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Soft particulate gels include materials we can eat, squeeze, or 3D print. From foods to bio-inks
to cement hydrates, these gels are composed of a small amount of particulate matter (proteins,
polymers, colloidal particles, or agglomerates of various origins) embedded in a continuous fluid
phase. The solid components assemble to form a porous matrix, providing rigidity and control
of the mechanical response, despite being the minority constituent. The rheological response and
gel elasticity are direct functions of the particle volume fraction φ: however, the diverse range of
different functional dependencies reported experimentally has, to date, challenged efforts to identify
general scaling laws. Here we reveal a hidden hierarchical organization of fractal elements that
controls the viscoelastic spectrum, and which is associated with the spatial heterogeneity of the solid
matrix topology. The fractal elements form the foundations of a viscoelastic master curve, which
we construct using large-scale 3D microscopic simulations of model gels, and can be described by a
recursive rheological ladder model over a range of particle volume fractions and gelation rates. The
hierarchy of the fractal elements provides the missing general framework required to predict the gel
elasticity and the viscoelastic response of these ubiquitous complex materials.

I. INTRODUCTION

For gels formed through polymerization reactions or
crosslinking of polymers in solution, 80 years of polymer
physics have provided the basis to fully understand the
links between chemical architectures and rheology [1, 2].
Percolation theory has been central for understanding the
gel properties as a function of the distance from a gela-
tion (percolation) threshold [3]. The self-similarity of the
chemical architectures close to the percolation thresh-
old naturally produces a hierarchy of lengthscales and
timescales, leading to power-law characteristics in the
viscoelastic response [4–8]. By contrast, in particulate
gels, the link between microstructure and viscoelastic-
ity remains elusive. Such gels can be formed from both
synthetic or natural constituents, and represent a pre-
ferred strategy to incorporate high-value functional com-
ponents while limiting costs and risks. These gels form
through physical association of the initial colloidal build-
ing blocks, due to surface forces and attractive interac-
tions mediated by the solvent [9–13]. Ultimately, they
develop as non-equilibrium structures produced by frus-
tration in the growth of aggregates, interconnected and
locked into larger-scale disordered assemblies, from which
rigidity and viscoelasticity emerge. There is growing ev-
idence that in this class of gels a percolation threshold
may also universally control the onset of rigidity (rigid-
ity percolation) and gel elasticity [14–16]; however, the
microscopic origin of that percolation transition and of
the resulting power-law rheological response, observed
over a range of compositions and solid contents, remain
unclear. The extreme variability of gel microstructures

[11, 13, 15, 17] and microscopic dynamics [18–22] revealed
by experiments seems to suggest that the microscopic
physical origins of the macroscopic rheological response
need to be established on a case-by-case basis. The par-
ticle volume fraction φ is the main control parameter in
experiments, which invariably report a strongly varying
shear modulus G0 ∝ φfobs , however fobs ranges widely
from 3 to 8, again questioning the existence of any uni-
versal behavior and of a general framework to predict the
mechanical response [10, 23–32].

II. RESULTS AND DISCUSSION

Gel microstructures, viscoelasticity and rheo-

logical master curve. We use 3D numerical simula-
tions of a particle-based model that capture the micro-
scopic dynamics and rheology of soft particulate gels [33–
37] (see also Methods). In terms of general trends, for a
given gelation rate Γ, increasing the solid volume fraction
φ increases, on average, local connectivity and gel elas-
ticity, by increasing the amount of branching in the gel
[Figs. 1(a),(b)]. For a given φ, reducing the gelation rate
also favors the branching of strands as the network self-
assembles, leading to structures with higher local con-
nectivity and elasticity [Figs. 1(b),(c)]. However, gels
formed at lower φ are more sparsely connected and their
local connectivity is also more spatially heterogeneous
[Fig. 1(a)].

For all gels, the linear viscoelastic spectra G′(ω) and
G′′(ω) [Fig. 1(d)-(f)] are computed using the OWCh pro-
tocol [36, 38], which yields fast and accurate estimates
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FIG. 1. Microstructural and viscoelastic properties of networks having different connectivity. Simulation snapshots
of gel networks at different volume fractions (a) φ = 0.075 and (b) φ = 0.1, prepared with a fixed gelation rate Γ = 10−5ǫ/kBτ0,
and (c), φ = 0.1 with Γ = 10−2ǫ/kBτ0. The microstructural snapshots are colored based on the mesh size, i.e., the topological
distance between branching points and the thickness of the bonds is proportional to the local density of branching points. The
corresponding viscoelastic spectra are shown in (d)-(f) where the filled and open symbols represent the storage modulus G′ and
loss modulus G′′, respectively. (g) Variation in the loss tangent (tan δ = G′′/G′) vs. frequency for gels with different volume
fractions φ and gelation rates Γ.

of the mechanical properties over a wide range of de-
formation frequencies, and we use reduced simulation
units to scale both moduli and frequency (see Meth-
ods). As in experiments [20, 27, 28, 39–41], varying the
particle volume fractions φ over a relatively small range
(i.e., between 5% and 15%) produces apparently minor
changes in the microstructure but translates into dra-
matic variations of the viscoelastic strength and char-
acteristic timescales [Fig. 1(d),(e)]. Changing the gela-
tion rate for a fixed φ leads to similar observations [see
Fig. 1(e),(f) and Fig. S1].
The frequency dependence of the loss tangent tan δ =

G′′/G′ [Fig. 1(g)] summarizes the mechanical response of
11 gels, obtained for different φ and Γ. In spite of the
wide range of driving frequencies, all of the data sets are
broadly self-similar and slowly approach a high-frequency
plateau. An horizontal shift, rescaling the frequency ei-
ther by a factor aφ at a given Γ, or by a factor aΓ at
fixed φ, leads to a unique master curve for tan δ, cov-
ering six decades of rescaled frequency [Fig. 2(a)]. Here
we use φ = 15% and Γ = 10−5ǫ/kBτ0 as the reference
conditions for collapsing the data.
Ladder and fractional models. The resulting mas-

ter curve exhibits an extended power-law regime, high-
lighting a hierarchy of timescales that is captured by re-
cursively combining viscoelastic elements in a hierarchi-
cal ladder structure [42, 43]. The ladder-like arrange-
ment, sketched as an inset in Fig. 2(a), comprises n vis-

coelastic elements with model contributions (Ẽi, η̃i) (with
0 ≤ i ≤ n) and an exponent α that sets the relation-

ship between (Ẽi, η̃i) and (Ẽ0, η̃0) [see Eq. (S2) in Meth-
ods]. For large n (n ≥ 150), the ladder model predicts
a loss factor tan δ that smoothly transitions from a lin-

ear increase to a plateau at high frequencies (see also
Methods), in good agreement with the master curve ob-
tained from the simulation data [Fig. 2(a)]. We can now
vertically rescale loss and storage moduli by a factor bφ
(or bΓ) to obtain master curves for G′ and G′′ as shown
in Fig. 2(b). Taking the continuous limit of the ladder
model introduced in Fig. 2(a), we obtain a more com-
pact description of the viscoelastic response in terms of a
fractional Kelvin-Voigt model characterized by just four
parameters: a spring constant (G0), a viscous dashpot
(η), and a fractional element or ‘spring-pot’ (character-
ized by a scale factor V and an exponent α) [44]. The
power-law exponent 0 ≤ α ≤ 1 reflects the recursive na-
ture of the underlying ladder model, and we can relate
the other parameters to the rungs of the ladder model in
the limit n → ∞ (see SI Sections 2 & 3):

