
Private Random Variate Sampling for Secure and
Federated Polygenic Risk Scores

by

Derek Jia-Wen Yen

B.S. Computer Science and Engineering, Linguistics and Philosophy, MIT, 2022

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2024

© 2024 Derek Jia-Wen Yen. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Derek Jia-Wen Yen
Department of Electrical Engineering and Computer Science
January 19, 2024

Certified by: Bonnie Berger
Professor of Mathematics, Thesis Supervisor

Certified by: Hyunghoon Cho
Assistant Professor of Biomedical Informatics and Data Science
Yale University, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

https://creativecommons.org/licenses/by-nc-nd/4.0/

2

Private Random Variate Sampling for Secure and Federated
Polygenic Risk Scores

by

Derek Jia-Wen Yen

Submitted to the Department of Electrical Engineering and Computer Science
on January 19, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

Polygenic risk scores (PRS) are used to quantify the additive effect of single nucleotide
polymorphisms (SNPs) on an individual’s genetic risk for developing a particular trait or
condition. Collaborations between data centers are important for improving the statistical
power and validity of PRS through larger, more genetically diverse datasets. However, owing
to the privacy concerns inherent in genomic data, regulations restrict institutions’ capacity
to share data. Using cryptography, we present a secure and federated implementation of
a Monte Carlo algorithm for PRS, enabling collaborations that respect data regulations.
To implement a Monte Carlo algorithm in a privacy-preserving context, our work exhibits
techniques for sampling random variates with cryptographically private parameters, which
may be of independent interest.

Thesis supervisor: Bonnie Berger
Title: Professor of Mathematics

Thesis supervisor: Hyunghoon Cho
Title: Assistant Professor of Biomedical Informatics and Data Science, Yale University

3

4

Acknowledgments

Thanks to Manaswitha Edupalli and David Froelicher for their guidance both within and
beyond the lab. This past year has been formative in my development as a researcher, and
I owe that in no small part to their mentorship and advice.

Thanks to Professor Hyunghoon Cho and Professor Bonnie Berger for supervising my
research. I am grateful to have been given the opportunity to pursue this work and will
cherish my time in their groups.

Lastly, I thank my family and friends for supporting me throughout my MEng: you have
been my anchor amidst waves.

5

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 9

List of Tables 11

1 Introduction 13
1.1 Problem definition . 13
1.2 Description of thesis structure . 14
1.3 Genomics background . 14

1.3.1 Notation and dataset . 15
1.4 Cryptography background . 16

1.4.1 Homomorphic encryption (HE) . 17
1.4.2 Secure multiparty computation (MPC) 18

2 Methods 19
2.1 Review of PRS-CS Algorithm . 19

2.1.1 The PRS-CS Gibbs sampler . 20
2.1.2 Structure of the input data to PRS-CS 21

2.2 Designing sampling algorithms within the cryptographic framework 22
2.2.1 Overcoming technical constraints in secure computing 22
2.2.2 The sample-and-rescale approach to secure random variate generation 24

2.3 Algorithm for secure δj sampling . 25
2.4 Algorithm for secure σ2 sampling . 26
2.5 Algorithm for secure ψj sampling . 27
2.6 Algorithm for secure β sampling . 30

2.6.1 Structure of the covariance matrix . 31
2.6.2 The MVN sampling algorithm . 31
2.6.3 Review of Conjugate Gradient Method 32
2.6.4 The Conjugate Gradient Method in context 34
2.6.5 The full MVN algorithm . 36

7

3 Implementation and results 38
3.1 Implementation . 38
3.2 Results . 38
3.3 Future work . 40
3.4 Conclusion . 41

References 46

Appendix 49

8

List of Figures

3.1 Mean and variance of δj samples . 42
3.2 Histogram of σ2 samples . 43
3.3 Mean and variance ψj samples . 44
3.4 Mean and covariance of β samples . 45

9

10

List of Tables

2.1 Approximate expected ranges of PRS-CS parameters and inputs 24

3.1 Estimated mean/variance of σ2 samples . 39
3.2 Approximate runtimes of each sampling function 40

11

12

Chapter 1

Introduction

Polygenic risk scores (PRS) are a promising technique to give patients a more informed
picture of their relative risk for developing particular conditions, such as chronic diseases,
based on their genetic variants. [1], [2] Collaborations between data centers to pool larger
datasets improve the statistical power of the resulting PRS, but the sensitive nature of
genomic/medical data has led to regulations on data centers’ ability to legally share such
data. Consequently, it can be difficult in practice to effect such collaborations.

Our research aims to demonstrate that this tension between privacy and research can be
resolved through cryptography. Two particular cryptographic tools are useful for privacy-
preserving collaborative computations: homomorphic encryption (HE) and multiparty com-
putation (MPC). Both of these tools offer techniques for parties to jointly compute a function
of their individual datasets without revealing any sensitive information to the other parties.
Our work will thereby facilitate collaborations by allowing data centers to obtain the same
results as though they had shared data while still respecting regulations.

In implementing a PRS algorithm with these privacy-preserving technologies, our work
develops techniques for sampling random variates from distributions with cryptographically
private parameters, which may be of interest for privacy-preserving computation beyond the
biomedical context.

1.1 Problem definition

Cryptographic techniques offer a natural method to address the privacy concerns that arise
in computations with genomic data. [3], [4] More broadly, privacy preserving multiparty
computation has been developed for a variety of domains, including secure advertising and
privacy-preserving machine learning. [5], [6] Our work contributes to a large and diverse
literature of applications of cryptographic methods for collaboratively computing an output
on private inputs; or outsourcing an expensive computation on sensitive data to a third party
without revealing said data. Following prior work, we use a combination of two cryptographic
techniques—homomorphic encryption and multiparty computation—to leverage the benefits
of both techniques. [7]–[9]

We assume a secure and federated problem context, in which P parties holding disjoint
sets of genomic data wish to collaborate and compute PRS scores over their shared data

13

without revealing any sensitive information to the other parties. We assume that the parties
can communicate with each other over a secure and authenticated channel (such as through
the TLS protocol); and also that they have mutually selected a particular computing party,
the “hub party,” to be distinguished as the one party to perform certain special operations in
algorithms where breaking symmetry is necessary. We also assume that there is a so called
“party 0” to serve as a “trusted dealer” for MPC. Lastly, and crucially, we assume an “honest
but curious” security model: the parties can be trusted to correctly follow the steps of the
protocol, but will seek to learn the other parties’ private values from all information that
they observe over the course of communications. [10] The cryptographic tools we use will
satisfy this security model.

Of the various recent algorithms for PRS, we implement PRS-CS by Ge et al. owing to its
relevance and influence. [11] The PRS-CS algorithm performs a Bayesian regression through
Gibbs sampling, a Markov Chain Monte Carlo method for sampling from a multivariate
probability distribution. Implementing such an algorithm in our secure setting entails im-
plementing its constituent random variable sampling functions in a cryptographically secure
way. To our knowledge, this is an unexplored problem in privacy-preserving computation,
and one which may be of independent interest owing to the prevalence of Monte Carlo
algorithms.

1.2 Description of thesis structure

In the rest of this chapter, I will review the relevant genomics background for the problem
context, and the two cryptographic tools used in our work.

In Chapter 2, I discuss our implementation of PRS-CS’s sampling functions. I will review
the PRS-CS algorithm, discuss some general considerations of working within the HE/MPC
framework, then present our secure random variate sampling algorithms. As a primary con-
tribution of this work is in broaching the problem of secure random variate sampling, I will
emphasize the considerations used to achieve computational efficiency within the HE/MPC
framework, which may provide insight on how to approach other probabilistic applications
of privacy preserving multiparty computation. Discussion of the sampling algorithms will
highlight the reasoning used to achieve computational efficiency within the HE/MPC frame-
work, which may provide insight on how to approach other problems within the space of
privacy preserving multiparty computation.

In Chapter 3, I will demonstrate the faithfulness of the secure sampling algorithms,
discuss preliminary results on the runtime of our implementation, and denote avenues of
future work. Lastly, the Appendix contains additional details about the theory underlying
β sampling.

1.3 Genomics background

Single nucleotide polymorphisms (SNPs) are variant alleles in a population that differ by a
single base pair from a reference genome. Through genome-wide association studies (GWAS),
it is possible to identify SNPs correlated with particular phenotypes and assign each SNP an

14

“effect size” β̂j measuring the strength of its correlation with the expression of that phenotype.
The effect sizes generated by GWAS can be further refined for polygenic risk scores (PRS),
which quantify an individual’s genetic risk for a phenotype based on the SNPs present in
their genome. [1], [2], [12]

In standard PRS models, it is assumed that an individual’s relative risk can be repre-
sented as a sum of the effect sizes of the SNPs that individual possesses: in other words,
assuming that an individual’s SNPs are independent from each other. A major consideration
in generating PRS effect sizes is therefore accounting for linkage disequilibrium (LD) between
SNPs, which is a measure of how correlated the inheritance of two SNPs is. [2] Accounting
for LD effects is known to improve the accuracy of PRS. [13]

Furthermore, the accuracy of PRS is sensitive to the particular population used in the
input GWAS. GWAS statistics and LD estimates can differ between populations of different
ancestry groups and population structure, so PRS are most accurate when generated from
data of a similar ancestry group as the patient. [1], [12], [14] This variation underscores the
clinical importance of aggregating genomics datasets for larger and more diverse studies, as
most prior genomics research has focused on European datasets and may not transfer to
other populations. [1]

1.3.1 Notation and dataset

Here, we review the assumed problem context and the notation associated with the ge-
nomics datasets. Assume that computing parties indexed p ∈ [P] each hold the genotype
data for disjoint sets of Np individuals on M commonly agreed upon SNPs, where the no-
tation [P] := {1, 2, . . . , P}. Let N =

∑
p∈[P]Np be the total number of individuals in the

joint dataset. The data shared among all parties can be represented as a genotype matrix
X ∈ {0, 1, 2}N×M , where entry Xi,j ∈ {0, 1, 2} is the ith individual’s allele count for SNP
j. Explicitly, an individual heterozygous for the variant SNP will have count 1, while an
individual homozygous for the variant will have count 2, and an individual homozygous for
the reference will have count 0. Similarly, the “local” genotype matrix each party holds for
their own data is denoted X(p) ∈ {0, 1, 2}Np×M . Together, the X(p) are horizontal slices of
the aggregate “global” genotype matrix X. Likewise, let Z ∈ RN×M denote the standardized
genotype matrix in which each column, corresponding to a SNP, has been mean centered
and has unit variance; and Z(p) ∈ RNp×M similarly.

