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ABSTRACT

Efficiency in computing systems is a pressing concern as global reliance on machines
and automation grows. Leveraging an understanding of the brain's exceptional
computational capabilities, this study presents a preliminary nondimensionalized model
of synapses, an essential component for developing brain-inspired computing systems.
The model simulates a physical analog of synapse formation wherein a single
two-nanowire junction in an electrolytic medium undergoes an electric potential,
causing electric field-driven ion transport and subsequent filament growth. Simulations
allow for the extraction of meaningful parameter relationships as well as governing
equations relating both filament length and time, and current and time. By investigating
electric potential-driven cation diffusion, the model provides insights for designing
more advanced computing technologies. Future directions involve refining
assumptions, adapting system geometry for dendritic growth, and modeling an entire
nanowire network. This research bridges the gap between brain-inspired and physical
computing, paving the way for highly efficient computing systems beyond traditional
approaches.
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1. INTRODUCTION

The brain exhibits unmatched computational efficiency and has drawn
widespread, multidisciplinary interest in recent years. The brain is made up of 86 billion
neurons’ which send information through a neural superhighway in the form of action
potentials. The vast functionality of the brain positions it to perform complex operations
on incoming sensory inputs, store and retrieve memories, and generate output in the
form of thoughts, behaviors, and actions. The underlying mechanisms that dictate the
brain’s efficiency are largely structural®*; however most modern attempts to replicate
brain-like computing rely on algorithmic approaches which fail to harness the built-in
connectivity of the brain’s physical network.> While machine learning-based algorithms
can significantly increase computing efficiency, computers still lag behind the immense
efficiency of the brain. Therefore, it is vital to develop an approach for systematically
building physical solutions to approach the human brain’s (5.52 + 1.13)-10'° bits/s and
bridge the efficiency gap.®

The application of a voltage to a two-nanowire system within a dielectric
medium has been demonstrated to exhibit similar self-assembly characteristics to
those that make the brain so efficient.” With the application of voltage, a filament with
the same composition as the positively charged nanowire will grow in accordance with
the electric field, closing the gap between the two nanowires over time. Thus, this work

will introduce a preliminary computational model that can inform the design of such
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physical systems by predicting the filament’s growth behavior in relation to various

adjustable parameters.

2. BACKGROUND
2.1 The Human Brain

The brain is a highly efficient computational machine. It is composed of
interconnected neurons that form connective pathways through which electrical signals
can be sent. These signals carry information throughout the brain that influence how
the body operates. Once a neuron is formed, it migrates to its designated position and
extends axons in the direction of adjacent neurons. These axons segment into
dendrites, or branching structures, that extend towards nearby neurons.® This neuron
growth and subsequent formation of synapses, or synaptogenesis, is driven by both
chemical and electrical signaling factors.® Once these neurons make contact with each
other, a physical connection is formed that allows for a rapid transmission of electrical
impulses through the junction between two neurons.

Synapses and other connective mechanisms allow the brain to achieve an
efficiency that is six orders of magnitude greater than the most powerful computer in
the world.® In order to harness these mechanisms, algorithmic approaches have been
used with the aim of applying the brain’s efficiency to modern day computing. Although

it is imperative to span the efficiency gap, neural nets overlook several inherent
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efficiencies of physical systems. The 3D geometry of neurons, for instance, allows

them to form points of connection that are largely unreachable on a 2D transistor.™

2.2 A Physical Analog of Neuron Growth

Thus, it is imperative to develop a physical analog to the brain that can be used
in applications of computing and beyond. To do this, a model that can harness the
self-assembly capabilities of brain-like materials must first be created. A single
two-nanowire junction can be modeled physically and computationally during the
course of an applied voltage as an analog for synapse formation.”"" A visual
comparison between a single two-nanowire junction (Figure 1a) and the corresponding
simulated model constructed in this work (Figure 1b) are shown in Figure 1. In the
brain, adjacent neurons experience an electrochemical driving force towards each
other, causing axons and dendrites to spread out accordingly. This axon-and-dendrite
growth can be represented as a two-nanowire junction that experiences an applied

voltage, causing a filament to form through a dielectric medium between the two.™
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Figure 1: HR-TEM image and computational representation of a single two-nanowire junction. (a)
High-resolution transmission electron microscopy (HR-TEM) image of a single two-nanowire junction.
These two Ag nanowires on the Cu grid were prepared as described in Figure 8 as part of a nanowire
network. (b) Analogous computational model of the 2D nanowire junction developed in this work. The
gray rectangles on the left and right sides of the image represent the two nanowires. The white, curved
shape on the leftmost nanowire represents the growing filament. The color gradient represents the
electric potential through the dielectric medium. The horizontal dashed line is an axis of symmetry. All
subsequent visualizations will depict only the top half of the filament and the dielectric medium it grows
through for simplicity. Scale bar: 20 nm.

2.3 Fundamental Materials Properties and Behavior of Nanowire Systems

Silver (Ag) nanowires, for instance, demonstrate this filament formation in
response to an applied voltage as well as exhibit volatile resistive switching under low
electric fields.'' Volatile resistive switching is the process by which, after the filament
physically bridges the two nanowires and the circuit is shorted, a physical pathway for
electrical current to pass through is retained in the form of the filament for a short
duration. This self-assembly closely mimics self-assembly of neurons during
synaptogenesis that corresponds with the formation of short-term memory in the brain.
This volatile resistive memory allows the resistance of the material to be altered to

represent binary data (0Os and 1s) for use in computing. However, unlike traditional
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resistive-switching random access memory (RRAM), volatile resistive memory is
designed to be volatile, meaning it loses its stored data soon after the removal of
voltage, or once the power is turned off.'® This differs from materials that exhibit
non-volatile memory which retain the resistive memory for much longer durations in
response to higher applied voltages. However, further consideration of non-volatility

goes beyond the scope of this work.

Several nanowire systems in electrolytic mediums have been demonstrated to
embody resistive memory and exhibit self-assembly behavior. With the application of a
voltage to a nanowire, an electric potential is introduced such that one nanowire serves
as a positive terminal and the other as a negative terminal. Due to this electric potential
difference, metallic ions are oxidized from the nanowire with the greatest electric
potential and reduced near the nanowire with the lowest electric potential.’”

Once the cations enter the electrolyte, or dielectric medium, that separates the
two nanowires, they undergo cation transport from the positive nanowire to the
negative nanowire. This process occurs across the entire length of the nanowires, and
in the case of two equivalent nanowires, the factors dictating ion transport remain
consistent between both cations and anions. Although there are many different factors
that influence this transport and subsequent filament growth, the electric field has been
shown to be the dominant driver of ionic current.''® The electric field will therefore be

treated as the dominant driving force in the computational models and simulations to

follow. This allows further simplification as the effects of mechanisms such as electron
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charge transfer, ion diffusion, and ion hopping, among others, can be ignored.
Consideration of critical nucleus formation can also be bypassed since the
computational simulations in this work assume a nonzero initial filament length.
Additionally, if the applied voltage is within ~ 0.7 V and 1.2 V, filament growth rate
should not be nucleation-limited.”” However, these aforementioned transport
mechanisms are still present, so it remains valid to reference them for the calculation of
certain materials parameters associated with individual system components.

Once cations traverse the gap separating the two nanowires, a filament begins
to form as the cations are reduced and connect to the nanowire that experiences the
lowest electric potential. As this process continues, the cations reduce and form a
filament that grows towards the nanowire that experiences the greatest electric
potential. When the filament reaches the nanowire, it causes a large increase in the

current flowing in the system.

3. METHODS
3.1 Underlying Simplifications and Assumptions for the Simulation

Once the filament bridges the gap between the two nanowires, current can flow
more freely from nanowire to nanowire. More precisely, once the filament tip becomes
sufficiently close to the opposite nanowire, tunneling current can become the dominant
mechanism for charge transport.’” However, for the purposes of the preliminary

simulation, the focus will be limited to the formation of the filament as well as the large
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increase in conductivity that results. Additionally, the memristive behavior that follows
the short-circuiting of the system and the subsequent removal of applied current will be
left for future explorations.

To predict the behavior of this physical brain-emulating system, a preliminary
computational simulation has been developed in Mathematica, Version 13.2.1.0. This
models the two-dimensional growth of a metallic filament connecting a single
two-nanowire junction that is subjected to an applied voltage with the initial state
shown in Figure 1a. For simplicity, only one growing filament is modeled, and its
geometry is assumed to be self-similar such that any growth corresponds to a
translation of the leading end of the filament towards the nanowire ahead of it. The
width is similarly held constant such that changes in filament area exclusively cause an
increase in one-dimensional growth forward, towards the nanowire ahead of the
growing filament. There is assumed to be a plane of symmetry through the tip, or
leading point, of the growing filament, so the system is modeled using a half-width, or
radius, in all instances following Figure 1a. The system is assumed to be held at room
temperature at a pressure of 1 atm, and it is assumed to undergo no arbitrary physical
perturbations from external influences.

The nanowires are also assumed to be conductive, infinitely long, and
overlapping perpendicularly to each other. Additionally, the dielectric medium
surrounding the nanowires is assumed to be homogeneous and isotropic. The electric

field is also assumed to be electrostatic (uninfluenced by external magnetic fields) and
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is considered to be the only electric field acting on the system. Although these
idealized assumptions greatly simplify the system’s mathematical modeling and reduce
the computational load, it is important to note that removing some of these simplifying
assumptions could allow for a more accurate, complex model.

For this simulation, the ion mobility y, was treated as a constant since the
materials within the system are homogenous and the electric field strength is low such
that the analogy to volatile memory is preserved (i.e. with low applied voltage). When
the velocity of charge carriers does not significantly depend on the strength of the
electric field, such as with a low electric field strength, the mobility can be reasonably
approximated as a constant. For a more sophisticated model, the dependence of
mobility on dynamic factors such as carrier concentration and electric field strength

should be considered. However, this is beyond the scope of this current simulation.

3.2 Building the Model’s Initial State
3.2.1 Filament Geometry

Creating the model begins with selecting the geometry of the filament. The
model visualizes a half-filament about the axis of symmetry shown in Figure 1a. The
filament is modeled as having straight sides, a constant width equivalent to the radius,
and a curved leading edge. The filament grows from one of the two nanowires which
are separated by a total distance, d. The rectangular boundary of the filament is

composed of a series of connected points with maximum y-values equivalent to the
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radius. The leading, curved region of the filament is composed of a quarter circle
created based on the input radius. Since the radius of the filament is equivalent to the
width and is used to calculate the quarter-circular tip geometry, the initial filament
length must be greater than the radius. These values can be changed as desired.

For the majority of the following simulations, the radius is selected to be
equivalent to 5% of d, or equivalently, 5% of the length of the overlapping portions at
each nanowire junction. This is denoted as a nondimensionalized length of 0.05.
Similarly, the initial filament length is selected to be 10% of d and is denoted as having
a nondimensionalized length of 0.1. A more detailed explanation of
nondimensionalization is provided in the following section. More detailed geometric
equations and visualized explanations can be found in the Mathematica Notebook

excerpts in the Appendix.

