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Abstract

Part I of this paper [Haward ef al., J. Rheol. 67, 995-1009 (2023)] presents a three-dimensional microfluidic device (the optimized uniaxial
and biaxial extensional rheometer, OUBER) for generating near-homogeneous uniaxial and biaxial elongational flows. Here, in Part II, the
OUBER device is employed to examine the uniaxial and biaxial extensional rheology of model dilute polymer solutions, compared with mea-
surements made under planar extension in the optimized-shape cross-slot extensional rheometer [OSCER, Haward et al. Phys. Rev. Lett. 109,
128301 (2012)]. In each case, micro-particle image velocimetry is used to measure the extension rate as a function of the imposed flow condi-
tions, and excess pressure drop measurements enable estimation of the tensile stress difference generated in the fluid via a new analysis based
on the macroscopic power balance for flow through each device. Based on this analysis, for the most dilute polymer sample tested, which is
“ultradilute”, the extensional viscosity is well described by Peterlin’s finitely extensible nonlinear elastic dumbbell model. In this limit, the
biaxial extensional viscosity at high Weissenberg numbers (Wi) is half that of the uniaxial and planar extensional viscosities. At higher
polymer concentrations, although the fluids remain dilute, the experimental measurements deviate from the model predictions, which is attrib-
uted to the onset of intermolecular interactions as the polymer chains unravel in the extensional flows. Of practical significance (and funda-
mental interest), elastic instability occurs at a significantly lower Wi in uniaxial extensional flow than in either biaxial or planar extensional r;
flow, thereby limiting the utility of this flow type for extensional viscosity measurement. © 2023 Author(s). All article content, except &
where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http:/creativecommons.org/ S
licenses/by/4.0/). https://doi.org/10.1122/8.0000660
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. INTRODUCTION experimental work for the validation of those models has
involved the extensional flow of polymer melts. For such
highly elastic fluids, various instrumentation has been devel-
oped based on, e.g., the stretching of filaments or sheets of
material held in rotary clamps [20,23,24], or by lubricated
squeezing [14,18,25], and the high elastic stresses resulting
from the imposed deformation are quite readily measurable.
By contrast, for less viscous, more mobile, viscoelastic fluids
such as polymeric solutions, which cannot be fixed in
clamps and which generate relatively weak elastic stresses,
the development of extensional rheometers is far more chal-
lenging [26-28]. In this case, experimental comparisons
between the response of viscoelastic fluids under different
modes of extension are extremely rare [12].

Extensional flows are potential flows characterized by
diagonal rate-of-strain tensors, D, and come in three funda-
mental types. Uniaxial extension has one positive extensional
axis and is compressional along the remaining directions,

For an incompressible Newtonian fluid of shear viscosity 7,
it is well known that the uniaxial extensional viscosity is
ng = 31, the planar extensional viscosity is 17, = 47, and the
biaxial extensional viscosity is 1z = 671, where the coeffi-
cients, 3, 4, and 6, are commonly referred to as the respective
Trouton ratio Tr [1,2]. By contrast, for viscoelastic fluids such
as polymer solutions and melts, these limiting values of the
extensional viscosity are only approached at small rates of
strain. At higher rates of strain, such that the dimensionless
Weissenberg number Wi > 0.5, the unraveling and orientation
of polymer chains [3—7] results in an increased elastic tensile
stress difference Ao in the fluid and hence a nonlinear increase
in the extensional viscosity and apparent Trouton ratio Tr,.

Understanding how the extensional viscosity and Tr,,, for
viscoelastic fluids at Wi > 0.5 depends on the imposed
mode of extension has interested a number of researchers
over many years [8-22]. A large number of studies have

) Lo . ) e.g.,
involved constitutive modeling, while most of the &
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Planar extension has one neutral direction with equal and
opposite extension and compression along two perpendicular
directions, e.g.,

e 0 O
Dp=|0 —-£¢ 0]}. 2)
0O 0 O

Finally, biaxial extension is the kinematic reverse of uni-
axial extension, having one compressional axis and with
extension along the remaining directions, thus,

g 0 0
Dpg=1| 0 &3 0 . 3)
0 0 —2¢

Note that here we use similar definitions for uniaxial and
biaxial extension as those used by Meissner and co-workers
[9,11], and adopted by Petrie [2,10,15], in the sense that we
always consider the relevant strain rate metric on which mate-
rial functions will be defined as that along the stretching
direction(s). In accordance with Society of Rheology notation
[29,30], we place the subscript “B” on & for biaxial exten-
sion. This serves to distinguish these expressions from alter-
native definitions, such as those suggested by Stevenson
et al. [8], and by Bird [31], for which biaxial extension is
considered equivalent to uniaxial compression and is thus
described by Eq. (1) with a reversed sign, resulting in a strain
rate of £/2 in the two orthogonal stretching directions.

The extra stresses that arise in viscoelastic polymer solu-
tions for Wi=A1& > 0.5 (or Wi= A&z > 0.5 in biaxial
flow) result from the entropic elasticity of the polymer chains
(with characteristic relaxation time A), causing them to resist
deformation and stretching. The hydrodynamically forced
stretching causes optical anisotropy in the fluid, often visible
in experiments as flow-induced birefringence [32,33].
Birefringence is thus an optical signature of the elastic stress
in the fluid; indeed the two may be directly proportional in
cases for which the stress-optical rule is obeyed [32]. In
hyperbolic stagnation point extensional flows [such as those
described by Egs. (1)—(3)], due to the long residence time (or
equivalently the large accumulated strain) available for poly-
mers to unravel, the birefringence is predominantly aligned
along the axes of the positive extension rate. Here, the fluid
has passed through (or near) the hyperbolic point at the coor-
dinate origin, where the residence time in the straining flow
(and hence the strain) is theoretically infinite. The localiza-
tion of the birefringence about the stretching axes gives rise
to the common descriptor of “birefringent strand” [5,34—41].
It is the growth of the elastic stress only along the stretching
axes that leads us to consider the relevant strain rate for the
determination of the extensional viscosity as also being that
directed along the same axes.

To obtain a flow curve of extensional viscosity as a
function of the strain rate, the extensional kinematics
applied to the fluid should be both homogeneous in space
and constant in time (i.e., persistent) [2]. Thus, at each
imposed extension rate, the polymer chains have sufficient
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time to achieve an equilibrium degree of stretching in the
flow, and for the elastic stresses to reach a steady state as
the strain € = &t — o (or €g = &gt — 00) over a residence
time, ¢ > A. If the steady-state diagonal stress tensor result-
ing from the homogeneous extensional deformation is

onx O 0
= 0O o, 0], 4

0 0 oy
then the wuniaxial extensional viscosity will be
ng(€) = (0, — o0x)/&, the planar extensional viscosity
will be 7p(€) = (0 — 0yy)/€, and the biaxial extensional
viscosity will be nz(ég) = (o — 0)/ép. The apparent

Trouton ratio can be defined as Tr,,, = 11g/ng, 1Mp/Mg, OF
ng/ Mo for uniaxial, planar, or biaxial extension (respectively),
where 7, is the steady shear viscosity of the fluid at zero
shear rate.

Petrie obtained asymptotic results for the uniaxial and
planar extensional viscosities given by various viscoelastic
constitutive models commonly used to describe polymeric
solutions [15]. For all models examined, including the
Phan-Thien and Tanner (PTT), the Giesekus, and the finitely
extensible nonlinear elastic dumbbell with Peterlin closure
(FENE-P) model, the two extensional viscosities were equal
at high Wi (apart from the relatively small differences due to
the different contribution of the solvent in each flow type). In
fact, all viscoelastic constitutive models predict that at lowg
deformation rates in uniaxial, planar, and biaxial elongation g
Tr,,, approaches the Newtonian limit of 3, 4, or 6 (respec- &
tively) as Wi — 0, and that in all three flows, as the &
Weissenberg number exceeds 0.5, Tr,,, undergoes an abruptg
increase (see Fig. 1). For the infinitely extensible Oldroyd-B ™
model [Fig. 1(a)], Tryy, — o for Wi > 0.5, in all cases.
Models with a bounded elasticity show that under uniaxial

(bj Giesekus

Old'royd'-B

Uniaxial
— =Planar

— .- Biaxial
(Meissner)

Biaxial

(Bird)

102 10" 10° 10" 10° 102 10" 10° 10' 10°
Wi Wi

FIG. 1. The apparent Trouton ratio Tr,,, predicted in the three fundamental
modes of extensional deformation by various common constitutive models
used to describe dilute polymer solutions: (a) the Oldroyd-B model, (b) the
Giesekus model (mobility factor & = 0.01), (c) the FENE-P model (extensi-
bility L = 10), and (c) the linear PTT (I-PTT) model (PTT parameter
€ = 0.01). In all cases, the solvent viscosity is set to 1, = 0.
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and planar elongation, Tr,,, approaches the same limiting
plateau value as Wi — oo [Figs. 1(b)-1(d)]. However, there
is a disagreement between the predictions of different models
in terms of the high Wi limit of Tr,,, in biaxial elongation.
Some models, such as the Giesekus model, predict that Tr,,,
will tend to the same high Wi plateau in biaxial extension as
it does in uniaxial and planar extension [Fig. 1(b)]. However,
the FENE-P and PTT models predict that in biaxial extension
the limiting value of Tr,p, at high Wi will be one-half of that
for uniaxial and planar extension [Figs. 1(c) and 1(d)]. Note
that, using the alternative definition of the deformation rate
tensor formulation for biaxial extension outlined by Bird [31]
results in a doubling of the Weissenberg number and a
halving of the apparent Trouton ratio compared to the formu-
lation of Meissner et al. [9], as indicated by the dotted lines
in Fig. 1 [22].

