 4.94 17.48 7.02 5.63 14.71 7.14 7.18 24.58 10.07
OSF-TC* [256] 50 mins 4.11 9.64 5.03 5.18 15.12 6.84 5.76 13.31 7.02 7.08 20.03 9.23
PRSM* [359] 5 mins 3.02 10.52 4.27 5.13 15.11 6.79 5.33 13.40 6.68 6.61 20.79 8.97
ISF [27] 10 mins 4.12 6.17 4.46 4.88 11.34 5.95 5.40 10.29 6.22 6.58 15.63 8.08
Our DRISF 0.75 sec 2.16 4.49 2.55 2.90 9.73 4.04 3.59 10.40 4.73 4.39 15.94 6.31

Table 2.1: Comparison against top 6 published approaches: Our method
achieves state-of-the-art performance on almost every entry while being two to three
orders of magnitude faster. (*: Method uses more than two temporally adjacent
images.)

be also modeled as a rigidly moving object, as its 3D motion can be described by the

‘ego-car’ motion. Towards this goal, we proposed a novel deep structured model that

exploits optical flow, stereo, as well as instance segmentation as visual cues. We start

by describing how we employ deep learning to effectively estimate the geometric and

semantic features. We then formulate the scene flow task as an energy minimization

problem and discuss each energy term in details. Finally, we describe how to perform

efficient inference and learning.

2.3.1 Visual Cues

We exploit three types of visual cues: instance segmentation, optical flow and stereo.

Instance Segmentation: We utilize Mask R-CNN [128] as our instance segmenta-

tion network, as it produces state-of-the-art results in autonomous driving benchmarks

such as KITTI [102] and Cityscapes [66]. Mask R-CNN is a proposal based two stage

network built upon Faster R-CNN [294]. For each object proposal, it predicts the

object class, regresses its 2D box, and infers the bg/fg segmentation mask.

Stereo: We exploit the pyramid stereo matching network (PSM-Net) [53] to compute

our stereo estimates. It consists of three main modules: fully convolutional feature

module, spatial pyramid pooling [127, 433] and 3D cost volume processing. The feature

module computes a high-dimensional feature map in a fully convolutional manner;

the spatial pyramid pooling aggregates context in different scales and locations to
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construct the cost volume; the 3D cost volume module then performs implicit cost

volume aggregation and regularizes it using stacked hourglass networks. Compared to

previous disparity regression networks, PSM-Net learns to refine and produce sharp

disparity images that respect object boundaries better. This is of crucial importance

as over-smoothed results often deteriorates motion estimation.

Optical Flow: Our flow module is akin to PWC-Net [332], which is a state-of-the-art

flow network designed based on three classical principles (similar to stereo networks):

pyramidal feature processing, warping, and cost volume reasoning. Pyramidal feature

processing encode visual features with large context; the progressive warping reduces

the cost of building cost-volume through a coarse-to-fine scheme. Cost volume

reasoning further boost performance by sharpening the boundaries. We implement

PWC-net with one modification: during the warping operation, we use the feature of

the nearest boundary pixel to pad if the sampling point falls outside the image, rather

than 0. Empirically we found this to improve performance.

2.3.2 Energy Formulation

We now describe the energy formulation of our deep structured model. Let L0
,R0

,L1
,R1

be the input stereo pairs captured from two consecutive time steps. Let D0
,D1 be

the estimated stereo, and FL,FR be the inferred flow. Denote S0
L as the instance

segmentation computed on the left image L0. Assume all cameras are pre-calibrated

with known intrinsics. We parametrize the 3D rigid motion with ⇠ 2 se(3), the

Lie-algebra associated with SE(3). We use this parametrization as it is a minimal

representation for 3D motion. For each instance i 2 S0
L, we aim to find the rigid

3D motion that minimizes the weighted combination of photometric error, rigid fit-

ting and flow consistency, where the weights are denoted as �·,i. For simplicity, let

I = {L0
,R0

,L1
,R1

,D0
,D1

,FL,FR} be input images and visual cues. We denote the

set of pixels belonging to instance i as Pi = {p|S0
L(p) = i}. Note that background

can be considered as an ‘instance’ since all the pixels in it undergo the same rigid
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Figure 2-4: Qualitative comparison on test set: Our method can effectively
handle occlusion and texture-less regions. It is more robust to the illumination change
as well as large displacement. Please refer to the supp. material for more results.

transform. We obtain the 3D motion of each instance by minimizing

min
⇠

{�photo,iEphoto,i(⇠; I) + �rigid,iErigid,i(⇠; I) (2.1)

+ �flow,iEflow,i(⇠; I)}

The three energy terms are complementary. They capture the geometry and appearance

agreement between the observations and inferred rigid motion. Next, we describe the

energy terms in more details.

Photometric Error: This energy encodes the fact that correspondences should

have similar appearance across all images. In particular, for each pixel p 2 Pi in the

reference image, we compare its photometric value with that of the corresponding

pixel in the target image:

Ephoto,i(⇠; I) =
X

p2Pi

↵p⇢(L0(p)� L1(p0)) (2.2)
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where ↵p 2 {0, 1} is an indicator function representing which pixel is an outlier. We

refer the reader to section 2.3.3 for a discussion on how to estimate ↵p. p is a pixel

in the reference image and p0 stands for the projected image coordinate on another

image, given by inverse depth warping followed by a rigid transform ⇠. Specifically,

p0 = ⇡K(⇠ � ⇡�1
K (p,D(p))) (2.3)

where ⇡K(·) : R3 ! R2 is the perspective projection function given known intrinsic

K and ⇡
�1
K (·, ·) : R2 ⇥ R! R3 is the inverse projection that convert a pixel and its

associated disparity into a 3D point; ⇠ � x transforms a 3D point x rigidly with trans-

formation exp(⇠)x. ⇢ is a robust error function that improves the overall robustness by

reducing the influence of outliers on the non-linear least squares problems. Following

Sun et al . [331], we adopt the generalized Charbonnier function ⇢(x) = (x2 + ✏
2)↵ as

our robust function and set ↵ = 0.45 and ✏ = 10�5. Similar to [331], we observe the

slightly non-convex penalty improves the performance in practice.

Rigid Fitting: This term encourages the estimated 3D rigid motion to be similar

to the point-wise 3D motion obtained from the stereo and flow networks. Formally,

given correspondences {(p, q = p+ FL(p))|p 2 Pi} defined by the output of optical

flow network and the disparity maps D0
,D1, the energy measures rigid fitting error of

⇠:

Erigid,i(⇠; I) =
X

(p,q)

↵p⇢(⇠ � ⇡�1
K

�
p,D0(p)

�
� ⇡

�1
K

�
q,D1(q)

�
),

where q = p+ FL(p) and ⇡
�1
K denotes the inverse projection function, and ⇢ is the

same robust error function.

Flow Consistency: This term encourages the projection of the 3D rigid motion to

be close to the original flow estimation. This is achieved by measuring the difference

between our optical flow net, and the structured rigid flow, which is computed by
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Figure 2-5: 3D rigid motion analysis: Over 80% of the estimated 3D rigid motion
has an error less than 1m and 1.3�. Large errors often happen at farther distances
where the vehicles are small and less points are observable.

Figure 2-6: Odometry from background motion: On average, our ego-car drifts
0.9cm and 0.024� every 1m of drive.

warping each pixel using D0 and the rigid motion ⇠.

Eflow,i(⇠; I) =
X

p2Pi

⇢( (p0 � p)| {z }
2D Rigid flow

� FL(p)| {z }
optical flow

) (2.4)

where p0 is the rigid warping function defined in Eq. (2.3), and ⇢ is the same robust

error function.

2.3.3 Inference

Uncertain Pixel Removal: Due to viewpoint change, flow/stereo prediction errors,

etc, the visual cues of some pixels are not reliable. For instance, pixels in one image

43



may be occluded in another image due to viewpoint change. This motivates us to

assign ↵p to each pixel p as an indication of outlier or not. Towards this goal, we first

exclude pixels which are likely to be occluded in the next frame. Specifically, pixels

are labeled as occluded if the warped 3D disparity of the second frame significantly

differs from the disparity of the first frame. The intuition is that the disparity of a

pixel cannot change drastically in real world due to the speed limit. We empirically

set threshold to 30. Next, we employ the RANSAC scheme to fit a rigid motion for

each instance. We only keep the inlier points and prune out the rest. Despite simple,

we found this strategy very effective.

Initialization: Due to the highly non-convex structure of the energy model, a good

initialization is critical to achieve good performance. As previous step already prune

out most unreliable points, we directly exploit the rigid motion obtained by RANSAC

as our robust initial guess.

Gaussian Newton Solver: The energy function is non-convex but differentiable

w.r.t. ⇠ defined over continuous space. In order to handle the robust function, we

adopt an iterative re-weighted least square algorithm [43]. For each iteration, we can

rewrite the original energy minimization problem of each instance i as a weighted sum

of squares:

⇠(n+1) = argmin
⇠

Etotal,i(⇠) = argmin
⇠

X

Eng

wi(⇠
(n))r2

i
(⇠(n)),

where r denotes the residual function, w re-weights each sample based on the robust

function ⇢, and Eng refers to summing over the energy terms. We employ Gaussian-

Newton algorithm to minimize the function. Thus we have

⇠(n+1) = �(JTWJ)(�1)JTWr(⇠(n)) � ⇠(n) (2.5)

where � is a pose composition operator and J = �r(✏�⇠(n))
�✏ |✏=0. In practice, we unroll

the inference steps as a recurrent neural network and define its computation graph as
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in Eq. (2.5). The full pipeline including the matrix inverse is differentiable. Please

refer to the supp. material for the derivation of the Jacobian matrix of each term and

more details on the Gaussian-Newton solver.

Final Scene Flow Prediction: Given the final rigid motion estimation for each

instance ⇠⇤
i
, we are able to compute the dense instance-wise rigid scene flow. Our

scene flow consists of three component, namely the first frame’s stereo D0, warped

stereo to second frame Dwarp as well as the instance-wise rigid flow estimation F rigid.

Specifically, for each point p we have:

D0(p) = D0(p) (2.6)

Dwarp(p) = zK(⇠
⇤
S0
L(p)
� ⇡�1

K (p,D0(p)))

F rigid(p) = p0 � p = ⇡K(⇠ � ⇡�1
K

�
p,D0(p)

�
)� p

where zK(·) computes the disparity of the 3D point; ⇡�1
K is the inverse projection

function; and ⇠ � x transforms a 3D point x using the rigid motion ⇠.

2.3.4 Learning

The whole deep structured network can be trained end-to-end. In practice, we train

our instance segmentation, flow estimation, and stereo estimation module respectively

through back-propagation. To be more specific, Mask R-CNN model is pre-trained on

Cityscapes and fine-tuned on KITTI. The loss function includes ROI classification

loss, box regression loss as well as the mask segmentation loss. PSM-Net is pre-trained

on Scene Flow [242] and fine-tuned on KITTI with L1 regression loss. PWC-Net is

pre-trained on FlyingChairs [79] and FlyingThings [242] then fine-tuned over KITTI,

with weighted L1 regression loss.
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Employed energy Background outliers (%)
Epho Eflow Erigid D1 D2 Fl SF
X 1.92 2.69 3.71 4.30

X X 1.92 2.56 4.72 5.28
X X X 1.92 2.56 4.63 5.21

Employed energy Foreground outliers (%)
Epho Eflow Erigid D1 D2 Fl SF
X 1.70 4.25 7.57 9.00

X X 1.70 4.58 6.98 8.67
X X X 1.70 4.56 6.73 8.39

Table 2.2: Contributions of each energy: As foreground objects sometimes are
texture-less and have large displacement, simple photometric term is not enough. In
contrast, background is full of disriminative cues. Simple photometric error would
suffice. Adding extra terms will introduce noises and hurt the performance. Please
refer to the supp. material for full table.

2.4 Experiments

In this section we first describe the experimental setup. Next we evaluate our model

based on pixel-level scene flow metric and instance-level rigid motion metric. Finally

we comprehensively study the characteristic of our model.

2.4.1 Dataset and Implementation Details

Data: We validate our approach on the KITTI scene flow dataset [243]. The dataset

consists of 200 sets of training images and 200 sets of test images, captured on real

world driving scenarios. Following [53], we divide the training data into train, val

splits based on the 4:1 ratio.

Implementation details: For foreground objects, we use all energy terms. The

weights are set to 1. For background, we only use photometric term (see ablation

study). We run RANSAC 5 times and use the one with lowest mean energy as

initialization. We unroll the GN solver for 50 steps. The solver terminates early if the

energy reaches plateau. In practice, best energy are often reached within 10 iterations.

2.4.2 Scene Flow Estimation

Comparison to the state-of-the-art: We compare our approach against the

leading methods on the benchmark∗: ISF [27], PRSM [359], OSF+TC [256], SSF
∗
As the validation performance of our PWC-Net (fine-tuned on 160 images) performs slightly

worse than the official one (fine-tuned on all 200 images), we use their weights instead when submitting
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Methods D1-all D2-all Fl-all SF-all
PSM + PWC 1.89 (47.0) 11.0 (50.8)
Deep+RANSAC 1.89 2.75 7.65 8.26
Our Full DRISF 1.89 2.89 4.10 4.84

Table 2.3: Improvement over original flow/stereo estimation on validation
set: The numbers in parentheses are obtained by simply warping the disparity output
with optical flow, without interpolation, occlusion handling, etc.

Module Stereo Optical Flow Segmentation
Inference time 409 ms / pair 30 ms / pair 251 ms / pair
Module RANSAC GN Solver Total
Inference time 93 ms / instance 244 ms / instance 746 ms / pair

Table 2.4: Runtime analysis. Modules within each building block can be executed
in parallel (see text for more details).

[295], OSF [243], and CSF [228]. Note that in addition to the standard two adjacent

frames, PRSM and OSF+TC rely on extra temporal frames. As shown in Tab. 2.1,

our approach (DRISF) outperforms all previous methods by a significant margin in

both runtime and outliers ratio. It achieves state-of-the-art performance on almost

every entry. DRISF reduces the D1 outliers ratio by 43%, the D2 outliers ratio by

32%, and the flow outliers ratio by 24%. Comparing to ISF model [27], our scene

flow error is 22% lower and our runtime is 800 times faster. Fig. 2-1 compares the

performance and runtime of all methods.

Qualitative results: To better understand the pros and cons of our approach,

we visualize a few scene flow results on test set in Fig. 2-4. Scene flow estimation

is challenging in these scenarios due to large vehicle motions, texture-less regions,

occlusion, and illumination variation. For the leftmost image, prior methods fail to

estimate the vehicle’s motion and adjacent area due to the sun reflection and occlusion.

The saturated, high intensity pixels hinder photometric based approaches [243] from

matching accurately. With the help of detection and segmentation, ISF [27] is able

to improve the foreground estimation. Yet it still fails at the occluded background.

to the benchmark. All other settings remain intact. We thank Deqing Sun for his help.
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Before (PWC) After (DRISF) Before (PSM+Warp) After (DRISF)

Figure 2-7: Improvement over original flow/stereo: DRISF improves the overall
performance. It is especially effective on texture-less regions (e.g . window of the black
car on the left) and occluded areas (right).

In comparison, our approach is robust to illumination changes and is able to handle

the occlusion by effectively separating the vehicle from the background. It can also

accurately estimate the motion of the small car far away, as well as those of the traffic

sticks aside. As we only train our Mask R-CNN on vehicles, it fails to segment the

train and hence the failure of our model. For the middle image, the texture-less car has

a large displacement and is occluded in the second frame. While previous approaches

failed substantially, our method is able to produce accurate motion estimation through

the inferred flow and disparity of the remaining non-occluded part. The middle failure

mode is again due to the inaccurate segmentation.

2.4.3 3D Rigid Motion Estimation

We now evaluate how good our DRISF model is at estimating the 3D rigid motion.

Towards this goal, we exploit the ground truth optical flow, disparity, and instance

segmentation provided in the KITTI scene flow dataset to fit a least square rigid

motion for each object instance in order to create the ground truth rigid motion.

Curating KITTI scene flow: During fitting, we discover two critical issues

with KITTI: first, there are mis-alignments between GT flow/disparity and GT

segmentation. Second, the scale fitting of the same 3D CAD model employed to

compute ground truth changes sometimes across frames. The first issue is due to the
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fact that the GT are collected via different means and thus not consistent. While

the GT flow and GT disparity are obtained from the fitted 3D CAD models, the GT

segmentation are based on human annotation. To address this, we first use the GT

segmentation mask to define each object instance. We then fit a rigid motion using

the GT flow and GT disparity of each instance via least squares. Since some boundary

pixels may be mis-labeled by the annotators, for each pixel around the boundary

we search if there are other instances in the surrounding area, and if there are, we

transform the pixel with their rigid motion. If their rigid motion better explains the

pixel’s 3D movement, i.e. the 3D distance is closer, then we assign the pixel to that

instance. At the end, we perform the least square fitting again with the new pixel

assignment. Unfortunately, even after re-labeling, there are still a few vehicle instances

where the rigid motion cannot be explained. After careful diagnose, we notice that this

is because the scale of the CAD model changes across frames. To verify our hypothesis,

we compute the eigen decomposition for the same instance across frames. Ideally if

the scale of the instance does not change much, the eigen value should be roughly the

same. Yet we discover a few examples where the largest eigen value changes by 7%.

We simply prune those instances as the GT is not accurate.

3D Motion evaluation: Most scene flow methods are pixel-based or adopted a

piece-wise rigid setting. It is unclear how to aggregate their estimation into instance-

based motion model without affecting their performance. In light of this, we exploit the

motion initialization of our GN Solver as baseline. We take the output of the deep nets

and apply RANSAC to find the best rigid motion. We denote it as Deep+RANSAC.

As shown in Tab. 2.3, this baseline is very competitive. Its performance is comparable

to, or even better than prior state-of-the-art. We evaluate our motion model based on

translation error and angular error. As shown in Fig. 2-5, over 80% of the vehicles

have translation error less than 1m and angular error less than 1.3�. Furthermore,

most vehicles with translation error larger than 1m is at least 20m away. In general,

both error slightly increase with distance. This is expected as the farther the vehicle

is, the less observations we have. The translation error and angular error are also
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strongly correlated.

Visual odometry: The odometry of the ‘ego-car’ can be computed by estimating

the background movement. As a proof-of-concept, we compute the per frame odometry

error on the validation images. On average our motion model drifts 0.09m and 0.24�

every 10m. Fig. 2-6 shows the detailed odometry error w.r.t. the travel distance. We

note that the current result is without any pose filter, loop closure, etc. We plan to

exploit this direction further in the future.

2.4.4 Analysis

Ablation study: To understand the effectiveness of each energy term on background

and foreground objects, we evaluate our model with different energy combinations.

As shown in Tab. 2.2, best performance is achieved for foreground objects when

using all energy terms, while for background the error is lowest when employing only

photometric term. This can be explained by the fact that vehicles are often texture-less,

and sometimes have large displacements. If we only employ photometric term, it will

be very difficult to establish correspondences and handle drastic appearances changes.

With the help of flow and rigid term, we can guide the motion and reduce such effect,

and deal with occlusions. In contrast, background is full of discriminative textures

and has relatively small motion, which is ideal for photometric term. Adding other

terms may introduce extra noise and degrade the performance.

Comparison against original flow/disparity: Through exploiting the structure

between visual cues and occlusion handling, our model is able to improve the per-

formance both quantitatively (Tab. 2.3) and qualitatively (Fig. 2-7). The object

motion estimation is better, the boundaries are sharper, and the occlusion error is

greatly reduced, suggesting that incorporating prior knowledge, such as pixels of same

instance should have same rigid motion, into the model is crucial for the task.
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Potential improvement To understand the potential gain we may enjoy when

improving each module, we sequentially replace the input to our solver with ground

truth, one by one, and evaluate our model. Replacing D1 and flow with GT reduce

the scene flow error rate by 8% and 21% respectively, while substituting GT for

segmentation does not improve the results. This suggests that there are still space for

flow and stereo modules to improve.

Runtime analysis We benchmark the runtime of each component in the model

during inference in Tab. 2.4. The whole inference pipeline can be decomposed into

three sequential stages: visual cues extraction, occlusion reasoning, and optimization.

As modules within the same stage are independent, they can be executed in parallel.

Furthermore, modern self-driving vehicles are equipped with multiple GPUs. The

runtime for each stage is thus the max over all parallel modules. In practice, we

exploit two Nvidia 1080Ti GPUs to extract the visual cues: one for PSM-Net, and

the other for Mask R-CNN and PWC-Net. Currently, the stereo module takes more

than 50% of the overall time. This is largely due to the 3D CNN cost aggregation and

the stacked hourglass refinement. In the future, we plan to investigate other faster yet

reliable stereo networks. The runtime of the GN solver depends highly on the number

of steps we unroll and the number of points we consider. Please refer to the supp.

material for detailed analysis.

Limitations: DRISF has two main limitations: first, it heavily depends on the

performance of the segmentation network. If the segmentation module fails to detect

a vehicle, the vehicle will be treated as background and assigned an inverse ego-car

motion. In this case, the 3D motion might be completely wrong, even if the optical

flow network accurately predicts its flow. In the future we plan to address this by

jointly reasoning about instance segmentation and scene flow. Second, the current

energy functions are highly flow centric. Only the photometric term is independent of

flow. If the optical flow network completely failed, it would be difficult for the solver

to recover the correct motion. One possible solution is thus adding more flow-invariant
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energy terms, such as instance association between adjacent frames.

2.5 Conclusion

In this chapter we develop a novel deep structured model for 3D scene flow estimation.

We focus on the self-driving scenario where the motion of the scene can be composed

by estimating the 3D rigid motion of each actor. We first exploit deep learning to

extract visual cues for each instance. Then we employ multiple geometry based energy

functions to encode the structural geometric relationship between them. Through

optimizing the energy function, we can reason the 3D motion of each traffic participant,

and thus scene flow. All operations, including the Gassian-Newton solver, are done

in GPU. Our method acheives state-of-the-art performance on the KITTI scene flow

dataset. It outperforms all previous methods by a huge margin in both runtime and

accuracy. Comparing to prior art, DRISF is 22% better while being two to three

orders of magnitude faster.
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Chapter 3

Exploiting Semantics Cues and

Physical Priors for Robot

Localization

Exploiting Sparse Semantic HD Maps for Self-driving Vehi-
cle Localization
Wei-Chiu Ma⇤, Ignacio Tartavull⇤, Ioan Andrei Bârsan⇤, Shenlong Wang⇤,

Min Bai, Gellert Mattyus, Namdar Homayounfar, Shrinidhi Kowshika Laksh-

mikanth, Andrei Pokrovsky, Raquel Urtasun;

IROS 2019.

Besides the aforementioned geometric structures, physical structures and semantic

cues also play an important part in 3D understanding. They help us further make

sense of what we see and reason about the unseen. To equip machines with similar

capabilities, in this chapter, we develop learning-based models that can exploit physical

and semantic priors to ease the learning procedure and produce physically-compliant

results. We focus on the task of robot localization where the goal is to infer the pose of

the autonomous system within a map. We show that by incorporating the knowledge

of the world into the reasoning pipeline we can significantly reduces the difficulty of

the problem and build a extremely lightweight yet highly-accurate localization system.
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3.1 Introduction

High-definition maps (HD maps) are a fundamental component of most self-driving

cars, as they contain useful information about the static part of the environment. The

locations of lanes, traffic lights, cross-walks, as well as the associated traffic rules are

typically encoded in the maps. They encode the prior knowledge about any scene the

autonomous vehicle may encounter.

In order to be able to exploit HD maps, self-driving cars have to localize themselves

with respect to the map. The accuracy requirements in localization are very strict and

only a few centimeters of error are tolerable in such safety-critical scenarios. Over the

past few decades, a wide range of localization systems has been developed. The Global

Positioning System (GPS) exploits triangulation from different satellites to determine

a receiver’s position. It is typically affordable, but often has several meters of error,

particularly in the presence of skyscrapers and tunnels. The inertial measurement

unit (IMU) computes the vehicle’s acceleration, angular rate as well as magnetic field

and provides an estimate of its relative motion, but is subject to drift over time.

To overcome the limitations of GPS and IMU, place recognition techniques have

been developed. These approaches store what the world looks like either in terms of

geometry (e.g ., LiDAR point clouds), visual appearance (e.g ., SIFT features, LiDAR

intensity), and/or semantics (e.g ., semantic point cloud), and formulate localization

as a retrieval task. Extensions of classical methods such as iterative closest point

(ICP) are typically employed for geometry-based localization [410, 5]. Unfortunately,

geometric approaches suffer in the presence of repetitive patterns that arise frequently

in scenarios such as highways, tunnels, and bridges. Visual recognition approaches [68]

pre-record the scene and encode the “landmark” visual features. They then perform

localization by matching perceived landmarks to stored ones. However, they often

require capturing the same environment for multiple seasons and/or times of the day.

Recent work [315] builds dense semantic maps of the environment and combines both

semantics and geometry to conduct localization. However, this method requires a

large amount of dense map storage and cannot achieve centimeter-level accuracy.
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Figure 3-1: System architecture. Given the camera image and LiDAR sweep as
input, we first detect lanes in the form of truncated inverse distance transform and
detect signs as a bird’s-eye view (BEV) probability map. The detection output is then
passed through a differentiable rigid transform layer [149] under multiple rotational
angles. Finally, the inner-product score is measured between the inferred semantics and
the map. The probability score is merged with GPS and vehicle dynamics observations
and the inferred pose is computed from the posterior using soft-argmax. The camera
image on the left contains an example of a sign used in localization, highlighted with
the red box.

While place recognition approaches are typically fairly accurate, the costs associated

with ensuring the stored representations are up to date can often be prohibitive. They

also require very large storage on board. Several approaches have been proposed

to provide affordable solutions to localization by exploiting coarse maps that are

freely available on the web [37, 229]. Despite demonstrating promising results, the

accuracy of such methods is still in the order of a few meters, which does not meet

the requirements of safety-critical applications such as autonomous driving.

With these challenges in mind, in this chapter we propose a lightweight localization

method that does not require detailed knowledge about the appearance of the world

(e.g ., dense geometry or texture). Instead, we exploit vehicle dynamics as well as

a semantic map containing lane graphs and the locations of traffic signs. Traffic

signs provide information in longitudinal direction, while lanes help avoid lateral drift.

These cues are complementary to each other and the resulting maps can be stored in a

fraction of the memory necessary for traditional HD maps, which is important as self-

driving cars need to operate in very large environments. We formulate the localization

problem as a Bayes filter, and demonstrate the effectiveness of our approach on North-

American highways, which are challenging for current place recognition approaches
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Figure 3-2: Traffic sign map building process. We first detect signs in 2D using
semantic segmentation in the camera frame, and then use the LiDAR points to localize
the signs in 3D. Mapping can aggregate information from multiple passes through the
same area using the ground truth pose information, and can function even in low light,
as highlighted in the middle row, where the signs are correctly segmented even at
night time. This information is used to build the traffic sign map in a fully automated
way.

as repetitive patterns are common and driving speeds are high. Our experiments on

more than 300 km of testing trips showcase that we are able to achieve 0.05m median

lateral accuracy and 1.12m median longitudinal accuracy, while using roughly three

orders of magnitude less storage than previous map-based approaches (0.55MiB/km2

vs. the 1.4GiB/km2 required for dense point clouds).

3.2 Related Work

Place recognition: One of the most prevailing approaches in self-localization is place

recognition [13, 18, 125, 311, 197, 247, 386, 12, 414]. By recording the appearance

of the world and building a database of it in advance, the localization task can be

formulated as a retrieval problem. At test time, the system simply searches for the most

similar scene and retrieves its pose. As most of the features used to describe the scene

(e.g., 3D line segments [18] or 3D point clouds [197, 247, 386]), are highly correlated

with the appearance of the world, one needs to update the database frequently. With

this problem in mind, [68, 255, 215] proposed an image-based localization technique

that is to some degree invariant to appearance changes. More recently, [169] designed

a CNN to directly estimate the pose of the camera. While their method is robust
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to illumination changes and weather, they still require training data for each scene,

limiting its scalability.

Geometry-based localization: Perspective-n-Point (PnP) approaches have been

used for localization. The idea is to extract local features from images and find corre-

spondences with the pre-stored geo-registered point sets. For instance, [321] utilized

random forests to find correspondence between RGBD images and pre-constructed 3D

indoor geometry. Li et al. [197] pre-stored point clouds along with SIFT features for

this task, while Liu et al. [219] proposed to use branch-and-bound to solve the exact

2D-3D registration. However, these approaches require computing a 3D reconstruction

of the scene in advance, and do not work well in scenarios with repetitive geometric

structures.

Simultaneous localization and mapping: Given a sequence of images, point

clouds, or depth images, SLAM approaches [90, 250, 420] estimate relative camera

poses between consecutive frames through feature matching and joint pose estimation.

Accumulated errors make the localization gradually drift as the robot moves. In indoor

or urban scenes, loop closure has been used to fix the accumulated errors. However,

unlike indoor or urban scenarios, on highways trajectories are unlikely to be closed,

which makes drift a much more challenging problem to overcome.

Lightweight localization: There is a growing interest in developing affordable

localization techniques. Given an initial estimate of the vehicle position, [99] exploited

ego-trajectory to self-localize within a small region. Brubaker et al. [37] developed a

technique that can be applied at city scale, without any prior knowledge about the

vehicle location. Ma et al. [229] incorporated other visual cues, such as the position of

the sun and the road type to further improve the results. These works are appealing

since they only require a cartographic map. However, the localization accuracy is

strongly limited by the performance of odometry. The semantic cues are only used

to resolve ambiguous modes and speed up the inference procedure. Second, the

computational complexity is a function of the uncertainty in the map, which remains

fairly large when dealing with maps that have repetitive structures.

High-precision Map-based Localization: The proposed work belongs to the
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category of the high-precision map-based localization [192, 191, 387, 386, 317, 410,

440, 23]. The use of maps has been shown to not only provide strong cues for various

tasks in computer vision and robotics such as scene understanding [366], vehicle

detection [241], and localization [37, 367, 229], but also enables the creation of large-

scale datasets with little human effort [380, 371]. The general idea is to build a

centimeter-level high-definition 3D map offline a priori, by stitching sensor input

using a high-precision differential GNSS system and offline SLAM. Early approaches

utilize LiDAR sensors to build maps [192]. Uncertainty in intensity changes have

been handled through building probabilistic prior map [191, 387]. In the online stage,

the position is determined by matching the sensor reading to the prior map. For

instance, [192, 191, 387] utilized the perceived LiDAR intensity to conduct matching.

