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Abstract

We study two constrained problems in high dimensions. We study a high dimensional inequality for the binary
entropy. The perceptron is a natural model in high-dimensional probability, and a toy shallow neural network
which stores random patterns; we also study a randomized variant of the symmetric binary perceptron.

We first consider the (k + 1)-th derivative of xk−rH(xr), where H(x) := −x log x − (1 − x) log(1 − x), 0 ≤
x ≤ 1 is the binary entropy and k ≥ r ≥ 1 are integers. Our motivation is the conjectural entropy inequality
αkH(xk) ≥ xk−1H(x), where 0 < αk < 1 is given by a functional equation. The k = 2 case was the key technical
tool driving recent breakthroughs on the union-closed sets conjecture, and the k → ∞ case can be considered
the "high dimensional limit". We express dk+1

dxk+1x
k−rH(xr) as a rational function, an infinite series, and a sum

over generalized Stirling numbers. This allows us to reduce the proof of the entropy inequality for real k to
showing that an associated polynomial has only two real roots in the interval (0, 1). This reduction allows us to
easily verify the inequality for fixed k such as k = 2, 3, 4 with a finite calculation, and also allows us to prove the
inequality for any fixed fractional exponent such as k = 3/2 via a finite calculation. The proof suggests a new
framework for proving tight inequalities for the sum of polynomials times the logarithms of polynomials, which
converts the inequality into a statement about the real roots of a simpler associated polynomial.

The symmetric binary perceptron (SBP) is a random constraint satisfaction problem (CSP) and a single-layer
neural network; it exhibits intriguing features, most notably a sharp phase transition regarding the existence
of its satisfying solutions. Secondly, we propose two novel generalizations of the SBP by incorporating random
labels. Our proposals admit a natural machine learning interpretation: any satisfying solution to the random
CSP is a minimizer of a certain empirical risk. We establish that the expected number of solutions for both
models undergoes a sharp phase transition and calculate the location of this transition, which corresponds to
the annealed capacity in statistical physics. We then establish, through the Berry-Esseen theorem, a universality
result: the location of this transition does not depend on the underlying distribution. We conjecture that both
models in fact exhibit an even stronger phase transition akin to the SBP and give rigorous evidence towards
this conjecture through the second moment method. Our final focus is on the algorithmic problem of efficiently
finding a satisfying solution to our models. We show that both models exhibit the multi Overlap Gap Property
(m-OGP), an intricate geometrical property of the solution space which is known to be a rigorous barrier against
large classes of algorithms. This gives rigorous evidence of a statistical-to-computational gap for both models.
We also show that the m-OGP satisfies a similar universality property.
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1. Introduction

In recent years, high dimensional problems have become increasingly important in various fields such as statis-
tics, machine learning, and data science. We study two problems in high dimensional statistics: first, a tight "high
dimensional" entropy inequality with applications in statistics, information theory, and combinatorics. Secondly,
we study phase transitions in the solution space of the symmetric binary perceptron.

1.1. Entropy Inequality. The binary entropy is a classical information theoretic function which measures the
information content of a signal or random variable. The union-closed sets conjecture is a notorious open problem,
stating that any set family F ⊆ 2[n] which is union-closed (so that the union of two sets in F is also in the system)
contains a "popular" element of the ground set contained in at least a 1/2 fraction of the sets of F .

Though still open in general, Gilmer made a recent breakthrough stating that any union-closed set system
contains an element in at least an 0.01 fraction of the sets in F . The constant 0.01 was quickly improved to
3−

√
5

2 ≈ 0.38197 [AHS22, Saw22, CL22]. Using more sophisticated coupling arguments suggested by [Saw22],
this constant was improved again to ≈ 0.38237, though the method suffers natural limitations [Yu22, Cam22].
The survey [Cam23] summarizes recent progress, but new ideas will be needed to prove the full union-closed sets
conjecture.

The k = 2 case of the following inequality (1.2) was conjectured by Gilmer, and was one of the key technical
tools underlying his breakthrough, while the k → ∞ case can be considered the high dimensional limit. This case
was simultaneously proved using computer calculations by [AHS22] and symbolically by [Saw22]. Studying the
extension to approximate k-union closed set systems led to [Yus23] conjecturing inequality (1.2) for integer k ≥ 2

and proving it for k = 3, 4. It later emerged that Boppana proved the k = 2 case several decades earlier [Bop85].
He recently republished a simplified proof [Bop23], which is the proof we build upon. The main contribution of
this work is to reduce the proof of the real k ≥ 1 case to a conjecture about the roots of an explicit polynomial,
which suggests a general framework to prove tight inequalities involving the sum of logarithms of polynomials.

Conjecture 1. Let k ≥ 1 be real and 0 < αk < 1 be the unique solution of

(1.1) αk =
1

(1 + αk)k−1

in (0, 1). Then

(1.2) αkH(xk) ≥ xk−1H(x), 0 ≤ x ≤ 1,

where H(x) := −x log x− (1− x) log(1− x) is the binary entropy. We have equality at x = 0, 1
1+αk

, 1.

Lemma 25 shows that the functional equation (1.1) has a unique solution satisfying 1/k < αk < 1, and Lemma
26 shows that αk = log k

k +Ok

(
log log k

k

)
asymptotically for large k, which gives the high dimensional scaling limit.

The natural transformation for this problem is x = 1
1+y , since we now study this inequality over y in (0,∞)

instead of over x in (0, 1), which maps the root at x = 1
1+αk

to a root at y = αk. Writing xk = 1
1+αk

, this
functional equation is equivalent to xk + xk

k = 1. The equation x + xk = 1 corresponds to the characteristic
function of Fibonacci type recurrences like Fn = Fn−1 + Fn−k. This explains the appearance of the golden ratio
in the k = 2 case studied for the union closed sets conjecture, since x + x2 = 1 has roots closely connected to
the golden ratio. This also motivates studying xk, αk in terms of generalized Fibonacci polynomials, related to
[Cig22].

We show that Conjecture 2 implies Conjecture 1. This is a strong statement about polynomial roots, since
the following polynomial pk,r(x) has degree k2 + kr − r, but we conjecture it to only have two roots in (0, 1).
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The following conjecture also allows us to rigorously prove Conjecture 1 for any rational exponent using a finite
calculation, such as for the new case k = 3/2.

Conjecture 2. Let k > r ≥ 1 be integers. Define the entropy polynomial

(1.3) hk,r(x) :=

k−1∑
j=0

xrj

j∑
v=0

(−1)j−v

v + 1

(
rv + k

k

)(
k

j − v

)
and let αk satisfy the functional equation (1.1). Then the polynomial

(1.4) pk,r(x) := αk/rk(1− xr)khk,k(x)− r(1− xk)khk,r(x)

has exactly two real roots in (0, 1), counting multiplicity.

Note that Lemma 25 states that αk/r
k
r > 1, so that the first polynomial is dominant.

Theorem 3. If Conjecture 2 holds for a particular k > r pair, then inequality (1.2) holds for the exponent k/r.
If Conjecture 2 holds for all coprime k > r ≥ 1, then inequality (1.2) holds for all real k ≥ 1.

For instance, a quick calculation shows that Conjecture 2 holds for k = 3, r = 2. A natural approach is to
use a special case of Descartes’ rules of signs, which states that if a polynomial has two coefficient sign changes,
then it has either 0 or 2 positive real roots. Numerically, under the change of variables x = 1

1+y , the polynomial

(1 + y)k
2−kr−rhk,r

(
1

1+y

)
always has two sign changes. The factor of (1 + y)k

2−kr−r ensures that the resulting
expression is a polynomial, while only introducing extra roots at y = −1. If this has at most two real roots for y

in (0,∞), these correspond to at most two real roots of hk,r(x) = hk,r

(
1

1+y

)
in (0, 1). However, the coefficients

in y become unwieldy double or triple sums, from which it is difficult to deduce the sign pattern.
Some example cases are

h1,1(x) = 1, h2,2(x) = 1 + x2, h3,3(x) = 1 + 7x3 + x6, h4,4(x) = 1 + 31x4 + 31x8 + x12.

and

h4,1(x) = 1− 3

2
x+ x2 − 1

4
x3, h4,2(x) = 1 +

7

2
x2 − 2

3
x4 +

1

6
x6,

h4,3(x) = 1 +
27

2
x3 + 6x6 − 1

4
x9, h4,4(x) = 1 + 31x4 + 31x8 + x12.

This motivates the study of the binomial sums

hk,r,j :=

j∑
v=0

(−1)j−v

v + 1

(
rv + k

k

)(
k

j − v

)
(1.5)

for all values of the parameters k, r, j, which does not appear in the OEIS. For instance, using a variation of the
proof of Lemma 16 using finite difference operators, we can show that hk,r,k = 1

k+1

(
r−1
k

)
for all r, k ≥ 1, which is

0 for r ≤ k. An interesting and related open problem is computing a simple representation for hk,r(x) under the
change of variables x 7→ 1− x or xr 7→ 1− xr, mirroring the symmetry of the binary entropy H(x) = H(1− x).

Our key technical tool is several equivalent expansions for the (k + 1)-st derivative of xk−rH(xr), which are
all functions of xr. The first expansion expresses the derivative as a single infinite series, the second factors out a
single root at 0 and a root of multiplicity k at 1, which leaves the numerator as a polynomial. The last generalizes
and simplifies [Yus23, Lemma 3.5, Lemma 3.8] and rewrites the (k+1)-st derivative in terms of a different rational
basis, with coefficients given by generalized Stirling numbers.
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Theorem 4. Let S(k, ℓ|α, β, γ) denote the generalized Stirling numbers of Hsu and Shiue, defined in Equation
(2.4). Let k ≥ r ≥ 1 be positive integers. For 0 < x < 1 we have(

d

dx

)k+1

xk−rH(xr) = −r · k!
∞∑
ℓ=0

(
k + rℓ

k

)
1

ℓ+ 1
xrℓ−1(1.6)

= − r · k!
x(1− xr)k

k−1∑
j=0

xrj

j∑
v=0

(−1)j−v

v + 1

(
rv + k

k

)(
k

j − v

)
(1.7)

= −
k−1∑
ℓ=0

ℓ!S(k, ℓ+ 1|1, r, k − r)rℓ+2 xrℓ−1

(1− xr)ℓ+1
.(1.8)

Corollary 5. The special case r = 1 satisfies(
d

dx

)k+1

xk−1H(x) =
(k − 1)!

x2

(
1− 1

(1− x)k

)
.(1.9)

Corollary 6. The special case r = k has the following additional simplification in terms of s-binomial coefficients
defined in Definition (2.30), where ω = e

2πi
k is a primitive k-th root of unity:(

d

dx

)k+1

H(xk) = −k!

x

k−1∑
j=0

1

(1− ωjx)k
(1.10)

= − k · k!
x(1− xk)k

k−1∑
ℓ=0

(
k

ℓk

)
k−1

xkℓ(1.11)

= −k · k!
∞∑
ℓ=0

(
k + kℓ− 1

k − 1

)
xkℓ−1.(1.12)

The scaling rv in the inner binomial coefficients is what makes the analysis here difficult. One common
classical tool to deal with the rv scaling is the Rothe-Hagen identity [GKP94, Table 202] and its generalizations,
for example due to Gould [Gou61]. However, the Rothe-Hagen identity contains binomials of the form

(
rv+k

v

)
,

where k, r are parameters and v is the summation index. The Lagrange inversion formula also yields series with
binomial coefficients

(
rv+k

v

)
, such as the expression for 1

1+αk
from Lemma 27. Instead, we require binomials of

the form
(
rv+k

k

)
. We could also compute a Fourier expansion by writing the sum over all v instead of rv, and

then inserting 1
r

∑r−1
j=0 ω

jv, where ω is a primitive r-th root of unity. However, this only provides a simplification
in the case k = r, where it is used in the proof of Corollary 6.