Due to the great difficulty associated with experimental
extensional rheometry of low viscosity, mobile viscoelastic
fluids such as dilute polymer solutions [26-28], these theoreti-
cal predictions are largely untested experimentally. Using a
“spin-line” rheometer and a converging channel rheometer to
generate uniaxial and planar extension, respectively, Jones
et al. [12] found a “satisfactory” (meaning order-of-magnitude)
correspondence between 7z and 7p for a variety of polymer
solutions [12,42]. However, the two measurement methods
employed differed greatly in terms of how the deformation was
applied, its spatial homogeneity, the range of deformation rates
probed, and how the tensile stress was estimated [12,42]. The
authors themselves expressed apparent surprise at the agree-
ment they obtained given the inherent problems with making
such measurements, and remarked that they were not “‘compar-
ing like with like” since one method was planar and the other
uniaxial. To this day, a systematic experimental comparison of
the uniaxial, planar, and biaxial extensional responses of dilute
polymer solutions using comparable measurement methods is
still missing from the literature.

In the present work, we employ numerically optimized
stagnation point microfluidic devices to make measure-
ments of the uniaxial, planar, and biaxial extensional
viscosities of a variety of model solutions formulated
from dilute concentrations of linear polymers. For planar
extensional viscosity measurements, we utilize the two-
dimensional (2D) Optimized-Shape Cross-slot Extensional
Rheometer [OSCER, Fig. 2(a)] [43], which over the last
decade has proven useful for characterizing the extensional
rheology and flow behavior of a variety of viscoelastic
fluids [40,44,45]. For uniaxial and biaxial extensional
viscosity measurements, we utilize the three-dimensional
(3D) Optimized Uniaxial and Biaxial Extensional
Rheometer [OUBER, Fig. 2(b)] presented in Part I of this
paper [46]. The devices are designed to provide close
approximations to the respective deformation rate tensors
[given in Eqgs. (1)—(3)] over multiple characteristic device
lengthscales in each spatial direction. Both devices allow
the strain rate to be controlled by simply varying the volu-
metric flow rate. They also both generate stagnation points
at the center of the flow field, such that strain can accumu-
late indefinitely at the set strain rate (a requirement for
measuring the extensional viscosity). Under all three
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FIG. 2. Schematic illustrations of numerically optimized stagnation point
elongational flow devices. (a) The optimized shape cross-slot extensional
rheometer (OSCER) geometry consisting of two pairs of opposed planar
inlet (outlet) channels (height 2H, width 2W) oriented along the y (x) axes
and joined by a numerically determined profile designed to generate an
optimal approximation to planar elongational flow. (b) The optimized uniax-
ial and biaxial extensional rheometer (OUBER), consisting of two pairs of
opposed planar inlet (outlet) channels (height 2H, width 2W) oriented along
the x and y axes and connected via a numerically determined profile to a pair
of opposing outlet (inlet) channels of circular cross section oriented along
the z axis. Depending on the choice of imposed flow direction, the geometry
can produce an optimal approximation to either uniaxial or biaxial elonga-
tional flow. For the OUBER geometry, along with the standard (x, y, z) coor-
dinate system, a 45°-rotated coordinate system (x', y, z) is employed (see the
main text for details). The coordinate origin is located at the center of each
device.

modes of elongation, we employ microparticle image
velocimetry (u-PIV) to confirm and quantify the exten-
sional strain rates, coupled with pressure drop measure-
ments designed to enable estimation of the elastic tensile
stress difference. The comparable (microfluidic) size scales N
of the two devices allow similar extension rates to bez
obtained in each mode of extension while always keeping§
inertia negligible.

We remark that experimental extensional viscosity mea- 3
surements are always an approximation, and that extensional &
“rheometers” must always be considered “indexers” to some "
extent. In this work, for the first time, we have assembled a
pair of highly comparable and sophisticated indexers that
permit a fair comparison between the extensional rheology of
viscoelastic fluids under each of the three fundamental
modes of extension. For the most dilute polymer solution
that we test (which can be considered “ultradilute” [47]), our
results at high Wi > 0.5 indicate that np ~ np ~ 2np, in
agreement with the prediction of the FENE-P constitutive
model. Of some interest, we observe that these elongational
flows lose stability at different Wi in each of the three flows
(lowest in uniaxial and highest in biaxial extension), which
we discuss in terms of the region occupied by the elastic
“birefringent strand” that forms along the stretching axis (or
over the stretching plane). These observations have important
implications for viscoelastic constitutive modeling as well as
for experimental extensional rheometry.

¥20c

Il. EXPERIMENTAL METHODS
A. Microfluidic geometries
1. Planar extensional flow OSCER device

The OSCER device, shown schematically in Fig. 2(a), has
been described in detail in several prior works [40,44,45].
Briefly, the channel is cut in stainless steel by wire-electrical
discharge machining and sealed about the z direction with
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FIG. 3. Rheological response of the various test fluids employed. (a) Shear
viscosity 7 as a function of the applied shear rate y of the Newtonian solvent
(89.6% glycerol in water, dashed line) and poly(acrylamide) (PAA) solutions
at various polymer concentrations measured in steady shear using a stress-
controlled TA Instruments DHR3 rotational rheometer with 40 mm diameter
1° cone-and-plate fixture. (b) Decay of the filament diameter D as a function
of time for the polymer solutions during capillary thinning in a CaBER
device, used to obtain the extensional relaxation times A of the samples.

soda-lime glass viewing windows. The channel has a
uniform half-height H = 1 mm and a characteristic half-
width W = 0.1 mm upstream and downstream of the opti-
mized region. The channel shape is optimized over a region
spanning |x|, |y| < 15W, and generates a close approximation
to pure planar elongation over a large portion of that region
[40,45]. The high aspect ratio of the device (H/W = 10)
gives a good approximation to 2D flow ensuring that the
flow field is also uniform through most of the channel
height.

2. Uni- and biaxial extensional flow OUBER device

The fabrication of an OUBER device [Fig. 2(b)] [46] is
achieved by the technique of selective laser-induced etching
(SLE) in fused silica glass [48-50] and is described in detail
in Part I of this paper [46].
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The circular cross section channels aligned along z have a
radius R = 0.4 mm, while the four planar channels aligned
along x and y each have half-width W = 0.64 mm and half-
height H = 0.16 mm. The channel shape is optimized to
provide almost uniform velocity gradients over a region span-
ning |x|, [y|, |z] <5R, and (depending on how the flow is
imposed) generates a close approximation to either pure uni-
axial or pure biaxial elongation over a large portion of that
region [46].

Note that, as depicted in Fig. 2, it is natural to align the x
and y axes with adjacent planar inlet/outlet channels.
However, obtaining an experimental view inside of the
OUBER device along either of those two directions is prob-
lematic with our current design. As described in Part I of the
paper, optical access to the stagnation point region inside the
device is only possible by viewing at 45° to the x axis [46].
Therefore, in our experimental setup, we consider a coordinate
system described by (¥, Y, z), where X' = (x 4+ y)/+/2, and
¥ = (x — y)/V/2 (also shown in Fig. 2).

B. Test fluids

Due to the surface curvature of the 3D OUBER device,
see Fig. 2(b), clear imaging inside of the device (e.g., for per-
forming flow velocimetry, as described below) requires that
the channel be filled with a fluid of similar refractive index
RI as the fused silica glass (Rl = 1.4584) [51]. A mixture of
89.6 wt. % glycerol and 10.4 wt. % water, with Rl = 1.4582
at 25°C (measured using an Anton-Paar Abbemat MW
refractometer operating at 589 nm) is found to be a suffi-
ciently close match. The 89.6:10.4wt. % glycerol:water
mixture [with density p = 1231kgm™> and viscosity
n, = 0.143 Pas, Fig. 3(a)] is used as both a Newtonian refer-
ence fluid and also as a solvent for the viscoelastic polymeric
test solutions.

The polymer sample used is a nonionic poly(acrylamide)
(PAA) of molecular weight M ~ 5 x 10° gmol~! obtained
from Sigma-Aldrich. Polymer solutions are prepared at four
different concentrations ¢ = 50, 100, 200, and 400
parts-per-million (ppm) by first dissolving the required mass
of dry polymer powder in the aqueous component of the
solvent, before adding the mass of glycerol necessary to
achieve the final desired composition. To avoid mechanical
degradation of the polymer during the solution preparation,
mechanical stirring is not used. Instead, the fluids are mixed
by gentle agitation on a roller-mixer (Ika, Japan). Typically,
24h is required for complete dissolution of the polymer
powder into the water, and a further 24h for complete
mixing with the glycerol. Subsequent to preparation, the
fluids are stored at 5°C in unlit conditions, and are discarded
if not used within one month.

