
Accelerating Flow-Based Sampling for Large-𝑁
Gauge Theories

by

Michael S. Zhang

S.B. in Computer Science and Engineering and Mathematics
Massachusetts Institute of Technology (2023)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2024

© 2024 Michael S. Zhang. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis, or release
the thesis under an open-access license.

Authored by: Michael S. Zhang
Department of Electrical Engineering and Computer Science
January 19, 2024

Certified by: Phiala E. Shanahan
Associate Professor
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Accelerating Flow-Based Sampling for Large-𝑁 Gauge

Theories

by

Michael S. Zhang

Submitted to the Department of Electrical Engineering and Computer Science
on January 19, 2024, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Due to its consistency with numerous experimental observations, the Standard Model
of particle physics is widely accepted as the best known formulation of elementary
particles and their interactions. However, making experimental predictions using
the Standard Model involves mathematical and computational challenges due to its
complexity. Quantum chromodynamics (QCD), which can be described as an SU(3)
gauge theory due to the 3 quark colors and 8 gluon types, is one sector of the Standard
Model for which computing solutions is especially challenging. A natural theoretical
generalization of QCD is the class of all SU(𝑁) gauge theories; these theories also
provide a method for some QCD computations in the 𝑁 →∞ limit. To study these
theories numerically, approximations are calculated from configuration samples due
to the mathematical complexity and lack of analytical solutions.

In this thesis, we explore asymptotically efficient flow-based sampling algorithms
for the twisted Eguchi-Kawai (TEK) model, a method for analyzing large-𝑁 QCD nu-
merically. We introduce an original architecture based on SU(2) matrix multiplication
that allows for efficient Jacobian computation. In addition, we explore the possibility
of transfer learning with respect to the number of colors 𝑁 and demonstrate that
a model trained quickly on the SU(𝑁) setting also provides useful information in
SU(𝑁 ′), 𝑁 ′ > 𝑁 cases.

Thesis Supervisor: Phiala E. Shanahan
Title: Associate Professor

3

4

Acknowledgments

I would first like to thank my mentor, Fernando Romero-López for all his help and

support throughout my thesis process. He has provided me with numerous ideas

whenever I felt like I was at an impasse, and his guidance has helped me grow tremen-

dously as a researcher. I am also very grateful for his patience and understanding

when explaining difficult concepts to me, especially early in the research process.

I would also like to express my gratitude to Phiala Shanahan, my faculty super-

visor, for letting me join her lab and conduct interesting research despite my initially

rudimentary physics knowledge. In addition, I would also like to thank other mem-

bers of her lab – Ryan Abbott, Denis Boyda, Dan Hackett, and Julian Urban – for

their contributions to my research progress as well.

Finally, I would like to thank my friends for all the great memories at MIT and

my parents for their unconditional support.

5

6

Contents

1 Introduction 13

2 Background 15

2.1 Quantum chromodynamics (QCD) 15

2.2 Large-𝑁 reduction . 17

2.3 Numerical methods for QCD . 18

2.3.1 Markov chain Monte Carlo (MCMC) 18

2.3.2 Flow-based generative models 20

3 Methods 23

3.1 Potential-based layers . 23

3.2 Spectral-flow layers . 25

3.3 SU(2)-block layers . 27

3.3.1 Efficient Jacobian computation 28

3.3.2 Neural network design . 34

3.3.3 Complexity optimizations . 35

3.3.4 Gauge fixing . 36

3.4 Transferrable layers . 40

3.4.1 SU(2)-block transferrable layers 40

3.4.2 Projection-based transferrable layers 40

4 Results 43

4.1 SU(2)-block layer efficiency . 43

7

4.2 SU(2)-block layer performance . 44

4.3 Transferrable layers . 48

5 Conclusion 51

8

List of Figures

4-1 Runtime per gradient step of 2-layer layer-SU(2), input-SU(2), and

potential-based models trained on a batch size of 64 in the two-dimensional

𝑑 = 2 setting. 44

4-2 ESS vs. epoch during training of input-SU(2) transferrable models

with randomly initialized weights and models with weights pretrained

on a smaller 𝑁 in the 𝑑 = 2, 𝛽 = 0.1 setting. The left plot displays a

transfer from 𝑁 = 4 to 𝑁 ′ = 5, and the right plot displays a transfer

from 𝑁 = 4 to 𝑁 ′ = 7. 49

4-3 ESS vs. epoch during training of projection-based transferrable models

with randomly initialized weights and models with weights pretrained

on a smaller 𝑁 in the 𝑑 = 2, 𝛽 = 0.1 setting. The left plot displays a

transfer from 𝑁 = 4 to 𝑁 ′ = 5, and the right plot displays a transfer

from 𝑁 = 4 to 𝑁 ′ = 7. 49

9

10

List of Tables

4.1 ESS of the layer-SU(2) model, the layer-SU(2) model composed with

spectral-flow layers, the input-SU(2) model, the input-SU(2) model

composed with spectral-flow layers, the potential-based model, and

samples directly from the Haar measure trained with a batch size of

4096 for the 𝑑 = 2, 𝛽 = 0.4 setting. 45

4.2 log𝑍TEK estimates of the layer-SU(2) model, the layer-SU(2) model

composed with spectral-flow layers, the input-SU(2) model, the input-

SU(2) model composed with spectral-flow layers, the potential-based

model, and samples directly from the Haar measure trained with a

batch size of 4096 for the 𝑑 = 2, 𝛽 = 0.4 setting. 46

4.3 Sample reverse KL-divergence estimates of the layer-SU(2) model, the

layer-SU(2) model composed with spectral-flow layers, the input-SU(2)

model, the input-SU(2) model composed with spectral-flow layers, the

potential-based model, and samples directly from the Haar measure

trained with a batch size of 4096 for the 𝑑 = 2, 𝛽 = 0.4 setting. 47

4.4 ESS of the layer-SU(2) model, the input-SU(2) model, the input-SU(2)

model with gauge fixing, the potential-based model, and samples di-

rectly from the Haar measure trained with a batch size of 4096 for the

𝑑 = 4, 𝛽 = 0.1 setting. All three SU(2)-block models are composed

with spectral-flow layers. 47

11

4.5 log𝑍TEK estimates of the layer-SU(2) model, the input-SU(2) model,

the input-SU(2) model with gauge fixing, the potential-based model,

and samples directly from the Haar measure trained with a batch size

of 4096 for the 𝑑 = 4, 𝛽 = 0.1 setting. All three SU(2)-block models

are composed with spectral-flow layers. 47

4.6 Sample reverse KL-divergence estimates of the layer-SU(2) model, the

input-SU(2) model, the input-SU(2) model with gauge fixing, the potential-

based model, and samples directly from the Haar measure trained with

a batch size of 4096 for the 𝑑 = 4, 𝛽 = 0.1 setting. All three SU(2)-

block models are composed with spectral-flow layers. 48

12

Chapter 1

Introduction

The Standard Model of particle physics is the widely accepted formulation of elemen-

tary particles and their interactions through the electromagnetic, weak, and strong

forces [12, 25, 22, 24]. Nevertheless, making real-world predictions using the Standard

Model presents numerous mathematical and computational challenges due to its com-

plexity. To remedy these issues, perturbative approaches have been used to compute

approximate solutions for the electroweak sector, such as in [17]. Similar approaches

can also be applied to quantum chromodynamics (QCD), the theory governing the

strong interaction [18], but they only yield accurate results under high-energy con-

ditions, such as those found in the Large Hadron Collider. As a result, alternative

methods are necessary to achieve accurate predictions for QCD computations regard-

ing typical hadron physics.

One such alternative approach is lattice QCD, a non-perturbative approach where

the gluon fields of QCD are discretized onto a lattice [26]. In particular, the expected

value of observables can be expressed as path integrals in QCD, and the lattice dis-

cretization provides a way to compute these integrals. As the lattice spacing decreases,

the continuous-spacetime limit of QCD is recovered, so studies are conducted by per-

forming calculations on increasingly fine lattices and extrapolating to the continuous

zero-spacing limit. To perform these calculations, it is necessary to sample config-

urations 𝜑 of quantum fields defined on a spacetime lattice according to a specified

13

density

𝑝(𝜑) =
1

𝑍
𝑒−𝑆(𝜑), (1.1)

where 𝑆 is the action – a function dictated by the equations of QCD. However, be-

cause the partition function 𝑍 is intractable, directly sampling from this distribution

is not possible. Instead, approaches involving Markov chain Monte Carlo (MCMC)

are often used [19]. Simply applying MCMC faces other challenges still; for exam-

ple, critical slowing-down and topological freezing may cause MCMC autocorrelation

times to be large [23]. In order to remedy these issues, one approach that has been de-

veloped involves using flow-based generative models in addition to MCMC to improve

sampling efficiency at the cost of some model-training time [3, 1].

While QCD is an SU(3) gauge theory due to the 3 colors of quarks and 8 inde-

pendent types of gluons, a natural theoretical extension is the class of SU(𝑁) gauge

theories for large 𝑁 . In fact, this actually presents a method for QCD, since com-

putations can be done in the 𝑁 → ∞ limit and subsequently adapted to the 𝑁 = 3

real-world setting through 𝑂(1
𝑁
) corrections, such as in [7]. The 𝑁 → ∞ limit also

allows for a reduction in the spacetime degrees of freedom; in particular, a model with

a single spacetime site is sufficient in this limit [10]. In response to this discovery,

the twisted Eguchi-Kawai (TEK) model was proposed [13], and it now stands as a

primary method for analyzing the large-𝑁 single-site formulation of QCD numerically.

In this thesis, we explore the application of flow-based sampling algorithms for the

TEK model. While flow models developed for lattice QCD may be adapted to the

TEK model as well, these models are not designed with computational complexity

with respect to 𝑁 in mind, so computations are infeasible when 𝑁 is large. The work

of this thesis will primarily focus on remedying this issue: we contribute alternative

flow-model architectures and training methods that scale efficiently with 𝑁 , making

them more applicable to large-𝑁 gauge theories.

14

Chapter 2

Background

In this chapter, we provide further background information on QCD and the large-𝑁

reduction with the TEK model. Furthermore, we introduce MCMC and flow-based

generative models with an emphasis on their applications for computational QCD

approaches.

2.1 Quantum chromodynamics (QCD)

QCD is the currently accepted theory describing the strong interactions between

quarks mediated by gluons. It is a gauge theory with symmetry group SU(3) defined

by the Lagrangian

ℒQCD = 𝜓𝑖(𝑖𝛾
𝜇(𝐷𝜇)𝑖𝑗 −𝑚𝛿𝑖𝑗)𝜓𝑗 −

1

4
𝐹 𝑎
𝜇𝜈𝐹

𝜇𝜈
𝑎 , (2.1)

where 𝜓𝑖(𝑥) represents the quark fields, and

𝐹 𝑎
𝜇𝜈 = 𝜕𝜇𝒜𝑎𝜈 − 𝜕𝜈𝒜𝑎𝜇 + 𝑔𝑓𝑎𝑏𝑐𝒜𝑏𝜇𝒜𝑐𝜈 (2.2)

is the gluon field strength tensor defined in terms of the gluon fields 𝒜𝜇𝑎(𝑥) [14].

