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Abstract. The method of decoherent histories allows probabilities to be assigned to sequences
of quantum events in systems, such as the universe as a whole, where there is no external
observer to make measurements. This paper applies the method of decoherent histories to
address cosmological questions. Using a series of simple examples, beginning with the harmonic
oscillator, we show that systems in a stationary state such as an energy eigenstate or thermal
state can exhibit decoherent histories with non-trivial dynamics. We then examine decoherent
histories in a universe that undergoes eternal inflation. Decoherent histories that assign
probabilities to sequences of events in the vicinity of a timelike geodesic supply a natural
cosmological measure. Under reasonable conditions, such sequences of events do not suffer
from the presence of unlikely statistical fluctuations that mimic reality.

1. Introduction
The consistent or decoherent histories approach to quantum mechanics is a method for assigning
probabilities to sequences of events for a quantum-mechanical system [1-35]. Because it does
not rely on the notion of measurement, the decoherent histories approach is useful in theories
such as quantum cosmology where probabilities have to be assigned, but no external system is
measuring or decohering the system – in this case, the universe itself. The cosmological measure
problem addresses the question of how to assign probabilities to events in various cosmological
scenarios, e.g., eternal inflation [36-54]. Some apparently reasonable cosmological measures have
counter-intuitive consequences, e.g., the notion that we are all just ‘Boltzmann brains’ that
arose from a statistical fluctuation. This paper applies the method of decoherent histories to the
cosmological measure problem. First, the formalism of decoherent histories is reviewed. Second,
the method is applied to simple systems to show that stationary states such as energy eigenstates
or thermal states can still exhibit non-trivial decoherent histories, in contradiction to the natural
intuition that systems in stationary states ‘do nothing.’ (This result answers a question raised
by Boddy et al. about whether systems in stationary states can exhibit decoherent histories
that fluctuate over time [54].) Decoherent histories are used to show that systems described by
a stationary state of quantum jump models or environmentally induced decoherence models can
still be thought of as exhibiting non-trivial temporal fluctuations. Third, decoherent histories
are applied to eternal inflation [55-56]. Decoherent histories for the sequences of events that
occur in the vicinity of a timelike geodesic are shown to give rise to cosmological measures
that differ from conventional volume-counting measures, an approach similar to that of Nomura
[57-59]. Under conventional assumptions about the potentials in the underlying physics, such
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histories give rise to a picture of eternal inflation in which a period of rapid inflation gives rise
to a Friedman-Robertson-Walker cosmology in de Sitter space with small cosmological term.
After a period long compared with the Hubble time of the de Sitter space, but short compared
with the time required to generate a Boltzmann brain, quantum/thermal fluctuations give rise
to another period of rapid inflation, and the cycle recommences.

2. Review of decoherent histories
The decoherent histories approach originated with Griffiths [1-3], who called this approach
consistent histories, and was independently developed by Omnès [4-7] and by Gell-Mann
and Hartle [8-15], who termed this approach decoherent histories. We will adopt the latter
nomenclature. Consider a sequence of projective measurements that could be made on a
quantum system at times t1 < . . . < tn. (The extension to generalized measurements will
be given below.) The measurement at time tk has exhaustive and mutually exclusive outcomes
αk. This measurement corresponds to a set of projection operators {P kαk

} in the Heisenberg

picture, where P kαk
P kα′

k
= δαkα′

k
P kαk

, and
∑
αk
P kαk

= I. A history α̃ corresponds to a sequence

of outcomes α̃ = α1 . . . αn. The decoherence functional D(α̃, α̃′) for initial state ρi is defined to
be

D(α̃, α̃′) = trPnαn
. . . P 1

α1
ρiP

1
α′

1
. . . Pnα′

n
= trP †α̃ρiP

†
α̃′ . (1)

If one performs this sequence of measurements, then the probability for the sequence of events
that constitutes the history α̃ are given by the diagonal term of the decoherence functional
p(α̃) = D(α̃, α̃). Note that these probabilities are non-negative and sum to 1.

The off-diagonal terms in the decoherence function measure the degree of quantum
interference between different histories. When these terms are comparable to the corresponding
on-diagonal terms, it means that measurements that correspond to earlier events in the history
have a strong effect on the probabilities for later events [35]. For example, in the double-slit
experiment, the histories that correspond to which slit the particle goes through are coherent:
consequently, a measurement that determines through which slit a particle passes has a strong
effect on probability of where the particle lands on the screen. Indeed, such a measurement
destroys the characteristic interference pattern of the double-slit experiment.