Using the standardized genotype matrix, it is possible to compute the linkage disequi-
librium (LD) matrix. There are multiple definitions of LD, but the PRS algorithm we will
implement uses the LD correlation matrix. [11]

Definition 1.3.1 (Linkage Disequilibrium matrix). Given standardized genotype matrix
Z ∈ RN×M , the LD matrix D ∈ [−1, 1]M×M is defined as

D :=
Z⊤Z

N
,

where Di,j is the linkage disequilibrium between SNPs i and j. [11], [13]

I note properties of the LD matrix which will later be algorithmically relevant.

15

Property 1.3.1. The LD matrix is symmetric.

Property 1.3.1 owes to the fact that the LD is definitionally computed as A⊤A for a
real-valued matrix A, which implies symmetricness.

Property 1.3.2 (Additive distribution of LD matrix). Given standardized N×M genotype
matrix Z is horizontally split into Np ×M local genotype matrices Z(p), the corresponding
LD matrices are related as

D =
∑
p∈[P]

Np

N
D(p),

where D(p) :=
Z(p)⊤Z(p)

Np

is the pth party’s LD matrix computed off of their “local” data.

This property owes to the fact that the genotype matrix is horizontally split:

D =
Z⊤Z

N

=
∑
p∈[P]

(
Z(p)⊤Z(p)

N

)

=
∑
p∈[P]

Np

N

(
Z(p)⊤Z(p)

Np

)

=
∑
p∈[P]

Np

N
D(p).

As a matter of notation, we will often instead index the parties by i, and also write Di or
Zi to refer to the ith party’s matrices.

Property 1.3.3 (All-ones diagonal of LD matrix). The diagonal entries of an LD matrix
are all equal to 1.

This property follows from the definition of the LD matrix as a correlation matrix. It
has an intuitive interpretation: any SNP will necessarily always be inherited with itself.

1.4 Cryptography background

Our work leverages two distinct cryptographic techniques: homomorphic encryption and
multiparty computation. Both techniques essentially offer a means to evaluate functions over
data without revealing anything about the data (other than the output, in the case of MPC).
Each technique has its own strengths and limitations, and judicious use of both techniques
and interconverting between them expands the range of possible computations. Even still,
both techniques are expensive to use in practice, either in terms of time or communication
complexity, and it is therefore best to maximize plaintext computation when possible.

16

1.4.1 Homomorphic encryption (HE)

A homomorphic encryption (HE) scheme is an encryption scheme with the additional prop-
erty that one can evaluate circuits over the ciphertexts. [10], [15] Colloquially, HE allows a
secret-bearing party to “outsource” a computation over that secret to another party, without
the computing party learning anything about the secret. Although an HE scheme definition-
ally allows for arbitrary circuit evaluation, in practice the feasible space of functions is quite
circumscribed. Specifically, the efficiency of HE schemes is bottlenecked by the multiplica-
tive depth of the computed function, as ciphertexts in these schemes can only be used for
a fixed number of multiplications before they must be refreshed through a costly operation
called bootstrapping. [10], [15]

In our work, we use the Cheon-Kim-Kim-Song (CKKS) HE scheme. [16] In CKKS, the
message space is complex numbers: specifically vectors of complex numbers CN/2, where N
is a power of 2 chosen as part of the parameterization. 1 As the message space is complex
numbers, ciphertexts can be thought of as containing many “slots” for separate values that
can be acted upon simultaneously in parallel. 2 This property enables single instruction, mul-
tiple data (SIMD) type parallel computations, promising greater efficiency with thoughtful
algorithmic design.

CKKS derives its cryptographic security from the Ring Learning with Errors (RLWE)
assumption: the practical consequence of this being that encrypting a message into a ci-
phertext causes it to suffer a small amount of noise in its least significant bits, and so all
arithmetic with CKKS is approximate. If the noise is negligible compared to the underly-
ing value, then the computations will remain valid; this presents a practical constraint on
how small message values can be, and some care must be taken to prevent HE noise from
accruing.

There are three primitive operations available for ciphertexts in CKKS:

1. Add : C × C → C, which adds two ciphertexts pointwise between slots

2. Mult : C × C → C, which multiplies two ciphertexts pointwise between slots

3. Rot : C × Z→ C, which shifts the slots of a ciphertext by mapping the ith slot to the
(i+ k)th slot, wrapping cyclically around.

To give a sense of the relative costliness of the different operations, addition is the fastest,
followed by multiplication, and rotation is the slowest, equivalent to two multiplications.
Bootstrapping is an order of magnitude costlier than a multiplication. It is also possible to
Add and Multiply between a ciphertext and a plaintext value; plaintext-ciphertext multi-
plication is faster than ciphertext-ciphertext multiplication by a factor of about eight. [7],
[8]

1There is also a real-valued version of CKKS, but our implementation is based off of the original complex-
valued version.

2To give a sense of scale, in our parameterization of CKKS, N = 214: so each ciphertext has 213 = 8192
slots.

17

1.4.2 Secure multiparty computation (MPC)

Multiparty computation (MPC) is a technique where two or more parties can jointly evaluate
a function of their inputs without learning anything about the other parties’ inputs. Put
symbolically, if each party i bears an input value xi, they can collaborate using MPC to
compute a function y = f(x1, . . . , xk) without learning about any other party’s xi value. [10],
[17] Our work specifically uses additive secret sharing to perform MPC, meaning that at each
step of the computation, each party possesses a secret share si such that the sum of the shares
equals the current value. Each share is “blinded” so that it reveals no information whatsoever
about the true value underlying the computation, and in fact that any subset of the shares
reveal no information. In such a scheme, the secret shares are actually elements of some field,
such as Zq, the field of integers modulo q for a prime q. As the actual underlying values of
the MPC scheme are integers, real numbers are approximately encoded by scaling them up
by some constant 2f and snapping them to the nearest integer. [9]

To give a toy example for concreteness, suppose one wishes to share a secret value x with
two parties, Alice and Bob. Suppose x ∈ Zq, the field of integers modulo q for a prime q.
Let r be a uniformly sampled element of Zq. We can give Alice x − r and Bob r. Clearly
by construction the secret shares are additive; and they are also perfectly hiding, as both
x− r and r are uniformly distributed over Zq. This idea can be generalized to many parties
by independently sampling many r1, . . . , rk, giving Alice x−

∑
i ri and party i the value ri.

More complicated techniques must be used to implement multiplication and other functions;
but it is possible to implement the following functions:

1. MPC-SqrtAndSqrtInverse(a): Returns (secret shares of) approximations of
√
a and

1/
√
a.

2. MPC-Divide(a, b): Returns an approximation of a/b.

3. MPC-IsPositive(a): Returns 1 if a > 0 and 0 otherwise.

4. MPC-GreaterThan(a, b): Returns 1 if a > b and 0 otherwise.

5. MPC-LessThan(a, b): Returns 1 if a < b and 0 otherwise.

There are also versions of the inequality functions where one argument is public, which can
be more efficient. See the supplement in [9] for more information about the protocols to
compute the above functions.

As a last detail, our implementation of MPC requires the presence of a “dealer” party,
denoted party 0. Specifically, the dealer performs certain pre-processing computations prior
to the interaction of the main, computing parties to enable more efficient multiplication. [9],
[10]

Though MPC provides a means to compute functions that would be prohibitively expen-
sive to compute with HE, MPC requires communication between parties to evaluate functions
whereas HE can be done locally. There are ways of converting from CKKS ciphertexts to
additive secret shares and vice-versa, allowing us to design algorithms that leverage benefits
from both schemes. [7]

18

Chapter 2

Methods

I begin this chapter with a review of the PRS-CS algorithm and the form of its input data.
Then, I discuss our primary technical contributions: general algorithmic techniques we used
to address technical constraints arising from using HE/MPC, and a generic technique for
secure random variate sampling. Finally, I present each of our sampling algorithms and
detail the considerations underpinning their design.

2.1 Review of PRS-CS Algorithm

The PRS-CS algorithm performs a Bayesian regression using a Gibbs sampling algorithm. A
Gibbs sampler is a type of Markov Chain Monte Carlo (MCMC) algorithm for approximat-
ing samples from a multivariate probability distribution where direct sampling from the joint
distribution is intractable. Let f(θ) be a multivariate probability distribution of interest,
parameterized by the vector of variables θ = (θ1, . . . , θk). A Gibbs sampler reduces sampling
the multivariate θ to a series of univariate samplings, in which each coordinate is sampled
conditioned upon the others, θi | θ−i, where θ−i := (θ1, . . . , θi−1, θi+1, . . . , θk) denotes the
vector θ excluding the ith coordinate. Thus, if we would ordinarily draw n samples from
f(θ), in using the Gibbs sampler we would instead, each iteration, draw a sample for each
θi in turn, updating as we go. [18]

The Bayesian regression model for PRS-CS is:

y = Zβ + ε, ε ∼ N (0, σ2I), p(σ2) ∝ σ−2, (2.1)

where Z is the N ×M standardized genotype matrix; y is standardized phenotype vector of
our training population; ε denotes the vector of independent environmental effects; and the
residual variance σ2 has been assigned a non-informative scale-invariant Jeffreys prior p(σ2).

The βj are assigned a “global-local scale mixture of normals” prior:

βj ∼ N
(
0,
σ2

N
ϕψj

)
, ψj ∼ g, (2.2)

where ψj is a local, SNP-specific shrinkage parameter; ϕ is a “global shrinkage parameter”;
and g is an absolutely continuous mixing density function. For PRS-CS, the particular prior

19

on ψj is the independent gamma-gamma prior:

ψj ∼ Gamma (a, δj) , δj ∼ Gamma (b, 1) , (2.3)

where a, b are hyperparameters and Gamma (k, θ) denotes the gamma distribution with
shape parameter k and scale parameter θ. PRS-CS uses the hyperparameter values a = 1
and b = 1/2, which is called the Strawderman-Berger prior or the quasi-Cauchy prior, as it
was found to “work well across a range of simulated and real genetic architectures.” [11]

PRS-CS has two versions: base PRS-CS, in which the global shrinkage parameter ϕ is
fixed; and PRS-CS-auto, where ϕ is itself estimated. Our work investigates base PRS-CS
with the recommended value ϕ = 0.01, though an extension to PRS-CS-auto is a natural
realm of future work.