This inequality also has an information theoretic interpretation. Letting X1, . . . , Xk ∼ Bernoulli(x) be
Bernoulli distributed bits and Aj := ∧j

i=1Xi denote the binary AND of the first j bits, we have H(xk) = H(Ak)

and H(Ak|Ak−1) = xk−1H(x) the conditional entropy of the k-th bit. This gives a strong data processing
inequality comparing the entropy of the AND of k bits to the entropy of the AND of k-th bit conditioned on the
AND of the previous k − 1 bits.

The proof suggests a more general framework for proving tight inequalities for logarithms of polynomials of
the form

f(x) :=
∑
i

pi(x) log(1− qi(x)) ≥ 0,

where both pi(x) and qi(x) are polynomials in x. Such functions arise as free energies in problems in statistical
mechanics or in constraint satisfaction problems, such as in the study of graph k-coloring [COV13, Equation (8)]
or boolean k-SAT [MMZ06, Equation (3)]. First, we manually find the roots of f(x). Next, we pass to the (n+1)-
st derivative, where n is the maximum degree maxi(degpi(x)+degqi(x)). Taking this number of derivatives leads
to a rational function. We then use classical methods to identify the number of roots of the (n+1)-st derivative,
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which is a rational function and more tractable than the original logarithmic f(x). We then appeal to Rolle’s
theorem in the form that a function can have at most one more root than its derivative on a given interval. We
use Rolle’s theorem to pass from the (n+1)-st derivative to the original function, which can have at most (n+1)

more roots than the (n + 1)-st derivative. If we are lucky, then in the first step we identified all roots of f(x).
Finally, we show that f(x) takes positive values between each root, which implies that it is positive everywhere.
The innovation over previous methods is that if we can control the multiplicities of the roots of f(x) and the
multiplicities of the roots of the (n + 1)-st derivative, which is now a polynomial, Rolle’s theorem allows us to
deduce the desired inequality.

1.2. Randomized Symmetric Binary Perceptron. We focus on the perceptron model, a natural model in
high-dimensional probability, and a toy shallow neural network which stores patterns [Win61, Wen62, Cov65].
More concretely, given patterns Xi ∈ Rn, 1 ≤ i ≤ M , storage corresponds to finding a vector σ ∈ Rn of synaptic
weights such that ⟨σ, Xi⟩ ≥ 0 for 1 ≤ i ≤ M . Our focus is on the binary case where σ ∈ Σn ≜ {−1, 1}n,
see [Gar88, ST03, Sto13, Tal11, AS20] for the spherical case where ∥σ∥2 =

√
n. Statistical physics literature

provided a very detailed yet non-rigorous characterization of the storage capacity, i.e. the maximum number of
patterns one can store via a suitable σ, see [GD88, Gar88, KM89]. More general perceptron models considered
recently involve an activation function U : R → {0, 1}. Here, an Xi ∈ Rn is stored with respect to U if
U(⟨σ, X⟩) = 1. Our particular focus is on symmetric binary perceptron [APZ19] defined by U(x) = 1{|x| ≤
κ
√
n} (where U(x) = 1 iff |x| ≤ κ

√
n and U(x) = 0 otherwise), see below. For even more general variants,

see [BNSX22, NS23].

1.2.1. Symmetric Binary Perceptron (SBP). In this section, we mainly follow [GKPX22, GKPX23]. Fix κ > 0,
α > 0, and let M = ⌊nα⌋ ∈ N. Generate i.i.d. random vectors Xi ∼ N (0, In), 1 ≤ i ≤ M , where N (0, In) is the
centered multivariate normal distribution on Rn with identity covariance. Consider the random set

(1.13) Sα(κ) ≜
{
σ ∈ Σn : |⟨σ, Xi⟩| ≤ κ

√
n, 1 ≤ i ≤ M

}
.

Observe that Sα(κ) is indeed symmetric about the origin: σ ∈ Σn iff −σ ∈ Σn. Proposed by Aubin, Perkins, and
Zdeborová [APZ19], the SBP is a symmetrized analogue of the much studied asymmetric binary perceptron (ABP),
where the constraints are instead of the form ⟨σ, Xi⟩ ≥ κ

√
n, 1 ≤ i ≤ M . The rigorous study of the ABP is an

ongoing and difficult mathematical quest, see [KM89, KR98, Tal99, DS19, Xu21, ALS21a] for related work. On
the other hand, the SBP exhibits relevant structural properties conjectured for the ABP [BDVLZ20] (see below);
at the same time, it is more amenable to rigorous study.

Strikingly, the SBP exhibits a certain sharp phase transition, conjectured in [APZ19] and verified independently
by Perkins and Xu [PX21] and Abbe, Li, and Sly [ALS21b]. Let
αc(κ) = −1/ log2 P[|N (0, 1)| ≤ κ]. Then,

(1.14) lim
n→∞

P[Sα(κ) ̸= ∅] =

0, if α > αc(κ)

1, if α < αc(κ)
.

The part α > αc(κ) is established in [APZ19] through the first moment method : when α > αc(κ), E|Sα(κ)| = o(1)

and therefore Sα(κ) = ∅ w.h.p. by Markov’s inequality, where |Sα(κ)| is the cardinality of Sα(κ). The same paper
also considers α < αc(κ) and shows that lim infn→∞ P[Sα(κ) ̸= ∅] ≥ δ for some δ ∈ (0, 1). This is based on the
second moment method ; one requires more advanced tools for the high probability guarantee (i.e. for boosting
δ to one), see [PX21, ALS21b]. Furthermore, [SS23, Alt22] showed that the aforementioned phase transition is
very sharp: the critical window around αc(κ) where the probability increases quickly from o(1) to 1 − o(1) is
of constant width. So, the first moment method correctly predicts the phase transition point in SBP. This is in
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stark contrast with the ABP as the conjectured phase transition point [KM89] differs substantially from the first
moment prediction, see [DS19].

Recalling that Sα(κ) is non-empty when α is below the critical αc(κ) threshold, a natural goal is algorithmically
finding a σ ∈ Sα(κ). The best known polynomial-time algorithm for the SBP is due to Bansal and Spencer [BS20]
from combinatorial discrepancy literature. See [ALS21a] for a different algorithm and [GKPX23, Section 1.3] for
details on the connection between the SBP and combinatorial discrepancy. However, both of these algorithms
work at densities substantially below αc(κ), highlighting a statistical-to-computational gap: for any κ > 0, there
exists an αALG(κ) ≪ αc(κ) such that finding a σ ∈ Sα(κ) is likely to be computationally intractable when
αALG(κ) < α < αc(κ). For small κ, αALG(κ) is of order κ2, see [GKPX22] for details. Limits of efficient algorithms
were recently explored in [GKPX22, GKPX23] and tight lower bounds against stable and online algorithms were
obtained. For a more elaborate discussion on the SBP, see [PX21, ALS21a, ALS21b, GKPX22, GKPX23, Kız22].

Notation. Given any p ∈ [0, 1], Ber(p) denotes the Bernoulli distribution with parameter p. For any M ∈ N,
[M ] denotes the set {1, . . . ,M}. For any proposition E, 1{E} ∈ {0, 1} denotes its indicator. Let Σn ≜ {−1, 1}n

and for any σ,σ′ ∈ Σn, denote their Hamming distance
∑

i≤n 1{σi ̸= σ′
i} by dH(σ,σ′). Given a set S, |S|

denotes its cardinality. Given any x,y ∈ Rn, denote their inner product
∑

1≤i≤n xiyi by ⟨x,y⟩. For any
(positive semidefinite) Σ, N (0,Σ) denotes the centered multivariate normal distribution with covariance Σ;
the cases Σ = In (the identity matrix in Rn) and Σ = σ2 (σ ∈ R+) are of particular relevance. For any
r > 0, logr(·) and expr(·) respectively denote the logarithm and the exponential functions base r; we omit the
subscript when r = e. We often omit floor/ceiling operators for simplicity. We use the standard asymptotic
notation, e.g.Θ(·), O(·), o(·), ω(·), where the underlying asymptotics are often with respect to n → ∞. We reflect
asymptotics other than n → ∞ by a subscript, such as Θκ(·),Ωκ(·).

1.2.2. Models. In this section, we propose two novel generalizations of the SBP by incorporating random labels.

Definition 7. Fix κ > 0, α > 0, p ∈ [0, 1], and set M = nα ∈ N. Let Xi ∼ N (0, In), 1 ≤ i ≤ M be i.i.d. random
vectors and U(x) = 1{|x| ≤ κ

√
n} be the activation.

• Let Yi ∼ Ber(p), 1 ≤ i ≤ M be i.i.d. Set

Sα(κ, p) =
{
σ ∈ Σn : Yi = U(⟨σ, Xi⟩),∀i ∈ [M ]

}
.

• Draw a I ⊂ {1, 2, . . . ,M} with |I| = Mp uniformly at random and let Yi = 1{i ∈ I}, 1 ≤ i ≤ M . Set

S̃α(κ, p) =
{
σ ∈ Σn : Yi = U(⟨σ, Xi⟩),∀i ∈ [M ]

}
.

Several remarks are in order. Note that the SBP is indeed a special case of the models arising in Definition 7,
corresponding to the extreme case of p = 1. Furthermore, our model also captures the activation 1{|x| > κ

√
n}

by considering the labels Y ′
i = 1− Yi instead (equivalently replacing p by 1− p). This is dubbed the u-function

binary perceptron (UBP), see [APZ19] for details. We now highlight some fundamental differences between our
models and both the SBP and the UBP. Note that for the SBP (resp. UBP), the solution space gets larger (resp.
smaller) as κ → ∞ and smaller (resp. larger) as κ → 0. Importantly though, for p ∈ (0, 1), the sets Sα(κ, p) and
S̃α(κ, p) shrink both as κ → 0 as well as κ → ∞.

1.2.3. Dependence Structure of Labels. We next compare the two models. On the one hand, they are somewhat
similar: if Yi ∼ Ber(p), 1 ≤ i ≤ M , are i.i.d., then |{i : Yi = 1}| = Mp + O(

√
M) w.h.p. due to concentration of

measure. On the other hand, the labels are not independent under the second model. Indeed, while P[i ∈ I] = p
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for any i ∈ [M ], we have that for any j ̸= i,

P[j ∈ I|i ∈ I] =
(
M−1
Mp−1

)(
M
Mp

) =
Mp− 1

M − 1
< p = P[j ∈ I],

provided p < 1. In the next section, we show that breaking the independence in fact lowers the critical threshold.
We now provide two interpretations of our models.

1.2.4. Random CSP Interpretation. Both the SBP and its generalizations in Definition 7 can be viewed as a random
constraint satisfaction problem (CSP): each pair (Xi, Yi) defines a random constraint Yi = 1{|⟨σ, Xi⟩| ≤ κ

√
n}

and any σ ∈ Sα(κ, p) is a satisfying solution to the induced CSP. Random CSPs have been thoroughly studied
through various angles, ranging from the existence of solutions to the solution space geometry and the limits of
polynomial-time algorithms, see e.g. [PX21] for pointers to relevant literature.