G0 =
Ẽ0

n2α
, η = n2−2αη̃0, V = Ẽ0

(

η̃0

Ẽ0

)α

. (1)

The extended power-law regime evident in the mas-
ter curves and its description by a ladder model reflect
the scale-free characteristics of the relaxation spectra un-
derpinning the viscoelastic response For polymer gels,
power-law characteristics and rheological ladder models
directly stem from the self-similar chemical architecture
close to percolation [4, 45–47]. In soft particulate gels,
instead, the microstructures are often not self-similar
[10, 11, 15, 17, 20], as is also the case here (see Fig. S3).
Moreover, both φ and Γ determine the range of frequen-
cies and viscoelasticity relevant to the power-law region
of the spectra [Fig. S1(c)], demonstrating the intricate
coupling between particle volume fraction and gelation
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FIG. 2. Rheological master curves and constitutive
model for particulate gels. (a) Superposition of the self-
similar curves of tan δ onto a single master curve achieved
by rescaling the imposed deformation frequency with a shift
factor aφ or aΓ w.r.t. a reference gel at a volume fraction
φ = 0.15. The functional form of tan δ predicted by ladder
models with increasing number of elements n, as well as by
the asymptotic fractional model are shown by different lines
as listed in the legend. The inset shows a schematic represen-
tation of the corresponding ladder model. (b) Master curves
for the moduli with the same horizontal shift factors aφ or aΓ

and vertical shift factors bφ or bΓ. The solid and dashed lines
represent, respectively, the predictions for G′′ and G′ with the
four parameter fractional model shown in the inset.

kinetics, which makes the microstructural origin of the
rheology of this class of gels so difficult to pin down.

Lengthscale and fractal characteristics. To tease
out the microscopic origin of the rheological response, we
analyze the fluctuations in the spontaneous microscopic
dynamics across all our gels at rest and subjected only
to thermal fluctuations (see Methods). In the simula-
tions we can use a suitable range of thermal fluctuations
such that no significant changes in the gel structures are
induced over the simulation time window. We then com-
pute the displacements ∆ = r(t0 + tw) − r(t0) from the
particle trajectories r(t) ≡ (x(t), y(t), z(t)), where the
time interval [t0, t0+tw] is such that both t0 and tw are in
the plateau region of the particle mean-squared displace-
ment as a function of time [see Methods and Fig. S4(a)
in SI]. The fluctuations u = [(∆ − 〈∆〉)2]1/2 are widely
distributed across the different gel microstructures [see
Fig. S4(b)]. In complex gel architectures, both micro-
scopic dynamics and mechanics are largely controlled by
the presence of more densely connected regions inter-
spersed with sparsely connected ones [35, 48–51]. We

therefore measure, along network strands, the distribu-
tion of topological distances l which separate two con-
nected branching points. This distribution provides di-
rect access to the structural and micromechanical hetero-
geneities in the gels that determine floppy modes and low
frequency elasticity [52]. From the probability distribu-
tion p(l) across all gels (Fig. S5), we extract the variance
and use ξ = 〈(l− 〈l〉)2〉1/2, with dimensions of length, to
characterize the gel mesh size heterogeneity. By rescaling
all fluctuations u of the microscopic displacements with
ξ2/lp, where lp denotes the persistence length of the gel
strands [37], the distributions p(u) collected across all
gels collapse onto a unique curve [Fig. 3(a)]. Hence the
variation of ξ with φ and Γ captures the microstructural
origin of the variations in the microscopic dynamics.
As the gels become softer with decreasing φ or increas-

ing Γ, less connected networks are produced, and ξ grows
because less connected networks are also more spatially
heterogeneous. Extrapolating, at the very onset of rigid-
ity, ξ captures the first rigid backbone, a single branch
that spans the whole gel and that is sufficient, alone, to
provide rigidity. These considerations point to ξ as a
direct probe of the distance from the rigidity threshold
in our gels. Such a metric, in fact, is ultimately set by
the number of branching points, which we can measure,
in our model gels, through the volume fraction φbr of
particles with coordination z = 3. While ξ varies with
both φ and Γ, the data across all gels follow the scaling
ξ ∝ φ−ν

br [Fig. 3(c)], suggesting that indeed ξ may capture
the scaling of the critical correlation length associated
with the rigidity transition that governs the emerging
gel elasticity. The computed estimate for ν ≃ 0.80± 0.16
is compatible with the value of a 3D random percolation
network [47]. Since we verify from the plateau in G′ at
low frequencies that all our gels are rigid, the power-law
dependence of ξ on φbr may reflect that, because of their
extreme softness and structural complexity, soft particu-
late gels are marginally rigid and remain relatively close
to a rigidity percolation threshold over a range of particle
volume fractions.
If the rigidity percolation transition in particulate gels

is akin to a random percolation, then following the blob-
links-nodes model for the self-similar structure of a span-
ning cluster in percolation theory [45, 47, 53], each par-
ticulate gel is, effectively, a disordered network composed
of fractal elements (blobs) whose linear size scales with
ξ and whose fractal dimension is df . For a gel sample
of linear size L, the volume Ld (in d dimensions) will

consist of (L/ξ)
d
sub-boxes, each containing a mass frac-

tion of the gel ∝ ξdf . Close to the percolation thresh-
old, the scaling hypothesis for a critical point dictates
that M(L, ξ) ∝ ξdfm (L/ξ), where the scaling function

is m (L/ξ) = (L/ξ)
d−df [47].