2.1.1 The PRS-CS Gibbs sampler

The Gibbs sampler for PRS-CS samples the four parameters β, σ2, δ, ψ in order as follows: [11]
Sample β:[

β | σ2,Ψ, β̂,D
]
∼ MVN (µ,Σ) , µ =

N

σ2
Σβ̂, Σ =

σ2

N

(
D +Ψ−1

)−1 (2.4)

Sample σ2: 1[
σ2 | β,Ψ, β̂,D

]
∼ invGamma

(
N +M

2
,
N

2
ς

)
,

ς = max
{
1− 2β⊤β̂ + β⊤(D +Ψ−1)β, β⊤Ψ−1β

}
,

(2.5)

Sample δj:

[δj | ψj] ∼ Gamma
(
a+ b,

1

ψj + ϕ

)
(2.6)

Sample ψj: 2

[
ψtemp
j | βj, σ2, δj

]
∼ giG

(
a− 1

2
; 2δj,

Nβ2
j

σ2

)
,

ψj = min{1, ψtemp
j },

(2.7)

where MVN (µ,Σ) denotes the multivariate normal with mean µ and covariance Σ; Gamma (α, β)
and invGamma (α, β) denote the gamma and inverse gamma distributions, respectively, with
shape parameter α and scale parameter β; and giG (p; ρ, χ) denotes the generalized inverse
Gaussian distribution.

We reproduce the pseudocode for the PRS-CS Gibbs sampler in Algorithm 1. We use Ge
et al.’s recommended default MCMC parameters: 1000 MCMC iterations with 500 burn-in
iterations and a thinning factor of 5.

1While omitted from the supplement to PRS-CS, the max between possible values of ς is implemented in
the codebase, and necessary to ensure that ς > 0 for all inputs.

2PRS-CS as an algorithm restricts ϕ−1ψ−1
j ≥ ρ for ρ = 1. The PRS-CS codebase satisfies this restriction

by clamping ψj above at 1, though this is a stronger bound than is necessary for small ϕ. Nevertheless, we
implement this bound to match the original implementation.

20

Algorithm 1 PRS-CS.
Input: The number of MCMC iterations, the number of burn-in iterations, and the

thinning rate; the GWAS effect size estimates β̂ and each party’s local LD matrix Di;
population count N and SNP count M ; PRS-CS hyperparameters a, b, ϕ.

Output: PRS effect sizes β.
1: Initialize σ2 = 1; and βj = 0 and ψj = 1 for all j ∈ [M].
2: for t ∈ {1, 2, . . . ,mcmc_iters} do
3: Sample β.
4: Sample σ2.
5: Sample δj for all j ∈ [M].
6: Sample ψj for all j ∈ [M].
7: Clamp all ψj to min{ψj, 1}.
8: if t > burn_in_iters and t is divisible by thinning_rate then
9: Keep β(t).

10: end if
11: end for
12: return the average of the kept betas β̄ =

∑
kept t β

(t).

2.1.2 Structure of the input data to PRS-CS

PRS-CS uses two types of input data: GWAS-derived effect sizes β̂, and the linkage dis-
equilibrium matrix D. Notably, both of these inputs scale only in the number of SNPs
M and not in the number of individuals N , encouraging larger collaborations at no added
computational burden. Though we assume that each party has its own genotype data Xi,
we assume that β̂ is public, as in practice GWAS effect sizes are published in the literature.

Without additional assumptions, it would be intractable to perform PRS-CS, as sampling
β would be infeasible even in plaintext. Accordingly, Ge et al. make the additional assump-
tion that the LD matrix can be partitioned into blocks that are approximately independent
from each other: LD effects between SNPs within the same block are non-negligible, but LD
effects between SNPs of different blocks are negligible.[11] By making this assumption, D is
understood to have block diagonal structure, and can be partitioned into separate LD blocks
Dℓ. Sampling of β can therefore be done only at the block level, with each block’s βℓ drawn
independently of the others.

The “approximately independent linkage disequilibrium blocks” can be computed using an
algorithm by Berisa and Pickrell. [19] In our work, we take the approximately independent
cutoffs published by Berisa and Pickrell, though future work could also incorporate the
cutoff finding algorithm into the secure federated PRS pipeline. In practice, these blocks
have dimension of a couple hundred up to a thousand, though the target block size is a
tunable parameter of the LD block finding algorithm.

Though the original intent of recognizing the approximate block structure of the LD
matrix was to improve the computational tractability of β sampling, for our purposes it is
actually desirable to group LD blocks together into larger units. Recall that CKKS cipher-
texts encode vectors of multiple values, in our case 213 = 8192. We are therefore encouraged
to batch computations for optimal efficiency, but this appears to be in tension with the

21

efficiency of β sampling. However, as will be discussed in greater detail in Section 2.6, for
the major bottlenecks to β sampling efficiency—matrix multiplication and solving a system
of linear equations with an iterative algorithm—the runtime cost of both of these operations
will either grow slowly or not at all in the underlying dimension of a ciphertext. Moreover,
as the ψj, δj are sampled independently, it is desirable to take advantage of parallel com-
putation to its fullest extent by packing ciphertexts as fully as possible. It is therefore on
balance advantageous to group blocks together. In our work, we arbitrarily group LD blocks
together using a greedy algorithm, though more sophisticated bin packing algorithms could
potentially improve the runtime of the downstream β sampling task; see the Appendix for
more detail.

2.2 Designing sampling algorithms within the cryptographic
framework

In this section, I detail some of the more general techniques we devised to overcome technical
constraints of implementing algorithms using HE/MPC. I will then discuss a very general
solution for secure random variate sampling—sampling from a standard distribution and
rescaling—and why it was insufficient for implementing all algorithms in our application.

2.2.1 Overcoming technical constraints in secure computing

HE and MPC each pose constraints to the computational model available, creating new
challenges that must be navigated in refactoring an algorithm. In general, all HE and MPC
operations are significantly more computationally intensive than their plaintext counterparts;
and MPC operations require communication between parties and will incur latency and
network costs accordingly. Commonplace operations that would be cheap in plaintext are
made significantly slower under HE and MPC, and familiar algorithmic approaches become
profligate or unworkable.

Deftly navigating the constraints posed by the cryptographic framework entails unfamil-
iar algorithmic rewrites. For example: in plaintext, computing the quantity 4λ using addition
of λ to itself instead of by multiplying by 4 would be non-idiomatic and unusual, but in-
consequentially so. But under HE, it is better to compute 4λ with addition, as it is faster
than multiplication and does not consume any ciphertext levels. Many of the implemented
algorithmic rewrites are of this type; we will therefore present many algorithms in two forms:
one form that is most readily understood, and one form that includes rewrites that obscure
the underlying algorithm yet better respect the constraints of our computational model.

Though the sampling algorithms exhibited herein are specific to our application context,
we believe that the reasoning and thought process used in developing these algorithms may
be of aid for future work. If anything, the way in which these sampling algorithms are specific
to our problem—which variables are public and which are sensitive; how data is distributed
among parties; expectations for where quantities might become too large or too small and
overflow magnitude constraints—may itself signify a lesson about this problem context. The
best sampling algorithms in context may require bespoke algorithms in order to exploit any
available properties.

22

Addressing magnitude constraints through averaging

While all computers face limits on the range of representable values, these restraints are
more palpable in the context of both homomorphic encryption and multiparty computation.
If a quantity that is too large is ever computed, the resulting ciphertexts/secret shares will
be ill-formed and unusable. As a result, we must sometimes rewrite algorithms to avoid the
computation of large quantities by first multiplying through by a fraction before summing
multiple terms to take an average of the terms, which can later be rescaled to the sum. It
is also important to design the algorithms mindful of the fact that the input size N,M may
vary: any algorithmic choices to confine the anticipated magnitude of variables within a
particular range must be robust to various input sizes. In our context, the main operation
that might exceed the representable range is the inner product, for which we take an average
over the coordinates.

Addressing precision constraints through upscaling

In HE, the smallest representable quantities are dictated by the presence of HE noise, the
noise added to all messages to invoke the (Ring) Learning with Errors assumption that
powers the security of the scheme. [16] In MPC, precision is constrained by the size of the
finite field used in the secret sharing scheme. [9] Many of the techniques used ordinarily to
prevent floating point roundoff error are also relevant in this context: noise only affects the
low order bits of the representations of numbers, so it is better ceteris paribus to compute
larger quantities whenever possible, and avoid representing small numbers. The issue of
precision is particularly pointed in our problem context given that many of the PRS-CS
parameters, such as β, β̂, and ψj, reside in the ≈ 10−5 to 10−2 range. HE noise under
our CKKS parameter settings would ordinarily be about the size of the SNP effect sizes
and potentially affect results. This is normally arithmetically fine, as the quantity is still
approximately correct, but many of the MPC operations assume positive inputs, such as
MPC-Sqrt and the denominator to MPC-Divide, and will produce ill-formed outputs if this
precondition is violated. We must therefore take care whenever converting a ciphertext with
small values to secret shares and using those values in an MPC operation.

We address the issues of precision and HE noise by upscaling each of the small parame-
ters that arise in our problem context: redesigning the algorithms to sample from different
distributions than the target, e.g. kββ instead of β for some known, tunable constant kβ.
Upscaling can also provide benefits for improving the numerical stability of MPC operations
by feeding them larger inputs. There is a tension between resolving issues of precision and
the aforementioned issue of magnitude, as addressing precision encourages representing large
quantities, but addressing magnitude discourages representing large quantities. Recalling the
issue of large inner products, averaging by multiplying through a small constant might cause
the individual terms to vanish below HE noise; and taking inner products over values with
upscaling might exceed the upper end of representable numbers. We use our expectations of
the approximate size of the quantities to justify our choices of the scaling constants k, and
also to carefully design our algorithms so that neither magnitude nor precision constraints
are flouted. In Table 2.1, we describe the approximate expected ranges of each of the PRS-CS
parameters and inputs, which helps motivate the choices of rescaling constants used. Note

23

Parameter Approximate range

βj [10−5, 10−2]
σ2 [.5, 3]
δj [10−1, 103]
ψj [10−4, 1]
ψ−1
j [1, 104]

β̂j [10−5, 10−1]
Di,i [10−5, 1]

Table 2.1: Approximate expected ranges of PRS-CS parameters and inputs

that the smallest quantity that can be represented in CKKS is about 10−5 or so, artificially
making that value the lower bound.

Ultimately, we rescale βj and β̂ by a constant kβ; and rescale ψj by a constant kψ. In
our implementations, we use the values kβ = kψ = 103.

2.2.2 The sample-and-rescale approach to secure random variate
generation

The simplest idea for random variate sampling under encryption is also one that works: to
sample from a standard form, which can be done in plaintext, and cryptographically rescale
to the target distribution. For example, the gamma distribution Gamma (k, θ) with shape
parameter k and scale parameter θ has the following property:

Property 2.2.1 (Gamma distribution scaling property). If X ∼ Gamma (k, θ), then cX ∼
Gamma (k, cθ).