1.2.5. Machine Learning Interpretation. Given data consisting of feature/label pairs (Xi, Yi) ∈ Rn × {0, 1}, 1 ≤
i ≤ M , a canonical task in machine learning is to find a model f(·,σ), σ ∈ θ ‘accurately explaining’ these data,
where θ is some domain. This often entails solving the empirical risk minimization (ERM) problem:

min
σ∈θ

L̂(σ), where L̂(σ) = 1

M

∑
1≤i≤M

ℓ
(
Yi; f(Xi,σ)

)
.

Here, ℓ : R2 → R≥0 is a loss function. Note that when θ = Σn, ℓ(y;x) = 1{y ̸= x} and f(Xi,σ) = U(⟨σ, Xi⟩),
Sα(κ, p) is simply the set of interpolators:

Sα(κ, p) =
{
σ ∈ Σn : L̂(σ) = 0

}
.

The case of random labels as we do here is important both from an optimization viewpoint and as a theoretical
toy model in statistics. Closely related to this is the negative spherical perceptron with random labels, where
∥σ∥2 = 1 and the constraints are of the form Yi ⟨σ, Xi⟩ ≥ κ (note that since ∥σ∥2 = 1, the right hand side scales
as κ instead of κ

√
n). See Montanari et al. [MZZ21] for a thorough study of this model, including a rigorous

phase transition and the analysis of a certain linear program.

1.2.6. Annealed and Quenched Free Energies. We will later apply the first moment method to show that the
expected size of Sα(κ, p) (resp. S̃α(κ, p)) undergoes a phase transition as α crosses an explicit threshold αc(κ, p)

(resp. α̃c(κ, p)). More precisely, we show that for Sα(κ, p),

lim
n→∞

logE
[
|Sα(κ, p)|

]
n

> 0, ∀α < αc(κ, p)(1.15)

lim
n→∞

logE
[
|Sα(κ, p)|

]
n

< 0, ∀α > αc(κ, p),(1.16)

and analogously for S̃α(κ, p). This result concerns the quantity n−1 logE
[
|Sα(κ, p)|

]
, which is known as the

annealed free energy in statistical physics literature, see e.g. [MM09, BNSX22]. This should be contrasted with
the quenched free energy, n−1E

[
log |Sα(κ, p)|

]
(which is upper bounded by the annealed free energy via Jensen’s

inequality). An ultimate goal towards which we give some rigorous evidence in Theorem 12 is to show that (a)
Sα(κ, p) ̸= ∅ with high probability (w.h.p.) if α < αc(κ) and (b) Sα(κ, p) = ∅ (w.h.p.) if α > αc(κ). Note that
when α > αc(κ, p), (1.16) yields Sα(κ, p) = ∅ (w.h.p.) via Markov’s inequality, see Theorems 8-9 for details.
However for α < αc(κ, p), (1.15) does not necessarily imply Sα(κ, p) ̸= ∅: it is possible that E[|Sα(κ, p)|] is
large, while |Sα(κ, p)| is in fact zero w.h.p. To establish Sα(κ, p) ̸= ∅ for α < αc(κ, p), it might help studying
the quenched free energy instead, e.g. if n−1 log |Sα(κ, p)| concentrates around its mean. For the SBP this was
done in [PX21], see also [Tal00] for a related result regarding the ABP. For our models, this is left for future work.
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For more on the annealed and quenched energies, see [MM09, APZ19]. In light of the preceding discussion, the
quantities αc(κ, p) and α̃c(κ, p) are dubbed as the annealed capacity.

1.3. Main Results. Throughout this section, q(κ) denotes P[|N (0, 1)| ≤ κ], where N (0, 1) is a standard normal.

1.3.1. Annealed Capacity and a Universality Result. We begin by studying the annealed capacity. Our first main
result addresses the case of i.i.d. labels.

Theorem 8. Recall Sα(κ, p) from Definition 7 and let

(1.17) αc(κ, p) = −1/ log2
(
pq(κ) + (1− p)(1− q(κ))

)
.

Then

E
[∣∣Sα(κ, p)

∣∣] =
exp(−Θ(n)), if α > αc(κ, p)

exp(Θ(n)), if α < αc(κ, p)
.

In particular, P[Sα(κ, p) = ∅] ≥ 1− e−Θ(n) if α > αc(κ).

Our proof is based on a simple application of the first moment method, see Section 3.1.
Our second main result addresses the case where the set {i : Yi = 1} is drawn uniformly at random among all

subsets of cardinality ⌊Mp⌋.

Theorem 9. Recall S̃α(κ, p) from Definition 7 and let

(1.18) α̃c(κ, p) = −1/
(
p log2 q(κ) + (1− p) log2(1− q(κ)

)
.

Then,

E
[∣∣S̃α(κ, p)

∣∣] =
exp(−Θ(n)), if α > α̃c(κ, p)

exp(Θ(n)), if α < α̃c(κ, p)
.

In particular, P[S̃α(κ, p) = ∅] ≥ 1− e−Θ(n) if α > α̃c(κ, p).

Once again, the proof is based on the first moment method, see Section 3.2.

1.3.2. Universality. We next result establish a universality result: under mild assumptions, the quantities αc(κ, p)

and α̃c(κ, p) do not depend on the distribution of Xi.

Theorem 10. Theorems 8-9 still hold if Xi = (Xi(j) : j ∈ [n]) ∈ Rn consists of i.i.d. coordinates with E[Xi(1)] =

0, E[Xi(1)
2] > 0 and E[|Xi(1)|3] < ∞.

Our proof is based on Berry-Esseen Theorem (reproduced below as Theorem 28 for convenience), see Section 3.3.
We note that several related universality results appeared in the literature. In particular, [GKPX22] establishes

the universality of a certain intricate geometrical property in the solution space of the SBP and [GKL+22] estab-
lishes the universality of the training error for linear classification with random inputs. For a similar universality
guarantee regarding solution space geometry, see also Theorem 15 below.

1.3.3. Comparison of Thresholds in Theorems 8-9. Inspecting (1.17) and (1.18), observe that Jensen’s inequality
and the concavity of the map x 7→ log2 x on (0,∞) collectively yield αc(κ, p) ≥ α̃c(κ, p). We found it quite
remarkable that breaking the independence lowers the critical threshold: the model with independent labels has
a higher annealed capacity. We are unaware of any prior work in the random CSP literature that investigates
whether and how the critical threshold changes with the dependence structure. We believe that this direction
merits further investigation.
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1.3.4. A Sharp Phase Transition Conjecture and a Rigorous Evidence. Recall that the prior works [PX21, ALS21b]
establish a sharp phase transition (1.14) for the SBP, and show that the first moment method correctly predicts
the location of this transition. Further, Theorems 8-9 collectively yield a phase transition for the first moment
itself. In light of these, we conjecture an analogous phase transition for the models we propose.

Conjecture 11. There exists a κ∗ > 0 such that the following holds for every κ < κ∗. The quantity P
[
Sα(κ, p) ̸=

∅
]

(resp. P
[
S̃α(κ, p) ̸= ∅

]
) undergoes a phase transition at value αc(κ, p) (resp. α̃c(κ, p)) as n → ∞:

lim
n→∞

P[Sα(κ, p) ̸= ∅] =

0, if α > αc(κ, p)

1, if α < αc(κ, p),

lim
n→∞

P[S̃α(κ, p) ̸= ∅] =

0, if α > α̃c(κ, p)

1, if α < α̃c(κ, p).

For the UBP (corresponding to p = 0), [APZ19] shows that the moment method works only for κ < κ∗ ≈ 0.817.
Remarkably, the value 0.817 corresponds to the onset of replica symmetry breaking, see [APZ19] for details. In
light of this, we anticipate Conjecture 11 to be valid for small κ, more concretely for κ < κ∗ ≈ 0.817. The
behaviour of our models beyond κ∗ is a very interesting open question.

Contingent on a certain assumption, we establish the following result which serves as a rigorous evidence
towards Conjecture 11.

Theorem 12. For any κ > 0, there exists a p∗κ < 1 such that the following holds. Fix any p ∈ [p∗κ, 1] and any
α < α̃c(κ, p). Then,

lim inf
n→∞

P
[
S̃α(κ, p) ̸= ∅

]
> 0.

Moreover, for any κ ∈ (0, 0.817), there exists a p∗∗κ > 0 such that the following holds. Fix any p ∈ [0, p∗∗κ ] and
any α < α̃c(κ, p). Then,

lim inf
n→∞

P
[
S̃α(κ, p) ̸= ∅

]
> 0.

We highlight that our proof is contingent on an assumption regarding (the critical points of) a certain real
function, akin to [APZ19, Hypothesis 3]. See Section 3.4 for details. Theorem 12 covers the cases when p is close
to 1 (corresponding to SBP) and close to 0 (corresponding to UBP). We prove Theorem 12 by adapting the second
moment argument of [APZ19] with a few extra steps.

1.3.5. Algorithmic Barriers and the Overlap Gap Property. Theorems 8-9 establish the annealed capacities αc(κ, p),
α̃c(κ, p), and Theorem 12 gives a rigorous evidence that S̃α(κ, p) ̸= ∅ with positive probability when α < α̃c(κ, p)

and p is close to zero/one. Equipped with these, a natural follow-up question is algorithmic: for which values of
α, κ, p, one can find a σ ∈ Sα(κ, p) (or a σ ∈ S̃α(κ, p)) in polynomial time? Our focus in this section is on the
tractability of this task.

As we mentioned earlier, the SBP exhibits a statistical-to-computational gap (SCG): for any κ > 0, there exists
an αALG(κ) ≪ αc(κ), such that while solutions exist for α < αc(κ), the best known polynomial-time search
algorithms work only when α ≤ αALG(κ). The SBP is one of many average-case models exhibiting a SCG.
While the NP-complexity theory is often not helpful for average-case models, an active line of research proposed
various frameworks for obtaining ‘rigorous evidence’ of hardness. We do not review these frameworks here,
and instead refer the reader to the excellent surveys [KWB22, Gam21, GMZ22], as well as to the introductions
of [Kız22, Hua22, GKPX22, GKPX23]. One such framework is based on the intricate geometry of the solution
space utilizing the insights gained from the study of spin glasses [Tal10].
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Background on Overlap Gap Property. Introduced by Gamarnik and Sudan [GS14, GS17a], the Overlap Gap
Property (OGP) framework rigorously links the intricate geometry of the solution space to algorithmic hardness.
At a high level, the OGP asserts the absence of a certain cluster of solutions with pairwise distances prescribed
at a certain level. Whenever present, the OGP is a rigorous barrier against broad classes of algorithms exhibiting
stability, for many average-case models. The list of algorithms against which the OGP is a barrier includes
Langevin dynamics [GJW20, HS21], low-depth Boolean circuits [GJW21], low-degree polynomials [GJW20, Wei20,
BH22], approximate message passing algorithms [GJ21], general stable algorithms [GK21, GKPX22], and online
algorithms [GKPX23]. Various average-case models exhibiting the OGP include random graphs [GS14, GS17a,
RV17, Wei20], random CSPs [GS17b, BH22], spin glass models [GJW20, HS21, HS23, GJK23, Kız23b], random
number partitioning problem [GK21, Kız23a], symmetric binary perceptron [GKPX22, GKPX23], discrepancy
minimization [GKPX23], and graph alignment problem [DGH23].