3.2.2 Parameter Nondimensionalization

In order to speed up computation and make this model applicable to a wide
range of physical systems, all variables are nondimensionalized. In order to put
variables into a nondimensionalized form, the units must cancel out such that broad,
factor-based relationships between variables can be uncovered. As a general
rule-of-thumb, the nondimensionalized form of a variable can be reached by taking the

ratio of the actual variable and the reference value, or initial condition.
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In this model, the nondimensionalized form of several variables are presented,
including position (x™" and y™"), electric potential (®"™"), ion mobility (u""), time (z""),

and current (I"") as follows in Equations 1-6.

xhon — ﬁ (1)
Y ()
non — 2
YT
prone 2 (3)
Vv
app
phon =ty ONAdVapp 4)
Thon =ty ONAdvapp 5)
pron 1 (6)
U ON AdVapp

Avogadro’s number' (N,) is included to account for the molar units of electric
flux. The distance between the two nanowires is represented here by d, and the
applied electric potential in the form of voltage is represented here by V,,,. For
completeness, X, y, and d have units of meters (m), ® and V,,,, have units of volts (V),

has units of seconds (s), p, has units of m?/(V-s), and | has units of amperes (A).

3.2.3 Mesh Construction

16
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Once the system geometry is established, the filament points are used to create
a boundary mesh surrounding the system, followed by an area mesh as a foundation
for the simulation. Regions that directly surround the filament as well as those in the
path of the growing filament are meshed much more finely since these regions undergo
rapid changes in electric field (i.e. at the tip) and require more precise calculation to
account for this. It should be noted that there exists a minor issue with using
Mathematica’s interpolation function on meshes, resulting in unexpected behavior at
certain positions. However, this issue is currently being patched in Mathematica and
has no measurable effect on this model. An example of this mesh can be found in the

Mathematica Notebook excerpts in the Appendix.

3.2.4 Electric Potential

Following the creation of the mesh, a voltage, or electric potential, is introduced
to the system. This is done using Laplace’s equation® which states that, within a
source-free region, the Laplacian of the electric potential field is zero, meaning that the
charges of anions and cations cancel. In order for the Laplacian equation to be
considered valid for this case, the system is assumed to be in a steady-state condition,
meaning that the electric field and the geometry of the system do not change with
time. Since this model recalculates the electric potential at finite time values rather than

sweeping continuously over time, these conditions are upheld.
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Unique solutions to Laplace’s equation can be determined if either the function’s
value is specified on all boundaries (Dirichlet boundary condition) or the normal
derivative of the function is specified on all boundaries (Neumann boundary
condition).?"* As such, both Newmann and Dirichlet boundary conditions were

incorporated.

3.2.5 Electric Field and Flux
Electric field could then be calculated in both x and y directions from the
second-order partial differential equation for electric potential. It could then be related

to electric flux by the ion mobility in the following equation (Equation 7),

J=p,V P (7)

where J is the flux in mol/(m?-s), y, is the ion mobility, and V® is the gradient of the
electric potential, or the electric field in V/m.?® The negative sign that is typically
included in this equation is neglected in order to simplify computation since the
one-dimensional direction of filament growth is known.

Although the total flux is typically understood to be a sum of the flux based on
diffusion (as in Fick’s First Law®) and the flux based on the drift term, the electric field
is assumed to be the limiting factor of filament growth, with each cation moving in the
direction of a local electric field (i.e. high electric potential) proportionally by a factor of
Mo- As a result, the effects of diffusion can be disregarded without fundamentally

altering the accuracy of the simulation.

18


https://www.zotero.org/google-docs/?TTatVt
https://www.zotero.org/google-docs/?wCkqyo
https://www.zotero.org/google-docs/?gfizFv

3.3 Creating a Dynamic, Iterative Simulation
3.3.1 Time Incrementation

Once the initial state is achieved in the simulation, it is important to investigate
the filament growth behavior as a function of time. To do so, a nondimensionalized time
step At must be introduced. For the simulations and equation fitting presented in this
work, a nondimensionalized time step of At = 0.0001 is used. (However, note that
exported videos in the Supplemental Information use a nondimensionalized time step

of At = 0.001 to reduce file size and increase exporting speed.)

3.3.2 Dynamic Calculation of Flux

With each time increment, there will be a change in flux as well as a subsequent
change in filament length. The changes in flux over time can be calculated by
integrating the flux within a circle that encompasses the entire filament and its
surrounding electrolyte at discrete times separated by a small time step of At. In
amorphous materials like electrolytes, the motion of ions is often described as being
driven by ion hopping, but assuming the concentration of ions and temperature are
held constant in this system, immediate reuptake becomes a reasonable assumption.?*
This means that the ion drift is the limiting factor wherein the electric field drives the ion
transfer and that the flux directly impacts the quantity of reduced cations that are

added to the tip of the growing filament.
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3.3.3 Dynamic Calculation of Filament Length

Following this flux determination, the filament length is updated with a length
value corresponding to the area increase associated with the change in flux. The
magnitude of the flux is equivalent to the ionic current, or the count associated with the
influx of cations (“area in”). The “area in” can be treated as equivalent to the flux times
the nondimensionalized area of the atom of interest. Note that this disregards the
effects of lattice packing and density on filament area. The nondimensionalized area of
the atom of interest can be approximated to equal the flux since all atomic radii, r,m,
are several orders of magnitude smaller than the nondimensionalized distance, d, that
separates the two nanowires. This approximation is used for this model and is shown in

Equation 8 below.

1 - ratom 2 (8)
d

Thus, with each time step At, the flux is recalculated, causing the filament length
to increase as the filament grows until the distance between nanowires, d, is reached

or surpassed.

3.3.4 Tabulating Results for Analysis
Using this iterative approach, several values can be generated and tabulated,
including time elapsed, filament length, filament area, and step area (or flux). An

example creating these tables can be found in the Mathematica Notebook excerpts in
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the Appendix. Note that tabulated values in the Appendix may show minute deviations
from the results reported here due to re-running of the simulation. These values form
the basis for the dynamic visualizations that model filament growth and allow for
nonlinear data fitting such that quantitative relationships between both filament length

and time, and current and time, can be extracted.

4. RESULTS AND DISCUSSION
4.1 Filament Length as a Function of Time
4.1.1 Nondimensionalization Approach

In order to assess the filament growth over time, a dynamic visualization was
created wherein black flux vectors are generated and overlaid onto a color gradient that
depicts the electric potential over time. This visualization utilized the tabulated values
of time elapsed and filament length generated in previous steps. Snapshots depicting
the filament growth over time are shown in Figure 2a-c with ™" = 0, ™" = "™ "*"2, and
™" = ™" respectively. The corresponding video, as well as videos associated with
different initial filament dimensions, can be found in the Supplemental Information.
This simulation provides a visual representation of the underlying variable

dependencies in this system.
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Figure 2: Simulation snapshots of nondimensionalized filament growth versus time. The color
gradient represents the electric potential which increases from left to right, and the black arrows
represent the electric field and electric flux. (a) Filament with initial length of 0.1 and initial radius of 0.05

at time £ = 0. (b) Filament at time ™" = 7"°™"°"2, once half of the time has passed. c. Filament at time

™" = 7™ the first instance at which the filament has reached the rightmost nanowire. Note the
changes in both the electric potential and arrow directions with the passage of time.

The filament begins with an initial length of 0.1 and radius of 0.05 in
nondimensionalized form. This initial state can be seen in Figure 2a. With each
nondimensionalized time step At (At = 0.0001 in this case), the filament grows towards
the rightmost nanowire corresponding to the region of greatest electric potential,
indicated in red. The image in Figure 2b captures the state at which half of the total
time has elapsed. Note that the tip of the filament has not yet reached the halfway
point (x/d = 0.55) between its initial position (x/d = 0.1) and the position of the
rightmost nanowire (x/d = 1) despite the passage of half of the total time. This indicates
that the growth rate increases as the filament approaches the region of greatest
potential. Because of this, initial growth from ™" = 0 at Figure 2a to ™" = {""*"2 at
Figure 2b is shown to be smaller than between Figure 2b and Figure 2¢ at ™" =
Znonitot

Additionally, the black vectors represent the magnitude of the flux present in the

system. However, the arrows are flipped to point in the direction of the filament growth
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resulting from the flux-driven addition of area. Since the electric field and flux are
treated as equivalent with p, assumed to be constant at 1, these vectors also depict
the electric field profile. Equation 7 shows the relationship between electric flux and
electric field used here which neglects the negative sign that is typically associated
with this relationship in favor of illustrating the direction toward which the growth is
driven. The directions of these vectors change over time with greater flux concentrated
at the leading end of the growing filament. The magnitudes of these vectors’ angular
changes directly describe the flux at any given time and collectively contribute to the
area added onto the filament as it grows, supporting the simplification that the majority

of the area will be added to the filament tip.

4.1.2 Determination of Governing Equation for Time-Dependent Filament Growth
These relationships can be quantified using nonlinear data fitting methods in

Mathematica (see Appendix). The relationship between filament length and time for

this case (with initial filament length of 0.1 and width of 0.05) has been found to be

described by Equation 9.

x=(0.0593429exp( 15.3971 NEY LAV, ) +0.0286777)d ©)

Constants in this nonlinear exponential equation were found to be a =
0.0593429, b = 15.3971, and ¢ = 0.028677. Equation 9 has an adjusted R? value of
0.999814 and parameter confidence intervals® with a confidence level of 95% for a, b,

and c, respectively, as follows: (0.0571059, 0.0615798), (15.2039, 15.5902), and
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(0.0237774, 0.033578). This means that the true parameters for a, b, and c are 95%
likely to lie within the specified ranges. Equation 9 is plotted in Figure 3 along with the
relevant data. Because the nondimensionalized time step At = 0.0001 is so small, it
may be difficult to distinguish between the different data points. The thick, half-opacity
blue curve consists of these data points, and the thin, full-opacity blue curve that

overlaps with it is Equation 9.

Filament Length vs. Time
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Figure 3: Fitted curve of nondimensionalized filament length versus time. The filament has an initial
length of 0.1 and a radius of 0.05. The thick, half-opacity blue curve is composed of
computationally-generated data points. The thin, full-opacity blue curve fits this data and is described by
Equation 9. Note the nonlinear exponential relationship.

Using the value for z"" in Figure 3 at which ™" = """ and the x-axes
conversion between 7" and 7 from Equation 5, several parameter relationships
become clear. The applied voltage (V,,,), ion mobility (u,), and nanowire spacing (d) are
all inversely related to the total time ('), meaning that doubling the applied voltage,

selecting a material with twice the ion mobility, and doubling the spacing between
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nanowires, for instance, would each independently reduce the total time required for
filament growth by a factor of two, making it grow twice as fast. It does seem odd that
increasing d would result in faster total growth, so this unexpected result should be
further explored to confirm that the nondimensionalization was properly performed. For
the remainder of this discussion, this peculiarity is disregarded but should be returned

to at a later time for further justification.

4.1.3 Computational Validation Using Realistic System Parameters

The nondimensionalized relationships extracted from the simulation should be
validated numerically using parameters that describe a realistic system. Thus,
quantities describing a potential experimental configuration are employed as
justification for the nondimensionalized model. The relationships between variables
generated using the nondimensionalized case should also be observed in the case of
particular single two-nanowire junctions in a dielectric with known dimensions,
properties, and geometries.