To sample from a distribution Gamma (k, θ) with public k but private θ, one can use
Property 2.2.1, sample in plaintext from Gamma (α, 1), and use homomorphic multiplica-
tion to rescale the sample to one from Gamma (α, θ). The usefulness of the sample-and-
rescale technique can be further enhanced by considering relationships between probability
distributions, which both expands the scope of the distributions accessible with this tech-
nique and may also suggest alternative, more computationally efficient ways of sampling
from a particular distribution. Consider the following scenario: one must sample a variable
X ∼ invGamma (a, b), and both X and 1/X will be used in some downstream computation.
There is a relationship between the gamma and inverse-gamma distributions:

Property 2.2.2 (Relationship between Gamma and Inverse Gamma distributions). If X ∼
Gamma (k, θ), then 1/X ∼ invGamma (k, 1/θ).

So either X or 1/X can be sampled, and the one quantity derived from the other. If this
were plaintext sampling, one would be largely indifferent as to whether X were sampled from
the gamma or inverse gamma distribution, as both are readily available. In the cryptographic
context, they are not equivalent. If a is public and b is private, it is preferable to sample from
invGamma (a, 1) and rescale to invGamma (a, b) using the inverse gamma rescaling property:

24

Property 2.2.3 (Gamma distribution scaling property). If X ∼ invGamma (α, β), then
cX ∼ Gamma (α, cβ).

As this rescaling can be done with a cryptographic multiplication with b. In contrast, to
sample from the equivalent gamma distribution would require sampling from Gamma (a, 1)
and a cryptographic multiplication with 1/b instead: computing this quantity would require
an MPC Divide, a relatively expensive operation. Awareness of the relationships between
probability distributions may both present a broader range of accessible distributions and
suggest algorithmic optimizations.

Limitations to the sample-and-rescale approach

While obvious and widely useful, the sample-and-rescale approach has limitations. Notably,
this approach requires that one has access both to: (i) a source of samples from the standard
form of the distribution and (ii) the relevant transformation factors. The first criterion might
not be satisfied if the distribution has no readily available plaintext sampling function. The
second criterion might not be satisfied if the quantities necessary for the transformation can-
not be easily computed, or if the transformation necessary is too computationally involved.
Both criteria did not hold for some distributions in our implementation of PRS-CS. For ψj
sampling, neither the generalized inverse Gaussian, nor the inverse Gaussian that it reduces
to in our case, had readily available plaintext sampling implementations in Golang’s scientific
computing libraries. For β sampling, standard MVN samples can be easily obtained, but the
rescaling factor is prohibitively expensive to compute, owing to how the covariance matrix
is private and distributed among parties. The tacks taken for those distributions will be
detailed in their sections; but the basic sample-and-rescale approach did work for sampling
σ2 and δj.

Because the HE/MPC framework encourages non-idiomatic computational rewrites for
the sake of efficiency, I will present many algorithms once in its essential and most easily
understood form; then a second time in its revised form, so that the differences can be
highlighted. Even still, we will abstract away from particulars of whether data is represented
as ciphertexts in HE or secret shares in MPC, and omit implied conversions between HE and
MPC, bootstrapping operations, and communication of variables between parties. Generally
speaking, variables should be assumed to be single HE ciphertexts unless otherwise indicated:
said to be plaintext, or involved in an MPC operation.

2.3 Algorithm for secure δj sampling

For clarity, we reproduce the probability distribution in Equation 2.6 that the δj are sam-
pled from below (and will do so for the other distributions as well.) The δj are sampled
independently for each SNP j ∈ [M] as

δj ∼ Gamma
(
a+ b,

1

ψj + ϕ

)
.

The parameter δj is the most straightforward to sample in our context. The hyperparameters
a, b are fixed and public, as they determine what priors are being used in the Bayesian

25

regression. We can therefore implement δj sampling directly by using the gamma rescale
property 2.2.1:

Algorithm 2 Sampling for δj.
Input: Hyperparameters a, b, ϕ; parameters ψj; source of gamma samples.

1: For each j ∈ [M], sample Xj ∼ Gamma (a+ b, 1).
2: Compute the rate ρj = ψj + ϕ.
3: Scale the samples as δj = Xj/ρj.
4: return the samples.

We reproduce the algorithm in its revised form as Algorithm 3. The major change
is accounting for the fact we upscale ψj to kψψj and must account for this rescaling in
computing the rate.

Algorithm 3 Secure sampling for δj.
Input: Hyperparameters a, b, ϕ; public constant kψ; parameters ψj; source of gamma

samples.
1: For each j ∈ [M], sample Xj ∼ Gamma (a+ b, 1) in plaintext.
2: Upscale the samples to X ′

j = kψXj.
3: Compute the upscaled rate as ρ′j = kψψj + kψϕ.
4: Compute the samples as δj = X ′

j/ρ
′
j using MPC-Divide.

5: return the samples.

2.4 Algorithm for secure σ2 sampling

The parameter σ2 is sampled as

σ2 ∼ invGamma
(
N +M

2
,
N

2
ς

)
, ς = max

{
1− 2β⊤β̂ + β⊤(D +Ψ−1)β, β⊤Ψ−1β

}
,

where Ψ−1 denotes the diagonal matrix whose jth diagonal entry is ψ−1
j .

Sampling σ2 is relatively straightforward via the inverse gamma rescaling property 2.2.3,
but there are two problems: implementing the max function, and ensuring that no quantities
involved become unrepresentably large.

Implementing the max can be done with the observation that we can write the left
possibility for ς with a separate term that is the right possibility:

1− 2β⊤β̂ + β⊤(D +Ψ−1)β = (1− 2β⊤β̂ + β⊤Dβ) + (β⊤Ψ−1β).

For clarity, let us refer to the left expression in the max as ςL, the right expression as ςR, and
the first parenthetical term above as ςL−R: the left possibility minus the right possibility.
If the quantity ςL−R = 1 − 2β⊤β̂ + β⊤Dβ is positive, then ςL = ςL−R + ςR > ςR. We can
compute ςL−R in HE, use MPC to check if it is positive, and then compute the correct scale
accordingly.

26

The second concern owes to the fact that σ2 is a single scalar regardless of input size,
whereas the other parameters β, δj, ψj are sampled locally: β is sampled independently
between LD blocks; and δj, ψj are sampled independently per SNP. In contrast, the private
scale parameter for σ2 involves terms that can grow proportionately to the number of SNPs
in the input data: β⊤β̂, β⊤Dβ, and β⊤Ψ−1β. Based on the approximate anticipated ranges
of these quantities (see 2.1), it is primarily a concern that β⊤Ψ−1β could grow to a large
size, whereas it is anticipated that β⊤β̂ and β⊤Dβ may roughly be of the same size. The
quantity β⊤Dβ can be computed in CKKS with minimal communication overhead owing to
the fact that each party’s local LD matrix sums to the global LD matrix via 1.3.2. More
information on the particular matrix multiplication algorithm from Jiang et al. [20] is in the
Appendix.

Algorithm 4 Secure matrix multiplications with D.
Input: Ciphertext vector x, each party’s local Di.
Output: Ciphertext vector Dx.

1: Each party locally computes Dix using their plaintext Di.
2: The parties aggregate

∑
i∈[P]

Ni

N
Dix =Dx.

3: Return Dx.

The only last thing to remark upon is that we must account for the upscaling of β and
β̂. We present the revised algorithm as Algorithm 5.

Algorithm 5 Secure sampling for σ2.
Input: Public constants N,M, kβ; public GWAS statistics β̂; parameters Ψ−1, β; access

to inverse gamma samples.

1: Compute ςR =
1

k2β
(kββ

⊤)Ψ−1(kββ).

2: Compute ςL−R =
1

k2β

[
k2β − 2(kββ

⊤)(kββ̂) + (kββ
⊤)D(kββ)

]
.

3: Compute 1{ςL−R > 0} ∈ {0, 1} using MPC-IsPositive.
4: Set ς = ςR + 1{ςL−R > 0} · ςL−R.
5: Sample X ∼ invGamma

(
N+M

2
, N

2

)
in plaintext.

6: Return ςX.

2.5 Algorithm for secure ψj sampling

The ψj are sampled independently for each SNP j ∈ [M] as

ψj ∼ giG
(
a− 1

2
; 2δj,

Nβ2
j

σ2

)
,

27

where giG (p; ρ, χ) denotes the generalized inverse Gaussian (giG) distribution, which has
the probability density function

fgiG(x; p, ρ, χ) =
(ρ/χ)p/2

2Kp(
√
ρχ)

xp−1e−(ρx+χ/x)/2, x, ρ, χ > 0, p ∈ R,

where Kp denotes the modified Bessel function of the second kind. [21] As its name suggests,
the generalized inverse Gaussian generalizes several probability distributions and reduces to
other distributions under particular values of p. Under the particular value p = −1/2, the
giG reduces to the inverse Gaussian (invGauss) distribution:

Property 2.5.1 (Relationship between giG and invGauss). If X ∼ giG (p = −1/2; a, b),
then X ∼ invGauss

(
µ =

√
b/a, λ = b

)
. [22]

We also exploit a second property of the giG, which is the antisymmetry in p of its other
two parameters:

Property 2.5.2 (Antisymmetry of the giG). IfX ∼ giG (p; a, b), then 1/X ∼ giG (−p; b, a). [23]

Recall that PRS-CS uses the Strawderman-Berger prior, also known as the quasi-Cauchy
prior, which corresponds to a = 1 and b = 1/2. [11] Hence p = 1− 1

2
= 1

2
, and we can invoke

both Property 2.5.2 and Property 2.5.1 together to reduce sampling from giG (p = 1/2; ·, ·)
to sampling from the inverse Gaussian distribution. We present this as Algorithm 6.

Algorithm 6 Sampling from giG
(
p = 1

2
; a, b

)
.

Input: giG parameters a, b; access to inverse Gaussian samples.
1: Sample x ∼ invGauss

(
µ =

√
a
b
, λ = a

)
.

2: return 1/x.

There exists an efficient algorithm for sampling from the inverse Gaussian distribution
by transforming samples from the standard normal distribution N (0, 1) and the standard
uniform distribution U(0, 1), which we reproduce as Algorithm 7. [24]

The primary challenge in implementing Algorithm 7 is in parsimoniously computing
all of the quantities involved, reusing as many intermediates as possible and eliminating
multiplications and especially divisions. The most significant revisions in the rewrite are
eliminating the division in line 5 for efficiency and rewriting the return to avoid use of
control flow logic. The MPC comparison functions (less than, greater than, is positive, etc.)
return secret shares of an indicator x ∈ {0, 1} to denote true/false; we can arithmetize an
if-else statement to the below expression, which only requires a single multiplication:

BinaryInterleave(x;A,B) := Ax+B(1− x) = B + (A−B)x, (2.8)

so that A is the value returned when x is true, and B when x is false. This arithmetization
allows for the interleaving of entire ciphertexts or vectors of secret shares, and so an entire
group of samples can be processed in parallel. We aggregate the changes to the inverse
Gaussian algorithm in Algorithm 8.