When we compute the gel mass for samples with a
range of sizes L for each volume fraction (here L is the
linear size of the simulation box), the data are spread out
and grow as L3 [inset in Fig. 3(b)]. However, if we use
the scaling argument just laid out, all data collapse onto
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FIG. 3. Structural characterization of gel networks. (a) Distributions of fluctuations of displacements u = [(∆−〈∆〉)2]1/2

normalized by ξ2/lp. (b) Master curve for the mass M of the gel network vs normalized system size Ldfm(L/ξ) for different
volume fractions, where m(L/ξ) = (L/ξ)d−df with a fractal dimension df = 2.46± 0.12. The data is obtained by changing the

system size for different volume fractions. Inset: M vs the system size L. (c) Correlation length ξ = 〈(l − 〈l〉)2〉1/2. The red
(resp. blue) data correspond to various volume fractions φ (resp. gelation rate Γ). The dashed line is a power law of exponent
−0.8. Inset: Evolution in correlation length ξ vs. volume fraction φ (bottom axis and red symbols) and vs. gelation rate (top
axis and blue symbols). (d) Volume fraction of branching points φbr vs. the volume fraction of particles φ: circles correspond to
the simulations data. The continuous line shows the best fit of the data by a power law of exponent 2.31±0.06. Corresponding
predictions for the DLCA and RLCA scenarios are shown by dashed lines of slope 1.00± 0.06 and 1.30 ± 0.06, respectively.

the unique scaling function m (L/ξ) developed above
[Fig. 3(b)] for df ≃ 2.46±0.12, a fractal dimension again
consistent with a 3D random percolation network (see
Fig. S7(b)). Inferring the frequency dependence of the
viscoelastic modulus just from df as α = d/(df + 2), as
proposed for polymer networks [6, 21, 22], yields α ≃ 0.67
in good agreement with the predictions of the fractional
and ladder models (α = 0.66± 0.05) for the viscoelastic
master curves [Fig. 2(a),(b)].

Following further the blob-links-nodes model, each
fractal element should contain loops and singly connected

bonds, whose number NSCB diverges, as ξ also does, at
the percolation threshold (NSCB ∝ ξ1/ν). Indeed, close
enough to the threshold, singly connected bonds should
be present at all lengthscales, and organized in a self-
similar fashion [53]. This implies that NSCB ∝ 1/φbr,
and that φbr contains the information on how singly con-
nected bonds become progressively more prevalent, over
all lengthscales, as ξ −→ L (and φbr −→ 0). Hence the
fact that ξ and φbr control both the microscopic dynamics
and the bulk rheology of our gels can be directly related
to the hierarchical organization of the singly connected
structures.

The fractal blobs whose linear size ∝ ξ and with frac-
tal dimension df fill the gel volume for any φbr 6= 0,

hence ξ ∝ φ−1/(d−df ) and, combining with ξ ∝ φ−ν
br , we

obtain φbr ∝ φ1/ν(d−df ). The simulation results satisfy
this scaling prediction, if we use ν ≃ 0.8 and df ≃ 2.5
as obtained previously from our data [Fig. 3(d)]. We
note that, if these fractal elements controlling the rheol-

ogy were the fractal aggregates formed through diffusion-
limited or reaction-limited cluster aggregation (respec-
tively DLCA or RLCA) quite common in colloidal sus-
pensions, their fractal dimensions would be different (re-
spectively df ≈ 1.8 or ≈ 2.1 [9, 23, 54]) and this would
lead to markedly different scalings between φbr and φ [cf.
Fig. 3(d)]. For DLCA aggregates our scaling translates
into φ ∝ φbr, with the particle volume fraction directly
setting the distance from the rigidity threshold, consis-
tent with the analysis of fractal aggregation in colloidal
gels [9, 55]. The aggregation process considered here
corresponds to a more general case, as density fluctua-
tions and collective microscopic dynamics contribute to
the microstructure development [14], and may apply, at
a coarse grained level, to a broader range of particulate
gels [11, 15, 29, 52].
Elastic percolating network. We now consider the

mechanics of fractal elements of linear size ∝ ξ having an
elastic stiffness Kξ. Assuming that they are uniformly
distributed in space, the resulting elastic stiffness of the
gel can be estimated as K ∝ (L/ξ)d−2Kξ. With bend-
ing elasticity [56], Kξ directly depends on the presence
of singly connected bonds Kξ = K0/(NSCBξ

2), where
K0 is the torsional bending stiffness between neighbor-
ing bonds, which, in our case, can be computed from
the microscopic interactions [37]. Identifying the rigid-
ity transition with random percolation as demonstrated
above, close enough to the threshold, the gel modulus G0

should scale with ξ as

G0 ∝ ξ−f/ν (2)



5

FIG. 4. Scaling of viscoelastic parameters and connection to the ladder model. (a) Scaling of retardation time
τ ∼ aφ or aΓ (triangles), elastic modulus G0 ∼ 1/bφ or 1/bΓ (circles) and characteristic viscosity η = τG0 (squares) vs volume

fraction of branching points φbr (bottom axis) and ξ−1/ν (top axis). (b) Schematic representations of the underlying ladder
model: fractal blobs of size given by the correlation length ξ (top left), singly and multiply connected bonds within a single
blob (bottom left), bending moment of gel strands for which bond bending costs energy when deformation is applied (middle),
and the equivalent heirarchical mechanical element representation, consisting of multiple springs and dashpots (right).

where f = νd + 1 [56]. Based on Fig. 3 and the re-
lated discussion, these theoretical scaling predictions im-

ply that G0 ∝ φf
br. For ν ≃ 0.8 we find that f ≃ 3.5

in 3D. The scaling that we measure as a function of φbr

(or ξ) from the low-frequency shear modulus G0 of our
gels, which also coincides with the vertical shift factor b
in our master curves [see Fig. S8], matches well with this
prediction (f = 3.55± 0.04) [Fig. 4(a)]. We note that in
the case of DLCA aggregates constituting the fractal el-
ements responsible for rigidity, since φ ∝ φbr [Fig. 3(d)],
we obtain G0 ∝ φf and f ≃ 3.5, in agreement with the
behavior typically found in colloidal gels where diffusion-
limited aggregation processes form the initial fractal flocs
[23, 55]. Our analysis therefore highlights how the depen-
dence of φbr (which measures the distance from the rigid-
ity threshold) on φ (the actual particle content) changes
with the specific aggregation process at play [see three
examples in Fig. 3(d)]. In experiments, however, typi-
cally only φ is directly controllable, from which a general
dependence G0 ∝ φfobs can be extracted. Hence, while
the rigidity percolation transition remains universal to
particulate gels, we obtain

fobs = f/ν(d− df ), (3)

which naturally has a range of values depending on the
fractal dimension of the gel df (as reflected in Table I),

shedding light onto a wide range of experimental obser-
vations [10, 23, 24, 26–32, 57] (see also SI).

TABLE I. Scaling exponents for the evolution of the gel
modulus with G0 ∝ φf

br
and G0 ∝ φfobs for different col-

loidal aggregation processes. The observable power-law ex-
ponent fobs is related to the power law f by the expression
fobs = f/ν(d−df ), where d = 3, ν = 0.8 and df is the fractal
dimension.