As an example, a system consisting of two perpendicular silver (Ag) nanowires
separated by a distance, d, of 50 nm is considered with the same curved-tip geometry
as the nondimensionalized case. Initial conditions are made to match those of this
initial system where the initial filament length is set equal to 10% of d (5 nm), and the
radius is set to 5% of d (2.5 nm). This relative ratio between filament dimension and
nanowire spacing is supported by the literature.”” The rightmost nanowire experiences

an applied voltage of V,,, = 1.2 V with the addition of an electric potential. This applied
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voltage of ~ 1V is suitable for initiating the formation of volatile resistive memory.”®
Specifically, the application of ~ 1.2 V has been demonstrated to yield volatile resistive
memory in an Ag-nanowire network within an amorphous polymeric electrolyte.?®

The nanowires are assumed to be in an amorphous SiO, medium such that the
Ag ion mobility p, can be calculated from theoretical equations®” and known physical
parameters.?® The ion hopping mechanism describing carrier drift in highly defective
materials, such as amorphous solids or polymers, was used to make this calculation. In
this model, the carrier drift velocity under low electric fields can be approximated to the
following equation, Equation 10,%” where v, is the ion drift velocity, v is the jump
attempting frequency, r is the jumping distance, e is the elemental charge, kg is the
Boltzman constant, T is temperature (assumed to be room temperature in this case), E
is applied electric field (equivalent to the gradient of the electric potential, VO) , and
AG is the energy barrier for ion hopping to occur. These physical parameters can be

found in the literature.?®

L e AG*# (10)
v. ~|vr Eexp| —
! k,T kT

B

Based on Equation 10, the ion mobility p, of Ag in amorphous SiO, is calculated to be
3.178:10"" m%/(V-s).

The known quantities of d, p,, and V,,, (50 nm, 3.178-10""" m*/(V-s), and 1.2V,
respectively) are plugged into Equation 9 to form Equation 11 which can be used to

calculate the time, = ™, needed for the filament to be one time step away from
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spanning the distance, d, separating the two nanowires. This miniscule separation
prevents the calculations from undershooting the distance, d, since the simulation does

not capture when exactly the system reaches 7'

but rather finds the time at which the
total nondimensionalized filament length exceeds 1. Given the small time step At =

0.0001, this effect should be negligible.

x=2.96714- 10-%xp( 16499.3,/7 ) + 1.43389- 109 (1)
Constants in this nonlinear exponential Equation 11 were found to be a =
2.96714-10° m, b = 16499.3 s, and ¢ = 1.43389-10° m. Equation 11 is plotted in
Figure 4 below. By plugging x = d into Equation 11, 7 = 7™ is determined to be
2.76931-10% s , or approximately 28 ns. This value seems reasonable based on similar

tot

examined systems that have values of 7™ on the order of hundreds of nanoseconds,

with some variation.'”'®
Filament Length vs. Time
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Figure 4: Predictive curve of filament growth rate for potential experimental configuration. The
system consists of two Ag nanowires separated by d = 50 nm in an SiO, medium such that p, =
3.178-10™"" m?/(V-s) and undergoes an applied voltage of V,,, = 1.2 V. The filament has an initial length of
5 nm (10% of d) and a radius of 2.5 nm (5% of d) as with the nondimensionalized case. This curve is
described by Equation 11. Note that this particular system matches the nondimensionalized case in
Figure 3.

As with the nondimensionalized case, several parameter relationships can be
evaluated. Looking to the values in Figure 4 and using the conversion between ™" and
v from Equation 5, the applied voltage (V,,,), ion mobility (ug), and nanowire spacing (d)
in the potential experimental configuration are all confirmed to be inversely related to

the total time, ¢

. Thus, doubling the applied voltage, selecting a material with twice
the ion mobility, and doubling the spacing between nanowires, were confirmed to each
independently reduce the total time required for filament growth by a factor of two from
7' = 2.7606:10% s to 7' = 1.3803-10®° s, making it grow twice as fast. This confirms

that the model presented in this work can be utilized in the design of any such

nanowire system to yield physically relevant filament growth predictions.

4.1.4 Effect of Changing Initial Filament Dimensions

Since the computational model requires the input of initial filament length and
radius that vary from system to system, their effects should be considered. Increasing
the initial filament length does not affect the quantitative results of the simulation but
merely truncates the generated data points such that they begin at the coordinate
associated with the filament tip position. Changing the filament radius, however,
impacts """ and is worth modeling. The nondimensionalized effect of filament radius

on growth rate is shown in Figure 5.
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Figure 5: Effect of filament radius on growth rate. The nondimensionalized filament radius is set as r,
= 0.025 (brown top curve), r, = 0.05 (blue middle curve), and r; = 0.075 (bottom magenta curve) for three
respective simulations. The thick, half-opacity curves are composed of computationally-generated data
points. The thin, full-opacity curves fit this data. The resulting curves are shown here.

The radius-dependent values of """ were extracted from Figure 5 and
compared. """ was found to be 0.0163, 0.0318, and 0.047 for r, = 0.025, r, = 0.05,
and r; = 0.075, respectively. Since the radius was increased by a factor of two from r, to
r, and by a factor of three from r, to r;, the corresponding ratios of """ were
calculated. The ratio between """ of r,and r, was 0.0318 / 0.0163, or 1.95092, close
to the factor of 2 increase. The ratio between "™ of r,and r, was 0.047 / 0.0163, or
2.88344, close to the factor of 3 increase. These results indicate that there is a direct
linear relationship between the filament radius and the time required for the filament to
span d, meaning that increasing the radius by a factor of two, for instance, will increase

tot

the corresponding 7™ by just under that same factor. However, the slight

undershooting illustrates the minor effect of having a curved filament tip geometry (i.e.
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not perfectly rectangular). Thus, increasing the radius by greater factors would cause
the increase in """ to approach that factor due to decreasing effects of the filament
tip geometry.

Conceptually, a thinner filament requires the addition of fewer particles, and
therefore less flux, to grow longer. This is because, in the case of a simple rectangular
filament geometry, the filament area is defined as the product of the filament length
and the width. Since the flux is dictated by the electric potential, which is the same in
all three conditions illustrated in Figure 5, the “area in” is also consistent between
conditions. Since the width (or radius) is also fixed, the length is the only dynamically
updating dimension. Therefore, for thinner filaments, the “area in” quantity has a
greater effect on length, causing the length to increase more rapidly for thinner

filaments. Equivalently, the larger the filament radius, the slower the filament will grow.

4.2 Current as a Function of Time
4.2.1 Determination of Governing Equation for Time-Dependent Current

Tabulated filament growth simulation results can additionally be used to extract
a relationship between electric current and time through nonlinear data fitting methods
in Mathematica. However, the relationship that describes current and time does not fit
into a typical nonlinear form, so a more manual manipulation of possible equation
parameters is needed to find a reasonable fit. As with the original simulations, the initial

filament length is assumed to be 0.1, and the radius is assumed to be 0.05. Assessing
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flux as a function of time is analogous to assessing current versus time in the
nondimensionalized case since flux describes the influx of cations, which is equivalent
to the current (“area in”). The relationship between electric current and time for this
case (with initial filament length of 0.1 and width of 0.05) has been found to be

described by Equation 12.

I=(-5.58367- 108exp( —3.48577- 109(,uONAdV T) 14-6417) (12)

+0.00205608u (N ,dV, 7+ 5.58367-10%) u N dV,

app

Constants in this nonlinear exponential equation were found to be a = -5.58367,
b =-3.48577-10° c = 14.6417, d = 0.00205608, e = 5.58367-10°. Note that the d in this
case is just a constant equation parameter rather than equivalent to the spacing
between two nanowires. Equation 12 has an adjusted R? value of 0.996492 and
parameter confidence intervals®® with a confidence level of 95% for a, b, ¢, d, and e,
respectively, as follows: (-5.58367-108, -5.58367-10°), (-3.48577-10°, -3.48577-109),
(14.6327,14.6508), (5.58367-10%, 5.58367-10°), and (0.00192471, 0.00218744). This
means that the true parameters for a, b, ¢, d, and e are 95% likely to lie within the
specified ranges. Equation 12 is plotted in Figure 6 along with the relevant data.
Because the nondimensionalized time step At = 0.0001 is so small, it may be difficult to
distinguish between the different data points. The thick, half-opacity blue curve
consists of these data points, and the thin, full-opacity blue curve that overlaps with it

is Equation 12.
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lonic Current vs. Time
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Figure 6: Fitted curve of nondimensionalized electric current versus time. The filament has an initial
length of 0.1 and a radius of 0.05. The thick, half-opacity blue curve is composed of
computationally-generated data points. The thin, full-opacity blue curve fits this data and is described by
Equation 12. Note the nonlinear exponential relationship.

Using either Equation 12 or the fitted curve in Figure 6 allows for the prediction
of electric current in the system as a function of time. This relationship appears to be
nonlinearly exponential, with parameters closely dependent on one another. Contrary to
their effects on total time ('), the applied voltage (Vapp)s ion mobility (uo), and nanowire
spacing (d) are all directly related to the maximum ionic current (I™*°"°) and electric
current (Imeeee) ' meaning that doubling the applied voltage, selecting a material with
twice the ion mobility, and doubling the spacing between nanowires, for instance,

would each independently increase the maximum ionic current by a factor of two.
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4.2.2 Computational Validation Using Realistic System Parameters

As with the comparison between filament length and time, nondimensionalized
relationships extracted from the simulation should be validated numerically using
parameters that describe a realistic system. As with the prior computational validation,
a potential experimental configuration is employed as justification for the
nondimensionalized model which matches the configuration used previously.

The known quantities of d, p,, and V,,, (50 nm, 3.178:10"" m*/(V-s), and 1.2 V,
respectively) are plugged into Equation 12 to form Equation 13 and Equation 14
which can be used to calculate the final, maximum current, | = I™. The quantity 1™ is
reached when the filament is one time step away from spanning the distance, d,
separating the two nanowires. Equation 13 describes the ionic current, |, in units of
ions/s and can be multiplied by the fundamental positive charge, e = 1.602-10"C to
get to Equation 14. Equation 14 describes the electric current, | e.yic, in units of

amperes (A).