1.3.6. Symmetric m-OGP. Of particular interest to us is a symmetric version of the multi-OGP (m-OGP) in-
troduced in [GS17b]. This version of the m-OGP asserts that for a suitable m ∈ N and β ∈ (0, 1), there exists
(w.h.p. over the randomness of model) no m-tuple σ1, . . . ,σm ∈ Σn of nearly equidistant solutions with pair-
wise distances around n 1−β

2 . By establishing and leveraging this property, Gamarnik, Kızıldağ, Perkins, and
Xu [GKPX22] showed that in the regime κ → 0, stable algorithms fail to find a solution for the SBP when
α = Ωκ(κ

2 log 1
κ ). Moreover, the same authors devised a novel variant of this barrier and obtained, using this

novel barrier, that online algorithms fail to find a solution for the SBP when α = Ωκ(κ
2) [GKPX23]. In light of the

fact that the best known polynomial-time algorithm for the SBP is online and it works for α = Oκ(κ
2) [BS20], the

former guarantee is tight modulo the log 1
κ factor and the latter guarantee is tight up to absolute constants. For

further details, see [GKPX22, GKPX23]. Below, we show that our models also exhibit this version of symmetric
m-OGP. (It is worth mentioning though that we do not have any positive algorithmic guarantees for the models
we propose. Finding efficient algorithms is among the open problems discussed in Section 1.4.)

OGP in Symmetric Perceptron with Random Labels. In this section, we establish that both Sα(κ, p)

and S̃α(κ, p) introduced in Definition 7 exhibit symmetric m-OGP. We first formalize the set of m-tuples under
investigation.

Definition 13. Fix m ∈ N, 0 < η < β < 1, p ∈ [0, 1], κ > 0, and α < αc(κ, p). Let F(β, η,m, α, κ, p) be the set
of all m-tuples (σ1, . . . ,σm) satisfying the following.

• (Satisfiability) For any 1 ≤ i ≤ m, σi ∈ Sα(κ, p).
• (Overlap Constraint) For any 1 ≤ i < j ≤ m, n−1 ⟨σi,σj⟩ ∈ [β − η, β].

Similarly, for α < α̃c(κ, p), let F̃(β, η,m, α, κ, p) be the set of all such m-tuples with σi ∈ S̃α(κ, p) instead.

Definition 13 regards m-tuples of solutions with a pairwise overlap constraint. In what follows, one can
think of β ≫ η. That is, any (σ1, . . . ,σm) ∈ F(β, η,m, α, κ, p) (or (σ1, . . . ,σm) ∈ F̃(β, η,m, α, κ, p)) is a
nearly equidistant m-tuple of satisfying solutions with pairwise Hamming distances around n 1−β

2 . The m-OGP
mentioned above simply asserts that
F(β, η,m, α, κ, p) = ∅ (or F̃(β, η,m, α, κ, p) = ∅) for a suitable choice of parameters.

Equipped with Definition 13, we now present our next main result.

Theorem 14. For any p ∈ (0, 1] and κ > 0, let

αOGP(κ, p) =
10

p
κ2 log2

1

κ
.
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There exists a κ0 > 0 such that the following holds. For any κ ≤ κ0 and α > αOGP(κ, p), there exists an m ∈ N
and 0 < η < β < 1 such that

P
[
F(β, η,m, α, κ, p) = ∅

]
≤ 2−Θ(n) and P

[
F̃(β, η,m, α, κ, p) = ∅

]
≤ 2−Θ(n).

The proof of Theorem 14 is based on the first moment method, the m-OGP result for the SBP established
in [GKPX22, Theorem 2.4], and a careful conditioning argument. See Section 3.7 for details.

Theorem 14 asserts that for every small enough κ > 0 and any p ∈ (0, 1], both Sα(κ, p) and S̃α(κ, p) exhibit
symmetric m-OGP when α = Ωp,κ(

1
pκ

2 log 1
κ ). Observe that for any fixed p ∈ (0, 1], αOGP(κ, p) = oκ

(
αc(κ, p)

)
and αOGP(κ, p) = oκ

(
α̃c(κ, p)

)
as κ → 0. That is, the onset of the m-OGP is asymptotically below the critical

threshold per (1.17), (1.18). In light of prior discussion, this gives a strong evidence of algorithmic hardness for the
regimes 10

p κ2 log 1
κ < α < αc(κ, p) and 10

p κ2 log 1
κ < α < α̃c(κ, p). That is, while the solutions exist with positive

probability in these regimes, polynomial-time search algorithms likely fail. In particular, one can rigorously show
that sufficiently stable algorithms1 fail to find a σ ∈ Sα(κ, p) or a σ ∈ S̃α(κ, p) for α = Ωp,κ(

1
pκ

2 log 1
κ ). This can

be done by adapting the techniques of [GKPX22, Theorem 3.2] verbatim. For this reason and for keeping our
exposition clean, we do not pursue this improvement herein.

1.3.7. Universality for the OGP. Our last result is a universality property for the m-OGP.

Theorem 15. Let D be a distribution on R such that

ET∼D[T ] = 0, ET∼D[T
2] > 0, and ET∼D[|T |3] < ∞.

Suppose that Xi ∈ Rn, 1 ≤ i ≤ M are i.i.d. with entries drawn from D. Then, Theorem 14 still remains valid.

Theorem 15 shows that our proposed models still exhibit the m-OGP under mild distributional assumptions.
The proof of Theorem 15 is quite similar to that of [GKPX22, Theorem 5.2]. In particular, it is based on the
multi-dimensional version of the Berry-Esseen theorem. See Section 3.10 for an outline of the proof.

1.4. Conclusion and Open Problems. In this paper, we proposed two novel generalizations of the SBP that
involve random labels. Our models form a natural link between the SBP and machine learning: any satisfying
solution is a minimizer of a certain empirical risk. We then calculated the critical capacity for both models, showed
a certain universality property for the critical capacity, and established, through the second moment method, that
solutions exist with positive probability below the critical capacity. We lastly showed that our models exhibit an
intricate geometrical property known as the Overlap Gap Property (OGP), and that the onset of the OGP is well
below the critical capacity. The OGP is a rigorous barrier for large classes of search algorithms, and that it also
enjoys a universality property.

We now provide an extensive list of open problems.

1.4.1. Sharp Phase Transition. In light of earlier discussion, we conjecture that both models exhibit a sharp phase
transition (Conjecture 11). It is plausible that Conjecture 11 can be resolved by employing an argument similar
to [PX21, ALS21b]; we leave this as an open problem.

1.4.2. Interplay between the Critical Threshold and Dependence Structure. Recall that αc(κ, p) ≥ α̃c(κ, p) for any
κ > 0 and p ∈ [0, 1]. The interplay between the critical threshold and the dependence structure in the context of
other random CSPs or neural network models (such as the Hopfield model) is an interesting question for future
work.

1Informally, an algorithm is stable if a small perturbation of its input changes its output only by a small amount. For a formal
definition, see [GKPX22, Definition 3.1]
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1.4.3. Other Perceptron Models. It would be very interesting to extend our results to the spherical case (∥σ∥2 = 1).
We believe that the arguments of [MZZ21] may transfer. Similarly, it would be interesting to consider different
activations U(x) and more general perceptron models [BNSX22, NS23].

1.4.4. Algorithms. While [BS20] and [ALS21a] devise efficient algorithms for finding solutions of the SBP and
the UBP at sufficiently low densities, it is not clear whether they apply to our models. Let I = {i : Yi = 1},
M ∈ R|I|×n with rows Xi ∈ Rn, i ∈ I, and M ∈ R(M−|I|)×n with rows Xi ∈ Rn, i ∈ [M ] \ I. Note that
when 0 < p < 1 holds strictly, both I and Ic are w.h.p. non-empty. Observe that finding a σ ∈ Sα(κ, p) (or a
σ ∈ S̃α(κ, p)) amounts to finding a σ such that both ∥Mσ∥∞ ≤ κ

√
n and mini

∣∣(Mσ
)
i

∣∣ > κ
√
n hold. To that

end, one can potentially run (a) the discrepancy minimization algorithm to find a σ1 ∈ Σn with ∥Mσ∥∞ ≤ κ
√
n

and (b) the algorithm of Abbe, Li, and Sly [ALS21a] to find a σ2 ∈ Σn with mini
∣∣(Mσ

)
i

∣∣ > κ
√
n. It is, however,

unclear if these algorithms return the same solution (i.e. σ1 = σ2) even at very low densities. Assuming that
solutions do exist for densities below the critical threshold, it is a very interesting open question to find efficient
algorithms finding these solutions at certain densities.

1.4.5. Solution Space Geometry. A large body of literature on random CSPs is devoted to the study of their
solution space geometry [PX21]. Intricate geometrical properties of their solution spaces are linked to the failure
of algorithms, see [ART06, ACO08, PX21, GKPX22, GKPX23] for a discussion. [GKPX22] studied the solution
space geometry of the SBP and established the presence of the multi Overlap Gap Property (m-OGP) in order
to obtain nearly tight lower bounds against the class of stable algorithms. More recently, the same authors
established in [GKPX23] a different intricate geometrical property and leveraged it to obtain tight hardness
guarantees against online algorithms. The class of online algorithms captures, in particular, the best known
algorithm for the SBP [BS20]. In Theorem 14, we established that for small enough κ, both models we propose
exhibit the m-OGP. It would be very interesting to extend this result to moderate values of κ, as well as to the
case κ → ∞. We anticipate that the fact that Sα(κ, p) (and S̃α(κ, p)) shrinks as κ → ∞ may simplify the analysis
in the latter case.
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2. Entropy Inequality

In Section 2.1 we introduce the generalized Stirling numbers of Hsu and Shiue, and demonstrate a connection
to generalized Bernoulli and Eulerian numbers. In Section 2.2 we evaluate hk,r,j in certain regimes of k, r, j.
In Section 2.3 we prove the entropy expansions of Theorem 4. In Section 2.4 we simplify the special cases of
Corollaries 5 and 6. In Section 2.5 we prove Theorem 3, an equivalence between our main entropy inequality and
counting real roots of hk,r(x) in (0, 1). This allows us to verify the inequality for small k, and prove new cases
such as k = 3/2 via a finite calculation. Finally, in Section 2.6 we study the scaling constant αk.

2.1. Definitions. The ubiquitous Stirling numbers of the second kind are defined as the solutions to the
recurrence [GKP94, Equation (6.3)] and have the closed form [GKP94, Equation (6.19)]:

S(n+ 1, ℓ) = S(n, ℓ− 1) + ℓS(n, ℓ),(2.1)

ℓ!S(n, ℓ) =

ℓ∑
v=0

(−1)ℓ−v

(
ℓ

v

)
vn.(2.2)

Define the scaled Pochhammer symbol (z|α)n := z(z − α) · · · (z − (n − 1)α), n ≥ 1. Hsu and Shiue [HS88]
introduced generalized Stirling numbers using these scaled Pochhammer symbols. Let α, β, γ ∈ R. Define
generalized Stirling numbers S(n, ℓ|α, β, γ) via the change of basis relation

(2.3) (z|α)n =

n∑
ℓ=0

S(n, ℓ|α, β, γ)(z − γ|β)n

and initial conditions S(0, 0|α, β, γ) = 1, S(n, 0|α, β, γ) = (γ|α)n.
Many properties of these, discovered by subsequent researchers, are surveyed in the book [MS16]. We will

require the following recurrence and closed form [MS16, Theorem (4.51), Theorem (4.52)]:

S(n+ 1, ℓ|α, β, γ) = S(n, ℓ− 1|α, β, γ) + (ℓβ − nα+ γ)S(n, ℓ|α, β, γ),(2.4)

S(n, ℓ|α, β, γ) = (−1)ℓ

βℓℓ!