Aggregation process df f fobs

DLCA 1.8 3.5 3.6

RLCA 2.1 3.5 4.8

Present work 2.5 3.5 8.1

Finally, the horizontal shift factors in our master
curves [Figs. 2(b) and 2(c)] identify a characteristic
timescale τ , which we can trace back to the delay time for
the gel elastic response to emerge from the microscopic
fluctuations [see Fig. S8] and follows the same scaling
as the elastic modulus G0. This result, which can be
tested in microrheology experiments, explains why the
viscous element of the fractional model remains essen-
tially constant for all of the gels [Fig. 4(a)]. The scaling
of τ with the critical lengthscale ∝ ξ that describes the
fractal blobs (and φbr) is yet another strong signature of
how the topological-dependence of the gel modulus and
heterogeneity determine the relaxation spectra.
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From fractal characteristics to a hierarchical

ladder model. We now demonstrate that the fractal
blobs, uniformly distributed in d-dimensions, indeed give
rise to a mechanical ladder model [Fig. 4(b)], as hypoth-
esized in Fig. 2. This model results in a compact de-
scription characterized by the four microscopic parame-
ters E0, η0, n, and α, and the overall mechanical response
can be obtained as:

(

Ẽ0, η̃0, Ṽ
)

=

(

L

ξ

)d−2

(E0, η0,V) . (4)

where (L/ξ)d−2 is a purely geometrical factor. The elas-
ticity of the ladder structures is set by the bending stiff-
ness of the gel strands E0 ∝ K0/a

3 where K0 is the
torsional stiffness, with dimension of [force × length]
and a is the unit distance between neighboring parti-
cles in our simulations. By combining the expressions
for the overall elastic modulus of the ladder model (G0)
as a function of the number n of elements in each lad-
der structure (Eqs. (S3) and (4)), we find that G0 is re-
lated to the torsional stiffness K0 through a structure-
dependent factor G0 ∝ (L/ξ)d−2K0/(a

3n2α). Simi-
larly, in disordered elastic networks with bending elas-
ticity [56], the scaling G0 ∝ (L/ξ)d−2Kξ/L implies that

G0 ∝ (L/ξ)d−2K0N
−2ν−1
SCB a−2/L. These two distinct

scaling expressions for G0 suggest the following inter-
relationship for the number of mechanical elements in
each ladder structure

n ∝

(

L

a

)1/2α

N
(2ν+1)/2α
SCB . (5)

Since each element of linear size ∝ ξ implies a number
NSCB of singly connected bonds [56], with each pairwise
combination of these being a source of bending interac-
tions, we hypothesize that n ∝ N2

SCB. Combined with
Eq. (5), this constrains the power-law exponent in the
ladder model

α = (2ν + 1)/4 (6)

Using ν ≃ 0.8 yields α = 0.68±0.1 for our percolated gels
in 3D. The data for tan δ and the corresponding fits from
both fractional and ladder models confirm this prediction
[Figs. 2(b) and 2(c)].
The product η = G0τ sets the large scale rate of dissi-

pation in the gel and is found to be independent of the
volume fraction of branching points [Fig. 4(a)]. The vis-
cous dashpot η0 in the ladder model (which is linked to
η̃0, n and η by Eqs.(S3) and (4)) therefore follows the
scaling:

η0 ∝

(

L

a

)d−3+1/α

Nνd−3
SCB η (7)

where η can be also directly connected to the drag coef-
ficient ζ in our simulations (see Methods section). Thus,
Eq. (7) can be understood as a volumetric average mea-
sure of the viscous dissipation in a d−dimensional box of
size ξ that is filled with NSCB singly-connected bonds.

Finally, using Eq. (S3), we can now directly connect
the microscopic physics of the gels to the hierarchical
organization of the mechanical elements in the ladder
model. Indeed, asymptotic expansion of the recursive
relations that specify the ladder model [Eq. (S2) in Meth-
ods] produce power-law decays for both the elastic and
viscous coefficients as a function of the mode number, i.e.,
we expect Ei ∝ E0/i

2α−1 and ηi ∝ η0/i
2α−1. We show

in the following that this hierarchy of internal modes
has its origins in the geometrical distribution of effec-
tive bending coefficients within the fractal blobs. We
first consider the effective bending stiffness that arises
from the torsion around the equilibrium angle θ for a
certain bond when a force δF is applied on the I-th
neighboring bond away from it along the elastically ac-
tive backbone of the gel network [see sketch in Fig. 4(b)].
Such an effective bending stiffness decreases by increasing
the distance between the bonds along the backbone. As
the relative neighboring distance varies 1 ≤ I ≤ NSCB,
the number of modes in our ladder model varies in the
corresponding range 1 ≤ i ≤ N2

SCB, suggesting that

I = i1/2 is a reasonable mapping between the ith re-
laxation mode in the ladder model and the portion of a
blob constructed from I bonds. We show in the Methods
section that the effective stiffness for mode i = I2 in the
ladder model scales as ki=I2 = δF/δx ∝ K0/(I

2νa2), and
that the equivalent spring modulus of the i-th mode is
Ei=I2 ∝ (K0/a

3)/I2ν−1 = (K0/a
3)/iν−1/2. An identi-

cal power-law decay in fact appears in the correspond-
ing scaling for the viscous model parameters and one
can clearly identify (Ei, ηi) = (1/iν−1/2)(E0, η0). Us-
ing Eq. (6), these two power-law decays simplify to
(Ei, ηi) = (1/i2α−1)(E0, η0), which, remarkably, corre-
sponds to the recursive relationship required in the lad-
der model to produce a power-law rheological response.
These results demonstrate that the geometrical, self-
similar arrangement of singly connected bonds and the
cooperative dynamics of bending interactions within in-
dividual fractal blobs lie jointly at the origin of the hierar-
chical order of the corresponding ladder-based/fractional
models that compactly and effectively capture the power-
law response of different colloidal gels over a wide range
of timescales. On this basis, the viscoelastic master curve
becomes a discriminating probe of the proximity to the
rigidity threshold and of the marginal stability of partic-
ulate gels.

The fractal units and hierarchy of connectivities em-
bedded in soft particulate gels may be embedded in
the static microstructure (clusters, strands, meshes, etc.)
that is directly accessible through confocal imaging or
scattering, but they are revealed by measurements of lin-
ear viscoelasticity because these hidden structures govern
stress transmission and elasticity. As such, they are nat-
urally akin to force chains in granular media, or localized
excitations arising in amorphous solids [58, 59], and their
spatial organization potentially determines the hierar-
chical stress transmission and redistribution under load,
from particles to clusters and strands [60–62]. The ideas
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presented here show how mechanical spectroscopy can be
used to understand the emergent viscoelastic properties
of a broad range of technologically relevant materials,
providing insight across a broad experimental literature
and a new scientific basis for material design in areas from
3D printing to recycling. Future work, in fact, can build
on this study to investigate the implications of fractal
characteristics and hierarchical organization of particu-
late gels for non-linear properties, memory encoding, and
smart adaptive response of soft materials.