The presence of coherence means that the probabilities p(α̃) fail to obey probability sum
rules. For example, let P 1

1 , P
1
2 project onto the states that go through slit 1 or slit 2 at time t1,

and P 2
x project onto states that land on the screen at point x. The presence of coherence means

that
trP 2

xρi =
∑
jj′

trP 2
xP

1
j ρP

1
j′ 6=

∑
j

trP 2
xP

1
j ρP

1
j . (2)

That is, the probabilities for where the particle lands on the screen in the absence of a
measurement of which slit it passed through are different from the probabilities for where the
particle lands on the screen given that a measurement has been made. More generally, if

|D(α̃, α̃′)|2/D(α̃, α̃)D(α̃′, α̃′) ≤ ε << 1, (3)

then the histories are said to be approximately decoherent: such histories obey probability sum
rules to accuracy ε.

The decoherence functional characterizes the degree to which measurements affect the future
behavior of a quantum system. If a system decoheres with respect to a particular set of
measurements, then the measurements made in the past have minimal effect on the outcomes of
measurements made in the future. If this is so, then we can assign probabilities to the sequence
of events corresponding to the measurement outcomes whether the measurements are actually
performed or not. That is, although they are defined in terms of the mathematical apparatus
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of measurements – projection operators or more generally positive operator valued measures
(POVMs) – decoherent histories represent a method for assigning probabilities to sequences
of events in the absence of measurement. In the words of Griffiths [1-3], decoherent histories
refer to sequences of events ‘that we can talk about at the breakfast table.’ In the double slit
experiment, we are not allowed to talk about the particle going through either one slit or the
other, because to explain the interference pattern on the screen, it must go through both at
once.

3. Stationary states support time-dependent decoherent histories
We now apply the method of decoherent histories to show that stationary states can exhibit
non-trivial time-dependent decoherent histories.

First look at histories that trivially decohere – the histories for energy eigenstates of a closed
physical system. In this case, P kj = |Ej〉〈Ej | for energy eigenstates |Ej〉. Note P kj is independent

of the time step k. We have P kj P
k
j′ = δjj′Pj . and D(j̃; j̃′) ∝ δj̃j̃′ , independent of the initial state

ρi. Here the initial projection takes ρi to an energy eigenstate, and subsequent projections
simply confirm that the system remains in that state: histories of energy eigenstates do not
exhibit time-dependent fluctuations.

Histories of other variables do exhibit fluctuations, however. A system can possess
complementary sets of decoherent histories. In the harmonic oscillator, for example, even
though energy does not fluctuate, phase does. Consider an harmonic oscillator with Hamiltonian
h̄ωa†a = h̄ω

∑∞
`=0 |`〉〈`|, where |`〉 is the `th energy eigenstate. For simplicity, restrict attention

to the subspace HN of states whose energy is less than Nh̄ω. Within this space, we can define
phase states |φ〉 = N−1/2 ∑N−1

`=0 ei`φ|`〉. The phase states evolve in time as |φ〉 → |φ+ ωt〉. The
N states |φj〉 where φk = 2πj/N form an orthonormal basis for HN . Over time ∆t = 2π/Nω,
we have

|φj〉 → U∆t|φj〉 = |φj+1〉, (4)

where U∆t = e−iH∆t/h̄ and j + 1 is defined modulo N . That is, over time ∆t, the states |φj〉
evolve deterministically into each other.

Suppose that the oscillator starts out in its ground state |0〉, and consider the histories defined
by measurement operators Pj = |φj〉〈φj | spaced at intervals ∆t. The decoherence functional is

D(j1 . . . jn, j
′
1 . . . j

′
n) = trPjnU∆t . . . U∆tPj1 |0〉〈0|Pj′1U

†
∆t . . . U

†
∆tPj′n . (5)

Because of the deterministic evolution of the phase states, we have D(j1 . . . jn, j
′
1 . . . j

′
n) = 0

unless j′n = jn, jk = jk−1 + 1, and j′k = j′k−1 + 1. That is, the off-diagonal terms of
D(j1 . . . jn, j

′
1 . . . j

′
n) are all zero, and the on-diagonal terms reflect the deterministic nature of

the time evolution. The first projection yields equal probabilities 1/N for all phase states |φk〉,
and the subsequent evolution is entirely deterministic. The phase measurement corresponds to
decoherent histories, even though the initial state is the ground state.