28

Algorithm 7 Sampling from invGauss (µ, λ). [24]
Input: Inverse Gaussian parameters µ, λ; access to standard normal and standard

uniform samples.
1: Sample ν ∼ N (0, 1).
2: Set y = ν2.
3: Set x = µ+ µ2y

2λ
− µ

2λ

√
4µλy + µ2y2.

4: Sample z ∼ U(0, 1).
5: if z ≤ µ

µ+x
then

6: return x.
7: else
8: return µ2

x
.

9: end if

Algorithm 8 Secure sampling from invGauss (µ, λ). [24]
1: Sample ν ∼ N (0, 1).
2: Set y = ν2.
3: Compute µy, 2λ, and 4λ.
4: Compute √µy and

√
4λ+ µy using MPC-Sqrt.

5: Compute 1
2λ

(
µy −

√
µy(4λ+ µy)

)
using MPC-Divide.

6: Compute x′ = 1 + 1
2λ

(
µy −

√
µy(4λ+ µy)

)
, noting that x′ = x/µ.

7: Sample z ∼ U(0, 1).
8: Compute I = 1{z(1 + x′) ≤ 1} ∈ {0, 1} using MPC-LessThan.
9: Compute µx′ = x and µ/x′ = µ2/x, the two return values.

10: return BinaryInterleave(I, µx′, µ/x′).

29

Putting these components together, I present the ψj sampling algorithm as Algorithm 9,
including the scaling of ψj by kψ. Clamping of ψj’s maximum value at 1 is achieved by
clamping ψ−1

j ’s minimum value at 1. The last algorithmic trick is to realize that Ψ−1

appears in downstream calculations and to therefore keep it, treating Algorithm 8 as a ψ−1
j

sampling subroutine.

Algorithm 9 Secure sampling for kψψj, ψ−1
j .

Input: Public constants kβ, kψ, N ; parameters σ2, δj, βj; access to standard normal and
standard uniform samples.
1: Compute λ = 2δj.
2: Compute |kββj| = BinaryInterleave(kββj > 0; kββj,−kββj) using MPC-IsPositive.

3: Compute
√
2δj and

kβσ√
N

using MPC-Sqrt.

4: Compute
σ

|βj|
√
N

from the above using MPC-Divide.

5: Compute µ =
σ
√
2δj

|βj|
√
N

=

√
2δjσ

2

Nβ2
j

.

6: Sample ψ−1
j,temp ∼ invGauss (µ, λ).

7: Set ψ−1
j = BinaryInterleave(ψ−1

j,temp > 1;ψ−1
j,temp, 1) using MPC-GreaterThan.

8: Compute
kψ

ψ−1
j

= kψψj using MPC-Divide.

9: return kψψj, ψ
−1
j .

2.6 Algorithm for secure β sampling

The SNP effect sizes β are sampled as

β ∼ MVN (µ,Σ) , µ =
N

σ2
Σβ̂, Σ =

σ2

N

(
D +Ψ−1

)−1
.

The multivariate normal (MVN) distribution posed the most algorithmic challenges in
this work, and accordingly this section will have several subsections to discuss some of the
particular assumptions and algorithmic insights needed to make sampling tractable. Even
in plaintext, the task of sampling from a high-dimensional MVN can be computationally
intensive. For example, consider the naive approach of sampling from the standard MVN
and rescaling to the target distribution, which relies on Property2.6.1 of the MVN.

Property 2.6.1 (Affine transformation of the MVN). Let X ∼ MVN (µ,Σ), where X is an
n-dimensional vector. Let Y = c +BX for m-dimensional vector c and m × n matrix B.
Then Y ∼ MVN

(
c+Bµ,BΣB⊤).

Accordingly, to sample from an MVN with target covariance matrix Σ, one must possess
the Cholesky factor of Σ.

30

Definition 2.6.1 (Cholesky decomposition). The Cholesky decomposition of a symmetric
positive semidefinite (PSD) matrix Σ ∈ Rd×d is a decomposition of the form

Σ = LL⊤,

where L ∈ Rd×d is a lower triangular matrix with positive diagonal entries, called the
Cholesky factor.

Computing the Cholesky factor of a d × d matrix requires Θ(d3) operations and Θ(d2)
space. [25] Concretely, when using 64-bit floating point numbers, generating a sample for a
d = 105 matrix in this way (the “Cholesky sampler”) would require 40 gigabytes of memory
and roughly 1014 floating point operations (flops). [25] If Σ possesses any additional structure,
it may be possible to use a different sampler and obtain a better runtime. It is worth
discussing the particular structure of our Σ to understand what constraints must be worked
with in developing a sampling algorithm.

2.6.1 Structure of the covariance matrix

Given the size of PRS studies, where the number of SNPs under study M can be on the order
of tens or hundreds of thousands, even a runtime of O(M2) could be substantial. Indeed,
even PRS-CS in plaintext would be computationally infeasible. As mentioned earlier in
Section 2.1.2, Ge et al. make the additional assumption that the LD matrix has approximate
block structure so that β sampling can be instead performed over much smaller LD blocks.[11]

Recall that the linkage disequilibrium (LD) matrix D ∈ RM×M is split up among parties
as D =

∑
i∈[P]

Ni

N
Di, where Di is the LD matrix computed off of party i’s local data. As

each local LD matrix share Di is quite large, even when recognized as being a block matrix,
ideally we would maximize plaintext computations with the LD matrix. In contrast, Ψ−1 is
sensitive.

Taken altogether, computing Σ, let alone its Cholesky factor, is intractable. Too much
communication would be required for the parties to securely compute the matrix inverse.
Moreover, because Ψ−1 is updated each MCMC iteration and constitutes a full-rank update
to the matrix D + Ψ−1, the Θ(d3) matrix inverse would need to be recomputed every
iteration. In contrast, the inverse of Σ, which itself is just a sum of matrices, would be
easier to work with. The inverse of a covariance matrix is called the precision matrix and is
denoted Q. For our MVN of interest, the precision matrix is

Q = Σ−1 =
N

σ2

(
D +Ψ−1

)
.

Fortunately, some of the sampling algorithms present in Vono et al. are well-suited for a
situation where the precision matrix is more readily available than the covariance matrix.
We will implement a version of the “perturbation-optimization sampler,” which we reproduce
as Algorithm 10. [25]

2.6.2 The MVN sampling algorithm

Algorithm 10 comports well with our problem context, and each of its three steps is feasi-
ble. First, it is relatively easy to draw samples from MVN (0,Q) using the sum-of-normals
property:

31

Algorithm 10 Perturbation-optimization sampling from MVN (µ,Σ).
Input: The precision matrix Q = Σ−1 and transformed mean Qµ; access to samples

from MVN (0,Q).
1: Draw z ∼ MVN (0,Q).
2: Set η = Qµ+ z.
3: Solve Qθ = η with respect to θ.
4: return θ.

Property 2.6.2 (Sum of normal random variables). If X ∼ MVN (µ1,Σ1) and Y ∼
MVN (µ2,Σ2), then X + Y ∼ MVN (µ1 + µ2,Σ1 +Σ2).

Each party can draw a sample from MVN
(
0, Ni

N
Di

)
in plaintext and encrypt it; and

some particular party can draw a sample from MVN (0,Ψ−1) by rescaling a sample from the
standard MVN. More concretely, we can implement step 1 of Algorithm 10 as Algorithm 11.
Note that the LD matrix is a fixed input, so it is feasible to compute the Cholesky factor of
each LD block once and use it for all samples from MVN

(
0, Ni

N
Di

)
.

Algorithm 11 Secure implementation of step 1 of Algorithm 10.
Input: Public constants Ni, N ; parameters Ψ−1, σ2; access to samples from

MVN (0,Di) and MVN (0, I).
1: Each party i samples a value zi ∼ MVN

(
0, Ni

N
Di

)
(e.g. with a plaintext Cholesky

sampler).
2: Each party encrypts their zi, and the parties aggregate z+ =

∑
i∈[P] zi.

3: Compute Ψ−1/2 using MPC-Sqrt.
4: The hub party samples y ∼ MVN (0, I) in plaintext and computes z∗ = Ψ−1/2y.
5: Return z =

√
N
σ

(z+ + z∗).

Next, step 2 of Algorithm 10 obviates the apparent need to compute the Σ that appears
in µ:

Qµ = Q

(
N

σ2
Σβ̂

)
=
N

σ2
β̂.

Lastly, we can approximate a solution to the system of linear equations in Algorithm 10
using the Conjugate Gradient Method.

2.6.3 Review of Conjugate Gradient Method

The Conjugate Gradient Method (CGM) is an algorithm for solving a system of linear equa-
tions Ax = b for n × n symmetric positive semidefinite matrix A. [26] It is an iterative
algorithm, where each iteration has time complexity O(n2), and it produces an exact solu-
tion after n steps, achieving a time complexity O(n3), equivalent to inverting A. However,
one may terminate the algorithm after fewer steps to obtain an approximate solution. In
some circumstances, such as those licensed by our application, it may be possible to obtain
acceptably close solutions after a number of steps τ ≪ n for a superior time complexity
O(τn2).

32

It is not actually necessary to computeA to perform CGM, only to evaluate its associated
linear transformation: and so in our context, if we need to perform a matrix multiplication
Qx, each party can separately evaluate the matrix multiplication associated with their share
of the LD matrix, and these images can be combined. This is formally presented as Algo-
rithm 12.

Algorithm 12 Secure matrix multiplications with Q.
Input: Public constants Ni, N ; parameter Ψ−1; each party’s Di; ciphertext vector x.
Output: Ciphertext vector Qx.

1: Each party locally computes Dix using their plaintext Di.
2: The parties aggregate

∑
i∈[P]

Ni

N
Dix =Dx.

3: The hub party computes Ψ−1x.
4: Return N

σ2 (Dx+Ψ−1x).

The precision matrices Q that appear in our problem context will always be PSD. The
inverse of a PSD matrix is itself PSD, and covariance matrices are always PSD. Consequently,
we always satisfy the requirements to deploy CGM.

Convergence guarantees

There are theoretical guarantees on the number of CGM iterations necessary to converge
within a particular distance from the optimal solution. These analyses depend upon the
condition number of the relevant matrix.

Definition 2.6.2 (Condition number). The condition number of a matrix A with respect
to a particular matrix norm || · || is defined as

κ(A) := ||A|| · ||A||−1.