METHODS

Numerical model and simulation. In the sim-
ulations, colloidal particles or aggregates, described as
spherical objects of diameter a, spontaneously self-
assemble into a gel network due to attractive short-range
interactions [63], of maximum strength ε, mediated by
the solvent in which they are immersed and through
which their thermal motion is overdamped. In real par-
ticulate gels, surface roughness, shape irregularity and
sintering processes limit the relative motion of particles
as they aggregate [15, 17, 64]. These effects are included
in the model through an angular modulation of the net
attraction that introduces a bending rigidity of the in-
terparticle bonds [37]. Each gel is characterized by its
solid volume fraction estimated as φ = (π/6)Na3/L3

with N the total number of particles and L the linear
size of the cubic simulation box. For each value of φ,
various gel microstructures are obtained by tuning the
rate Γ at which the relative strength of the attractive in-
teractions (with respect to kBT ) is increased to induce
gelation during the sample preparation. For the set of
model parameters used here, all networks start from one-
particle thick semi-flexible strands (where particles have
coordination number z=2) that branch (z=3) to reduce
steric hindrances and frustration as they grow from dif-
ferent directions. Starting from these relatively simplified
structural units, however, large scale numerical simula-
tions (> 105 colloidal units) allow for hierarchical loops
and larger scale heterogeneities to naturally emerge dur-
ing the gel self-assembly, depending on the gelation rate.
As a consequence, the resulting disordered and heteroge-
neous network topologies are representative, at a coarse-
grained level, of the structural complexity typical of a
wide range of soft particulate gels [15, 16, 64, 65].
For all φ and Γ considered here, any further aging of

the gels beyond the gel preparation is much slower than
the simulation time window used to compute the rhe-
ological response of the samples; hence it can be con-
sidered negligible in the context of this study. We use
samples with N varying between 2 · 103 and 2 · 105, L
varying from 23 to 120 particle diameters. Γ is varied
between 10−2ǫ/kBτ0 and 10−6ǫ/kBτ0 and the range of
particle volume fractions spans 0.05 ≤ φ ≤ 0.15. In
the model, particles interact via a short-range attraction
U2 and a three body term U3 which introduces a bend-

ing stiffness between neighboring bonds. the Molecular
Dynamics (MD) simulation with periodic boundaries is
implemented for a system of N particles in a cubic box of
size L with position vectors {r1, ..., rN} and interacting
with a potential energy:

U(r1, ..., rN ) = ε

[

∑

i>j

U2

(rij

a

)

+
∑

i

j,k 6=i
∑

j>k

U3

(rij

a
,
rik

a

)

]

(8)
where rij = rj − ri. The functional forms of U2 and U3

are given in the SI (Section 11) and their detailed de-
scription can also be found in previous works [34, 37, 49].
The MD time unit is expressed in terms of particle mass
m, diameter a and unit energy ε as τ0 =

√

ma2/ε. All
other physical quantities are measured in units of m, a,
ε and τ0. The equation of motion is solved using a Verlet
algorithm with a time step δt = 0.005τ0. All simulations
have been performed using the open source software
LAMMPS [66] modified to incorporate the potential
energy [Eq. (8)].

Gel Preparation. The initial gel configurations are
prepared by following the protocol described in [34, 37].
Below, we briefly summarize the procedure: We use NVT
equilibrium MD simulations, with a Nosé-Hoover (NH)
thermostat to cool down a system of particles in a gas
phase initially at a reduced temperature kBTi/ε = 0.5
down to kBTf/ε = 0.05 in Ncool MD steps which de-
fine the cooling (or gelation) rate as Γ = ∆T/∆t =
(Tf − Ti)/Ncoolδt. We verify that the final temperature
kBTf/ε = 0.05 is low enough for the particles to ag-
gregate and form a percolated gel network. Then, we let
the system further equilibrate at kBTf/ε = 0.05 with the
NH thermostat for another Nequi MD steps. To vary the
gelation rate Γ, we change the number of MD steps used
for cooling, i.e., Ncool. The gel configurations are then
obtained by draining the kinetic energy from the system
which is carried out by quenching them to kBT/ǫ ≈ 0 by
using dissipative microscopic dynamics, which guarantees
that the configurations are stuck in the local minimum
of the potential energy, or inherent structure:

m
d2ri
dt2

= −∇ri
U − ζ

dri
dt

(9)

where ζ is the drag coefficient of the given solvent and
we choose m/ζ = 1.0τ0.
The data for varying volume fraction φ correspond to

a fixed gelation rate of Γ = 10−5ε/kBτ0 with Ncool = 106

MD steps and Nequi = 106 MD steps. The data for
varying gelation rates Γ correspond to a fixed volume
fraction φ = 10% and gelation rates vary in the range
Γ = 10−6 − 10−2ε/kBτ0 with Ncool = 108 − 104 MD
steps and Nequi = 2 · 104 MD steps. This variation of
gelation rates corresponds to a change in low frequency
elasti moduli by an order of magnitude [cf. Fig 1(d)-(f)].

Linear viscoelastic spectra. For each gel, we use
a computational scheme [36] that has been inspired by
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a recently developed experimental technique [38] and
obtain the full linear viscoelastic spectrum by applying
an optimally windowed chirp (OWCh) signal. The
details of this protocol are presented in the SI (see
Section 11).

Master curve for the loss tangent

As demonstrated in the Figure 2(a), the viscoelas-
tic spectra of the low volume fraction gels, that are
close to the percolation limit, follow the principle of
time-connectivity superposition and the corresponding
values of loss tangent will collapse on a master-curve
for these gels. This simple collapse, which is obtained
with just a horizontal shift of the data, is a signature
of the self-similarity that exists between the shape of
the measured viscoelastic spectra. Thus, we can think
of our method (in generating a tan δ master curve in
Figure 2(a) from the measured spectra in Figure 1(g))
as a general “discriminating probe” that determines
whether the backbone of a mature gel is still similar to
the original structure that was formed at the percolation
or not.

The mathematical arrangement of model pa-

rameters in ladder models. As discussed in [42, 43],
with simple analysis of continued fractions for ladder
models one can show that the following recursive arrange-
ment is required to obtain a power-law behavior for the
viscoelastic moduli that approaches the critical gel be-
havior with exponent α:

Ẽi =
1

2i− 1

Γ(α)

Γ(1 − α)

Γ(i+ 1− α)

Γ(i− 1 + α)
Ẽ0

η̃i = 2
Γ(α)

Γ(1− α)

Γ(i+ 1− α)

Γ(i+ α)
η̃0.

(10)

where Γ is the complete Gamma function and 1 ≤ i ≤ n
represents the parameter index in the ladder model.
This arrangement of parameters leads to a frequency-
independent regime for the loss tangent that spans
the frequency range (1/n2)E0/η0 ≤ ω ≤ E0/η0 . For
frequencies smaller and larger than the specified span,
the ladder model displays asymptotic single-mode
retardation and single-mode relaxation consistent with
the predictions of the Kelvin-Voigt and Maxwell models
respectively.
By fitting the viscoelastic spectra with the proposed
ladder model, one can find an estimate for the number
of ladder elements n and develop a quantitative measure
for the range of scale-free relaxation modes in a given gel

system. This can be connected to the difference between
bounding cut-off length-scales and time-scales in the
underlying fractal structure and relaxation spectra of
real networks (see section 2 and Figure S2 of the SI
for further details). Similarly, as shown in Equation
10, by determining power-law exponent α of the ladder
or fractional model we gain extra insight into the
hierarchical arrangement of springs and dashpots in the
mechanical ladder structure.