ℓ∑
j=0

(−1)j
(
ℓ

j

)
(βj + γ|α)n.(2.5)

In the remainder of this chapter, we often take α = 1 in the definition of the generalized Stirling numbers, which
gives

(2.6) ℓ!S(n, ℓ|1, β, γ)βℓ =

ℓ∑
v=0

(−1)ℓ−v

(
ℓ

v

)
n!

(
βv + γ

n

)
.

We also require the Dobiński type formula [HS88, Equation (27)] which factors ex out of the series:

(2.7)
∞∑
ℓ=0

xℓ

ℓ!

(
rℓ+ s

n

)
=

1

n!

n∑
ℓ=0

S(n, ℓ|1, r, s)rℓexxℓ.

Note that by comparing recurrences and initial conditions, we can show that

C(k, t, j) =
kj

(k − 1)!
S(t, j|1, k, 0),

where C(k, t, j) are the rational coefficients introduced by Yuster [Yus23] in his work on the k-union closed sets
conjecture, which considers the r = 1, k cases of our result. Furthermore, the C(k, t, j) coefficients have been
studied before and are exactly the generalized factorial coefficients of [Cha02, Definition 8.2], since they satisfy
the same recurrence and initial conditions.
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2.1.1. Classical analogy. Comparing the two closed form expressions for Stirling numbers (2.2) and (2.6) shows
that, up to normalization by β, we replace the term vn with

n!

(
βv + γ

n

)
= (βv + γ)(βv + γ − 1) · · · (βv + γ − n+ 1).

If we further specialize γ = 0, we can take the limit

lim
β→∞

S(n, ℓ|1, β, 0)βℓ

βn
= lim

β→∞

1

ℓ!βn

ℓ∑
v=0

(−1)ℓ−v

(
ℓ

v

)
n!

(
βv

n

)
(2.8)

=
1

ℓ!

ℓ∑
v=0

(−1)ℓ−v

(
ℓ

v

)
vn(2.9)

= S(n, ℓ).(2.10)

The Eulerian numbers An,k have the closed form [GKP94, Equation (6.38)]

An,ℓ =

ℓ∑
v=0

(−1)ℓ−v

(
n+ 1

ℓ− v

)
(v + 1)n.(2.11)

We introduce the companion sequence of generalized Eulerian numbers

(2.12) A
(r,s)
n,ℓ = n!

ℓ∑
v=0

(−1)ℓ−v

(
n+ 1

ℓ− v

)(
(v + 1)r + s

n

)
.

By a similar argument to the Stirling case we see that

lim
r→∞

A
(r,0)
n,ℓ

rn
= An,ℓ.

Note that if γ ̸= 0 or s ̸= 0 we do not reduce to standard Eulerian and Stirling numbers in the large β limit.
There are many classical relations linking Stirling numbers, sum of powers, Eulerian numbers, and Bernoulli

numbers. One of the key identities linking moments, Stirling numbers, and Eulerian numbers [GKP94, Equation
(7.46)] is

(2.13)
(
z
d

dz

)n
1

1− z
=

∞∑
ℓ=1

ℓnzℓ =

n∑
j=0

j!S(n, j)
zj

(1− z)j+1
=

z

(1− z)n+1

n∑
j=0

An,jz
j .

Combining Lemma 2.24 with some further calculations gives a generalization of this transformation involving the
parameters r, s:

n!

∞∑
ℓ=1

(
rℓ+ s

n

)
zℓ =

n∑
j=0

j!S(n, j|1, r, s)rj zj

(1− z)j+1
=

z

(1− z)n+1

n∑
j=0

A
(r,s)
n,j zj .(2.14)

The existence of this transformation is what leads to the definition of A
(r,s)
n,j . These definitions of generalized

Stirling and Eulerian numbers suggest an analog of the classical calculus where we systematically replace powers
vt with the scaled Pochhammer t!

(
βv
t

)
= (βv)(βv − 1) · · · (βv − t+ 1). This introduces the free parameter β, and

we can recover all of the classical sequences by normalizing and taking the β → ∞ limit.
Beginning with the closed form for Bernoulli numbers [DLMF, Equation (24.6.9)]

(2.15) Bn =

n∑
ℓ=0

ℓ∑
v=0

(−1)v

ℓ+ 1

(
ℓ

v

)
vn,
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we then define generalized Bernoulli numbers by the closed form

(2.16) B(r,s)
n := n!

n∑
ℓ=0

ℓ∑
v=0

(−1)v

ℓ+ 1

(
ℓ

v

)(
rv + s

n

)
.

We leave it as an open question to explore the links between these generalizations of Bernoulli, Eulerian, and
Stirling numbers.

2.2. Finite differences. Recall that we defined the key binomial sum (1.5)

hk,r,j :=

j∑
v=0

(−1)j−v

v + 1

(
rv + k

k

)(
k

j − v

)
.

We will need to understand hk,r,j in more detail, in particular its vanishing for j ≥ k ≥ r ≥ 1. Using finite
difference operators, we can provide an expression for hk,r,j which sums over k− j terms instead of j terms. This
gives explicit expressions for the leading coefficients of hk,r(x), since for example we have hk,r,k−1 = (−1)r 1

(kr)

and (−1)khk,r,k−2 = (−1)r+1 k

(kr)
+
(
k−2r

k

)
. Note the appearance of binomial coefficients with a negative upper

index.

Lemma 16. Consider integer k ≥ r ≥ 1. If j ≥ k, then hk,r,j = 0. If 1 ≤ j < k, then

(2.17) hk,r,j = (−1)j+r+1

(
k

j+1

)(
k
r

) +

k−j∑
v=2

(−1)j+v

v − 1

(
k

j + v

)(
k − rv

k

)
.

Proof. Define the polynomial q(x) = 1
x+1

(
rx+k

k

)
. For r ≤ k the numerator contains the factor rx+r which cancels

with x + 1 in the denominator, so that q(x) is a polynomial of degree ≤ k − 1. We apply the finite difference
operator ∆ defined by ∆q(x) := q(x + 1) − q(x), which lowers the degree of a polynomial q(x) by 1. Therefore,
we have the key identity

(2.18) ∆kq(x) =

k∑
v=0

(−1)k−v

(
k

v

)
q(x+ v) =

k∑
v=0

(−1)k−v

(
k

v

)
1

x+ v + 1

(
rx+ rv + k

k

)
= 0,

which is 0 because we have lowered the degree of a degree k − 1 polynomial k times.
Consider the case j ≥ k ≥ r ≥ 1. We rewrite the definition of hk,r,j as

hk,r,j =

j∑
v=0

(−1)j−v

v + 1

(
rv + k

k

)(
k

j − v

)

=

j∑
v=j−k

(−1)j−v

v + 1

(
rv + k

k

)(
k

j − v

)

=

k∑
v=0

(−1)k−v

j − k + v + 1

(
rv + k + r(j − k)

k

)(
k

k − v

)

=

k∑
v=0

(−1)k−v

j − k + v + 1

(
rv + k + r(j − k)

k

)(
k

v

)
.

We first truncated the sum from v = j − k ≥ 0 to v = k since
(

k
j−v

)
vanishes outside this range. We then shifted

the v sum by j − k and used the symmetry
(

k
k−v

)
=
(
k
v

)
. Comparing against Equation (2.18), we see that this is

exactly ∆kq(x)|x=j−k = 0, since setting x = j − k ≥ 0 does not lead to any singular terms.
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Now consider the case k ≥ r ≥ 1 and k > j ≥ 1. Consider the limit x → −j in Equation (2.18), so that the
only singular term is at v = j − 1, where we have

lim
x→−j

(−1)k−j−1

(
k

j − 1

)
1

x+ j

(
rx+ rj + k − r

k

)
= (−1)k−j−1

(
k

j − 1

)
lim
x→0

1

x

(
rx+ k − r

k

)
= (−1)k−j−1

(
k

j − 1

)
r

k!
lim
x→0

(rx+ k − r)(rx+ k − r − 1) · · · (rx− r + 1)

rx

= (−1)k−j−1

(
k

j − 1

)
r

k!
· (k − r)!(r − 1)!(−1)r−1

= (−1)k−j−r

(
k

j−1

)(
k
r

) .

The rx terms in the numerator and denominator cancelled, so that substituting x = 0 was well-defined. Hence
the finite difference result (2.18) reduces to

0 = ∆kq(x)
∣∣
x=−j

= (−1)k−j−r

(
k

j−1

)(
k
r

) +

j−2∑
v=0

(−1)k−v

v − j + 1

(
k

v

)(
rv − rj + k

k

)
+

k∑
v=j

(−1)k−v

v − j + 1

(
k

v

)(
rv − rj + k

k

)

= (−1)k−j−r

(
k

j−1

)(
k
r

) + hk,r,k−j +

j−2∑
v=0

(−1)k−v

v − j + 1

(
k

v

)(
rv − rj + k

k

)
.(2.19)

Here, we rewrote hk,r,k−j as

hk,r,k−j : =

k−j∑
v=0

(−1)k−j−v

v + 1

(
rv + k

k

)(
k

k − j − v

)

=

k∑
v=j

(−1)k−v

v − j + 1

(
rv − rj + k

k

)(
k

k − v

)

=

k∑
v=j

(−1)k−v

v − j + 1

(
rv − rj + k

k

)(
k

v

)
,

where we shifted the v summation by j, reversed the order of summation, and used the symmetry
(

k
k−v

)
=
(
k
v

)
.

We also have
j−2∑
v=0

(−1)k−v

v − j + 1

(
k

v

)(
rv − rj + k

k

)
=

j−2∑
v=0

(−1)k+j−v

−(v + 1)

(
k

j − v − 2

)(
−rv − 2r + k

k

)

=

j∑
v=2

(−1)k+j−v+1

v − 1

(
k

j − v

)(
k − rv

k

)
,

where we reversed the order of summation and then shifted the summation over v by 2. Finally, reversing j 7→ k−j

in Equation (2.19) and noting
(

k
k−j−v

)
=
(

k
j+v

)
completes the proof. □

2.3. Entropy derivative closed forms. This subsection proves the closed forms for iterated entropy derivatives
from Theorem 4. We begin with a fundamental infinite series expansion for the binary entropy. The key is that
we consider xk log x as an analytic function around 0, which we do not series expand, while we series expand
log(1− xk).

Lemma 17. For integer k ≥ 1 and real 0 ≤ x ≤ 1 we have the expansion

(2.20) H(xk) = −xk log xk − (1− xk) log(1− xk) = −kxk log x+ xk −
∞∑
ℓ=1

xk(ℓ+1)

ℓ(ℓ+ 1)
.
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Proof. Recall − log(1− x) =
∑∞

ℓ=1
xℓ

ℓ . Consider the series
∞∑
ℓ=1

xℓ+1

ℓ(ℓ+ 1)
=

∞∑
ℓ=1

xℓ+1

(
1

ℓ
− 1

ℓ+ 1

)

= x

∞∑
ℓ=1

xℓ

ℓ
−

∞∑
ℓ=2

xℓ

ℓ

= −x log(1− x) + (x+ log(1− x))

= x+ (1− x) log(1− x).