The concentration regime and equilibrium conformation of
the PAA in solution can be estimated based on the number
of backbone bonds n, =2M/m =~ 140,000 (where
m="71gmol ! is the monomer molecular weight), and the
average length per bond [, = 0.154nm. We consider the
characteristic ratio Coo = 6.9 for PAA in water at 25°C (a
good solvent for PAA) [52-54]. Recent molecular dynamics
simulations indicate that the PAA chain adopts a roughly

229161 ¥20C YdIelN L2
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similar conformation in 90 wt. % aqueous glycerol as it
does in pure water [56], which suggests that our aqueous
glycerol solvent is also a good solvent for PAA. Neglecting
bond angles, the contour length 1is estimated as
L. = nplp = 21.6um, and the equilibrium mean-square
end-to-end length as (r) ~ Ceonpls &~ 23 000 nm?>. The radius
of gyration is then R, = (1/\/6)<r%>1/2 ~ 62nm. As sug-
gested by Graessley [55], the overlap concentration can be
estimated based on cubic packing of polymer coils, yielding
M /NA(ZRg)3 ~ 4400 ppm (where N4 is Avogadro’s
number). An alternative estimate of ¢* based on space filling
of polymer coils would yield approximately double the value
obtained for cubic packing. It can also be estimated that to
achieve full stretch of the polymer chain, the end-to-end sepa-
ration needs to be increased from its equilibrium value by an
extensibility factor (or stretch ratio) of L = L./ (r%}l/ ? & 143.
Based on these estimates of polymer chain parameters, we
have some confidence that our test fluids should be safely in
the dilute solution regime with 0.011 S c¢/c” < 0.088, and
that the PAA chains should be highly extensible.

The steady shear rheology of the polymeric test fluids is
measured using a stress-controlled DHR3 rotational rheome-
ter (TA Instruments Inc.) fitted with a 40 mm diameter 1°
angle cone-and-plate geometry [see Fig. 3(a)]. Over the
range of accessible shear rates the fluids each have a near-
constant viscosity, close to that of the solvent. For this
reason, we take the viscosity 7 of each fluid as being the
average of the respective data shown in Fig. 3(a). The relaxa-
tion times A of the fluids are assessed by means of capillary
thinning measurements using a CaBER device (Thermo-
Haake) [57]. The device is fitted with 6 mm diameter plates
with the initial separation set to 1 mm and the final separation
to 6 mm. Curves of the filament diameter at the midpoint
between the plates D as a function of time are shown in
Fig. 3(b). The value of A is extracted from the time constant
of the exponential decay of the filament diameter observed
within the elasto-capillary thinning regime [57]. The values
of n and A obtained for each polymeric fluid are given in
Table 1.

C. Flow control and dimensionless groups

The test fluids are driven through the microfluidic
OSCER and OUBER devices using 29:1 gear ratio
neMESYS low pressure syringe pumps (Cetoni, GmbH) to
control the volumetric flow rate through each individual
channel. For planar extensional flow in the OSCER device,
two pumps are used to impose equal volumetric flow rates O

TABLE 1. Values of viscosity 7, solvent-to-total viscosity ratio S, and
relaxation time A obtained from rheological characterization of the PAA
solutions.

PAA concentration (ppm) clc* n (Pas) B=ndn A (s)
50 0.011 0.146 0.98 0.22
100 0.022 0.151 0.95 0.38
200 0.044 0.155 0.92 0.54
400 0.088 0.181 0.79 1.03
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into each of the two inlet channels, while two pumps with-
draw fluid at equal and opposite rates from each of the two
outlet channels. For uniaxial (biaxial) extensional flow in the
OUBER device, two pumps are used to impose equal volu-
metric flow rates Q through each of the two circular cross
section outlet (inlet) channels, while four pumps impose
equal volumetric flow rates Q/2 through each of the four
planar inlet (outlet) channels. The pumps are fitted with
Hamilton Gastight syringes of appropriate volumes such that
the specified “pulsation free” dosing rate is always exceeded.
Connections between the syringes and the microfluidic
devices are made using flexible Tygon tubing.

For an imposed volumetric flow rate Q in each channel of
the OSCER device, the average flow velocity is U = Q/4WH
and the expected (or nominal) extension rate based on a
Newtonian flow field prediction is given by &,,, = 0.1U/W
[40,44.,45].

For the OUBER device, we consider the characteristic
average flow velocity U as being that in the two channels of
circular cross section, so that for an imposed volumetric flow
rate Q in each of those channels, U = Q/nR?*. The expected
nominal extension rates are &,,, = 0.4U/R for uniaxial
extension, and £g,,,,; = 0.2U /R for biaxial extension [46].

The Reynolds number Re describes the relative
strength of inertial to viscous forces in the flow experi-
ments. In the OSCER device, we define Re = pUD,,/n,
where D, =2WH /(W + H) is the hydraulic diameter of
the rectangular channels. The maximum Reynolds number »
reached in experiments using the OSCER device is§
Re ~ 0.1. In the case of the OUBER device, we define%
Re = 2pUR/n, and the maximum values reached are Re ~ R
0.2 (uniaxial extension), and Re ~ 0.7 (biaxial extension).
Since Re <1 in all experiments, inertial effects in theR
flow are considered negligible.

The Weissenberg number describes the relative strength of
elastic to viscous forces in the flow and can be quantified by
the product of the extension rate and the relaxation time A.
However, since we only have a priori knowledge of the
nominal extension rate, it is convenient to first also define a
nominal Weissenberg number as Wiy, = A&,,, in uniaxial
and planar elongation, and Wi,,, = A€puem 1n biaxial
elongation.

Typically in elongational flows, it is found that polymer
stretching for Wiy, 2 0.5 will modify the flow field com-
pared to the Newtonian case, resulting in a reduction of the
true  extension rate  below its nominal  value
[37,40,44,45,58,59]. In the present work, microparticle image
velocimetry (u-PIV) experiments (described in Sec. I D) will
be used to directly measure the true extension rate (or velocity
gradient) along the stretching axis € (or £g), allowing the true
Weissenberg number to be evaluated as Wi = A€ in uniaxial
and planar elongation, and Wi = A& in biaxial elongation.

9161

D. Microparticle image velocimetry

Quantitative measurement of the flow field in each exten-
sional flow configuration is achieved using microparticle
image velocimetry (u-PIV, TSI Inc., MN) [60,61]. For this
purpose, the test fluids are seeded with a low concentration
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(cp = 0.02 wt. %) of 3.2um diameter red fluorescent tracer
particles (Fluor-Max, Thermo Scientific) with excitation
(emission) wavelength of 542nm (612nm). The plane of
interest within the geometry (i.e., the xy midplane in the
OSCER geometry, and the y' =0 plane in the OUBER
geometry) is brought into focus on an inverted microscope
(Nikon Eclipse Ti) with a 4x magnification, NA = 0.13
numerical aperture Nikon PlanFluor objective lens. Under
these conditions, the measurement depth over which micro-
particles contribute to the determination of the velocity field
is 0, =~ 180 um [62]. Excitation with a dual-pulsed Nd:YLF
laser with a wavelength of 527 nm induces the emission of
partcle fluorescence, which is detected by a high speed
camera (Phantom MIRO, Vision Research). The camera is
operated in a frame-straddling mode and is synchronized
with the laser in order to acquire pairs of particle images
corresponding to pairs of laser pulses separated by a small
time At. The value of Ar is varied inversely to the imposed
flow rate and set so that the average displacement of parti-
cles between the two images in each pair is always ~ 4
pixels. In this work, we are only concerned with steady
flows, so at each flow rate tested 50 image pairs are
acquired and are processed using an ensemble average
cross-correlation PIV algorithm (TSI Insight 4G) in order to
reduce noise. A recursive Nyquist criterion is employed
with a final interrogation area of 16 x 16 pixels to enhance
the spatial resolution and obtain two components of
the velocity vector uw a square grid of spacing
26.6um x 26.6 um. In the OSCER device, the obtained
components of u are # and v (the x and y component,
respectively). In the OUBER device, the obtained compo-
nents of u are ' and w (the x' and z component, respec-
tively). Subsequent to data acquisition, the software Tecplot
Focus (Tecplot Inc., WA) is used for the generation of
velocity contour plots and streamline traces and for the
extraction of velocity profiles.

E. Pressure drop measurements and extensional
rheometry

Pressure drop measurements are made using a 35kPa
wet-wet differential pressure sensor (Omega Engineering
Inc.) connected across one inlet and one outlet of each
device. Pressure taps are taken by installing T-junction con-
nectors in the upstream and downstream tubing connecting
between the fluidic device and the syringes driving the flow.
At each imposed flow rate in each extensional flow configu-
ration (uniaxial, planar, and biaxial), two independent mea-
surements of the pressure drop are made. The first pressure
drop measurement (labeled AP,,,) is made with flow imposed
in all the channels of the device (i.e., with the device in the
normal operation, as described in Sec. II C) and provides an
estimate of the total stress. This combines stresses due to the
shear induced by the walls of the channel and connecting
tubing, as well as any extra stress due to the elongational
kinematics in the flow. A second measurement (labeled
APg,) is made with half of the inlet channels and half of the
outlet channels disabled and allows estimation of the shear
stresses only. It is important to state that in the OUBER

HAWARD ET AL.

device, two adjacent (not opposing) planar channels are dis-
abled during the measurement of APy, in order to avoid the
formation of a “T-channel-like” flow configuration which
would retain a stagnation point in the center of the device.