The quark fields are indexed 𝑖 = 1, 2, 3 and together they transform according to

the fundamental representation of SU(3). Additionally, the gluon fields are indexed

𝑎 = 1, 2, . . . , 8 with one field for each generator 𝑡𝑎 of the Lie algebra su(3), and

15

𝜇 = 1, 2, 3, 4 for one component in each spacetime dimension. In Equation (2.2), 𝑔

denotes the coupling constant, and 𝑓𝑎𝑏𝑐 denotes the stucture constants of SU(3).

In particular, the Lagrangian is invariant under the local gauge transformations

𝜓 → 𝐺𝜓, (2.3)

𝒜𝜇 → 𝐺𝒜𝜇𝐺† +
𝑖

𝑔
𝐺(𝜕𝜇𝐺

†), (2.4)

with 𝐺(𝑥) = 𝑒𝑖𝜀𝑎(𝑥)𝑡𝑎 for real-valued 𝜀𝑎(𝑥).

The QCD action is then simply given by

𝑆QCD =

∫︁
d4𝑥ℒQCD, (2.5)

where the integral is over the 4 spacetime dimensions.

Computations in QCD, using lattice QCD for instance, have been able to accu-

rately describe many phenomena and particle properties consistent with experimental

observation. For instance, the masses of hadrons such as the proton and pion have

been accurately measured [16, 8], and these measurements align with values obtained

from lattice QCD.

However, computational techniques for QCD is still an active area of research.

There remains discrepancies between experimental measurements and theoretical pre-

dictions of key quantities in the Standard Model, and more accurate QCD calculations

may provide clues toward resolving these discrepancies. For instance, the anomalous

magnetic moment of the muon is one value for which theoretical predictions appear

to disagree with experimental data [5]. As a result, improvement in computational

techniques will lead to a more accurate characterization of the difference between the-

oretical and observed values, potentially paving the way for new discoveries regarding

the muon.

16

2.2 Large-𝑁 reduction

As introduced in Chapter 1, the large-𝑁 reduction provides a simplification to large-

𝑁 gauge theories by reducing spacetime to a single lattice site. Additionally, the TEK

model provides a numerical framework for large-𝑁 , single-site computations through

the Lagrangian

𝑆TEK = −𝛽𝑁
∑︁
�̸�=𝜈

𝑍𝜇𝜈 Tr(𝑈𝜇𝑈𝜈𝑈
†
𝜇𝑈

†
𝜈), (2.6)

where 𝛽 is the coupling constant and 𝑈𝜇 is the fundamental representation of the 𝜇

component of the gluon field 𝒜𝜇 at the single site [13]. Conceptually, these 𝑈𝜇 are

cyclic links with both endpoints at the single site, analogous to the lattice QCD links

that connect two adjacent lattice sites. Furthermore, the “twist tensor”

𝑍𝜇𝜈 =

⎧⎪⎨⎪⎩𝑒
2𝜋𝑖
𝑁 𝜇 < 𝜈

𝑒
−2𝜋𝑖
𝑁 𝜇 > 𝜈

(2.7)

ensures that 𝑈(1)4 symmetry of the action is not broken at weak coupling, as would

be the case if 𝑍𝜇𝜈 = 1.

The correspondence between the QCD Lagrangian and TEK action lies in the

fact that the last term of Equation (2.1) yields the right-hand side of Equation (2.6).

Contributions from the first term of the QCD Lagrangian can be ignored in this

formulation since the second term dominates as 𝑁 → ∞. Note that this also leads

to neglecting the quark fields altogether, since they do not appear in 𝐹 𝑎
𝜇𝜈 .

Under this formulation, gauge transformations of the gluon field components are

given by

𝑈 [𝐺]
𝜇 ← 𝐺𝑈𝜇𝐺

† for all 𝜇 (2.8)

for arbitrary 𝐺 ∈ SU(3). Gauge invariance of the action through these transforma-

17

tions can also be easily verified:

𝑆
[𝐺]
TEK = −𝛽𝑁

∑︁
�̸�=𝜈

𝑍𝜇𝜈 Tr(𝑈
[𝐺]
𝜇 𝑈 [𝐺]

𝜈 (𝑈 [𝐺]
𝜇)†(𝑈 [𝐺]

𝜈)†) (2.9)

= −𝛽𝑁
∑︁
�̸�=𝜈

𝑍𝜇𝜈 Tr((𝐺𝑈𝜇𝐺
†)(𝐺𝑈𝜈𝐺

†)(𝐺𝑈𝜇𝐺
†)†(𝐺𝑈𝜈𝐺

†)†) (2.10)

= −𝛽𝑁
∑︁
�̸�=𝜈

𝑍𝜇𝜈 Tr(𝐺𝑈𝜇𝑈𝜈𝑈
†
𝜇𝑈

†
𝜈𝐺

†) (2.11)

= −𝛽𝑁
∑︁
�̸�=𝜈

𝑍𝜇𝜈 Tr(𝑈𝜇𝑈𝜈𝑈
†
𝜇𝑈

†
𝜈) (2.12)

= 𝑆TEK. (2.13)

2.3 Numerical methods for QCD

This section will present background on numerical methods for computational QCD

approaches. We are specifically interested in methods for the TEK model for the

work presented in this thesis, but some methods developed for lattice QCD can be

easily adapted to the TEK model as well.

2.3.1 Markov chain Monte Carlo (MCMC)

A key component of computational QCD methods is sampling from the action. How-

ever, it is not possible to directly sample from the probability distribution defined by

the TEK action in Equation (2.6)

𝑝(𝑈) =
1

𝑍TEK
𝑒−𝑆TEK(𝑈) (2.14)

since the partition function

𝑍TEK =

∫︁
d𝑈𝑝(𝑈) =

∫︁
d𝑈𝑒−𝑆TEK(𝑈) (2.15)

is unknown and intractable.

As a result, alternative sampling methods such as MCMC are used. In MCMC,

18

an irreducible and aperiodic Markov chain with stationary distribution 𝑝 is defined,

and samples are generated through Markov chain state updates.

One MCMC algorithm is the Metropolis-Hastings algorithm, which defines a pro-

cedure that converts any arbitrary irreducible and aperiodic Markov chain into one

with stationary distribution 𝑝 [15]. It does so by assigning an acceptance probability

𝜌(𝑠𝑖 → 𝑠𝑗) = min

{︂
𝑝(𝑠𝑗)

𝑝(𝑠𝑖)
· 𝑞(𝑠𝑖|𝑠𝑗)
𝑞(𝑠𝑗|𝑠𝑖)

, 1

}︂
(2.16)

between every two states 𝑠𝑖 and 𝑠𝑗. Here, 𝑞(·|𝑠𝑖) and 𝑞(·|𝑠𝑗) denote the transition

distributions at states 𝑠𝑖 and 𝑠𝑗, respectively, of the original Markov chain. The

algorithm then generates samples according to the rule below.

Algorithm 1 Metropolis-Hastings
generate initial state 𝑥0
for 𝑡 in 1, 2, . . . , 𝑇 do

sample �̃�𝑡+1 ∼ 𝑞(·|𝑥𝑡) ◁ propose transition to �̃�𝑡+1

sample 𝑢 ∼ 𝒰(0, 1)
if 𝑢 ≤ 𝜌(𝑥𝑡 → �̃�𝑡+1) then ◁ accept proposal with probability 𝜌(𝑥𝑡 → 𝑥𝑡+1)

𝑥𝑡+1 ← �̃�𝑡+1

else
𝑥𝑡+1 ← 𝑥𝑡

end if
end for

As a result, the empirical distribution of samples 𝑥0, 𝑥1, . . . , 𝑥𝑇−1 generated by

Metropolis-Hastings approaches the goal distribution 𝑝 asymptotically. However,

while the algorithm produces correct results theoretically, many approaches face chal-

lenges due to correlations between �̃�𝑡+1 and 𝑥𝑡 resulting from the sampling methodolo-

gies used. These issues include critical slowing down and topological freezing, both of

which occur when the algorithm transitions to configurations that result in extremely

high autocorrelations.

Current state-of-the-art MCMC sampling algorithms for both lattice QCD and the

TEK model involve hybrid Monte Carlo, a specific type of Metropolis-Hastings that

introduces a Hamiltonian and uses Hamiltonian dynamics to specify the evolution

of Markov chain states [9]. However, this thesis will not explore methods involving

19

hybrid Monte Carlo, although approaches involving both hybrid Monte Carlo and

flow-based generative models have been explored [11].

2.3.2 Flow-based generative models

One idea to potentially decrease MCMC autocorrelations is to propose transitions

from a single distribution 𝑞 that is independent of the current state of the Markov

chain. This way, we eliminate correlations that occur due to differing proposal dis-

tributions entirely. However, if 𝜌(𝑥𝑡 → �̃�𝑡+1)≪ 1 with high probability at some step

𝑡, 𝑥𝑡 and 𝑥𝑡+1 will be highly correlated since the probability that 𝑥𝑡+1 = 𝑥𝑡 is large.

To remedy this issue, we should select distributions 𝑞 that are similar to 𝑝 so that

𝜌(𝑥𝑡 → �̃�𝑡+1) is close to 1.

Directly selecting such a distribution 𝑞 that can be sampled from is also challenging

because the distribution 𝑝 is quite complicated, especially for large values of 𝑁 and

𝛽. Rather, we may define 𝑞 to be the result of an invertible transformation Φ on an

easy-to-sample distribution such as the SU(𝑁) Haar measure 𝜇𝑁 . That is, instead

of expressing the distribution 𝑞 directly, we can define Φ and assert that 𝑞 is the

distribution such that 𝑥 = Φ(𝑦) ∼ 𝑞 when 𝑦 ∼ 𝜇𝑁 .