Mapping x 7→ xk and substituting into the definition of H(xk) = −xk log xk − (1 − xk) log(1 − xk) finishes the
proof.

Note that at x = 0 this approaches H(0) = 0 and at x = 1 we can telescope
∞∑
ℓ=1

1

ℓ(ℓ+ 1)
=

∞∑
ℓ=1

(
1

ℓ
− 1

ℓ+ 1

)
= 1,

so that the series converges for 0 ≤ x ≤ 1. □

We now differentiate termwise to obtain an expression for the (k + 1)-st derivative.

Lemma 18. For integer k ≥ r ≥ 1 and real 0 < x < 1 we have(
d

dx

)k+1

xk−rH(xr) = −r · k!
∞∑
ℓ=0

(
k + rℓ

k

)
1

ℓ+ 1
xrℓ−1.(2.21)

Proof. We begin with Lemma 17 in the form

(2.22) xk−rH(xr) = −rxk log x+ xk −
∞∑
ℓ=1

xk+rℓ

ℓ(ℓ+ 1)
.

Note that (
d

dx

)k+1

xk log x =
k!

x

and (
d

dx

)k+1

xk+rℓ =
(k + rℓ)!

(rℓ− 1)!
xrℓ−1,

so that after differentiating (k + 1) times termwise we have(
d

dx

)k+1

xk−rH(xr) = −r · k!
x

−
∞∑
ℓ=1

(k + rℓ)!

(rℓ− 1)!(ℓ)(ℓ+ 1)
xrℓ−1.(2.23)

Rewrite the factorials as
(k + rℓ)!

(rℓ− 1)!(ℓ)(ℓ+ 1)
= r · k! (k + rℓ)!

(rℓ− 1)!k!(rℓ)(ℓ+ 1)
= r · k!

(
k + rℓ

k

)
1

ℓ+ 1
,

and then recognize − r·k!
x as the ℓ = 0 term of the sum. The key observation is that the factorial ratio cancels

nontrivially. Finally, the sum in Equation (2.23) becomes(
d

dx

)k+1

xk−rH(xr) = −r · k!
∞∑
ℓ=0

(
k + rℓ

k

)
1

ℓ+ 1
xrℓ−1

and we are done. □

To show that the (k + 1)-st derivative is a rational function in x, we consider the product with (1− xr)k and
show that this is a polynomial, which is not obvious.
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Lemma 19. For integer k ≥ 1 and real 0 < x < 1 we have(
d

dx

)k+1

xk−rH(xr) = − r · k!
x(1− xr)k

k−1∑
j=0

xrj

j∑
v=0

(−1)j−v

v + 1

(
rv + k

k

)(
k

j − v

)
.

Proof. For 0 < x < 1, where the entropy series converges, reindex the product

(1− xr)k
∞∑
ℓ=0

(
k + rℓ

k

)
1

ℓ+ 1
xrℓ =

k∑
m=0

(−1)m
(
k

m

)
xrm

∞∑
ℓ=0

(
k + rℓ

k

)
1

ℓ+ 1
xrℓ

=

∞∑
j=0

xrj

j∑
v=0

(−1)k−v

v + 1

(
k + rv

k

)(
k

j − v

)

=

∞∑
j=0

xrjhk,r,j ,

where we recall the definition of hk,r,j in Equation (1.5). Now Lemma 16 says that for k ≥ r ≥ 1 and j ≥ k, we
have hk,r,j = 0. Therefore this sum is actually a polynomial, and

∞∑
ℓ=0

(
k + rℓ

k

)
1

ℓ+ 1
xrℓ =

1

(1− xr)k

k−1∑
j=0

xrjhk,r,j .

Comparing with Lemma 18 completes the proof. □

Lemma 20. Let r, n ≥ 1 be integers and r ≤ s ≤ n+ r − 1 an integer. For complex w with ℜ(w) < 1 we have

(2.24)
∞∑
ℓ=0

wrℓ−1

(
rℓ+ s

n

)
=

1

n!

n∑
ℓ=0

ℓ!S(n, ℓ|1, r, s)rℓ wrℓ−1

(1− wr)ℓ+1

and

(2.25)
∞∑
ℓ=0

wrℓ−1

ℓ+ 1

(
rℓ+ s

n

)
=

1

n!

n∑
ℓ=0

ℓ!S(n, ℓ+ 1|1, r, s− r)rℓ+1 wrℓ−1

(1− wr)ℓ+1
,

.

Proof. We begin with the Dobiński-type formula of Equation (2.7):

(2.26)
∞∑
ℓ=0

xℓ

ℓ!

(
rℓ+ s

n

)
=

1

n!

n∑
ℓ=0

S(n, ℓ|1, r, s)rℓexxℓ.

We will take Laplace transforms of both sides. Note that the Laplace transform with ℜ(w) > 1 acts on monomials
as ∫ ∞

0

e−wxxℓdx =
ℓ!

wℓ+1
,

so that ∫ ∞

0

e−wxexxℓdx =
ℓ!

(w − 1)ℓ+1
.

Laplace transforming both sides gives
∞∑
ℓ=0

1

wℓ+1

(
rℓ+ s

n

)
=

1

n!

n∑
ℓ=0

S(n, ℓ|1, r, s)rℓ
∫ ∞

0

e(1−w)xxℓdx(2.27)

=
1

n!

n∑
ℓ=0

S(n, ℓ|1, r, s)rℓ ℓ!

(w − 1)ℓ+1
(2.28)
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with ℜ(w) > 1. Now mapping w 7→ 1/w gives
∞∑
ℓ=0

wℓ+1

(
rℓ+ s

n

)
=

1

n!

n∑
ℓ=0

ℓ!S(n, ℓ|1, r, s)rℓ wℓ+1

(1− w)ℓ+1

with ℜ(w) < 1. Dividing by w, mapping w 7→ wr, and dividing by w again gives the first result.
For the second result with the 1

ℓ+1 factor, we again begin with

∞∑
ℓ=0

xℓ

ℓ!

(
rℓ+ s

n

)
=

1

n!

n∑
ℓ=0

S(n, ℓ|1, r, s)rℓexxℓ,

separate out the ℓ = 0 terms on both sides, shift ℓ by 1, and divide through by x:(
s

n

)
+

∞∑
ℓ=1

xℓ

ℓ!

(
rℓ+ s

n

)
=

1

n!
S(n, 0|1, r, s)ex +

1

n!

n∑
ℓ=1

S(n, ℓ|1, r, s)rℓexxℓ

and
1

x

(
s

n

)
+

∞∑
ℓ=0

xℓ

(ℓ+ 1)!

(
rℓ+ r + s

n

)
=

1

n!
S(n, 0|1, r, s)e

x

x
+

1

n!

n−1∑
ℓ=0

S(n, ℓ+ 1|1, r, s)rℓ+1exxℓ.

Note that the Laplace transform of 1/x does not exist, so we need both of the initial terms to drop. When
0 ≤ s < n is an integer, the binomial coefficient evaluates to 0 and S(n, 0|1, r, s) = s(s − 1) · · · (s − n + 1) = 0.
Now Laplace transform both sides with ℜ(w) > 1:

∞∑
ℓ=0

1

(ℓ+ 1)wℓ+1

(
rℓ+ r + s

n

)
=

1

n!

n−1∑
ℓ=0

S(n, ℓ+ 1|1, r, s)rℓ+1 ℓ!

(w − 1)ℓ+1
.

Map w 7→ 1/w, so ℜ(w) < 1, divide by w, and map s 7→ s− r so that r ≤ s < n+ r:

(2.29)
∞∑
ℓ=0

wℓ

ℓ+ 1

(
rℓ+ s

n

)
=

1

n!

n−1∑
ℓ=0

S(n, ℓ+ 1|1, r, s− r)rℓ+1ℓ!
wℓ

(1− w)ℓ+1
.

Map w 7→ wr and divide by w:
∞∑
ℓ=0

wrℓ−1

ℓ+ 1

(
rℓ+ s

n

)
=

1

n!

n−1∑
ℓ=0

ℓ!S(n, ℓ+ 1|1, r, s− r)rℓ+1 wrℓ−1

(1− wr)ℓ+1

to finish. □

An alternate proof of Lemma 19 proceeds by starting with Equation (2.25), clearing denominators by (1 −
wr)n+1, using the binomial theorem on (1 − wr)n−ℓ, and inserting the closed form expression for generalized
Stirling numbers from Equation (2.6). Then we can switch the order of summation in the triple sum and evaluate
the innermost sum using a classical binomial identity to get back down to a double sum.

Combining all of these lemmas proves Theorem 4, giving closed forms for the (k+1)-st derivative of xk−rH(xr).

2.4. Special cases. We will simplify the cases r = 1, k which Yuster originally studied in [Yus23]. This will
prove Corollaries 56. The following sequence, which has been studied many times, makes an appearance.

Definition 21. Define the s-binomial coefficients through the generating function

(2.30)
ks∑
ℓ=0

(
k

ℓ

)
s

xℓ := (1 + x+ x2 + · · ·+ xs)k =

(
1− xs+1

1− x

)k

.
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A 1731 result of de Moivre [dM31] gives the closed form

(2.31)
(
k

ℓ

)
s−1

=

⌊ℓ/s⌋∑
v=0

(−1)v
(
k

v

)(
ℓ− vs+ k − 1

k − 1

)
,

where the restriction v ≤ ⌊ℓ/s⌋ comes from setting ℓ− s+ k − 1 ≥ k − 1 so that the second binomial coefficient
is positive.

We repeat the statement of Corollary 6. Equation (2.34) proves an observation of Yuster that the coefficients
are given by OEIS sequence A108267, which is

(
k
ℓk

)
k−1

.

Corollary 22. Consider real 0 < x < 1 and ω = e
2πi
k a primitive k-th root of unity. In terms of s-binomial

coefficients defined in Definition (2.30),(
d

dx

)k+1

H(xk) = −k · k!
∞∑
ℓ=0

(
k + kℓ− 1

k − 1

)
xkℓ−1(2.32)

= −k!

x

k−1∑
j=0

1

(1− ωjx)k
(2.33)

= − k · k!
x(1− xk)k

k−1∑
ℓ=0

(
k

ℓk

)
k−1

xkℓ.(2.34)

Proof. Specializing Theorem 4 to r = k and noting the binomial coefficient identity(
k + kℓ

k

)
1

ℓ+ 1
=

k + kℓ

k

(
k + kℓ− 1

k − 1

)
1

ℓ+ 1
=

(
k + kℓ− 1

k − 1

)
proves Equation (2.32). Now let ω = e2πi/k be a primitive k-th root of unity and write(

d

dx

)k+1

H(xk) = −k · k!
x

∞∑
ℓ=0

(
k + kℓ− 1

kℓ

)
xkℓ

= −k · k!
x

∞∑
ℓ=0

(
k + ℓ− 1

ℓ

)
xℓ
1 [ℓ ≡ 0 (mod k)]

= −k!

x

∞∑
ℓ=0

xℓ

(
k + ℓ− 1

ℓ

) k−1∑
j=0

ωjℓ.