From the raw pressure drop measurements, we obtain an
excess pressure drop AP, = AP,,, — APy, which we assume
arises predominantly due to the extensional kinematics
present in the flow field during the measurement of AP,,,. Of
course, this differential measurement is not able to quantify
each individual component of the diagonal stress tensor in
order to precisely evaluate the principal stress difference Ao
required to compute the extensional viscosity (see Sec. I). In
previous works involving planar extensional flows in the
OSCER device, and also in the standard cross-slot geometry,
it has simply been assumed that AP,, ~ Ao, thus the planar
extensional viscosity has been computed as 7p = AP,/
[40,44,63,64]. Some support for this assumption has been
shown using birefringent polymer solutions, for which direct
proportionality has been shown between AP, and the bire-
fringence An measured at the stagnation point. The constants
of proportionality approximately matched with the known
stress-optical coefficients C, of the respective fluids, suggest-
ing that AP,, =~ An/C = Ao [32,65].

In this work, we attempt to more properly relate AP,, to
Ao by considering the macroscopic power balance for flow
through each of our geometries, thus enabling a more accu-
rate estimation of the extensional viscosity to be obtained
from the experimental pressure drop measurements (see
details in Sec. III D).

lll. RESULTS
A. Newtonian flow field characterization

For completeness, we commence the presentation of the
experimental results by showing the Newtonian flow field in
each extensional flow configuration (Fig. 4). Normalized
fields of the velocity magnitude measured by p-PIV, with
streamlines superimposed to indicate the direction of flow,
are shown in Figs. 4(a)-4(c) for uniaxial, planar, and biaxial
extension, respectively, at Reynolds numbers Re < 0.05. In
each case, the velocity field is symmetric about the flow
axes, with a stagnation point at the coordinate origin, as
expected. Velocity profiles extracted along the flow axes are
shown in Figs. 4(d)-4(f) (below the respective velocity
field), in comparison with the numerical predictions for
Newtonian creeping flow (available in Refs. 43 and 46, for
the OSCER and the OUBER, respectively). It is clear that
over the ranges of measurement in each device configuration,
the experimental velocity profiles agree very well with the
respective numerical predictions, giving confidence that the
microfluidic devices and the experimental setup are perform-
ing satisfactorily. It should be noted that over the z = 0 plane
in the OUBER device, the 2D p-PIV measurement provides
the u/(x') velocity profile, which agrees with the u(x) profile
for |[¥| SR and |x| SR, as shown in Part I [46]. In other
words, the velocity field has good axisymmetry over a radial
distance of r = 1/x2 + y2 &~ R about the 7 axis.
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FIG. 4. Normalized velocity fields with superimposed streamlines for creeping flow (Re < 0.05) of the Newtonian solvent in (a) uniaxial, (b) planar, and
(c) biaxial extension. Parts (d)—(f) show the respective normalized velocity profiles measured along the flow axes (data points), which compare favorably R
against the target numerical profiles (lines). The nominal elongation rate in each case is indicated within the respective plot.

B. Polymer solution flow field characterization

We proceed to examine the flow field in the case of the vis-
coelastic PAA-based test solutions. Figure 5 shows normalized
velocity magnitude fields obtained in each of the three exten-
sional flow configurations for the 100 ppm PAA solution over
a range of imposed nominal extension rates. At lower nominal
rates, such that Wiy, is only slightly above unity, the flow
field in each case [uniaxial, planar, and biaxial, shown in
Figs. 5(a)-5(c), respectively] appears to be rather similar to
that observed for the flow of Newtonian fluid [shown in
Figs. 4(a)—4(c), respectively]. However, close inspection of
the velocity magnitude contours for uniaxial extension of the
polymer solution [Fig. 5(a)] reveals a local minimum in the
velocity along the stretching axis (i.e., along the x' = O center-
line). In contrast, for Newtonian flow, the Poiseuille-like
velocity profile is maximal along the center of the outlet chan-
nels. This local minimum in velocity along the stretching
direction is not evident in either the planar [Fig. 5(b)] or
biaxial [Fig. 5(c)] flows at these rather low imposed values of
Wi,. For the uniaxial flow, increasing the nominal
Weissenberg number to Wiy, = 2.5 [Fig. 5(d)] results in the
centerline minimum of the velocity profile across the outlet
channels becoming more pronounced. For the planar exten-
sional flow at Wi, = 6.3 [Fig. 5(e)], and for biaxial exten-
sion at a similar Wi, = 5.0 [Fig. 5(f)], still no obvious
difference from Newtonian flow can be discerned [see Figs.

4(b) and 4(c) for comparison]. At sufficiently high Wi,,,, uni-
axial and planar extensional flows of the 100 ppm PAA solu-
tion exhibit elastic instabilities manifested as an asymmetry of
the flow. For uniaxial extension, this occurs for a critical
nominal Weissenberg number Wiy, . ~ 5, appearing as a dis-
tinct distortion of the streamlines close to the stagnation point,
and evolving with increasing Wiy, into the strong flow asym-
metry shown in Fig. 5(g) for Wi,,,, = 10.1. For planar exten-
sion, a somewhat higher critical value Wiy, ~ 13 is
necessary before the flow exhibits instability. Figure 5(h)
shows a strongly asymmetric flow state observed in planar
extension for Wi,,,, = 25.4. In contrast, for biaxial extension,
no obvious sign of instability is observed even at the highest
achievable nominal Weissenberg number Wi,,, = 20.2
[Fig. 5(i)]; indeed, the kinematics appear to remain essentially
Newtonianlike.

The flow asymmetry observed in the OSCER device
[Fig. 5(h)] has been observed previously in various experi-
ments involving planar stagnation point extensional flows
[45,64,66-70]. It is considered to be a purely elastic phenom-
enon driven by elastic tensile stress on the strongly curving
streamlines that pass through the birefringent strand in the
vicinity of the stagnation point, a mechanism consistent with
the well-known elastic instability criterion introduced by
McKinley and co-workers [45,71-73]. The asymmetric flow
state observed under uniaxial extension in the OUBER
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FIG. 5. Normalized velocity fields with superimposed streamlines for the flow of the 100 ppm poly(acrylamide) solution in (a), (d), and (g) uniaxial, (b), (e),
and (h) planar, and (c), (f), and (i) biaxial extension at the nominal extension rates and nominal Weissenberg numbers indicated.

device [Fig. 5(g)] appears to be similar in form to that
observed in the OSCER [Fig. 5(h)], but it is unclear exactly
how this asymmetry is oriented in the 3D “axisymmetric”
flow field of the OUBER. A detailed investigation is beyond
the scope of the present work and will require careful visuali-
zation in 3D, possibly using microtomographic flow velocim-
etry [46]. A cursory investigation indicates that the
asymmetry in the OUBER device [Fig. 5(g)] is steady in

time and not rotating around the stretching axis. Most likely,
it selects a favored orientation due to the presence of the four
planar inlet channels which break the perfect axisymmetry of
the flow away from the z axis, similar to the instability
reported by Afonso er al. [74] in numerical simulations of
viscoelastic flow in a 6-arm cross-slot.

In this work, which is focused on extensional rheometry,
we wish to avoid elastic instabilities. Each viscoelastic test
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fluid is driven to the point of instability only in order to
determine the limiting values of Wi,,, up to which the
extensional flow field generated around the stagnation point
remains stable and symmetric. For experimental determina-
tion of the extensional viscosity under each extensional flow
configuration (Sec. Il D), the range of extension rates is
restricted t0 Wiy < 0.5Wip in order to ensure that the
measurement is made while the flow is stable and symmetric.

The modification of the Newtonian flow field by the pres-
ence of polymers (i.e., the development of local minima in
the velocity profiles, mentioned above) is rendered more
apparent by extracting velocity profiles across the channel
outlets. Figure 6 shows normalized profiles of the streamwise
flow velocity taken across a channel outlet 1 mm downstream
of the stagnation point. Such profiles for the 100 ppm PAA
solution (for which example velocity fields at different exten-
sion rates are provided in Fig. 5) are shown in comparison
with the Newtonian case for uniaxial, planar, and biaxial
extension in Figs. 6(a)-6(c), respectively. During uniaxial
extension in the OUBER device [Fig. 6(a)], the velocity
profile obtained for the polymer solution agrees well with
that of the Newtonian fluid at low &,,,, but an increasingly
pronounced local minimum develops at X' = 0 as the flow
rate through the device is increased. At high &,,,,, the profile
becomes asymmetric about X' = 0 as the symmetric base
flow becomes unstable and the elastic asymmetry [illustrated
in Fig. 5(g)] develops. For planar extension in the OSCER
device [Fig. 6(b)], the velocity profile across the channel
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outlet for the 100 ppm PAA solution again agrees well with
that of the Newtonian fluid at low &,,,. In this case, with
increasing £€,,,,, there is a progressive modification to the
velocity profile, with some flattening of the central peak at
y =0, but the profile remains almost parabolic. For the
100 ppm PAA solution in biaxial extension in the OUBER
device, no significant difference is noticable compared to the
Newtonian flow profile, even up to the highest values of
€p.nom examined [Fig. 6(c)].