Flow-based generative models, a class of machine learning models that specializes

in transforming probability distributions, provides a flexible way to define Φ [21]. As a

result, they provide a way to define such a distribution 𝑞 for lattice QCD applications

[3, 1]. Like in [3, 1], we will take Φ = 𝑓(·; Θ), where 𝑓 is a flow-based generative

model whose neural networks are parameterized by Θ. Furthermore, if

𝑓 = 𝑓𝑘 ∘ 𝑓𝑘−1 ∘ · · · ∘ 𝑓1 (2.17)

is composed entirely of invertible layers 𝑓1, 𝑓2, . . . , 𝑓𝑘 parameterized by Θ1,Θ2, . . . ,Θ𝑘,

then we can sample from 𝑞 and perform density evaluation by computing

𝑥 = 𝑓(𝑦; Θ), (2.18)

𝑞(𝑥) = 𝑞(𝑓(𝑦; Θ)) (2.19)

20

= 𝜇𝑁(𝑦)

⃒⃒⃒⃒
det

[︂
d𝑓−1(𝑦; Θ)

d𝑦

]︂⃒⃒⃒⃒
(2.20)

= 𝜇𝑁(𝑦)

⃒⃒⃒⃒
det

[︂
d𝑓(𝑦; Θ)

d𝑦

]︂⃒⃒⃒⃒−1

(2.21)

= 𝜇𝑁(𝑦)
𝑘∏︁
𝑖=1

⃒⃒⃒⃒
det

[︂
d𝑓𝑖(𝑦𝑖−1; Θ𝑖)

d𝑦𝑖−1

]︂⃒⃒⃒⃒−1

, (2.22)

where 𝑦𝑖 = (𝑓𝑖 ∘ 𝑓𝑖−1 ∘ · · · ∘ 𝑓1)(𝑦) and 𝑦 = 𝑓−1(𝑥; Θ). For numerical stability reasons,

the log-likelihood

log 𝑞(𝑥) = log 𝜇𝑁(𝑦)−
𝑘∑︁
𝑖=1

log

⃒⃒⃒⃒
det

[︂
d𝑓𝑖(𝑦𝑖−1; Θ𝑖)

d𝑦𝑖−1

]︂⃒⃒⃒⃒
(2.23)

is typically evaluated instead.

Note that such a model is sufficient to run the Metropolis-Hastings algorithm with

a state-independent proposal distribution 𝑞 because the values

𝜌(𝑥𝑡 → �̃�𝑡+1) = min

{︂
𝑝(�̃�𝑡+1)

𝑝(𝑥𝑡)
· 𝑞(𝑥𝑡|�̃�𝑡+1)

𝑞(�̃�𝑡+1|𝑥𝑡)
, 1

}︂
(2.24)

= min

{︂
𝑒−𝑆TEK(�̃�𝑡+1)

𝑒−𝑆TEK(𝑥𝑡)
· 𝑞(𝑥𝑡)

𝑞(�̃�𝑡+1)
, 1

}︂
(2.25)

can be computed.

To train such a model, an empirical estimate of the Kullback-Leibler divergence

(KL-divergence), a measure of distance between probability distributions, is typically

used as the loss function [21]. Additionally, due to scarcity of data sampled from 𝑝

for QCD applications, existing computational methods choose to use the backwards

KL-divergence

𝐷KL(𝑞||𝑝) = E𝑞
[︂
log 𝑞(𝑥)

log 𝑝(𝑥)

]︂
(2.26)

= E𝑞[log 𝑞(𝑥)]− E𝑞[log 𝑝(𝑥)] (2.27)

= E𝑞[log 𝑞(𝑥)] + E𝑞[𝑆TEK(𝑥)] + log𝑍TEK (2.28)

instead [3, 1]. This allows for an easy self-training scheme where training samples are

21

trivially generated from the prior distribution 𝜇𝑁 . While the final log𝑍TEK term is

intractable, it only represents a constant shift, so dropping this term does not affect

model training gradients. As a result, given a training set y = {𝑦(1), 𝑦(2), . . . , 𝑦(𝑛)}

sampled from 𝜇𝑁 , the loss can be defined as

ℒ(Θ;y) =
1

𝑛

𝑛∑︁
𝑖=1

𝑞(𝑥(𝑖); Θ)(log 𝑞(𝑥(𝑖); Θ) + 𝑆TEK(𝑥
(𝑖))), (2.29)

where 𝑥(𝑖) = 𝑓(𝑦(𝑖),Θ).

Furthermore, flow-based generative models, and machine-learning methods in gen-

eral, have the advantage that model evaluation is relatively cheap computationally

even though training may be difficult. Evaluation of large language models such as

GPT-3 has already been proven to efficient and effective despite the large training

cost [6]. Similarly, while the training of flow-based generative models for the TEK

model may be much more expensive than existing hybrid Monte Carlo methods, they

can provide greater sampling efficiency once training has been completed.

Equation (2.23) also provides insight on desirable properties for the model layers

𝑓1, 𝑓2, . . . , 𝑓𝑘. Notably, model efficiency necessitates efficient computation of both the

updated sample

𝑦𝑖 = 𝑓𝑖(𝑦𝑖−1; Θ𝑖) (2.30)

and the log-Jacobian

log |J𝑖(𝑦𝑖−1)| = log

⃒⃒⃒⃒
det

[︂
d𝑓𝑖(𝑦𝑖−1; Θ𝑖)

d𝑦𝑖−1

]︂⃒⃒⃒⃒
. (2.31)

In this thesis, we focus on designing model layers that meet these criteria.

22

Chapter 3

Methods

We now present flow-based generative model architectures for learning distributions

mirroring the TEK action. In particular, we consider the formulation where the

single-site model is represented by an element of SU(𝑁)𝑑, where there is one link

represented by an SU(𝑁) matrix in each of the 𝑑 dimensions. While typically 𝑑 = 4

spacetime dimensions, the architectures presented in the section allow for generaliza-

tion to arbitrary 𝑑 as well.

The first two sections detail existing QCD methods with downsides when applied

to the large-𝑁 setting, but nevertheless provide inspiration for architectures of inter-

est. The final two sections will present original work on designing efficient large-𝑁

layers for the TEK model.

3.1 Potential-based layers

One flow-based generative model architecture for lattice QCD involves using the gra-

dient of a potential function 𝜑(·; 𝜃) computed by a neural network to specify the flow

layers 𝑓𝑖 in Equation (2.17) [2]. Specifically, each layer defines a function that updates

one link 𝑈𝜇 using the rule

𝑈 ′
𝜇 ← 𝑓(𝑈 ; 𝜃)𝜇 = 𝑒𝑖𝑇𝑎𝜕𝑎,𝜇𝜑(𝑈 ;𝜃)𝑈𝜇, (3.1)

𝑈 ′
𝜈 ← 𝑓(𝑈 ; 𝜃)𝜈 = 𝑈𝜈 , 𝜈 ̸= 𝜇. (3.2)

23

Here,

T = (𝑇1, 𝑇2, . . . , 𝑇𝑁2−1) (3.3)

is the set of Hermitian generators for the (𝑁2 − 1)-dimensional lie algebra su(𝑁)

normalized such that

Tr(𝑇𝑘𝑇𝑙) = Tr(𝑇 †
𝑘𝑇𝑙) = 𝛿𝑘𝑙, (3.4)

where 𝛿𝑘𝑙 is the Kronecker delta. In addition, 𝜕𝑎,𝜇𝜑(𝑈 ; 𝜃) refers to the partial covariant

derivative of 𝜑(𝑈, 𝜃) along 𝑇𝑎 for the link 𝑈𝜇.

This model also takes advantage of the gauge invariance of the TEK action under

the transformations given in Equation (2.8). In particular, if we select a gauge-

invariant potential function 𝜑(·, 𝜃), then the resulting transformation is gauge equiv-

ariant; that is,

(𝑈 [𝐺]
𝜇)′ = 𝑒𝑖𝑇𝑎𝜕𝑎,𝜇𝜑(𝑈

[𝐺];𝜃)(𝐺𝑈𝜇𝐺
†) (3.5)

= 𝑒𝐺(𝑖𝑇𝑎𝜕𝑎,𝜇𝜑(𝑈,𝜃))𝐺†
(𝐺𝑈𝜇𝐺

†) (3.6)

= 𝐺(𝑒𝑖𝑇𝑎𝜕𝑎,𝜇𝜑(𝑈 ;𝜃)𝑈𝜇)𝐺
† (3.7)

= (𝑈 ′
𝜇)

[𝐺]. (3.8)

As a result, we impose the gauge symmetry 𝑝((𝑈 ′)[𝐺]) = 𝑝(𝑈 ′) because for 𝑈 ′ =

𝑓(𝑈 ; 𝜃) ∼ 𝑞 when 𝑈 ∼ 𝜇𝑁 ,

𝑞((𝑈 ′)[𝐺])

𝑞(𝑈 ′)
=
𝜇𝑁(𝑈

[𝐺])

𝜇𝑁(𝑈)
= 1. (3.9)

However, due to the Ω(𝑁4) gradient computations necessary in evaluating the

covariant derivative, calculating the Jacobian of the transformation, and performing

parameter updates when training, these potential-based layers do not scale efficiently

with 𝑁 . So, while this architecture is expressive and accurate if 𝑁 is small, it is not

appropriate for the TEK model.

24

3.2 Spectral-flow layers

To remedy the computational complexity of the potential-based layers, spectral-flow

layers provide a more efficient but still expressive architecture for QCD [3, 2]. More

specifically, these layers update the eigenvalues of one link 𝑈𝜇 in a way such that the

Jacobian matrix is almost triangular, allowing for quick determinant computation.

Concretely, each layer maintains a neural network 𝜑(·; 𝜃) and computes updates

as follows:

1. Diagonalize 𝑈𝜇 = 𝑉𝜇𝐿𝜇𝑉
†
𝜇 , enforcing a canonical ordering on the eigenvalues

(i.e. enforce a unique value of of 𝐿𝜇),

2. Compute 𝐷𝜈 = (𝑉 †
𝜇𝑈𝜈𝑉𝜇)⊙ (𝑉 †

𝜇𝑈
†
𝜈𝑉𝜇)

𝑇 for all 𝜈 ̸= 𝜇,

3. Compute 𝑡(𝑘)𝜈 = Tr(𝑈𝑘
𝜈) for 𝑘 = 1, 2, . . . , 𝑁 for all 𝜈 ̸= 𝜇,

4. Consolidate either the odd-indexed or the even-indexed eigenvalues in 𝐿𝜇; that

is, let 𝑃𝜇 = (𝐿𝜇[1, 1], 𝐿𝜇[3, 3], . . .) or 𝑃𝜇 = (𝐿𝜇[2, 2], 𝐿𝜇[4, 4], . . .),

5. Use the output of 𝜑((𝐷𝜈 , 𝑡
(𝑘)
𝜈 , 𝑃𝜇); 𝜃) to define a monotonically increasing spline

𝑆 : [0, 1]→ [0, 1] with 𝑆(0) = 0 and 𝑆(1) = 1,

6. Compute 𝐿′
𝜇 = exp(2𝑖𝜋 · 𝑆(log𝐿𝜇

2𝑖𝜋
)), where we take the branch of the complex

logarithm yielding values in the range [0, 2𝜋), and update 𝑈 ′
𝜇 = 𝑉𝜇𝐿

′
𝜇𝑉

†
𝜇 accord-

ingly.