We divided by k since the inner sum along roots of unity is zero unless ℓ ≡ 0 (mod k), in which case it is k. Now,
we use the generalized binomial theorem to deduce Equation (2.33)

−k!

x

∞∑
ℓ=0

xℓ

(
k + ℓ− 1

ℓ

) k−1∑
j=0

ωjℓ = −k!

x

k−1∑
j=0

∞∑
ℓ=0

(
k + ℓ− 1

ℓ

)
(ωjx)ℓ = −k!

x

k−1∑
j=0

1

(1− ωjx)k
.

Now note that if F (z) =
∑∞

n=0 anz
n, we have

∑∞
n=0 aknz

kn = 1
k

∑k−1
j=0 F (wjz), where ω is a primitive k-th

root of unity. Then by setting F (x) =
(

1−xk

1−x

)k
to be the generating function of

(
k
ℓ

)
k−1

, we have

k∑
ℓ=0

(
k

kℓ

)
k−1

xkℓ =
1

k

k−1∑
j=0

(
1− (ωjx)k

1− ωjx

)k

=
(1− xk)k

k

k−1∑
j=0

1

(1− ωjx)k
,(2.35)

which proves Equation (2.34). Note that this essentially computed the Fourier expansion of the (k− 1)-binomial
generating function. □
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Corollary 23. We have

(2.36)
(

d

dx

)k+1

xk−1H(x) =
(k − 1)!

x2

(
1− 1

(1− x)k

)
.

Proof. Consider Equation (1.6) with r = 1, so that(
d

dx

)k+1

xk−1H(x) = −k!

∞∑
ℓ=0

(
k + ℓ

k

)
1

ℓ+ 1
xℓ−1.

Now use the generalized binomial theorem to show
∞∑
ℓ=0

(
k + ℓ

k

)
1

ℓ+ 1
xℓ =

1

k

∞∑
ℓ=0

(
k + ℓ

ℓ+ 1

)
xℓ =

1

k

∞∑
ℓ=1

(
k + ℓ− 1

ℓ

)
xℓ−1 =

1

kx

(
1

(1− x)k
− 1

)
,

and we are done. □

2.5. Real rootedness reduction. We finally show that our main real rootedness conjecture inequality (1.2) for
real exponents.

Theorem 24. The real rootedness Conjecture 2 implies the entropy inequality of Conjecture 1 for all real k ≥ 1.

Proof. Our proof follows the framework of [Yus23], but with the extra parameter r. The flexibility given by
the extra r parameter is crucial to proving the reduction for real exponents, as opposed to integer exponents.
Consider the function

fk,r(x) := αH(xk)− xk−rH(xr),

where α := αk/r satisfies the function equation (1.1) with parameter k/r, which is equivalent to

(2.37) αr =
1

(1 + α)k−r
.

We omit the subscript in αk/r for clarity. Our goal is to compute all roots of fk,r(x) in [0, 1].
We have a trivial root at x = 1 since H(1) = 0.
We have a double root at 1

(1+α)1/r
since we can calculate that fk,r

(
1

(1+α)1/r

)
= f ′

k,r

(
1

(1+α)1/r

)
= 0. Using the

symmetry H(x) = H(1− x) and the functional equation for α, we have

fk,r

(
1

(1 + α)1/r

)
= αH

(
1

(1 + α)k/r

)
− 1

(1 + α)k/r−1
H

(
1

1 + α

)
= αH

(
α

1 + α

)
− αH

(
1

1 + α

)
= 0.

We now compute the derivative

1

xk−r−1

d

dx
fk,r(x) = αkxr log

(
1− xk

xk

)
− kxr log

(
1− xr

xr

)
+ (k − r) log(1− xr).(2.38)

Using the functional equation for α several times, at x = 1
(1+α)1/r

we have

1− xr =
α

1 + α
,

1− xr

xr
= α,

1− xk

xk
= (1 + α)k/r − 1 =

1 + α

α
− 1 =

1

α
.

Now note that

(k − r) log

(
α

1 + α

)
= k log

(
α

1 + α

)
− log

(
α

1 + α

)r

= k log
α

1 + α
− log

1

(1 + α)k
= k logα.
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Substituting this into the derivative (2.38) gives

(1 + α)
k−r−1

r f ′
k,r

(
1

(1 + α)1/r

)
= k

α

1 + α
log

1

α
− k

1 + α
logα+ (k − r) log

(
α

1 + α

)
= −k

α

1 + α
logα− k

1 + α
logα+ k logα

= 0.

We also have a root of multiplicity k at x = 0. Equation (2.22) states that

xk−rH(xr) = −rxk log x+ xk −
∞∑
ℓ=1

xk+rℓ

ℓ(ℓ+ 1)
,

so that for 0 ≤ t ≤ k − 1 we have(
d

dx

)t

xk−rH(xr)

∣∣∣∣
x=0

= −r

(
d

dx

)t

xk log x

∣∣∣∣
x=0

.

Using the iterated product rule and separating the term at ℓ = 0 gives(
d

dx

)t

xk log x = −r

t∑
ℓ=0

(
t

ℓ

)(
d

dx

)t−ℓ

xk ·
(

d

dx

)ℓ

log x

= −r
k!

(k − t)!
xk−t log x− r

t∑
ℓ=1

(
t

ℓ

)
k!

(k − t+ ℓ)!
xk−t+ℓ (−1)ℓ−1

xℓ

= −r
k!

(k − t)!
xk−t log x− r

t∑
ℓ=1

(−1)ℓ−1

(
t

ℓ

)
k!

(k − t+ ℓ)!
xk−t.

Irrespective of the value of r, for 0 ≤ t ≤ k − 1 we have limx→0 x
k−t log x = 0, which in turn means that(

d

dx

)t

fk,r(x)

∣∣∣∣
x=0

= 0.

Now, we appeal to Theorem 4, which states that(
d

dx

)k+1

fk,r(x) = −α
k · k!

x(1− xk)k
hk,k(x) +

r · k!
x(1− xr)k

hk,r(x)

= − k!

x(1− xr)k(1− xk)k
(
αk(1− xr)khk,k(x)− r(1− xk)khk,r(x)

)
,

where

hk,r(x) =

k−1∑
j=0

xrj

j∑
v=0

(−1)j−v

v + 1

(
rv + k

k

)(
k

j − v

)
as before. Now assume the conjecture that the numerator has two real roots in 0 < x < 1. By Rolle’s theorem
applied k+1 times to the (k+1)-st derivative, it follows that fk,r(x) contains at most k+3 roots in [0, 1], counting
multiplicity. We have a trivial root at x = 1, a double root at x = 1

(1+α)1/r
, and a root of multiplicity k at x = 0.

Therefore, we have found all k + 3 roots of fk,r(x) in [0, 1].
Because fk,r(x) has a double root at 1

(1+α)1/r
, and the other roots are at the endpoints of the interval [0, 1], it

must be either non-positive or non-negative on [0, 1]. Yuster [Yus23, Lemma 3.3] showed that there is a small ε
such that fk,1(x) > 0 for 0 < x < ε and integers k ≥ 2. The exact same proof shows that there is an εr so that
fk,r(x

1/r) > 0 for 0 < x < εr and k/r > 1. Since fk,r takes a positive value, it must be non-negative on [0, 1].
Given that fk,r(x) = αk/rH(xk) − xk−rH(xr) ≥ 0, 0 ≤ x ≤ 1, we now map x 7→ x1/r, which sends [0, 1] to

[0, 1]. Therefore αk/rH
(
xk/r

)
− xk/r−1H(x) ≥ 0. However we picked k > r ≥ 1 as arbitrary coprime integers,
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so that k/r runs through all rationals greater than 1, and the inequality αqH(xq) − xq−1H(x) ≥ 0 holds for all
rational q > 1. Since each term αq, H(xq), xq−1 is continuous in q > 1, the inequality must also hold for all real
q > 1. The inequality is also trivial at q = 1, which finishes the proof. □

The previous proof shows that if we can verify that pk,r(x) := αk/rk(1 − xr)khk,k(x) − r(1 − xk)khk,r(x) has
two roots in (0, 1) for a fixed pair of integers k, r, then we have verified inequality (1.2) for the rational exponent
k/r. For instance, at k = 3, r = 2, α3/2 ≈ 0.754878, this polynomial is

p3,2(x) = 3α3/2

(
−x12 + 3x10 − 7x9 − 3x8 + 21x7 − 21x5 + 3x4 + 7x3 − 3x2 + 1

)
−
(
2x13

3
− 4x11 − 2x10 − 2x9 + 12x8 + 2x7 + 6x6 − 12x5 − 2x4

3
− 6x3 + 4x2 + 2

)
.

This has two real roots in (0, 1) at ≈ 0.204863, 0.74186, which proves the main entropy inequality (1.2) for the
fractional exponent 3/2.

Also note that we can factor (1− x)k out of pk,r(x), while still leaving a polynomial. Equivalently, we can to
show that

αk/rk

(
1− xr

1− x

)k

hk,k(x)− r

(
1− xk

1− x

)k

hk,r(x)

has two real roots in (0, 1), counting multiplicity. The term
(

1−xr

1−x

)k
is the generating function for (r−1)-binomial

coefficients given in Definition (2.30). The r = 1 case of this factored polynomial is exactly the polynomial pk(x)
of Yuster [Yus23, Corollary 3.7] which arose in his study of inequality (1.2) for integer k. The k = 2, r = 1 case
is additionally the polynomial p(x) of Boppana [Bop23].

2.6. Functional equation. We now collect some useful properties of αk, including basic bounds and first order
asymptotics. Recall that αk satisfies the functional equation (1.1)

αk =
1

(1 + αk)k−1
.

Note that the following result is tight since limk→1+ αk = 1.

Lemma 25. For real k > 1, αk monotonically decreases in k and satisfies

(2.39)
1

k
< αk < 1.

Proof. Consider the functional equation xk + xk
k = 1, written in terms of xk = 1

1+αk
. This is monotonic in

0 < xk < 1 so has a unique solution in (0, 1), which corresponds to a unique value of αk in (0, 1) satisfying
(1.1). If k increases, the power 0 < xk

k < 1 decreases, so xk must monotonically increase. Then αk = 1
xk

− 1

monotonically decreases. Noting that limk→1+ αk = 1 gives the upper bound.
Assume αk ≤ 1/k, then xk = 1

1+αk
≥ k

k+1 . Then we apply Bernoulli’s (strict) inequality to xk + xk
k ≥

k
k+1 +

(
1− 1

k+1

)k
> k

k+1 + 1
k+1 = 1, which contradicts the functional equation xk + xk

k = 1 and gives the lower
bound. □

We can compute the large k asymptotics of αk. Note that bk ≈ log log k to first order, but there are multi-
plicative corrections of order 1

log k ,
1

log2 k
, . . .. The point of making bk the solution to an exact equation is that the

remaining error term in Lemma 26 is much smaller.

Lemma 26. Let bk be the unique solution to

(2.40) bk − log

(
1− bk

log k

)
= log log k.
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In the large k limit, we have

αk =
log k − bk

k
+O

(
log2 k

k2

)
(2.41)

=
log k

k
+O

(
log log k

k

)
.(2.42)

Proof. We will do our calculations in xk = 1
1+αk

, which is the unique solution of xk + xk
k = 1.