Informally, the condition number of a matrix measures how “well-behaved” the matrix
is: how cooperative it will be with algorithms performed upon it. Accordingly, a matrix
with a relatively large condition number is called “ill-conditioned,” and a matrix with a
condition number close to 1 is called “well-conditioned.” Concretely, performing CGM upon
a well-conditioned matrix will converge to a more accurate solution in fewer iterations. [26]

For interested readers, more information on the condition number, its relationship to
CGM, and the (expected) condition number of Q can be found in the Appendix. To sum-
marize the relevant facts, the Q that appear in our problem setting are expected to be
ill-conditioned, requiring a number of CGM iterations on the order of the matrix dimension
for meaningful convergence. However, there is an effective solution to this issue: precondi-
tioning.

Preconditioning

Preconditioning is a technique to address an ill-conditioned matrix A by instead work-
ing with a well-conditioned matrix M−1A, where M−1 is called a preconditioner. [26] If
κ(M−1A)≪ κ(A), then performing CGM on the system M−1Ax =M−1b may converge far

33

quicker than the original system. There are some nuances to this technique (M−1A may no
longer be symmetric and PSD) but in summary, it is possible to refactor CGM to implicitly
precondition the matrix and achieve a better condition number without needing to explicitly
compute M−1A. There are many choices of preconditioner matrix M−1, but we use “diago-
nal preconditioning,” also known as “Jacobi preconditioning.” The diagonal preconditioner
is simply choosing M to be the diagonal matrix whose entries are A’s diagonal. This can
be easily computed in our context owing to the fact that any SNP will necessarily be in
perfect linkage disequilibrium with itself, so the diagonal of D is all ones. So the diagonal
preconditioner for us can be easily computed:

M = Ψ−1 + I (2.9)

M−1 = diag

{
1

1 + ψ−1
j

}
j∈[M]

. (2.10)

The preconditioned conjugate gradient method

These preliminaries established, we present the preconditioned conjugate gradient method
as Algorithm 13.

2.6.4 The Conjugate Gradient Method in context

First, I will provide a brief justification of grouping LD blocks together, as at first blush it
may seem to worsen runtime. The major determinants of the runtime of CGM are evaluating
the matrix-vector products Ax, and the number of iterations before convergence (which is
dictated by the condition number κ(A).) While both of these operations will generally be
faster on smaller matrices, it is nevertheless advantageous to group LD blocks together into
single ciphertexts. The runtime of the matrix-vector multiplication algorithm we use is
dictated by the bandwidth of the matrix A; because aggregating LD blocks forms a block
diagonal matrix, aggregating blocks improves the runtime of matrix multiplications. And
while grouping LD blocks worsens the condition number, empirically preconditioning causes
the condition number to grow very slowly. More detail about these results can be read in
the Appendix.

Besides matrix multiplication, most of the operations necessary to implement CGM are
straightforward. Inner products can be computed either with HE (using rotations and addi-
tions) or MPC, and α/β can be computed with MPC. The primary obstacles to using CGM
in the HE/MPC context are instead more structural. First, CGM is known to be sensitive
to roundoff error, as occurs in practice when using floating point numbers. [26] This problem
becomes more pointed when using HE/MPC due to the limited precision and the pertur-
bations of HE noise. Second, while it’s possible to use MPC to check the residual norm
δ, strictly speaking terminating early introduces a side channel that can leak information.
While there are techniques to decide when to terminate CGM when δ is not available, none
of the methods surveyed seemed possible within our context. [27]

While one can instead ignore the residual norm termination condition and only ever
terminate after τ iterations, this relies upon an expectation of how the matrix condition

34

Algorithm 13 Preconditioned Conjugate Gradient Method [26]
Input: Symmetric PSD matrixA, target vector b, preconditioner matrixM−1, maximum

number of CGM iterations τ , exact residual update frequency parameter Þ, error tolerance
ε < 1.

Output: A vector xτ such that Axτ ≈ b.
1: Initialize: Set x← 0, r ← b, p←M−1b, δnew ← r⊤p, δ0 ← δnew.
2: for t ∈ {1, . . . , τ} do
3: Set q ← Ap.

4: Set α← δnew

p⊤q
.

5: Set x← x+ αp.
6: if t is divisible by Þ then
7: Set r ← b− Ax.
8: else
9: Set r ← r − αq.

10: end if
11: Set s←M−1r.
12: Set δold ← δnew.
13: Set δnew ← r⊤s.
14: if δnew ≤ ε2δ0 then
15: return xt.
16: end if
17: Set β ← δnew

δold
.

18: Set p← s+ βp.
19: end for
20: return xτ .

35

numbers will be distributed over the entire dataset over the entire course of an MCMC run,
which is difficult to justify. Empirically it was possible to achieve convergence with τ = 8
iterations. Choosing this parameter is quite sensitive, however, as taking iterations past
convergence can cause the algorithm to break: if the residual norm δ becomes too small,
there is the risk that it becomes overwhelmed by HE noise, flips to a negative quantity, and
incurs undefined behavior in MPC-Divide, which assumes that its denominator is positive.
In practice it is worth considering whether the residual norm can be safely leaked so that
CGM can be terminated at convergence.

The last concerns with CGM pertain to the tension between managing magnitude and
HE noise. If implemented directly in our problem context, the intermediate vectors in CGM
might be very small: they are all roughly on the order of the output β or the input vector
b = η. Accordingly, we can scale the input vector by a constant: and actually, by scaling
with kβ, we also directly achieve the goal of generating scaled β samples. However, this runs
the potential risk that the inner products p⊤q or r⊤s might exceed the upper magnitude
limit. Realizing that the inner products only ever appear in ratios, we can address this
concern by downscaling the inner products by some known constant, such as 1/d, where d is
the dimension of this LD block. Doing so results in an averaged inner product that should
be roughly the same size as the coordinates of the input pointwise product.

2.6.5 The full MVN algorithm

There is a last algorithmic optimization to save a few multiplications, which is slightly chang-
ing the system of linear equations to be solved. We would ideally ignore the scaling constant
N/σ2 that appears in the precision matrix, which otherwise will incur multiplications when-
ever a matrix-vector product is performed.

Qθ = z +Qµ z ∼ MVN (0,Q)

N

σ2

(
D +Ψ−1

)
θ =

√
N

σ
z +

N

σ2
β̂ z ∼ MVN

(
0,D +Ψ−1

)
(D +Ψ−1)θ =

σ√
N
z + β̂ z ∼ MVN

(
0,D +Ψ−1

)
(D +Ψ−1)θ′ =

kβσ√
N
z + (kββ̂) z ∼ MVN

(
0,D +Ψ−1

)
where θ′ = kβθ. Thus we can scale β as desired, perform CGM with the matrix D +
Ψ−1, without scaling constants; and scale the input vector η for larger CGM intermediates.
Putting these components together, we present the revised MVN sampling algorithm as
Algorithm 14, which has minor adjustments to manage the magnitude of the intermediate
variables.

36

Algorithm 14 Secure sampling for kββ.
(For each block ℓ:)

1: Draw z ∼ MVN (0,D +Ψ−1).

2: Set η =
kβσ√
N
z + kββ̂.

3: Solve (D +Ψ−1) θ = η with respect to x using CGM.
4: return θ.

37

Chapter 3

Implementation and results

3.1 Implementation

Our secure, federated reimplementation of PRS-CS and the infrastructure for parties to load
data and communicate with each other were implemented in the Go programming language.
We used the Lattigo library’s implementation of CKKS [28] and the Cho lab’s “mpc-core”
library for additive secret sharing based MPC. 1

3.2 Results

Sampling algorithm correctness confirmation

As sampling functions are necessarily non-deterministic, we tested the correctness of our
implementations by taking a large number of samples and comparing their estimated mean/-
variance against the target distribution. The design of our sampling algorithms is specific to
the anticipated sizes of the input parameters from the context that these algorithms appear
within. Accordingly, to generate realistic values of the parameters we tested upon, we ran the
original PRS-CS Python implementation on the provided toy dataset and saved the param-
eters at an arbitrary iteration. Specifically, the toy dataset uses 1000 SNPs on chromosome
22 and sources its LD matrix from the 1000 Genomes Project European reference panel. [29]
We then took 1000 samples of each parameter conditioned upon these fixed parameter values
using our secure sampling functions and estimated the mean/variance of the parameter to
compare against the target values. For the multivariate parameters, we used the Pearson
correlation coefficient to quantify how well the mean/variance matched the target.

In order to benchmark expectations for how much samples can deviate from the target
mean/variance and still be considered correct, we also took 1000 samples with a conventional,
plaintext sampling function in Python and also plotted these for comparison.

1Code available upon request.

38

Correctness of δj sampling

Plots for δj sampling are plotted in Figure 3.1. Plaintext samples were taken using NumPy’s
random.gamma function. Samples from our functions are comparable in accuracy to those
from the plaintext function. The secure samples’ mean has Pearson correlation coefficient
0.999 with the target mean, and their variance has correlation coefficient 0.996 with the target
variance. For comparison the plaintext samples’ mean has correlation coefficient 0.999 with
the target mean, and their variance has correlation coefficient 0.996 with the target variance.

Correctness of σ2 sampling

As σ2 is the only univariate distribution, we plot its samples as a histogram in Figure 3.2,
and list the estimated mean/variance of the secure and plaintext samples against the target
in Table 3.1. The plaintext samples were taken using SciPy’s stats.invgamma.

Target Secure Plaintext
mean 0.9996 0.9996 0.9995

variance 9.94× 10−6 1.02× 10−5 1.01× 10−5

Table 3.1: Estimated mean/variance of σ2 samples from both secure and plaintext sampling
functions compared with the target.

Correctness of ψj sampling

The plots to confirm the correctness of ψj sampling are slightly different from the other
parameters. Unlike δj, σ2, and β where the target mean/variance can be analytically written
and computed, the clamping of the ψj complicates efforts to directly compute the target
mean/variance. Accordingly, unlike the other distributions, in Figure 3.3 we instead plotted
the estimated mean of our secure samples directly against the estimated mean of the plaintext
samples; and similarly for the variance. Secure samples were rescaled from kψψj to ψj in
plaintext, after decrypting. Though a plaintext implementation of the generalized inverse
Gaussian was available in SciPy, we opted to instead use the plaintext sampling algorithm
implemented in the original PRS-CS codebase owing to differences in parameterization. Our
secure sampling algorithm matches the behavior of the plaintext sampling algorithm: the
Pearson correlation coefficient between the means is 1.0, and between the variances is 0.998.