Yoneda et al. [410] proposed to align online LiDAR sweeps against an existing 3D

prior map using ICP, [440, 386] utilized visual cues from cameras to localize the

self-driving vehicles, and [23] use a fully convolutional neural network to learn the

task of online-to-map matching in order to improve robustness to dynamic objects

and eliminate the need for LiDAR intensity calibration.

Semantic localization: Schreiber et al. [317] proposed to use lanes as localization

cues. Towards this goal, they manually annotated lane markings over the LiDAR

intensity map. The lane markings are then detected online using a stereo camera,

and matched against the ones in the map. Welzel et al. [383] and Qu et al. [282]

utilize traffic signs to assist image-based vehicle localization. Specifically, traffic signs

are detected from images and matched against a geo-referenced sign database, after

which local bundle adjustment is conducted to estimate a fine-grained pose. More

recently, [315] built dense semantic maps using image segmentation and conducted

localization by matching both semantic and geometric cues. In contrast, the maps

used in our approach only need to contain the lane graphs and the inferred sign map,

the latter of which is computed without a human in the loop, while also only requiring

a fraction of the storage used by dense maps.

58



3.3 Lightweight HD Mapping

In order to conduct efficient and accurate localization, a compressed yet informative

representation of the world needs to be constructed. Ideally our HD maps should

be easy to (automatically) build and maintain at scale, while also enabling real-time

broadcasting of map changes between a central server and the fleet. This places

stringent storage requirements that traditional dense HD maps fail to satisfy. In this

chapter, we tackle these challenges by building sparse HD maps containing just the

lane graph and the locations of traffic signs. These modalities provide complementary

semantic cues for localization. Importantly, the storage needs for our maps are three

orders of magnitude smaller than traditional LiDAR intensity maps [191, 387, 192, 23]

or geometric maps [410].

Lane Graph Most roads have visually distinctive lanes determining the expected

trajectory of vehicles, compliant with the traffic rules. Most self driving cars store this

prior knowledge as lane graphs L. A lane graph is a structured representation of the

road network defined as a set of polygonal chains (polylines), each of which represents

a lane boundary. We refer the reader to Fig. 3-1 for an illustration of a lane graph.

Lane graphs provide useful cues for localization, particularly in the lateral position

and the heading of the vehicle.

Traffic Signs Traffic signs are common semantic landmarks that are sparsely yet

systematically present in cities, rural areas, and highways. Their presence provides

useful cues that can be employed for accurate longitudinal localization. In this chapter

we build sparse HD maps containing traffic signs automatically. Towards this goal, we

exploit multiple passes of our vehicles over the same region and identify the signs by

exploiting image-based semantic segmentation followed by 3D sign localization using

LiDAR via inverse-projection from pixel to 3D space. A consistent coordinate system

over the multiple passes is obtained by means of offline multi-sensor SLAM. Note that

in our map we only store points that are estimated to be traffic signs above a certain

confidence level. After that, we rasterize the sparse points to create the traffic sign
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presence probability map T in bird’s-eye view (BEV) at 5cm per pixel. This is a very

sparse representation containing all the traffic signs. The full process is conducted

without any human intervention. Fig. 3-2 depicts the traffic sign map building process

and an example of its output.

3.4 Localization as Bayes Inference with Deep Se-

mantics

In this chapter we propose a novel localization system that exploits vehicle dynamics

as well as a semantic map containing both a lane graph and the locations of traffic

signs. These cues are complementary to each other and the resulting maps can be

stored in a fraction of the memory necessary for traditional dense HD maps. We

formulate the localization problem as a histogram filter taking as input the structured

outputs of our sign and lane detection neural networks, as well as GPS, IMU, and

wheel odometry information, and outputting a probability histogram over the vehicle’s

pose, expressed in world coordinates.

3.4.1 Probabilistic Pose Filter Formulation

Our localization system exploits a wide variety of sensors: GPS, IMU, wheel encoders,

LiDAR, and cameras. These sensors are available in most self-driving vehicles. The

GPS provides a coarse location with several meters accuracy; an IMU captures vehicle

dynamic measurements; the wheel encoders measure the total travel distance; the

LiDAR accurately perceives the geometry of the surrounding area through a sparse

point cloud; images capture dense and rich appearance information. We assume our

sensors are calibrated and neglect the effects of suspension, unbalanced tires, and

vibration. As shown in our experiments, the influence of these factors is negligible and

other aspects such as sloped roads (e.g ., on highway ramps) do not have an impact

on our localizer. Therefore, the vehicle’s pose can be parametrized with only three

degrees of freedom (instead of six) consisting of a 2D translation and a heading angle
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Figure 3-3: Dataset sample and inference results. Our system detects signs in
the camera images (note the blue rectangle on the right side of the first image) and
projects the sign’s points in a top-down view using LiDAR (second image). It uses this
result in conjunction with the lane detection result (third image) to localize against a
lightweight map consisting of just signs and lane boundaries (fourth image).

w.r.t. the map coordinate’s origin, i.e. x = {t, ✓}, where t 2 R2 and ✓ 2 (�⇡, ⇡], since

the heading is parallel to the ground plane.

Following similar concepts to [23], we factorize the posterior distribution over the

vehicle’s pose into components corresponding to each modality, as shown in Eq. (3.1).

Let Gt be the GPS readings at time t and let L and T represent the lane graph

and traffic sign maps respectively. We compute an estimate of the vehicle dynamics

Xt from both IMU and the wheel encoders smoothed through an extended Kalman

filter, which is updated at 100Hz.

The localization task is formulated as a histogram filter aiming to maximize the

agreement between the observed and mapped lane graphs and traffic signs while

respecting vehicle dynamics:

Belt(x) = ⌘·PLane(St|x,L;wLane)PSign(St|x, T ;wSign)

PGPS(Gt|x)Belt|t�1(x|Xt), (3.1)

where Belt(x) is the posterior probability of the vehicle pose at time t; ⌘ is a normalizing

factor to ensure sum of all probability is equal to one; wLane and wSign are sets of

learnable parameters, and St = (It, Ct) is a sensory measurement tuple composed from

LiDAR It and camera Ct. Note that by recursively solving Eq. 3.1, we can localize

the vehicle at every step with an uncertainty measure that could be propagated to

the next step. We now describe each energy term and our inference algorithm in more

details.
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Lane Observation Model We define our matching energy to encode the agreement

between the lane observation from the sensory input and the map. Our probability

is computed by a normalized matching score function that utilizes the existing lane

graph and compares it to detected lanes. To detect lanes we exploit a state-of-the-art

real-time multi-sensor convolutional network [16]. The input of the network is a

front-view camera image and raw LiDAR intensity measurement projected onto BEV.

The output of the network is the inverse truncated distance function to the lane

graph in the overhead view. Specifically, each pixel in the overhead view encodes the

Euclidean distance to the closest lane marking, up to a truncation threshold of 1m.

We refer the reader to Fig. 3-3 for an illustration of the neural network’s input and

output.

To compute the probability, we first orthographically project the lane graph L onto

overhead view such that the lane detection output and the map are under the same

coordinate system. The overhead view of the lane graph is also represented using an

truncated inverse distance function. Given a vehicle pose hypothesis x, we rotate and

translate the lane detection prediction accordingly and compute its matching score

against the lane graph map. The matching score is an inner product between the lane

detection and the lane graph map

PLane / s (⇡ (fLane(S;wLane),x) ,L) , (3.2)

where fLane is the deep lane detection network and wLane are the network’s parameters.

⇡ is a 2D rigid transform function to transform the online lane detection to the map’s

coordinate system given a pose hypothesis x; s(·, ·) is a cross-correlation operation

between two images.

Traffic Sign Observation Model This model encodes the consistency between

perceived online traffic signs and the map. Specifically, we run an image-based

semantic segmentation algorithm that performs dense semantic labeling of traffic

signs. We adopt the state-of-the-art PSPnet structure [433] to our task. The encoder
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architecture is a ResNet50 backbone and the decoder is a pyramid spatial pooling

network. Two additional convolutional layers are added in the decoder stage to further

boost performance. The model is jointly trained with the instance segmentation loss

following [14]. Fig. 3-3 depicts examples of the network’s input and output. The

estimated image-based traffic sign probabilities are converted onto the overhead view

to form our online traffic sign probability map. This is achieved by associating each

LiDAR with a pixel in the image by projection. We then read the softmax probability

of the pixel’s segmentation as our estimate. Only high-confident traffic sign pixels are

unprojected to 3D and rasterized in BEV. Given a pose proposal x, we define the sign

matching probability analogously to the lane matching one as

PSign / s (⇡ (fSign(S;wSign),x) , T ) , (3.3)

where fSign is the sign segmentation network and wSign are the networks’ parameters.

Both the perceived signs, as well as the map they are matched against are encoded as

pixel-wise occupancy probabilities.

GPS Observation Model This term encodes the likelihood of the GPS sensory

observation G at a given vehicle pose x:

PGPS / exp

✓
�(gx � x)2 + (gy � y)2

�
2
GPS

◆
, (3.4)

where [gx, gy]T = T · G represents a GPS point location in the coordinate frame of

the map against which we are localizing. T is the given rigid transform between the

Universal Transverse Mercator (UTM) coordinates and the map coordinates and G is

the GPS observation expressed in UTM coordinates.

Dynamics Model This term encourages consistency between the pose proposal

x and the vehicle dynamics estimation, given the previous vehicle pose distribution.

The pose at the current timestamp depends on previous pose and the vehicle motion.

Given an observation of the vehicle motion Xt, the motion model is computed by
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marginalizing out the previous pose:

Belt|t�1(x|Xt) =
X

xt�12Rt�1

P (x|Xt,xt�1)Belt�1(xt�1) (3.5)

where the likelihood is a Gaussian probability model

P (x|Xt,xt�1) / N ((x (xt�1 � Xt)) ,⌃) (3.6)

with ⌃ the covariance matrix and Rt�1 is the search space for xt�1. In practice, we

only need Rt�1 to be a small local region centered at x⇤
t�1 given the fact the rest

of the pose space has negligible probability. Note that �,  are the standard 2D

pose composition and inverse pose composition operators described by Kummerle et

al. [180].

3.4.2 Efficient Inference

Discretization The inference defined in Eq. (3.1) is intractable. Following [23, 191]

we tackle this problem using a histogram filter. We discretize the full continuous search

space over x = {x, y, ✓} into a search grid, each with associated posterior Bel(x). We

restrict the search space to a small local region at each time. This is a reasonable

assumption given the constraints of the vehicles dynamics at a limited time interval.

Accelerating Correlation We now discuss the computation required for each term.

We utilize efficient convolution-based exhaustive search to compute the lane and traffic

sign probability model. In particular, enumerating the full translational search range

with inner product is equivalent to a correlation filter with a large kernel (which is

the online sign/lane observation). Motivated by the fact that the kernel is very large,

FFT-conv is used to accelerate the computation speed by a factor of 20 over the

state-of-the-art GEMM-based spatial GPU correlation implementations [23].

Robust Point Estimation Unlike the MAP-inference which simply takes the

configuration which maximizes the posterior belief, we adopt a center-of-mass based
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soft-argmax [191] to better incorporate the uncertainty of our model and encourage

smoothness in our localization. We thus define

x⇤
t
=

P
x Belt(x)

↵ · xP
x Belt(x)

↵
, (3.7)

where ↵ � 1 is a temperature hyper-parameter. This gives us an estimate that takes

the uncertainty of the prediction into account.

3.4.3 Learning

Both the lane detection network and the traffic sign segmentation network are trained

through back-propagation separately using ground-truth annotated data. The lane

detection is trained with a regression loss that measures the `2 distance between the

predicted inverse truncated distance transform and the ground-truth one [16]. The

semantic segmentation network is trained with cross-entropy [14]. Hyper-parameters

for the Bayes filter (e.g ., �2
GPS

, softmax temperature ↵, etc.) are searched through

cross-validation.

3.5 Experiments

We validate the effectiveness of our localization system on a highway dataset of 312km.

We evaluate our model in terms of its localization accuracy and runtime.

3.5.1 Dataset

Our goal is to perform fine-grained localization on highways. Unfortunately, there is

no publicly available dataset that provides ground truth localization at the centimeter-

level precision required for safe autonomous driving. We therefore collected a dataset

of highways by driving over 300km in North America at different times of the year,

covering over 100km of roads. The dataset encompasses 64-line LiDAR sweeps and

images from a front-facing global shutter camera with a resolution of 1900 ⇥ 1280,

both captured at 10Hz, as well as IMU and GPS sensory data and the lane graphs.
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The extrinsic calibration between the camera and LiDAR is conducted using a set

of calibration targets [122]. The ground truth 3D localization is estimated by a

high-precision ICP-based offline Graph-SLAM using high-definition pre-scanned scene

geometry. Fig. 3-3 shows a sample from our dataset together with the inferred and

ground truth lane graphs.

Our dataset is partitioned into ‘snippets’, each consisting of roughly 2km of driving.

The training, validation, and test splits are conducted at the snippet level, where

training snippets are used for map building and training the lane detection network,

and validation snippets are used for hyper-parameter tuning. The test snippets are

used to compute the final metrics. An additional 5,000 images have been annotated

with pixel-wise traffic sign labels which are used for training the sign segmentation

network.

3.5.2 Implementation Details

Network training: To train the lane detection network, we uniformly sample 50K

frames from the training region based on their geographic coordinates to train the

network. The ground truth can be automatically generated given the vehicle pose

and the lane graph. We use a mini-batch size of 16 and employ Adam [173] as the

optimizer. We set the learning rate to 10�4. The network was trained completely

from scratch with Gaussian initialization and converged roughly after 10 epochs. We

visualize some results in Fig. 3-3.

We train our traffic sign segmentation network separately over four GPUs with a

total mini-batch size of 8. Synchronized batch normalization is utilized for multi-GPU

batch normalization. The learning rate is set to be 10�4 and the network is trained

from scratch. The backbone of the model is fine-tuned from a DeepLab v2 network

pre-trained over the Pascal VOC dataset.

Hyper-parameter search: We choose the hyper-parameters through grid search

over a mini-validation dataset consists of 20 snippets of 2km driving. The hyper-

parameters include the temperatures of the final pose soft-argmax, the lane probability

softmax, and the sign probability softmax, as well as the observation noise parameters
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for GPS and the dynamics. The best configuration is chosen by the failure rate metric.

In the context of hyperparameter search, the failure rate is a snippet-level metric

which counts a test snippet as failed if the total error becomes greater than 1m at any

point. We therefore picked the hyperparameter configuration which minimized this

metric on our validation set, and kept it fixed at test time. As noted in Sec. 3.4.2,

we restrict our search range to a small area centered at the dead reckoning pose and

neglect the probability outside the region. We notice in practice that thanks to the

consistent presence of the lanes in self-driving scenarios, there is less uncertainty along

the lateral direction than along the longitudinal. The presence of traffic signs helps

reduce uncertainty along the longitudinal direction, but signs could be as sparse as

every 1km, during which INS drift could be as large as 7 meters. Based on this

observation and with the potential drift in mind, we choose a very conservative search

range B = Bx ⇥By ⇥B✓ = [�0.75m, 0.75m]⇥ [�7.5m, 7.5m]⇥ [�2�, 2�] at a spatial

resolution of 5cm and an angular resolution of 1�.

3.5.3 Localization

Metrics: We adopt several key metrics to measure the localization performance of

the algorithms evaluated in this Section.

In order to safely drive from a certain point to another without any human

intervention, an autonomous vehicle must be aware of where it is w.r.t. the map.

Lateral error and longitudinal error have different meanings for self-driving since a

small lateral error could result in localizing in the wrong lane, while ambiguities about

the longitudinal position of the vehicle are more tolerable. As localization is the first

stage in self-driving pipeline, it it critical that it is robust enough with a very small

failure rate; therefore, understanding worst-case performance is critical.

Moreover, localization results should reflect the vehicle dynamics as well, which

ensures the smoothness of decision making, since sudden jumps in localization might

cause downstream components to fail. To this end, we also measure the prediction

smoothness of our methods. We define smoothness as the difference between the

temporal gradient of the ground truth pose and that of the predicted poe. We estimate
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Methods
Longitudinal Error (m) Lateral Error (m)
Median 95% 99% Median 95% 99%

Dynamics 24.85 128.21 310.50 114.46 779.33 784.22
GPS 1.16 5.78 6.76 1.25 8.56 9.44
INS 1.59 6.89 13.62 2.34 11.02 42.34
Ours 1.12 3.55 5.92 0.05 0.18 0.23

Table 3.1: Quantitative results on localization accuracy. ‘Ours’ refers to our full
model where we employ dynamics, GPS, lanes, and signs, in a probabilistic manner.

the gradients using first-order finite differences, i.e., by simply taking the differences

between poses at times (t) and (t� 1). As such, we define smoothness as

s =
1

T

TX

t=1

��(x⇤
t
� x⇤

t�1)� (xGT

t
� xGT

t�1)
��2 . (3.8)

Baselines: We compare our results with two baselines: dynamics and dynamics+GPS.

The first baseline builds on top of the dynamics of the vehicle. It takes as input the

IMU data and wheel odometry, and use the measurements to extrapolate the vehicle’s

motion. The second baseline employs histogram filters to fuse information between

IMU readings and GPS sensory input, which combines motion and absolute position

cues.

Quantitative analysis: As shown in Tab. 3.1 and 3.2, our method significantly

outperforms the baselines across all metrics. To be more specific, our model has a

median longitudinal error of 1.12m and a median lateral error of 0.06m; both are much

smaller than other competing methods, with lateral error one order of magnitude

lower. We notice that our method greatly improve the performance over the worst

case scenario in terms of both longitudinal error, lateral error, and smoothness.

Qualitative results: We show the localization results of our system as well as

those of the baselines in Fig. 3-4. Through lane observations, our model is able to

consistently achieve centimeter-level lateral localization accuracy. When signs are

visible, the traffic sign model helps push the prediction towards the location where

the observation and map have agreement, bringing the pose estimate to the correct

longitudinal position. In contrast, GPS tends to produce noisy results, but helps
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Method Name Smoothness
Mean 95% 99% Max

Dynamics 0.2 0.4 0.6 1.2
GPS 0.1 0.2 0.3 8.5
INS 0.1 0.1 0.2 3.7
Ours 0.1 0.2 0.3 0.9

Table 3.2: Quantitative comparison on smoothness.

Method
Properties Travelling Dist = 2km

Longitudinal Error (m) Lateral Error (m)
Lane GPS Sign Median 95% 99% Median 95% 99%

Lane yes no no 13.45 37.86 51.59 0.20 1.08 1.59
Lane+GPS yes yes no 1.53 5.95 6.27 0.06 0.24 0.43
Lane+Sign yes no yes 6.23 31.98 51.70 0.10 0.85 1.41
All yes yes yes 1.12 3.55 5.92 0.05 0.18 0.23

Table 3.3: Contribution of each component on localization.

substantially improve worst-case performance.

Runtime analysis: To further demonstrate that our localization system is of practical

usage, we benchmark the runtime of each component in the model during inference

using an NVIDIA GTX 1080 GPU. A single step of our inference takes 153ms in total

on average, with 32ms on lane detection, 110ms on semantic segmentation and 11ms

on matching, which is roughly 7 fps. We note that the real-time performance is made

possible largely with the help of FFT convolutions.

Map storage analysis: We compare the size of our HD map against other commonly

used representations: LiDAR intensity map and 3D point cloud map. For a fair

comparison, we store all data in a lossless manner and measure the storage requirements.

While the LiDAR intensity and 3D point cloud maps consume 177 MiB/km2 and 1,447

MiB/km2 respectively, our HD map only requires 0.55 MiB per square kilometer.

This is only 0.3% of the size of LiDAR intensity map and 0.03% of that of 3D point

cloud map.

Ablation study: To better understand the contribution of each component of our

model, we respectively compute the longitudinal and lateral error under diverse settings.
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Inference

Travelling Dist = 2km Smoothness
Longitudinal Error (m) Lateral Error (m)
Median 95% 99% Median 95% 99% Mean 95% 99% Max

Deterministic 1.29 3.65 5.16 0.08 0.26 0.50 0.11 0.19 1.78 5.27
Probabilistic 1.12 3.55 5.92 0.05 0.18 0.23 0.07 0.19 0.24 0.98

Table 3.4: Probabilistic vs deterministic: Quantitative comparison of the local-
ization system when using a probabilistic filtering or deterministic model (with full
observations: Lane+GPS+Sign).

Observation probabilities Poster ior over pose at time (t)
Note: The above distributions are over the (x, y) component of our 

pose. The ? dimension is not displayed for simplicity. 

Figure 3-4: Qualitative results. A bird’s-eye view of the last five LiDAR sweeps
(left), which are used for the lane detection, together with the observation probabilities
and the posterior (middle), followed by a comparison between the localization result,
the ground truth pose, and GPS (right). The (x, y)-resolution of each probability
distribution is 1.5m laterally (vertical) and 15m longitudinally (horizontal).

As shown in Tab. 3.3, each term (GPS, lane, sign) has a positive contribution to the

localization performance. Specifically, the lane observation model greatly increases

lateral accuracy, while sign observations increase longitudinal accuracy. We also

compare our probabilistic histogram filter formulation with a deterministic model.

Compared against our histogram filter approach, the non-probabilistic one performs

a weighted average between each observation without carrying over the previous

step’s uncertainty. As shown in Tab. 3.4, by combining all the observation models,

the non-probabilistic model can achieve reasonable performance but still remains

less accurate than the probabilistic formulation. Moreover, due to the fact that no

uncertainty history is carried over, prediction smoothness over time is not guaranteed.
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Chapter 4

Deep Feedback Inverse Problem

Solver

Deep Feedback Inverse Problem Solver
Wei-Chiu Ma, Shenlong Wang, Jiayuan Gu, Sivabalan Manivasagam, Antonio

Torralba, Raquel Urtasun;

ECCV 2020.

So far we have shown that leveraging geometric and physical insights into model

design can prevent the model from learning natural laws from scratch and thus can

utilize the data much more efficiently. In this chapter, we further demonstrate that

besides easing the learning procedure and guaranteeing physically-compliant results,

with proper design, physical processes can also serve as supervisory training signals.

Specifically, we develop a generic closed-loop network that leverages the feedback

signal provided by the known physical forward process to iteratively solve different

inverse graphic tasks. Our approach is fast, effectively, computationally efficient, and

can be applied to a wide range of 3D inverse problems.
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4.1 Introduction

Given a 3D model of an object, the light source(s), and their relevant poses to the

camera, one can generate highly realistic images of the scene with one click. While

such a forward rendering process is complicated and requires explicit modeling of

interreflections, self-occlusions, as well as distortions, it is well-defined and can be

computed effectively. However, if we were to recover the illumination parameters

or predict the 6 DoF pose of the object from the image in an inverse fashion, the

task becomes extremely challenging. This is because a lot of crucial information

is lost during the forward (rendering) process. In fact, many complicated tasks in

natural science, signal processing, and robotics, all face similar challenges – the model

parameters of interest cannot be measured directly and need to be estimated from

limited observations. This family of problems are commonly referred to as inverse

problems. Unfortunately, while there exists sophisticated theories on how to design

the forward processes, how to address the inherent ambiguities of the inverse problem

still remains an open question.

One popular strategy to disambiguate the solution is to model the inverse problem

as a structured optimization task and incorporate human knowledge into the model

[126, 268, 141, 304]. For instance, the estimated solution should agree with the

observations [267] and be smooth [263, 28], or should follow a certain statistical

distribution [190, 376, 19]. Through imposing carefully designed objectives, classic

structure optimization methods are able to find a solution that not only agrees with

the observations but also satisfies our prior knowledge about the solution. In practice,

however, almost no hand-crafted priors can succeed in including all phenomena. To

ensure that the optimization problem can be solved efficiently, there are multiple

restrictions on the form of these priors as well as the the forward process [33], both of

which increase the difficulty of design. Furthermore, most optimization approaches

require many iterations to converge and are sensitive to initialization.

On the other hand, learning based methods propose to directly learn a mapping

from observations to the model parameters [350, 163, 407, 389, 298]. They capitalize
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Ignore forward process y = f(x)

Forward process Learnable direct mapping

Figure 4-1: Prior work on inverse problems: (a) Structured optimization ap-
proaches require hand-crafted energy/objective functions and are sensitive to initial-
izations which makes them easy to get stuck in local optima. (b) Direct learning based
methods do not utilize the available forward process as feedback to guarantee the
quality of the solution. Without this feedback, the models cannot rectify the estimates
effectively as shown above.

on powerful machine learning tools to extract task-specific priors in a data-driven

fashion. With the help of large-scale datasets and the flourishing of deep learning,

they are able to achieve state-of-the-art performance on a variety of inverse problems

[390, 351, 320, 91, 162, 230]. Unfortunately, these methods often ignore the fact that

the forward model for inverse problems is available. Their systems remain open loop

and do not have the capability to update their prediction based on the feedback signal.

Consequently, the estimated parameters, while performing well in the majority of the

cases, may generate results that are either incompatible with the real observations or

not realistic.

With these challenges in mind, we develop a novel approach to solving inverse

problems that takes the best of both worlds. The key idea is to learn to iteratively

update the current estimation through the feedback signal from the forward process.

Specifically, we design a neural network that takes the observation and the forward

simulation result of the previous estimation as input, and outputs a steep update

towards the ideal model parameters. The advantages are four-fold: First, as each

update is trained to aggressively move towards the ground truth, we can accelerate

the update procedure and reach the target with much fewer iterations than classic

optimization approaches. Second, our approach does not need to explicitly define

the energy. Third, we do not have any restrictions on the forward process, such as
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Difference: y(t) - y

(a) Our approach

Figure 4-2: Overview: Our model iteratively updates the estimation based on the
feedback signal from the forward process. We adopt a closed-loop scheme to ensure
the consistency between the estimation and the observation. We neither require an
objective at test time, nor have any restrictions on the forward process. Click here to
watch an animated version of the update procedure.

differentiability, which greatly expands the applicable domain. Finally, in contrast to

conventional learning methods, our method incorporates feedback signals from the

forward process so that the network is aware of how close the current estimation is to

the ground truth and can react accordingly. The estimated parameters generally lead

to results closer to the observation.

We demonstrate the effectiveness of our approach on three different inverse problems

in graphics and robotics: illumination estimation, 6 DoF pose estimation, and inverse

kinematics. Compared to traditional optimization based methods, we are able to

achieve comparable or better performance while being two to three orders of magnitude

faster. Compared to deep learning based approaches, our model consistently improves

the performance on all metrics.

4.2 Background

Let x 2 X be the hidden parameters of interest and let y 2 Y be the measurable

observations. Denote f : x ! y as the deterministic forward process. The aim of

inverse problem is to recover x given the observation y and the forward mapping f . In

the tasks that we consider, X is a group such as X = SE(3) for 6 DoF pose estimation

and X = R3 when estimating the position of the light source
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4.2.1 Structured optimization

Structured optimization methods generally formulate the inverse problem as an energy

minimization task [50, 76, 78, 277, 182, 267, 141]:

x⇤ = argmin
x

E(x) = argmin
x

Edata(f(x),y) + �Eprior(x),

where the data term Edata measures the similarity between the observation y and the

forward simulated results f(x) of the hidden parameters x; and the prior term Eprior

encodes humans’ knowledge about the solution x.

As the energy function is often non-convex, iterative algorithms are used to refine

the estimation. Without loss of generality, the update rule can be written as:

xt+1 = xt + gE(x
t
,yt

,y), (4.1)

where gE(xt
,yt

,y) is an analytical update function derived from the energy function

E, and yt = f(xt). For instance, in continuous-valued inverse problems, gE =

�AE(xt)rE(xt), where rE(x) is the first-order Jacobian and AE is a warping matrix

that depends on the optimization algorithm and the form of the energy. For instance,

AE is simply a (approximated) Hessian matrix in Newton method and is equivalent

to the step size in first order gradient descent.

One major advantage of these approaches is that they explicitly take into account

how close f(x) and y are via the data term Edata, and exploit such feedback as a

guidance for the update. This ensures that the result f(x⇤) generated from the final

estimation x⇤ is close to the observation y. While impressive results have been achieved,

there are several challenges remaining: first, they require both the forward process

f as well as the prior Eprior to be optimization-friendly (e.g . differentiable) so that

inference algorithms can be applied. Unfortunately this is not the case for many inverse

problems and tailored approximations are required [168, 220, 289, 208, 384]. The

performance may thus be affected. Second, they often require many updates to reach

a decent solution (e.g . first-order methods). If higher order methods are exploited to
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Algorithm 1 Deep Feedback Inverse Problem Solver
1: input observation y, forward model f(·) and init x0

2: for iter = 0, 1, . . . , T � 1 do
3: Run forward model: yt = f(xt)
4: Compute update: xt+1 = xt + gw(xt

,yt
,y)

5: end for
6: output xT

speed up the process, the update may become expensive (e.g ., second-order methods).

Third, carefully designed priors are necessary for identifying the true solution from

multiple feasible answers. This is particularly true for ill-posed inverse problems, such

as super-resolution and inverse kinematics, in which there exists infinite number of

feasible solutions that could generate the observation. Additionally, the energy must

be designed in a way that is easy to optimize, which is sometimes non-trivial. Finally,

these optimization methods are typically sensitive to the initialization.

4.2.2 Learning based methods

Another line of work [73, 395, 187, 206, 184] has been devoted to directly learning a

mapping from the observations y to the solution x:

x⇤ = g(y;w). (4.2)

Here, g(·;w) is a learnable function parameterized by w. These approaches try to

capitalize on the feature learning capabilities of deep neural networks to extract

statistical priors from data, and approximate the inverse process without the help

of any hand-crafted energies. While these methods have achieved state-of-the-art

performance in many challenging inverse tasks such as inverse kinematics [273, 438],

super-resolution [187, 375], compressive sensing [178], image inpainting [271, 217],

illumination estimation [198, 230], reflection separation [429], and image deblurring

[251], they ignore the fact that the forward process f is known.

As a consequence, there is no feedback mechanism within the model that scores if

f(x⇤) is close to y after the inference, and the model cannot update the estimation

76



Figure 4-3: Quantitative analysis on 6 DoF pose estimation: Our deep opti-
mizer is robust, accurate, and significantly faster.

accordingly. The whole system remains open loop.

4.3 Deep Feedback Inverse Problem Solver

In this chapter we aim to develop an extremely efficient yet effective approach to

solving structured inverse problems. We build our model based on the observation

that traditional optimization approaches and current learning based methods are

complementary – one is good at exploiting feedback signals as guidance and inducing

human priors , while the other excels at learning data-driven inverse mapping. Towards

this goal, we present a simple solution that takes the best of both worlds. We first

describe our deep feedback network that iteratively updates the solution based on

the feedback signal generated by the forward process. Then we demonstrate how to

perform efficient inference as well as learning. Finally, we discuss our design choices

and the relationships to related work.