The set of decoherent histories corresponding to phase state evolution describes a quite
different type of behavior from the behavior given by the set of decoherent histories corresponding
to energy eigenstates. Described in terms of energy, the system remains static. Described in
terms of phase, the system fluctuates. The two types of histories, energy and phase, represent
complementary ways of describing the evolution of the same physical system.

As one might expect, histories that mix phase and energy eigenstates fail to decohere. Indeed,
histories that begin in an energy eigenstate, progresses through a sequence of phase states, and
then end in an energy eigenstate, are fully coherent: it is straightforward to show that the off-
diagonal parts of the decoherence functional are of the same size as the on-diagonal parts. In
particular, if one starts in the ground state, and then ends in the ground state, phase fluctuations
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do not decohere. In general, histories that begin and end in a pure state decohere only if the
histories are completely deterministic. When the final projector is a pure state, Pn = |φ〉〈φ|, we
have

D(α̃; α̃′) = 〈φ|Pα̃|ψ〉〈ψ|P †α̃′ |φ〉, (6)

and
|D(α̃, α̃′)|2/D(α̃, α̃)D(α̃′, α̃′) = 1, (7)

unless D(α̃; α̃′) ∝ δα̃α̃′ : to be decoherent, the histories must be deterministic. So time-dependent
histories of probabilistic fluctuations that begin in the vacuum and end in the vacuum are
coherent.

By contrast, histories that begin in a mixed state such as a thermal state, and end in an
mixed state, can be decoherent. Now consider decoherent histories of thermal states. Such
states can either arise from interaction with a reservoir at temperature T = 1/kBβ, or as
subsystems of a larger system that is in a pure state. The latter case arises in gravitational
contexts such as Hawking radiation, Unruh radiation, and de Sitter space. The mathematical
question of whether or not histories decohere depends only on the thermal form of the state and
on the dynamics, not on whether the system is thermal because it is interacting with a reservoir
or thermal because it is entangled. A considerable literature shows that stationary, thermal
states exhibit non-trivial, temporally fluctuating, decoherent histories [12-35]. The positions of
particles that begin in thermal states and that undergo Brownian motion exhibit decoherent
histories, as do hydrodynamic variables – the coarse-grained values of quantum field, energies,
and particle densities.

4. Decoherent histories and quantum jumps
When the system in question is an open system interacting with its environment, or equivalently
a subsystem of a larger system, then the quantum jump picture yields decoherent histories
for sequences of projections corresponding to the jump operators [18-22]. The decoherence
of histories of quantum jumps allows one to relate the decoherent histories approach to the
idea of environmentally induced decoherence. In particular, if the subsystem’s dynamics can be
described by a Lindblad equation, then the resulting stochastic Schrödinger equation intrinsically
gives rise to decoherent histories. So, for example, a subsystem in a stationary thermal state that
is a fixed point of the Lindblad equation undergoes decoherent histories described by probabilistic
jumping from state to state. Such decoherent histories exist both when the open system is in a
thermal state because of its interaction with a thermal environment, and when it is a subsystem
of a larger system in a pure state. The automatic existence of decoherent histories corresponding
to histories of the stochastic Schrödinger equation and of quantum state diffusion is particularly
useful as the jump operators for systems weakly coupled to a Markovian environment represent
jumps between energy eigenstates. For such systems, we are allowed to talk at the breakfast table
about the system hopping thermally from energy eigenstate to energy eigenstate as described by
the Bloch-Redfield equation, even though the system as a whole is a stationary thermal state.

We present here a simple derivation of why systems that evolve according to a Lindblad
equation exhibit decoherent histories. In contrast to previous derivations [18-22], which focus on
an Itoh calculus derivation of the relation between quantum jumps and decoherent histories, the
derivation given here is based on environmentally induced decoherence. The Lindblad equation
represents the most general infinitesimal completely positive (i.e., legal) time evolution for a
quantum system. A general Lindblad equation takes the form

∂ρ

∂t
= −i[H, ρ]− γ/2

∑
j

(L†jLjρ− 2LjρL
†
j + ρL†jLj). (8)
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The Lindblad equation for a given system interacting with its environment can be derived by
starting with system and environment in the uncorrelated state ρS ⊗ ρE , and applying the
unitary system-environment time evolution U(∆t) over a time ∆t equal to the correlation time
of the environment. The system evolves to

ρS(0)→ ρS(∆t) = trEρU(∆t)ρS ⊗ ρEU †(∆t). (9)

Expanding to second order in ∆t yields the infinitesimal form of the Lindblad equation (8). That
is, in addition to being the general infinitesimal form for a completely positive map, the Lindblad
equation has a physical interpretation as an approximate infinitesimal time evolution for a system
interacting unitarily with an environment whose correlations decay over a characteristic time.