Correctness of β sampling

The estimated mean/covariance of samples of β are plotted in Figure 3.4. Secure samples
were rescaled from kββ to β in plaintext, after decrypting. In order to plot the estimated co-
variance against the target covariance in a diagonal plot similarly to the mean, the covariance
matrix was “flattened” into a 1-D vector using numpy.ravel. We observe that our secure,
federated algorithm accurately samples from the target distribution, reproducing the faithful-
ness of a conventional plaintext algorithm, namely NumPy’s random.multivarite_normal

39

Parameter Runtime (seconds)

β 74
σ2 4
δj 3
ψj 36

Table 3.2: Approximate runtimes of each sampling function. Times for β, δj, ψj are for a
single ciphertext/group of LD blocks.

function. Moreover, the correlation of our samples’ mean/variance against the target is ex-
actly comparable to that of conventional sampling techniques: the secure samples’ mean has
Pearson correlation coefficient 0.998 with the target mean, and the secure samples’ flattened
covariance has correlation coefficient 0.895. For comparison, the plaintext samples’ mean
has correlation coefficient 0.998 with the target mean, and their flattened covariance has
correlation coefficient 0.894 with the target covariance.

Runtime estimates

We have conducted preliminary timing experiments on the UK Biobank dataset, specifically
for the phenotype low-density lipoprotein and the ≈ 17, 000 SNPs on chromosome 19. [30]
Our implementations of the sampling functions lead to about 120 seconds per MCMC itera-
tion, with the particular timing breakdown given in Table 3.2. Note that the 17, 000 SNPs fit
in three ciphertexts and that sampling can therefore be completely parallelized over them;
for larger datasets the time per iteration would likely increase. Nevertheless, these times
allow us to roughly extrapolate the anticipated runtime for a full MCMC run on a dataset
of size M using a machine C cores, assuming that the LD block sizes permit packing 8000
SNPs on average per ciphertext.

1000 MCMC iterations · 120 seconds
C ciphertexts

· 1 ciphertext
8000 SNPs

·M SNPs ≈ 15M

C
seconds

For a full scale study using a dataset of M = 500, 000 SNPs and a C = 64 core machine, this
comes out to about a 1.35 day runtime, which is feasible. Note again a key strength of the
PRS-CS algorithm: its runtime does not scale in the number of individuals N in the study,
collaborations can create large datasets at no additional cost. Also note that communication
latency between parties has been omitted, which would increase runtime.

3.3 Future work

The last remaining work is to evaluate the entire PRS-CS algorithm on a full-scale dataset
to confirm the accuracy of the sampling functions when combined and confirm our estimates
of the algorithm’s runtime scaling in the number of SNPs M and number of parties P .

40

More expansive PRS pipeline

This work focused on the PRS-CS algorithm itself and takes the inputs to the algorithm as
exogenous, but these inputs could also be incorporated into the secure computing context.
Genetic architecture and linkage disequilibrium effects are understood to differ by ancestry
group, and it is therefore important to generate PRS for a particular population from GWAS
effect estimates that were also generated from the same population. [1], [14] While our
algorithm takes the GWAS effect estimates β̂ as public, it should be possible to generate them
by performing a GWAS on the same dataset used to generate PRS; and indeed the Cho lab
has already investigated a secure, federated implementation of GWAS. [7] Algorithmically,
it would be trivial to simply mark β̂ as sensitive.

The second key input taken as public are the approximately independent LD block cutoffs.
To the extent that LD effects differ between populations, it is reasonable to expect that
finding these LD cutoffs specific to the dataset under consideration would improve accuracy.
Future work could therefore consider the LD block finding algorithm as part of the entire
pipeline and refactor said algorithm under HE/MPC.

3.4 Conclusion

We have exhibited accurate and runtime-practical algorithms for sampling from probability
distributions with private parameters to implement PRS-CS within a secure, federated set-
ting. This work will help pave the way for genomics collaborations with larger and more
diverse datasets, promising to improve the quality of PRS for a wider range of patients.
Furthermore, we expand the explored space of algorithms refactored for privacy preserv-
ing multiparty computation and demonstrate the viability of implementing Monte Carlo
algorithms within this framework.

41

(a) Mean of secure δj samples. Pearson correla-
tion coefficient is 0.999.

(b) Variance of secure δj samples. Correlation
coefficient is 0.996.

(c) Mean of plaintext δj samples. Correlation
coefficient is 0.999.

(d) Variance of plaintext δj samples. Correlation
coefficient is 0.996.

Figure 3.1: The estimated mean and variance from 1000 samples of δj using our secure
sampling function plotted against the target mean/variance (3.1a, 3.1b); and 1000 samples
from NumPy’s random.gamma function plotted against the target mean/variance (3.1c, 3.1d).

42

Figure 3.2: A histogram of 1000 samples of σ2 using our secure sampling function and from
SciPy’s stats.invgamma.

43

(a) (b)

Figure 3.3: The estimated mean (3.3a) and variance (3.3b) from 1000 samples of ψ using
our secure sampling function (x axis) and the plaintext sampling function used in PRS-CS
(y axis). Pearson correlation coefficient for the mean is 1.0, and for the variance is 0.998.

44

(a) Mean of secure β samples. Pearson correla-
tion coefficient is 0.998. (b) Flattened covariance matrix of secure β sam-

ples. Correlation coefficient is 0.895.

(c) Mean of plaintext β samples. Correlation
coefficient is 0.998. (d) Flattened covariance matrix of plaintext β

samples. Correlation coefficient is 0.894.

Figure 3.4: The estimated mean and covariance from 1000 samples of β using our secure
sampling function plotted against the target mean/covariance (3.4a, 3.4b); and 1000 samples
from NumPy’s random.multivariate_normal function plotted against the target mean/co-
variance (3.4c, 3.4d).

45

References

[1] C. M. Lewis and E. Vassos, “Polygenic risk scores: From research tools to clinical
instruments,” Genome Medicine, vol. 12, 2020. doi: 10.1186/s13073-020-00742-5.

[2] S. W. Choi, T. S. H. Mak, and P. F. O’Reilly, “A guide to performing polygenic risk
score analyses,” Nature Protocols, 2020. doi: 10.1038/s41596-020-0353-1. [Online].
Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612115/.

[3] G. Gürsoy, T. Li, S. Liu, E. Ni, C. M. Brannon, and M. B. Gerstein, “Functional
genomics data: Privacy risk assessment and technological mitigation,” Nature
Reviews Genetics, 2021. doi: 10.1038/s41576-021-00428-7.

[4] Z. Wan, J. W. Hazel, E. W. Clayton, Y. Vorobeychik, M. Kantarcioglu, and
B. A. Malin, “Sociotechnical safeguards for genomic data privacy,” Nature Reviews
Genetics, 2022. doi: 10.1038/s41576-022-00455-y.

[5] K. Zhong, Y. Ma, Y. Mao, and S. Angel, “Addax: A fast, private, and accountable ad
exchange infrastructure,” 2023. [Online]. Available:
https://www.cis.upenn.edu/~sga001/papers/addax-nsdi23.pdf.

[6] S. Sav, A. Pyrgelis, J. R. Troncoso-Pastoriza, D. Froelicher, J.-P. Bossuat, J. S. Sousa,
and J.-P. Hubaux, “Poseidon: Privacy-preserving federated neural network learning,”
2021. [Online]. Available: https://dx.doi.org/10.14722/ndss.2021.24119.

[7] H. Cho, D. Froelicher, J. Chen, M. Edupalli, A. Pyrgelis, J. R. Troncoso-Pastoriza,
J.-P. Hubaux, and B. Berger, “Secure and federated genome-wide association studies
for biobank-scale datasets,” bioRxiv, 2022. doi: 10.1101/2022.11.30.518537. eprint:
https://www.biorxiv.org/content/early/2022/12/02/2022.11.30.518537.full.pdf.
[Online]. Available:
https://www.biorxiv.org/content/early/2022/12/02/2022.11.30.518537.

[8] D. Froelicher, H. Cho, M. Edupalli, J. S. Sousa, J.-P. Bossuat, A. Pyrgelis,
J. R. Troncoso-Pastoriza, B. Berger, and J.-P. Hubaux, “Scalable and
privacy-preserving federated principal component analysis,” in 2023 IEEE
Symposium on Security and Privacy (SP), Los Alamitos, CA, USA: IEEE Computer
Society, May 2023, pp. 1908–1925. doi: 10.1109/SP46215.2023.00051. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00051.

[9] H. Cho, D. J. Wu, and B. Berger, “Secure genome-wide association analysis using
multiparty computation,” Nature Biotechnology, vol. 36, 2018. doi: 10.1038/nbt.4108.
[Online]. Available: https://doi.org/10.1038/nbt.4108.

46

https://doi.org/10.1186/s13073-020-00742-5
https://doi.org/10.1038/s41596-020-0353-1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612115/
https://doi.org/10.1038/s41576-021-00428-7
https://doi.org/10.1038/s41576-022-00455-y
https://www.cis.upenn.edu/~sga001/papers/addax-nsdi23.pdf
https://dx.doi.org/10.14722/ndss.2021.24119
https://doi.org/10.1101/2022.11.30.518537
https://www.biorxiv.org/content/early/2022/12/02/2022.11.30.518537.full.pdf
https://www.biorxiv.org/content/early/2022/12/02/2022.11.30.518537
https://doi.org/10.1109/SP46215.2023.00051
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00051
https://doi.org/10.1038/nbt.4108
https://doi.org/10.1038/nbt.4108

[10] D. Boneh and V. Shoup, A Graduate Course in Applied Cryptography. 2023. [Online].
Available: https://toc.cryptobook.us/.

[11] T. Ge, C.-Y. Chen, Y. Ni, Y.-C. A. Feng, and J. W. Smoller, “Polygenic prediction
via bayesian regression and continuous shrinkage priors,” Nature Communications,
vol. 10, 2019. doi: 10.1038/s41467-019-09718-5.

[12] Y. Wang, K. Tsuo, M. Kanai, B. M. Neale, and A. R. Martin, “Challenges and
opportunities for developing more generalizable polygenic risk scores,” Annual Review
of Biomedical Data Science, vol. 5, no. 1, pp. 293–320, 2022. doi:
10.1146/annurev-biodatasci-111721-074830. eprint:
https://doi.org/10.1146/annurev-biodatasci-111721-074830. [Online]. Available:
https://doi.org/10.1146/annurev-biodatasci-111721-074830.

[13] B. J. Vilhjálmsson, J. Yang, H. K. Finucane, et al., “Modeling linkage disequilibrium
increases accuracy of polygenic risk scores,” American Journal of Human Genetics,
2015. doi: 10.1016/j.ajhg.2015.09.001.

[14] M. S. Kim, K. P. Patel, A. K. Teng, A. J. Berens, and J. Lachance, “Genetic disease
risks can be misestimated across global populations,” Genome Biology, vol. 19, 2018.
doi: 10.1186/s13059-018-1561-7. [Online]. Available:
https://doi.org/10.1186/s13059-018-1561-7.

[15] Y. Lindell, Tutorials on the Foundations of Cryptography. Springer, 2017. doi:
10.1007/978-3-319-57048-8.