4.3.1 Deep Feedback Network

As we have alluded to above, structured optimization and deep learning have very

different yet complementary strengths. Our goal is to bring together the two paradigms,

and develop a generic approach to inverse problems.

The key innovation of our approach is to replace the analytical function gE defined

in structured optimization approach at Eq. 4.1 with a neural network. Specifically,

we design a neural network gw that takes the same set of inputs as gE and outputs
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Optimization Trans. Error Rot. Error (�) Outlier
Methods Step Time Mean Median Mean Median (%)
NMR [168] 105 3.67 s 0.1 0.05 5.78 1.68 20.3
SoftRas [220] 157 25 s 0.05 0.003 4.14 0.5 8.03
Deep Regression 1 0.004 s 0.07 0.06 10.07 7.68 5
Ours 5 0.02 s 0.02 0.009 2.64 1.02 2.6

Table 4.1: Quantitative comparison on 6 DoF pose estimation.

the update. The hope is that the model can perceive the difference between the

observation y and the simulated forward results yt and then predict a new solution

based on the feedback signal. In practice, we employ a simple addition rule and fold

the step size, parameter priors all into gw:

xt+1 = xt + gw(x
t
,yt

,y), where yt = f(xt). (4.3)

The network architectures design depends on the form of observational data y and

solution x. For instance, for inverse graphics tasks, we utilize convolutional neural

networks, since the observations are images. This not only allows us to sidestep

all requirements imposed on f (e.g . differentiability), but also removes the need for

explicitly defining energies. Unlike conventional learning based methods, we take both

yt and y as input to the update so that we incorporate the feedback signal through

comparing the two.

We derive our final deep structured inverse problem solver by applying the afore-

mentioned update functions in an iterative manner. The algorithm is summarized in

Alg. 1. At each step, the solver takes as input the current solution xt, the observation

y, and the forward simulated results yt, and predicts the next best solution as defined

in Eq. 4.3. In practice, the stopping criteria could either be based on a predefined

iteration number or on checking convergence by measuring the difference between

solutions from two consecutive iterations.
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GT NMR SoftRas Regress. Ours GT NMR SoftRas Regress. Ours

Figure 4-4: Qualitative comparison on 6 DoF pose estimation: We infer the
poses from only silhouette images. The rendered colored images in the figure are for
visualization purpose.

4.3.2 Learning

The full deep structured inverse problem solver can be learned in an end-to-end fashion

via back-propagation through time (BPTT). Yet in practice we find that applying

loss function over each stage’s intermediate solution xt yields better results. Deep

supervision greatly accelerates the speed of convergence.

However, it is non-trivial to design a learning procedure for each iterative update

function gw, as there exist infinite paths towards the ideal solution. Ideally, we would

like our solution to descend towards the ideal solution as quickly as possible. Thus,

inspired by [394], at each iteration, we learn to aggressively predict the update required

to reach the ideal solution. At each stage, the learning procedure finds the best w

through minimizing the following loss function:

argmin
w

X

(y,xgt)

X

t

`(xgt,x
t + gw(x

t
,yt

,y)).

` is a task-specific loss function; for instance, ` is l2-norm for inverse kinematics.
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4.3.3 Discussions

Stage-wise network: In our standard approach described before, gw is shared

across all steps. However, the proximity to the ideal solution varies at different step.

As a consequence, early iteration often takes inputs that are farther to the ideal

solution than what a late iteration update step takes. This brings difficulties to the

network as it needs to handle a variety of output scales across different iteration steps.

This motivates us to train a separate update function per step g
t

w(x
t
,yt

,y) that better

captures the input data distribution at each iteration. To learn this non-shared weight

network, we conduct a stage-wise training procedure. We start to train the g
0
w first.

Then we acquire y0 for all the training data, which allow us to train g
1
w. We repeat

this procedure until gTw is trained. In total T models {gtw} are trained. Please refer

to the supp. material for the comparison between sharing weights and not sharing

weights.

Adaptive update: Our current update rule is simply an addition, yet it can be

easily extended to more sophisticated settings to handle more complex scenarios. For

instance, one can apply the classic momentum technique on top of the predicted

gradient to stabilize the optimization trajectory. One can also learn another meta-

network to dynamically adjust the output of our update network. While all of these

options are feasible, we find that in practice a simple strategy suffices. Inspired by

the Levenberg-Marquardt method [33], we exploit a damping factor � to control the

effectiveness of the update network, i.e., xt+1 = xt + � · gw(xt
,yt

,y). Specifically, � is

initialized to 1 at the beginning of each update. If the new estimation results in a

lower data energy than that of the original one, we update the estimation. Otherwise

we reduce � by half and re-compute. We only need to compute the update gradient

once. The forward process is executed on the GPU and hence the computational

overhead is negligible. Through this simple rule, we can guarantee that Edata(xt
,y)

decreases after every iteration. Empirically xt becomes closer to the ground truth x as

well, since the ambiguity arising from the data term disappears when the estimation

is already sufficiently close.
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Relationship to existing work: Our model is closely related to the family of

iterative networks [109, 349, 201, 39, 105, 285, 347, 382, 381, 47, 205, 207], in particular

the stacked inference machines [285, 347, 382, 381]. Unlike previous methods that

require the model to implicitly learn the relationship between the input and the

preceding estimation [262, 47, 381, 415, 236], we leverage the forward process to

explicitly establish the connection among them and close the loop. This is of crucial

importance for inverse problems since the two spaces are very distinct (e.g . illumination

parameters vs RGB image). The idea of learning to update is inspired by supervised

descent methods [394]. However, unlike their approach we learn the mapping and

the feature simultaneously. Furthermore, we focus on inverse problems and design

a closed-loop scheme to incorporate feedback signals, while they simply perform

iterative update in an open loop setting. Developed independently, Flynn et al . [100]

propose a similar approach for view synthesis. Their model, however, relies on the

analytical gradient components. They thus requires the system to be differentiable.

In contrast, our approach directly predicts the update from the observation and the

feedback signal. We do not require explicit gradient computation and do not have

such a limitation. Similar to our work, LiDO [302] also leverages deep networks to

optimize the latent parameters. Yet unlike their model which directly regresses the

GT, we predict the residual instead. This is very critical as the magnitude of the

update is strongly correlated with the input difference. The larger (smaller) the input

difference is, the more (less) update is required. Predicting the residual can thus

significantly ease the learning process. Furthermore, while their prediction networks

share weights across all iterations, our feedback networks differ at each step. We

are able to model the variety of output scales more effectively. Our work also shares

similar insights as [262, 47, 194] with a few key differences: (1) rather than relying

on the network to implicitly establish the relationships between the feedback signal

and the observation, we explicitly consider the difference and predict an update based

upon it. (2) Our model is motivated by classic optimization approaches. We borrow

ideas from traditional literature to improve the performance (i.e. adaptive update),

whereas [194] simply unrolls the network, [47] employs a bounded, fixed update, and
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Module Forward Rendering Inverse Update Total
NMR [168] 28 ms 7 ms 35 ms
SoftRas [220] 76 ms 84 ms 160 ms
Ours 2.6 ms 0.9 ms 3.5 ms

Figure 4-5: Runtime breakdown of a single optimization step for 6 DoF pose
estimation.

Figure 4-6: Runtime vs number of faces. (Left) Forward rasterization time.
(Right) Backward gradient computation (inverse update) time.

[262] encourages the update network to improve the estimation, no matter what scale

it is. (3) We present a generic framework that is applicable to a wide range of inverse

problems, while [262, 47, 194] are specialized to respective specific task. We refer the

readers to the supp. material for more detailed discussions on reinforcement learning

and prior art [47, 194, 302, 262].

Applicability: Unlike previous work, our approach neither has restrictions on the

forward process f , nor need to construct domain-specific objectives at test time.

During inference, at each iteration, we simply adopt a feed-forward operation g on

top of current estimate and predict the update. Our method is applicable to a wide

range of tasks so long as the forward process function f is available. In the following

sections, we showcase our approach on two different inverse graphics tasks (object pose

estimation and illumination estimation from a single image) as well as one robotics

task (inverse kinematics).
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Training on 0� � 40� Trans. Error Rot. Error (�)
Evaluation Rot. Range Mean Median Mean Median
40� � 45� 0.05 0.03 11.33 4.97
45� � 50� 0.05 0.04 15.62 5.60
50� � 55� 0.06 0.04 18.58 6.86
55� � 60� 0.07 0.05 24.14 9.58

Table 4.2: Test on unseen rotations.

4.4 Application I: 6-DoF Object Pose Estimation

Problem formulation: Assume that the 3D model of the object is given [132, 45]

and the camera intrinsic parameters are known. For a given object pose wrt the camera,

denoted as x 2 SE(3), we can generate the corresponding image observation y through

a forward rendering function f : x! y, powered by a graphics engine. The goal of 6

DoF pose estimation is to invert the process and recover the latent pose x from the

observation image y. This problem is particularly important for problems such as

robot grasping [194] and self-driving [232]. Unlike previous approaches that leverage

RGB information or depth geometry to guide the pose estimation, we focus on a more

challenging setting where the observation is a single silhouette image y 2 {0, 1}H⇥W .

The object pose x = (xquat;xtrans) is represented by a unit quaternion for rotation

xquat and a 3D translation vector xtrans.

Data: We use the 3D CAD models from ShapeNet [51] within 10 categories: cars,

planes, chairs, bench, table, sofa, cabinet, bed, monitor, and couch. The dataset is

split into training (70%), validation (10%) and testing (20%). For each object, we

randomly sample an axis from the unit sphere and rotate the object around the axis

by ✓ ⇠ [�40, 40] degrees. We further translate the object along each axis by a random

offset within [�0.2, 0.2] meters. Given the randomly generated ground truth object

poses, we render 128⇥ 128 silhouette images with non-differentiable PyRender [1] as

input observations. We refer the readers to the supp. material for the performance of

our model on other image sizes.
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Metrics: We measure the translation error with euclidean distance and the rotation

error with angular difference. Inspired by [102], we also compute the outlier ratio as

an indicator of the general quality of the output. Specifically, we define the prediction

to be an outlier if the translation error is higher than 0.2 or the rotation error is larger

than 30�.

Network architecture: Our deep feedback network gw is akin to the classic LeNet

[186]. It takes as input the rendered image yt = f(xt), the observed image y, as well

as the difference image ŷ � yt, and directly outputs the update �x. We apply an

additional normalization operator over the rotation component to correct it to a valid

unit quaternion. We unroll our deep feedback network for five steps. MSE is employed

as the loss function for both rotation and translation since it produces the most stable

results.

Baselines: For optimization methods, the energy function consists of a data term

Edata(f(x),y) that favors agreement and a prior term Eprior(x) that encourages the

quaternion to remain on the manifold. To make the forward rendering procedure f

differentiable, we utilize the state-of-the-art differentiable renderers for comparison,

i.e. neural mesh renderer (NMR[168]) and soft rasterization (SoftRas [220]). We

utilize the following stopping criteria for the optimizer: (i) 500 iterations, or (ii) the

silhouette difference between the observation and the one generated by the renderer

stops improving for 20 iterations. For the deep regression method, we use the same

architecture as our deep feedback network except that no feedback is provided.

Results: As shown in Tab. 4.1, our method achieves a significantly lower outlier

ratio compared to other approaches. This indicates that our model is more robust

and less susceptible to becoming stuck in local optimum. It also has comparable

performance to differentiable renderers in terms of mean translation and angular error,

while being two to three orders of magnitude faster. On the other hand, our method

has much better performance than the non-feedback deep regression method. For the

category-wise performance, please refer to the supp. material. Fig. 4-4 showcases some
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Optimization Directional light Point light
Methods # of steps Time Mean Median Outliers Mean Median Outliers
NMR∗[168] 166.7 58.3 s 0.099 0.037 19.2% - - -
Deep regression [151] 1 0.043 s 0.067 0.022 24% 0.111 0.084 11%
Ours 7 0.183 s 0.052 0.008 8% 0.084 0.064 9%

Table 4.3: Illumination estimation on ShapeNet.

qualitative results. Our method is robust to extreme poses, whereas optimization

based method is easy to get stuck in a local optimum.

Deep feedback network as initialization: Due to the highly non-convex struc-

ture of the energy model, a good initialization is required for optimization methods

to achieve good performance. One natural solution is to exploit our model as an

initialization and employ classic solvers for the final optimization. By combining our

approach with SoftRas, we can further reduce the error by more than 50%. We refer

the readers to supp. material for detailed analysis.

Runtime analysis: We show the runtime break down for a single update step in

Tab. 4-5 and the runtime w.r.t the number of faces in Fig. 4-6. As we neither need

to construct the computation graph nor storing any activation value for gradient

computation during the forward rasterization process, our rendering is significantly

faster. For gradient computation, SoftRas is far slower as it needs to propagate

the gradient to multiple faces. In contrast, our update model is simply an efficient

feed-forward neural net that takes as input the (difference) silhouette images. Its

speed is invariant to the number of faces.

4.5 Application II: Illumination Estimation

Problem Formulation: We next evaluate our method on the task of illumination

estimation. The goal is to recover the lighting parameter x 2 R3 from the observation

RGB image y 2 RH⇥W⇥3. It has critical applications in image relighting and photo-

realistic rendering [167]. As in the 6-DoF pose estimation task, we assume the 3D

model is given.
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GT NMR Regress. Ours GT NMR Regress. Ours

Figure 4-7: Qualitative comparison on illumination estimation.

Data: We use the same dataset as the 6-DoF pose estimation experiment for the

illumination estimation experiment. Specifically, we consider two types of light source:

directional light and point light. The two light sources are complementary and can

result in very different rendering effect. During training, we randomly sample the

light position from the half unit sphere on the camera side [151, 230]. If the light

is directional, we point the light towards the origin. All the objects are set to have

Lambertian surfaces. We ignore the scenario where the light source lies on the other

side of the object, as it has no effect on the rendered image. For evaluation, we

follow the same criteria. We perform rendering in pyrender and the image size is

set to 256⇥ 256. Empirically we found this size provides the best balance between

performance and the computational speed.

Metrics: Following [151], we use the standard mean-squared error (MSE) between

the ground truth light and estimated light pose to measure the difference. We also

compute the outlier rate as described in Sec. 4.4.

Network architecture: We employ an encoder-decoder architecture with skip

connections as our deep feedback network. Since the 3D geometry of the object

plays an important role during rendering, we adopt depth prediction as an auxiliary

task. This allows the model to implicitly capture such notion and reason about its
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relationship with illumination. During training, our deep feedback network estimates

both the depth of the object as well as the illumination parameters. We use MSE as

the objective for both tasks. During inference, we simply discard the depth decoder

and output only the illumination part. We unroll our network for 7 steps according to

the validation performance.

Baselines: We exploit NMR [168] to minimize the energy Edata + Eprior.The data

term is the `2 distance between the observation image and the rendered image, while

the prior term constrains the light source to lie on the sphere. We adopt the same

stopping criteria as in Sec. 4.4. The size of the rendered image is set to 256 ⇥ 256

based on the performance on the validation set. For deep regression method, we

exploit the state-of-the-art model from Janner et al . [151].

Results: As shown in Tab. 4.3, our deep feedback network outperforms the baselines

on both setup. The improvement is significant especially in the directional light case.

We conjecture this is because the intensity of directional light does not decay w.r.t. the

travel distance, and the signals from the image are weaker. Learning based approaches

thus have to rely on feedback signals to refine the light direction. The performance of

the optimization method is limited by the hand-crafted energy as well as the capability

of renderer. NMR is sub-optimal as it approximates the gradient with a manually

designed function and does not handle self-occlusion. In contrast, our method allows us

to exploit complex rendering machines as the forward model as we do not require it to

be differentiable. We note that we only report the optimization results on directional

light since NMR does not support point light source. Fig. 4-7 depicts the qualitative

comparison against the baselines. It is clear that our deep feedback mechanism is

able to recover accurate lighting information based on subtle difference between the

forward results and the observations.
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Optimization Position Error (cm) Rotation Error (�)
Methods Step Time Mean Median Mean Median
L-BFGS [110] 73 27.9 s 0.38 0.01 7.19 4.68
Adam [173] 196 38.8 s 0.04 0.04 7.96 7.92
Deep6D [438] 1 0.012 s 1.9 1.6 - -
Ours 4 0.12 s 0.64 0.36 0.88 0.03

Table 4.4: Quantitative results on CMU MoCap.

GT Step 1 Step 3 GT Step 1 Step 3

Figure 4-8: Qualitative results on CMU MoCap: Our approach is able to
accurately predict the joint rotations within a few steps. It can also correct wrong
estimations through the feedback from the forward model (see the feet/toes in the
right column). Bottom right shows an example where our model fails.

4.6 Application III: Inverse Kinematics

Problem formulation Finally we exploit how our proposed method to tackle the

inverse kinematics problem. Given the 3D location of the joints of a reference pose

yref

1:N and the desired joint rotations x1:N 2 SO(3), the forward kinematics function f

rotates the joints and computes their 3D positions by recursively applying the follow

update rule from parents to children: yn = yparent(n) + xn(yref

n
� yref

parent(n)). The goal

of inverse kinematics is to recover the SO(3) rotations x1:N that ensure the specific

joints are placed at the desired 3D locations y1:N . Inverse kinematics has a wide

range of applications, such as robot arm manipulation, legged robot motion planning

and computer re-animation. The problem is inherently ill-posed as different rotations
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can result in the same observation through the forward kinematics function f , i.e.,

y = f(x1:N) = f(x0
1:N). However, not all angles are feasible or natural due to the

dynamic constraints. Therefore, in order to accurately recover the rotations, one has

to either come up with a powerful prior or learn it from data. In this chapter, we

focus on inverse kinematics over human body skeletons.

Data: We validate our model on the CMU Motion Capture Dataset (CMU MoCap)

as it contains complex human motions and a diverse range of joint rotations. Following

Yi et al . [438], we select 865 motion clips from 37 motion categories and hold out 37

clips for testing. Each skeleton in the dataset has 57 joints. We fix the position of the

hip to remove the effect of global motion.

Metrics: We evaluate the performance of our model with joint position error [438]

and joint angular error [240, 273]. The two metrics are complementary since a small

rotation error may result in a large position error due to the recursive nature of the

forward kinematics model, and small position error cannot guarantee correct joint

rotation due to ambiguities.

Network architecture: Our deep feedback network is a multilayer perception akin

to [438]. Following [357, 273], the network takes as input the estimated joint position,

reference joint position, as well as the difference between the two, and outputs a

rotation for each joint. We unroll our model three steps. We train the network with

L2 loss on both position error and rotation error.

Baselines: We compare our model against two optimization-based approaches and

one deep regression method. For optimization methods, we employ joint position

error as our data term, i.e. Edata(f(x),y) = kf(x)� yk22, and derive a prior energy

term from data to alleviate the ambiguities of joint rotations. In particular, we fit

a gaussian distribution over the Euler angles of each joint from training data and

employ it as a regularization term during inference. We set the weight of the prior

term to 0.001 and optimize both energies jointly. We exploit two different types of
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optimizers: a first-order method (i.e., Adam [173]) and a quasi-Newton method (i.e.,

L-BFGS [110]). For deep regression method, we compare with the current state of the

art (Deep6D [438]).

Results: As shown in Tab. 4.4, our deep feedback network outperforms the baselines

on the rotation metric and achieve comparable performance on the position error. By

unrolling more steps and gathering feedback signals from the forward model, we are

able to reduce incorrect estimation and improve the performance (see the Fig. 4-8).

We refer the readers to the supp. material for detailed analysis. On average, a single

step of L-BFGS, Adam, and our approach takes 383 ms, 198 ms, 30 ms respectively.

L-BFGS takes longer to compute as it needs to conduct gradient evaluation multiple

times to approximate the Hessian. Adam is faster in terms of computation, yet it

takes far more steps to converge. Our approach, in comparison, is significantly faster

and better.

4.7 Conclusions

In this chapter, we propose a deep feedback inverse problem solver. Our method

combines the strength of both learning-based approaches and optimization-based

methods. Specifically, it learns to conduct an iterative update over the current solution

based on the feedback signals provided from the forward process of the problem.

Unlike prior work, it does not have any restrictions on the forward process. Further,

it learns to conduct an update without explicitly define an objective function. Our

results showcase that the proposed method is extremely effective, efficient, and widely

applicable.
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Chapter 5

Exploiting High-level Priors for 3D

Reconstruction

Virtual Correspondence:
Humans as a Cue for Extreme-View Geometry
Wei-Chiu Ma, Anqi Joyce Yang, Shenlong Wang, Raquel Urtasun, Antonio

Torralba;

CVPR 2022.

In previous chapters, we discussed how to exploit various low-level structures, such as

geometry and physics, to develop robust computational models for 3D understanding.

While many 3D modeling tasks are indeed considered low-level (e.g . 3D reconstruction),

in this chapter we take a different approach. We study the problem through the lens

of high-level vision. We investigate how a high-level understanding of an object can

benefit low-level 3D reconstruction and significantly expand the application domain of

existing 3D systems.

5.1 Introduction

Epipolar geometry and correspondence estimation are two keystones of mainstream

3D reconstruction systems. When given a set of RGB images as input, a classic 3D
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Figure 5-1: Can you tell the relationships between these matched pixels?
The head pixel and the face pixel in the leftmost images have completely different
semantics and appearances, yet we can still associate them for 3D reasoning. Why, and
how? In this chapter, we present a novel concept to establish geometric relationships
between pixels even if they are not semantically or visually similar. See Fig. 5-11 for
cars.

pipeline [224, 121] first identifies co-visible 3D points across images via pixel-wise visual

features and then recovers the spatial relationships among cameras. Such a “golden

standard” framework has experienced huge success in practice and has given birth to

numerous applications in robotics, AR, VR, etc. The reliance on correspondences,

however, makes one ponder: what if the input images have little or no overlap? Does

this still work when there are barely any co-visible 3D points in the scene (see Fig.

5-1)?

At first thought the answer is no. Predominant correspondence estimators focus on

finding pixel pairs that describe the same, co-visible 3D points in the scene by matching

their visual features. If the viewpoint differences across images are extreme, the pixels

will be inherently different and cannot be matched, causing current 3D systems to fail

catastrophically. In contrast, humans can identify where two photographs were taken

with respect to the same scene, despite large viewpoint variations. Such a remarkable

capability comes from our prior knowledge of the underlying geometry, which helps

us match pixels between images even if their exact correspondences are occluded or

invisible in the other image. For instance, we know what the front and back of a

human body should look like. Therefore, if we see a human face in one image and

the back of a head in the other, we can easily associate them and infer that the two

cameras are roughly 180 degrees apart. The aim of this chapter is to equip 3D systems

with similar abilities.

Towards this goal, we first ask the following question: do we have to rely on
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pixels describing the same 3D points to recover camera poses∗? While such (implicit)

premises seem to lay the foundation for existing 3D reconstruction algorithms, as we

will show in Sec. 5.3, the answer is negative. Our key observation is that epipolar

geometry holds for arbitrary pixels whose camera rays intersect in 3D. Therefore, as

long as we can identify those pixels, we can leverage them to recover relative camera

poses, regardless of whether the pixels are semantically or visually similar or not. This

interpretation is particularly exciting, as it allows us to go beyond the image space

and establish geometric relationships among pixels even from extreme viewpoints.

Unfortunately, determining whether two camera rays intersect in 3D often requires

camera poses to be known a priori, making the whole process a chicken-and-egg

problem. Our key idea is to exploit prior knowledge of the foreground objects within

the scene to break the loop. Specifically, we make use of humans, arguably one of

the most common, salient “objects” in images. Consider the images in Fig. 5-1. If

the system has prior knowledge about human shape and pose, it will know that a ray

shooting through the human back in the leftmost image will intersect with the chest

region on its way out. Furthermore, the intersecting chest pixel can be observed in the

other image. Thus, we can find a pair of pixels that correspond to two intersecting

camera rays with ease. Note that different from classic correspondences, these two

pixels do not depict the same 3D point and thus cannot be found via visual similarities.

Since we establish the geometric connection virtually by hallucinating a 3D shape, we

call them virtual correspondences (VCs).

With this inspiration in mind, we first define virtual correspondences and present

a methodology to derive them from images containing humans. We then showcase

how VCs can be seamlessly integrated with the classic bundle adjustment algorithm,

resulting in a generalized structure from motion (Sf M) framework that could be applied

to both traditional setup and extreme-view scenarios. We evaluate the effectiveness

of our approach on the CMU Panoptic dataset [155, 156], the Mannequin Challenge

dataset [199], and multiple challenging in-the-wild images. Our method significantly

outperforms prior art in challenging extreme-view scenarios and is comparable in

∗
We will ignore other primites such as lines or planes for now.
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the conventional, densely overlapping setup. Importantly, our estimated poses from

extreme viewpoints unleash the potential of multiple downstream applications such as

scene reconstruction from multi-view stereo and novel view synthesis in challenging

scenarios.

In summary, we make the following contributions:

1. We present virtual correspondences, a novel concept for 3D reconstruction

algorithms, and establish its geometric connection to existing correspondences.

2. We develop a method to estimate VCs from images with humans and showcase

how to integrate them into existing 3D frameworks. The new framework can

be applied to a wide range of scenarios while also reduces to the classical Sf M

when no VCs are found.

3. We exploit the estimated camera poses for multiple downstream applications

and empirically show that our method can extend these tasks to extreme-view

scenarios which were previously infeasible.

5.2 Related Work

Correspondences: Correspondence estimation aims to identify pixels that are

projections of the same 3D point across multiple images [121, 233]. The task has been

the cornerstone of various computer vision problems for decades, since the pixel-level

association allows one to recover the structure and motion of the world effectively [224,

138, 26, 313]. Prevalent approaches focus on hand-crafted [226, 42, 189, 345, 25, 305]

or learned [370, 368, 264, 72, 374, 83, 365] robust visual features that can distinguish

one pixel from the others in diverse scenarios. While impressive performance has

been achieved [308, 334], these methods fall short when there is little overlap among

input images, as there are hardly any co-visible 3D points. Semantic correspondence

estimation [119, 435, 437, 64, 172, 120, 144], on the other hand, focuses on detecting

pixels with specific semantics (e.g ., human facial keypoints). With the help of domain

knowledge, they are usually more robust to variations in viewpoint, appearance, and
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Fail to establish correspondences 
when scene overlap is little

Classic correspondences

Available when scene 
overlap is large

Available regardless of viewpoints. 
Semantics, appearances can differ.

Virtual correspondences

Figure 5-2: Classic correspondences vs. virtual correspondences.

Input images (1) Predict 3D shape and pose (2) Cast a ray and record all 
intersecting points

(3) Find the intersecting points that are 
visible in the other image

front view back view

Figure 5-3: Pipeline of estimating virtual correspondences. We first predict
the 3D shape and pose of the basketball player from the left image. Then we cast a
ray and record all the points it hits, i.e. the belly button and his back. While the two
images barely overlap, the right image does observe the back of player. We can thus
tell that the rays of the two pixels intersect at 3D and are virtual correspondences.
We conduct the same process for the right image too.

sometimes even occlusions [140, 44]. Unfortunately, they still require a set of semantic

keypoints to be co-visible across multi-view images to enable 3D reconstruction. In

contrast, our novel virtual correspondences do not have these constraints. VCs can be

the projection of different 3D points and can have completely different appearances

and semantics (e.g ., chest pixel v.s. back pixel). This allows us to establish geometric

relationships among pixels even when the input images have no co-visible 3D points.

Extreme pose estimation: There has been a surge of interest in estimating relative

3D poses among a set of little- or non-overlapping RGB(D) images [404, 279, 41, 153,

318]. Different from the classical small- or wide-baseline setup, the large viewpoint

variations in this task result in very few co-visible regions, rendering traditional
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matching-based approaches unsuitable. To address this challenge, researchers have

proposed to either directly predict the transformation with deep neural nets [41, 54],

or adopt the hallucinate-then-match paradigm [404, 406, 279, 17, 103]. Our work

lies under the broad umbrella of the hallucination paradigm, as we derive virtual

correspondences from hallucinated human shape priors and combine them with epipolar

geometry. We adopt a pixel-level correspondence representation, which seamlessly

integrates with prevailing 3D reconstruction algorithms and can be naturally extended

to the multi-view setup. In contrast, previous methods only consider two frames at a

time [404, 406, 279, 153], as the customized matching and optimization step prohibits

them from scaling up easily.

Structure from motion (Sf M): Given a set of images, the goal of Sf M algorithms

[26, 336, 65, 98, 346, 348, 275, 4] is to recover both the camera poses and the (sparse)

3D geometry of the scene. Prevailing Sf M systems [314, 326, 327, 388] have enjoyed

great success when the images are captured densely with large overlapping regions,

yet they suffer drastically when the input views are sparse and have little overlap. To

alleviate this issue, researchers have sought to exploit motion patterns [10, 11, 335]

or semantic keypoints of the objects [74, 396] to aid the reconstruction. However,

they require sequences of frames as input (with static cameras) or the same set of

keypoints to be visible across all views, which largely limits their applicability. Our

virtual correspondences, in comparison, are much more flexible: while our VCs are

also derived from objects, specifically humans, the corresponding pixels can have

completely different semantics and appearances. This allows us to establish matches

even if the input images have no co-visible 3D points. Our approach also shares similar

insights with non-rigid Sf M algorithms, which leverage shape dictionaries (i.e., priors)

to constrain the solution space [35, 70, 6, 69, 177, 152, 360]. However, unlike these

approaches, we do not require 2D correspondences to be given a priori. We instead

exploit shape priors to establish VCs across views that conventionally do not have

correspondences. As we will show in the experimental section, VCs open the door to

a range of possibilities and broaden the applicable domain of Sf M.
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Figure 5-4: Qualitative results. (Left) Input images. (Right) Recovered camera
poses. Human meshes are for illustration purposes.

3D human estimation: Our work is also related to 3D human reconstruction

approaches [118, 400, 401]. With the rise of deep learning, these methods have

made tremendous progress, either from a single image [162, 176, 158] or multi-view

images [272, 74, 75, 96]. While these approaches mostly focus on the quality of the

reconstructed shape, we attempt to recover accurate camera poses with human shape

priors. More recently, researchers have exploited human keypoints to refine camera

poses [278, 74], but by virtue of VCs, our method is more flexible and does not require

the same keypoints to be co-visible across views. As we will show in Sec. 5.3.3,

our bundle adjustment formulation is a superset of theirs. Our work also shares

similar insights with human silhouette matching [324, 323], since we both do not rely

on appearance matching to establish correspondences, allowing us to generalize to

extreme-view setting. However, there exist several differences: First, while they require

video sequences to constrain the solution space, a single image pair suffice for us.