=( —5.58367- 10%exp( — 1.29616- 1097 7 14.6417) (13)

I. .
wonic

+ 1967.57 + 5.58367- 108) 956918

=( —5.58367- 108exp( — 1.29616- 1097 7 1-46417) (14)

electric

+1.9675- 1037 + 5.58367- 108) ( 1.53298- 10~ 13)

Constants in this nonlinear exponential Equation 13 were found to be a =
-5.58367-108, b = -1.29616-10%, ¢ = 14.6417, d = 1967.5, e = 5.58367-10%, and f =

956918 with the appropriate units to yield units of ions/s. Similarly, constants in
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Equation 14 were found to be a = -5.58367-108, b = -1.29616-10% s72, ¢ = 1.46417, d
=1967.5, e = 5.58367-10°%, and f = 1.53298-10"® with the appropriate units to yield units
of Amperes. Equation 13 is plotted in Figure 7 below. As before, plugging x = d into
Equation 11, yields " = 2.7606-10® s , or approximately 33 ns, and seems reasonable
based on the literature.'” By plugging 7' = 2.7606-10°® s into Equation 13 and
Equation 14, respectively, the maximum ionic current and maximum electric current

are determined to be I™°"c = 434,723 ions/s and Im&electic — 5 96426-10717A.

lonic Current vs. Time
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Figure 7: Predictive curve of ionic current versus time for potential experimental configuration. The

system consists of two Ag nanowires separated by d = 50 nm in an SiO, medium such that p, =

3.178:10™"" m%/(V-s) and undergoes an applied voltage of Voo = 1.2 V. The filament has an initial length of

5 nm (10% of d) and a radius of 2.5 nm (5% of d) as with the nondimensionalized case. This curve is

described by Equation 13. Note that this particular system matches the nondimensionalized case in
Figure 6.

As with the nondimensionalized case, several parameter relationships can be

evaluated. Plugging ™' = 2.7606-10° from previous calculations into Equation 13 and
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using Equation 6, the applied voltage (V,,,), ion mobility (), and nanowire spacing (d)
in the potential experimental configuration are all confirmed to be inversely related to
the total time, 7. Thus, doubling the applied voltage, selecting a material with twice
the ion mobility, and doubling the spacing between nanowires, were confirmed to each
independently increase the maximum ionic current and the maximum electric current
during filament growth by a factor of two from I™@°" = 434,723 ions/s to Im@°"° =
869.446 ions/s and from ™" = §.96426-107"" A to ™" = 1,.39285-10" A,
respectively. This confirms that the model presented in this work can be utilized in the
design of any such nanowire system to yield physically relevant predictions of current.
In lieu of reassessing the effect of changing initial filament dimensions on current, the
results of Figure 5 can be reasonably extended to represent the roughly linear inverse

dependence of the final maximum current on the filament radius.

5. CONCLUSIONS AND FUTURE DIRECTIONS

This work presents a versatile computational model and resulting governing
equations for predicting and understanding filament formation and growth behavior in
the presence of an applied electric potential. This analysis specifically focuses on
uncovering the relationships between both filament growth and time, and current and
time, from a small initial filament geometry until the time when the electric potential
source is reached. A nondimensionalization approach facilitates the development of a

widely-applicable model that is independent of fundamental system parameters. Thus,
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the resulting model can be tailored to represent any two-nanowire junction under any
applied voltage. This allows for the input of system-specific geometric parameters such
as filament width, initial filament length, and nanowire spacing, as well as
materials-specific parameters such as ion mobility (u) and ion dimension during the
application of a voltage of interest.

This work shows promise for aiding in the design of physical, brain-like systems
for enhanced computing efficiency. Additionally, due to the vast customizability of the
simulation, this tool can be simply adapted for studying filament formation in distinct
application contexts that extend beyond computation. For instance, predicting filament
formation in both liquid-electrolyte and solid-state batteries, for instance, is of
particular relevance as filament growth remains batteries’ primary failure mode, causing
short circuits.?

To enhance the model's accuracy and reliability, it is imperative to reduce
simplifications and reassess underlying assumptions. For instance, considering
presently disregarded mechanisms such as ion diffusion, redox reactions, and
tunneling current as well as surface energy effects and the nonlinear relationship
between electric field and flux will elevate the model to become a more comprehensive
representation of the underlying dynamics. Further expansion of the scope could
include considering the filament growth and resulting current after the filament spans
the nanowire spacing as well as the effects of removing and re-initiating the applied

voltage such that volatile, and in the case of higher applied voltages, non-volatile,

36


https://www.zotero.org/google-docs/?43neX0

resistive switching could be observed. Additional consideration of the resistance of
silver (Ag) nanowire junction could assist in determining current behavior once the
filament spans the nanowire spacing. '

Additionally, refining the model to include a filament geometry that more closely
resembles dendritic structures present in neuron growth can offer a deeper
understanding of the intricate growth mechanisms. Another interesting area of
exploration involves examining how changes in filament geometry, such as surface
curvature, impact the overall filament growth behavior.

Furthermore, this model can be expanded to represent multiple nanowire
junctions in the context of a nanowire network. Nanowire network and tunneling effects
in 3D systems can be computationally modeled and physically fabricated for
experimental validation.?®*° Figure 8 showcases a physically fabricated early-stage
nanowire network model that serves as a preliminary demonstration of the potential for

future expansion of this work.
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Figure 8: HR-TEM image of Ag nanowire network. To prepare the specimen, a silver (Ag)
nanowire solution (0.833 mg/ml of silver nanowire dispersed in ethyl alcohol) was twice spin-coated
on a copper grid at 1000 rpm for 30 s. The copper grid and nanowire network system was then
vacuum annealed at 80 deg C overnight. The HR-TEM analysis was conducted by Dr. Jin-Hoon Kim
using the Titan Themis Z G3 at MIT Nano. Scale bar: 5 pm.

These future endeavors will undoubtedly pave the way for enhanced insights
and advancements in the understanding and application of the proposed model.
Overall, this work serves as a fundamental first step towards predicting filament growth
behavior and the accompanying current profiles, enabling a methodical exploration of

diverse system dynamics.
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APPENDIX

Modeling Synapse Formation and
Growth as a Non-Biological Analog to
the Brain

The undergraduate thesis of Sara V. Fernandez as submitted to the Department
of Materials Science and Engineering at the Massachusetts Institute of
Technology, May 23, 2023

Building the Model’s Initial State

Filament Geometry

Package-Loading

in[ - Needs["NDSolve FEM "]
Needs ["DifferentialEquations NDSolveUtilities "];

Needs ["DifferentialEquations InterpolatingFunctionAnatomy "] ;

Inputting Initial Geometry Values

in[-]- n=123 (* n is related to the degree of mesh refinement.x)
initialFilamentLength = 0.1;
radius = 0.05; (*This was changed to include 0.025, 0.05,
and 0.075 to assess the effect of changing initial filament

dimensions and for the production of the Supplementary Videos.x)

Radius

This equation is used to construct the quarter-circular filament tip geometry. Solving for the initialFila-
mentAreaExpression allows for the radius to be used as an input.
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initialFilamentArea = ['in'it'ia'LF'i lamentAreaExpression /.

1
{F'Latten[So'Lve[rad'i us == —— |2 initialFilamentLength - ‘\/E
4 -7

1
\/2 initialFilamentLength?+ — (-8 +2 ) initialFilamentAreaExpression |,
2

initialFi lamentAreaExpression] ] }] [1]

Filament Tip Geometry
This function was adapted with permission from a similar function created by Dr. W. Craig Carter.

In[ - tipCoords[initialFilamentLength_, initialFilamentArea_, n_] := Block[

(xThe following describes the geometry of the quarter-circle tip.#*)

1
{rad'ius = —— |2 initialFilamentLength -
4-7

1
\/E ,\/2 initialFilamentLength? + — (-8 + 2 ) initialFilamentArea ] R
2

flankPoints

1,

(*The following describes the geometry of the points that flank the quarter-
circle tip (i.e. the horizontally-translated points).x)
If[initialFilamentLength - 1.5 radius z 0,
flankPoints = Sqrt[(initialFilamentLength - radius)]
Sqrt[Range[0, initialFilamentLength - 1.5 rad1ius,
(initialFilamentLength - 1.5 radius)] / n], flankPoints = {0}];
Join[{tt, radius} & /@ flankPoints,

Threaded[{initialFilamentLength - radius, 0}] +
Pi

radius AngleVector /@ Range [P'i /2,0, -—

2n
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Output Example: Visualization

in[- - tipCoordsVisualization|[
initialFilamentLength_, initialFilamentArea_, n_] := ListPlot[

tipCoords[initialFilamentLength, initialFilamentArea, n], PlotRange - Full]

in[- - tipCoordsVisualization[initialFilamentLength, initialFilamentArea, n];

0.05

] ] .
.
0.04

0.03

0.02

LI B s LU s B S B S S B B S B

Mesh Construction

The mesh construction functions were adapted with permission from similar function created by Dr. W.
Craig Carter.
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Boundary Mesh

in[ - makingBoundaryMesh[initialFilamentLength_, initialFilamentArea_, n_] :=
Block[{height =1,

flank = tipCoords[initialFilamentLength, initialFilamentArea, n],
coords,
flankPointCount,
flankPointIndices,
lines,
boundaryMarkerFunction },

flankPointCount = Length[flank];

flankPointIndices = Range[flankPointCount];

(*This draws lines between coordinates located around a 1x1 square to create
an outline such that the filament geometry is shown using negative space.x)
coords = Join[flank, {{1, 0}, {1, 1}, {0, 1}}];
lines =
Join[Most[Transpose[{flankPointIndices, RotateLeft[flankPointIndices]}]],
{{flankPointCount, flankPointCount + 1},
{flankPointCount + 1, flankPointCount + 2},
{flankPointCount + 2, flankPointCount + 3},
{flankPointCount + 3, 1}

3

(*This creates a mesh of the outline.x)
ToBoundaryMesh["Coordinates" - coords,
"BoundaryElements" -» {LineElement[lines
, Join[ConstantArray[l, flankPointCount -1], {2, 3, 4, 5}]1},
"PointElements" -

{PointElement[List /@Range[Length[coords]], Range[Length[coords]]]}

Output Example: Visualization

in[ - boundaryMeshVisualization[initialFilamentLength_, initialFilamentArea_, n_] := Show[

makingBoundaryMesh[initialFilamentLength, initialFilamentArea, n] ["Wireframe"]]

in[- - boundaryMeshVisualization[initialFilamentLength, initialFilamentArea, n];
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N

Area Mesh

in[ - boundaryMesh[initialFilamentLength_, initialFilamentArea_, n_] :=

makingBoundaryMesh[initialFilamentLength, initialFilamentArea, n]
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ro1-
i:

1
in|

i:

makingAreaMesh[initialFilamentLength_, initialFilamentArea_, n_] :=
W'ith[{boundaryMesh =

makingBoundaryMesh[initialFilamentLength, initialFilamentArea, n],

1
radius = —— |2 initialFilamentLength -
4-7

1
\/E ,\/2 initialFilamentLength? + — (-8 + 2 ) initialFilamentArea
2

}s
<|"Boundary" - boundaryMesh,
"Area" -» ToElementMesh[boundaryMesh
, MeshRefinementFunction »
Function[{vertices, area}, Block[{xM, yM}, {xM, yM} = Mean[vertices];
If[Sqrt[(yM*2 + (XM -1initialFilamentLength)*2)] < .1 ||
(0 < xM < initialFilamentLength && @ < yM < radius),
area > 0.000001, area > 0.0001]

areaMesh[initialFilamentLength_, initialFilamentArea_, n_] :=

makingAreaMesh[initialFilamentLength, initialFilamentArea, n] ["Area"]

mesh[initialFilamentLength_, initialFilamentArea_, n_] :=

mesh[initialFilamentLength, initialFilamentArea, n] = ToElementMesh[boundaryMesh|[

initialFilamentLength, initialFilamentArea, n], MeshRefinementFunction -

Function[{vertices, area}, Block[{xM, yM}, {xM, yM} = Mean[vertices];
If[ (Abs[yM] < .1), area > ©0.0001, area > 0.0005]

1
11

Output Example: Visualization

meshVisualization[initialFilamentLength_, initialFilamentArea_, n_] :=

Show[mesh[initialFilamentLength, initialFilamentArea, n] ["Wireframe"]];

meshVisualization[initialFilamentLength, initialFilamentArea, n];
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Electric Potential

Magnitude and Position

The numbers associated with the DirichletCondition functions indicate the magnitude of the applied
voltage, or electric potential. The numbers associated with the ElementMarker functions indicate the
position of the applied voltage where 1 is the curved filament tip, 2 is the remaining horizontal line that
extends rightward from the filament tip, 3 is the rightmost vertical line, 4 is the horizontal line at the
top that connects 1 and 5, and 5 is the leftmost vertical line.