To illustrate the effects of increasing the polymer concen-
tration, Figs. 6(d)-6(f) show the velocity profiles across the
channel outlets for all of the tested fluids in uniaxial, planar,
and biaxial extension (respectively). In each case, the profiles
are shown for a fixed value of the nominal extension rate
(the highest for which all the flows are considered stable and
symmetric). In general, the degree of flow modification
caused by viscoelasticity becomes increasingly severe with
increasing polymer concentration. For uniaxial extension at
Enom = 1.66 571 [Fig. 6(d)], at lower polymer concentrations
of 50 and 100 ppm, the velocity profile is flattened compared
with the Newtonian case, but an increasing local minimum in
the centerline flow velocity develops as the PAA concentra-
tion is raised to 200 ppm and above. In planar extension at
Epom = 4.16 57! [Fig. 6(e)], and low polymer concentrations
of 50 and 100ppm of PAA, the profiles are essentially
Newtonianlike. For 200 ppm of polymer, the profile becomes
flattened compared with the Newtonian case, and for
400 ppm a local minimum around y = 0 becomes evident. In »
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FIG. 6. Illustration of the flow modification along the stretching direction resulting from the flow of poly(acrylamide) solutions in (a) and (d) uniaxial, (b) and
(e) planar, and (c) and (f) biaxial extension. Flow velocity profiles are measured across a device outlet 1 mm downstream of the stagnation point. (a)—(c) show
normalized profiles of the streamwise flow velocity for the 100 ppm PAA solution at various nominal extension rates and compared against the result for the
Newtonian solvent. (d)—(f) show normalized profiles of the streamwise flow velocity for all the tested polymer solutions at the highest nominal extension rate
(indicated in the plot) for which all are deemed to be steady and symmetric, again compared against the result for the Newtonian solvent.
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the case of biaxial extension at £g 0, = 13.3 s~1, flow modi-
fication by the polymer is evident at 200 and 400 ppm of
PAA, where the flow velocity is reduced about the centerline
and the profiles become flattened again [Fig. 6(f)]. However,
in biaxial extension, the flow profiles always remain essen-
tially parabolic.

Velocity profiles with local minima in the streamwise
velocity along the stretching axis have been reported a
number of times in the literature studying stagnation point
flows of viscoelastic fluids (e.g., Refs. 35,40,59,66,75,76).
The reduction in flow velocity on the axis (relative to a
Newtonian fluid) is associated with the localized stretching
of polymers that pass near the stagnation point and are subse-
quently advected downstream along the outlet centerline. For
polymer solutions that exhibit measurable flow-induced bire-
fringence, this stretching results in the appearance of a char-
acteristic “birefringent strand” localized along the stretching
axis (e.g., Refs. 5,35-40), and indicative of high extensional
stress [32]. Within the strand, the fluid behaves elastically
and exhibits a much higher extensional viscosity than the
fluid flowing outside the strand, where the polymer is rela-
tively unstretched, and the fluid remains Newtonianlike. The
elastic strand thus acts as an internal stress boundary layer in
the flow, driving velocity perturbations that resist the stretch-
ing, and thus giving rise to the modified flow profile
observed [35].

The modification to the Newtonian flow field by the
stretching of the polymer along the extensional axis reduces
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the true extension rate along the stretching axis, as assessed
in Fig. 7. Normalized profiles of the streamwise velocity
component along the stretching axis are shown for the
100 ppm PAA solution over a range of nominal extension
rates under uniaxial, planar, and biaxial extension in
Figs. 7(a)-7(c), respectively. Here, we only consider flows
that are deemed stable and symmetric. Under uniaxial exten-
sion [Fig. 7(a)], the velocity profile for the 100 ppm PAA
solution agrees well with the Newtonian profile for
Enom < 0.83s71,  but increasingly deviates from the
Newtonian profile as the imposed flow rate is increased
beyond &,,,, =~ 0.83 s~!. Under planar extension [Fig. 7(b)],
as E€pon 1s increased, only a slight deviation from the
Newtonian profile is evident even at the highest nominal
extension rates tested (up to 16.7s7'), while for biaxial
extension [Fig. 7(c)], the profiles for the polymer solution
remain Newtonianlike for g0, up to 53.1 s7! (the highest
imposed value).

In Figs. 7(d)-7(f), we plot the measured extension rate
[determined from velocity profiles such as those shown in
Figs. 7(a)-7(c)] as a function of the imposed nominal exten-
sion rate in uniaxial, planar, and biaxial extension, respec-
tively. Here, data are shown for all the tested polymer
solutions and are compared against the Newtonian result
(shown by the dashed gray lines). For uniaxial extension
[Fig. 7(d)], we report & = Ow/dz, which is evaluated along
the z-axis for |z| < 4R (i.e., within the range over which the
flow field is optimized [46]). Similarly, in planar extension
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FIG. 7. Quantification of extension rates determined from velocity fields measured with poly(acrylamide) solutions in (a) and (d) uniaxial, (b) and (e) planar,
and (c) and (f) biaxial extension. (a)-(c) show normalized streamwise velocity profiles along the stretching axes measured for the 100 ppm PAA solution at
various nominal extension rates and compared against the result for the Newtonian solvent. (d)—(f) show the measured extension rates as a function of the
average flow velocity for all the tested polymer solutions and compared against the result for the Newtonian solvent. The extension rate in each case is deter-
mined by averaging the velocity gradient on the relevant axis over the spatial domain indicated in the respective plot. Solid lines are fits to the experimental

data points of the form described in the main text.
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[Fig. 7(e)], we report & = Qu/0x, evaluated along the x axis
for |x| < 12W. In biaxial extension, [Fig. 7(f)], we report
&g = Ou'/Ox', which is evaluated along the x’ axis for |x/| <
R [the range over which axisymmetry applies such that
u'(X') = u(x), see Fig. 4(f)]. As shown in Figs. 7(d)-7(f), for
all three extensional flow configurations and all polymer con-
centrations, the polymer solutions follow the Newtonian trend
for low imposed nominal extension rates, but progressively
deviate below the Newtonian trend at higher flow rates. The
large polymeric stresses induced by the extensional stretching
always retard the evolution of the velocity profile downstream
of the stagnation point. For each polymeric fluid in each exten-
sional flow configuration, the experimental data are well-
described by a curve of the form & = &,,,, — A&pom® (where A
and B are fitting constants), as shown by the respective solid
lines. The fitted curves allow calculation of the true strain rate
for arbitrary imposed flow conditions with the given fluid.

In general, from Figs. 6 and 7, it is evident that the devia-
tion from Newtonianlike behavior becomes more severe with
increasing polymer concentration and increasing extension
rate. Also, the greatest effects are observed in uniaxial exten-
sion while biaxial extension causes the mildest modification
of the flow field. The effect of planar extension appears to be
intermediate between uniaxial and biaxial. A similar general
trend is also apparent from the onset of instability, which for
a given polymer solution occurs at the lowest nominal
Weissenberg number in uniaxial extension, followed by
planar extension, and finally biaxial extension. This may
have implications for the utility of the different flows for
extensional rtheometry, as will be discussed further below.

C. Pressure drop

In Figs. 8(a)-8(c), we illustrate raw measurements of the
pressure drop in uniaxial, planar, and biaxial extension
(respectively) using a few of the polymeric fluids and also
the Newtonian solvent. As described in Sec. II E [and illus-
trated schematically by the respective insets to Figs. 8(a)-
8(c)], for each fluid and each flow configuration, the pressure
drop is measured once with the device in a full operation
mode to obtain the total pressure drop AP, and once with
half of the inlet channels and half of the outlet channels dis-
abled in order to quantify the contribution of shear APy,. The
measurements are made by programming the syringe pumps
to increment the average flow velocity through the device U
in a stepwise fashion, with sufficient time at each step for the
pressure to rise and stabilize to a steady plateau value.
Subsequently, the average plateau pressure drop is measured
at each step in flow rate in order to obtain curves such as
those shown in Figs. 8(d)-8(f), which result from the raw
pressure traces shown in Figs. 8(a)-8(c), respectively. Note
that in each flow configuration, for the Newtonian fluid
AP, = APy, with APy, oc U (as indicated by the dashed
gray lines). For lower concentration polymer solutions,
APy, o< U [as indicated by the dashed black and red lines in
Figs. 8(d) and 8(e), respectively], although at higher polymer
concentrations, APy may increase superlinearly at higher
imposed flow rates [as shown by the deviation of the experi-
mental data points from the dashed blue line in Fig. 8(f)].

Most notably, for the polymer solutions at low average flow
velocities AP,,, ~ APy, (as we also observe for the
Newtonian fluid), but beyond a certain value of U, the two
curves diverge and AP,,, rises clearly above APy, leading to
a significant and clearly measurable excess pressure drop
AP, = APy — APy,

In Figs. 8(g)-8(i), we present AP,, as a function of the
nominal extension rate for all of the tested fluids under uni-
axial, planar, and biaxial extension (respectively). Here, error
bars represent the standard deviation over a minimum of five
repeated measurements. Scatter and uncertainty in the data
for the Newtonian solvent fluid is significant, so for better
clarity the data in each plot are represented by a linear fit
(dashed gray line). In general, at low nominal deformation
rates the data from the polymer solutions follow a roughly
linear trend (similar to the Newtonian fluid), but depart from
that trend as the extension rate increases, turning upwards
and tending toward eventual plateau values. Note that, in
several cases, the measured pressure difference (AP, and/or
APy, exhibits fluctuations at higher extension rates (even
though the flow field may be deemed steady and symmetric,
see Sec. III B). For this reason, the maximum extension rates
at which data is curtailed in Figs. 7(d)-7(f) and in
Figs. 8(g)-8(i) (respectively) may not always precisely
match, and in some cases there is an increase in the reported
error bars in AP, at the highest rates tested.