With many of these layers composed, we can update every dimension 𝜇 by con-

sidering both parities for 𝑃𝜇. Furthermore, observe that this update also maintains

gauge equivariance, since all inputs to 𝜑 are gauge invariant and the eigenvectors

remain constant. In particular, under the gauge update given by Equation (2.8) and

proper canonicalization,

𝑉 [𝐺]
𝜇 ← 𝐺𝑉𝜇𝐶 (3.10)

25

for some matrix

𝐶 =

⎛⎜⎜⎜⎝
𝑒𝑖𝜙1 0 0

0 𝑒𝑖𝜙2 0

0 0 𝑒𝑖𝜙3

⎞⎟⎟⎟⎠ (3.11)

with 𝜙1 + 𝜙2 + 𝜙3 = 0 due to freedom in selecting eigenvector phases during diag-

onalization. Although the neural network inputs 𝐷𝜈 are not used in [3], they are

nevertheless gauge invariant:

𝐷[𝐺]
𝜈 = ((𝑉 [𝐺]

𝜇)†𝑈 [𝐺]
𝜈 𝑉 [𝐺]

𝜇)⊙ ((𝑉 [𝐺]
𝜇)†(𝑈 [𝐺]

𝜈)†𝑉 [𝐺]
𝜇)𝑇 (3.12)

= ((𝐺𝑉𝜇𝐶)
†(𝐺𝑈𝜈𝐺

†)(𝐺𝑉𝜇𝐶))⊙ ((𝐺𝑉𝜇𝐶)
†(𝐺𝑈𝜈𝐺

†)†(𝐺𝑉𝜇𝐶))
𝑇 (3.13)

= (𝐶†𝑉 †
𝜇𝑈𝜈𝑉𝜇𝐶)⊙ (𝐶†𝑉 †

𝜈 𝑈
†
𝜈𝑉𝜇𝐶)

𝑇 (3.14)

= (𝑀 ⊙ (𝑉 †
𝜇𝑈𝜈𝑉𝜈))⊙ (𝑀𝑇 ⊙ (𝑉 †

𝜇𝑈
†
𝜈𝑉𝜈)

𝑇) (3.15)

= (𝑉 †
𝜇𝑈𝜈𝑉𝜇)⊙ (𝑉 †

𝜈 𝑈
†
𝜈𝑉𝜈)

𝑇 (3.16)

= 𝐷𝜈 , (3.17)

where

𝑀 =

⎛⎜⎜⎜⎝
1 𝑒𝑖(𝜙2−𝜙1) 𝑒𝑖(𝜙3−𝜙1)

𝑒𝑖(𝜙1−𝜙2) 1 𝑒𝑖(𝜙3−𝜙2)

𝑒𝑖(𝜙1−𝜙3) 𝑒𝑖(𝜙2−𝜙3) 1

⎞⎟⎟⎟⎠ . (3.18)

Likewise, the values of 𝑡(𝑘)𝜈 and 𝑃𝜇 are also gauge invariant since traces and eigenvalues

do not change under matrix conjugation.

However, these spectral-flow layers have a key drawback due to the fact that eigen-

vectors are not updated. While this maintains gauge equivariance like the potential-

based layers, it also enforces that under the transform

𝑈 [𝐺𝜇]
𝜇 ← 𝐺𝜇𝑈𝜇𝐺

†
𝜇 for all 𝜇, (3.19)

26

where 𝐺𝜇 may be different for different dimensions 𝜇,

𝑞((𝑈 ′)[𝐺𝜇])

𝑞(𝑈 ′)
=
𝜇𝑁(𝑈

[𝐺𝜇])

𝜇𝑁(𝑈)
= 1. (3.20)

However, this is not true in the distribution 𝑝 defined by the TEK action as specified

in Equation (2.6), so the expressivity of the spectral flow is limited with respect to

learning 𝑝.

3.3 SU(2)-block layers

In this section, we present a flow architecture based on updating two rows of one link

𝑈𝜇 at a time through left-multiplication by an SU(2)-block matrix parameterized by

𝑈 ; that is, an 𝑁 ×𝑁 matrix of the form

𝑈 ′
𝜇 ← 𝑓(𝑈 ; 𝜃) = 𝐴(𝑈 ; 𝜃)𝑈𝜇, (3.21)

𝐴(𝑈 ; 𝜃) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 . . . 0 . . . 0

0 1 . . . 0 . . . 0 . . . 0
...

...

0 0 . . . 𝜑11(𝑈 ; 𝜃) . . . 𝜑12(𝑈 ; 𝜃) . . . 0
...

...

0 0 . . . 𝜑21(𝑈 ; 𝜃) . . . 𝜑22(𝑈 ; 𝜃) . . . 0
...

...

0 0 . . . 0 . . . 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.22)

where

𝜑(𝑈 ; 𝜃) =

⎛⎝𝜑11(𝑈 ; 𝜃) 𝜑12(𝑈 ; 𝜃)

𝜑21(𝑈 ; 𝜃) 𝜑22(𝑈 ; 𝜃)

⎞⎠ ∈ SU(2). (3.23)

Note that 𝜑(𝑈 ; 𝜃) ∈ SU(2) implies 𝐴(𝑈 ; 𝜃) ∈ SU(𝑁), so the updated link 𝑈 ′
𝜇 also

remains in SU(𝑁). Furthermore, 𝜑(𝑈 ; 𝜃) is parameterized by a neural network so

that arbitrary functions 𝜑 : SU(𝑁)𝑑 → SU(2) can be learned.

27

The primary benefit of this update is a fast Jacobian computation; while each

individual layer is not adequately expressive due to only updating two rows, the

efficient Jacobian computation means that many of these layers can be composed to

form an expressive deep model. To further increase model expressivity, the spectral-

flow layers discussed in Section 3.2 may also be composed with these SU(2)-block

layers.

3.3.1 Efficient Jacobian computation

The design of this SU(2)-block update mechanism allows for numerous simplifications

in the Jacobian computation. Let T be as defined in Equations (3.3) and (3.4).

Additionally, suppose that v𝜇 and v′
𝜇 be the representations of 𝑈𝜇 and 𝑈 ′

𝜇 in this

basis; that is,

𝑈𝜇 = 𝑒𝑖(v𝜇)𝑎𝑇𝑎 , (3.24)

𝑈 ′
𝜇 = 𝑒𝑖(v

′
𝜇)𝑎𝑇𝑎 . (3.25)

Then, the Jacobian J of the transform 𝑈 → 𝑈 ′ is given by

J =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕v′
1

𝜕v1

𝜕v′
1

𝜕v2
. . .

𝜕v′
1

𝜕v𝑑

𝜕v′
2

𝜕v1

𝜕v′
2

𝜕v2
. . .

𝜕v′
2

𝜕v𝑑

...
...

𝜕v′
𝑑

𝜕v1

𝜕v′
𝑑

𝜕v2
. . .

𝜕v′
𝑑

𝜕v𝑑

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.26)

where each entry in Equation (3.26) is a matrix block

𝜕v′
𝜎

𝜕v𝜌
=

⎛⎜⎜⎜⎜⎜⎜⎝

𝜕(v′
𝜎)1

𝜕(v𝜌)1

𝜕(v′
𝜎)1

𝜕(v𝜌)2
. . . 𝜕(v′

𝜎)1
𝜕(v𝜌)𝑁2−1

𝜕(v′
𝜎)2

𝜕(v𝜌)1

𝜕(v′
𝜎)2

𝜕(v𝜌)2
. . . 𝜕(v′

𝜎)2
𝜕(v𝜌)𝑁2−1

...
...

𝜕(v′
𝜎)𝑁2−1

𝜕(v𝜌)1

𝜕(v′
𝜎)𝑁2−1

𝜕(v𝜌)2
. . .

𝜕(v′
𝜎)𝑁2−1

𝜕(v𝜌)𝑁2−1

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.27)

28

However, observe that for 𝜈 ̸= 𝜇,

𝜕v′
𝜈

𝜕v𝜌
=

⎧⎪⎨⎪⎩𝐼 𝜈 = 𝜌

0 𝜈 ̸= 𝜌

(3.28)

since 𝑈𝜇 is the only updated link. As a result, J can be rearranged into a block-

triangular matrix, which gives

| detJ| = | detJ𝜇| =
⃒⃒⃒⃒
det

𝜕v′
𝜇

𝜕v𝜇

⃒⃒⃒⃒
. (3.29)

To simplify the computation of | detJ|, we introduce a new vector p𝜇 such that

�̂�𝜇(p𝜇) = 𝐸𝜇𝑈𝜇 = 𝑒𝑖(p𝜇)𝑎𝑇𝑎𝑈𝜇, (3.30)

�̂� ′
𝜇(p𝜇) = 𝑓(�̂�𝜇(p𝜇), 𝑈𝜈 ; 𝜃). (3.31)

The following proposition, which is similar to Equation (26) in [2], then gives a way

to compute | detJ|:

Proposition 3.1. Let Û′
𝜇 denote the elements of �̂� ′

𝜇 as an 𝑁2-dimensional vector

such that

Û′
𝜇 = ((𝑈𝜇)1,1, (𝑈𝜇)1,2, . . . , (𝑈𝜇)𝑁2,𝑁2). (3.32)

In addition, let 𝜎1, 𝜎2, . . . , 𝜎𝑁2−1 be the singular values of 𝜕Û′
𝜇

𝜕p𝜇
evaluated at p𝜇 = 0.

Then,

⃒⃒⃒⃒
det

𝜕v′
𝜇

𝜕v𝜇

⃒⃒⃒⃒
=

𝑁2−1∏︁
𝑖=1

𝜎𝑖. (3.33)

To evaluate the above expression 𝜕Û′
𝜇

𝜕p𝜇
, we can use the product rule to obtain

𝜕(�̂� ′
𝜇)𝑝𝑞

𝜕(p𝜇)𝑟

⃒⃒⃒⃒
p𝜇=0

=
𝜕(𝐴(�̂�𝜇; 𝜃)𝐸𝜇𝑈𝜇)𝑝𝑞

𝜕(p𝜇)𝑟

⃒⃒⃒⃒
p𝜇=0

(3.34)

29

=
𝜕𝐴(�̂�𝜇; 𝜃)𝑝𝑠
𝜕(p𝜇)𝑟

(𝐸𝜇)𝑠𝑡(𝑈𝜇)𝑡𝑞

⃒⃒⃒⃒
p𝜇=0

(3.35)

+ 𝐴(�̂�𝜇; 𝜃)𝑝𝑠
𝜕(𝐸𝜇)𝑠𝑡
𝜕(p𝜇)𝑟

(𝑈𝜇)𝑡𝑞

⃒⃒⃒⃒
p𝜇=0

(3.36)

+ 𝐴(�̂�𝜇; 𝜃)𝑝𝑠(𝐸𝜇)𝑠𝑡
𝜕(𝑈𝜇)𝑡𝑞
𝜕(p𝜇)𝑟

⃒⃒⃒⃒
p𝜇=0

(3.37)

=
𝜕𝐴(�̂�𝜇; 𝜃)𝑝𝑠
𝜕(p𝜇)𝑟

⃒⃒⃒⃒
p𝜇=0

(𝑈𝜇)𝑠𝑞 + 𝑖𝐴(𝑈𝜇; 𝜃)𝑝𝑠(𝑇𝑟)𝑠𝑡(𝑈𝜇)𝑡𝑞. (3.38)

Defining 𝐹 such that

𝐹𝑤𝑟 = 𝐹(𝑝,𝑞)𝑟 =
𝜕(�̂� ′

𝜇)𝑝𝑞

𝜕(p𝜇)𝑟

⃒⃒⃒⃒
p𝜇=0

(3.39)

with 𝑤 = 𝑁2(𝑝− 1) + 𝑞, we have that the product of singular values of 𝐹 is exactly

the desired value | detJ|.