To look at decoherent histories, for simplicity consider the case where there is only one
Lindblad operator L1 = L and H = 0: ∂ρ/∂t = (−γ/2)(L†Lρ− 2LρL† + ρL†L). Use the polar
decomposition to write L = UA, where U is unitary, U † = U−1, and A is Hermitian, A = A†.
The infinitesimal dynamics generated by the Lindblad equation over time ∆t is equivalent to
the following measurement plus feedback procedure:

(1) Make a generalized measurement on the system with POVM operators M1 = A2γ∆t
and M2 = 1 − A2γ∆t. With probability p1 = γ∆t trA2ρ the system goes to the state
ρ1 = (1/p1)AρA, and with probability p0 = 1 − p1 the system goes to the state ρ0 =
(1/p0)

√
1−A2γ∆t ρ

√
1−A2γ∆t ≈ ρ0. Because any generalized measurement can be written

as a von Neumann measurement on system plus an ancilla [55], we have ρ1 = p1
−1P1ρ ⊗ σP1,

ρ0 = p0
−1P0ρ ⊗ σP0, for projectors P1, P0 = 1 − P1, and ancilla in state σ. (This technique

shows how to generalize decoherent histories from projective measurements to generalized
measurements [35].)

(2) Now feed back the result of the measurement. If the result of the measurement is the state
1, apply the unitary transformation U . If the result is 0, do nothing. The system is now in the
state

ρ′ =
√

1−A2γ∆t ρ
√

1−A2γ∆t+ LρL†γ∆t

= ρ− (γ∆t/2)(L†Lρ− 2LρL† + ρL†L) +O(∆t2).
(9)

Because the Lindblad equation is mathematically equivalent to projective measurement on
system plus ancilla followed by unitary feedback, the set of histories of the system plus ancilla
corresponding to the projections P0, P1 repeated at time intervals ∆t are decoherent. (Note that
in this picture the unitary time evolutions between projections depend on the previous history
of projections, corresponding to the more general model of decoherent histories given by Gell-
Mann and Hartle [7-15].) One can think of this demonstration of decoherence as a derivation
of the stochastic Schrödinger equation or of a quantum jump model. Because the histories are
decoherent, we can describe the time evolution of the system in terms of a stochastic process:
over time ∆t the system goes to the state ρ1 = p1

−1LρL† with probability p1 = trLρL†γ∆t,
or remains in the state ρ0 =

√
1−A2γ∆t ρ

√
1−A2γ∆t with probability p0 = 1 − p1. The

treatment of the general Lindblad equation is essentially the same, except now there are multiple
types of quantum jumps that can occur, one type for each Lindblad operator, and the time
evolution in between jumps includes the effect of the system Hamiltonian. Note that the histories
induced by the Lindblad equation are decoherent for any initial state, including stationary states
such as thermal states or energy eigenstates.

This result establishes that an open system whose time evolution is governed by a Lindblad
equation can be thought of as undergoing quantum jumps even when it is in a stationary state.
The histories corresponding to different sequences of quantum jumps are decoherent.
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As an example, consider a harmonic oscillator with Hamiltonian H = h̄ω
∑
` |`〉〈`| = h̄ωa†a

as above, interacting linearly with a bath of modes of the electromagnetic field at temperature
T = 1/β. The oscillator obeys the Lindblad equation

∂ρ

∂t
= −i[H, ρ]− γ+

2
(aa†ρ− 2a†ρa+ ρaa†)− γ−

2
(a†aρ− 2aρa† + ρa†a), (10)

where γ+/γ− = e−βω. The thermal state ρth = (1/Z)e−βH is a stationary state of the time
evolution. In the thermal state, the oscillator exhibits decoherent histories over sequences of
energy eigenstates, in which the nth energy eigenstates absorbs photons at a rate nγ+ and emits
photons at a rate nγ−.