D. Extensional rheometry

202 Yolen L2

With the required experimental data, i.e., true measured
extension rates, and excess pressure drops in hand (see 3
Figs. 7 and 8, respectively), we turn to simple theory in order 3
to understand how to obtain a robust estimate of the exten-©
sional viscosity from our measurements.

Considering for simplicity the 2D flow through the
OSCER geometry, a macroscopic power balance leads to the
following approximate expression (see the Appendix for
details):

ZAPer ~ (O-xx - O-yy)é%Ps (5)
which allows estimation of the extensional viscosity,
NMp ~ 2AP, Q871 p, (6)

where 7 p is an appropriate volume of fluid within the
device over which o, — oy, can be considered “homoge-
neous” for averaging purposes.

For a Newtonian fluid, or for a viscoelastic fluid flowing
at Wi < 0.5, ¥"p might be expected to roughly equate with the
volume of the optimized region of the OSCER geometry,
Vosc = 480W?H (= 4.8 x 107 m? for the specific device
being used here with H = 1 mm and W = 0.1 mm, Sec. II A).

Since for a Newtonian fluid in planar extension the
Trouton ratio is known to be Tr = (0w — 0y)/én =4,
Eqg. (5) can be rewritten and rearranged to give

Y pNewt = 2APQ/4E™N. 7)
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FIG. 8. Pressure drop measurements made with the Newtonian solvent and PAA solutions in uniaxial (left column), planar (middle column), and biaxial (right
column) extensional flow. (a)—(c) show representative raw measurements of the total pressure drop (AP,,) and the pressure due to shear (APy;) versus time as
the imposed flow rate U is increased in steps. Insets schematically indicate the flow configurations used for measurement of AP,,, and APy, in each case. The
respective steady state plateau value of the pressure drop at each increment in U is presented as a function of U in (d)—(f), where the dashed lines represent
linear fits to APy, passing through the origin, for low U < 2.5mms~!. (g)~(i) show the excess pressure drop (AP, = AP,,, — APy,) for all of the tested fluids
as a function of the nominal strain rate in uniaxial, planar, and biaxial extension, respectively. Dashed gray lines are linear fits through the data for the
Newtonian fluid, with constants of proportionality ~ 1.3 Pas, ~ 0.9 Pas, and ~ 2.0 Pas in parts (g)—(i), respectively. Error bars on AP,, for the polymer solu-
tions represent the standard deviation over at least five repeated measurements.

We know that for Newtonian flow in the OSCER device,
€= €nom = 0.1U/W = 0.10/4W?H. Furthermore, from the
fit to the Newtonian data shown in Fig. 8(h), we know that
AP, =~ 0.9¢. Hence, Eq. (7) can be evaluated to give a
unique value ¥ pyews = 126W?H (or = 0.25Vpsc). We
should indeed anticipate that * pnew < Vosc since the
extensional kinematics are not entirely homogeneous over
the whole OSCER geometry due to the shear induced at the
channel walls [40,45]. In fact, a volume of magnitude
0.25Vpsc corresponds well to the volume of the OSCER

geometry over which the local extension rate is within 10%
of &,,m, 1.€., the region where the extensional kinematics are
almost homogeneous.

As discussed in Sec. III B and elsewhere, for a viscoelas-
tic fluid in an extensional flow at Wi > 0.5, a localized
elastic “birefringent strand” develops along the stretching
axis within which Ao becomes dominant [35,36,38-40].
Accordingly, we expect that for Wi > 0.5, the relevant
volume ¥ p to use in Eq. (5) or (6), would be that of the bire-
fringent strand.

229161 20T Ydien Lz
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FIG. 9. Extensional viscosity as a function of the extensional strain rate for the Newtonian solvent and the dilute PAA solutions, determined from excess pres-
sure drop measurements made in (a) uniaxial, (b) planar, and (c) biaxial elongational flow.

In principle, in certain cases, it may be possible to directly
measure the dimensions of the birefringent elastic strand in
order to determine its volume experimentally as a function of
the Weissenberg number. However, this is not always practi-
cal or even possible; for instance in the present case, the
fluids being used are too weakly birefringent to make the
required optical measurements. For this reason, we seek a
simple and pragmatic approach to estimate the volume of the
elastic strand ¥ p syanqd, Which may be used more generally in
Egs. (5) and (6) when Wi > 0.5.

For the FENE-P model in planar extension, an approxi—
mate scaling relation for the dimensionless half-width w;,_ .
of the sheetlike birefringent strand in terms of Wi and the
polymer extensibility L has been presented by Becherer er al.
[38]. The scaling has been shown to adequately describe
measurements of the birefringent strands that develop in the
OSCER device for Wi > 0.5 [40]. In the asymptotic limit of
high Wi, the dimensionless strand half-width scales as
Wipana ~ 1/L [34,36,38,77,78]. A dimensional strand half-
width can be computed as Weyang = lopr /L, where lopt = 15W
is the lengthscale over which the flow field in the OSCER
device is optimized and the flow is purely extensional.

Accordingly, we approximate the asymptotic volume of
the sheetlike birefringent strand as ¥ p gyana = 1800W2H /L
(strand length gng = 30W, width 2wgpgs = 30W/L, height
hgrana = 2H), which for L =143 (Sec. II B) yields
Y pstrand = 7 p.Newr/10. We propose the following simple
piecewise approximation to the volume ¥ p as a function of
Wi for planar extensional flow of dilute solutions of flexible
polymers in the OSCER device:

Wi < 0.5,

Wi > 0.5.

~ 2
Vo= { Y b News = 126W?H ®)

Y psrana = 1800W2H /L

By following similar arguments, we arrive at the following
expressions to evaluate 7z in the case of uniaxial extensional
flow in the OUBER device:

2APer ~ (O-zz - Gxx)éVEs (9)

ie.,
N =~ 20PnQ /€ i, (10)
where

Wi < 0.5,

_ %E,Newl ~ 47R3
Ve= { Wi > 0.5.

%E,strand ~ 250TER3 /L (1 1)

Here, ¥ gnew = 0.31Voyp, where Voyp = 154R® is the
volume of the optimized region of the OUBER device. Forg
the particular OUBER device being used in this study, with g
R = 0.4mm (Sec. Il A), Voys ~ 9.86 x 1072 m>. For uniax- 8 %
ial extension, Harlen et al. [36] have shown for the:f5
FENE-CR model that the asymptotic radius of the birefrin- 3
gent strand at high Wi scales as 1/ /L, which is consistent N
with experimental measurements made in classical opposed-
jets apparatus [79,80], as well as in a 6-arm cross-slot device
[41]. In Eq. (11), #"g strana Tepresents the volume of a colum-
nar birefringent strand of asymptotic diameter 10R/+/L and
length 10R.

For biaxial extensional flow in the OUBER device, we
obtain

APer ~ (O-x_x - Gzz)éBVBa (12)

ie.,

Mg = AP, Q/é57 s, (13)

where

Wi < 0.5,

o /V‘B’Ngwt ~ 375R3
Ve = { Wi > 0.5,

Y Bostrand = 250nR® /L 14
and in this case ¥ pnewr ~ 0.24Voyp. For biaxial stagna-
tion point extension, the thickness of the disklike birefrin-
gent “strand” region (e.g., Refs. 81 and 82) that forms over
the z = 0 plane has not been well characterized in the liter-
ature. Additionally, since there is a disagreement between
constitutive models regarding the response of polymeric
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solutions to biaxial extension, we do not wish to rely on
the prediction of a specific (e.g., FENE-type) model to
describe the dimension of the resulting birefringent region.
Limited experimental data obtained from a dilute solution
of near-monodisperse atactic polystyrene in a 6-arm cross-
slot device over a range of Wi in both uniaxial and biaxial
elongation is available in Ref. 41. Assuming that the
asymptotic strand radius in uniaxial extension scales as
1/ VL (as established above), the data available in Ref. 41
indicate the asymptotic thickness of the birefringent region
in biaxial extension to scale as ~ 1/L [41], similar to the
result for planar elongation [38,40]. Accordingly, in
Eq. (14), ¥ B.strana represents the volume of a birefringent
disk of asymptotic thickness 10R/L and diameter 10R.

Note that the computation of ¥ pyewr» ¥ ENews» and
¥ BNew: Using the excess pressure drop measured for the
Newtonian fluid serves as a Newtonian calibration of the
respective flow, ensuring the correct value of Tr will be
obtained for the Newtonian fluid when those volumes are
used to compute the extensional viscosity from Egs. (6),
(10), and (13), respectively.