[ .- electricPotential[initialFilamentLength_, initialFilamentArea_, n_] :=
electricPotential[initialFilamentLength, initialFilamentArea, n] =
NDSolveValue|[
{
Laplacian[phi[x, y], {x, y}] ==
NeumannValue [0, ElementMarker = 2] +

NeumannValue[®, ElementMarker = 4],

DirichletCondition[phi[x, y] == 1. , ElementMarker = 3],
DirichletCondition[phi[x, y] == 0., ElementMarker = 1],
DirichletCondition[phi[x, y] == 0., ElementMarker = 5]

}

, phi, {x, y} € areaMesh[initialFilamentLength, initialFilamentArea, n]]
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Output Example: Visualization

in[ .- electricPotentialVisualization[initialFilamentLength_, initialFilamentArea_, n_] :=
electricPotentialVisualization[initialFilamentLength, initialFilamentArea, n] =
Module[{localPhiSol = electricPotential[initialFilamentLength,
initialFilamentArea, n]}, ContourPlot[localPhiSol[x, vy],
{x, y} € areaMesh[initialFilamentLength, initialFilamentArea, n],
ColorFunction -» (ColorData["TemperatureMap"] [#] &), Contours - 40, PlotLegends -
BarLegend [Automatic, LegendLabel - "&/V"], FrameLabel - {"x/d", "y/d"}]]

0.0

in[ - electricPotentialVisualization[initialFilamentLength, initialFilamentArea, n];
10 L] e
08 dN
0.891
10756
06 —
—+ 0.621
- —1
= ‘ —1 0.486
04 | | ‘ ‘ —1 0.351
| | | ‘ = o0216
| =
| | ‘ 0.081
02 | | |
| ‘ ‘ -0.054
|
i
04

x/d

Note that there is a minor issue with using Mathematica’s interpolation function on meshes, resulting
in unexpected behavior at certain positions. The region directly surrounding (0.05, 0.05) shows this
behavior. However, this issue is currently being patched in Mathematica and has no measurable effect
on this model.

System Image

The visualization of the electric potential can be used to create an image of the entire modeled system
by flipping the image of the half filament over its axis of symmetry.

Printed by Wolfram Mathematica Student Edition

49



Modeling_Synapse_Formation_and_Growth_as_a_Non-Biological_Analog_to_the_Brain.nb | 9

In[ - topHalfSystemImage[initialFilamentLength_, initialFilamentArea_, n_] :=
topHalfSystemImage[initialFilamentLength, initialFilamentArea, n] =
Module[{localPhiSol = electricPotential[initialFilamentLength,
initialFilamentArea, n]}, ContourPlot[localPhiSol[x, vy],
{x, y} € areaMesh[initialFilamentLength, initialFilamentArea, n],
ColorFunction -» "TemperatureMap", Contours - 40,

Frame » False, PlotRange » {{0, 1}, {0, 0.5}}]]

In[ - bottomHalfSystemImage[initialFilamentLength_, initialFilamentArea_, n_] :=
bottomHalfSystemImage[initialFilamentLength, initialFilamentArea, n] =
ImageReflect[topHalfSystemImage[initialFilamentLength, initialFilamentArea, n]]

Output Example: Visualization

in[ - systemImageVisualization[initialFilamentLength_, initialFilamentArea_, n_] :=
systemImageVisualization[initialFilamentLength,
initialFilamentArea, n] = ImageAssemble|
{{topHalfSystemImage[initialFilamentLength, initialFilamentArea, n]},
{bottomHalfSystemImage[initialFilamentLength, initialFilamentArea, n]}},

ImageSize —» Medium]

in[- - systemImageVisualization[initialFilamentLength, initialFilamentArea, n];
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Electric Field and Flux

Electric Field Components

Taking the derivative of the x and y components of the electric potential yields the electric field.

in[ - dex[initialFilamentLength_, initialFilamentArea_, n_] :=
dex[initialFilamentLength, initialFilamentArea, n] = Derivative[l, 0] [
electricPotential[initialFilamentLength, initialFilamentArea, n]]
dey[initialFilamentLength_, initialFilamentArea_, n_] :=
dey[initialFilamentLength, initialFilamentArea, n] = Derivative[0, 1]

electricPotential[initialFilamentLength, initialFilamentArea, n]]

[ ]-- electricField[initialFilamentLength_, initialFilamentArea_, n_] :=
electricField[initialFilamentLength, initialFilamentArea, n] =
Function[{x, y}, {dex[initialFilamentLength, initialFilamentArea, n][x, v¥],

dey[initialFilamentLength, initialFilamentArea, n][x, y]}

Output Example: Visualization

[ ]-- electricFieldVisualization[initialFilamentLength_, initialFilamentArea_, n_] :=
electricFieldVisualization[initialFilamentLength, initialFilamentArea] =
VectorPlot[electricField[initialFilamentLength, initialFilamentArea, n] [x, v],
{x, y} € mesh[initialFilamentLength, initialFilamentArea, n],
VectorPoints -» 10, PlotRange - {{0, 1}, {0, 1}},
PlotRangePadding -» None, FrameLabel - {"x/d", "y/d"},
LabelStyle » Directive[FontFamily » "Helvetica", Black, FontSize » 18],
VectorColorFunction » (Black &), VectorScaling - None,

VectorRange » All, RegionFillingStyle - None]

in[ - electricFieldVisualization[initialFilamentLength, initialFilamentArea, n];
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1'0_ e e e e e e = =
o - — — > — > — = — — — ]
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Here the electric potential and field visualization are overlaid.

- electricPotentialAndFieldVisualization[initialFilamentLength_,
initialFilamentArea_, n_] := electricPotentialAndFieldVisualization]|
initialFilamentLength, initialFilamentArea, n] = Show][
electricPotentialVisualization[initialFilamentLength, initialFilamentArea, n],

electricFieldVisualization[initialFilamentLength, initialFilamentArea, n]]

- electricPotentialAndFieldVisualization|

initialFilamentLength, initialFilamentArea, n];
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dN

0.891

- 0.756

r 0.621

yid

r 0.486

r 0.351

r0.216

0.081

-0.054

Flux

Infs]:=

Infs]:=

mobility = 1;

The flux is considered to be equal to a constant mobility multiplied by the electric field. Mobility is
treated as constant in this case due to several simplifying assumptions. The negative sign that is typi-
cally included in this equation is neglected in order to simplify computation since the one-dimensional
direction of filament growth is known.

flux[initialFilamentLength_, initialFilamentArea_, n_, mobility_][x_, y_] :=
flux[initialFilamentLength, initialFilamentArea, n, mobility] [x, y] =

mobility x electricField[initialFilamentLength, initialFilamentArea, n][x, y]

Output Example: Visualization

Since the flux is considered to be related to the electric field by a positive constant 1, the electric field
and flux visualizations are identical for the nondimensionalized case, but both visualization types are
shown for completeness. However, switching the sign from positive to negative in the flux equation can
be done with ease.
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[ = fluxVisualization[initialFilamentLength_, initialFilamentArea_, n_, mobility_] :=
fluxVisualization[initialFilamentLength, initialFilamentArea, n, mobility] =
VectorPlot[flux[initialFilamentLength, initialFilamentArea, n, mobility] [x, y¥],
{x, y} € mesh[initialFilamentLength, initialFilamentArea, n],
VectorPoints -» 10, PlotRange - {{0, 1}, {0, 1}},
PlotRangePadding -» None, FrameLabel - {"x/d", "y/d"},
LabelStyle » Directive[FontFamily » "Helvetica", Black, FontSize » 18],
VectorColorFunction » (Black &), VectorScaling - None,

VectorRange » All, RegionFillingStyle - None]

inf- 1= fluxVisualization[initialFilamentLength, initialFilamentArea, n, mobility];

1'0_'—'1-'—5-*'—']-'—&'—"-'—5-*'—'!-'—5-'—'&'
- e = = e > —

- [ — = — = — = — = — = — 3 — = — = —
- L ]
> L > - > > > > > = — |
— P — P — P — = — = — = — P —

0.2‘—-—"-—-—"—-—"-—"—*—*—'—’*—’—"

e e e e = = =

0 0.2 04 0.6 0.8 1.0
x/d

in[-1-- electricPotentialAndFluxVisualization]
initialFilamentLength_, initialFilamentArea_, n_, mobility_] :=
electricPotentialAndFluxVisualization[initialFilamentLength,
initialFilamentArea, n, mobility] = Show[
electricPotentialVisualization[initialFilamentLength, initialFilamentArea, n],

fluxVisualization[initialFilamentLength, initialFilamentArea, n, mobility]]

in[-1-- electricPotentialAndFluxVisualization]

initialFilamentLength, initialFilamentArea, n, mobility];
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Creating a Dynamic, Iterative Simulation

Time Incrementation

in[-]- At = ©0.0001; (*A very small time step is used to generate data

points that very closely map onto a curve. Note that he value
of At was changed from 0.0001 to 0.001 for the production of the

Supplementary Videos to reduce file size and increase exporting speed.x)

Area Step

Infs]:=

With each time increment, there will be a change in flux as well as a subsequent change in filament
length. The changes in flux over time can be calculated by integrating the flux within a circle that
encompasses the entire filament and its surrounding electrolyte at discrete times separated by a small
time step of At.

areaInWithinAt[initialFilamentLength_, initialFilamentArea_, n_, mobility_, At_] :=
areaInWithinAt[initialFilamentLength, initialFilamentArea, n, mobility, At] =
NIntegrate[flux[initialFilamentLength, initialFilamentArea, n, mobility][
Cos[@], Sin[@]].{Cos[&], Sin[6]}, {6, 0, Pi/2}] At
The “area in” can be treated as equivalent to the flux times the nondimensionalized area of the atom of
interest. Note that this disregards the effects of lattice packing and density on filament area. The
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nondimensionalized area of the atom of interest can be approximated to equal the flux since all atomic
radii, I yrom, are several orders of magnitude smaller than the nondimensionalized distance, d, that

2
g

separates the two nanowires such that 1 ~ f . This approximation is used for this model.