4.1. Decoherent histories for open systems over times longer than the relaxation time
Consider an open system that relaxes over time τ to a fixed state ρ0 of the system’s Hamiltonian
H, e.g., a thermal state ρ0 = (1/Z)e−βH . Suppose that the time intervals between the projectors
Pαj are much longer than τ . Then any set of histories decoheres (i.e., not merely the jump
histories given by the Lindblad operators). The reason is simple: because the system relaxes
to the same state independent of the input state, if one waits for >> τ , the probabilities for
measurement are just given by the probabilities for measurement on ρ0, independent of whether
some measurement was made long ago or not.

4.2. Time-dependent fluctuations in stationary states
The notion that a stationary quantum state does not fluctuate in time seems at first a perfectly
reasonable one [54]. However, the time-independent history of a stationary state can also be
decomposed as a quantum superposition of time-dependent fluctuating histories. Under a wide
variety of circumstances, those histories decohere, and so we are free to describe the time
evolution of such systems in terms of those histories. A recent paper [54] suggested the contrary,
it is worth discussing briefly the decoherent histories in thermal states, why do Boddy et al.
decide that decoherent histories are not possible in such states [54]? There are two reasons.
First, they use a time-symmetric version of decoherent histories that includes both initial and
final states. Second, they use decoherent histories with only one intermediate set of events
between those initial and final states. While it is true that such histories do not decohere, it is
unclear why one should to restrict one’s attention so such histories.

We review their argument. The time-symmetric version of decoherent histories is appropriate
when all or part of the universe possesses a final state, as in spatially and temporally compact
universes whose state is computed by the Hartle-Hawking imaginary time procedure, or in the
Horowitz-Maldacena model of black hole evaporation. It does not seem that such a situation
holds in inflationary models, and so it is unclear why this formalism should be applied here.

The decoherence functional D(α̃, α̃′) for initial state ρi and final state ρf is defined to be

D(α̃, α̃′) = Z−1trρfP
n
αn
. . . P 1

α1
ρiP

1
α′

1
. . . Pnα′

n
= Z−1trρfP

†
α̃ρiPα̃′ , (11)

where Z−1 = trρfρi. As before, histories decohere if the off-diagonal terms in the decoherence
functional are small compared with the on-diagonal ones, given that initial state is ρi and the final
state is ρf . The addition of the final state in the decoherence function is equivalent to adding one
additional measurement operator, whose final projection correponds to a measurement revealing
that the system is in ρf . Such a measurement can be performed, for example, by adjoining an
ancillary system in state ρA and performing a projection P on system and ancilla such that
trAPI ⊗ ρAP = ρf .
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Boddy et al. consider closed quantum systems and investigate situations where the initial
and final state are both stationary states of the system dynamics. They consider histories with
a single projection between the initial and final state, for which the decoherence functional is

Z−1trρfPαρiPα′ . (12)

Boddy et al. note correctly that this decoherence functional is not dependent on the evolution
times between the initial state, the projections, and the final state. They conclude (also
correctly), that such histories do not exhibit perfect decoherence.

Two questions: first, why use the time-symmetric version of the decoherent histories
formalism? Boddy et al.’s justification is that they are interested in histories that begin and
end in a thermal state, e.g., the state of the fields de Sitter space. When looking at cosmological
histories, however, there is no particular reason for making this restriction unless one desires
artificially to restrict the set of possible decoherent histories. If one uses the ordinary formulation
of decoherent histories, starting from initial states and evolving forward in time, thermal states
such as those in de Sitter space can exhibit a wide variety of non-trivial decoherent histories.
The second question is simpler: why restrict attention to histories with only one set of events?
Suppose that one adds a second set of events, so that the decoherence functional is

Z−1trρfPα2Pα1ρiPα′
1Pα′

2 . (13)

In this case, because the projection operators in the Heisenberg picture do depend on time, the
decoherence functional depends on the time difference between the two sets of events. As noted
above, decoherent histories over multiple sets of events also exhibit time dependence even when
the initial and final states are stationary.