Second, they capitalize on sufficient motion of the object over the space for matching,

whereas we exploit deep shape priors to estimate the correspondences. Third, their

frontier points are still co-visible across cameras, yet our VCs may correspond to

completely different 3D points.
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vs

video frame index

+

Figure 5-5: Effects of camera distance. We show the number of correspondences
(left) and pose error (right) with increasing camera baseline.

5.3 Approach

Our aim is to equip existing 3D systems with the ability to reason and associate

images geometrically even if they have little or no overlap. We seek to devise a

method that can be seamlessly integrated with existing 3D reconstruction frameworks

such that the new model can be applied to both the conventional setup and the

extreme setting. Towards this goal, we introduce a novel concept dubbed as virtual

correspondence (VC). VCs refer to a pair of pixels whose camera rays intersect in 3D.

However, unlike classic correspondences, they do not need to describe the same 3D

points, and can have completely different semantics and appearances. This makes

VCs much more flexible and allows VCs to be established even when there is little

overlap among images. Importantly, VCs conform to epipolar geometry and can be

combined with prevailing 3D systems naturally. We unfold this section by formally

defining VCs and discussing their relationships with existing correspondences. Then

we present a method to estimate VCs through the lens of human shape priors. Finally

we incorporate VCs into current Sf M formulations, resulting in a framework that is

much more general. For simplicity, we assume there are only two cameras, but the

concepts and the method can be trivially extended to the multi-camera setup (as

shown in Sec. 5.4).
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5.3.1 Virtual Correspondences (VCs)

We first define virtual correspondences. Let I1, I2 2 RH⇥W⇥3 be the images of

the same scene captured at different viewpoints and p1, p2 2 R2 be the points in

their respective image coordinates. Let K1,K2 2 R3⇥3 be the camera intrinsics and

[R1, t1], [R2, t2] 2 R3⇥4 be their extrinsic matrices. The ray marching from the camera

center o 2 R3 through p can be written as rp(d) = RT (dK�1p̄ � t), where d > 0

indicates the depth along the ray and ·̄ refers to the homogeneous coordinate.

We say a point p1 in the first image and a point p2 in the second image, (p1,p2),

are virtual correspondences if there exists a pair of d’s such that:

rp1(d1) = rp2(d2). (5.1)

Since there is no constraint on where the intersection should happen, the rays can

intersect at (i) co-visible 3D points, (ii) 3D points that are only visible in one image

(and occluded in other other), or even (iii) invisible points (e.g ., free space, occupancy

space, or points from occluded scene/objects).

The first scenario is exactly the definition of classic correspondences [72, 308]. The

third scenario covers many cases in semantic correspondence where the target 3D

points is invisible. For instance, researchers have exploited 2D human keypoints to

reconstruct 3D joints [74, 54]. 3D joints, strictly speaking, lie within the human body

and are not visible in images. VCs can therefore be seen as a generalization of multiple

types of existing correspondences.

In the second and third scenario, VCs correspond to different 3D points in the

scene. VCs can thus have different appearances and semantics, and even describe

completely different parts of the scene. We show an example in Fig. 5-2 (right) where

the pixels in the left image observe the leg while their VCs in the right see the back of

the bunny. We refer the readers to supp. material for more illustrations.

Another key property of VCs is that they conform to epipolar constraints — the

two intersecting rays form an epipolar plane on which the VCs and camera origins

lie. This allows us to exploit classic geometric algorithms to establish connections
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among non-overlapping images, greatly expanding the applicable domains of existing

3D algorithms. For instance, we cannot employ the five-point algorithm [224] for

non-overlapping images in the past, since no correspondences exist. VCs, however, are

more flexible and are not restricted to describing the same co-visible scene points. We

can thus estimate VCs among the images and then solve for the essential matrix. We

refer the readers to supp. material for more discussion on VCs and epipolar geometry.

While VCs are powerful, estimating them purely from 2D images is far from

trivial. Without knowing the relative camera poses, one cannot exploit Eq. 5.1 to

verify if two camera rays intersect. Furthermore, VCs may have completely different

appearances and semantics, prohibiting us from employing similar approaches as

classic correspondence estimators. Fortunately, there are many objects in the scene

whose shapes we are familiar with. With such prior knowledge, we can hallucinate

the shape of an object and estimate which part of the object a ray would intersect

with on the other side. All one needs to do is then to find the rays (pixels) in other

images that hit (see) the same intersecting point.

5.3.2 Exploiting Humans for VC Estimation

Based on the intuition above, we propose an approach to exploit shape priors for

virtual correspondence estimation. We focus on humans, the most common “objects”

in images.

Given a 2D image, we first exploit a deep network [158] to predict the 3D shape

and pose of each person in the scene, as well as their relative poses to the camera.

We use SMPL [225] as our representation since it allows us to reconstruct a complete

human mesh from partial observations. Then we cast a ray through each pixel and

record all the 3D points where the rays intersect with the human mesh via ray-plane

intersection (see Fig.5-3-mid). Finally, we identify if any of those 3D points are visible

in other images by 2D-3D association. If there is, we say the two pixel rays intersect

in 3D and the corresponding two pixels are VCs. Specifically, we use DensePose [115]

to associate each pixel with each point on the human mesh. If a ray hits the back

of the mesh and DensePose tells us a pixel corresponds to the back, then these two
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(a) SuperGlue (b) VCs

Figure 5-6: Qualitative comparison. Classic correspondence estimators fail when
images have little overlap, since there are no co-visible 3D points. VCs can be found
in both scenarios so long as the camera rays intersect. The color indicates epipolar
error.

pixels are VCs. Fig. 5-3 illustrates the process, which we repeat for all images. We

note that our formulation is generic and can be potentially applied to other objects so

long as there exist proper shape priors and surface mapping. We show an example on

cars in Sec. 5.4.

5.3.3 Generalized Bundle Adjustment (BA)

Once we establish virtual correspondences, the next step is to jointly refine the camera

poses as well as the sparse 3D scene geometry. Similar to classic Sf M, we initialize

the camera poses using RANSAC with the five-point algorithm [121] in the loop†. But

instead of employing classic correspondences, we use VCs.

Since VCs could correspond to different 3D points (see Fig. 5-2), traditional

triangulation approach cannot recover both 3D points. We thus leverage the initial

shape estimation (predicted by deep nets) to compute the ray-surface intersection and

record the first hits for each VC. The 3D points are then registered into the global

coordinate system using the estimated camera poses from the five-point algorithm.

Since the estimated structure (i.e. the sparse 3D points) and poses depend heavily

on the predicted shape priors, they may be noisy. We further refine the estimates by

minimizing the distance between reprojected points and VCs. Formally, let (Xj1 ,Xj2)

be the j-th pair of reconstructed 3D points and (pi1 ,pi2) be the associated VC pair
†
We assume the intrinsics are known or already estimated.
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from camera i1 and camera i2. Denote ↵ = (i1, i2, j1, j2) as a tuple of corresponding

indices. Our goal is to minimize:

min
Ri,ti,Xj1 ,Xj2

X

↵

kpi1 � ⇡i1(X
j1)k2 + kpi2 � ⇡i2(X

j2)k2

s.t.
⇣
(Xj1 � oi1)⇥ (Xj2 � oi2)

⌘T
(oi2 � oi1) = 0,

(5.2)

where ⇡i(X) ⇠ Ki(RiX+ ti) is the perspective projection operator, and the constraint

enforces the two camera rays to be co-planar such that epi-polar geometry holds.

Using the constraint, we can further re-write one VC point as a function of the

other:

Xj2 = Xj1 + a
j · (Xj1 � oi1) + b

j · (oi2 � oi1). (5.3)

The two free parameters a
j and b

j can be thought of as the “thickness” of the shape

between the intersecting points. When both parameters become 0, the two 3D points

merge into one, and VCs reduce to classic correspondences.

By replacing Eq. 5.3 into Eq. 5.2, we obtain an unconstrained minimization

problem that is similar to, yet more generic than classic BA. Instead of refining a set

of co-visible 3D points, we now adjust a bundle of point tuples. We, however, note

that classic correspondences extracted with conventional methods such as SuperGlue

[308] can still fit into this formulation by fixing a
j = b

j = 0. We use L-BFGS [260]

to solve this non-linear least square problem. In practice, we treat Eq. 5.3 as a soft

constraint since it works slightly better. We refer the readers to supp. material for

more discussions.

Discussion: VCs can be combined with classic correspondences to improve the

overall robustness and performance of 3D reconstruction systems (see Sec. 5.4). When

the images barely overlap and few classic correspondences are available, the system can

rely on VCs to recover the world and camera geometry. When the images do overlap,

VCs can serve as additional visual cues and regularizers. VCs thus significantly expand

the applicable setting of existing SfM systems.
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(a) Classic Sf M (b) Our Sf M

Figure 5-7: Pose error vs. ground-truth pose distance. The median pose error
in classic Sf M (left) increases with increasing camera baseline, while the median pose
error for our method (right) stays low regardless of viewpoint differences.

5.4 Experiments

In this section, we first evaluate the effectiveness of virtual correspondence and our 3D

system on two challenging datasets. Then we comprehensively study the characteristics

of our method. With the estimated camera poses, we further conduct two downstream

tasks, namely scene reconstruction with multi-view stereo and novel view synthesis, in

difficult extreme-view cases. Finally, to showcase that our method generalizes beyond

human-based images, we demonstrate proof-of-concept results with cars.

5.4.1 Datasets

CMU Panoptic dataset: CMU Panoptic dataset [155, 156] is a large-scale, multi-

view video dataset designed for human analysis. It provides ground-truth camera poses

as well as person associations across views. The sequences were captured in a studio

with (approximately) synchronized cameras widely spread across the dome, providing

us a diverse set of viewpoints that are barely available in the real world (e.g ., cameras

looking at a person from the top). We select 43 sequences from pose, haggling, and

dancing. Each sequence contains 1⇠3 people performing different actions. We divide

the data into two splits. Each split comprises a set of unique sequences and cameras
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without any overlap. Due to image quality, we only consider the videos captured by

HD cameras. We sample a frame every five seconds to avoid similar human poses. We

also run human detection on each sampled frame. If no person is present in the scene,

we discard the frame. In total, we obtain 2955 image sets for each split, with each set

containing 15-16 camera views. We refer the readers to the supp. material for more

details.

Mannequin Challenge: Mannequin Challenge (MC) [199] is a dataset of internet

video clips where the participants stay still in different poses, while the video-takers

move freely in space and capture the event. These videos, by design, allow us to

look at a static scene from various angles. We follow a similar pipeline as [199] to

reconstruct the ground-truth camera trajectories and filter out snippets with small

shifts in viewpoints or view directions. In the end, we obtain 18 video snippets where

the cameras rotate by at least 90� within each sequence. To further increase pose

diversity, we additionally collect 6 MC videos ourselves. Compared with the CMU

dataset, the camera poses in MC videos are rather generic [101], yet the background

scenes, which consist of both indoor and outdoor environments, are much more diverse.

Finally, for each snippet, we compute the pose difference between each frame and the

first frame. We sample a frame at every 20 percentile of the snippet and obtain ⇠200

image pairs. All the images are treated as the test set.

5.4.2 Experimental Details

Metrics: Following previous work [409, 421, 34, 308], we employ the area under

the cumulative error curve (AUC) to evaluate the recovered camera poses. We report

the AUC at three different thresholds (15�, 30�, and 45�). The pose error is defined as

the maximum of 1) the angular difference between predicted and GT rotation vectors;

and 2) the angular difference between predicted and GT translation vectors. We report

angular difference for translation since it can only be recovered up to a scaling factor

[121]. As for 3D reconstruction, there is no standard protocol to compare point clouds

directly produced by Sf M systems because each Sf M algorithm can choose which 3D
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Pose estimation AUC (") CMU Panoptic Studio Mannequin Challenge
Methods @15� @30� @45� @15� @30� @45�

SuperGlue [308] 10.02 16.74 19.36 26.38 34.85 39.10
LoFTR [334] 5.12 10.47 13.07 27.47 35.98 40.10
SIFT [226] + BA [314] 7.68 11.39 13.33 14.17 20.24 24.25
SuperPoint [72] + BA [314] 9.22 13.77 15.85 17.12 23.48 26.81
SuperGlue [308] + BA [314] 10.68 16.57 18.92 26.24 35.12 39.46
LoFTR [334] + BA [314] 8.35 14.52 17.01 27.51 36.32 40.55
Deep regression [179] 14.36 18.60 23.18 4.61 11.23 16.44
Deep optimization [30, 163] 7.88 27.17 42.42 15.38 47.08 63.67
Our Sf M 18.21 46.05 62.08 36.24 61.38 73.20

Table 5.1: Two frame relative pose estimation on the CMU dataset and the MC
dataset. First two rows perform five-point algorithm to derive camera poses. BA =
Bundle Adjustment.

points to reconstruct. Furthermore, there is no ground-truth shape for both datasets.

We thus follow [157] to compute the silhouette accuracy between the rendered mask

and the 2D segmentation mask.

Baselines: We compare our method against a wide range of relative pose estimation

methods. For traditional matching-based methods, we first detect the key points

and extract their corresponding features with SIFT [226] or SuperPoint [72]. We

then establish classic correspondences with either nearest neighbour matching with

ratio test [226] or SuperGlue (SG) [308]. We also compare with LoFTR [334]. We

further use RANSAC [97] coupled with the five-point algorithm to filter outliers. We

then incrementally recover and bundle adjust the image poses with COLMAP [314].

Alternatively, if there are only two views, we also perform pose estimation with the

five-point algorithm and essential matrix decomposition. Next, for deep regression

methods, we employ a state-of-the-art pose estimation network [89] to predict the

relative camera pose between an image pair. Finally, we compare against a deep

optimization approach that estimates camera poses by aligning 3D shapes. The baseline

is inspired by the state-of-the-art indoor extreme pose estimation method [279] and

can be seen as a variant for humans. Specifically, we utilize the latest EFT-Net [158]

to reconstruct 3D human models and align them with ICP [30]. To avoid local minima,
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Initialization BA Pose estimation AUC
SG VCs SG VCs @15� @30� @45�

X - - - 10.02 16.74 19.36
X X - - 10.29 31.27 48.96
X - X - 10.68 16.57 18.92
- X - X 15.89 43.92 60.38
X X X X 18.21 46.05 62.08

Table 5.2: Ablation study on the CMU dataset. SG refers to SuperGlue [308], a
deep learning based classic correspondence.

we first register the shapes based on their canonical coordinates. Next, we associate

each part of the shape based on its semantics. We further prune out the limbs and

exploit only torso and head during matching since these two parts are more robust in

practice. These strategies drastically improve the performance of this baseline.

Implementation details: Our 3D system considers both classic correspondences

and VCs. We exploit SuperGlue [308] to estimate classic correspondences and ReID-

Net [434] to match a person across multiple viewpoints. For the deep regression

baseline, we train and validate on the training split of CMU dataset. For the rest

of the learning based approaches, including our method, we adopt the pre-trained

weights provided by the authors and conduct inference only.

5.4.3 Experimental Results

CMU Panoptic Studio: As shown in Tab. 5.1(left), our Sf M outperforms all

baselines at all thresholds in the two-frame pose estimation task. SuperGlue [308]

ranks second when the pose error threshold is low, but deep optimization [30, 162]

surpasses it when the threshold increases. This is expected since matching-based

approaches can produce accurate estimation when classic correspondences are available,

yet fail catastrophically when the viewpoints are very different. Deep optimization,

in contrast, is not as accurate when the view difference is small, but has fewer fatal

failures. Our approach, which exploits both classic and virtual correspondences, does

not suffer from either catastrophic wide-baseline failures or inaccurate narrow-baseline
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Figure 5-8: Error vs. # of images.

matching.

Our Sf M has a median error of 15.7� and the pose error at the 80th percentile is

less than 24�. In contrast, the median error of deep optimization is 23.5� and the pose

error at the 80th percentile is 44�. Compared to EFT-Net, we improve the silhouette

accuracy from 74% to 81%.

We also investigate how our Sf M scales with more input images. Following

COLMAP [314], we start from an image pair and then incrementally register new

images. As shown in Fig. 5-8, the pose error reduces as more images are added. The

reduction is most significant when registering the third image. We hypothesize this is

because the third image greatly increases the overlap among the images, providing

more reliable classic correspondences during bundle adjustment. We also compare

our approach with the classic Sf M methods. Our AUC continuously outperforms

the baselines at all thresholds (e.g ., @15�: 28.4 vs 17.6). We refer the readers to the

supp. material for full ablation table, cumulative error plots, and detailed performance
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Figure 5-9: Reconstructed mesh using our method + multi-view stereo for two
non-overlapping video sequences.

of all methods with respect to the input images.

Mannequin Challenge: As shown in Tab. 5.1(right), our method outperforms all

baselines at all thresholds. Despite more diverse scenes, our AUC on the MC dataset

is higher than that of the CMU dataset. We hypothesize this is because the viewpoint

changes in the MC dataset are less significant than the CMU dataset, due to how the

dataset was collected.

Qualitative results: We showcase our results on a two-view MC image pair,

and a five-view CMU image set in Fig. 5-4. Our testing scenarios are typically very

challenging, with large view variations and small proportion of co-visible regions.

Nevertheless, our proposed Sf M framework is able to recover both relative poses as

well as the parametric human shape accurately.

5.4.4 Analysis

Ablation study: To gain more insights into the contribution of each component,

we evaluate our method with different configurations on the CMU dataset. As shown

in Tab. 5.2, by simply exploiting VCs during initialization, our method surpasses

classic Sf M in terms of AUC at large thresholds. Additionally, the ablation study

shows that bundle adjustment is critical for VCs. We conjecture this is because VCs

are constructed from initial shape priors, which are noisy. By bundle adjusting the

line segments, we are essentially conducting maximum likelihood estimation [121]
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Estimated pose GT pose

Rot. error: 47.6o Trans error: 1.85 Rot. error: 1.6o Trans error: 0.06 

GT Pose LoFTR Ours

Pose to evaluate

Ours Init.LoFTR Init.
LoFTR + BARF Ours + BARF

GT Pose LoFTR Ours GT Pose LoFTR Ours

(a)
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Figure 5-10: Novel view synthesis: (top left) camera poses initialized with LoFTR
and refined by BARF; (top right) camera poses initialized with our method and refined
by BARF; (bottom) images synthesized at novel views by BARF initialized with GT
pose, LoFTR and our framework respectively.

under Gaussian noise assumption on VC re-projection errors, which mitigates errors

introduced by inaccurate VC pairs.

Effects of viewpoint changes: We use the MC dataset to illustrate how classic

and virtual correspondences evolve with viewpoint changes and how it affects pose

estimation. In general, the ground-truth camera pose difference is proportional to the

video frame index distance. For each video, we compute the classic correspondences

and VCs between all frames and the first frame, and then estimate the relative camera

poses based on them. Since the number of classic correspondences decreases drastically

when the viewpoint changes, classic Sf M fails. In contrast, our Sf M framework

incorporates both classic correspondences and VCs to avoid failures. Fig. 5-5 shows an

example of how our system produces decent estimation across all distances. We also
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showcase a “discrete" evaluation on the CMU dataset in Fig. 5-7. The pose error of

classic Sf M methods increases significantly with respect to the ground-truth camera

pose distances (the diagonal direction), while our Sf M performs consistently across

all settings.

Reliability of human parts: We compute the histogram over all VCs on both

datasets. Around half of the VCs lie on human torso, and around 12% of VCs are

derived from the human head. The remaining VCs uniformly spread across the whole

body. Unlike the deep optimization baseline, we do not encode any prior knowledge

into our system, yet our approach is able to automatically discover that human torso

is the most reliable parts within the predicted 3D shapes. Fig. 5-6 shows a subset of

VCs selected by our Sf M system.

Generalization to in-the-wild images: Our approach can be applied to real-

world image collections without bells and whistles. We test our system on a pair of

movie frames and two pairs of sports photos in Fig. 5-1. Even though the cameras

are far apart and the images are slightly asynchronous, our system still produces

reasonable estimates. More results on classic movies and sports events can be found

in supp. materials.

Limitations: Our approach relies heavily on the predicted shape priors. While

we can handle noisy predictions by pruning out the outlier VCs during geometric

verification, if the initial estimation is completely wrong (which our system can detect

by comparing silhouette consistency, DensePose consistency, etc.), we will not be able

to construct VCs. Additionally, similar to classic Sf M algorithms, we assume the

scene is static. While we can tolerate slight movements (see Fig. 5-1), it fails when

human poses change significantly.
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Figure 5-11: Virtual correspondences from cars.

5.4.5 Applications

Scene reconstruction with multi-view stereo (MVS): We first show how VCs

enable coherent multi-view 3D reconstruction from non-overlapping videos. This type

of capture is common in practice, yet most Sf M and MVS systems can only handle

each sequence individually, resulting in two disjoint 3D reconstructions. Our VCs, in

contrast, are able to recover relative poses even from non-overlapping images, which

allows us to obtain a single, coherent MVS point cloud to unlock further geometry

processing such as mesh reconstruction. We use RealityCapture [2] to reconstruct

the 3D scene by initializing the camera poses with our estimation. The resulting

high-quality meshes suggest that the recovered camera poses and the extracted point

clouds are accurate (see Fig. 5-9). In contrast, both RealityCapture’s built-in 3D

reconstruction pipeline and COLMAP [314] fail due to non-overlapping viewpoints.

Novel view synthesis: We further demonstrate the effectiveness of our approach

in extreme-view scenarios through the task of novel view synthesis, which relies heavily

on input poses. In particular, we adopt BARF [210], an approach that can learn a

neural radiance field [246] and refine camera poses simultaneously. We again use two

non-overlapping video sequences. We initialize BARF with the poses recovered by

our method and LoFTR [334] respectively. Our estimated poses, which are already

fairly accurate, are further refined through the course of BARF training (see Fig.

5-10). In contrast, LoFTR [334] fails to estimate the relative camera poses among

the two sequences correctly (see the green cameras) and the resulting BARF training

gets stuck in local minima. We also evaluate the learned radiance field with novel,

extrapolated poses. Our view syntheses results are comparable to those trained with
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GT poses. As expected, the quality degrades when the evaluation pose deviates too

far from the training poses, especially for the background scene that is unseen in the

training videos. However, we can still see a person standing on the pavement and

observe the structure of the scene. On the other hand, due to the incorrect LoFTR

poses, the baseline fails to produce realistic results.

Extending VCs to other objects: As a proof-of-concept, we exploit canonical

3D deformable mapping [261] as shape priors and adapt our method to cars. As shown

in Fig. 5-11, we are able to estimate VCs and recover relative poses effectively (pose

error: 16�) even from extreme viewpoints. We refer the readers to supp. material for

more details.

5.5 Conclusion

We introduced a novel concept called virtual correspondences – a pair of image

points whose camera rays intersect in 3D. Unlike classic correspondences, virtual

correspondences do not need to describe the same, co-visible 3D points. Thus, VCs are

not constrained by visual or semantic similarities, making it possible to match images

with little or no overlap. We proposed a method to extract virtual correspondences

based on prior knowledge of foreground objects in the image, and integrate with existing

3D frameworks. Our experiments on two challenging human-based datasets show that

virtual correspondences are critical towards successful camera pose estimation and

downstream multi-view stereo and novel view synthesis in extreme-view scenarios.

Social impact: Our method alleviates the need to capture dense views for camera

pose estimation and 3D reconstruction, and has the potential to reduce storage and

computational costs. Unfortunately, it could also be exploited by surveillance and may

raise privacy concerns as 3D reconstruction from few images becomes more accessible.
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Chapter 6

Extreme 3D Modeling with Neural

Radiance Fields

Structure from Duplicates:
Inverse Graphics from a Pile of Objects
Tianhang Chen⇤, Wei-Chiu Ma⇤, Kaiyu Guan, Antonio Torralba, Shenlong

Wang;

arXiv 2023.

We have shown that a high-level understanding of objects can enhance our reasoning

about geometric relationships within a scene. Next, we take a step further and explore

if we can also recover the underlying physical properties, such as albedo, roughness,

metallicity, and illumination, from an extreme setup. We focus on the setting where

multiple (nearly) identical instances are present within a scene. By establishing a

duality between multiple copies of an object in a single image and multiple views of a

single object, we are able to resolve the ambiguities in 3D and effectively recover both

the geometric and physical properties of interest.
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Figure 6-1: Structure from duplicates (SfD) is a novel inverse graphics framework
that reconstructs geometry, material, and illumination from a single image containing
multiple identical objects.

6.1 Introduction

Given a single/set of image(s), the goal of inverse rendering is to recover the underlying

geometry, material, and lighting of the scene. The task is of paramount interest to

many applications in computer vision, graphics, and robotics and has drawn extensive

attention across the communities over the past few years [430, 249, 123, 246].

Since the problem is ill-posed, prevailing inverse rendering approaches often leverage

multi-view observations to constrain the solution space. While these methods have

achieved state-of-the-art performance, in practice, it is sometimes difficult, or even

impossible, to obtain those densely captured images. To overcome the reliance on

multi-view information, researchers have sought to incorporate various structural

priors, either data-driven or handcrafted, into the models [55, 204]. By utilizing the

regularizations, these approaches are able to approximate the intrinsic properties

(e.g., material) and extrinsic factors (e.g., illumination) even from one single image.

Unfortunately, the estimations may be biased due to the priors imposed. This makes

one ponder: is it possible that we take the best of both worlds? Can we extract

multi-view information from a single image under certain circumstances?

Fortunately the answer is yes. Our world is full of repetitive objects and struc-
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tures. Repetitive patterns in single images can help us extract and utilize multi-view

information. For instance, when we enter an auditorium, we often see many identical

chairs facing slightly different directions. Similarly, when we go to a supermarket,

we may observe multiple nearly-identical apples piled on the fruit stand. Although

we may not see the exact same object from multiple viewpoints in just one glance,

we do see many of the “identical twins” from various angles, which is equivalent to

multi-view observations and even more (see Sec. 6.3 for more details). Therefore, the

goal of this chapter is to develop a computational model that can effectively infer

the underlying 3D representations from a single image by harnessing the repetitive

structures of the world.

With these motivations in mind, we present Structure from Duplicates (SfD), a

novel inverse rendering model that is capable of recovering high-quality geometry,

material, and lighting of the objects from a single image. SfD builds upon insights

from structure from motion (SfM) as well as recent advances on neural fields. At

its core lies two key modules: (i) a in-plane rotation robust pose estimation module,

and (ii) a geometric reconstruction module. Given an image of a scene with duplicate

objects, we first exploit the pose estimation module to estimate the relative 6 DoF

poses of the objects. Then, based on the estimated poses, we align the objects and

create multiple “virtual cameras.” This allows us to effectively map the problem from

a single-view multi-object setup to a multi-view single-object setting (see Fig. 6-3).

Finally, once we obtain multi-view observations, we can leverage the geometric module

to recover the underlying intrinsic and extrinsic properties of the scene. Importantly,

SfD can be easily extended to multi-image setup. It can also be seen as a superset of

existing NeRF models, where the model will reduce to NeRF when there is only one

single object in the scene.

We validate the efficacy of our model on a new dataset called Dup, which contains

synthetic and real-world samples of duplicated objects since current multi-view datasets

lack duplication samples. This allows us to benchmark inverse rendering performance

under single-view or multi-view settings. Following previous work [364, 408, 249, 424,

430], we evaluate rendering, relighting and texture quality with MSE, PSNR, SSIM,
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Figure 6-2: Repetitions in the visual world. Our physical world is full of identical
objects (e.g., cans of coke, cars of the same model, chairs in a classroom). These
duplicates, when seen together, provide additional and strong cues for us to effectively
reason about 3D.

LPIPS [427], geometry with Chamfer Distance (CD), and environment light with MSE.

Experimental results suggest that 1) our method produces more realistic material

texture than the existing multi-view inverse rendering model when using the same

number of training views; 2) even only relying on a single-view input, our approach

can still recover comparable or superior materials and geometry compared to baselines

that utilize multi-view images for supervision.

6.2 Related Work

Inverse rendering: The task of inverse rendering can be dated back to more

than half a century ago [185, 136, 137, 22]. The goal is to factorize the appearance

of an object or a scene in the observed image(s) into underlying geometry, material

properties, and lighting conditions [310, 238, 411]. Since the problem is severely under-

constrained, previous work mainly focused on controlled settings or simplifications

of the problem [112, 124, 19]. For instance, they either assume the reflectance of an

object is spatially invariant [424], presume the lighting conditions are known [329],

assume the materials are lambertian [436, 230], or presume the proxy geometry is

available [309, 188, 77, 183]. More recently, with the help of machine learning, in

particular deep learning, researchers have gradually moved towards more challenging

in-the-wild settings [432, 249]. By pre-training on a large amount of synthetic yet

realistic data [204] or baking inductive biases into the modeling pipeline [57, 428], these
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Figure 6-3: Method overview: (Left) SfD begins by identifying multiple instances
of an object within an image, and then jointly estimates the 6DoF pose for all instances.
(Right) An inverse graphics pipeline is subsequently employed to reason about the
shape, material of the object, and the environment light, while adhering to the shared
geometry and material constraint across instances.

approaches can better tackle unconstrained real-world scenarios (e.g., unknown lighting

conditions) and recover the underly physical properties more effectively [249, 425].

For example, through properly modeling the indirect illumination and the visibility of

direct illumination, Zhang et al. [430] is able to recover interreflection- and shadow-

free SVBRDF materials (e.g., albedo, roughness). Through disentangling complex

geometry and materials from lighting effects, Wang et al. [379] can faithfully relight

and manipulate a large outdoor urban scene. Our work builds upon recent advances in

neural inverse rendering. Yet instead of grounding the underlying physical properties

through multi-view observations as in prior work, we focus on the single image setup

and capitalize on the duplicate objects in the scene for regularization. The repetitive

structure not only allows us to ground the geometry, but also provide additional

cues on higher-order lighting effects (e.g., cast shadows). As we will show in the

experimental section, we can recover the geometry, materials, and lighting much more

effectively even when comparing to multi-view observations.