Length Step

The total filament length equals the initialFilamentLength + the change in filament length. The change
in filament length equals the arealnWithinAt, divided by the filament width (radius in this case). This is
equivalent to the calculation of the length of a rectangle.

in[ = 1iveFilamentLength[initialFilamentLength_,
initialFilamentArea_, n_, mobility_, At_] :=
liveFilamentLength[initialFilamentLength, initialFilamentArea, n, mobility, At] =
initialFilamentLength +
(areaInWithinAt[initialFilamentLength,
initialFilamentArea, n, mobility, At] / (radius))
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Dynamic Calculation of Flux and Filament Length

Iterative Filament Growth

in[ ]--= filamentGrowthResultsTable =

{{"time", "filament length", "filament area", "area in"},
{0, initialFilamentLength, initialFilamentArea, 0}};

(*Initial conditions that could be used as 1inputs if desired.x)

Quiet@Module[{areaStep = 0, tempArea =
filamentLength = initialFilamentLength, time = 0, At = 0.0001},

initialFilamentArea,

(*The filament grows until distance,

d, between nanowires 1is reached or surpassed.x)

While[filamentLength < 1,

areaStep =

tempArea =

areaInWithinAt[filamentLength, tempArea, n, mobility, At];

tempArea + areaStep;

filamentLength = 1iveFilamentLength[filamentLength, areaStep, n, mobility, At];

time = time + At}

(#*The results are tabulated

according to the headers of filamentGrowthResultsTable.x)

AppendTo[filamentGrowthResultsTable,

{time, filamentLength, tempArea, areaStep}]]]

This took about 10 minutes to run.

Example Output: Table

in[ ]-- filamentGrowthResultsTable // TableForm;

"time"

[clclcol oo oo oo ol oo O]

.0001
.0002
.0003
.0004
.0005
.0006
.0007
.0008
.0009
.001

.0011
.0012

"filament length"

[l oo OONBORBORNONONBONONBOBOI

.1

.102021
.104042
.106065
.108088
.110109
.112134
.114158
.116184
.118208
.120236
.122263
.124292
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"filament area"
.00892699
.009502858
.00913018
.00923166
.00933328
. 009435

.00953678
.00963861
.00974047
.00984237
.00994435
.0100464
.0101485

[clclcol oo oo oo ol oo O]

"area in"

[ocl ool oo o oo oo oo O]

.000101586
.000101608
.000101475
.000101616
.000101724
.00010178

.000101827
.000101868
.000101898
.000101976
.000102048
.000102127
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.0013
.0014
.0015
.0016
.0017
.0018
.0019
.002

.0021
.0022
.0023
.0024
.0025
.0026
.0027
.0028
.0029
.003

.0031
.0032
.0033
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.0036
.0037
.0038
.0039
. 004

.0041
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.0043
.0044
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.0052
.0053
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.140551
.142588
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.148704
.150744
.152782
.154824
.156864
.158908
.16095

.162996
.165045
.167092
.169138
.171184
.173235
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.181456
.183512
.185571
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.200013
.202082
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.0111715
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.0114795
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.011891
.0119939
.0120971
.0122002
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. 014697
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.000103228
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.000103841
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.0059
. 006
.0061
.0062
.0063
.0064
. 0065
. 0066
.0067
.0068
.0069
.007
.0071
.0072
.0073
.0074
.0075
.0076
L0077
.0078
.0079
.008
.0081
.0082
.0083
.0084
.0085
.0086
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.0088
.0089
.009
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.0092
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.222842
. 224927
.227015
.229105
.231196
.233285
.235378
237471
. 239567
.241664
. 243762
. 245863
. 247966
. 25007

252177
.254285
.256395
. 258507
. 26062

.262736
. 264854
.266973
. 269094
.271218
.273343
. 275469
.277598
.279729
.281862
. 283997
.286134
.288273
.290413
. 292557
.294701
.296847
.298999
.301152
.303303
. 305459
.307618
309777

.311939
.214105%
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.0150124
.0151177
.0152231
.0153286
.0154339
.0155396
.0156453
.0157511
.0158568
.0159628
.0160689
.0161752
.0162816
.016388
.0164946
.0166012
.0167079
.0168147
.0169215
.0170286
.0171358
.017243
.0173503
.0174578
.0175653
.017673
.0177808
.0178887
.0179967
.0181048
.018213
.0183213
.0184298
.0185384
.0186471
.0187559
.0188648
.0189739
.019083
.0191923
.0193017
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.0195209
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.000105408
.000105445
.000105361
.000105641
.000105747
.00010579
.000105727
.000105971
.000106102
.000106263
.000106401
.000106397
.000106607
.000106589
.000106713
.000106825
.00010686
.000107013
.000107227
.000107227
.000107318
.000107466
.000107546
.00010768
.000107792
.000107848
.000108013
.000108104
.000108196
.000108325
.000108478
.000108603
.000108738
.000108798
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.000109044
.000109166
.000109309
.000109365
.000109535
.000109703
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.0104
.0105
.0106
.0107
.0108
.0109
.011

L0111
.0112
.0113
.0114
.0115
.0116
L0117
.0118
.0119
.012

.0121
.0122
.0123
.0124
.0125
.0126
L0127
.0128
.0129
.013

.0131
.0132
.0133
.0134
.0135
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.014

.0141
.0142
.0143
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.316271
.31844
.320613
.322787
. 324964
.327143
.329326
.331509
.333696
.335884
.338076
. 34027

. 342467
. 344666
. 346867
. 349072
.351278
.353489
.355702
.357919
.360137
.362354
.364573
.3668

.369029
.371258
.373493
.375731
377972
.380218
. 382465
.384715
. 386969
.389225
.391485
.393747
.396014
.398283
. 400556
.402832
.405113
. 407396
. 409682
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.414256
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.0198508
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.0204033
.0205142
. 0206252
.0207364
.0208477
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.0210708
.0211826
.0212944
.0214064
.0215185
.0216308
.0217433
.0218559
.0219687
.0220816
.0221945
.0223078
.0224212
.0225347
.0226484
.0227624
.0228765
. 0229905
.0231046
.0232192
.023334
.0234489
.0235639
.023679
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.0240259
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.024374
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.0246069
.0247238
.0248409
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.000111966
.000112144
.000112277
.00011248

.000112669
.000112798
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.000112927
.000113211
.000113423
.000113521
.000113733
.00011392

.000114117
.00011398

.000114153
.000114556
.00011479

.000114919
.000115055
.00011506
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.000115599
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.000115977
.000116282
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.000116452
.000116884
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.0154
.0155
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L0157
.0158
.0159
.016

.0161
.0162
.0163
.0164
.0165
.0166
.0167
.0168
.0169
.017

L0171
L0172
.0173
.0174
.0175
.0176
L0177
.0178
.0179
.018

.0181
.0182
.0183
.0184
.0185
.0186
.0187
.0188
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.019
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.0192
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.416553
.418853
.421151
.423455
.425765
428071
.430389
43271

.435032
.43736

.439693
. 442026
. 444366
446711
. 449059
.45141

.453766
.456123
.458487
. 460856
.463228
. 465605
.467985
470367
472755
.47515

477549
.479955
.482364
484776
.487193
.489615
.4952042
. 494474
.496908
.499351
.501799
.504249
. 506706
.509165
.51163

.514101
.516577
.519058
.521543

.0249583
. 0250757
.0251936
.0253113
. 0254294
.0255478
.0256663
.025785

.025904

.026023

.0261422
.0262618
.0263814
.0265014
.0266216
.026742

.0268627
.0269836
.0271047
.0272261
.0273477
.0274695
.0275916
.0277136
.0278359
.0279587
.0280817
. 028205

.0283286
. 0284525
.0285765
.0287009
.0288254
.0289502
.0290752
.0292005
.0293261
. 029452

.0295782
.0297046
.0298312
.0299582
.0300855
.0302132
.0303411
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.000117476
.000117816
.000117747
.000118126
.00011835
.000118555
.00011868
.000118998
.000118968
.000119209
.0001196
.000119604
.000119982
.000120209
.000120406
.00012071
.000120923
.000121098
.000121414
.000121568
.000121841
.000122055
.000121989
.000122357
.000122742
.000123015
.000123311
.000123609
.000123852
.000124012
.000124397
.000124534
.00012479
.000125047
.000125264
.000125585
.000125944
.000126115
.000126406
.000126669
.000126964
.000127306
.000127674
.000127898
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.0194
.0195
.0196
.0197
.0198
.0199
.02
.0201
.0202
.0203
.0204
. 0205
.0206
. 0207
.0208
.0209
.021
.0211
.0212
.0213
.0214
.0215
.0216
L0217
.0218
.0219
.022
.0221
.0222
.0223
.0224
.0225
.0226
L0227
.0228
.0229
.023
.0231
.0232
.0233
.0234
.0235
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. 524034
.526533
.529033
.53154

. 534054
.536573
.539098
.541628
. 544164
. 546706
. 549254
.551807
. 554367
.556933
. 559504
.562082
. 564666
.567258
.569853
.572456
. 575066
577682
.580305
.582935
. 58557

.588207
.590852
.593505
.596169
.598839
.601517
. 604203
. 606897
. 609598
.612306
.615023
617747
.620481
.623222
. 62597

.628728
. 631495
. 634268
. 637049
. 639842
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.0304692
.0305974
.0307262
.0308553
.0309848
.0311146
.0312447
.031375
.0315057
.0316368
.0317681
.0318999
.0320318
.0321642
.0322969
.0324299
.0325633
. 032697
.032831
.0329652
.0331
.0332352
.0333707
.0335067
.033643
.0337797
.0339167
.034054
.0341916
.0343298
.0344684
.0346075
.0347469
.0348866
. 035027
.0351674
.0353086
.0354503
.0355924
.0357351
.0358781
.0360216
.0361655
.0363101
.0364551
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.000129539
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.000130736
.000131051
.000131343
.000131744
.000131925
.000132358
.000132747
.000133023
.000133377
.00013368

.000134008
.000134209
.000134828
.000135161
.00013553

.00013592

.000136314
.000136695
.000137063
.000137265
.000137603
.000138218
.000138609
.000139046
.000139479
.000139608
.000140423
.000140463
.000141203
.000141644
.000142132
.00014271

.000142952
.00014351

.000143939
.000144534
.000145028
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. 0255
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.0263
.0264
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.0268
. 0269
.027
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.0274
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.0279
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.0282

.0283
.A2RA

ool oo oBoNoNoNoNBoBoBoNoRBoBoNoBoNoNoBoNoMoBoRBoBoNoRBoBoMoBoNoNoBoNoMoBoNoRMoMBoRBoRBoRNoRBORBOROR O

b42b45
. 645452
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. 674041
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. 679882
. 682817
. 685761
.688717
. 691684
. 694663
. 697652
. 700652
. 703665
. 706684
. 709721
712771
. 715833
. 718901
. 721989
. 72509

. 728204
. 731333
. 7134467
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. 740793
. 74397

747171
. 750386
. 753617
. 756868
. 760131
. 763411
. 766707
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. 773353
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.0371876
.0373356
.0374841
.0376332
.0377827
.0379329
.0380838
.0382351
.038387

.0385395
.0386925
.0388463
.0390006
.0391557
.0393112
.0394674
.039624

.0397816
.0399399
.0400988
. 0402581
.0404186
. 0405796
.0407415
. 0409043
.0410673
.0412315
.0413965
.0415622
.0417288
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.0420648
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.000145938
.000146495
.000147024
.000147531
.000148002
.000148476
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.000149543
.000150234
.000150811
.000151301
.00015191