Additionally, we can take advantage of unitary matrix multiplication for further

simplification. Suppose we define 𝐹 ′ such that

𝐹 ′
𝑤𝑟 = 𝐹 ′

(𝑝,𝑞)𝑟 =
𝜕(�̂� ′

𝜇)𝑝𝑠

𝜕(p𝜇)𝑟

⃒⃒⃒⃒
p𝜇=0

𝑀𝑠𝑞 (3.40)

for some matrix 𝑀 ∈ SU(𝑁). Then, the product of singular values of 𝐹 is equal to

the product of singular values of 𝐹 ′ because

𝐹 ′ = 𝐹 ·

⎡⎢⎢⎢⎢⎢⎢⎣
𝑀 0 . . . 0

0 𝑀 . . . 0
...

...

0 0 . . . 𝑀

⎤⎥⎥⎥⎥⎥⎥⎦ (3.41)

and multiplication by a unitary matrix does not change singular values. This similarly

holds in the left-multiplication case, so it suffices to compute the product of singular

30

values of 𝐺, where

𝐺𝑤′𝑟 = 𝐺(𝑝,𝑞)𝑟 = −𝑖 · (𝐴(𝑈𝜇; 𝜃)†)𝑝𝑠
𝜕(�̂� ′

𝜇)𝑠𝑡

𝜕(p𝜇)𝑟

⃒⃒⃒⃒
p𝜇=0

(𝑈 †
𝜇)𝑡𝑞 (3.42)

= −𝑖 · (𝐴(𝑈𝜇; 𝜃)†)𝑝𝑠
𝜕𝐴(�̂�𝜇; 𝜃)𝑠𝑞
𝜕(p𝜇)𝑟

+ (𝑇𝑟)𝑝𝑞. (3.43)

Without loss of generality, suppose that rows 1 and 2 are being updated in 𝑈𝜇. Since

reordering rows also does not change singular values, we may alter the row-mapping

relation (𝑝, 𝑞) ↦→ 𝑤′ so that the first 4 rows correspond to (𝑝, 𝑞) = (1, 1), (2, 2), (1, 2), (2, 1)

in that order.

Because an arbitrary basis T can be selected for this Jacobian computation, we

select the one that makes computation easiest, namely the generalization

𝑇1 =
1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0

0 −1 0 . . . 0

0 0 0 . . . 0
...

...
...

0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.44)

𝑇2 =
1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0

1 0 0 . . . 0

0 0 0 . . . 0
...

...
...

0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.45)

𝑇3 =
1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −𝑖 0 . . . 0

𝑖 0 0 . . . 0

0 0 0 . . . 0
...

...
...

0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.46)

... (3.47)

31

of the Pauli and Gell-Mann matrices.

Additionally, because 𝐴(·, 𝜃) is of the SU(2)-block form,

𝐷𝑝𝑞𝑟 = −𝑖 · (𝐴(𝑈𝜇; 𝜃)†)𝑝𝑠
𝜕𝐴(�̂�𝜇; 𝜃)𝑠𝑞
𝜕(p𝜇)𝑟

(3.48)

is only non-zero when 𝑝, 𝑞 ∈ {1, 2}. In addition, it is also traceless and Hermitian

since

𝐷𝑝𝑞𝑟 − (𝐷†)𝑝𝑞𝑟 = −𝑖 · (𝐴(𝑈𝜇; 𝜃)†)𝑝𝑠
𝜕𝐴(�̂�𝜇; 𝜃)𝑠𝑞
𝜕(p𝜇)𝑟

− 𝑖 · 𝜕𝐴((�̂�𝜇; 𝜃)𝑝𝑠)
†

𝜕(p𝜇)𝑟
(𝐴(𝑈𝜇; 𝜃))𝑠𝑞

(3.49)

= −𝑖 · 𝜕(𝐴(�̂�𝜇; 𝜃)
†𝐴(�̂�𝜇; 𝜃))

𝜕(p𝜇)𝑟
(3.50)

= 0. (3.51)

As a result, 𝐺 is of the block-matrix form

𝐺 =

⎡⎣𝐻 𝐾 + 𝐿

0 𝑀

⎤⎦ , (3.52)

where 𝐻 [4 × 3] and 𝐾 [4 × (𝑁2 − 4)] correspond to the flattened entries of 𝐷 and

the concatenation of 𝐿 [4× (𝑁2− 4)] and 𝑀 [(𝑁2− 4)× (𝑁2− 4)] correspond to the

flattened entries of T. Of particular note is the fact that the columns of 𝐻 and 𝐾

are linear combinations of 𝑇1, 𝑇2, 𝑇3, and the columns of the concatenation of 𝐿 and

𝑀 are the remaining 𝑁2 − 4 generators 𝑇4, 𝑇5 . . . , 𝑇𝑁2−1. We take advantage of this

fact by using generator orthogonality in the proposition below.

Proposition 3.2. Let the singular values of 𝐺 be 𝛾1, 𝛾2, . . . , 𝛾𝑁2−1, and let the sin-

gular values of 𝐻 be 𝜂1, 𝜂2, 𝜂3. Then,

𝑁2−1∏︁
𝑖=1

𝛾𝑖 = 𝜂1 · 𝜂2 · 𝜂3. (3.53)

32

Proof. Observe that

𝑁2−1∏︁
𝑖=1

𝛾𝑖 = (det(𝐺†𝐺))
1
2 (3.54)

=

⎛⎝det

⎡⎣ 𝐻†𝐻 𝐻†𝐾 +𝐻†𝐿

𝐾†𝐻 + 𝐿†𝐻 𝐾†𝐾 + 𝐿†𝐿+𝐾†𝐿+ 𝐿†𝐾 +𝑀 †𝑀

⎤⎦⎞⎠ 1
2

(3.55)

=

⎛⎝det

⎡⎣𝐻†𝐻 𝐻†𝐾

𝐾†𝐻 𝐾†𝐾 + 𝐼

⎤⎦⎞⎠ 1
2

(3.56)

since
[︁
𝐻 0

]︁𝑇
,
[︁
𝐾 0

]︁𝑇
are orthogonal to

[︁
𝐿 𝑀

]︁𝑇
and 𝐿†𝐿+𝑀 †𝑀 = 𝐼 due to the

relation from Equation (3.4). Then, because columns of 𝐻 and 𝐾 are of the form

(︁
𝑤 −𝑤 𝑥+ 𝑖𝑦 𝑥− 𝑖𝑦

)︁𝑇
, (3.57)

we have that by Schur’s formula

det

⎡⎣𝐻†𝐻 𝐻†𝐾

𝐾†𝐻 𝐾†𝐾 + 𝐼

⎤⎦ = det(𝐻†𝐻) det(𝐾†𝐾 + 𝐼 −𝐾†𝐻(𝐻†𝐻)−1𝐻†𝐾) (3.58)

= det(𝐻†𝐻) det(𝐼) (3.59)

= det(𝐻†𝐻). (3.60)

In particular, this follows because

�̃� = 𝐻(𝐻†𝐻)−1𝐻† =

⎛⎜⎜⎜⎜⎜⎜⎝
1
2
−1

2
0 0

−1
2

1
2

0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.61)

33

and 𝐾†�̃�𝐾 = 𝐼. As a result,

𝑁2−1∏︁
𝑖=1

𝛾𝑖 = (det(𝐺†𝐺))
1
2 = (det(𝐻†𝐻))

1
2 = 𝜂1 · 𝜂2 · 𝜂3, (3.62)

as desired.

Therefore, we can compute | log J| by simply computing 𝐺(1,1)1, 𝐺(1,1)2 . . . , 𝐺(2,2)3

and finding the product of singular values. Notably, this only requires a constant

number of partial derivaties of the form 𝜕𝐴(�̂�𝜇;𝜃)𝑠𝑞
𝜕p𝑟

, though the complexity of each

partial derivative may depend on 𝑁 .

3.3.2 Neural network design

There are also some considerations when defining the neural network 𝜑(·; 𝜃) : SU(𝑁)𝑑 →

SU(2). A natural output for the neural network is simply a 3-dimensional vector

g = (𝑔1, 𝑔2, 𝑔3) so that we may define

𝜑(𝑈 ; 𝜃) = 𝑒𝑖𝑔𝑎𝑇𝑎 . (3.63)

In order to ensure that the transformation remains invertible, it is also helpful to

impose a restriction on the magnitude of g. To do so, we simply normalize the vector

g by computing

g′ = 𝑐 · g√︀
1 + |g|2

, 𝜑(𝑈 ; 𝜃) = 𝑒𝑖𝑔
′
𝑎𝑇𝑎 (3.64)

for an appropriate constant 𝑐.

For the neural network inputs, we choose the loop values

𝑃𝜇𝜈 = 𝑈𝜇𝑈𝜈𝑈
†
𝜇𝑈

†
𝜈 (3.65)

for all 𝜈 ̸= 𝜇 instead of the link value directly. This performed much better emper-

ically, possibly due to the fact that more accurate probability density updates may

34

result from inputs found directly in the action of Equation (2.6).

3.3.3 Complexity optimizations

For efficiency considerations, we targeted a model complexity of 𝑂(𝑁3) since this

is the runtime of naïve matrix multiplication. Since computing the action for the

MCMC step requires the multiplication of link matrices, any further improvement to

model complexity will not result in a significant asymptotic improvement to sampling

efficiency.

The transformation described above with loop values 𝑃𝜇𝜈 as neural network inputs

has complexity 𝑂(𝑁2) due to partial derivative computation since

𝜕𝐴(�̂�𝜇; 𝜃)𝑠𝑞
𝜕p𝑟

=
𝜕𝐴(�̂�𝜇; 𝜃)𝑠𝑞

𝜕(𝑃𝜇𝜈)𝑘𝑙
· 𝜕(𝑃𝜇𝜈)𝑘𝑙
𝜕(�̂�𝜇)𝑖𝑗

· 𝜕(�̂�𝜇)𝑖𝑗
𝜕p𝑟

. (3.66)

So, if Θ(𝑁2) such layers were composed in order to do an SU(2)-block update

for every pair of rows, the overall model complexity would be 𝑂(𝑁4). However, it is

also possible to update every matrix element using only an Θ(𝑁) subset of row pairs,

leading to an 𝑂(𝑁3) model overall. Furthermore, neural network input computation

must be done with some care since naïvely computing 𝑃𝜇𝜈 would require 𝑂(𝑁3)

operations per layer. To avoid this cost, we simply compute

Δ𝑃𝜇𝜈 = 𝑃 ′
𝜇𝜈 − 𝑃𝜇𝜈 (3.67)

= ((𝐴(𝑈, 𝜃)− 𝐼)𝑈𝜇)𝑈𝜈((𝐴(𝑈, 𝜃)− 𝐼)𝑈𝜇)†𝑈 †
𝜈 (3.68)

at each layer to maintain the updated value of 𝑃𝜇𝜈 . This computation can be done

in 𝑂(𝑁2) due to the fact that 𝐴(𝑈 ; 𝜃)− 𝐼 only has 4 non-zero elements.