3D Reconstruction: Recovering the spatial layout of the cameras and the geom-

etry of the scene from a single or a collection of images is a longstanding challenge
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in computer vision. It is also the cornerstone for various downstream applications

in computer graphics and robotics such as inverse rendering [238, 364, 379], 3D edit-

ing [221, 399], navigation [231, 418], and robot manipulation [145, 213]. Prevailing

3D reconstruction systems, such as structure from motion (SfM), primarily rely on

multi-view geometry to estimate the 3D structure of a scene [224, 122, 314]. While

achieving significant successes, they rely on densely captured images, limiting their

flexibility and practical use cases. Single image 3D reconstruction, on the other hand,

aims to recover metric 3D information from a monocular image [87, 56, 286, 287].

Since the problem is inherently ill-posed and lacks the ability to leverage multi-view

geometry for regularization, these methods have to resort to (learned) structural priors

to resolve the ambiguities. While they offer greater flexibility, their estimations may

inherit biases from the training data. In this chapter, we demonstrate that, under

certain conditions, it is possible to incorporate multi-view geometry into a single

image reconstruction system. Specifically, we leverage repetitive objects within the

scene to anchor the underlying 3D structure. By treating each of these duplicates as

an observation from different viewpoints, we can achieve highly accurate metric 3D

reconstruction from a single image.

Repetitions: Repetitive structures and patterns are ubiquitous in natural images.

They play important roles in addressing numerous computer vision problems. For

instance, a single natural image often contains substantial redundant patches [441].

The recurrence of small image patches allows one to learn a powerful prior which

can later be utilized for various tasks such as super-resolution [107, 141], image

deblurring [245], image denoising [88], and texture synthesis [85]. Moving beyond

patches, repetitive primitives or objects within the scene also provide informative cues

about their intrinsic properties [195, 402]. By sharing or regularizing their underlying

representation, one can more effectively constrain and reconstruct their 3D geometry

[139, 96], as well as enable various powerful image/shape manipulation operations

[196, 363]. In this work, we further push the boundary and attempt to recover not

just the geometry, but also the materials (e.g., albedo, roughness), visibilities, and
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Albedo Roughness Relighting Env. Light Geometry
Multi-view PSNR " MSE # PSNR " MSE # CD #

PhySG 16.233 0.087 21.323 0.054 0.024
Nv-DiffRec 16.123 0.116 17.418 0.168 0.268
InvRender 16.984 0.084 22.224 0.067 0.024

Ours 21.961 0.026 25.486 0.029 0.011

Table 6.1: Multi-view inverse rendering on synthetic data. Both our model
and the baseline are trained on multi-view images. Our model is significantly better
than baseline in terms of geometry and PBR texture.

Albedo Roughness Relighting Env. Light Geometry
Single-view PSNR " MSE # PSNR " MSE # CD #

PhySG* 14.977 0.255 18.504 0.082 0.033
Nv-DiffRec* 14.021 0.165 17.214 0.067 0.050
InvRender* 14.724 0.247 17.998 0.082 0.033

Ours 17.629 0.062 21.374 0.052 0.034

Table 6.2: Single-view inverse rendering on synthetic data. While our model
is trained on a single-view image, the baselines ⇤ are trained on 10 multi-view images
of the same scene.

lighting conditions of the objects. Perhaps closest to our work is [431]. Developed

independently and concurrently, Zhang et al. build a generative model that aims to

capture object intrinsics from a single image with multiple similar/same instances.

However, there exist several key differences: 1) we explicitly recover metric-accurate

camera poses using multi-geometry, whereas Zhang et al. learn this indirectly through

a GAN-loss; 2) we parameterize and reason realistic PBR material and environmental

light; 3) we handle arbitrary poses, instead of needing to incorporate a prior pose

distribution.

6.3 Structure from Duplicates

In this chapter, we seek to devise a method that can precisely reconstruct the geometry,

material properties, and lighting conditions of an object from a single image containing

duplicates of it. We build our model based on the observation that repetitive objects

in the scene often have different poses and interact with the environment (e.g.,

illumination) differently. This allows one to extract rich multi-view information even
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from one single view and enables one to recover the underlying physical properties of

the objects effectively.

We start by introducing a method for extracting the “multi-view” information from

duplicate objects. Then we discuss how to exploit recent advances in neural inverse

rendering to disentangle both the object intrinsics and environment extrinsics from

the appearance. Finally, we describe our learning procedure and design choices.

6.3.1 Collaborative 6-DoF pose estimation

As we have alluded to above, a single image with multiple duplicate objects contains

rich multi-view information. It can help us ground the underlying geometry and

materials of the objects, and understand the lighting condition of the scene.

Our key insight is that the image can be seen as a collection of multi-view images

stitching together. By cropping out each object, we can essentially transform the single

image into a set of multi-view images of the object from various viewpoints. One

can then leverage structure from motion (SfM) [316] to estimate the relative poses

among the multi-view images, thereby aggregating the information needed for inverse

rendering. Notably, the estimated camera poses can be inverted to recover the 6 DoF

poses of the duplicate objects. As we will elaborate in Sec. 6.3.2, this empowers us to

more effectively model the extrinsic lighting effect (which mainly depends on world

coordinate) as well as to properly position objects in perspective and reconstruct the

exact same scene.

To be more formal, let I 2 RH⇥W⇥3 be an image with N duplicate objects. Let

{Iobj

i
}N

i=1 2 Rw⇥h⇥3 be the corresponding object image patches. We first leverage

SfM [316, 307] to estimate the camera poses of the multi-view cropped images∗

{⇠i 2 SE(3)}N

i=1:

⇠cam

1 , ⇠cam

2 , ..., ⇠cam

N
= f

SfM(Iobj

1 , Iobj

2 , ..., Iobj

K
). (6.1)

∗
In practice, the cropping operation will change the intrinsic matrix of the original camera during

implementation. For simplicity, we assume the intrinsics are properly handled here.

120



Next, since there is only one real camera in practice, we can simply align the N virtual

cameras {⇠i}N

i=1 to obtain the 6 DoF poses of the duplicate objects. Without loss of

generality and for simplicity, we align all the cameras to a reference coordinate ⇠ref.

The 6 DoF poses of the duplicate objects thus become ⇠obj

i
= ⇠ref � (⇠cam

i
)�1, where �

is matrix multiplication for pose composition.

In practice, we first employ a state-of-the-art panoptic segmentation model [61] to

segment all objects in the scene. Then we fit a predefined bounding box to each object

and crop it. Lastly, we run COLMAP [316] to estimate the 6 DoF virtual camera

poses, which in turn provides us with the 6 DoF object poses. Fig. 6-3(left) depicts

our collaborative 6-DoF pose estimation process.

Caveats of random object poses: Unfortunately, naively feeding these object

patches into SfM would often leads to failure, as little correspondence can be found.

This is due to the fact that state-of-the-art correspondence estimators [307] are trained

on Internet vision data, where objects are primarily upright. The poses of the duplicate

objects in our case, however, vary significantly. Moreover, the objects are often viewed

from accidental viewpoints [101]. Existing estimators thus struggle to match effectively

across such extreme views.

Rotation-aware data augmentation: Fortunately, the scene contains numerous

duplicate objects. While estimating correspondences reliably across arbitrary instances

may not always be possible, there are certain objects whose viewpoints become

significantly similar after in-plane rotation. Hence, we have developed an in-plane

rotation-aware data augmentation for correspondence estimation.

Specifically, when estimating correspondences between a pair of images, we don’t

match the images directly. Instead, we gradually rotate one image and then perform

the match. The number of correspondences at each rotation is recorded and then

smoothed using a running average. We take the argmax to determine the optimal

rotation angle. Finally, we rotate the correspondences from the best match back to the

original pixel coordinates. As we will demonstrate in Sec. 6.4, this straightforward data
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Albedo Roughness Env Light Geometry
# of instances PSNR " MSE # MSE # CD #

2 15.024 0.076 0.069 0.536
4 15.874 0.087 0.082 0.225
6 16.713 0.067 0.067 0.161
8 19.440 0.129 0.082 0.093
10 22.720 0.057 0.052 0.024

Table 6.3: Performance vs. number of duplicates.

Rendering
PSNR " SSIM " LPIPS #

PhySG* 20.624 0.641 0.263
Nv-DiffRec* 18.818 0.569 0.282
InvRender* 20.665 0.639 0.262

Ours 20.326 0.660 0.192

Table 6.4: Single-view inverse rendering on real-world data. ⇤ indicates that
the baselines are trained on multi-view observations.

augmentation strategy significantly improves the accuracy of 6 DoF pose estimation.

In practice, we rotate the image by 2� per step. All the rotated images are batched

together, enabling us to match the image pairs in a single forward pass.

6.3.2 Joint shape, material, and illumination estimation

Suppose now we have the 6 DoF poses of the objects {⇠obj

i
}N

i=1. The next step is to

aggregate the information across duplicate objects to recover the intrinsics properties

of the objects (e.g., geometry, materials) and the extrinsic factors of the world (e.g.,

illumination). We aim to reproduce these attributes as faithfully as possible, so that

the resulting estimations can be utilized for downstream tasks such as relighting and

material editing. Since the task is under-constrained and joint estimation often leads

to suboptimal results, we follow prior art [430, 379] and adopt a stage-wise procedure.

Geometry reconstruction: We start by reconstructing the geometry of the objects.

In line with NeuS [364], we represent the object surfaces as the zero level set of a signed

distance function (SDF). We parameterize the SDF with a multi-layer perceptron

(MLP) S : xobj 7! s that maps a 3D point under object coordinate xobj 2 R3 to a
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signed distance value s 2 R. Different from NeuS [364], we model the geometry of

objects in local object space. This allows us to guarantee shape consistency across

instances by design. We can also obtain the surface normal by taking the gradient

of the SDF: n(xobj) = rxobjS. To learn the geometry from multi-view images, we

additionally adopt an auxiliary appearance MLP C : {x,xobj
,n,nobj

,d,dobj} 7! c

that takes as input a 3D point x,xobj, surface normal n,nobj, and view direction

d,dobj under both coordinate systems and outputs the color c 2 R3. The input from

world coordinate system helps the MLP to handle the appearance inconsistencies

across instances caused by lighting or occlusion. We tied the weights of the early layers

of C to those of S so that the gradient from color can be propagated to geometry.

We determine which object coordinate to use based on the object the ray hits. This

information can be derived either from the instance segmentation or another allocation

MLP A : {x,d} 7! q, where q 2 N is the instance index. After we obtain the geometry

MLP S, we discard the auxiliary appearance MLP C. As we will discuss in the next

paragraph, we model the object appearance using physics-based rendering (PBR)

materials so that it can handle complex real-world lighting scenarios.

Material and illumination model: Now we have recovered the geometry of the

objects, the next step is to estimate the environment light of the scene as well as the

material of the object. We assume all lights come from an infinitely faraway sphere

and only consider direct illumination. Therefore, the illumination emitted to a 3D

point in a certain direction is determined solely by the incident light direction wi

and is independent of the point’s position. Similar to [424, 430], we approximate the

environment light with M = 128 Spherical Gaussians (SGs):

Li (!i) =
XM

k=1
µke

�k(wi·�k�1)
, (6.2)

where � 2 R+ is the lobe sharpness, µ is the lobe amplitude, and � is the lobe axis.

This allows us to effectively represent the illumination and compute the rendering

equation (Eq. 6.3) in closed-form.
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As for object material, we adopt the simplified Disney BRDF formulation [38, 164]

and parameterized it as a MLP M : xobj 7! {a, r,m}. Here, a 2 R3 denotes albedo,

r 2 [0, 1] corresponds to roughness, and m 2 [0, 1] signifies metallic. Additionally,

inspired by InvRender [430], we incorporate a visibility MLP V : (x,wi) 7! v 2 [0, 1]

to approximate visibility for faster reference. We query only surface points, which can

be derived from the geometry MLP S using volume rendering. The material MLP M

also operates in object coordinates like S, which ensure material consistency across

all instances. Moreover, the variations in lighting conditions between instances help

us better disentangle the effects of lighting from the materials. We set the dielectrics

Fresnel term to F0 = 0.02 and the general Fresnel term to F = (1�m)F0 +ma to be

compatible with both metals and dielectrics.

Combining all of these components, we can generate high-quality images by

integrating the visible incident lights from hemisphere and modeling the effects of

BRDF [160]:

Lo(wo;x) =

Z

⌦

Li(wi)fr(wi,wo;x)(wi · n)dwi. (6.3)

Here, wi is the incident light direction, while wo is the viewing direction. The BRDF

function fr can be derived from our PBR materials. We determine the visibility of

an incident light either through sphere tracing or following Zhang et al. [430] to

approximate it with a visibility MLP V .

6.3.3 Optimization

Optimizing shape, illumination, and material jointly from scratch is challenging.

Taking inspiration from previous successful approaches [430, 424], we implement a

multi-stage optimization pipeline. We progressively optimize the geometry first, then

visibility, and finally, material and illumination.
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Figure 6-4: Multi-view inverse rendering.

Geometry optimization: We optimize the geometry model by minimizing the

difference between rendered cues and observed cues.

min
S,C

Ecolor + Ereg + Emask + Enormal, (6.4)

where each term is defined as follows:

• The color consistency term Ecolor is a L1 color consistency loss between the

rendered color c and the observed color ĉ for all pixel rays: Ecolor =
P

r kcr�crk1.

• The normal consistency term Enormal measures the rendered normal n̂ and a

predicted normal n̂: Enormal =
P

r k1� n̂T
r nrk1 + kn̂r � nrk1. Our monocular

predicted normal n̂ is obtained using a pretrained Omnidata model [86].

• The mask consistency term Emask measures the discrepancy between the rendered

mask mr and the observed mask m̂r, in terms of binary cross-entropy (BCE):

Lmask =
P

r BCE (mr, m̂r).
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Figure 6-5: Multi-view single object (M-S) vs single-view multi-objects (S-
M).

• Finally, inspired by NeuS [364], we incorporate an Eikonal regularization to ensure

the neural field is a valid signed distance field: Leikonal =
P

x (krxSk2 � 1)2,

Visibility optimization: Ambient occlusion and self-cast shadows pose challenges

to the accuracy of inverse rendering, as it’s difficult to separate them from albedo when

optimizing photometric loss. However, with an estimated geometry, we can already

obtain a strong visibility cue. Consequently, we utilize ambient occlusion mapping to

prebake the visibility map onto the object surfaces obtained from the previous stage.

We then minimize the visibility consistency term to ensure the rendered visibility vr

from MLP V aligns with the derived visibility v̂r: minV

P
r BCE(vr, v̂r).

Material and illumination optimization: In the final stage, given the obtained

surface geometry and the visibility network, we jointly optimize the environmental

126



light and the PBR material network. The overall objective is as follows:

min
M,!,�

Ecolor + Elatent + Emetal, (6.5)

where the three terms are defined as follows:

• The color consistency term Ecolor minimizes the discrepancy between the rendered

color and observed color, akin to the geometry optimization stage. However, we

use PBR-shaded color in place of the color queried from the auxiliary radiance

field.

• The latent code regularization Elatent constrains the latent code ⇢ of the material

network to closely align with a constant target vector ⇢0: Elatent = KL (⇢||⇢0).

We set ⇢0 = 0.05.

• Lastly, inspired by the fact that most common objects are either metallic or not,

we introduce a metallic regularization Lmetal to encourage the predicted metallic

value to be close to either 0 or 1: Lmetal =
P

r mr(1�mr).

6.4 Experiment

In this section, we evaluate the effectiveness of our model on synthetic and real-world

datasets, analyze its characteristics, and showcase its applications.

6.4.1 Experiment setups

Data: Since existing multi-view datasets do not contain duplicate objects, we collect

Dup, a novel inverse rendering dataset featuring various duplicate objects. Dup

consists of 13 synthetic and 6 real-world scenes, each comprising 5-10 duplicate objects

such as cans, bottles, fire hydrants, etc. For synthetic data, we acquire 3D assets

from PolyHaven† and utilize Blender Cycles for physics-based rendering. We generate

10-300 images per scene. As for the real-world data, we place the objects in different
†
https://polyhaven.com/models
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environments and capture 10-15 images using a mobile phone. The data allows for a

comprehensive evaluation of the benefits of including duplicate objects in the scene

for inverse rendering.

Metrics: Following prior art [430, 424], we employ Peak Signal-to-Noise Ratio

(PSNR), Structural Similarity (SSIM), and LPIPS [426] to assess the quality of

rendered and relit images. For materials, we utilize PSNR to evaluate albedo, and

mean-squared error (MSE) to quantify roughness and environmental lighting. And

following[364, 408, 249], we leverage the Chamfer Distance to measure the distance

between our estimated geometry and the ground truth.

Baselines: We compare against three state-of-the-art multi-view inverse rendering

approaches: Physg [424], InvRender [430], and NVdiffrec [249]. Physg and InvRen-

der employ implicit representations to describe geometric and material properties,

while NVdiffrec utilizes a differentiable mesh representation along with UV textures.

Additionally, we enhance Physg by equipping it with a spatially-varying roughness.

Implementation details: We use the Adam optimizer with an initial learning

rate 2e-4. All experiments are conducted on a single A100. The first stage takes 20

hours, and the 2nd and 3rd stage takes about 2 hours.

6.4.2 Experimental results

Single-view inverse rendering: We first evaluate our approach on the single-

image multi-object setup. Since the baselines are not designed for this particular

setup, we randomly select another 9 views, resulting in a total of 10 multi-view images,

to train them. As shown in Tab. 6.2, we are able to leverage duplicate objects to

constrain the underlying geometry, achieving comparable performance to the multi-

view baselines. The variations in lighting conditions across instances also aid us in

better disentangling the effects of lighting from the materials.
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Albedo Roughness Relighting Env Light Geometry
PSNR " MSE # PSNR " MSE # CD #

M-S 20.229 0.096 21.328 0.045 0.010
S-M 23.448 0.050 24.254 0.052 0.007

Table 6.5: Multi-view single object (M-S) vs single-view multi-object (S-M).

Albedo Roughness Relighting Env. Light Geometry
PSNR " MSE # PSNR " MSE # CD #

Oracle 17.858 0.105 21.132 0.063 0.031
Ours 17.629 0.062 21.374 0.051 0.034

Table 6.6: Single-view inverse rendering with estimated/ground-truth ob-
ject poses. Our model achieves similar results to the oracle model, suggesting that
the pose estimation error is negligible.

Multi-view inverse rendering: Our method can be naturally extended to the

multi-view setup, allowing us to validate its effectiveness in traditional inverse rendering

scenarios. We utilize synthetic data to verify its performance. For each scene, we train

our model and the baselines using 100 different views and evaluate the quality of the

reconstruction results. Similar to previous work, we assume the ground truth poses

are provided. As shown in Tab. 6.1, we outperform the baselines on all aspects. We

conjecture that this improvement stems from our approach explicitly incorporating a

material- and geometry-sharing mechanism during the modeling process. As a result,

we have access to a significantly larger number of "effective views" during training

compared to the baselines. We show some qualitative results in Fig. 6-4(left).

Real-world single-view inverse rendering: Up to this point, we have showcased

the effectiveness of our approach in various setups using synthetic data. Next, we

evaluate our model on real-world data. Due to the challenge of obtaining highly

accurate ground truth for materials and geometry, we focus our comparison solely

on the rendering results. As indicated in Tab. 6.4, our method achieves comparable

performance to the multi-view baselines, even when trained using only a single view.

We visualize some results in Fig. 6-1 and Fig. 6-6.
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6.4.3 Analysis

Importance of the number of duplicate objects: Since our model utilize

duplicate objects as a prior for 3D reasoning, one natural question to ask is: how many

duplicate objects do we need? To investigate this, we randomly select a synthetic scene

with 10 duplicates and gradually reduce the number of objects. We train our model

under each setup and report the performance in Tab. 6.3. As expected, increasing the

number of duplicates improves the accuracy of both material and geometry, since it

provides more constraints on the shared object intrinsics.

Multi-view single object (M-S) vs. single-view multi-objects (S-M): Is

observing an object from multiple views equivalent to observing multiple objects

from a single view? Which scenario provides more informative data? To address this

question, we first construct a scene containing 10 duplicate objects. Then, we place

the same object into the same scene and capture 10 multi-view images. We train

our model under both setups. Remarkably, the single-view setting outperforms the

multi-view setting in all aspects (see Tab. 6.5). We conjecture this discrepancy arises

from the fact that different instances of the object experience environmental lighting

from various angles. Consequently, we are better able to disentangle the lighting

effects from the material properties in the single-view setup. Fig. 6-5(right) shows

some qualitative results.

Importance of 6 DoF pose estimation: Since our method adopts a stage-wise

inference procedure, errors in pose estimation can propagate and impact the quality of

the inverse rendering reconstructions. To verify the extent of this impact, we conduct

an oracle experiment where we replace the estimated 6 DoF object poses with ground

truth. As shown in Tab. 6.6, the average performance of the oracle model is similar to

ours, suggesting that our pose estimation is very accurate. In fact, our pose estimation

method achieves an average rotation error of 0.729° and a translation error of 1.522°.
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Applications: Our approach supports various scene edits. Once we recover the

material and geometry of the objects, as well as the illumination of the scene, we

can faithfully relight existing objects, edit their materials, and seamlessly insert new

objects into the environment as if they were originally present during the image

capturing process (see Fig. 6-1).

Limitations: One major limitation of our approach is that we require the instances

in each image to be nearly identical. Our method struggles when there are substantial

deformations between different objects, as we adopt a geometry/material-sharing

strategy. One potential way to address this is to loosen the sharing constraints and

model instance-wise variations. However, increasing the capacity of the model may

result in overfitting. We leave this for future study. Additionally, our approach

currently requires decent 6 DoF poses as input and keeps the poses fixed. We could

potentially combine it with BARF [211] to further refine our estimations.

6.5 Conclusion

We introduce a novel inverse rendering approach for single images with duplicate

objects. We exploit the repetitive structure to estimate the 6 DoF poses of the

objects, and incorporate a geometry and material-sharing mechanism to enhance the

performance of inverse rendering. Experiments show that our method outperforms

baselines, achieving highly detailed and precise reconstructions.
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Figure 6-6: Qualitative comparison on real-world data. InvRender [430] takes
as input 10 images, while we only consider one single view. Yet our approach is able
to recover the underlying geometry and materials more effectively.
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Chapter 7

3D Simulation and Generation

SGAM: Building a Virtual 3D World through Simultaneous
Generation and Mapping
Yuan Shen, Wei-Chiu Ma, Shenlong Wang;

NeurIPS 2023.

UniSim: A Neural Closed-Loop Sensor Simulator
Ze Yang⇤, Yun Chen⇤, Jingkang Wang⇤, Sivabalan Manivasagam⇤, Wei-Chiu Ma,

Anqi Joyce Yang, Raquel Urtasun;

CVPR 2023.

UltraLiDAR: Learning Compact Representations for LiDAR
Completion and Generation
Yuwen Xiong, Wei-Chiu Ma, Jingkang Wang, Raquel Urtasun;

CVPR 2023.

We have now equipped machines with the ability to reason about various 3D properties

under different conditions. Nevertheless, to truly comprehend the 3D world, intelligent

systems must also be capable of hallucinating novel scenarios for better decision-making.

In this chapter, we introduce two distinct methodologies to construct intelligent

systems that can not only faithfully replicate the world, but also effectively simulate
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counterfactual “what-if” scenarios. We show that with careful design one is able to,

either explicitly or implicitly, build an editable digital twin of the world and enable

various applications.

7.1 Introduction

Human perception goes way beyond simple recognition and reconstruction. Our

extraordinary abilities not only allow us to make sense of what we see, but also enable

us to imagine what we do not (e.g ., reason about what the scene looks like under

different conditions). With a simple glance, we can effortlessly re-build a mental world,

that may not be exactly like the original, but is perceived by our brain to be the same.

In fact, it is such a profound ability drawing us apart from existing AI systems.

In this chapter, we aim to equip computational machines with similar capabilities.

Our goal is to develop an intelligent 3D system that can not only faithfully reproduce

what it “sees,” but also realistically simulate temporally and spatially consistent

sensory data (e.g., images, LiDAR point clouds) at novel viewpoints and for different

scene configurations (e.g., actors at new placements). The task is of paramount

interest to many applications in computer vision, computer graphics, geography, and

robotics, since it unlocks numerous potentials. For instance, it may allow us to build

an interactive virtual environment without any costly and laborious 3D modeling

pipeline. We can not only synthesize novel, high-fidelity observations of the world for

content creation, but also generate potentially infinite synthetic yet realistic training

data for machine learning models. Importantly, it will allow us to test the policy of

autonomous systems on a variety of scenarios, including hazardous long-tail situations

that are difficult to test safely, without needing to deploy to the real world.

Indeed, there has been a consistent pursuit within the community in the past few

decades [85, 84, 439, 325, 52, 341], where people attempt to design algorithms and

models that are capable of extrapolating and hallucinating the world from existing

observations. Unfortunately, a large body of efforts have been focusing on modeling

in the 2D image space [85, 84, 439, 93, 212, 52], rely on densely collected observations
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and focus on static scenes [246, 299, 300, 20, 214], or require external 3D assets and

manually specified rules for restricted 3D simulation [193, 59, 9]. Recently, with the

advent of deep generative models [175, 385, 216, 303, 301], researchers have made

great strides in unconstrained 3D syntheses. However, due to the highly complex

structure of the task, these approaches primarily focus on object-centric scenarios or

the generation of small-scale environments. The ability to re-simulate a large-scale,

dynamic 3D world and generate novel “what-if” scenarios remains elusive.

With these challenges in mind, we present two separate efforts towards 3D sim-

ulation and generation. We focus on the challenging self-driving scenario where

the observations are sparse and often captured from constrained viewpoints (e.g .,

straight trajectories along the roads). The first endeavor is to explicitly build an

editable digital twin of the real world (through the data we captured), where existing

actors in the scene can be modified or removed, new actors can be added, and new

autonomy trajectories can be executed. This will enable the autonomy system to

interact with the simulated world, where it receives new sensor observations based on

its new location and the updated states of the dynamic actors, in a closed-loop fashion.

Through a series of enhancements over prior neural rendering approaches, we are able

to reconstruct and render multi-sensor (i.e., LiDAR and camera) data for novel views

and new scene configurations. Fig. 7-1 showcases the capabilities of our digital twin.

Our second research thrust is to learn the scene statistics from data implicitly and

build an interpretable and controllable 3D generative model capable of generating

entirely new scenes and structure from scratch. We focus mainly on LiDAR point

clouds since it is the preferred data modality of most autonomous systems. Our key

idea is to learn a compact, discrete 3D representation (codebook) of LiDAR point

clouds that encodes the geometric structure of the scene and the physical rules of our

world (e.g ., occlusion). Then, by learning a prior over the discrete codebook, we can

generate novel, realistic driving scenes by sampling from it; we can also manipulate

the discrete code of the scene and produce counterfactual scenarios, both of which can

drastically improve the diversity and amount of LiDAR data. Fig. 7-2 shows some

example outputs of our generative model.
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Closed-loop simulation for safety-critical scenarios

Actor Removal Actor Modification

SDV Sensor Lift SDV Lane Change

Scene manipulation with actor removal, modification, sensor configuration changes, and modified ego-trajectories

Original Scenario

Modify Sedan Route Insert New Truck

Original Scenario

Closed-loop simulation for vehicle cut-in

Original

Original

Original

Original

Figure 7-1: Capabilities of our digital twin. Top: We take recorded sensor data
from a data collection platform and creates manipulable digital twins. Bottom:
Our digital twin generates realistic, temporally consistent sensor simulations for new
scenarios, enabling closed-loop autonomy evaluation. The autonomy system reactively
interacts with the scenario, receives new sensor data, and changes lanes (see planned
trajectory inset). All images and LiDAR are simulated .

We demonstrate the effectiveness of our proposed methodologies on two separate

tasks: 3D simulation and 3D generation. For 3D simulation, our approach can realisti-

cally simulate camera and LiDAR observations at new views for large-scale dynamic

driving scenes, achieving state-of-the-art performance in photorealism. Moreover, we

reduce the domain gap over existing camera simulation methods on the downstream

autonomy tasks of detection, motion forecasting and motion planning. Our simulated

results can also be used to augment training data to improve perception models and

perform closed-loop evaluation of autonomous systems on safety-critical scenarios. As

for 3D generation, we compare our results with state- of-the-art LiDAR generative

models. Our generated point clouds better match the statistics of those of ground

truth data. We also conducted a human study where participants prefer our method

over prior art over 98.5% (best 100%) of the time; comparing to ground truth, our
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Figure 7-2: Capabilities of our 3D generative model. Top row: Diverse
LiDAR generation with realistic global structure and fine-grained details; Middle
row: Conditional scene generation with partially observed point clouds (highlighted
in red). Bottom row: Controllable manipulation of real LiDAR with actor removal
and insertion. Please see supp. material for more examples.

results were selected 32% of the time (best 50%).

7.2 Related Work

7.2.1 Simulation

Novel view synthesis: Recent novel view synthesis (NVS) work has achieved

success in automatically generating highly photorealistic sensor observations [299,

246, 265, 181, 293, 266, 7, 223]. Such methods aim to learn a scene representation

from a set of densely collected observed images and render the scene from nearby

unseen viewpoints. Some works perform geometry reconstruction and then warp and

aggregate pixel-features from the input images into new camera views, which are then

processed by learning-based modules [299, 300, 7, 284]. Others represent the scene

implicitly as a neural radiance field (NeRF) and perform volume rendering with a

neural network [246, 20, 356, 403]. These methods can represent complex geometry

and appearance and have achieved photorealistic rendering, but focus on small static
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scenes. Several representations [218, 48, 239, 254, 291, 292, 340, 248, 423] partition

the space and model the volume more efficiently to handle large-scale unbounded

outdoor scenes. However, these works focus primarily on the NVS task where a dense

collection of images are available and most test viewpoints are close to the training

views, and focus on the static scene without rendering dynamic objects such as moving

vehicles. In contrast, our work extends NVS techniques to build a sensor simulator

from a single recorded log captured by a high-speed mobile platform. We aim to render

image and LiDAR observations of dynamic traffic scenarios from new viewpoints and

modified scene configurations to enable closed-loop autonomy evaluation.