Boddy et al. are correct that the particular set of histories that they investigate do not
decohere. It would be a mistake to conclude, however that systems that begin and end in
stationary states cannot exhibit decoherent histories. Indeed, a rather trivial counterexample
occurs when both ρi and ρf are the fully mixed stationary state I/d, corresponding to a thermal
state with infinite temperature. In this case, the different sets of histories described above for
both open and for closed systems naturally decohere. When both open and for closed systems
naturally decohere. When ρi and ρf are thermal states Z−1e−H/kT at finite temperature, then we
can project those states onto a typical subspace of dimension d ∝ eS , where S = H/kT − lnZ is
the entropy of the thermal state. Once again, these states naturally decohere as in the examples
above.

5. Quantum cosmology and decoherent histories
Having established that stationary states do indeed exhibit quantum fluctuations, at least by the
criterion of decoherent histories, let’s turn to quantum cosmology in models of eternal inflation.
In such models, vacuum energy induces an effective cosmological term Λ, causing spacetime
locally to resemble de Sitter space. Inertial observers witness an event horizon at distance
` =

√
3/Λ, and detect horizon radiation in a thermal state with temperature T = 1/2π`.

Look at decoherent histories corresponding to measurements made by such an inertial
observer as the universe undergoes inflation and settles down into de Sitter space with a small
cosmological term [57-59]; after a long time (estimated below) the observer encounters a local
thermal fluctuation that gives rise to a region that possesses a high cosmological term and that is
large enough to seed another inflationary epoch. Actually to make these measurements, such an
inertial observer would have to be a hardy individual, capable of surviving extreme temperatures
and curvatures. (Assume, however, that the observer does not fall into a black hole.) The whole
point of decoherent histories, however, is to be able to assign probabilities to events whether
or not the measurements corresponding to the events are actually performed. An hypothetical



Tenth International Workshop DICE2022 - Spacetime - Matter - Quantum Mechanics
Journal of Physics: Conference Series 2533 (2023) 012011

IOP Publishing
doi:10.1088/1742-6596/2533/1/012011

8

inertial observer suffices to assign decoherent histories. The measurements correspond to coarse
grained observations of fields, energy densities, pressure, etc., in the local vicinity of the observer.
As noted above in [10-35], such histories generically exhibit approximate decoherence.

Consider decoherent histories that correspond to the inertial observer making coarse-grained
measurements of the fields in her vicinity together with the effective cosmological term Λ. The
events along any history depend on the value of Λ0 in the first projection in the history.
Suppose for the moment that Λ0 is large, corresponding to high energy in the false vacuum.
The observer initially sees thermal fluctuations in the fields corresponding to de Sitter space at
high temperature, and witnesses the surrounding spacetime inflate at a rate ∝

√
Λ0. After a

characteristic time-scale τ0, the observer enters a region in which false vacuum decays.
That is, in such a history the universe undergoes inflation via the usual scenarios, yielding

a universe more or less like our own. If at the end of inflation the cosmological term is non-
zero, then the region in the vicinity of the observer will eventually settle down to de Sitter space
again with effective cosmological term Λ1 < Λ0 and a horizon at distance `1 =

√
3/Λ1. The state

within the horizon is thermal with temperature T1 = 1/2π`1. As above, this thermal state can
exhibit decoherent histories corresponding to fluctuations in local energy density. Eventually,
the region in the vicinity of the observer will exhibit a fluctuation that takes it back to a regime
with high Λ and will begin inflating again.

To estimate the time τ1 it takes for rapid inflation to recommence, we look at how long it
takes for a thermal fluctuation to generate a reinflating region. By assumption, the dynamics
possesses at least one quantum state for a region of radius ` = C`0 = C

√
3/Λ0 that undergoes

inflation with effective cosmological term Λ0, where C is a positive O(1) constant. The energy
that has to be collected from the thermal radiation in de Sitter space to attain energy density
Λ0 over a volume `3 is

∆E = `3Λ0 = 3C3`0. (14)

The de Sitter radiation has temperature T1 = 1/2π`1. To collect the energy ∆E within a region
of spatial extent ` reduces the entropy of the surrounding de Sitter radiation by ∆S = ∆E/T1.
The probability that a thermal fluctuation at the de Sitter temperature gives rise to a region
with the energy density needed to reinflate is thus e−∆S = e−6πC3`0`1 .