.000152502
.000153077
.000153746
.000154318
.000155054
.00015557

.000156213
.000156546
.000157604
.00015826

.000158957
.000159296
.000160538
.000160932
.000161941
.00016279

.000163032
.000164169
.000164956
.000165764
.000166587
.000167493
.000168527
.000169441
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.00017539

.000176213
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.0288
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.0314
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. 783455
. 78686

. 790284
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. 797191
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. 804182
807711
.811266
. 814842
.818439
. 822061
. 825709
. 829386
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. 836821
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. 852023
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. 942865
.947939
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0.033 0.969621 0.0541957
0.0331 ©.975512 0.0545537
0.0332 0.981685 0.0549383
0.0333 0.98824 0.0553623
0.0334 ©.995363 0.0558556
0.0335 1.00383 0.0565537
Dynamic Simulation
Interactive Simulation
in[-]-- Manipulate[Show[electricPotentialVisualization|

@ o e @ @ @

.000337753
.000358036
.00038459

.000423959
.000493297
.000698148

filamentGrowthResultsTable[step]][2]], filamentGrowthResultsTable[[step] [3], n]l,
fluxVisualization[filamentGrowthResultsTable[[step] [2],
filamentGrowthResultsTable[step][3], n, mobility], BaseStyle -» 18],
{step, 2, Length[filamentGrowthResultsTable], 1}]

step

y/d

1.0
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Tabulated Snapshots

in[-1-- filamentGrowthResultsSnapshotTable =
Table[Show[electricPotentialVisualization[filamentGrowthResultsTable[step][2],
filamentGrowthResultsTable[[step] [3], n],
fluxVisualization[filamentGrowthResultsTable[step][2],
filamentGrowthResultsTable[[step] [3], n, mobility], BaseStyle » 18],
{step, 2, Length[filamentGrowthResultsTable], 1}];

Output Example: Visualization
At Tho" - @

in[- - snapshotl = filamentGrowthResultsSnapshotTable[[1];

1.0 mrap
- |- ~L
0.8 L)L dN

wuln 0.891
06 m™r 5—0_755
o ™ T —10.621
= i ;—0.486
0.4 LH> T 2—0_351
{*" 2—0_215
0.2 - B oo
M‘m I—0_054

x/d

At £hon — 1:non,tot,fz.

in[ ]-- shapshot2 = filamentGrowthResultsSnapshotTable[
Round [Length[filamentGrowthResultsSnapshotTable] /2]];
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: | WLI
O.Bj | |I %l_ﬁlll | dN
> ||I a In.am
0.6/ iy =0
ke, \'. { —o0s621
> - \ n ;—0_4&5
04_ 2—0_351
| = 0216
0.2j 0.081
: I |} | II| | oo
0.0_I PR ER SN N ST SR SO SN ST N |I P S R T R |
0.0 0.2 04 0.6

If the total number of coordinates is odd, then the coordinate directly following what would be
non non,tot/2

T =T

x/d

At £hon — 1:non,tot.

is chosen. This minute overestimation of filament growth can be considered negligi-
ble due to the small time step At =0.0001 used here.

in[- - snapshot3 = filamentGrowthResultsSnapshotTable[[-2]

0.8: dN

I Iu_am

0.6: = 0.756
o I —t0.621
= ;—0_486
04_ 2—0_351

I ;—0_216

0.2+ 0.081

: I0054

00 02 04 06 08 10
x/d

The coordinate chosen for showcasing £"°" = £"°", ot

is one time step past spanning the distance, d,
separating the two nanowires. This miniscule separation prevents the calculations from undershooting
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the distance, d, since the simulation does not capture when exactly the system reaches t"°"> ™% but
rather finds the time at which the total nondimensionalized filament length exceeds 1. Given the small
time step At =0.0001, this effect should be negligible.

Exporting

Videos

Export using a desired file path in quotation marks, taking special care to include backslashes in proper

positions. Both the “desiredFileName” and file type “.mp4” can be changed as desired. An example file
path is shown below.

Export["/Users/saravfernandez/Desktop/UGThesis/desiredFileName.mp4",

filamentGrowthResultsSnapshotTable[[1l ;; -1]1];

Using -1 includes the coordinate that overshoots d, so changing it from -1 to -2 can be done if desired.

Images

As before, export using a desired file path in quotation marks, taking special care to include back-
slashes in proper positions. Both the “desiredFileName” and file type “tiff” can be changed as desired.

An example file path is shown below with the example image “snapshot1” getting exported. This code
can be adapted to export any images.

Export["/Users/saravfernandez/Desktop/UGThesis/desiredFileName.tiff", snapshotl];

Filament Length as a Function of Time

NonLinear Model

Finding Nonlinear Fit

Here is a reminder of the table headings for filamentGrowthResultsTable.
in[- - filamentGrowthResultsTable[[1];
{time,filament length,filament area,area in}

Here, “nlm” indicates that this is a nonlinear model.
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In[ = nlmLengthVsTime[table_] := nlmLengthVsTime[table] =
NonlinearModelFit[table[[2 ;; -1(*to avoid undershooting dx),
1(xtimex) ;; 2(xfilament lengthx)],

(*This is the expression that 1is used to find a nonlinear fit. It dis possible
that another expression would be better suited for describing this systenm,
but this was the closest match investigated in this work.x)

aExp[b#*Sqrt[x]] +c, {a, b, ¢}, x, MaxIterations » Infinity]

lengthVsTimePlot[table_] := lengthVsTimePlot[table] =
Show[L‘istP'I.ot [tab'l.e|[1 33 -1(»to avoid undershooting dx),

1(xtimex) ;; 2(xfilament lengthx)],

Frame » True, FramelLabel » {“ TugNadVapp" "x/d"]-,

PlotLabel -» "Filament Length vs. Time",
PlotStyle » {PointSize[0.02], Opacity[0.1], Blue}, LabelStyle —»
Directive[FontFamily » "Helvetica", Black, FontSize -» 18], PlotRange - Fu'L'I.] R

lengthVsTime[table] =
Plot[nlmLengthVsTime[table] [x], {x, ©®, 1}, PlotRange » {{0, 1}, {©, 1}},
PlotStyle » Blue], ImageSize -» Large, BaseStyle - 18]

Here, the tabulated items in filamentGrowthResultsTable can be saved to a new variable so as to avoid
re-running the simulation for the particular initial conditions used. In the interest of brevity, the presen-
tation of this work will exclude such saved values.

Example Output: Equation and Plot
Here is the fitted equation.

In[ ]:- nonDimensionalizedLengthVsTime[table_] :=

nonDimensionalizedLengthVsTime[table] = Normal[nlmLengthVsTime[table]]
in[ - nonDimensionalizedLengthVsTime[filamentGrowthResultsTable];
0.0169031 + 0.0676949 44392 Vx
Here is the plot of the fitted equation.

in[- - LengthVsTimePlot[filamentGrowthResultsTable];
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Filament Length vs. Time
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Statistical Validation
Any number of statistical tests can be run using Mathematica’s extensive functionality. Here, two
examples are provided, namely AdjustedRSquared and ParameterConfidencelntervals.
Here is the adjustedRSquared.
in[- - nlmLengthVsTime [filamentGrowthResultsTable] ["AdjustedRSquared"];
0.999864
Here are the ParameterConfidencelntervals.

in[ = nlmLengthVsTime [filamentGrowthResultsTable] ["ParameterConfidenceIntervals"];

{{0.0655731,0.0698166},{14.2843,14.594},{0.0124734,0.0213327}}

Computational Validation Using Realistic System
Parameters

As an example, a system consisting of two perpendicular silver (Ag) nanowires in an S0, electrolyte
with ion mobility p1g=3.178-10711 £ separated by a distance d = 50 nm that undergoes an applied
voltage V,p,=1.2 Vis considered. y will be used instead of ggoing forward for typing ease and to avoid

issues with the zero.
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Dimensionalize the Equation

Start with the nonDimensionalizedLengthVsTime equation and treat x as t"°". Replace t"°" with its
equivalent physical parameters based on t"°"=tN, udV,,,.

in[ - dimensionalizedLengthVsTime[table_] := dimensionalizedLengthVsTime[table] =

nonDimensionalizedLengthVsTime[table] »xd /. {x - T xavogadroN x u xd % Vapp}

in[ - dimensionalizedLengthVsTime[filamentGrowthResultsTable];

d [0.0169031 + 0.0676949 gl4-4392 yavogadroNdu f"m)

Then replace £"°" with its equivalent physical parameters and convert to t, time with units of s, with
values using the relevant equation.

in[-]-- numericalAvogadroN = 6.02214076 » 10223; (xAvogadro's Numbersx)

In[ = numericallLengthVsTime[table_] :=
numericallLengthVsTime[table] = dimensionalizedLengthVsTime[table] /.
{,u - 3.178 % 10" (-11) , d > 50 % 10" (-9), V5, » 1.2, avogadroN - numer'ica'LAvogadroN}

in[- - numericalLengthVsTime[filamentGrowthResultsTable];

0.0169031+0.0676949 el5472-8 Vr
20 000 000

Flnd THOIW s Max

In[ ]- tNonMax[table_] := tNonMax[table] = table[[-1(*to avoid undershooting d), 1(xtimex)]

in[- - tNonMax [filamentGrowthResultsTable];

0.0335

Convert to Find T"%* in units of s
in[-]:= tMax[table_] :=
tMax[table] = tNonMax[table] = (1/ (;u * avogadroN » d Vapp)) (xequivalent to tx) /.
{,u - 3.178 %107 (-11),,d > 50 % 107 (-9), Vapp = 1.2, avogadroN - numer'ica'LAvogadroN}

in[ ]-- tMax[filamentGrowthResultsTable]; (#in units of sx)

2.91735x10°8

Find xMax

[ 1-- xMax [table_] :=
xMax [table] =
table[[-1(*to exclude coordinate that undershoots dx)][2(*filament lengthx)] =
d/. {d>50%10" (-9)}
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in[- - xMax [filamentGrowthResultsTable]; (*in units of mx)

5.01914x 1078

Plot Numerically

In[ - numericallLengthVsTimePlot[table_] := numericallLengthVsTimePlot[table] =
Plot[numericalLengthVsTime[table], {z, ®, tMax[table]},
PlotRange » {{@, tMax[table]}, {0, xMax[table] (xtotal length+)}},
PlotStyle » Blue, Frame -» True, FrameLabel -» {"t (s)", "x (m)"},
PlotLabel - "Filament Length vs. Time",
LabelStyle » Directive[FontFamily - "Helvetica", Black, FontSize » 18],

ImageSize - Large] (¥*xmax should equal dx)
in[- - numericalLengthVsTimePlot[filamentGrowthResultsTable];

Filament Length vs. Time
5.x108 77—

4.x1078}

3.x107®

_—

£

S

x L
2.x 1078}

1.x1078}

0 5x1072 1.x10® 15x108 2.x108 25«
T(S)

1078

Relationships Between Variables

Initial Conditions
Here is a reminder of tNonMax.

in[- - tNonMax [filamentGrowthResultsTable];

0.0335
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In[ - totConversionFactor [uFactor_, dFactor_, vFactor_] :=
totConversionFactor [uFactor, dFactor, vFactor] = (1/ (avogadroN+xpuxd=*v)) /.
{avogadroN - numericalAvogadroN, u - uFactor * 3.178 + 10+ (-11),
d » dFactor * 50 x 107 (-9), v » vFactor * 1.2} (*Multiply this by t"" to get tr.x)

in[- - totConversionFactor[l, 1, 1];
8.70851 %107
[ ]:= calculatedTau[table_, uFactor_, dFactor_, vFactor_] =
calculatedTau[table, uFactor, dFactor, vFactor] =
tNonMax [table] * totConversionFactor [uFactor, dFactor, vFactor]
in[- - calculatedTau[filamentGrowthResultsTable, 1, 1, 1];

2.91735x1078

Doubling Applied Voltage

in[- - calculatedTau[filamentGrowthResultsTable, 1, 1, 2];
1.45868 x 1078

Doubling applied voltage cuts tin half, meaning the filament grows faster and takes less time with
higher voltage. This is also the case for mobility and distance it seems as they output the same quantity.