The volumes computed for the Newtonian fluid and for
the birefringent strand regions [given in Eqs. (8), (11), and
(14)], should be valid for Wi — 0 and Wi — oo, respec-
tively. The step change in ¥ p, ¥ g, and ¥"5 at Wi = 0.5 is
clearly unphysical, however at present the functional form
that the volume should take across this transition between
Newtonianlike and viscoelastic behavior is unclear. The
question over this is further complicated if we are to consider
a Wi-dependent strand volume, which vanishes for Wi < 0.5
[38], suggesting a possibly nonmonotonic variation of the
volume with Wi. Despite this shortcoming, we consider the
formulation described above to be an advance on earlier esti-
mates of the extensional viscosity from pressure drop mea-
surements. For instance, in the cross-slot and OSCER
devices, the rather coarse approximation 7p ~ AP,./é was
generally used (e.g., Ref. 40), although some prior attempts
have also been made to account for the dimensions of the
birefringent strand [76,83]. Given the experimentally estab-
lished linear relation between Q and & (at least for the
Newtonian fluid) it can be seen that our new approximation
to the planar extensional viscosity measured in the OSCER
device [Eq. (6)] can be written as 17p ~ (AP,,/€) x F, where
F =8W?H/0.1Yp is a dimensionless correction factor
essentially consisting of a ratio of geometric parameters. An
analogy can be drawn with the determination of the shear
viscosity from the experimentally measured pressure drop
along a pipe or channel of arbitrary cross section, where the
pressure drop must be scaled by the ratio of the hydraulic
diameter to the length of the conduit [84].

The extensional viscosities nz(€), np(€), and ngz(€p), com-
puted as described above, are shown for each of the experi-
mental test fluids in Figs. 9(a)-9(c), respectively. In each
plot, the Newtonian result (dashed gray line) is computed
using the respective fit to the excess pressure drop data
shown in Figs. 8(g)-8(i), resulting in a constant value for
the extensional viscosity equal to 37, 47,, and 67, in uniax-
ial, planar, and biaxial extension, respectively. At low exten-
sion rates, the results obtained for the dilute polymer
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solutions generally approach a constant value close to (or
slightly higher than) that of the Newtonian solvent, as
expected given the slightly higher shear viscosities of the
polymer solutions (Table I). With increasing extension rate,
each of the polymeric fluids undergoes a gradual increase in
the extensional viscosity, before an abrupt jump takes place
at a specific extension rate (corresponding to Wi = 0.5) that
reduces with the polymer concentration (due to the increas-
ing relaxation time, see Table I). Subsequently, for further
increasing extension rate, there is a general trend for the
extensional viscosity to gradually increase toward an appar-
ent plateau.

Similarities and differences between the responses of the
fluids to the different modes of extensional flow are made
more obvious by viewing their apparent Trouton ratio as a
function of the Weissenberg number in Fig. 10. Here, we also
plot the response predicted by the FENE-P model under homo-
geneous uniaxial, planar, and biaxial elongation conditions,
where the model parameters B and L? are matched to those of
the fluids (solvent-to-total viscosity ratio S given in Table I,
and extensibility L = 143, as computed in Sec. II B). In
general, within experimental uncertainty, for all polymer solu-
tions at low Wi, Tr,, approaches the expected (i.e.,
Newtonian) limiting value. Also, consistent with the model
prediction, in all cases Wi = 0.5 marks the point of an abrupt
increase in Tr,y,,. For the most dilute 50 ppm PAA solution
[Fig. 10(a)], at Wi > 0.5, the experimental data obtained from
uniaxial, planar, and biaxial extension closely follow the
respective FENE-P prediction toward the high-Wi plateau, §
where  Tr,p,(uniaxial) = Trgp,(planar) = 2 X Tr,p,(biaxial).
As the PAA concentration is increased through Figs. 10(b)-
10(d), the agreement with the FENE-P model prediction £
becomes less convincing, with an increasingly gradual 8
approach of the experimental data toward the eventual high-Wi
plateau in Try, and a less distinct difference between the
response in biaxial extension from that in uniaxial and planar
extension. These changes with polymer concentration may be
because the polymer solutions (although dilute with
c/ ¢* <0.1) cannot all be considered “ultradilute,” and at
higher polymer concentrations intermolecular interactions may
play an increasingly important role when the molecules
become stretched by the flow [47,59,85,86]. Experimental data
from uniaxial extension [47] and molecular dynamics simula-
tions in planar extension [86] suggest that the ultradilute limit,
for which interchain interactions are negligible even at high
polymer extensions, is approached as the polymer concentra-
tion is decreased toward ¢/ ¢* 2 0.01, similar to the concentra-
tion regime of our 50 ppm PAA solution. Notably, at the
higher polymer concentrations tested [Figs. 10(c) and 10(d)],
we are unable to see a convincing high-Weissenberg number
plateau in Tr,,, for uniaxial extensional flow. In these cases,
the onset of elastic flow instability curtails the measurement
before a plateau is reached. In fact, the flow modification is so
severe in these cases [see Fig. 7(d)] that £ almost ceases to
increase with the imposed flow velocity. Since the excess pres-
sure drop across the device continues to increase with the
imposed flow velocity [Fig. 8(g)], this causes an apparent
upturn in 7z and Tr,,, to an asymptote as Wi — 1, before the
flow field breaks symmetry.

} ¥202 Yo
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FIG. 10. Apparent Trouton ratio Tr,,, as a function of the Weissenberg number Wi for (a) 50 ppm PAA, (b) 100 ppm PAA, (c) 200 ppm PAA, and (d)
400 ppm PAA in uniaxial, planar, and biaxial elongational flow. Data points are experimentally determined from pressure drop measurements. Lines are com-
puted from the FENE-P model with the solvent-to-total viscosity ratio f matched to the respective fluid (given in Table I), and the extensibility parameter (or
stretch ratio) L = 143 (Sec. 11 B).
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OUBER and OSCER extensional rheometric devices, we
consider the flow of fluids of various viscosity, relaxation

drop AP, that would be generated as a function of the ®
imposed volumetric flow rate Q, see Fig. 11. Here, the
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FIG. 11. Operability windows for the extensional rheometric devices with the specific channel dimensions stated in Sec. IT A and using Cetoni 29:1 gear ratio
low pressure neMESYS syringe pumps operating at conditions above the specified “pulsation free” limit. The solid lines represent the expected total pressure
drop APy, as a function of the volumetric flow rate Q for Newtonian fluids of various viscosity 7, estimated by scaling with respect to the pressure drop mea-
sured experimentally with the n, = 0.143 Pas aqueous glycerol solvent. The respectively colored dashed and dotted lines represent the expected total pressure
drop for polymeric solutions of the same (constant) shear viscosity as the Newtonian counterpart, considering a typical extensibility of L = 100 for a flexible
polymer, and for the various relaxation times A and apparent Trouton ratios Tr,,, given in the legend. These are estimated by computing AP, according to the
equations presented in Sec. III D and adding the result to the Newtonian pressure drop obtained for Wi > 0.5. The shaded boxes represent operating windows
for the three systems that can be achieved (in principle) with various combinations of syringes and differential pressure transducers: 7 kPa (full scale) transducer
with 0.1 mL syringes (yellow); 35 kPa transducer with 5 mL syringes (cyan); 350 kPa transducer with 25 mL syringes (magenta).
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values of AP, for Newtonian fluids of viscosity 7 (solid
colored lines) are estimated simply by multiplying AP,,, mea-
sured with the experimental aqueous glycerol solvent
(n, = 0.143 Pas) by the ratio n/n,. The respectively-colored
dashed and dotted lines represent the expected total pressure
drop for polymeric solutions of the same (constant) shear vis-
cosity as the Newtonian counterpart, given various values for
the relaxation time A and apparent Trouton ratio Tr,,,. These
polymeric total pressure drops are estimated by computing
AP, according to the equations presented in Sec. III D and
adding the result to AP, estimated for the Newtonian fluid
(for Wi > 0.5). In order to estimate the volume of the bire-
fringent strand for Wi > 0.5, we consider a typical value
for the extensibility of a flexible polymer of L = 100 in
Egs. (8), (11), and (14).

On the plots of AP,, versus Q shown in Fig. 11, we
superimpose colored shaded regions indicating the ranges of
pressure drop and flow rate that could be achieved and mea-
sured with different combinations of differential pressure
transducers and using syringes of various sizes (installed on
Cetoni 29:1 gear ratio low pressure neMESYS syringe
pumps operating at conditions above the “pulsation free”
limit). The yellow shaded region represents the measurement
window available using 0.1 mL syringes and a 7 kPa full
scale pressure sensor, the cyan shaded region represents the
measurement window available using 5 mL syringes and a
35kPa full scale pressure sensor, and the magenta shaded
region represents the measurement window available using
25 mL syringes and a 350 kPa full scale pressure sensor. Of
course, differential pressure transducers are available in other
pressure ranges than just the few values shown, and syringes
are also available in many different sizes. Any combination
of transducer and syringe (or indeed syringe pump) may be
employed in order to obtain an operability window suited to
a given test fluid. Furthermore, microfluidic device dimen-
sions can be scaled in order to obtain relevant nominal exten-
sion rates (shown on the upper x axes) to achieve Wi > 0.5
with a fluid of a given relaxation time, and/or to generate
larger or smaller pressure drops, if required.