[16] J. H. Cheon, A. Kim, M. Kim, and Y. Song, Homomorphic encryption for arithmetic
of approximate numbers, Cryptology ePrint Archive, Paper 2016/421,
https://eprint.iacr.org/2016/421, 2016. [Online]. Available:
https://eprint.iacr.org/2016/421.

[17] M. Keller, Mp-spdz: A versatile framework for multi-party computation, Cryptology
ePrint Archive, Paper 2020/521, https://eprint.iacr.org/2020/521, 2020. doi:
10.1145/3372297.3417872. [Online]. Available: https://eprint.iacr.org/2020/521.

[18] B. Efron and T. Hastie, Computer Age Statistical Inference, Algorithms, Evidence,
and Data Science. Cambridge University Press, 2017. [Online]. Available:
https://hastie.su.domains/CASI/.

[19] T. Berisa and J. K. Pickrell, “Approximately independent linkage disequilibrium
blocks in human populations,” 2015. [Online]. Available:
https://doi.org/10.1093/bioinformatics/btv546.

[20] X. Jiang, M. Kim, K. Lauter, and Y. Song, Secure outsourced matrix computation
and application to neural networks, Cryptology ePrint Archive, Paper 2018/1041,
https://eprint.iacr.org/2018/1041, 2018. doi: 10.1145/3243734.3243837. [Online].
Available: https://eprint.iacr.org/2018/1041.

[21] L. Devroye, “Random variate generation for the generalized inverse gaussian
distribution,” Statistics and Computing, vol. 24, pp. 236–246, 2014.

47

https://toc.cryptobook.us/
https://doi.org/10.1038/s41467-019-09718-5
https://doi.org/10.1146/annurev-biodatasci-111721-074830
https://doi.org/10.1146/annurev-biodatasci-111721-074830
https://doi.org/10.1146/annurev-biodatasci-111721-074830
https://doi.org/10.1016/j.ajhg.2015.09.001
https://doi.org/10.1186/s13059-018-1561-7
https://doi.org/10.1186/s13059-018-1561-7
https://doi.org/10.1007/978-3-319-57048-8
https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2020/521
https://doi.org/10.1145/3372297.3417872
https://eprint.iacr.org/2020/521
https://hastie.su.domains/CASI/
https://doi.org/10.1093/bioinformatics/btv546
https://eprint.iacr.org/2018/1041
https://doi.org/10.1145/3243734.3243837
https://eprint.iacr.org/2018/1041

[22] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous univariate distributions.
Vol. 1, Wiley Series in Probability and Mathematical Statistics: Applied Probability
and Statistics (2nd ed.) New York: John Wiley & Sons, 1994, pp. 284–285, isbn:
978-0-471-58495-7.

[23] W. Hoermann and J. Leydold, “Generating generalized inverse gaussian random
variates,” Statistics and Computing, vol. 24, pp. 547–557, 2014.

[24] J. R. Michael, W. R. Schucany, and R. W. Haas, “Generating random variates using
transformations with multiple roots,” The American Statistician, vol. 30, pp. 88–90,
1976.

[25] M. Vono, N. Dobigeon, and P. Chainais, High-dimensional gaussian sampling: A
review and a unifying approach based on a stochastic proximal point algorithm, 2021.
arXiv: 2010.01510 [stat.CO].

[26] J. R. Shewchuk, An introduction to the conjugate gradient method without the
agonizing pain, 1994. [Online]. Available:
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf.

[27] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods. 1994, isbn: 978-0-89871-328-2.
[Online]. Available: https://www.netlib.org/templates/templates.pdf.

[28] C. Mouchet, J. Troncoso-Pastoriza, J.-P. Bossuat, and J.-P. Hubaux, Multiparty
homomorphic encryption from ring-learning-with-errors, Cryptology ePrint Archive,
Paper 2020/304, https://eprint.iacr.org/2020/304, 2020. doi:
10.2478/popets-2021-0071. [Online]. Available: https://eprint.iacr.org/2020/304.

[29] T. 1. G. P. Consortium, “A global reference for human genetic variation,” Nature,
2015. doi: 10.1038/nature15393.

[30] C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, and et al., “Uk
biobank: An open access resource for identifying the causes of a wide range of
complex diseases of middle and old age,” PLoS Med, 2015. doi:
10.1371/journal.pmed.1001779.

48

https://arxiv.org/abs/2010.01510
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://www.netlib.org/templates/templates.pdf
https://eprint.iacr.org/2020/304
https://doi.org/10.2478/popets-2021-0071
https://eprint.iacr.org/2020/304
https://doi.org/10.1038/nature15393
https://doi.org/10.1371/journal.pmed.1001779

Appendix on β sampling

Condition number of block diagonal matrices

First, I will discuss how grouping LD blocks together into a block diagonal matrix affects
the expected condition number of the matrices that will be used in CGM.

Lemma 3.4.1 (Norm of a block band matrix). Let A1, . . . , Ak be square matrices along the
diagonal of block band matrix D. The norm of D is given as ||D|| = max{||A1||, . . . , ||Ak||}.

Proof. We use the spectral norm, which is defined as ρ(A) := max{|λ1|, · · · , |λn|} for λi the
eigenvalues of A. By convention, we will number the eigenvalues in the spectrum of a matrix
as |λ1| ≥ · · · ≥ |λk| ≥ 0. We will denote the ith eigenvalue of matrix Aj as λji . The spectrum
of D is the union of the spectra of the Ai, as any eigenvector of an Ai corresponds to an
eigenvector of D, with all coordinates not mapping to ones covered by Ai being set to 0.
Thus the largest (in magnitude) eigenvalue of D is the largest eigenvalue among Ai, and it
belongs to some particular Ai. Then ||D|| = ||Ai|| for that Ai.

Lemma 3.4.2 (Condition number of a block band matrix). Let κ(A∗) denote the largest
condition number among {Ai} in block diagonal matrix D, and likewise let κ(A∗∗) denote
the largest condition number among {Ai} \A∗, i.e. the second-largest condition number. We
can bound the condition number of D as√

κ(A∗)κ(A∗∗) ≤ κ(D) ≤ κ(A∗)κ(A∗∗).

Or, to simplify the result,

κ(A∗) ≤ κ(D) ≤ κ(A∗)
2.

Proof. Let us again work with the spectral norm for convenience, and use the same notation
as before. Via 3.4.1, we have that

κ(D) := ||D|| · ||D−1||
= max{||A1||, . . . , ||Ak||} ·max{||A−1

1 ||, . . . , ||A−1
k ||}.

By the above, clearly κ(D) is at least lower bounded by max{κ(Ai)}. Intuitively, the worst
case scenario is therefore one in which there exist distinct matrices A∗ and A∗∗ such that
||A∗|| and ||A−1

∗∗ || are both very large: we must pick out distinct argmax matrices for each
of the factors. And for each of the argmax matrices, in the worst case the matrices are such
that ||A−1

∗ || ≈ 1 and ||A∗∗|| ≈ 1, such that ||A∗|| ≈ κ(A∗) and ||A−1
∗∗ || ≈ κ(A∗∗). In this

scenario, κ(D) would be roughly equal to κ(A∗)κ(A∗∗).

49

While the result in Lemma 3.4.2 may look demoralizing, as the condition number can
theoretically square, in practice this empirically does not occur. This owes to preconditioning,
which has the effect of making the matrices such that ||Ai|| ≈ ||A−1

i ||. Considering the
intuition for the proof of the lemma, it is also intuitive why preconditioning nudges us away
from worst-case scenarios, and towards best-case scenarios: if all submatrices are such that
||Ai|| ≈ ||A−1

i || ≈
√
κ(Ai), then we will have κ(D) ≈ max{κ(Ai)}. In this scenario, we

don’t actually need to increase the number of CGM iterations at all, or by that much, when
packing matrices into block matrices. While we are unable to provide a strong theoretical
guarantee against all possible inputs, this scenario is empirically realized under diagonal
preconditioning. However, because the condition number generally increases in the block
dimension, it is important that groups are all similar in the dimensions of their constituent
blocks: a group comprising several large blocks and a group comprising many small blocks
will likely have different condition numbers and different CGM convergence times. While a
greedy algorithm for assigning blocks to groups sufficed for the datasets we examined, other
bin packing techniques might be more even handed for particular datasets.

Matrix multiplication

Matrix multiplications using CKKS ciphertexts can be performed efficiently using a matrix
multiplication algorithm of Jiang et al. [8], [20]. In short, to compute AB, that algorithm
uses the diagonals of A and rotations of the rows of B. Our context poses some additional
structure that allows for relatively fast matrix multiplications. Because the LD matrix has
banded structure, we can achieve efficient matrix multiplications by skipping multiplication
on diagonals outside of the band.

Specifically, we use Algorithm M3 from Froelicher et al. [8], which computes A × B for
an encrypted matrix A and a plaintext matrix B. We can use this algorithm to compute
matrix-vector products with the LD matrix Dx owing to the symmetry of the LD matrix:

y =Dx

y⊤ = (Dx)⊤

= x⊤D⊤

= x⊤D,

thus allowing us to cast the matrix-vector product as a matrix multiplication between a left
encrypted “matrix” and a right cleartext matrix. When using this algorithm with a banded
cleartext matrix, we can simply omit all computations that would involve diagonals outside
the band to drastically improve efficiency. For an n× n matrix with equal upper and lower
bandwidths k = k1 = k2, we can thus reduce the number of encoded diagonals from 2n− 1
to 2k + 1.

50

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem definition
	1.2 Description of thesis structure
	1.3 Genomics background
	1.3.1 Notation and dataset

	1.4 Cryptography background
	1.4.1 Homomorphic encryption (HE)
	1.4.2 Secure multiparty computation (MPC)

	2 Methods
	2.1 Review of PRS-CS Algorithm
	2.1.1 The PRS-CS Gibbs sampler
	2.1.2 Structure of the input data to PRS-CS

	2.2 Designing sampling algorithms within the cryptographic framework
	2.2.1 Overcoming technical constraints in secure computing
	2.2.2 The sample-and-rescale approach to secure random variate generation

	2.3 Algorithm for secure δj sampling
	2.4 Algorithm for secure σ2 sampling
	2.5 Algorithm for secure ψj sampling
	2.6 Algorithm for secure β sampling
	2.6.1 Structure of the covariance matrix
	2.6.2 The MVN sampling algorithm
	2.6.3 Review of Conjugate Gradient Method
	2.6.4 The Conjugate Gradient Method in context
	2.6.5 The full MVN algorithm

	3 Implementation and results
	3.1 Implementation
	3.2 Results
	3.3 Future work
	3.4 Conclusion

	References
	Appendix