Doubling Mobility

in[- - calculatedTau[filamentGrowthResultsTable, 2, 1, 1];

Doubling Distance

in[- - calculatedTau[filamentGrowthResultsTable, 1, 2, 1];

Effect of Changing Initial Filament Conditions

in[ - radiusComparisonFilamentVsLengthPlot[tablel_, table2_, table3_] :=
radiusComparisonFilamentVsLengthPlot[tablel, table2, table3] =
Plot[{nonD'imenS'iona'L'i zedLengthVsTime[tablel], nonDimensionalizedLengthVsTime[
table2], nonDimensionalizedLengthVsTime[table3]},
{x, @, 1}, PlotStyle » {Brown, Blue, Magenta}, Frame -» True,
FrameLabel » {"tu@NAdVapp", “x/d“}, PlotRange » {{@, tNonMax[tablel]
(*The longest table will be the one with the smallest radius.x)}, {0, 1}},
PlotStyle » {Brown, Blue, Magenta}, ImageSize - Large,
PlotLabel -» "Filament Length vs. Time", LabelStyle »
Directive[FontFamily » "Helvetica", Black, FontSize -» 18, BaseStyle - 18],
PlotLegends » Placed[{"r; = 0.025", "r, = 0.05", "r; = 0.075"}, {0.15, .78}],

ImageSize » Large]
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To make this work, tabulated values need to be generated for multiple radii. The ones used here are
noted in the plot. In the interest of brevity, the presentation of this work will exclude tabulated values
beyond the first case, meaning tablel and table3 are not associated with generated tables.

[ 1

in[- - radiusComparisonFilamentVsLengthPlot[tablel, filamentGrowthResultsTable, table3];

Filament Length vs. Time

1.0,
. — 1 =0.025
08 _ =005
— r3 =0.075

0.6

x/d

04
0.2

c%JF)OOO 0.005 0.010 0.015

Current as a Function of Time

Nonlinear Model

Finding Nonlinear Fit

Here is a reminder of the table headings for filamentGrowthResultsTable.
in[ - filamentGrowthResultsTable[1];
{time,filament length,filament area,area in}

Here, “nlm” indicates that this is a nonlinear model.
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In[ - nlmCurrentVsTime[table_] :=
nlmCurrentVsTime [table] = NonlinearModelFit[table[[3 (*to avoid unrealdistic jump
of current from zero to first nonzero value contained in position 2x) ;; -1

(*»to avoid undershooting dx), {1(*timex), 4 (xarea inx)}],

(*This is the expression that 1is used to find a nonlinear fit. It dis possible
that another expression would be better suited for describing this systenm,
but this was the closest match investigated in this work.x)

axExp[bx*x*c]+d+exx, {a, b, c, d, e}, x, MaxIterations » Infinity]

currentVsTimePlot[table_] :=
currentVsTimePlot[table] = Show[L‘istP'Lot[tableﬂB{*to avoid unrealistic jump of

current from zero to first nonzero value contained 1in position 2%) j;; -1

(xto avoid undershooting dx), {1(xtimex), 4(*area 1inx)}],

I
Frame - True, FrameLabel - {“ TUgNadVpp", "—————
Hg Np dvapp
PlotLabel -» "Ionic Current vs. Time",
PlotStyle » {PointSize[0.02], Opacity[@.1], Blue}, LabelStyle »

Directive[FontFamily » "Helvetica", Black, FontSize -» 18], PlotRange - Fu'L'I.] ,

currentVsTime[table] =
Plot[nlmCurrentVsTime[table] [x], {x, ®, 1}, PlotRange » {{0, 1}, {0, 1}},
PlotStyle » Blue], ImageSize -» Large, BaseStyle » 18

Example Output: Equation and Plot
Here is the fitted equation.

in[ - nonDimensionalizedCurrentVsTime[table_] :=

nonDimensionalizedCurrentVsTime[table] = Normal[nlmCurrentVsTime [table]]
in[ ]:- nonDimensionalizedCurrentVsTime[filamentGrowthResultsTable];
2.47955x10° - 2.47955 x 10° g 1-51982x10° x5 | 9 9184416 x
Here is the plot of the fitted equation.

in[ - currentVsTimePlot[filamentGrowthResultsTable];
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lonic Current vs. Time
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Statistical Validation
Any number of statistical tests can be run using Mathematica’s extensive functionality. Here, two
examples are provided, namely AdjustedRSquared and ParameterConfidencelntervals.
Here is the adjustedRSquared.
in[ 1= nlmCurrentVsTime [filamentGrowthResultsTable] ["AdjustedRSquared"];
0.98618
Here are the ParameterConfidencelntervals.
in[- - nlmCurrentVsTime[filamentGrowthResultsTable] ["ParameterConfidencelntervals"];
{{-2.47955x106°, -2.47955x10°},
{-1.51582x10'°, -1.51582x 10}, {15.6734, 15.7033},
{2.47955x10°, 2.47955x106°}, {0.00160001, 0.00208832} |

Computational Validation Using Realistic System
Parameters

As an example, a system consisting of two perpendicular silver (Ag) nanowires in an S0, electrolyte
with ion mobility p1g=3.178-10711 £ separated by a distance d = 50 nm that undergoes an applied
voltage V,p,=1.2 Vis considered. y will be used instead of ggoing forward for typing ease and to avoid

issues with the zero.
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Dimensionalize the Equation

Start with the nonDimensionalizedLengthVsTime equation and treat x as t"°". Replace t"°" with its
equivalent physical parameters based on I"°"=T .

In[ - dimensionalizedCurrentVsTime[table_] :=
nonDimensionalizedCurrentVsTime[table] / (l/ (avogad roN*pu*dx* Vapp) ) /.

{x - T*avogadroN » u*d % Vapp}

in[ - dimensionalizedCurrentVsTime[filamentGrowthResultsTable];
avogadroN d u Vapp (2.47955x 10° - 2.47955 x 109 g~ 1+51582x10 (avogadroN d i« Vyp,) =55
0.00184416 avogadroN d u T Vapp)

Then replace £"°" with its equivalent physical parameters and convert to t, time with units of s, with
values using the relevant equation.

in[-]-- numericalAvogadroN = 6.02214076 » 10223; (xAvogadro's Numbersx)

In[ = numericalCurrentVsTime[table_] :=
numericalCurrentVsTime[table] = dimensionalizedCurrentVsTime[table] /.

{,u - 3.178 % 10" (-11) , d > 50 % 10" (-9), V5, » 1.2, avogadroN - numer'ica'LAvogadroN}

in[- - numericalCurrentVsTime[filamentGrowthResultsTable];

1.1483 x10° (2.47955x 10° - 2.47955 x 10° @ 1-79106x10%%° %% 5117 66 7

Flnd IHOI'] s Max

In[ - iNonMax[table_] :=
iNonMax [table] = table[[-1(#to avoid undershooting dx), 4(xarea 1in#)]

in[ - iNonMax [filamentGrowthResultsTable];

0.000698148

_—_max

Convertto Find t in units of s

iMax[table_] := iMax[table] = iNonMax[table] / (1/ (u * avogadroN x d Vapp) (*r*))
(xequivalent to dividing by =) /.
{,u - 3.178 %107 (-11),,d > 50 % 107 (-9), Vapp = 1.2, avogadroN - numer'ica'LAvogadroN}
in[ ]-- 1iMax[filamentGrowthResultsTable]; (*in units of dions/s%)

801.685
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Plot Numerically

In[ - numericalCurrentVsTimePlot[table_] := numericalCurrentVsTimePlot[table] =
Plot[numericalCurrentVsTime[table], {t, @, tMax[table]},
PlotRange -» { {0, tMax[table]}, {0, iMax[table] (xtotal lengthx)}},
PlotStyle » Blue, Frame -» True, FrameLabel » {"t (s)", "I (dions/s)"},
PlotLabel - "Ionic Current vs. Time", LabelStyle —»

Directive[FontFamily » "Helvetica", Black, FontSize -» 18], ImageSize » Large]

in[-]- numericalCurrentVsTimePlot[filamentGrowthResultsTable];

lonic Current vs. Time
800——m—— 17— :

600 1

400+

| (ions/s)

200+

1.x10% 15x10® 2.x10°%
T(s)

0 5.x 107
Effect of Different Variables on Max Current

Initial Conditions
Here is a reminder of iNonMax.

in[ - iNonMax [filamentGrowthResultsTable];
0.000698148

In[ - toIConversionFactor[uFactor_, dFactor_, vFactor_] :=
toIConversionFactor [uFactor, dFactor, vFactor] = (avogadroNxpuxd=xv) /.
{avogadroN - numericalAvogadroN, u - uFactor * 3.178 + 10+ (-11),
d » dFactor * 50 x 107 (-9), v » vFactor * 1.2} (*Multiply this by I™" to get I.x)
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toIConversionFactor[l, 1, 1];

1.1483 x 10°

ionicIMax[table_, uFactor_, dFactor_, vFactor_] :=
jonicIMax[table, uFactor, dFactor, vFactor] =

iNonMax [table] * toIConversionFactor [uFactor, dFactor, vFactor]

ionicIMax[filamentGrowthResultsTable, 1, 1, 1];(*in units of jons/sx)

801.685

Doubling Applied Voltage

ionicIMax[filamentGrowthResultsTable, 1, 1, 2];
1603.37

Doubling applied voltage doubles I. This is also the case for mobility and distance it seems as they
output the same quantity.
Doubling Mobility

ionicIMax[filamentGrowthResultsTable, 2, 1, 1];

Doubling Distance

ionicIMax[filamentGrowthResultsTable, 1, 2, 1];

Currentin Amperes (A)

cationCharge = 1.602 % 10/ (-19); (*in units of Cx)

electricIMax[table_, uFactor_, dFactor_, vFactor_] :=
electricIMax[table, uFactor, dFactor, vFactor] =

jonicIMax[table, uFactor, dFactor, vFactor] *x cationCharge

electricIMax[filamentGrowthResultsTable, 1, 1, 1]; (*in units of Amperes (A)=*)

1.2843 x 10716
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