Data-driven sensor simulation for self-driving: Several past works have lever-

aged computer vision techniques and real world data to build sensor simulators for

self-driving. Some works perform 3D reconstruction by aggregating LiDAR and build-

ing textured geometry primitives for physics-based rendering [338, 237, 95, 405], but

primarily simulate LiDAR or cannot model high-resolution images. Another line of

work perform object reconstruction and insertion into existing images [59, 378, 403, 362]

or point clouds [361, 94, 401, 400], but these methods are unable to render sensor

data from new views for closed-loop interaction. DriveGAN [171] represents the

scene as disentangled latent codes and generates video from control inputs with a

neural network for differentiable closed-loop simulation, but is limited in its realism

and is not temporally consistent. AADS [193] and VISTA 2.0 [9, 8, 373], perform

multi-sensor simulation via image-based warping or ray-casting on previously collected

sensor data to render new views of the static scene, and then insert and blend CAD

assets into the sensor data to create new scenarios. These approaches, while promising,

have visual artifacts for the inserted actors and rendered novel views, resulting in

a large domain gap. Neural Scene Graphs (NSG) [265] and Panoptic Neural Fields

(PNF) [181] represent the static scene and agents as multi-layer perceptrons (MLPs)

and volume render photorealistic images of the scene. However, the single MLP has

difficulties modelling large scale scenes. These prior works also focus on scene editing

and perception tasks where the SDV does not deviate significantly from the original
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recording. Instead, we focus on multi-sensor simulation for closed loop evaluation of

autonomy systems, and specifically design our system to better handle extrapolation.

7.2.2 Generation

Image generation: How to synthesize an image realistically has been a long-

standing problem in computer vision. The task dates back to 60s [159, 29] where

researchers attempted to generate textures by matching statistics [235, 130]. Through

parametric sampling [439] or non-parametric matching [85, 84], they were able to

synthesize an infinite amount of high-fidelity texture images. Unfortunately, these

approaches fall short when applied to natural images, since the images have much higher

complexity. Recently, with the help of deep generative models [108, 174, 283, 134, 328],

researchers have demonstrated promising results on generating photo-realistic images

[148, 165, 166]. With proper design and inductive biases [354, 93, 62], they are

even able to scale the output to mega-pixel level [344, 52]. In this chapter, we take

inspiration from latest 2D generative models [93, 52] and build on top of it. However,

instead of treating 3D generation as a 2D task (e.g . range image, depth map) as in the

past, we explicitly model the 3D geometric relationship — both at the input level and

the output level. By encoding 3D information into the quantized codebook, we are

able to synthesize a large amount of high-quality, realistic point clouds for large-scale

outdoor environment, which are not exactly like the original, but will be perceived by

humans to be real.

3D Generation: 3D modeling and synthesis have been an active yet challenging

research problem for decades [46, 32, 341]. Recently, with the development of image

generation techniques [108, 174, 297], the field has experienced a rapid growth [391,

258, 343]. Drawing inspiration from its corresponding 2D analogue, researchers have

been able to generate high quality point clouds [206, 398, 40], voxels [104, 392], meshes

[113, 106], etc. Unfortunately, since 3D solution space is much more intricate than

that of 2D, these approaches are typically object-centric; also, they mostly focus on

generating common objects in our daily lives [114, 209, 81, 82]. To enable scene-level
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synthesis, researchers have sought to incorporate more structures into the generation

pipeline [253, 281, 270, 280], such as reducing the output space from full 3D to

predefined, compact representation [274, 252, 339]. While these strategies greatly

alleviate the issue, the generated scene scale is still rather limited (e.g., an indoor

environment). In this chapter, we push the boundary of 3D generation systems

and present a approach that is capable of generating large-scale, coherent 3D scene

structure more than a hundred thousand square feet. The produced high-quality 3D

world is interpretable, easy to manipulate, and captures the physical structure of the

real world (e.g . occlusion patterns).

7.3 Method I: Building Editable Digital Twins

7.3.1 Overview

Given a log with camera images and LiDAR point clouds captured by a moving

platform, as well as their relative poses in a reference frame, our goal is to construct an

editable and controllable digital twin, from which we can generate realistic multi-modal

sensor simulation and counterfactual scenarios of interest. We build our model based

on the intuition that the 3D world can be decomposed as a static background and a set

of moving actors. By effectively disentangling and modeling each component, we can

manipulate the actors to generate new scenarios and simulate the sensor observations

from new viewpoints. Towards this goal, we propose a neural rendering closed-loop

simulator that jointly learns shape and appearance representations for both the static

scene and dynamic actors from the sensor data captured from a single pass of the

environment.

We unfold this section by first reviewing the basic building blocks of our approach.

Next, we present our compositional scene representation, and detail how we design our

background and dynamic actor models. We then describe how to generate simulated

sensor data with. Finally, we discuss how to learn the model from real-world data.

Fig. 7-3 shows an overview of our approach.
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Figure 7-3: Overview of our digital twin: We divide the 3D scene into a static
background (grey) and a set of dynamic actors (red). We query the neural feature
fields separately for static background and dynamic actor models, and perform volume
rendering to generate neural feature descriptors. We model the static scene with a
sparse feature-grid and use a hypernetwork to generate the representation of each
actor from a learnable latent. We finally use a convolutional network to decode feature
patches into an image.

7.3.2 Preliminaries

Neural feature fields: A feature field refers to a continuous function f that maps

a 3D point x 2 R3 and a view direction d 2 R2 to an implicit geometry s 2 R and a

Nf -dimensional feature descriptor f 2 RNf . Since the function is often parameterized

as a neural network f✓ : R3 ⇥ R2 ! R⇥ RNf , with ✓ the learnable weights, we call it

neural feature field (NFF). NFFs can be seen as a superset of several existing works

[246, 244]. If we represent the implicit geometry as volume density s 2 R+ and the

feature descriptor as RGB radiance f 2 R3, NFFs become NeRFs [246]. If we enforce

the implicit geometry to be the probability of occupancy, NFFs become occupancy

functions [244]. Importantly, NFFs naturally support composition [116, 259, 181],

enabling the combination of multiple relatively simple NFFs to form a complex field.
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Multi-resolution features grid: To improve the expressiveness and speed of NFFs,

past works [337, 248, 63, 412] further combined learnable multi-resolution features

grid {Gl}L

l=1 with a neural network f . Specifically, given a query point x 2 R3, the 3D

feature grid at each level is first trilinearly interpolated. The interpolated features

are then concatenated with the view direction d 2 R2, and the resulting features are

processed with an MLP head to obtain the geometry s and feature descriptor f :

s, f = f
�
{interp(x,Gl)}L

l=1,d
�
. (7.1)

These multi-scale features encode both global context and fine-grained details, provid-

ing richer information comparing to the original input x. This also enables using a

smaller f , which significantly reduces the inference time [330, 337]. In practice, we

optimize the features grid using a fixed number of features F , and map the features

grid {Gl}L

l=1 to F with a grid index hash function [248]. Hereafter, we will use F and

{Gl}L

l=1 interchangeably.

7.3.3 Compositional Neural Scene Representation

We aim to build a compositional scene representation that best models the 3D world

including the dynamic actors and static scene. Given a recorded log captured by a

data collection platform, we first define a 3D space volume over the traversed region.

The volume consists of a static background B and a set of dynamic actors {Ai}N

i=1.

Each dynamic actor is parameterized as a bounding box of dimensions sAi 2 R3, and

its trajectory is defined by a sequence of SE(3) poses {Tt

Ai
}T

t=1. We then model the

static background and dynamic actors with separate multi-resolution features grid and

NFFs. Let the static background be expressed in the world frame. We represent each

actor in its object-centroid coordinate system (defined at the centroid of its bounding

box), and transform their features grid to world coordinates to compose with the

background. This allows us to disentangle the 3D motion of each actor, and focus on

representing shape and appearance. To learn high-quality geometry [364, 408], we

adopt the signed distance function (SDF) as our implicit geometry representation s.
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We now describe each component in more detail.

Sparse background scene model: We model the whole static scene with a multi-

resolution features grid Fbg and an MLP head fbg. Since a self-driving log often spans

hundreds to thousands of meters, it is computationally and memory expensive to

maintain a dense, high-resolution voxel grid. We thus utilize geometry priors from

LiDAR observations to identify near-surface voxels and optimize only their features.

Specifically, we first aggregate the static LiDAR point cloud from each frame to

construct a dense 3D scene point cloud. We then voxelize the scene point cloud and

obtain a scene occupancy grid Vocc. Finally, we apply morphological dilation to the

occupancy grid and coarsely split the 3D space into free vs. near-surface space. As

the static background is often dominated by free space, this can significantly sparsify

the features grid and reduce the computation cost. The geometric prior also allows us

to better model the 3D structure of the scene, which is critical when simulating novel

viewpoints with large extrapolation. To model distant regions, such as sky, we follow

[423, 21] to extend our background scene model to unbounded scenes.

Generalized actor model: One straightforward way to model the actors is to

parameterize each actor Ai with a features grid FAi and adopt a shared MLP head

fA for all actors. In this design, the individual features grid encodes instance-specific

geometry and appearance, while the shared network maps them to the same feature

space for downstream applications. Unfortunately, such a design requires large memory

for dense traffic scenes and, in practice, often leads to overfitting — the features grid

does not generalize well to unseen viewpoints. To overcome such limitations, we

propose to learn a hypernetwork [117] over the parameters of all grids of features. The

intuition is that different actors are observed from different viewpoints, and thus their

grids of features are informative in different regions. By learning a prior over them,

we can capture the correlations between the features and infer the invisible parts from

the visible ones. Specifically, we model each actor Ai with a low-dimensional latent
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code zAi and learn a hypernetwork fz to regress the features grid FAi :

FAi = fz(zAi). (7.2)

Similar to the background, we adopt a shared MLP head fA to predict the geometry

and feature descriptor at each sampled 3D point via Eq. 7.1. We jointly optimize the

actor latent codes {zAi} during training.

Composing neural feature fields: Inspired by works that composite solid objects

[116, 265] into a scene, we first transform object-centric neural fields of the foreground

actors to world coordinates with the desired poses (e.g ., using Tt

Ai
for reconstruction).

As the static background is a sparse features grid, we then simply replace the free

space with the actor feature fields. Through this simple operation, we can insert,

remove, and manipulate the actors within the scene.

7.3.4 Multi-modal Sensor Simulation

Now that we have a composed scene representation of the static and dynamic world,

the next step is to render it into the data modality of interest. In this work, we

focus on camera images and LiDAR point clouds, as they are the two main sensory

modalities employed by modern SDVs.

Camera simulation: Following recent success in NVS [259, 49], we adopt a hybrid

volume and neural rendering framework for efficient photorealistic image simulation.

Given a ray r(t) = o + td shooting from the camera center o through the pixel

center in direction d, we first sample a set of 3D points along the ray and extract

their features and geometry (Eq. 7.1). We then aggregate the samples and obtain a

pixel-wise feature descriptor via volume rendering:

f(r) =
NrX

i=1

wifi, wi = ↵i

i�1Y

j=1

(1� ↵j). (7.3)
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Here, ↵i 2 [0, 1] represents opacity, which we can derive from the SDF si using an

approximate step function ↵ = 1/(1 + exp(� · s)), and � is the hyper-parameter

controlling the slope. We volume render all camera rays and generate a 2D feature

map F 2 RHf⇥Wf⇥Nf . We then leverage a 2D CNN grgb to render the feature map to

an RGB image Irgb:

grgb : F 2 RHf⇥Wf⇥Nf ! Irgb 2 RH⇥W⇥3
. (7.4)

In practice, we adopt a smaller spatial resolution for the feature map Hf ⇥Wf than

that of the rendered image H ⇥W , and rely on the CNN grgb for upsampling. This

allows us to significantly reduce the amount of ray queries.

LiDAR simulation: LiDAR point clouds encode 3D (depth) and intensity (reflec-

tivity) information, both of which can be simulated in a similar fashion to Eq. 7.3.

We assume the LiDAR to be a time-of-flight pulse-based sensor, and model the pulses

transmitted by the oriented LiDAR laser beams as a set of rays. We slightly abuse

the notation and let r(t) = o+ td be a ray casted from the LiDAR sensor we want

to simulate. Denote o as the center of the LiDAR and d as the normalized vector of

the corresponding beam. We then simulate the depth measurement by computing the

expected depth of the sampled 3D points:

D(r) =
NrX

i=1

witi. (7.5)

As for LiDAR intensity, we volume render the ray feature (using Eq. 7.3) and pass it

through an MLP intensity decoder gint to predict its intensity l
int(r) = gint(f(r)).

7.3.5 Learning

We jointly optimize all grids of features F⇤ (including latent codes {zAi}, the hy-

pernetwork fz, the MLP heads (fbg, fA) and the decoders (grgb, gint) by minimizing

the difference between the sensor observations and our rendered outputs. We also
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regularize the underlying geometry such that it satisfies real-world constraints. Our

full objective is:

L = Lrgb + �lidarLlidar + �regLreg + �advLadv.

In the following, we discuss in more detail each term.

Image simulation Lrgb: This objective consists of a `2 photometric loss and a

perceptual loss [427, 372], both measured between the observed images and our

simulated results. We compute the loss in a patch-wise fashion:

Lrgb =
1

Nrgb

NrgbX

i=1

 ���Irgb

i
� Îrgb

i

���
2
+ �

MX

j=1

���V j(Irgb

i
)� V

j (̂Irgb

i
)
���
1

!
, (7.6)

where Irgb

i
= frgb(Fi) is the rendered image patch (Eq. 7.4) and Îrgb

i
is the corresponding

observed image patch. V j denotes the j-th layer of a pre-trained VGG network [322].

LiDAR simulation Llidar: This objective measures the `2 error between the ob-

served LiDAR point clouds and the simulated ones. Specifically, we compute the

depth and intensity differences:

Llidar =
1

N

NX

i=1

⇣��D(ri)�D
obs

i

��
2
+
���lint(ri)� l̂

int

i

���
2

⌘
. (7.7)

Since LiDAR observations are noisy, we filter outliers and encourage the model to

focus on credible supervision. In practice, we optimize 95% of the rays within each

batch that have smallest depth error.

Regularization Lreg: We further apply two additional constraints on the learned

representations. First, we encourage the learned sample weight distribution w (Eq. 7.3)

to concentrate around the surface. Second, we encourage the underlying SDF s to

satisfy the Eikonal equation, which helps the network optimization find a smooth zero

146



FVS Instant-NGP Neural Scene Graphs OursGround-truth

In
te
rp
ol
at
io
n

La
ne
sh
ift

In
te
rp
ol
at
io
n

La
ne
sh
ift

Figure 7-4: Qualitative comparison of image simulation. We show simulated
images in both the interpolation (rows 1, 3) and lane-shift test settings (rows 2, 4).

Methods Interpolation Lane Shift
PSNR" SSIM" LPIPS# FID# @ 2m FID# @ 3m

FVS [299] 21.09 0.700 0.299 112.6 135.8
NSG [265] 20.74 0.600 0.556 319.2 343.0
Instant-NGP [248] 24.03 0.708 0.451 192.8 220.1
Ours 25.63 0.745 0.288 74.7 97.5

Table 7.1: Quantitative comparison against prior art on image simulation.

level set [111]:

Lreg =
1

N

NX

i=1

✓X

⌧i,j>✏

kwijk2 +
X

⌧i,j<✏

�
krs(xij)k2 � 1

�2
◆
, (7.8)

where ⌧i,j = |tij �D
gt

i
| is the distance between the sample xij and its corresponding

LiDAR observation D
gt

i
.

Adversarial loss Ladv: To improve photorealism at unobserved viewpoints, we

train a discriminator CNN Dadv to differentiate between our simulated images at

observed viewpoints and unobserved ones. Specifically, we denote the set of rays

to render an image patch as R = {r(o,dj)}P⇥P

j=1 , and randomly jitter the ray origin

to create unobserved ray patches R0 = {r(o + ✏,dj)}P⇥P

j=1 , where ✏ 2 N (0, �). The
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Methods Interpolation Lane Shift
PSNR" SSIM" LPIPS# FID# @ 2m FID# @ 3m

NFF only 24.93 0.717 0.393 153.7 173.5
+ Actor model 25.80 0.744 0.364 84.1 111.8
+ CNN 25.99 0.762 0.341 78.8 103.3
+ VGG & GAN loss 25.63 0.745 0.288 74.7 97.5

Table 7.2: Contribution of each component on simulation.

Median `2 Error (m)# Hit Rate" Intensity RMSE#
LiDARSim [237] 0.11 92.2% 0.091
Ours 0.10 99.6% 0.065

Table 7.3: Quantitative comparison of LiDAR simulation.

discriminator CNN Dadv minimizes:

� 1

Nadv

NadvX

i=1

logDadv(I
rgb,R
i

) + log(1�Dadv(I
rgb,R0

i
)), (7.9)

where Irgb,R
i

= frgb(F(Ri)) and Irgb,R0

i
= frgb(F(R0

i
)) are the rendered image patches

at observed and unobserved viewpoints, respectively. We then define the adversarial

loss Ladv to train the CNN RGB decoder grgb and neural feature fields to improve

photorealism at unobserved viewpoints as:

Ladv =
1

Nadv

NadvX

i=1

log(1�Dadv(I
rgb,R0

i
)). (7.10)

Implementation details: We identify actors along rendered rays using the AABB

ray-box intersection [234]. When sampling points along the ray, we adopt a larger

step size for background regions and a smaller one for intersected actor models to

ensure appropriate resolution. We leverage the scene occupancy grid Vocc to skip

point samples in free space. During learning, we also optimize the actor trajectories

to account for noise in the initial input. For vehicle actors, we also leverage the shape

prior that they are symmetric along their length.
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7.4 Method II: Learning Controllable Generative Mod-

els

In the previous section, we have shown how to explicitly leverage the compositional

structure of the world to build an editable digital twin and manipulate it to simulate

different scenarios. One natural follow-up question is: Can we directly learn all these

structures from data and generate entirely new scenes and content from scratch? Such

a 3D generative model will be beneficial for content creation and will also provide an

endless playground for the robot to explore and learn.

With this motivation in mind, in this section, we seek to learn a compact 3D

representation of scene-level LiDAR point clouds for realistic (un)conditional LiDAR

generation and manipulation. Based on the observation that vector quantized (VQ)

representations [354, 290, 92] are robust to noise, easy to manipulate, and naturally

compatible with generative models, we propose to learn a discrete codebook for LiDAR

point clouds and build our model on top of it.

We start by reviewing the basics of vector-quantized variational autoencoder (VQ-

VAE) [354], a building block of our approach. Then we showcase how to exploit similar

concepts to encode 3D point clouds into a discrete codebook. Finally, we discuss how

to exploit the discrete representation for different tasks.

7.4.1 Discrete Representations for LiDAR

VQ-VAE revisit: The goal of VQ-VAE is to learn a discrete latent representation

that is expressive, robust to noise, and compatible with generative models. VQ-VAE

consists of three parts: (i) an encoder E that encodes the input signal, which for

simplicity we assume to be an image, x 2 RH⇥W⇥3 to a continuous embedding map

z = E(x) 2 Rh⇥w⇥D, (ii) an element-wise quantization function q that maps each

embedding to its closest learnable latent code ek 2 RD, with k = 1, ..., K, and (iii)

a decoder G that takes as input the quantized representation ẑ = q(z) and outputs

the reconstructed image x̂ = G(ẑ). The whole model can be trained end-to-end by
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minimizing:

Lvq = kx� x̂k22 + ksg[E(x)]� ẑk22 + ksg[ẑ]� E(x)k22, (7.11)

where sg[·] denotes the stop-gradient operation.

The limited number of discrete codes e stabilizes the input distribution of the

decoder during training; it also forces the codes to capture meaningful, re-usable

information as the decoder can no longer “seek shortcut” from the continuous signals for

the reconstruction task. VQ-VAE has enjoyed great success across different modalities,

such as natural images [92, 52], audio [354] and 2.5D images [319]. In this work, we

further extend it to learn discrete representations for 3D LiDAR point clouds.

VQ-VAE for LiDAR: We aim to learn a discrete codebook that can effectively

represent a set of LiDAR point clouds. Directly applying VQ-VAE, however, is

challenging, since the fixed set of discrete latents will have to model point clouds

that live in a continuous 3D space, and deal with the fact that each point cloud may

have a different number of points. To address these issues, we propose to voxelize the

point clouds and instead infer whether each voxel is occupied or not. By grounding

the point clouds with a pre-defined grid (similar to the 2D pixel grid of images), we

can foster the discrete codebook to learn the overall structure rather than the minor

3D positional variations. This representation also can naturally handle the varying

number of points. While we may sacrifice some precision during the voxelization

process, the impact is negligible for both LiDAR generation (see Sec. 7.5.2).

Now that we have a voxelized point cloud, the next step is to design the encoder

E and the decoder G. For large scenes with high resolution, 3D convolution becomes

very expensive since we need to infer the occupancy of each voxel densely. We thus

convert the input to Birds-Eye-View (BEV) images by treating the height dimension

of the voxel grids as feature channel C and then adopt 2D convolutions instead. In

this case, we can process 3D LiDAR data just like 2D images; we can also exploit

existing model architectures designed for 2D images directly. We note that such BEV
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Figure 7-5: Qualitative comparison against baselines on unconditional Li-
DAR generation. We compare with two state-of-the-art LiDAR generation methods
Projected GAN [312] and LiDARGen [442] and include real data for reference. Our
model can generate results with more structured layouts and clearer beam patterns.

images have been widely adopted in the context of self-driving perception [58, 419],

since they encode rich geometric information. The output of the decoder is a logit grid

x̂ 2 RH⇥W⇥C . It can be further converted to a binary voxel grid x̂bin 2 {0, 1}H⇥W⇥C

through gumbel softmax [150].

Finally, we train our LiDAR VQ-VAE model with Eq. 7.11, except that we replace

the `2 reconstruction loss with a binary (occupied or not) cross-entropy loss. To

improve the realism of the reconstruction, we further adopt a pre-trained voxel-based

detector V and measure the feature difference, similar to perpectual loss [154]. Our

full loss is:

Lfeat = Lvq + kVb(x)� Vb(x̂
bin)k22. (7.12)

Vb denotes the feature from the last backbone layer of V .

LiDAR manipulation: Once we train the model, we can easily manipulate arbi-

trary LiDAR point clouds by editing their corresponding latent codes. Since objects

are spatially apart in 3D, the model can dedicate specific codes for them. We can

thus identify the codes for objects of interest (e.g ., vehicles) and insert/remove them

into/from the scene. As shown in Fig. 7-2, we can populate vehicles on the street and

create counterfactual scenarios.
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7.4.2 LiDAR Generation

As we have alluded to earlier, the learned discrete representations can be naturally

combined with generative models and generate high-fidelity LiDAR point clouds, both

unconditionally and conditionally.

Unconditional generation: Given the learned codebook e and the decoder G, the

problem of LiDAR generation can be formulated as code map generation. Instead of

directly generating LiDAR point clouds, we first generate discrete code maps in the

form of code indices. Then we map the indices to discrete features by querying the

codebook and decoding them back to LiDAR point clouds with the decoder. Following

Chang et al . [52], we adopt a bi-directional self-attention Transformer [129, 52] to

iteratively predict the code map. Specifically, we start from a blank canvas. At each

iteration, we select a subset of the predicted codes with top confidence scores and

update the canvas accordingly. With the help of the Transformer, we can aggregate

context from the whole map and predict missing parts based on already predicted

codes. In the end, the canvas will be filled with predicted code indices, from which we

can decode LiDAR point clouds. We refer the reader to [52] for more details.

Conditional generation: Our unconditional LiDAR generation pipeline can be

easily extended to perform conditional generation. Instead of starting the generation

process from an empty canvas, one can simply start with a partially filled code map

and let the Transformer predict the rest. For instance, we can place [CAR] codes at

regions of interest; and run the model multiple times. We can then obtain different

traffic scenarios with the pre-defined cars untouched.

Free space suppression sampling: Our iterative generation procedure can be

viewed as a variant of coarse-to-fine generation. The codes generated during early

iterations determine the overall structure, while the ones generated at the end are in

charge of fine-grained details. While this pipeline is effective for image generation

[52], it may lead to degenerated results when generating LiDAR point clouds. One
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critical reason is that LiDAR point clouds are sparse, and a large portion of the scene

is represented by the same [BLANK] codes. Since the [BLANK] codes occur frequently,

the Transformer tends to predict them with high scores. If we naively sample the

codes based on the output of the Transformer, we may fill most of the canvas with

[BLANK] codes, and little structure will remain. To address this issue, we suppress

the [BLANK] codes during the early generation stages by setting their probability to 0.

This ensures the model generates meaningful structures in the beginning. We identify

the [BLANK] codes by looking at the occurrence statistic of all codes across the whole

dataset. We empirically select the top as [BLANK] codes.

Iterative denoising: With free space suppression sampling, we can already obtain

good results. However, the generated point clouds sometimes still contain high-

frequency noise (e.g ., there might be some floating points in the very far range). To

mitigate this issue, we randomly mask out different regions of the output LiDAR point

clouds and re-generate them. The intuition is that if we mask out a structured region,

we can still recover it through the neighborhood context. However, if the masked

region corresponds to pure noise that is irrelevant to the surrounding, it will likely be

removed after multiple trials (since the model cannot infer it from the context).

Training: We first encode all LiDAR point clouds into frozen discrete representations

(code maps) learned in Sec. 7.4.1. Then, at each training iteration, we randomly mask

out a subset of codes. Finally, we adopt the bi-directional Transformer to predict the

correct code for those masked regions. Since we have GT code map, we supervise the

model with cross-entropy loss. See [52] for more details.

7.4.3 Implementation Details

In this section, we discuss implementation details that are crucial for learning discrete

LiDAR representations.
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Voxel sizes matter: We set the input voxel size to be 15.625⇥15.625⇥15 cm for x,

y, z dimensions. We find that the downsampling ratio when mapping the BEV image to

the discrete code has a huge impact on both reconstruction and generation performance.

If the patch size that each discrete code represents is too large, a single fixed code

does not have enough capacity to model the variations (e.g., a small position/rotation

shift of a car inside the patch). We empirically find that downsampling 8⇥ achieves

a good trade-off between preserving high-frequency information in the LiDAR data

and maintaining high-level semantic meaning. Thus the patch size is 8⇥ 8, leading to

1.25⇥ 1.25 m on the spatial dimension that each code represents.

Model hyperparameters: As a typical BEV image usually has a large spatial

range, the resolution of the image and the number of codes are high. We use

Swin Transformer [222] instead of the vanilla Vision Transformer [80] to reduce

the computational cost for our generative Transformer model. It has 24 layers and 8

heads, and the embedding dimension is set to 512. All other training hyper-parameters

like optimizer settings and label smoothing are kept the same as in [52]. For simplicity,

we use the same architecture in our VQ-VAE learning. The encoder and decoder are

both Swin Transformers with 12 layers, respectively. We set the codebook size to 1024

with 1024 hidden dimensions for each code.

Codebook (re)-initialization: We empirically find that the codebook can easily

collapse (only a few codes are used) during training. For better codebook learning,

we use data-dependent codebook initialization. Specifically, we use a memory bank

to store the continuous embedding output from the encoders at each iteration; and

use K-Means centroids of the memory bank to initialize/reinitialize the codebook if

the code utilization percentage is lower than a threshold (empirically, we define a

code is not used for 256 iterations as “dead code” and set the threshold to be 50%).

During the first 2000 iterations of training, we gradually shifted the decoder input

from continuous to quantized embeddings as a warmup. We find these strategies help

achieve good codebook learning and utilization.
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7.5 Experiments

7.5.1 3D Simulation

Dataset: We evaluate our method on the publicly available PandaSet [393] which

contains 103 driving scenes captured in urban areas in San Francisco. Each scene

is composed of 8 seconds (80 frames, sampled at 10hz) of images captured from a

front-facing wide angle camera (1920⇥1080) and point clouds from 360� spinning

LiDAR.

Baselines: We compare our model against several state-of-the-art methods: FVS [299]

is an NVS method that uses reconstructed geometry (aggregated LiDAR in our imple-

mentation) as a “proxy” to re-project pixels from the input images into new camera

views, where they are blended by a neural network. We enhance FVS to model dynamic

actors. Instant-NGP[248] is a NeRF-based method that adopts multi-resolution

hashing encoding for compact scene representation and efficient rendering. We en-

hance it by adding LiDAR depth supervision for better geometry and extrapolation.

NSG[265] is a camera simulation method that models the scene with separate NeRF

representations for the static background and each dynamic actor.

Controllability: As shown in Fig. 7-1, we can not only render the original scene, but

because of our decomposed actor and background representations, we can also remove

all the actors, and change their positions. With enhanced extrapolation capabilities,

we can also change the SDV’s location or test new sensor configurations.

Camera simulation: Sensor simulation should not only reconstruct nearby views,

but also generate realistic data at significantly different viewpoints. Here we evaluate

both settings. Similar to other NVS benchmarks [203], we subsample the sensor data

by two, training on every other frame and testing on the remaining frames, dubbed

“interpolation” test. We report PSNR, SSIM[377], and LPIPS[427]. We also evaluate

extrapolation by simulating a new trajectory shifted laterally to the left or right by 2

or 3 meters, dubbed “lane shift” test. Since ground-truth is unavailable, we report the
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Real LiDARsim UniSim

Figure 7-6: Qualitative comparison of LiDAR simulation. Our simulator gen-
erates LiDAR simulations with higher fidelity (i.e. less noise and more continuous
beam rings). The simulated results are closer to real LiDAR data than those produced
by [237].

FID[131] score. Due to computational costs of the baseline NSG, we select 10 scenes

for evaluation.

As shown in Tab. 7.1, our method outperforms the baselines in all metrics, and

the gap is more significant in extrapolation settings. FVS performs well on LPIPS

and InstantNGP on PSNR in the interpolation setting, but both have difficulty when

rendering at extrapolated views. Fig. 7-4 shows qualitative results. NSG produces

decent results for dynamic actors but fails on large static scenes, due to its sparse

multi-plane representation.

Ablation: We validate the effectiveness of several key components in Tab. 7.2. Both

the actor model and the CNN decoder improve the overall performance over the

neural features grid base model. The CNN is especially effective in the extrapolation

setting, as it improves the overall image quality by spatial relation reasoning and

increases model capacity. Adding perceptual and adversarial losses results in a small

performance drop for interpolation, but improves the lane shift results.

LiDAR simulation: We also evaluate the fidelity of our LiDAR simulation and

compare with SoTA approach LiDARSim [237]. For LiDARSim, we reconstruct surfel

assets using all training frames, place actors in their original scenario in test frames,

and perform ray-casting. Both methods use the real LiDAR rays to generate a

simulated point cloud. We evaluate the fraction of real LiDAR points that have a

corresponding simulated point (i.e., Hit rate), the median per-ray `2 error and the

average intensity simulation errors. As shown in Tab. 7.3, we outperform LiDARSim
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Lane shift Lane shift

FVS Ours

replay replay

Figure 7-7: Qualitative comparison of Real2Sim on replay and lane shift
settings.