Microscopic dynamics. The microscopic dynamics
of the gel are probed by using a Langevin dynamics:

m
d2ri
dt2

= −∇ri
U − ζ

dri
dt

+ F i
r(t) (11)

where m/ζ = 10.0τ0 and F i
r(t) is a random white noise

that mimics thermal fluctuations and is related to the
drag coefficient ζ: 〈F i

r(t)F
j
r (t

′)〉 = 2ζkBTδijδ(t − t′).
From the spontaneous particle dynamics with ther-
mal fluctuations kBT/ε = 10−3 (large enough to
induce particle motion but without changing the topol-
ogy), we monitor the position of particle i at time t;
ri(t) ≡ (x(t), y(t), z(t)), where x, y and z represent
the Cartesian coordinates. The magnitude of the gel
displacement is computed as ∆i = ||ri(t0 + tw)− ri(t0)||.
Both the initial time t0 and waiting time tw are chosen
to be in the plateau in the particle mean-squared
displacement curve [see Fig. S4] with t0 = 104τ0 and
additional waiting time tw = 104τ0.

Scaling of Physical Distance and Deformations

in the Fractal Element. Due to the fractal nature
of the blobs, the physical distance between neighbors
that are I-bonds apart is d ∝ aIν and the corresponding
torque from force δF scales as δFIνa, which leads to a
change of angle δθ ∝ δFIνa/K0. The rotation of this
angle leads to a local deformation of δx ∝ aIνδθ in
direction of the applied force δF .

Persistence length. The persistence length lp is de-
termined by computing the correlation in the angles of
successive bonds along the strand [37] of a 50-particle
strand sampled over different configurations from the dy-
namics [Eq. (11)] at a finite temperature. For the poten-
tial parameters used in this study, the persistence length
is estimated to be lp ∼ 5.5a.
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SUPPLEMENTARY INFORMATION

S.1. Linear viscoelastic spectra

The storage and loss moduli of gels obtained by varying
the volume fractions φ and gelation rate Γ are shown in
Fig. S1. These data were rescaled to construct the master
curves in Fig. 2(b) shown in the main text. The storage
moduli vary by approximately three orders of magnitude.

S.2. Fractional model

Fractional models are often used as concise mechani-
cal representations of soft gelling systems[5, 22, 44]. The
simplest fractional model, known as the spring-pot, was
introduced by Scott-Blair [67] to capture the scale-free
power-law behavior that is often observed in soft gels
and foodstuffs. A single spring-pot predicts power-law
behavior for both loss and storage moduli and, conse-
quently, a frequency-independent loss tangent. The frac-
tional model that we used in our study is a modified
Fractional Kelvin-Voigt (FKV) model [44] that consists
of a spring element G0 that is connected in parallel to a
dashpot η and springpot (V, α) combination. The com-
plex moduli G∗ = G′ + iG′′ for this model is:

G∗(ω) = G0

[

1 + (iωτ)
1

1 + (iωτl)1−α

]

(S1)

where τ = η/G is the retardation timescale and τl =
(η/V)1/(1−α) is the cut-off timescale that captures the
transition from faster power-law relaxation modes to a
slower single-relaxation terminal mode. At low frequen-
cies, which correspond to long timescales, the model pre-
dicts a behavior similar to a single-mode Kelvin-Voigt
solid where G′(ω) ∼ G and G′′(ω) ∝ ηω. At high
frequencies, which correspond to short timescales, the
model predicts power-law behavior for both loss and stor-
age moduli G′ ∼ G′′ ∝ ωα, which is identical to the be-
havior observed in critical gels in the vicinity of the gela-
tion point. This scale-free behavior for shorter modes
captures the hidden fractal nature of mechanical relax-
ation that exists within individual clusters.
The fact that we collapsed all the measured spectra

for the loss tangent onto a single master curve with
only one horizontal shift factor suggests that there is
one important characteristic time scale τl ∼ τ . In other
words, we conclude that in our studied system the value
of the quasi-property is set by other model parameters
V ∝ G(η/G)α, which is self-consistent with the physical
analogy to a ladder model in which the quasi-property or
scale factor controlling the magnitude of the stress nat-
urally emerges as a combination of the individual spring
moduli Ei and dashpot viscosities ηi. An identical rela-
tionship was discussed by Bagley and Torvik [68] in their
derivation of fractional rheology from multi-mode Rouse
relaxation processes in polymer solutions. We have also

obtained a similar constraint in our previous numerical
study of colloidal gels [36].

S.3. Ladder Models and Connection to the
Fractional Model

As discussed in Refs. [42, 69] and also mentioned in
the main text, ladder models can capture the power-law
behavior observed in our computation of the viscoelastic
moduli. To obtain a power-law behavior for viscoelastic
moduli that resembles colloidal gel behavior with expo-
nent α close to the gel threshold (critical gel), we require
the following arrangement for the model parameters:

Ẽi =
1

2i− 1

Γ(α)

Γ(1− α)

Γ(i+ 1− α)

Γ(i− 1 + α)
Ẽ0

η̃i = 2
Γ(α)

Γ(1− α)

Γ(i + 1− α)

Γ(i+ α)
η̃0.

(S2)

where Γ is the Gamma function and 1 ≤ i ≤ n repre-
sents the parameter index in the ladder model. As shown
in Fig. S2, this arrangement of parameters leads to a
frequency-independent regime for the loss tangent that
spans the range (1/n2)E0/η0 ≤ ω ≤ E0/η0 range. For
frequencies smaller and larger than the specified span, the
model displays a single-mode retardation and a single-
mode relaxation time that resemble the predictions of
Kelvin-Voigt and Maxwell models respectively.
The rheological response of the ladder model can be

divided into three different regions:

• Low-frequency response: for frequencies below a
critical value ωc,2 = (1/n2)Ẽ0/η̃0, we observe a be-
havior similar to a single Kelvin-Voigt model where
G′ ∼ G0 = Ẽ0/n

2α and G′′ ∝ ηω = n2−2αη̃0ω.

• Medium-frequency response: for intermediate fre-
quencies ωc,2 ≤ ω ≤ ωc,1 = Ẽ0/η̃0, we observe
a scale-free power-law behavior that is similar to
the predictions of a simple springpot for a criti-
cal gel with exponent α and quasi-property V =
Ẽ0(η̃0/Ẽ0)

α.

• High-frequency response: for large frequencies
(ωc,1 = Ẽ0/η̃0) ≤ ω, we observe a single-mode re-
laxation at timescales shorter than the smallest cut-
off timescale of the model. This high-frequency be-
havior of the model is similar to the simple Maxwell
model and is beyond the probed range of frequen-
cies in our simulations.