A model complexity of 𝑂(𝑁3) can also be achieved without decreasing the number

of SU(2)-block updates from 𝑂(𝑁2) if each layer requires only 𝑂(𝑁) time. This can

be done by decreasing the number of neural network inputs to a constant number of

loop elements as it correspondingly reduces the number of pairs 𝑘, 𝑙 in Equation (3.66).

Supposing that rows 𝑖 and 𝑗 are updated, the 4 elements (𝑃𝜇𝜈)𝑖𝑖, (𝑃𝜇𝜈)𝑗𝑗, (𝑃𝜇𝜈)𝑖𝑗, (𝑃𝜇𝜈)𝑗𝑖

35

are a natural choice for neural network inputs since the action depends on Tr(𝑃𝜇𝜈)

and

Tr(𝑃 ′
𝜇𝜈)− Tr(𝑃𝜇𝜈) = Tr(((𝐴(𝑈, 𝜃)− 𝐼)𝑈𝜇)𝑈𝜈((𝐴(𝑈, 𝜃)− 𝐼)𝑈𝜇)†𝑈 †

𝜈) (3.69)

≈ Tr((𝐼 − 𝐴(𝑈, 𝜃))𝑈𝜇𝑈𝜈𝑈 †
𝜇𝑈

†
𝜈) (3.70)

= Tr((𝐼 − 𝐴(𝑈, 𝜃))𝑃𝜇𝜈) (3.71)

= (1− 𝜑11)(𝑃𝜇)𝑖𝑖 + (1− 𝜑22)(𝑃𝜇)𝑗𝑗 − 𝜑12(𝑃𝜇)𝑗𝑖 − 𝜑21(𝑃𝜇)𝑖𝑗.

(3.72)

Finally, updating 𝑃𝜇𝜈 in 𝑂(𝑁2) per layer is no longer sufficient, which is partic-

ularly concerning because copying 𝑃𝜇𝜈 to maintain the computational graph already

requires 𝑂(𝑁2). However, we can alternatively update many pairs of rows in parallel

since updating rows 𝑖 and 𝑗 of 𝑈𝜇 does not impact the values in rows 𝑖′ ̸= 𝑖 and 𝑗′ ̸= 𝑗.

Furthermore, a group of parallel updates on disjoint rows can still be pushed to 𝑈𝜇

in 𝑂(𝑁2). As a result, an updating with every pair of rows can still be performed in

𝑂(𝑁3), by using Θ(𝑛) of these 𝑂(𝑁2) parallel updates.

Each of these optimizations – reducing the number of layers or reducing the num-

ber of neural network inputs – motivates a corresponding 𝑂(𝑁3) model architecture.

For clarity, we will call these the layer-SU(2) and input-SU(2) architectures:

• the layer-SU(2) architecture composes 𝑂(𝑁) SU(2)-block update layers 𝑓𝑘 using

all elements of 𝑃𝜇𝜈 as inputs to the neural network 𝜑𝑘,

• the input-SU(2) architecture composes 𝑂(𝑁2) SU(2)-block update layers 𝑓𝑘

using 4 elements of 𝑃𝜇𝜈 as inputs to the neural network 𝜑𝑘.

3.3.4 Gauge fixing

The design of the SU(2)-block layers also sacrifices the gauge equivariance present

in the potential-based and spectral-flow layers. However, the issue can be remedied

through gauge fixing when 𝑑 > 2 by transforming to a canonical gauge before applying

the update and transforming back to the original gauge after.

36

Selecting a gauge is somewhat tricky, however, due to the fact that matrix diag-

onalization is not unique. In particular, there are two sources of degrees of freedom

in matrix diagonalization that need to be addressed in order to determine a unique

canonical gauge – the ordering of eigenvalues and the phases of eigenvectors. The

ordering of eigenvalues is easily addressed by defining a canonical ordering as done in

the spectral-flow layers. Canonicalizing eigenvector phases is more challenging, but

it can be done with the following proposition.

Proposition 3.3. Suppose matrices 𝑀1,𝑀2 ∈ SU(𝑁) satisfy

𝐾1 = 𝑉 †𝑀1𝑉 = 𝐷1, (3.73)

𝐾2 = 𝑉 †𝑀2𝑉 = 𝑊𝐷2𝑊
†. (3.74)

If 𝐷1 and 𝐷2 are diagonal matrices with entries canonically ordered, there exists

𝑉,𝑊 ∈ SU(𝑁) satisfying

Im(log𝑊11) ∈
[︂
0,

2𝜋

𝑁 − 2

)︂
, (3.75)

𝑊12,𝑊13, . . . ,𝑊1𝑁 ,𝑊21,𝑊31, . . . ,𝑊𝑁1 ∈ R≥0. (3.76)

Furthermore, 𝑊 is unique and 𝐾1 and 𝐾2 are gauge invariant.

Proof. First, we describe the construction of 𝑉 and 𝑊 . Let

𝑀1 = (𝐿1𝐶1)𝐷1(𝐿1𝐶1)
†, (3.77)

𝑀1 = (𝐿2𝐶2)𝐷2(𝐿2𝐶2)
†, (3.78)

where 𝐿1, 𝐿2 are eigenvector matrices and 𝐶1, 𝐶2 are arbitrary diagonal phase matrices

illustrating the freedom of eigenvector phases. Then, 𝑉 = 𝐿1𝐶1 for some 𝐶1, and

𝑊 = 𝑉 †(𝐿2𝐶2) = 𝐶†
1𝐿

†
1𝐿2𝐶2, (3.79)

for some 𝐶1, 𝐶2. We will show that there exists a unique 𝐶1, 𝐶2, up to a constant

37

factor in both, such that the desired relations hold.

To begin the construction of 𝐶1, 𝐶2, let

�̃� = 𝐿†
1𝐿2. (3.80)

We will first show that there exists 𝐶1, 𝐶2 such that 𝐶†
1�̃�𝐶2 satisfies the condition in

Equation (3.76).

Let

𝐶1 = diag(𝑒𝑖𝜙1 , 𝑒𝑖𝜙2 , . . . , 𝑒𝑖𝜙𝑁), (3.81)

𝐶2 = diag(𝑒𝑖𝜓1 , 𝑒𝑖𝜓2 , . . . , 𝑒𝑖𝜓𝑁). (3.82)

Then, �̃�𝑝𝑞 = 𝑒𝑖(−𝜙𝑝+𝜓𝑞)𝑊𝑝𝑞, so 𝜙1, 𝜙2, . . . , 𝜙𝑁 , 𝜓1, 𝜓2, . . . , 𝜓𝑁 must satisfy the system

of equations

𝜙1 − 𝜓𝑞 = Im(log𝑊1𝑞) for all 2 ≤ 𝑞 ≤ 𝑁 , (3.83)

𝜙𝑝 − 𝜓1 = Im(log𝑊𝑝1) for all 2 ≤ 𝑝 ≤ 𝑁 , (3.84)
𝑁∑︁
𝑝=1

𝜙𝑖 = 0, (3.85)

𝑁∑︁
𝑞=1

𝜓𝑖 = 0. (3.86)

This is a system of 2𝑁 variables and 2𝑁 equations, so it has a unique solution; this

solution can be used to create a matrix 𝐶†
1�̃�𝐶2 that has positive real values along

the top and left edges. To finish the construction, take

𝐶1 = 𝐶1 · diag
(︁
𝑒

𝑁−1
𝑁(𝑁−2)

2𝑖𝜋𝑘, 𝑒
−1

𝑁(𝑁−2)
2𝑖𝜋𝑘, . . . , 𝑒

−1
𝑁(𝑁−2)

2𝑖𝜋𝑘
)︁

, (3.87)

𝐶2 = 𝐶2 · diag
(︁
𝑒

−1
𝑁(𝑁−2)

2𝑖𝜋𝑘, 𝑒
𝑁−1

𝑁(𝑁−2)
2𝑖𝜋𝑘, . . . , 𝑒

𝑁−1
𝑁(𝑁−2)

2𝑖𝜋𝑘
)︁

, (3.88)

where 𝑘 is the integer satisfying 𝑘 ≤ 𝑁−2
2𝜋

Im(log𝑊11) < 𝑘 + 1. As a result, 𝑊 =

𝐶†
1�̃�𝐶2 satisfies the constraint of Equation (3.75) while retaining the property spec-

38

ified by Equation (3.76).

Furthermore, this value of 𝑊 is unique. Suppose that 𝑊 ′ = 𝐶 ′
1𝑊𝐶 ′

2 also satisfies

the constraints given by Equations (3.75) and (3.76), where

𝐶 ′
1 = diag(𝑒𝑖𝛼1 , 𝑒𝑖𝛼2 , . . . , 𝑒𝑖𝛼𝑁), (3.89)

𝐶 ′
2 = diag(𝑒𝑖𝛽1 , 𝑒𝑖𝛽2 , . . . , 𝑒𝑖𝛽𝑁). (3.90)

Without loss of generality, suppose that all 𝛼𝑝, 𝛽𝑞 ∈ [−𝜋, 𝜋). Due to Equation (3.75),

𝛽1 ∈ [− Im(log𝑊11) + 𝛼1,
2𝜋
𝑁−2
− Im(log𝑊11) + 𝛼1), so |𝛽1 − 𝛼1| < 2𝜋

𝑁−2
. In addition,

because 𝛼𝑝 = 𝛽1 and 𝛽𝑞 = 𝛼1 for 𝑝, 𝑞 ̸= 1,

𝛼1 + (𝑁 − 1)𝛽1 =
𝑁∑︁
𝑖=1

𝛼𝑖 = 2𝜋𝑛1, (3.91)

(𝑁 − 1)𝛼1 + 𝛽1 =
𝑁∑︁
𝑖=1

𝛽𝑖 = 2𝜋𝑛2, (3.92)

𝑛1, 𝑛2 ∈ Z. (3.93)

Therefore, the difference (𝑁 − 2)(𝛽1 − 𝛼1) must be a multiple of 2𝜋. Combining this

with the fact that |𝛽1 − 𝛼1| < 2𝜋
𝑁−2

, gives 𝛼1 = 𝛽1 as the only solution. This means

that 𝑊 ′ is necesssarily equal to 𝑊 because both 𝐶1, 𝐶2 = 𝑒𝑖𝛼1𝐼, indicating that the

value of 𝑊 is unique.