Log Replay Lane Shift
Method Real2Sim Sim2Real Real2Sim Sim2Real
FVS [299] 36.9 38.7 30.3 32.2
Instant-NGP [248] 22.6 34.0 18.1 26.5
Ours 40.2 39.9 37.0 37.1

Table 7.4: Detection domain gap (mAP). Real2Real = 40.9.

across all metrics, suggesting it is more accurate and has better coverage. Fig. 7-6

shows a visual comparison.

Domain gap in perception: In addition to image-similarity, sensor simulation

should be realistic with respect to how autonomy perceives it. To verify if our

simulation reduces the domain gap for perception tasks, we leveraged the SoTA

camera-based birds-eye-view (BEV) detection model BEVFormer [200]. We consider

two setups (a) Real2Sim: evaluating the perception model trained on real data on

simulated data; (b) Sim2Real: training perception models with simulated data data

and testing on real data. Specifically, we evaluate the real model on 24 simulated

validation logs for Real2Sim and train perception models with 79 simulated training

logs for Sim2Real. We consider both replay and lane shift test settings. In replay, we

replay all actors and SDV with their original trajectories. In lane shift, we shift the

SDV trajectory laterally by 2 meters and simulate images at extrapolated views. We

report detection mean average precision (mAP).

As shown in Tab. 7.4, our approach achieves the smallest domain gap in both
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Instant-NGP [248] FVS [299] Ours
Sim 32.4 39.2 41.4
Real + Sim 40.1 41.1 42.9

Table 7.5: Data augmentation via image simulation: We train the detector on
both simulated data and simulated + real data. With our sensor simulator, we can
generate a large amount of synthetic yet realistic training data. We can also synthesize
scenarios that do not exist (e.g . switching to the left lane or the right lane). This
makes the detector more robust, and thus achieving better performance. Adding real
world data back will further boost the performance. Real2Real = 40.9 mAP.

Det. Agg. " Pred. ADE # Plan Cons. #
FVS [299] 0.80 2.35 6.15
Instant-NGP [248] 0.42 3.24 13.44
Ours 0.82 1.68 6.09

Table 7.6: Open-Loop Real2Sim Autonomy evaluation

Real2Sim and Sim2Real setups, on both replay and lane shift settings, while other

existing approaches result in larger domain gaps, hindering their applicability to

evaluate and train autonomy. This is especially evident in the more challenging lane

shift setting, where there is a larger performance gap between our approach and the

baselines. Fig. 7-7 shows the Real2Sim detection performance for both replay and

lane shift settings compared to FVS [299].

Data augmentation with simulation data: Next, we study if our simulated

data boosts performance when used for training. Specifically, we use all PandaSet

training logs to generate simulation variations (replay, lane shift 0.5 and 2 meters) to

train the detectors. As shown in Tab. 7.5, using only our simulated data to train the

perception model is even better than training with all real data. Note we only increase

the rendered viewpoints and do not alter the content. We then combine the real data

with the simulation data and retrain the detector. Tab. 7.5 shows that augmentation

yields a significant performance gain. In contrast, baseline data augmentation brings

marginal gain or harms performance.
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Figure 7-8: Closed-loop evaluation. From left to right: we create a safety-critical
scenario (e.g., incoming actor), simulate the sensor data, run autonomy on it, update
the SDV’s viewpoint and other actor locations, and simulate the new sensor data.

Domain gap in prediction and planning: Sensor simulation not only affects

perception tasks, but also downstream tasks such as motion forecasting and planning.

We report domain gap metrics by evaluating an autonomy system trained on real data

on simulated images of the original scenario. The autonomy system under evaluation

is a module-based system, with BEVFormer [200] taking front-view camera images as

input and producing BEV detections that are matched over time to produce tracks via

greedy association as the perception module. These are then fed to a motion forecasting

model [67] that takes in BEV tracks and a map raster and outputs bounding boxes

and 6 second trajectory forecasts. Finally a SoTA sampling-based motion planner

[306] takes the prediction output and map to plan a maneuver. We report open-loop

autonomy metrics (detection agreement @ IoU 0.3, prediction average displacement

error (ADE), and motion plan consistency at 5 seconds) in Table 7.6. Compared

to other methods, our approach has the smallest domain gap. Please see supp. for

details.

Closed-loop simulation: With our simulation system, we can create new scenarios,

simulate the sensor data, run the autonomy system, update the state of the actors

in a reactive manner and the SDV’s location, and execute the next time step (see

Fig. 7-8). This gives us a more accurate measure of the SDV’s performance to how

it would behave in the real world for the same scenario. Fig. 7-1 shows additional

simulations of the autonomy on safety critical scenarios such as an actor cutting into

our lane or an oncoming actor in our lane. The SDV then lane changes, and with

our simulator we can simulate the sensor data realistically throughout the scenario.

Please see supp. video for complete visuals.
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7.5.2 LiDAR Scene Generation

We first compare our generation results on KITTI-360 [202] with other baselines under

the unconditional generation setting. Following LiDARGen [442], we use the first two

sequences as the validation set and exploit the rest for model training. Fig. 7-5∗shows

a few qualitative results of our model and the two baselines. We also include the real

data for reference. Our generated results are much more similar to the real data, with

more structured and reasonable scene layouts and more stable/clearer beam patterns.

More unconditional generation results on KITTI-360 can be found in the second row

of Fig. 7-2 and supp. materials.

Quantitative results: Following [442], we use the Maximum-Mean Discrepancy

(MMD) and Jensen–Shannon divergence (JSD) with a 100⇥ 100 2D histogram along

the ground plane (x and y coordinates) as metrics. Since our model generates points

based on voxels, the number of points may differ from the real point cloud. We

thus use occupancy as a measurement when doing histogram bin count (i.e., points

from the same voxel will only count once) for point clouds from real data and other

baselines. We believe this change captures the global structure difference better and

lowers the weight on the local point density estimation, which is more reasonable and

aligns better with the perceptual quality. As shown in Tab. 7.7, our method achieves

superior performance compared with the baselines.

Model parameters: We calculate the number of parameters to make sure the

model capacities are at the same level when compared with baselines. The number of

parameters of LiDARGen [442] and our model are 29.7M and 40.3M, which are both

smaller than a standard Swin-Small model.

Human study: We perform an A/B test on a set of 8 researchers who have LiDAR

expertise to better evaluate the visual quality of the generated samples. We use the

same test system as [442], which shows a pair of randomly chosen images of two point
∗
We contacted the authors of [442] to obtain outputs of all models they used for visualization

and metrics calculation
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Method MMDBEV JSDBEV

LiDAR VAE 1.18⇥ 10�3 0.256
LiDAR GAN 2.07⇥ 10�3 0.275
Projected GAN 1.18⇥ 10�2 0.332
LiDARGen 4.80⇥ 10�4 0.140
Ours 9.67⇥ 10�5 0.132

Table 7.7: Quantitative comparison of LiDAR generation.

Comparison Preference rate
Ours vs LiDAR VAE [40] 99.5%
Ours vs LiDAR GAN [40] 100%
Ours vs ProjGAN [312] 100%
Ours vs LiDARGen [442] 98.5%

Table 7.8: Human evaluation on LiDAR generation. Results from our model
show significantly better visual quality.

clouds each time and lets the human decide which one is more realistic. We compare

with four baselines as well as with the real data, with 200 image pairs each, leading to

1000 image pairs in total. We show the percentage of examples where participants

believed our generations are more realistic against other baselines in Tab. 7.8. It is

clear that our model can generate results with superior visual quality; over 98.5% of

the time (100% for some baselines), the testers prefer our results over the baselines. It

is worth noting that in 32% cases, people believe our results are more realistic than

real data, which is very significant given the fact that for data that is indistinguishable

from real, the winning ratio would be 50% with random choice.

Unconditional generation: Besides the KITTI-360 results in Fig. 7-5 and Fig. 7-2,

we also train our model on dense Panadset for dense point cloud generation; and

additionally run detection models on the generated samples, shown in Fig. 7-9. We

can see that our model is able to generate diverse scenes with proper actor placement

(e.g ., parked car in the right example), indicating the superiority of our model for this

LiDAR generation task. Moreover, the excellent detection results showcase that the

generated samples also have high fidelity w.r.t. the perception model.
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BEV BEV

Figure 7-9: Unconditional LiDAR generation on Pandaset. We train our model
on dense Pandaset data and generate dense results. The generated samples show
diverse scenario layouts with proper actor placement (e.g ., parked car in the right
sample). The synthesized point clouds are realistic such that a pre-trained detector
can directly work out-of-the-box.

Range View

Figure 7-10: Conditional LiDAR generation for dirt removal. We mask the
red rectangular region in the range view image to mimic dirt occluder. Left: Original
input. The masked region is not visible to the model. Right: Our generation results.
Our model can successfully recover the vehicle that is partially observed.

Conditional generation: We show conditional generation results on KITTI-360

in the bottom row of Fig. 7-2. Our model can fully exploit the visible part(colored

by purple) as context, do reasonable extrapolation for the surrounding environment,

and generate diverse scenes (e.g ., curved road or crossroad) that align with the input

condition well. See supp. materials for more results on KITTI-360/PandaSet.

Meanwhile, we further consider a practical setting where the LiDAR sensor can

fail for a specific region due to dirt or mechanical issues. To mimic this situation, we

mask a part of the range images, as shown in Fig. 7-10. We can see that our model

can still do accurate completion even on partially visible cars, recovering the occluded

region, and potentially avoiding dangerous situations.
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Manipulation: We show manipulation results with actor insertion and removal in

the second row of Fig. 7-2. This is achieved by explicitly changing the code indices on

the code map and letting the decoder generate new results. For example, we can copy

the codes for the ground plane and paste them to overwrite the region where a car

exists, resulting in a controllable manipulation process. We refer the readers for more

results in supp. materials.
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Chapter 8

Epilogue

In recent few years, we have witnessed amazing progress on various 3D applications,

from self-driving vehicles to industrial robots, and from digital editing to AR/VR

systems. One can totally imagine the bright future in front of us when all these systems

have been deployed into our lives and transformed the way we live and the way we

think. However, the future is not here yet. Existing 3D systems, while powerful and

effective, may start to fail and break apart when extending to challenging unconstrained

real-world scenarios. One key reason is that they lack structural understanding of our

world.

In this dissertation, we focus on addressing the following two questions: (i) how

to robustly model and reason about the visible world that we see, and (ii) how to

hallucinate the unseen and imagine novel scenarios in a realistic fashion? We present a

set of robust computational tools that allow one to effectively model and simulate the

dynamic 3D world from real-world unconstrained sensory data. By infusing different

structures and prior knowledge of the world into the systems, we are able to design

machines that can not only understand what they see, but also imagine beyond.

Specifically, we first focused on developing robust computational models that can

leverage physical and geometric structures to effectively model and reason about what

we see. Then, we pushed the limit of existing 3D modeling algorithms. By teaching

these models how to hallucinate beyond what they see, we are able to make those

modeling algorithms work under scenarios that they couldn’t before. Finally, we want
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to not just model what happened in the world, but also be able to hallucinate and

imagine all sorts of “what-if” counterfactual scenarios. We thus developed several

techniques that help us build an editable virtual copy of the world such that we can

re-compose them for various simulation and generation.

8.1 Future Directions

Knowledge-grounded reasoning and modeling: Humans are generalists. We

can reason about various 3D quantities based on different combinations of cues and

quickly adapt to new environments. Most existing data-driven intelligent systems,

however, are specialists. They are trained to excel at one or a few tasks or setups.

When given similar tasks in new settings or encountering slightly different data

distributions, they may fail catastrophically, since they cannot reliably transfer their

understandings. Thus, it is critical to ground the reasoning and modeling process with

various knowledge so that the systems can be more robust and applicable to various

scenarios. One possibility is to equip the systems with the ability to automatically

select and adapt structured scene representations for different tasks and under various

setups. This is important since different representations have different properties and

pros and cons. In this disseration, we have showcased how to distill knowledge of

objects into structure from motion algorithms such that they can adaptively select

different types of correspondences to reconstruct scenes under different scenarios.

This can serve as a strong starting point. Second, data from different modalities

are complementary and encode different information. For instance, thermal images

encode traces of past human-object interactions which are not visible in visual domain.

It is important to develop methods that integrate knowledge across modalities to

better model our world. Finally, intelligent systems should be able to quickly adapt to

different environments and scenarios with little or even no supervision. To achieve this,

the models must capture the relationships among data and transfer the knowledge

and structure across tasks. Recent advances in large language models have showcased

great potential in this direction. Building upon their success and develop foundation
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models for 3D vision will potentially allow for a new paradigm in the design and

testing of various 3D tasks with unparalleled scalability.

Digital twins for all: The future of digital twins holds great promise. By realisti-

cally simulating motion, physics, and materials, they can stand to impact different

facets of our lives, such as robot autonomy, AR/VR, transportation, and mobility.

The works presented in this thesis are just the start of an exciting chapter. To fully

unlock the potential of simulation and generation, one natural yet non-trivial step is

to extend current efforts to 4D (i.e., 3D + time) and simulate the movement of agents

and the interactions among them. This is of crucial importance since autonomous

agents will ultimately operate in the vicinity of one another or humans. They must

learn to anticipate the intentions or the outcome of actions so that they can respond

in a socially compliant way. Furthermore, human body motion and gestures are

non-verbal communication tools indicative of their thoughts. To build a Metaverse

where people can interact effectively, one must capture the scocial dynamics, which

drives the interactions among humans and agents. Besides socially-driven motions,

integrating physical dynamics into the virtual world is also critical for realistic motion

simulation of inanimate objects. For instance, by incorporating a physics-based link

model from the field of botany, one can potentially simulate how tree branches vibrate.

This will allow one to create a more vivid virtual experience and potentially produce

positive impacts on other fields — by better modeling the 3D geometry of the trees in

an urban city, we can better estimate the cooling effects they bring and improve the

urban ecosystem. Going beyond AR/VR and robot simulation, another interesting

direction is how digital twins can improve urban transportation and planning. One

major challenge in transportation is identifying and quickly responding to sudden

commuting needs, traffic, and congestion. By building a virtual copy of the city, we

can enable planners to test every possible scenario, forecast the potential outage,

optimize the resource, and answer questions such as where to add bike lanes and how

to adjust the traffic signal time. Finally, existing efforts on ecosystem monitoring

mostly focus on 2D modeling and recognition. Simulating (endangered) animals and
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plants in 3D can help us understand them more, and the 3D digital captures can

be beneficial when educating and engaging younger generations about endangered

species.
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Appendix A

Supplementary: Sparse Semantic

Localization

A.1 Quantitative Analysis

Error vs Travelling Distance Fig. A-1 depicts the localization error as a function

of travelling distance. For this figure we can see that our approach is relatively stable

across travelling distance without catastrophic failures. Particularly, median lateral

error is maintained to be around 5cm with worst case around 23cm.

Figure A-1: Localization error as a function of travelling distance.
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A.2 Additional Results on Hyper-Parameter Search

Hyper-parameter Search Procedure We performed an exhaustive grid search

to find the set of hyperparameters that minimize the failure rate in the mini-validation

set. The search grid consisted of soft-argmax temperature from the set {1., 8.}, lane

temperature from {.5, 1., 1.5}, sign temperature from {.5, 1., 1.5}, GPS observation’s

standard deviation at {0, 10, 20} meters, dynamics observation’s standard deviation

from {1., 2.} degrees, dynamics observation’s longitudinal standard deviation from

{5., 10.} meters. This describes a grid of 216 points for which metrics were computed

exhaustively the best set of hyper-parameters can be seen in Tab. A-2.

Method GPS std Dyn Angle std Dyn Lat std Dyn Lon std Argmax Temp Lane Temp Sign Temp
Lane - 1. 2. 5. 1. 1. -
Lane+GPS 20 1. 2. 5. 1. 1. -
Lane+Sign - 1. 2. 5. 1. 1. 2.5
All 20 1. 2. 5. 1. 1. 2.5

Figure A-2: Best hyper-parameters for each method

Hyper-parameter Search Results We showcase each hyper-parameter’s results

in Fig. A-3. From this figure we can see how the choice of each term influences different

metrics. For instance, trusting GPS more in general hurts the performance lateral

localization but does not have a significant influence on longitudinal. This is due to

the lane detection cue as a centi-meter level source for lateral error. Moreover, overall

a soft-argmax that is more close to ‘mean’ is overall better than the one that is more

close to ‘arg-max’. Another interesting findings are that assuming a relative large

vehicle dynamics noise in both lateral and longitudinal direction is in practice better.

Moreover, we find a high temperature is needed for the sign energy, such that as soon

as it appears, it can help close loop and reduce longitudinal drift.
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Figure A-3: Grid search result per each hyper-parameter.
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Appendix B

Supplementary: Deep Structured

Motion Estimation

B.1 Derivation of the Solver

In this section, we first derive the Jacobian of the energy function in a general form.

Then we describe the specific formulation for each term.

B.1.1 Gauss-Newton Solver

The proposed energy terms can all be expressed in the following form:

E(⇠; I) =
X

p

⇢(r(p, ⇠; I)),

where p refers to the pixels belonging to an instance, ⇢ is a robust penalty function,

and r is a residual function. The goal is to find a transformation ⇠ that minimizes the

energy, or equivalently the sum of square residuals:

⇠ = argmin
⇠

E(⇠; I) = argmin
⇠

X

p

⇢(r(p, ⇠; I)).
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As mentioned in the paper, we use the same ⇢ for all energy terms where ⇢(x) =

⌧(x2) = (x2 + ✏
2)↵.

As the residual function is non-linear and cannot be solved exactly, we iteratively

approximate it with a first order Taylor series expansion and search for the local

minimum. More formally, the residual function can be approximated as

r
0(p,�⇠) = r(p, ⇠ +�⇠; I) ⇡ r(p, ⇠; I) + @r(p, ⇠; I)

@⇠
�⇠.

For convenience, we define the Jacobian @r(p,⇠;I)
@⇠ as Jp. Thus we can solve the following

surrogate optimization problem instead:

�⇠⇤ = argmin
�⇠

X

p

⇢(r0(p,�⇠))

= argmin
�⇠

X

p

⌧(r0(p,�⇠)T r0(p,�⇠))

= argmin
�⇠

X

p

⌧((r(p, ⇠) + Jp�⇠)T (r(p, ⇠) + Jp�⇠))

where we simply denote ⇢(x) = ⌧(x2). The minimum happens at the point where the

gradient is equal to zero. Let us denote Lp = r
0(p,�⇠)T r0(p,�⇠) and r

0
p = r

0(p,�⇠).

Thus we have:

0 =
�E

��⇠

0 =
X

p

�⌧(Lp)

�Lp

�Lp

�r0p

�r
0
p

��⇠

0 =
X

p

�⌧(Lp)

�Lp
· 2(r0p)T · Jp

0 =
X

p

�⌧(Lp)

�Lp
· 2(r(p, ⇠) + Jp�⇠)T · Jp

Since the equation now takes a linear form w.r.t. �⇠, we can solve exactly in close
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form. In particular, the minimum occurs when

X

p

�⌧(Lp)

�Lp
JT

pJp�⇠ = �
X

p

�⌧(Lp)

�Lp
JT

pr(p, ⇠; I),

�⇠ = �(
X

p

JT

pWpJp)
(�1)

X

p

JT

pWpr(p, ⇠; I),

where W is a diagonal matrix with diagonal entries equal to �⌧(Lp)
�Lp

. We hence take a

step and update the transformation ⇠  ⇠ ��⇠.

We next describe the residual function and the Jacobian for each term. We use the

same notations as in the paper. We further define x =
h
x y z

iT
= ⇠ � ⇡�1

K (p,D(p))

as the 3D coordinate of the pixel p after inverse depth warping and applying rigid

transform ⇠.

B.1.2 Jacobian of Each Energy Term

Photometric error: The residual function of the photometric error is simply the

RGB pixel value difference. Formally, it is defined as:

r(p, ⇠; I) = L1(p0)� L0(p).

The Jacobian is defined as:

J =
@r(p, ⇠; I)

@⇠
=

@L1(p0)� L0(p)

@⇠

=
@L1(p0)

@p0
@⇡K(x)
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2
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Rigid fitting: The residual function of the rigid fitting term is simply the 3D

distance between the 3D point and its correspondence. Formally, it is defined as:

r(p, ⇠; I) = ⇠ � ⇡�1
K

�
p,D0(p)

�
� ⇡

�1
K

�
q,D1(q)

�

= x� ⇡
�1
K

�
q,D1(q)

�
.

The Jacobian is thus:

J =
@r(p, ⇠; I)

@⇠
=

@x� ⇡
�1
K (q,D1(q))

@⇠

=
@x

@⇠
=

2

664

1 0 0 0 z �y
0 1 0 �z 0 x

0 0 1 y �x 0

3

775

Flow consistency: The residual function of the flow consistency term is simply the

difference between the estimated flow and the projection of the estimated 3D motion.

Formally, it is defined as:

r(p, ⇠; I) = (p0 � p)� FL(p).

The Jacobian is defined as:

J =
@(p0 � p)� FL(p)

@⇠
=

@p0

@⇠
=

@p0

@x

@x

@⇠

=
@⇡K(x)

@x

@x
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=
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fx

z
0 �xfx

z2

0 fy

z
�yfy
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B.2 Impact of Unrolling Steps in GN Solver

In this section, we study the trade-off between performance and runtime with respect

to the maximum number of unrolling steps in the GN solver. As shown in Fig. B-1, our
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Figure B-1: Performance vs unrolling steps. While foreground requires 30 steps
to converge, background achieves best results within 10 steps. As a consequence, the
overall performance reaches plateau after 10 steps, with only minor improvement. We
note that despite the foreground outliers reduce quite a bit after 10 steps, it is mainly
caused by a few instances. Most instances converges within 10 steps.

model can achieve very good performance within 10 steps. The overall performance

still improves a bit as the optimization procedure proceeds, since a few foreground

instances require longer time to converge. In practice, many instances converge within

10 steps, which leads to the speed boost in Fig. B-2. To gain more intuition, we

also visualize the scene flow error map at different iterations in Fig. B-3. For more

qualitative results, we refer the readers to the attached video.

B.3 Impact of energy functions

To understand the effectiveness of each energy term on background and foreground

objects, we evaluate our model with different energy combinations. The full ablation
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Figure B-2: Runtime vs unrolling steps. At first the runtime scales linearly with
the maximum number of steps. As more instances converge (i.e. the energy reaches
plateau) and terminate, the runtime becomes faster.

table is shown in Tab. B.1. While best performance is achieved for foreground objects

when using all energy terms, the error is lowest for background when employing only

photometric term. This can be explained by the fact that vehicles are often texture-less,

and sometimes have large displacements. If we only employ photometric term, it will

be very difficult to establish correspondences and handle drastic appearances changes.

With the help of flow and rigid term, we can guide the motion and reduce such effect,

and deal with occlusions. In contrast, background is full of discriminative textures

and has relatively small motion, which is ideal for photometric term. Adding other

terms may introduce extra noise and degrade the performance.
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Employed energy Background outliers (%)
Epho Eflow Erigid D1 D2 Fl SF
X 1.92 2.69 3.71 4.30

X 1.92 2.57 4.73 5.31
X 1.92 2.59 5.92 6.45

X X 1.92 2.57 4.25 4.82
X X 1.92 2.56 4.72 5.28

X X 1.92 2.55 4.69 5.25
X X X 1.92 2.56 4.63 5.21

Employed energy Foreground outliers (%)
Epho Eflow Erigid D1 D2 Fl SF
X 1.70 4.25 7.57 9.00

X 1.70 5.53 8.39 10.5
X 1.70 3.72 14.9 16.1

X X 1.70 5.18 7.97 9.85
X X 1.70 4.58 6.98 8.67

X X 1.70 3.70 7.98 9.24
X X X 1.70 4.56 6.73 8.39

Table B.1: Contributions of each energy: As foreground objects sometimes are
texture-less and have large displacement, simple photometric term is not enough. In
contrast, background is full of discriminative cues. Simple photometric error would
suffice. Adding extra terms will introduce noises and hurt the performance.

B.4 Curating KITTI Scene Flow

While creating the instance-wise 3D rigid motion ground truth (GT) from KITTI

scene flow dataset, we discover two critical issues: firstly, there are mis-alignments

over instance boundaries between the GT scene flow and GT instance segmentation;

secondly, we find that the scale of the same 3D instance changes across two frames,

which is impossible in practice.

Fig. B-4 shows two examples where the GT scene flow and GT segmentation

mis-align. For each pixel, we determine its scene flow based instance label by finding

if its scene flow better fits the rigid motion of a foreground instance or the background

scene. We also get another source of labels from instance segmentation task. If a point

is defined as foreground instance by both scene flow and the instance segmentation,

it is colored in yellow. It is colored in green/red if only the scene flow/segmentation

indicates it belongs to foreground object. If both agree it is background, we colored
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it in blue. In general, the mis-alignment happens at the boundaries. It is expected

as the amount of CAD models (employed to compute GT flow/disparity) and their

underlying transformations are limited and it is difficult to cover all types of cars on the

road while GT instance are labeled by humans through polygons. The mis-alignment

will also result in incorrect rigid motion∗, especially when there are many outliers. We

thus re-label the points and compute the rigid motion again. This greatly reduces the

outliers ratio.

Even after fixing the instance boundary mis-alignment issue, we find it is still

difficult to fit a rigid transform for a few instances that makes GT flow and GT

disparity agree with each other. We suspect this is due to the fact that some instances

do not undergo rigid transform in the data. To solidify our claim, we further compute

the 3D distance between the same pair of points from an instance at different time

step. To be more specific, we obtain the correspondences at different frames using GT

flow and exploit GT disparity to compute their respective 3D coordinates. As shown

in Fig. B-5, the 3D distance between the points changes quite a bit for the vehicle. It

seems like the underlying transformation across the frames is not rigid. We verify with

the authors [243] and they confirm that an additional scale parameter is employed

to fit the 3D CAD model to each frame independently during the GT creation stage.

Several objects thus do not undergo a rigid transform. To address this, we simply

treat them as don’t care regions, and ignore them when computing our metrics.

B.5 Qualitative Results

Fig. B-6 and Fig. B-7 provide more qualitative comparison against the baselines. Fig.

B-8 and Fig. B-9 show a few examples where our model fails.

∗
As there are no GT for the rigid motion, we evaluate its quality using the scene flow metric. To

be more specific, we use the GT D1 and the fitted rigid motion to compute scene flow via Eq. 6 and

measure the number of outliers.
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B.6 KITTI Scene Flow Benchmark

Fig. B-10 shows the screenshot of the KITTI scene flow leaderboard at the time of paper

submission. Our method outperforms all previous methods, including anonymous

submissions, by a significant margin in both runtime and performance.
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Figure B-3: Qualitative scene flow error map at different GN iterations. At
first the estimated foreground motion is not accurate (see the orange/red cars in the
first row). With our carefully designed energy terms, we are able to handle the outliers
in the inferred visual cues and recover the accurate motion (see how the cars gradually
turn into blue).
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Figure B-4: Mis-alignment between the GT scene flow instance and the GT
segmentation. We show two examples of the mis-alignment. A point is colored in
yellow if both scene flow instance and GT segmentation agree it is foreground. Red
means only segmentation agrees, and green suggests only scene flow instance agrees.
A point is blue is both agree it is background. Points where the two disagree are
shown in white in bottom left.

Figure B-5: Evidence shows that some instances do not follow a rigid trans-
form. The 3D distance between exact same two points changes across frames. The
distance increases by 5.4% within 0.1 second which is quite significant. Note that 3D
position and correspondence are computed using GT disparity and GT flow.
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Figure B-6: Qualitative comparison of scene flow on test set. We compare
with the competitive, top leading methods on KITTI leaderboard: FSFMS [342],
SSF [295], CSF [228], OSF [243], OSFTC [256], PRSM [358], ISF [27]. Our method
can effectively handle occlusion and texture-less regions. It is more robust to the
illumination change as well as large displacement.
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Figure B-7: Qualitative comparison of depth and optical flow on test set.
We visualize the results and error maps of each component of OSF [243], PRSM [358],
and ISF [27]. Our method can effectively handle occlusion and texture-less regions. It
is more robust to the illumination change as well as large displacement.
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L0 L1 Flow Error SF Error

L0 L1 D1 Error SF Error

Figure B-8: Failure cases of our motion estimation model. Our energy model
takes the inferred visual cues (i.e. flow, disparity) as input. If the original estimation
is completely wrong, our model fails to recover the actual motion. In the first row, the
flow estimation of the largely occluded vehicle is completely wrong. For background,
the flow error has less impact, as we can recover its motion from other reliable
background points. It however still relies heavily on D1 (see Eq. 6 in the paper). If D1
estimation is incorrect, our model can hardly work. To address this issue and avoid
being bounded by the visual cues, we plan to optimize both the disparity and flow in
the solver. We leave this for future study.

Figure B-9: Failure case of the inferred 3D rigid motion model. The small
blue car is partially occluded by the white van in the first frame, and is completely
invisible in the second. The estimated visual cues are thus completely wrong (unlike
background it cannot benefit from other observations). It leads to 5 m translation
error and 17.5 degree angular error.
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Figure B-10: Screenshot of the KITTI scene flow leaderboard at the time of
paper submission. Our model (named DSSF previously) achieves state-of-the-art
performance on almost every entry (bold) while being significantly faster.
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Appendix C

Supplementary: Deep Optimizer

C.1 Analyses

Deep feedback network as initialization: Structure optimization approaches

are usually sensitive to initialization. The initial estimations have to be reasonably

close so that the optimizers can converge to reasonably good results. Since our deep

feedback network can bypass the local energy landscape and can produce very accurate

estimations within extremely short amount of time, one natural solution is to exploit

our model as an initialization and employ classic solvers for the final optimization.

As shown in Tab. C.1, by combining with SoftRas [220], we can reduce the error by

a significant margin. To further understand how robust the joint model is and how

often it can converge to a certain error range, we visualize the cumulative error in

Fig. C-1. The joint model significantly outperforms all approaches at 90th, 95th, and

even 99th percentile, verifying our hypothesis that our deep feedback network is more

robust to the initialization as well as the curvature of the local energy landscape, and

can serve as a good initializer.

Effectiveness of unrolling steps: Tab. C.2 shows the step by step performance

of our model on three different tasks. Through iterative feedback and update, our

deep feedback inverse problem solver can significantly reduce the overall error.
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Trans. Error Rot. Error Outlier
Methods Mean Median Mean Median (%)
NMR [168] 0.1 0.05 5.78 1.68 20.3
SoftRas [220] 0.05 0.003 4.14 0.5 8.03
Deep Regression 0.07 0.06 10.07 7.68 5
Ours 0.02 0.009 2.64 1.02 2.6
Ours + SoftRas 0.01 0.001 1.62 0.31 0.9

Table C.1: Deep feedback inverse problem solver as an initializer.