Note that the operability diagrams shown in Fig. 11 make
no account for the limits imposed by the onset of either iner-
tial or viscoelastic flow instabilities. To find these limits of
operation, it is necessary to perform many experiments with
fluids of varying elasticity number EIl = Wi/Re and to map
the region of Wi-Re space over which the flow field main-
tains steadiness and symmetry. Such a study has been previ-
ously carried out for the OSCER device [70], and will also
be required in the case of the OUBER device.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have used the new OUBER device
(developed in Part I of this paper [46]), and also the pre-
existing OSCER device [40], to perform the first experimen-
tal comparison of the extensional rheology of dilute mobile
polymer solutions in planar, uniaxial, and biaxial extensional
flow. In each case, the extensional viscosity is assessed using
common methods: microparticle image velocimetry is used
to quantify the relevant extensional strain rate along the
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stretching axis (or axes) and excess pressure drop measure-
ments are used to estimate the respective tensile stress differ-
ence as a function of the extension rate. The estimate of the
tensile stress difference is based on a new analysis of the
macroscopic power balance for each extensional flow config-
uration. In each case, the Reynolds number of the flow is
maintained sufficiently low for inertial contributions to the
pressure drop to be ignored.

Several differences are observed between the responses of
the polymer solutions in the various extensional flow config-
urations. Specifically, for a given nominal extension rate, the
flow field is most severely modified (compared to that of a
Newtonian fluid) in uniaxial extension. By contrast, in
biaxial extensional flow of the polymer solutions, the kine-
matics remain essentially Newtonianlike even at much higher
nominal extension rates. Planar extensional deformations of
the polymer solutions have an intermediate effect, showing
more significant flow modification than in biaxial extension,
but being less severe than in uniaxial extension. Stability
constraints follow a similar trend: for a given polymer solu-
tion, uniaxial flow destabilizes and becomes asymmetric at
the lowest extension rate, while biaxial flow remains stable to
much higher extension rates, with planar flow being
intermediate.

Our estimates of the extensional viscosities and apparent
Trouton ratios of the polymer solutions, based on our new
analysis method, are broadly consistent with the predictions
of the FENE-P constitutive model. Within experimental »
error, the data approach the expected limiting values at low §
extension rates or Weissenberg numbers, and all of the poly-g
meric test solutions exhibit an increase in the extensional vis- ¥
cosity (or Trgp,) at Wi = 0.5. For Wi > 0.5, the extensional £
viscosities of the polymeric fluids generally approach toward R
high-Wi plateau values. For our most dilute 50 ppm polymer
solution (for which ¢/c" ~ 0.01 and which can be consid-
ered “ultradilute”), the high-Wi plateau values of the exten-
sional viscosity agree very well with the prediction of the
FENE-P model, for which n; = np = 2nz. However, this
agreement progressively deteriorates with increasing polymer
concentration. This is likely because, although the polymer
chains are dilute and noninteracting under quiescent condi-
tions (with ¢/ ¢* <0.1), interchain interactions become
increasingly important at higher concentrations as the mole-
cules unravel in the extensional flow.

From a practical point of view, an important consideration
is the early onset of instability in the uniaxial extensional
flow. This can cause difficulty in reaching the high-Wi
plateau of the extensional viscosity, and, therefore, limits the
utility of the device for measurement of 7. The greater rela-
tive stability of planar and biaxial extensional flows allow
measurements to be made to much higher extension rates (or
larger limiting Weissenberg numbers), and enables plateau
values of 77p and 1 to be found more convincingly. On the
other hand, it will be of fundamental interest to understand
the three-dimensional form of the symmetry-breaking flow
instability that occurs in uniaxial extension, which is not
readily ascertained from the 2D flow velocimetry performed
in the present work [see Fig. 5(g)]. It will also be important
to better understand the physical reasons why, for a given
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fluid, uniaxial extension is prone to the onset of elastic insta-
bility at a much lower Weissenberg number than biaxial
extension. A linear stability analysis would be of great utility
in elucidating the cause of this difference. We speculate at
present that the greater thickness of the birefringent strand in
uniaxial extension (radius ~ 1/ V/L in uniaxial extension, but
half-width ~ 1/L in planar and biaxial extension) leads to
more significant flow modification around the stretching axis
in uniaxial extension and thus an increased susceptibility to
loss of stability.

We reiterate that our estimates of the extensional viscosi-
ties g, np, and np are just that (i.e., estimates), as will nec-
essarily always be the case since generating a spatially
homogeneous extensional flow throughout the whole of the
rheometric device is practically impossible. However, we
have, for the first time, designed and fabricated microfluidic
devices that generate reasonably homogeneous approxima-
tions to uniaxial, planar, and biaxial extension over spatial
regions much larger than the characteristic lengthscale of the
geometry, and which also permit comparable assessments to
be made of the tensile stress difference as a function of the
imposed extension rate, all at low levels of fluid inertia. We
believe that our new approach to estimating the tensile stress
difference from the excess pressure drop, based on an
approximate solution to the macroscopic power balance (see
Sec. III D) represents a significant advance on prior analyses
in similar such devices. Nevertheless, there remains signifi-
cant scope for further improvement. Specifically, at the tran-
sition between Newtonianlike and viscoelastic behavior at
Wi =0.5, the abrupt step down in the volume used to
compute the extensional viscosity in Egs. (6), (10), and (13)
is unphysical. Clearly, this transition should be smooth, but
at present it is unclear how it should be described mathemati-
cally. Numerical simulations may provide insight to this com-
putational rheology problem, although it is possible that
polydispersity of the polymer molecular weight also contrib-
utes to the form of this transition region, which may be con-
founding. Furthermore, the estimation of the volume of the
birefringent strand for Wi > 0.5 should strictly depend on Wi,
which further complicates the analysis. An analytical solution
(based on the FENE-P model) for the width of the birefringent
strand as a function of Wi is available for planar extension
[38], but the corresponding elastic boundary layer analysis
needs to be solved (and confirmed experimentally) for uniaxial
and biaxial extension. In our ongoing work, we intend to focus
our research efforts toward addressing these issues.
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APPENDIX: ORIGIN OF AP IN THE OSCER DEVICE

We first consider 2D flow in the OSCER device with flow
injected at volumetric rate Q through two opposing inlet
channels and withdrawn at volumetric rate Q through two
opposing outlet channels (i.e., normal operation mode) to
generate the stagnation point extensional flow field.
Assuming that the flow is fully developed at the inflow and
outflow boundaries, the total pressure drop AP, measured
across an inlet and an outlet of the device must obey the fol-
lowing macroscopic power balance equation:

ou ou Ov v
AP, Q = J (Gxx ox + Oy <6‘_y + a) + oy 8_y> av,
V)2

(AD)

which by application of the continuity equation can be
written as

P
AP0 = J (G — ay_\,)a—Zdv
v/2
ou Ov
AL N ay. A2
+ J axy<ay+ax)dV (A2)
V)2

We split the total volume V into two parts: Vpge, the
extensional flow-dominated volume of the optimized region
of the OSCER device, and V — Vpg¢c, which comprises the
remaining regions between the upstream and downstream
pressure taps (i.e., shear-dominated regions in the inlets,
outlets, and connecting tubing). Thus, Eq. (A2) can be
rewritten as

ou
(Oxx — Oyy) P av

AP Q =

Vosc/2

o
+ J (GXX—O'W)a—ZdV

(V—Vosc)/2
Ou Ov
+ J O-xy (6}) + 8)6) dV
Vosc/2
ou Ov
+ J Oxy (8_)) + ) dv.

a (A3)
(V—Vosc)/2

Since the flow is shear-dominated in the volume
V — Vosc, and extension-dominated in the volume Vigc the
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second and third terms in Eq. (A3) can be neglected, leaving

0
APtotQ ~ (Gxx - O-yy)aizdv
Vosc/2
Oou Ov
+ J Oxy (8_)) + a) av. (A4)

(V=Vosc)/2

Similar to the derivation of Eq. (A3), the pressure drop
measured when one inlet and one outlet of the OSCER
device is disabled (APy,) must obey the following:

ou av

AP0 = J (O — O-yy)a

Vosc

ou
+ J (Oxx — Oyy) EP av
(V—Vosc)/2

Ou Ov

Vosc

+ J O (g—;’ n 8v> dV. (A5

Ox
(V—Vosc)/2

Since, in this case, the extensional component in the flow
is absent in the entire volume, the first and second terms in
Eq. (AS5) can be neglected. We also neglect the third term
since the shear rate in Vpgc is much smaller than that in the
inlet and outlet regions (V — Vpgc¢). Thus,

Oou Ov
APy0 ~ Oy <6_y + a) dv. (A6)
(V—=Vosc)/2

Subtracting Eq. (A6) from Eq. (A4) to solve for the
excess pressure drop AP, = AP,,; — AP, we obtain

(G — Oyy) My, (A7)

AP, QO =~
0 ox

Vosc/2

The integrated volume Vpgc/2 can be further subdivided
if the tensile stress difference o, — o}, becomes dominant in
a specific region, such as within the birefringent strand when
Wi > 0.5 [40]. Thus,

ou
APer ~ J (Gxx - O-yy)adv
V)2
ou
+ J Gu—owoedV,  (AY)

Vosc—7"p)/2

where 7" p represents the relevant volume of fluid over which
the tensile stress difference should be averaged. Accordingly,
the second term in Eq. (A8) can be dropped. Assuming
homogeneous extension within the volume ¥ p (e.g., the

HAWARD ET AL.

strand [38],) we obtain
2AP 0 = (O — 0y)EY p. (A9)
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