Finally, under a gauge transformation𝑀 [𝐺]
1 = 𝐺𝑀1𝐺

† and𝑀 [𝐺]
2 = 𝐺𝑀2𝐺

†, 𝐷[𝐺]
1 =

𝐷1 and 𝐷
[𝐺]
2 = 𝐷2 since eigenvalues are gauge invariant. Furthermore, if 𝑉 and 𝑊

satisfy Equations (3.73) to (3.76) for 𝑀1 and 𝑀2, then 𝑉 [𝐺] = 𝐺𝑉 and 𝑊 [𝐺] = 𝑊

satisfy Equations (3.73) to (3.76) for 𝑀 [𝐺]
1 and 𝑀

[𝐺]
2 . So, 𝑊 is also gauge invariant

because 𝑊 [𝐺] is unique, which means that 𝐾1 and 𝐾2 are gauge invariant, as desired.

As a result, transformations that update one link 𝑈𝜇 can be made gauge equivari-

ant by computing 𝑉 such that 𝑈𝜈1 and 𝑈𝜈2 with 𝜈1, 𝜈2 ̸= 𝜇 are canonicalized according

to Proposition 3.3. We then gauge-transform 𝑈 → 𝑈 [𝑉 †], apply the update in the

39

canonical gauge, and finally undo the gauge transform. While these gauge trans-

formations have complexity 𝑂(𝑁3), they do not hurt the overall model complexity

because we only need to transform once for consecutive layers that update the same

link 𝑈𝜇.

3.4 Transferrable layers

Transfer learning is another prospect for increasing training efficiency. In particular,

if we can design models such that parameters can be transferred between different

values of 𝑁 , then models trained quickly on small values of 𝑁 can also be applied to

larger values of 𝑁 . The following subsections present two architectures that achieve

this; one is based on the input-SU(2) layers from Section 3.3, and the other is based

on Hermitian link projections with inspiration from [4].

3.4.1 SU(2)-block transferrable layers

In the input-SU(2) model, there are batches of Θ(𝑁2) consecutive layers updating

different pairs of rows on a single link. The neural network 𝜑(·; 𝜃) for each of these

layers is of constant size because they take 4 inputs and produce 3 outputs, leading to

a total of Θ(𝑁2) model parameters. However, we can also share the neural network

parameters among each batch of Θ(𝑁2) consecutive layers, yielding an architecture

whose neural networks are independent of 𝑁 . As a result, transfer learning may be

applied because the same set of model parameters describes a valid transformation

for all values of 𝑁 in the same way that convolutional neural network layers are valid

for all image sizes.

3.4.2 Projection-based transferrable layers

Another architecture that allows for transfer learning with respect to 𝑁 consists of

layers with the following update:

𝑈 ′
𝜇 ← 𝑓(𝑈 ; 𝜃)𝜇 = 𝑒𝑖𝑐𝑎𝐻𝑎𝑈𝜇, (3.94)

40

𝑈 ′
𝜈 ← 𝑓(𝑈 ; 𝜃)𝜈 = 𝑈𝜈 , 𝜈 ̸= 𝜇, (3.95)

with c = (𝑐1, 𝑐2, . . . , 𝑐𝑘) a collection of trainable constants and H = (𝐻1, 𝐻2, . . . , 𝐻𝑘) a

collection of gauge-equivariant traceless Hermitian matrices. Like the potential-based

update defined in Section 3.1, a gauge-equivariant exponent leads the transformation

being gauge-equivariant as well.

To construct these gauge-equivariant traceless Hermitian matrices, we simply con-

sider the traceless Hermitian projection of general gauge-equivariant matrices with

the projection operator

𝑃 (𝑀) =𝑀 +𝑀 † − Tr (𝑀 +𝑀 †)

𝑁
· 𝐼. (3.96)

For example, we may take

H =
(︀
𝑃 (𝑈𝜇), . . . , 𝑃 (𝑈

2
𝜇), . . . , 𝑃 (𝑈𝜇𝑈𝜈𝑈

†
𝜇𝑈

†
𝜈), . . .

)︀
. (3.97)

In particular, observe that the only trainable parameters in this layer are the

constants in c, so the number of parameters depends only on the number of traceless

Hermitian features in H. As a result, transfer learining is possible because models

based on different values of 𝑁 may be described by the same set of parameters.

41

42

Chapter 4

Results

In this section, we present results regarding the original methods discussed in Sec-

tions 3.3 and 3.4. We focus primarily on the main contribution of this thesis – the

layer-SU(2) and input-SU(2) architectures motivated by Section 3.3.3. All models

were implemented in Pytorch [20], and training was done on a single NVIDIA A100

GPU for each model.

4.1 SU(2)-block layer efficiency

In order to test how efficiency scales with 𝑁 , training iteration time was recorded

for 2-layer models trained using a batch size of 64, where “layer” here refers to the

composition of all Θ(𝑁) or Θ(𝑁2) row-pair updates for the SU(2)-block architectures.

While these hyperparameters provide neither adequate expressivity nor optimized

training dynamics, they suffice for comparing training times among different values

of 𝑁 . Figure 4-1 displays these times and provides a benchmark for the relative

training times of the three compared models for 𝑁 from 4 to 36.

Notably, the results in Figure 4-1 agree with the theoretical 𝑂(𝑁3) complexity for

the SU(2)-block architectures, but not the Ω(𝑁4) for the potential-based layers. This

is due to the fact numerical evaluation of the Jacobian is not the limiting factor for

the values of 𝑁 tested; further examination reveals that Jacobian evaluation time per

su(𝑁) generator is approximately constant for the values of 𝑁 in Figure 4-1 instead

43

Figure 4-1: Runtime per gradient step of 2-layer layer-SU(2), input-SU(2), and
potential-based models trained on a batch size of 64 in the two-dimensional 𝑑 = 2
setting.

of the theoretical Ω(𝑁2). Additionally, it is also difficult to test significantly larger

values of 𝑁 for the potential-based layers due GPU memory limitations being unable

to support the large computation graph.

4.2 SU(2)-block layer performance

We now compare the performance of the various SU(2)-block architectures using 16-

layer models and a batch size of 4096. One useful metric to measure model quality is

effective sample size (ESS), which is defined as

ESS =

(︁
1
𝑁

∑︀𝑛
𝑖=1

𝑝(𝑈 [𝑖])

𝑞(𝑈 [𝑖])

)︁2

1
𝑁

∑︀𝑛
𝑖=1

(︁
𝑝(𝑈 [𝑖])

𝑞(𝑈 [𝑖])

)︁2 (4.1)

for a set of 𝑛 samples {𝑈 [1], 𝑈 [2], . . . , 𝑈 [𝑛]}, target distribution 𝑝, and model distri-

bution 𝑞. In particular, it estimates that 𝑛 samples drawn from the model with

distribution 𝑞 and MCMC has the same predictive power as 𝑛′ = ESS · 𝑛 samples

drawn independently from 𝑝. As a result, values of ESS lie in the range [1
𝑛
, 1], where

1 denotes a perfect model. Conveniently, calculating the ESS does not require knowl-

edge of the partition function 𝑍TEK defined in Equation (2.15) since multiplying the

44

numerator and denominator of Equation (4.1) by (𝑍TEK)
2𝑛 yields the computable

expression

(︁
1
𝑁

∑︀𝑛
𝑖=1

𝑒−𝑆TEK(𝑈 [𝑖])

𝑞(𝑈 [𝑖])

)︁2

1
𝑁

∑︀𝑛
𝑖=1

(︁
𝑒−𝑆TEK(𝑈 [𝑖])

𝑞(𝑈 [𝑖])

)︁2 . (4.2)

We first evaluate the SU(2)-block models in a setting where 𝑑 = 2 dimensions and

the coupling constant 𝛽 used to define the action in Equation (2.6) is 0.4. Table 4.1

displays the ESS achieved by various SU(2)-block architectures after 30 hours of

training for 𝑁 = 4, 5, 6, 7 and 48 hours of training for 𝑁 = 9, 12. The performance

of the SU(2)-block models converged during this training for 𝑁 = 4, 5, but not for

larger values of 𝑁 due to the longer iteration time. However, most of the ESS gain

occurs at the start of training, so it is very unlikely that any model would improve

its ESS significantly even if additional training time was given.

layer-SU(2) layer-SU(2), input-SU(2) input-SU(2), potential- Haar-
𝑁 spectral-flow spectral-flow based sample
4 0.574 0.758 0.570 0.766 0.833 0.010
5 0.475 0.591 0.553 0.668 0.781 0.007
6 0.362 0.457 0.492 0.609 0.742 0.004
7 0.138 0.183 0.270 0.341 0.598 0.002
9 0.019 0.022 0.072 0.092 0.294 0.001
12 0.005 0.005 0.036 0.040 0.186 0.001

Table 4.1: ESS of the layer-SU(2) model, the layer-SU(2) model composed with
spectral-flow layers, the input-SU(2) model, the input-SU(2) model composed with
spectral-flow layers, the potential-based model, and samples directly from the Haar
measure trained with a batch size of 4096 for the 𝑑 = 2, 𝛽 = 0.4 setting.

There are several key takeaways. First, the layer-SU(2) models provide a large

improvement over simply performing MCMC with samples from the Haar measure

for small 𝑁 , but this advantage diminishes as 𝑁 increases. Likewise, composing

spectral-flow layers with SU(2)-block layers provides large ESS increases for small 𝑁

while improving performance universally. Both architectures, and particularly the

input-SU(2) models, also yield significant improvements over the Haar measure for

all values of 𝑁 . The asymptotically inefficient but expressive potential-based layer

45

model remains the best performing model, as expected.

Additionally, the estimates of the partition function 𝑍TEK agree despite the rela-

tively small sample size of 4096, while estimates generated with Metropolis-Hastings

on the Haar measure tend to underestimate the value of 𝑍TEK. Results for partition

function estimates are presented in Table 4.2.

layer-SU(2) layer-SU(2), input-SU(2) input-SU(2), potential- Haar-
𝑁 spectral-flow spectral-flow based sample
4 2.443 2.444 2.462 2.452 2.442 2.421
5 3.519 3.515 3.521 3.518 3.515 3.458
6 5.064 5.062 5.063 5.063 5.061 4.925
7 7.226 7.225 7.224 7.224 7.222 6.738
9 12.558 12.569 12.575 12.564 12.571 10.547
12 22.257 22.290 22.473 22.466 22.481 16.427

Table 4.2: log𝑍TEK estimates of the layer-SU(2) model, the layer-SU(2) model com-
posed with spectral-flow layers, the input-SU(2) model, the input-SU(2) model com-
posed with spectral-flow layers, the potential-based model, and samples directly from
the Haar measure trained with a batch size of 4096 for the 𝑑 = 2, 𝛽 = 0.4 setting.

With estimates of the partition function 𝑍TEK, we can also compute the sample

reverse KL-divergence estimates as defined in Equation (2.28) as another assessment

of model quality. The KL-divergence results are displayed in Table 4.3, and they are

consistent with the ESS values observed. Since the KL-divergence is less harsh than

ESS as a metric, it is more evident here that the SU(2)-block models outperform the

Haar-measure baseline by far even for models with low ESS.