By direct comparison between the modified FKV model
(Eq. S1) and the low and intermediate frequency regions
of the ladder model, we conclude that both models pre-
dict similar rheological behavior for the viscoelastic mod-
uli and that the corresponding parameters of the modi-
fied FKV model are related to the ladder model by the
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a b c

FIG. S1. Linear viscoelastic spectra of gel networks obtained by varying the volume fraction φ and the gelation
rate Γ. The storage modulus G′ in (a) and loss modulus G′′ in (b) are shown as a function of angular frequency ω for gels
with different volume fractions φ and gelation rates Γ. For gels with different volume fractions, the gelation rate is fixed at
Γ = 10−5ǫ/kBτ0. The gels with different gelation rates correspond to a fixed volume fraction φ = 0.1. (c) The horizontal shift
factors (left axis), aφ (red triangles) and aΓ (blue triangles), and the vertical shift factors (right axis), bφ (red circles) and bΓ
(blue circles), are plotted as functions of the volume fraction φ (bottom axis) and gelation rate Γ (top axis). The dotted lines
are guides to the eye.

following relationships:

G0 =
Ẽ0

n2α
, η = n2−2αη̃0, V = Ẽ0

(

η̃0

Ẽ0

)α

. (S3)

Using Equations S2 and S3, we can use the fitting param-
eters of the ladder model (or fractional model) in an ”in-
verse” manner and learn more about important hidden
features in the mechanical relaxation of the underlying
structure. The number of ladder elements n provides a
quantitative measure for the range of scale-free relaxation
modes in a given gel system, which can be connected to
the difference between bounding cut-off length-scales and
time-scales in the underlying fractal structure and relax-
ation spectra of real networks. Similarly, by determining
power-law exponent α of the ladder or fractional model
we gain extra insight into the hierarchical arrangement of
springs and dashpots in the mechanical ladder structure.

S.4. Scaling discussion for the volume fraction of
the branching points

Many studies have reported varying scaling exponents
for the evolution of the gel modulus with volume fraction.
Our model reveals that these apparent differences in the
literature may simply be due to the fact that the volume
fraction φ is not the best measure for distance from the
rigidity percolation threshold and indeed a better can-
didate can be found by studying the volume fraction of
the branching points φbr. Figure 3(d) and Table 2 in

the main manuscript help the reader to see how differ-
ent aggregation processes show different exponents for
the evolution of the gel modulus with volume fraction.
It is however noteworthy to mention that the measur-
ing volume fraction of the branching points φbr can be
challenging in many experimental studies. As mentioned
in the main manuscript the following scaling helps us
to compute the volume fraction of the branching points
φbr from values of particle volume fraction and measured
fractal dimensions:

φbr ∝ φ1/ν(d−df ) (S4)

where d = 3 is the Euclidean dimension of a 3-D space
and df is the fractal dimension of the network inside the
fractal clusters. According to [47], the computed esti-
mate for ν ≃ 0.80± 0.16 is compatible with the value of
a 3D random percolation network.
We have also shown that the evolution of the gel modulus
with volume fraction follows a power-scaling:

G0 ∝ φf
obs (S5)

where fobs = f/ν(d − df ) and f ≃ 3.5 according to
Kantor and Webman [56]. We can use this scaling in
an inverse manner. One can simply measure the elastic
moduli at different volume fraction and find an accurate
estimate for fobs, from which we can find an estimate fro
the fractal dimension of the underlying network inside
the clusters:

df = d−
1

ν

f

fobs
. (S6)
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FIG. S2. Rheological predictions of the ladder model.
The viscoelastic storage and loss moduli are calculated for a
ladder model that consists of n = 5000 elements, where the
model parameters follow the prescribed arrangement given in
Equation S2. Solid and dashed lines represent elastic and
loss moduli respectively. The shaded area shows the high-
frequency region (ωc,1 = Ẽ0/η̃0) ≤ ω where we observe a
single-mode relaxation at timescales shorter than the smaller
cut-off timescale of the model. This high-frequency behavior
of the model is similar to the simple Maxwell model and is
beyond the probed range of frequencies in our simulations. At
low frequencies ω ≤ (ωc,2 = (1/n2)Ẽ0/η̃0), the model predicts
a single-mode retardation behavior at large timescales that
resembles the behavior of a simple Kelvin-Voigt element. For
intermediate frequencies ωc,2 ≤ ω ≤ ωc,1 the ladder model
displays a scale-free power-law behavior for both elastic and
loss moduli that is similar to the rheological response of a
polymer gel at the gelation point.

S.5. Box counting and fractal dimension

We employed box-counting method to check the frac-
tality of the gel structures. Each simulation box is di-
vided into sub-boxes of size lbox and the mass in each box
Mbox is computed. The data showing Mbox ∝ (lbox)

3 in
Fig. S3 indicates that the gel structures are non-fractal.

S.6. Microscopic particle dynamics

The mean-squared displacement (MSD) of particles in
the gel networks is computed from the microscopic tra-
jectories obtained by solving the Langevin equations of
motion with thermal fluctuations kBT/ǫ = 10−3 and is
given by:

〈∆r2〉(t) =

〈

1

N

N
∑

i=1

(

ri(t)− ri(0)
)2

〉

(S7)
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FIG. S3. Demonstration of the non-fractal nature of
gel networks. The mass in the sub-box Mbox as a function
of lbox. The symbols and colors are the same as in Fig. S1.

where r(t) ≡ (x(t), y(t), z(t)) represents the particle co-
ordinates at a given time t.

The particle displacements are computed with respect
to a reference configuration in the MSD plateau (see
Fig. S4(a)), i.e., t0 ≃ 104τ0 as ∆ = r(t0 + tw) − r(t0).
From the PDF of the displacements, we then compute
the fluctuations u = [(∆− 〈∆〉)2]1/2 to characterize the
particle dynamics that results from the heterogeneity of
the gel structures [37].

S.7. Mesh-size distribution

As mesh size, we compute the topological distance be-
tween two neighboring branching points along the net-
work. For all gels, the distributions of mesh sizes be-
come wider with decreasing φ and increasing Γ. While
these distributions can be at first sight fitted with an
exponential form [Fig. S5(a)], a more detailed analysis
reveals that their first and second moment follow a dif-
ferent scaling with φbr [Fig. S5(b) and (c)], indicating a
deviation from the exponential form at large l, which is
however easily masked by the finite size of the simula-
tions. The second moment 〈l2〉1/2 has a stronger depen-
dence on φbr, indicating that the deviation from the ex-
ponential distribution must dominate close to the rigidity
transition. These findings suggest that the critical corre-
lation lengthscale associated with the rigidity transition
may be related to the second moment 〈l2〉1/2, and to ex-
tract the relevant scaling we therefore use the root mean
square fluctuations ξ = 〈(l − 〈l〉)2〉1/2 [Fig. 3(c)], which
are also less affected by finite size effects. The data for
the lengthscale obtained from 〈l2〉1/2 [Fig. S5(c)] indeed
approach the same scaling as ξ [Fig. 3(c)].
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a b

FIG. S4. Microscopic particle dynamics. (a) The mean squared displacements as a function of time. (b) Probability
distributions of fluctuations of displacements. The symbols and colors are consistent with Fig. S1.

a b c

FIG. S5. Mesh size l and relevant length scales in the gel networks. (a) The probability distribution p(l) of mesh sizes
l, where l is computed as the topological distance between two connected branching points for different levels of connectivity.
Dashed lines correspond to the best exponential fits of the data. The symbols and colors are the same as in Fig. S1. In (b)

and (c) the length scales computed from the first and second moment of the mesh size distribution, i.e., 〈l〉 and 〈l2〉1/2, as a
function of the volume fraction of branching points (φbr). The red data correspond to different volume fractions φ while the
blue data correspond to different gelation rates Γ. The solid line in (b) and dashed line in (c) represent power laws of exponent
−0.5 and −0.8 respectively.