It is not enough for the energy required for reinflation to assemble itself: the fields must also
be in the proper false vacuum state. If the energy is assembled in a random state, the overlap
with the proper inflating state goes as e−S0 , where S0 = π`20 is the de Sitter entropy for the
fields in the region – i.e., the maximum entropy for the region. The overall thermal probability
for a fluctuation that creates the inflating region then goes as

e−∆E/T1−S0 = e−6πC3`0`1−π`20 = e−6C3
√
S0S1−S0 . (15)

Here S0 = π`20 is the entropy of the high energy density de Sitter space with cosmological term
Λ0, and S1 is the entropy of the low energy density de Sitter space. Remarkably – given the
simple and non-gravitational nature of the argument – equation (15) reproduces (up to the value
of the constant C) the Farhi-Guth-Guven formula [56] for the thermal probability of exciting
an inflating volume of spatial extent ≈ `0. Equation (15) shows that the decoherent histories
corresponding to a hardy inertial observer reproduce the eternal inflation picture suggested by
Albrecht [49].

Equation (15) gives the thermal probability for a fluctuation that can re-ignite inflation.
To estimate the time it takes for such a fluctuation to arise, note that in de Sitter space
with cosmological term Λ1, the characteristic time for fluctuations to arise and decay is
≈ π/T = 4π2`1, yielding a time

τ1 ≈ 4π2`1e
(6πC3`0`1+π`20), (16)
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for the inertial observer to encounter another rapidly inflating region. Note that process of
reinflation is much more likely to begin with a small region with large cosmological term, than
with a large region with small cosmological term. This observation suggests that reinflation
should typically begin at a scale close to the Planck scale.

5.1. Initial state
As in [49] this argument yields an ergodic model of eternal inflation. Inflation takes place at
high energy scales; the value of the field rolls downhill, yielding an FRW universe with the usual
features; eventually, the presence of a small cosmological term yields a fluctuation that causes
inflation to begin again with large cosmological term. By the arguments given above, such
histories are generically decoherent. The initial state of the universe as a whole can be taken to
be the stationary state given by the ergodic average of the the state of the universe over time.

Note that, although ergodic, the histories seen by an inertial observer are not time-reversal
invariant. Every time rapid inflation begins again at high Λ0, it supplies a large source of
free energy so that the inertial observer sees entropy increasing, consistent with the second law
of thermodynamics. This time-asymmetry of the individual histories is nonetheless consistent
with time-reversal invariance of the initial, stationary state of the universe and of its dynamics.
If instead of using the theory of decoherent histories with an initial state, we use decoherent
histories that end in a final state, then we can decompose the stationary state of the universe
into a superposition of decoherent histories that end in a final state of high Λ0, and that evolve
backward in time. The histories that correspond to inertial observers with a fixed final state
are then just the time reversed version of histories with a fixed initial state: even though they
are moving in the opposite direction in time, the time-reversed inertial observers still observe
entropy increasing.

6. Re-inflation versus Boltzmann brains
Now compare the probability of the inertial observer encountering another rapidly inflating
region with the probability of encountering a thermal fluctuation that mimics some small piece
of our universe, e.g., a ‘Boltzmann brain.’ The argument for the probability of recreating an
inflating region via a thermal fluctuation is readily generalized to calculating the probability of
recreating any system with energy ∆E and entropy S = Smax−∆S, where Smax is the maximum
entropy for the system confined to the volume in which it is created. The thermal probability
of such a fluctuation is e−∆E/T1−∆S . Comparing with equation (14) we see that as long as the
energy ∆E in the Boltzmann brain is greater than the energy ≈ `0 required to reignite inflation,
then the inertial observer is more likely to encounter brains that arise by the ordinary process
of evolution in an FRW universe rather than ones that arise from thermal fluctuations. If `0
is at the grand unification scale or a shorter length scale, e.g. the Planck scale, then the vast
majority of brains encountered by the observer over its infinite history will be the usual kind of
brains.

7. Summary
This paper investigated the question of whether stationary states can exhibit non-trivial
temporal fluctuations. Viewed through the lens of decoherent histories, the answer is an
unqualified Yes. Closed systems in energy eigenstates exhibit decoherent histories with non-
trivial temporal fluctuations. Open systems that are subsystems of larger systems exhibit
decoherent histories that correspond to the quantum jump or stochastic Schrödinger model.
We then investigated decoherent histories that correspond to observations made by an inertial
observer in models of eternal inflation. Such histories contain periods of inflation leading to
FRW universes with small cosmological term; thermal fluctuations from the cosmological term
then reignite inflation. The time scale required to reignite inflation is long compared with the
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horizon scale but much shorter than the time required to generate thermal fluctuations that
mimic systems that evolved from initial low-entropy states.
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