Figure C-1: Cumulative error for translation and rotation.

Shared weight vs non-shared weight: In the original paper, we argue that a

non-shared weight network can model the dynamic output scale much easily. To

corroborate our conjecture, we train a model following the exact same setting except

the weight-sharing scheme. As shown in Tab. C.3, the non-shared weight network has

a larger capacity and can better capture the dynamic distribution.

Category-wise performance: As shown in Tab. C.4, our model achieves similar

performance across all categories except bed and cabinet. The two categories are

extremely challenging because of the large intra-class variance. For instance, while

hammocks, loft bed, and ordinary bed all belong to bed category, their shape and

Unroll Steps
6 DoF Pose Est. 1 3 5
Trans. error 0.075 0.032 0.02
Rot. error 10.07 3.32 2.64

Unroll Steps
Illum. Est. 1 3 7
Dir. light 0.076 0.055 0.052
Point light 0.111 0.089 0.084

Unroll Steps
Inv. kinematics 1 2 3
Position error 2.76 1.11 0.64
Rotation error 2.04 0.94 0.88

Table C.2: Effectiveness of unrolling steps.
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Tasks 6 DoF Pose Est. Illumination Est. Inv. Kinematics
Our model Translation Rotation Directional Point Position Rotation
Shared weight 0.03 4.24 0.077 0.103 0.99 1.57
Non-shared weight 0.02 2.64 0.052 0.085 0.64 0.88

Table C.3: Effectiveness of not sharing weight across stages.

Figure C-2: Runtime w.r.t. number of faces and image size.

appearance vary significantly. In contrast, the shape variations among all cars are

smaller and thus our model can pick up such shape prior much easily.

Influence of image size: Ideally we want to provide our model with as much

information as possible. One straightforward solution is to exploit a larger rendered

image. Unlike state-of-the-art differentiable renderers [168, 220] whose runtime in-

creases significantly with image sizes, the computational overhead of pyrender is almost

negligible (see Fig. C-2). This allows us to freely select the desired image size without

sacrificing the speed. Tab. C.4 shows the results of our model with different input

image sizes. The performance improves across all categories when the input image size

increases from 64 to 128. Yet the results remains roughly the same when increasing

the size from 128 to 256. Considering the slightly higher memory cost and slower

speed, we select 128 as our final rendered image size.
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Optimization Couch Car Bench Monitor Chair
Image Size Runtime Trans. Rot. Trans. Rot. Trans. Rot. Trans. Rot. Trans. Rot.

64 16 ms 0.02 1.48 0.02 1.33 0.02 1.98 0.02 2.85 0.02 1.80
128 21 ms 0.009 0.81 0.008 0.60 0.009 1.10 0.01 1.49 0.01 0.95
256 35 ms 0.01 1.22 0.009 0.67 0.01 1.05 0.01 1.33 0.01 0.92

Memory Table Sofa Plane Bed Cabinet
Image Size Usage Trans. Rot. Trans. Rot. Trans. Rot. Trans. Rot. Trans. Rot.

64 583 MB 0.02 2.76 0.02 1.61 0.08 3.83 0.08 7.78 0.05 5.83
128 636 MB 0.01 1.28 0.009 0.85 0.05 1.98 0.07 4.56 0.02 3.69
256 712 MB 0.01 1.18 0.01 0.87 0.02 1.14 0.08 4.88 0.02 3.49

Table C.4: Effectiveness of image size on 6 DoF pose estimation.

C.2 Related work

Connection to reinforcement learning (RL): Our method shares similarities

with RL. Indeed, both frameworks are closed-loop systems, where the model takes

the feedback from the “environment” and adjusts the next estimation accordingly.

There exists, however, several key differences: First, the training strategy is different.

While our approach exploits GT xgt to directly train the feedback network gw in a

supervised fashion, RL agents learn by interacting with the closed-loop environment.

The training signals of RL come from non-differentiable rewards y � yt. Second, our

model is trained to aggressively move towards the ground truth at each step. Thus we

can accelerate the update procedure and reach the target with much fewer iterations.

In comparison, RL agents are usually restricted to relatively small action space, due to

the sampling efficiency and exploration issue, and typically require many more steps

to arrive at the final solution. While one can augment the action space, it may bring

difficulties to train RL agents in a sample efficient manner.

Comparison with DeepIM [194]: In this paper, we present a generic framework

that is applicable to a wide range of inverse problems. While the instantiation of

our model on 6D pose estimation is similar to the method Li et al . introduced in

[194], there are a few key differences: (1) Li et al . implicitly model the relationships

between the estimation and the observation. In contrast, we explicitly consider the

difference and predict an update based upon it. Empirically we find that the explicit

representation is crucial for learning and can drastically reduce the size of the model.
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(2) Our model infers the 6d pose merely from silhouette images, yet [194] focuses on

RGB images. (3) Our model is motivated by classic optimization approaches. We

borrow ideas from traditional literature to improve the performance (i.e. adaptive

update), whereas [194] simply unroll the network.

Comparison with IEF [47]: Our approach is related to [47]. Both work leverage

feedback signals to refine the estimation iteratively. However, instead of relying on the

network to implicitly establish the relationships between the feedback signal and the

observation, we explicitly leverage the forward process to map the estimation back to

the observation space and compare the difference. We empirically find that ensuring

the inputs to lie in the same space is crucial for learning and can drastically reduce

the size of the model. Moreover, unlike [47], our predicted update is not bounded.

At each iteration, we aggressively move towards the GT solution and hence we can

converge within a few iterations. While [47] argues that unbounded update is difficult,

we find it possible thanks to the rich information encoded in the difference image.

Finally, we focus on a wide range of inverse problems, whereas [47] is specialized to

human pose estimation.

C.3 Other applications: JPEG image deblocking

Our approach is not limited to the tasks shown in the paper. It is designed in a

generic fashion such that it can be applied to various inverse problems so long as the

corresponding forward process f is given. This includes inverse image reconstruction

problems such as inverse halftoning, JPEG compression noise removal, super resolution,

etc. The underlying training and inference procedures for these tasks are the same as

in the paper with the latent variable x now being high-dimensional (i.e., images).

To verify our claim, we test our approach on a classic inverse image processing task

- JPEG image deblocking. Let x be a clean image, and y = f(x) be the compressed

JPEG image generated by the forward non-differentiable JPEG compressor f . Our

goal is to learn an inverse network g that can restore the original image x = g(y) from

193



the low-quality observation.

We follow a similar experimental setup to [422], where we train our model on

BSD400 and evaluate it on BSD68 as well as Live29. We compare our method

against state-of-the-art DnCNN [422] as well as Deep Image Prior (DIP) [352]. Our

approach improves DIP by 2.33/4.15 db in PSNR and by 0.1076/0.1851 in SSIM

(BSD68/Live29). Compared to DnCNN, we improve the PSNR by 0.04/0.03 db

and SSIM by 0.001/0.001. We note that the above results are obtained by simple

plug-and-play, without hyper-parameter tuning. We unroll our model 3 times.

C.4 Qualitative results

We provide more qualitative results of our model in Fig. C-3 and Fig. C-4. Through

iterative feedback and update, our method is able to accurately infer the hidden

parameters of interest. Furthermore, it can even recover from incorrect predictions

in early stages. For instance, the initial pose estimations of the gray car and the air

plane (last row in Fig. C-3) are completely wrong. Yet with the feedback signal, the

model is able to iteratively refine the estimation and finally produce decent results.
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GT Init. Step 1 Step 3 Step 5 GT Init. Step 1 Step 3 Step 5

Figure C-3: Qualitative results of 6 DoF pose estimation: Our model can
accurately estimate the 6 DoF pose of the object from a variety of viewpoints. It
can also recover from incorrect estimation through iterative feedback. The images
are rendered with the estimated/gt pose, purely for visualization purpose. We only
exploit silhouette both during training and inference.
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GT Init. Step 1 Step 3 Step 7 GT Init. Step 1 Step 3 Step 7

Figure C-4: Qualitative results of illumination estimation. While the initial
estimations are not that accurate, our model is able to aggressively refine the prediction
based on the feedback signal and achieve decent results. The input lights are visualized
by rendering them onto a sphere (top-right).
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Appendix D

Supplementary: Virtual

Correspondences

D.1 Virtual Correspondences and Epipolar Geome-

try

In this section, we first briefly review epipolar geometry and then discuss how virtual

correspondences relate to it.

Virtual Correspondence (VCs): VCs refer to a pair of pixels whose camera rays

intersect in 3D. As mentioned in Sec. 3.1 (main paper), the intersection can happen at

(i) co-visible 3D points, (ii) 3D points that are only visible in one image (and occluded

in other other), or even (iii) invisible points (e.g ., free space, occupancy space, or

points from occluded scene/objects). The first scenario is exactly the definition of

classic correspondences. VCs, therefore, can be seen as a generalization of existing

correspondences. We illustrate these scenarios in Fig. D-1.

Epipolar geometry: Epipolar geometry is the intrinsic projective geometry between

two views [121]. It describes the relationship between existing correspondences, camera

intrinsics, and the relative camera pose.
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Figure D-1: Illustration of different types of virtual correspondences. VCs
refer to a pair of pixels whose camera rays intersect in 3D. The intersection can happen
at various places, which we illustrate a few here. The leftmost scenario is exactly the
definition of classic correspondences. VCs, therefore, can be seen as a generalization
of existing correspondences.

To be more specific, let p1,p2 2 R2 be a pair of correspondences in the two images.

Based on epipolar geometry, the pixels can be related via

p̄T

2F p̄1 = 0, (D.1)

where ·̄ represents the homogeneous coordinate, and F 2 R3⇥3 is the fundamental

matrix. Intuitively, F maps a point p̄ in one image to a line in the other F p̄ (i.e., the

epipolar line); and p̄T

2F p̄1 measures the distance between a pixel p̄2 and an epipolar

line F p̄1. If the two pixels are correspondences, they should lie on the epipolar line of

each other and the point-line distance should be 0. We refer the readers to [121] for

more details.

Virtual correspondences (VCs) meet epipolar geometry: VCs is a gener-

alization of existing correspondences. Unlike traditional correspondences, VCs can

describe different 3D surface points, and can have completely different appearances

and semantics. Nevertheless, VCs still conform to epipolar geometry, which allows

us to exploit classic geometric algorithms [224] to establish connections among them.

Here, we provide a simple proof showing that VCs follow Eq. D.1, i.e., the VC pixels

lie on each other’s epipolar line.

Proof. Given an image pair captured by camera 1 and camera 2, let K1,K2 2 R3⇥3

be the camera intrinsics and [R1, t1], [R2, t2] 2 R3⇥4 be their respective extrinsic

matrices. Without loss of generality, we assume the coordinate frame of camera 1 is
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the world coordinate frame, thus [R1, t1] = [I,0]. Let p1,p2 2 R2 be the VCs and

Xcam1

1 ,Xcam2

2 2 R3 be their corresponding 3D points in the respective camera frames.

The superscript denotes the coordinate frame the variable is in. Denote ow

1 ,o
w

2 2 R3

as the camera centers in the world coordinate frame, with ow

1 = 0 and ow

2 = �RT

2 t2.

By definition, we know that the camera rays of a pair of VCs intersect in 3D. Suppose

the two camera rays intersect at X0 = d1Xcam1

1 in the world frame, we can write:

d2X
cam2

2 = R2(d1X
cam1

1 ) + t2, (D.2)

where d1, d2 are non-zero scalars.

The normal of the plane formed by the two camera rays can be computed as the

cross product between the vector ���!ow

1 o
w

2 and the vector
���!
ow

1X
0:

���!
ow

1 o
w

2 ⇥
���!
ow

1X
0 = (�RT

2 t2)⇥ (d1X
cam1

1 )

= [�RT

2 t2]⇥(d1X
cam1

1 ),
(D.3)

where [·]⇥ is the skew-symmetric matrix form defined as [a]⇥ =

2
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for vector a =
h
a1 a2 a3

iT
2 R3.

Since the vector
���!
ow

2X
0 also lies on the plane, the dot product between

���!
ow

2X
0 and

���!
ow

1 o
w

2 ⇥
���!
ow

1X
0 should be 0:

���!
ow

2X
0 · (
���!
ow

1X
0 ⇥
���!
ow

1 o
w

2 )

=
���!
ow

2X
0 · ([�RT

2 t2]⇥d1X
cam1

1 )

= (d1X
cam1

1 +RT

2 t2) · ([�RT

2 t2]⇥d1X
cam1

1 )

= 0.

(D.4)
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According to Eq. D.2, d1Xcam1

1 +RT

2 t2 = RT

2 d2X
cam2

2 . Eq. D.4 thus becomes:

���!
ow

2X
0 · (
���!
ow

1X
0 ⇥
���!
ow

1 o
w

2 )

= (d1X
cam1

1 +RT

2 t2) · ([�RT

2 t2]⇥d1X
cam1

1 )

= (RT

2 d2X
cam2

2 ) · ([�RT

2 t2]⇥d1X
cam1

1 )

= d2X
cam2,T

2 R2[�RT

2 t2]⇥X
cam1

1 d1

= 0.

(D.5)

Since d1, d2 are non-zero scalars, the above equation can be simplified as:

Xcam2,T

2 R2[�RT

2 t2]⇥X
cam1

1 = 0. (D.6)

We can further re-write Xcam1

1 = d
0
1K

�1
1 p̄1 and Xcam2

2 = d
0
2K

�1
2 p̄2. Plugging these

expressions into Eq. D.6 and removing the scalars d
0
1 and d

0
2, we arrive at:

p̄T

2R2[�RT

2 t2]⇥p̄1 = p̄T

2F p̄1

= 0.
(D.7)

This is exactly the same equation as Eq. D.1.

D.2 Bundle Adjustment for VCs

Classic bundle adjustment (BA): Classic bundle adjustment seeks to refine the

camera poses and the co-visible 3D point locations through a joint least-square opti-

mization procedure. In particular, it minimizes the distance between the reprojected

points and the existing correspondences pi for every image i in which the 3D point

Xj is visible:

min
Ri,ti,Xj

X

↵

kpi � ⇡i(X
j)k2. (D.8)
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(a) Classic BA optimizes the co-visible 3D point 
Xj and the camera poses [Ri ti] jointly

(b) Our BA optimizes the 3D point tuple (Xj1, Xj2) and 
the camera poses [Ri ti], subject to co-planar constraints.
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Figure D-2: Comparison to classic bundle adjustment. See Sec. D.2 for more
details.

Here, ⇡i(Xj) ⇠ Ki(RiX+ ti) is the perspective projection operator, and ↵ = (i, j) is

the tuple of indices representing the (co-)visibility of each 3D point.

Efficient least-square solvers, such as Gauss-Newton and Levenberg–Marquardt

algorithms are often exploited to tackle the BA algorithms. Minimizing this objective

function also has a probabilistic interpretation: it is shown to be equivalent to the

Maximum Likelihood Estimation (MLE) under Gaussian observation noise [3]. While

BA is shown to be very powerful in practice, it heavily relies on classic correspondences

to constrain the 3D points. If the input images barely overlap and only a few scene

points are co-visible, BA may not be able to refine the estimations effectively.

BA for virtual correspondences: In this work, we combine virtual correspon-

dences with bundle adjustment algorithms, significantly broadening the applicability

of existing 3D systems. As we have derived in the main paper, the generalized BA

objective is a constrained optimization problem:

min
Ri,ti,Xj1 ,Xj2

X
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kpi1 � ⇡i1(X
j1)k2 + kpi2 � ⇡i2(X

j2)k2

s.t.
⇣
(Xj1 � oi1)⇥ (Xj2 � oi2)

⌘T
(oi2 � oi1) = 0,

(D.9)
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where (Xj1 ,Xj2) is the j-th pair of reconstructed 3D points, (pi1 ,pi2) is the associated

VC pair from camera i1 and camera i2, and ↵ = (i1, i2, j1, j2) is a tuple of corresponding

indices. Formulating it as a constrained optimization problem, however, prohibits us

from using classic gradient methods such as Gauss-Newton and Levenberg–Marquardt

out of the box. Fortunately, since the two camera rays intersect in 3D and are co-

planar, we can re-write one 3D point Xj2 as a function of the other Xj1 (see Eq. 3 of

the main paper). Through this substitution, we arrive at:

min
Ri,ti,Xj1 ,aj ,bj

X

↵

kpi1 � ⇡i1(X
j1)k2 + kpi2 � ⇡i2(X

j2)k2

= min
Ri,ti,Xj1 ,aj ,bj

X

↵

kpi1 � ⇡i1(X
j1)k2

+ kpi2 � ⇡i2(X
j1 + a

j · (Xj1 � oi1) + b
j · (oi2 � oi1))k2,

(D.10)

where a
j
, b

j are free variables used to re-parameterize Xj2 .

As we absorb the constraints into the objective, we can now exploit all gradient

methods that have been used in classic BA. Furthermore, the new formulation (Eq.

D.10) can handle both VCs and traditional correspondences and is a generalization

of classic BA objective (Eq. D.8). To be more specific, if two pixels are classic

correspondences, they describe the same, co-visible 3D point. In this case, Xj1 = Xj2

and a
j = b

j = 0. Eq. D.10 reduces to Eq. D.8. An illustration of our model and

classical BA is shown in Fig. D-2.

In practice, we treat the constraint as a soft constraint and optimize the objective

below since we empirically find it works better:

min
Ri,ti,Xj1 ,Xj2 ,aj ,bj

X

↵

kpi1 � ⇡i1(X
j1)k2 + kpi2 � ⇡i2(X

j2)k2

+ kXj2 � (aj · (Xj1 � oi1) + b
j · (oi2 � oi1))k2.

(D.11)
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D.3 Quantitative Analyses

To better understand how our model and the baselines perform under different settings,

we divide the data into various levels of difficulty based on the rotation difference of

the GT cameras. Specifically, we categorize the CMU Panoptic dataset into three

levels: easy (0� ⇠ 60�), medium (60� ⇠ 120�), and difficult (120� ⇠ 180�). As for

the Mannequin Challenge dataset, since it is much smaller and most of the data

falls into the easy category, we merge the medium and the difficult categories to

balance the split. The two groups are: easy (0� ⇠ 60�), and difficult (60� ⇠ 180�).

As shown in Tab. D.1 and Tab. D.2, our generalized Sf M significantly outperforms

the baselines when the viewpoint difference is large and is comparable to classic Sf M

in the traditional setup where the cameras are close and the viewpoint is alike. Our

method performs slightly worse on the easy category of CMU dataset. We conjecture

this is because CMU Panoptic dataset consists of many accidental viewpoints [101],

which are very rare in real world, leading to noises in the 3D shape prediction model

and the estimated VCs.

We also visualize the cumulative pose error in Fig. D-3. The cumulative plot of the

baselines do not reach 100% because they failed to produce a reasonable estimate. For

instance, if the number of traditional correspondences is less than 5 pairs, one cannot

estimate the relative camera pose through essential matrix decomposition. Following

previous work [308], we set the maximum translation error of the matching-based

baselines to 90� since there is an inherent ambiguity when decomposing essential

matrix. Compared with the baselines, our approach is way more robust. We achieve a

23.98� pose error at 80th percentile, while that of the classic Sf M is over 120�.

Finally, we report the median error of our approach w.r.t. the number of input

images in Fig. D-4. Both classic Sf M and our generalized Sf M benefit from more

input images, since the scenes are more likely to overlap.
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Figure D-3: Cumulative pose error on CMU Panoptic dataset.

Figure D-4: Performance vs number of images.

D.4 Implementation Details

Optimizing the shape prior: As mentioned in Sec. 3.3 (main paper), the 3D

points are obtained by marching rays from the camera centers through the pixels

and recording the first intersections with the scene. Therefore, instead of directly

optimizing the points as in Eq. D.10, an alternative is to optimize the relative low

dimensional shape code and restrict the 3D points to lie within a certain range of the

shape surface. The shape prior provides a strong regularization on the movements of

the 3D points. However, we do not observe much difference in practice.

VC outlier filtering with coarse camera pose estimates: The initial VC esti-

mates may contain noises due to imperfect initial 3D predictions. Our key observation

is that the 3D pose estimation from monocular images, while not accurate enough,

can still serve as a coarse pose prior. For instance, although deep nets may not be

able to precisely estimate a person’s 3D pose, it can still differentiate whether the
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Easy (AUC) Medium (AUC) Difficult (AUC) All (AUC)
Methods @15� @30� @45� @15� @30� @45� @15� @30� @45� @15� @30� @45�

SuperGlue [308] 34.91 56.22 63.97 3.10 6.69 8.47 0.00 0.00 0.05 10.02 16.74 19.36
SIFT [226] + BA [314] 29.00 42.36 48.61 0.70 1.41 2.14 0.04 0.19 0.38 7.68 11.39 13.33
SuperPoint [72] + BA [314] 34.48 50.88 57.81 1.17 2.07 2.79 0.00 0.09 0.23 9.22 13.77 15.85
SuperGlue [308] + BA [314] 38.10 56.41 63.02 2.66 6.07 7.94 0.00 0.00 0.00 10.68 16.57 18.92
Deep regression [179] 8.59 14.22 21.03 14.47 18.85 23.63 18.03 21.30 24.25 14.36 18.60 23.18
Deep optimization [30, 163] 7.21 28.22 44.27 7.44 25.94 41.81 8.83 27.70 41.86 7.88 27.17 42.42
Generalized Sf M (ours) 25.51 52.29 66.31 13.13 42.08 59.64 18.20 45.71 61.66 18.21 46.05 62.08

Table D.1: Pose estimation on CMU Panoptic dataset.

Easy (AUC) Difficult (AUC) All (AUC)
Methods @15� @30� @45� @15� @30� @45� @15� @30� @45�

SuperGlue [308] 59.14 73.90 80.37 4.14 8.14 10.94 26.38 34.85 39.10
SIFT [226] + BA [314] 27.69 33.19 35.65 0.52 0.67 0.72 14.17 20.24 24.25
SuperPoint [72] + BA [314] 34.58 47.71 55.04 0.0 1.5 3.2 17.12 23.48 26.81
SuperGlue [308] + BA [314] 58.61 72.87 78.94 4.15 9.25 12.41 26.24 35.12 39.46
Deep regression [179] 2.79 8.92 13.34 5.71 12.66 18.58 4.61 11.23 16.44
Deep optimization [30, 163] 29.08 61.81 74.54 11.02 42.19 60.03 15.38 47.08 63.67
Generalized Sf M (ours) 53.57 74.84 82.83 23.71 51.73 66.28 36.24 61.38 73.20

Table D.2: Pose estimation on Mannequin Challenge dataset.

person is facing the camera or turning their back against it. We thus leverage these

coarse pose predictions to prune outlier VCs that are extremely inconsistent with the

pose predicted by the deep network. Specifically, we compute the symmetric epipolar

distance for all the VCs using the camera pose predicted by the deep net and filter

out the ones with extremely large error.

Filtering 3D predictions based on 2D visual cues: While one could exploit

the 3D predictions from all images to construct VCs, it is sub-optimal in practice. The

level of difficulty of single image 3D reconstruction varies significantly across different

images and viewpoints. For instance, it is easier to reconstruct the human if we see

the full body than only seeing parts; it is also less challenging if the person is not

occluded. To this end, we present a simple yet effective strategy. We first construct

VCs with the 3D shape of each image and estimate the corresponding camera motion.

Then we project each estimated 3D object back to the cameras using the estimated

pose and measure the consistency. If the consistency is low, it indicates that the

estimated pose is wrong and therefore the VCs are unreliable.
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Randomness: The only randomness within our approach is the RANSAC algo-

rithm. For the deep networks, we simply use the pre-trained weights provided by the

authors and conduct inference. We run the experiments 3 times and compute the

standard deviation of the pose errors. The largest standard deviation is only 3% of

the mean value. We conjecture this is because RANSAC already enumerates and

compares various configurations. The numbers in the main paper are the median

values. We omit the randomness error bar for simplicity, since many baselines do not

have randomness.

Hyperparameters and GPU usage: We set the step size of L-BFGS to 0.001,

and the number of iterations to 150. The hyperparameters are determined using

the training/validation split of the CMU dataset∗. We use 4 Titan V GPUs for

experiments.

Extending VCs to other objects: As a proof-of-concept, we exploit canonical

3D deformable mapping (C3DM) [261] and adapt our method to cars. C3DM is a

deep learning based non-rigid Sf M model that allows one to infer the coarse shape and

pose of a car from a single monocular image. It also provides a mapping between each

pixel and the surface of the vehicle. By replacing our current SMPL and DensePose

with C3DM, we can directly apply our system to cars without any bells and whistles.

We show another example in Fig. D-5 where we acheive a pose error of 13 degrees,

whereas the pose error of C3DM is 25 degrees. We conjecture the improvement is

because we only use the shape and pose from C3DM for VCs estimation. Through

further bundle adjustment, we are able to refine the poses and mitigate the noises.

Reproducibilty: We have provided comprehensive details in the main paper as

well as the supp. material. To further facilitate reproducibility, we will release our

code as well as the curated data upon publication.

∗
Our method does not have a training stage. We simply use the data for hyperparamter search.
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Figure D-5: Virtual correspondences from cars.

D.5 Dataset Statistics

We show a randomly sampled subset of images from our curated datasets in Fig. D-6

and Fig. D-7. While CMU Panoptic dataset consists of a wide range of viewpoints

(even from the top), Mannequin Challenge dataset comprises much more diverse indoor

and outdoor background. We also compute the statistics of the GT camera poses.

As shown in Fig. D-8, the spatial distribution of the cameras between the two splits

of CMU dataset are similar. We visualize them in Fig. D-8(left), where each color

corresponds to a split. Comparing to the CMU Panoptic dataset, the translations

between cameras are much smaller in the Mannequin Challenge dataset (see Fig. D-9)

due to how the data is collected.

Dataset sources and licenses In this work we perform evaluation on data from

several sources. For quantitative evaluation, we use the public CMU Panoptic

dataset [155, 156] and follow its non-commercial research-only license. We addi-

tionally curate sequences from the public Mannequin Challenge dataset [199], which

contains raw public youtube videos licensed by Google LLC under a Creative Commons

Attribution 4.0 International License. Moreover, to obtain more real-world data, we

filmed 6 additional Mannequin Challenge videos, and all human subjects appearing

in the video have agreed to data collection and release for research purposes. For

illustration purposes and qualitative evaluation, we have included several examples

from movies and sports events, and we hereby cite them. Fig. 1 in the main paper

contains images from (1) Kobe Bryant’s last shot (images from Lakers Nation), and

(2) the 1997 movie Good Will Hunting directed by Gus Van Sant and produced by

207



Figure D-6: Snapshot of CMU Panoptic Dataset.

Figure D-7: Snapshot of Mannequin Challenge dataset.

Lawrence Bender, starring Ben Affleck and Matt Damon. Fig. D-12 contains pictures

from (1) the 1994-2004 Friends series produced by Bright/Kauffman/Crane Produc-

tions starring Jennifer Aniston and David Schwimmer; (2) Michael Jordan’s last shot

(image on the left from the google images; image on the right from Sports Illustrated

photographer Walter Iooss Jr.), and (3) the 2013 movie The Wolf of Wall Street

directed by Martin Scorsese, produced by Paramount Pictures and starring Leonardo

DiCaprio and Matthew McConaughey. We have obtained all movie and sports images

from the internet, and we will remove these results if copyright is infringed.
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Figure D-8: Statistics of CMU Panoptic Dataset.

Figure D-9: Statistics of Mannequin Challenge dataset.

D.6 Qualitative Results

We show more qualitative results in Fig. D-10, Fig. D-11 and Fig. D-12.

D.7 Social Impact

Our proposed method reduces the need to capture dense views for camera pose

estimation and 3D reconstruction. Hence it has the potential to reduce storage and

computational costs. However, it could have negative societal impact. Similar to

all 3D reconstruction applications, our method could be exploited by surveillance; it

could also raise privacy concerns as 3D reconstruction from few images becomes more

accessible.
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Figure D-10: Qualitative Results on CMU Panoptic dataset.
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Figure D-11: Qualitative Results on Mannequin Challenge dataset.
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Figure D-12: Qualitative Results on movies, sitcom, and sports photograph.

212



D.8 Interactive Results

We also provide a project page that contains more qualitative and interactive visual-

izations. We strongly encourage the readers to take a look. Please visit the webiste

that we host: https://virtual-correspondence.github.io.
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Appendix E

Supplementary: Structure from

Duplicates

E.1 Dataset

Our new dataset, Dup, comprises 13 synthetic scenes and 6 real-world scenes.

E.1.1 Synthetic data

The synthetic data includes apple, medicine box, can, driller, color box, cash

machine, cleaner, clock, coffee machine, wood guitar, warning sign, fire extinguisher,

and food tin. In particular, apple, medicine box, can, and driller each have 100

training views and 200 testing views, making them suitable for the traditional multi-

view dense observation setup. The remaining scenes each consist of 7-10 multi-view

images. We use them to explore the relationship between single-view multiple instances

and multi-view single objects.

E.1.2 Real-world data

We randomly placed the objects on the table and use our mobile phone to capture the

data. In total we collect six real-world scenes: toy airplane, cake box, cheese box,

cola, potato chips, and yogurt. The number of instances in each scene ranges from
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single-view multiple objects equivalent multi-view single object

Figure E-1: Without considering the lighting effect and occlusion, a single image with
duplicated objects (left) is equivalent to multi-view observations of a single object
(right).

five to ten.

E.2 Analyses

On the duality between single-view multi-instances and multi-view single

instance: As depicted in Fig. E-1, when the lighting effect and occlusion are

disregarded, a single image containing duplicated objects can be treated as observing

a single object from multiple viewpoints.

Importance of rotation augmentation: Incorporating in-plane rotation augmen-

tation significantly improves the correspondence matching process. Fig. E-2 shows

some qualitative results.

Singe image inverse rendering: We show more qualitative results in Fig. E-3

and Fig. E-4.

216



w/o augmentation with augmentation

Figure E-2: Importance of rotation augmentation for structure from motion:
After in-plane rotation augmentation, we are able to estimate more correspondences
between two instances. Here, we adopt Superpoints [71] and SuperGlue [307] for
matching.
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Nvdiffrec [249] Physg [424] InvRender [430] Ours GT

Figure E-3: Single-view inverse rendering of the “cleaner” scene.
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Nvdiffrec[249] Physg[424] InvRender[430] Ours GT

Figure E-4: Single-view inverse rendering of the “cash machine” scene.
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