S.8. Estimation of error bars in the exponent for
dependence of φbr on φ

The method to obtain the error bar in the scaling φbr ∝
φ1/ν(d−df ) is shown graphically in Fig. S6.

S.9. Fractal nature of percolating backbone

We have studied the fractal nature of the gel close
to the gelation threshold by performing simulations at
high temperature, where the gels are first formed [see
the snapshot in Fig. S7(a)]. The fractal dimension df =
2.5 ± 0.05 [Fig. S7(b)] can be obtained from the scaling
of the mass of finite clusters as a function of their radius
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a b

FIG. S6. Estimation of error bar in the scaling of φbr vs. φ. (a) and (b) The L2 norm magnitude of the fitting error for
the power-law fit that we used in Figure 3(d) in the main text. As clearly demonstrated, the concept of Normal Equation in
linear regression helps us to find the optimum values of fitting parameters that minimize the fitting error for a corresponding
tall system of linear equations [70]. We can thus select a confidence zone and report the optimum value with corresponding
values of error bars 1/ν(d − df ) ≃ 2.31 ± 0.06 [gray lines in (a)].

of gyration Rg.

S.10. Measurements of viscoelastic parameters
from microscopic dynamics

In Fig. S8, we compare the retardation time τ obtained
from the rheology [Fig. 4(a) in the main text] with the
timescale τ(MSD), where the MSD reaches a plateau [see
Fig. S4(a)] and is obtained by locating the position of the
minimum of the logarithmic-derivative of MSD. These
two timescales have the same dependence on φbr and ξ.
The elastic modulus G0 obtained from the viscoelastic
spectra and the estimated modulus G0(MSD), obtained
from the MSD value at the plateau also show an identical
dependence on φbr and ξ.

S.11. Gel Model

The model used for the gel networks consists of
monodisperse particles of diameter a, which represent
colloidal particles or aggregates in real systems and spon-
taneously self-assemble into a gel network due to attrac-
tive short-range interactions[63]. The short-range attrac-
tive potential U2 is a combination of a repulsive core and
a narrow attractive well, and is written in the following
form, for computational convenience:

U2(r) = A

(

1

r18
−

1

r16

)

(S8)

where r is rescaled by the particle diameter a and A is
the dimensionless parameters that controls the depth of
the potential well.

In particulate gels, the particle surface roughness or
the irregular shapes of the aggregates can result in
a significant hindrance of the relative particle motion
when particles or aggregates are bonded in the gel state
[15, 17, 64]. To include the energy costs associated with
the constraints of the particle relative motion imposed
by the nature of the surface contacts, we use a three-
body term U3. For two particles both bonded to a third
one and whose relative positions with respect to it are
represented by the vectors r and r’ originating from the
same particle, U3 is expressed, again for computational
convenience, in the following form:

U3(r, r’) = BΛ(r)Λ(r′) exp

[

−

(

r · r’

rr′
− cos θ

)2

w−2

]

(S9)
where B, θ and u are dimensionless parameters. The
range of three-body interaction is set to two particle di-
ameters, as ensured by the radial modulation:

Λ(r) = r−10
[

1− (r/2)10
]2

H(2− r) (S10)

where H is the Heaviside function. The dimensionless
parameters of the potential energy in U2 and U3 are
adjusted to the following values: A = 23, B = 67.27,
θ = 65◦ and w = 0.3 such that a disordered and thin per-
colating network starts to self-assemble at kBT/ǫ ≈ 0.05
[33, 34, 36, 37].

S.12. Optimally Windowed Chirp (OWCh)

The input chirp signal has a mathematical form:

γ(t) = γ0W (t; b) sin[(Lω1)(e
t/L − 1)] (S11)
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a b

FIG. S7. Characterization of fractal structure of the first percolation backbone near the gelation threshold. (a)
A simulation snapshot of the gel structure in the early stage of gelation. The blue network represents the percolating cluster
(backbone) while the finite clusters, which are separated from the backbone, are shown in green. The thicker regions correspond
to regions where stresses are accumulated as the gel solidifies. (b) Scaling of mass of the clusters as a function of their radius
of gyration. From these data, we obtain the fractal dimension df = 2.5± 0.05.
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FIG. S8. Comparison of viscoelastic parameters ob-
tained from rheology and microscopic dynamics. The
filled symbols correspond to the viscoelastic parameters mea-
sured from the macroscopic rheology while the open symbols
are the values obtained from the corresponding MSD.

where γ0 is the strain amplitude and L = T/ ln(ω2/ω1).
The phase of the signal exponentially grows from the
initial frequency ω1 to the final frequency ω2 within the
duration of the signal T . The window function W (t; b)

for a symmetric Tukey window is given by:

W (t; b) =







cos2[πb (
t
T − b

2 )], for t
T ≤ b

2

1, for b
2 < t

T < 1− b
2

cos2[πb (
t
T − 1 + b

2 )], for t
T ≥ 1− b

2
(S12)

The OWCh signal γ(t) is used to impose deformation.
Following each deformation, the equation

m
d2ri
dt2

= −∇riU − ζ
(dri
dt

− γ̇(t)yiex
)

(S13)

is solved for each particle using Lees-Edwards boundary
conditions, where ex is a unit vector along the X- axis.
We use m/ζ = 10.0τ0 to be in the overdamped regime.
We compute shear stresses, σxy(t) from the interaction
part of the global stress tensor using the standard virial
equation while neglecting the contribution from kinetic
energy and viscous dissipation as:

σαβ =
1

L3

∑

i

∂U

∂rαi
rβi (S14)

where α and β stand for Cartesian components {x, y, z}.
The viscoelastic moduli are then extracted as:

G′(ωi) = Re

{

σ̃(ωi)

γ̃(ωi)

}

G′′(ωi) = Im

{

σ̃(ωi)

γ̃(ωi)

} (S15)

where σ̃ and γ̃ are the Fourier transforms of the stress
and strain signals respectively.