We also evaluate the SU(2)-block models on a 𝑑 = 4, 𝛽 = 0.1 setting. Tables 4.4

to 4.6 displays the achieved ESS, 𝑍TEK estimate, and sample reverse KL-divergence

estimate of the layer-SU(2) model, the input-SU(2) model, and the input-SU(2) model

with gauge fixing. The performance of all models converged in this setting due to the

smaller value of 𝛽 requiring fewer training iterations.

Like the two-dimensional case, the SU(2)-block models greatly outperform the

Haar-measure baseline, but they fall short of the potential-based layers. In addition,

gauge fixing also improves model quality slightly. However, gauge-fixing begins to

become unreliable at 𝑁 = 9 due to numerical issues – while gauge fixing is theoreti-

cally sound, the gauge-fixing transformation presented in Section 3.3.4 is discontinous

46

layer-SU(2) layer-SU(2), input-SU(2) input-SU(2), potential- Haar-
𝑁 spectral-flow spectral-flow based sample
4 0.277 0.133 0.275 0.121 0.092 3.220
5 0.354 0.247 0.298 0.197 0.123 4.213
6 0.506 0.389 0.375 0.253 0.157 5.594
7 0.957 0.812 0.668 0.537 0.260 7.313
9 2.234 2.130 1.299 1.199 0.577 10.946
12 4.563 4.415 2.033 1.988 0.880 16.618

Table 4.3: Sample reverse KL-divergence estimates of the layer-SU(2) model, the
layer-SU(2) model composed with spectral-flow layers, the input-SU(2) model, the
input-SU(2) model composed with spectral-flow layers, the potential-based model,
and samples directly from the Haar measure trained with a batch size of 4096 for the
𝑑 = 2, 𝛽 = 0.4 setting.

layer-SU(2) input-SU(2) input-SU(2), potential- Haar-
𝑁 gauge-fixed based sample
4 0.907 0.911 0.926 0.941 0.074
5 0.877 0.924 0.931 0.940 0.046
6 0.801 0.896 0.909 0.926 0.025
7 0.704 0.856 0.864 0.908 0.014
9 0.504 0.773 — 0.862 0.005
12 0.201 0.611 — 0.760 0.002

Table 4.4: ESS of the layer-SU(2) model, the input-SU(2) model, the input-SU(2)
model with gauge fixing, the potential-based model, and samples directly from the
Haar measure trained with a batch size of 4096 for the 𝑑 = 4, 𝛽 = 0.1 setting. All
three SU(2)-block models are composed with spectral-flow layers.

layer-SU(2) input-SU(2) input-SU(2), potential- Haar-
𝑁 gauge-fixed based sample
4 0.304 0.313 0.314 0.303 0.299
5 0.822 0.824 0.824 0.821 0.817
6 1.498 1.499 1.499 1.498 1.487
7 2.308 2.308 2.308 2.308 2.279
9 4.315 4.315 nan 4.316 4.171
12 8.253 8.255 nan 8.255 7.456

Table 4.5: log𝑍TEK estimates of the layer-SU(2) model, the input-SU(2) model, the
input-SU(2) model with gauge fixing, the potential-based model, and samples directly
from the Haar measure trained with a batch size of 4096 for the 𝑑 = 4, 𝛽 = 0.1 setting.
All three SU(2)-block models are composed with spectral-flow layers.

across the measure 0 set of matrices with degenerate eigenvalues. As a result, small

numerical precision uncertainties may cause problems with invertibility that invali-

47

layer-SU(2) input-SU(2) input-SU(2), potential- Haar-
𝑁 gauge-fixed based sample
4 0.047 0.043 0.037 0.029 1.499
5 0.063 0.038 0.035 0.031 1.951
6 0.106 0.053 0.047 0.038 2.492
7 0.166 0.075 0.071 0.047 3.144
9 0.316 0.125 — 0.073 4.769
12 0.753 0.238 — 0.135 7.745

Table 4.6: Sample reverse KL-divergence estimates of the layer-SU(2) model, the
input-SU(2) model, the input-SU(2) model with gauge fixing, the potential-based
model, and samples directly from the Haar measure trained with a batch size of 4096
for the 𝑑 = 4, 𝛽 = 0.1 setting. All three SU(2)-block models are composed with
spectral-flow layers.

date the flow model.

4.3 Transferrable layers

Finally, we demonstrate that architectures introduced in Section 3.4 allow transfer

learning. To do so, we first train a model on a setting with 𝑁 colors starting from

a random initialization of weights. Then, the parameters of this trained model are

loaded as the initial state of a 𝑁 ′-color model, where 𝑁 ′ > 𝑁 . Transfer learning

viability can be assessed by comparing the training dynamics of this 𝑁 ′-color model

versus the training dynamics of a randomly-initialized 𝑁 ′-color model as a result.

Figure 4-2 displays this comparison for the input-SU(2) transferrable models for

transfers from a 4-color model to 5- and 7- color models. Similarly, Figure 4-3 displays

the analogous results from the projection-based transferrable models.

In all cases, the pretrained model initializations lead to a substantially higher

starting ESS. Furthermore, all models with pretrained initilaizations also achieve

peak ESS significantly faster, which could greatly reduce training time when 𝑁 is

large. Finally, it should be noted that although the rudimentary projection-based

architecture lacks expressivity due to the extremely small number of parameters, it

manages to achieve its peak ESS upon initialization. This allows for transfers with

𝑁 ′ much larger than 𝑁 , which could be especially powerful if a more expressive

48

Figure 4-2: ESS vs. epoch during training of input-SU(2) transferrable models with
randomly initialized weights and models with weights pretrained on a smaller 𝑁 in
the 𝑑 = 2, 𝛽 = 0.1 setting. The left plot displays a transfer from 𝑁 = 4 to 𝑁 ′ = 5,
and the right plot displays a transfer from 𝑁 = 4 to 𝑁 ′ = 7.

Figure 4-3: ESS vs. epoch during training of projection-based transferrable models
with randomly initialized weights and models with weights pretrained on a smaller 𝑁
in the 𝑑 = 2, 𝛽 = 0.1 setting. The left plot displays a transfer from 𝑁 = 4 to 𝑁 ′ = 5,
and the right plot displays a transfer from 𝑁 = 4 to 𝑁 ′ = 7.

projection-based layer is designed.

49

50

Chapter 5

Conclusion

In this thesis, we present new, asymptotically faster flow-based generative model

architectures for the TEK model by leveraging multiplication by SU(2)-block matrices

for efficient Jacobian computation. Furthermore, we introduce the idea of transfer

learning with respect to the number of colors 𝑁 , and describe two architectures for

which this is possible.

There are many areas of future work that build on ideas discussed in this thesis.

First, running models at a larger scale through greater compute power or further code

optimizations may provide additional insights, such as more clarity into asymptotic

complexity and expressivity as a function of 𝑁 . In addition, further investigation is

required to either mitigate or resolve the numerical issues that arise in gauge fixing.

Significant improvements to transfer learning architectures and methodology are also

possible. For instance, the projection-based layers in their current form are still rather

rudimentary; one improvement could be parameterizing each learned constant with

a neural network. Furthermore, the relationship between model parameters and 𝑁

remains unexplored, as it could be possible that weights should be scaled up or down

when transfering from one value of 𝑁 to another for optimal performance.

Whether through flow-based models or otherwise, we hope that the work presented

provides inspiration for future sampling algorithms for the TEK model and large-𝑁

gauge theories.

51

52

Bibliography

[1] Ryan Abbott et al. Aspects of scaling and scalability for flow-based sampling of
lattice QCD. Eur. Phys. J. A, 59(11):257, 2023.

[2] Ryan Abbott et al. Normalizing flows for lattice gauge theory in arbitrary space-
time dimension. 5 2023.

[3] Ryan Abbott et al. Sampling QCD field configurations with gauge-equivariant
flow models. PoS, LATTICE2022:036, 2023.

[4] Ryan Abbott et al. Applications of flow models to the generation of correlated
lattice qcd ensembles. 2024.

[5] T. Aoyama et al. The anomalous magnetic moment of the muon in the Standard
Model. Phys. Rept., 887:1–166, 2020.

[6] Tom B. Brown et al. Language Models are Few-Shot Learners. 5 2020.

[7] Roger F. Dashen and Aneesh V. Manohar. 1/N(c) corrections to the baryon
axial currents in QCD. Phys. Lett. B, 315:438–440, 1993.

[8] M. Daum, R. Frosch, and P. R. Kettle. The charged and neutral pion masses
revisited. Phys. Lett. B, 796:11–14, 2019.

[9] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo.
Phys. Lett. B, 195:216–222, 1987.

[10] Tohru Eguchi and Hikaru Kawai. Reduction of Dynamical Degrees of Freedom
in the Large N Gauge Theory. Phys. Rev. Lett., 48:1063, 1982.

[11] Sam Foreman, Taku Izubuchi, Luchang Jin, Xiao-Yong Jin, James C. Osborn,
and Akio Tomiya. HMC with Normalizing Flows. PoS, LATTICE2021:073, 2022.

[12] S. L. Glashow. Partial Symmetries of Weak Interactions. Nucl. Phys., 22:579–
588, 1961.

[13] Antonio Gonzalez-Arroyo and M. Okawa. The Twisted Eguchi-Kawai Model: A
Reduced Model for Large N Lattice Gauge Theory. Phys. Rev. D, 27:2397, 1983.

[14] David J. Gross and Frank Wilczek. Ultraviolet Behavior of Nonabelian Gauge
Theories. Phys. Rev. Lett., 30:1343–1346, 1973.

53

[15] W. K. Hastings. Monte Carlo Sampling Methods Using Markov Chains and
Their Applications. Biometrika, 57:97–109, 1970.

[16] Fabian Heiße et al. High-precision measurement of the proton’s atomic mass.
Phys. Rev. Lett., 119(3):033001, 2017.

[17] Paul Langacker and Ming-xing Luo. Implications of precision electroweak ex-
periments for 𝑀𝑡, 𝜌0, sin2 𝜃𝑊 and grand unification. Phys. Rev. D, 44:817–822,
1991.

[18] G. Peter Lepage and Stanley J. Brodsky. Exclusive Processes in Perturbative
Quantum Chromodynamics. Phys. Rev. D, 22:2157, 1980.

[19] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. J. Chem. Phys.,
21:1087–1092, 1953.

[20] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. 12 2019.

[21] Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with Nor-
malizing Flows. 5 2015.

[22] Abdus Salam. Weak and Electromagnetic Interactions. Conf. Proc. C,
680519:367–377, 1968.

[23] Stefan Schaefer, Rainer Sommer, and Francesco Virotta. Critical slowing down
and error analysis in lattice QCD simulations. Nucl. Phys. B, 845:93–119, 2011.

[24] Gerard ’t Hooft and M. J. G. Veltman. Regularization and Renormalization of
Gauge Fields. Nucl. Phys. B, 44:189–213, 1972.

[25] Steven Weinberg. A Model of Leptons. Phys. Rev. Lett., 19:1264–1266, 1967.

[26] Kenneth G. Wilson. Confinement of Quarks. Phys. Rev. D, 10:2445–2459, 1974.

54