We will guess for now that xk = 1− log k−δ
k for δ ∈ [0, 2 log log k]. We will see below that there is a solution xk

of this form, which must be the unique solution. We calculate

log xk = log

(
1− log k − δ

k

)
= − log k − δ

k
+O

(
log2 k

k2

)
,

log xk
k = δ − log k +O

(
log2 k

k

)
.

Moreover
log(1− xk) = log(log k − δ)− log k = log log k + log

(
1− δ

log k

)
− log k.

The equation xk + xk
k = 1 implies log xk

k = log(1− xk), so

δ − log k +O

(
log2 k

k

)
= log log k + log

(
1− δ

log k

)
− log k,

which rearranges to

δ − log

(
1− δ

log k

)
= log log k +O

(
log2 k

k

)
.

This equation has a solution δ ∈ [0, 2 log log k] by the intermediate value theorem, and by inspection δ = bk +

O(log2 k/k). Therefore

xk = 1− log k − bk +O(log2 k/k)

k
,

which implies the estimate on αk = 1−xk

xk
. □

Finally, we can give a series expansion for xk using Lagrange inversion. Note that the lower index of the
binomial coefficient is j, as opposed to the kj which appears in the definition of hk,r(x).

Lemma 27. We have the following series expansion for αk:

(2.43) xN
k =

1

(1 + αk)N
=

∞∑
j=0

(−1)j
N

(k − 1)j +N

(
kj +N − 1

j

)
.

Proof. Rewrite the functional equation xk + xk
k = 1 as xk = 1

1+xk−1
k

. Consider xk(z) given as the solution of

xk(z) =
z

1 + xk(z)k−1
.

We now perform Lagrange inversion along the variable z in xk(z) before setting z = 1, following [Ges16, Equation
(2.2.1)]. We have

[zn]xk(z)
N =

N

n

[
tn−N

] 1

(1 + tk−1)n
=

N

n

[
tn−N

] ∞∑
j=0

(
n− 1 + j

j

)
(−1)jt(k−1)j .
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The inner coefficient is only nonzero when n−N = (k − 1)j, or when n = (k − 1)j +N for some j. Therefore

xk(z)
N =

∞∑
n=0

zn
N

n

[
tn−N

] 1

(1 + tk−1)n

=

∞∑
j=0

z(k−1)j+N N

(k − 1)j +N

(
kj +N − 1

j

)
(−1)j .

Now setting z = 1 recovers xN
k . □
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3. Randomized Symmetric Binary Perceptron

We provide proofs of all results mentioned in the introduction, as well as plots of numerical experiments.

3.1. Proof of Theorem 8.

Proof of Theorem 8. Our proof is based on the first moment method : note that by Markov’s inequality,

P
[∣∣Sα(κ, p)

∣∣ ≥ 1
]
≤ E[

∣∣Sα(κ, p)
∣∣],

so that Sα(κ, p) = ∅ w.h.p. if E
[∣∣Sα(κ, p)

∣∣] = o(1). So, the remainder of proof estimates E
[∣∣Sα(κ, p)

∣∣]. Fix any
σ ∈ Σn and let Zi(σ) = 1

{
Yi = U(⟨σ, Xi⟩)

}
. Then,

|Sα(κ, p)| =
∑

σ∈Σn

Z(σ), where Z(σ) =
∏

1≤i≤M

Zi(σ).

Now fix any σ ∈ Σn and observe that Z1(σ), . . . , ZM (σ) are i.i.d. Bernoulli. Moreover, ⟨σ, Xi⟩ ∼ N (0, n). So,

P[Zi(σ) = 1] = P[Zi(σ) = 1|Yi = 1]P[Yi = 1] + P[Zi(σ) = 1|Yi = 0]P[Yi = 0]

= pP[|⟨σ, Xi⟩| ≤ κ
√
n] + (1− p)P[|⟨σ, Xi⟩| > κ

√
n]

= pq(κ) + (1− p)(1− q(κ)).

Thus, E
[∣∣Sα(κ, p)

∣∣] = exp2
(
nf(α, p, κ)

)
where

f(α, p, κ) = 1 + α log2
(
pq(κ) + (1− p)(1− q(κ))

)
.

As f(α, p, κ) > 0 iff α < αc(κ) the proof is complete. □

3.2. Proof of Theorem 9.

Proof of Theorem 9. The proof is quite similar to that of Theorem 8; we only point out necessary modifications.
Define Z̃(σ) =

∏
1≤i≤M Z̃i(σ), where Z̃i(σ) = 1

{
Yi = U(⟨σ, Xi⟩)} for 1 ≤ i ≤ M . Let It, 1 ≤ t ≤

(
M
Mp

)
be the

subsets of [M ] of size Mp. Notice that P[Z̃(σ) = 1|I = It] =
∏

i∈It
P[|⟨σ, Xi⟩| ≤ κ

√
n] ·

∏
i∈[M ]\It

P[|⟨σ, Xi⟩| >
κ
√
n] = q(κ)Mp(1− q(κ))M(1−p), using the fact ⟨σ, Xi⟩ ∼ N (0, n) and the independence of X1, . . . , XM . Hence,

P[Z̃(σ) = 1] =

(M
Mp)∑
t=1

(
M

Mp

)−1

P[Z̃(σ) = 1|I = It] = q(κ)Mp(1− q(κ))M(1−p).

As M = αn, we immediately obtain E
[∣∣S̃α(κ, p)

∣∣] = exp2
(
nf̃(α, p, κ)

)
, where

f̃(α, p, κ) = 1 + α
(
p log2 q(κ) + (1− p) log2(1− q(κ))

)
.

This yields Theorem 9. □

3.3. Proof of Theorem 10.

Proof of Theorem 10. We show the extension for Theorem 8; that of Theorem 9 is analogous. Our argument is
based on the Berry-Esseen inequality [Ber41, Ess42], reproduced below for convenience.

Theorem 28. There exists an absolute constant C > 0 such that the following holds. Let T1, . . . , Tn be
i.i.d. random variables with E[T1] = 0, E[T 2

1 ] = σ2 > 0 and E[|T1|3] = ρ < ∞. Then, for Z ∼ N (0, 1),

sup
x∈R

∣∣∣∣P [T1 + · · ·+ Tn

σ
√
n

≤ x

]
− P[Z ≤ x]

∣∣∣∣ ≤ Cρ

σ3
√
n
.
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Equipped with Theorem 28, fix any i ∈ [M ] and let Xi = (Xi(j) : j ∈ [n]) with E[Xi(j)] = 0, E[Xi(j)
2] = σ2

(where σ > 0) and E[|Xi(j)|3] = ρ < ∞. Note that

P[Yi = U(⟨σ, Xi⟩)] = P[Yi = U(⟨σ, Xi⟩)|Yi = 1]P[Yi = 1] + P[Yi = U(⟨σ, Xi⟩)|Yi = 0]P[Yi = 0]

= P
[
|⟨σ, Xi⟩| ≤ κ

√
n
]
p+ P

[
|⟨σ, Xi⟩| > κ

√
n
]
(1− p).(3.1)

Let q(κ) = P[−κ ≤ Z ≤ κ] where Z ∼ N (0, 1). Applying Theorem 28 to Xi(j), j ∈ [n], together with the triangle
inequality, we obtain

(3.2)
∣∣∣P[|⟨σ, Xi⟩| ≤ κ

√
n
]
− q(κ)

∣∣∣ ≤ 2Cρ

σ3
√
n
≜

C√
n
,

where C = 2Cρ
σ3 = O(1). Combining (3.1) and (3.2), we obtain

(3.3) P[Yi = U(⟨σ, Xi⟩)] ≤ q(κ)p+ (1− q(κ))(1− p) +
C√
n
.

Recall now the Taylor expansion for logarithm: as x → 0,

(3.4) log2(1 + x) = − x

log 2
+O(x2).

We now combine (3.3) with (3.4) to obtain

P[Yi = U(⟨σ, Xi⟩)]αn

≤
(
q(κ)p+ (1− q(κ))(1− p)

)αn ×

(
1 +

C
√
n
(
q(κ)p+ (1− q(κ))(1− p)

))αn

= exp2

(
αn log2

(
q(κ)p+ (1− q(κ))(1− p)

)
+ αn log2

(
1 +

C
√
n
(
q(κ)p+ (1− q(κ))(1− p)

)))
= exp2

(
αn log2

(
q(κ)p+ (1− q(κ))(1− p)

)
+Θ(

√
n)
)
.

With this, we obtain immediately that

E
∣∣Sα(κ, p)

∣∣ = exp2
(
nf(α, p, κ) + Θ(

√
n)
)
.

The extension for Theorem 9 is similar. □

3.4. Proof of Theorem 12. We prove Theorem 12 contingent on an assumption regarding a certain real-valued
function. It is worth noting that various related results in the field mentioned earlier were also established
contingent on an analogous assumption, see e.g. [APZ19, Hypothesis 3], [PX21, Assumption 1], and [DS19,
Condition 1.2].

Assumption 3.1. Following the notation in [APZ19], let

Fr,κ,α(β) ≜ h(β) + α log2 P[|Z1| ≤ κ, |Zβ | ≤ κ]

Fu,κ,α(β) ≜ h(β) + α log2 P[|Z1| > κ, |Zβ | > κ],

where Z1, Zβ ∼ N (0, 1) with correlation 2β − 1 and h(β) is the binary entropy function:

h(β) = −β log2 β − (1− β) log2(1− β).

Fix any p ∈ [0, 1] and set
Fκ,α,p(β) = pFr,κ,α(β) + (1− p)Fu,κ,α(β).

For any κ > 0 and α > 0 with F
′′

κ,α,p(1/2) < 0, there is at most one β ∈ (1/2, 1) such that F ′
κ,α,p(β) = 0.



30

Several remarks are in order. Assumption 3.1 is analogous to [APZ19, Hypothesis 3], adopted both for the
SBP (corresponding to p = 1 in our model) and for the UBP (corresponding to p = 0 in our model) therein.
Furthermore, for the SBP, [APZ19, Hypothesis 3] has been verified by Abbe, Li, and Sly [ALS21b]. It is likely
that their techniques adapt also to the UBP for a range of κ values, e.g. when κ < κ∗ ≈ 0.8172. In light of
these facts, as well as numerical studies reported in Section 3.11, Assumption 3.1 is indeed plausible. A rigorous
verification is left for future work.

Equipped with these, we now start formally proving Theorem 12.

Proof of Theorem 12. Our proof is very similar to that of [APZ19, Proposition 6], and we use the identical
notation whenever appropriate. Furthermore, we only prove the first part as the second part is identical.

The proof is based on the second moment method.

Lemma 29. Let Z be an integer-valued random variable with P[Z ≥ 0] = 1. Then

P[Z > 0] ≥ E[Z]2

E[Z2]
.

Lemma 29 is known as the Paley-Zygmund inequality, we provide a proof for completeness.

Proof of Lemma 29. Let I = 1{Z > 0}, thus P[Z > 0] = E[I] = E[I2]. We then conclude by applying Cauchy-
Schwarz inequality:

P[Z > 0]E[Z2] = E[I2]E[Z2] ≥ E[Z1{Z > 0}]2 = E[Z]2.

□

We next provide an auxiliary lemma, originally due to Achlioptas and Moore [AM02, Lemma 2]. The version
below is reproduced from [APZ19, Lemma 8].

Lemma 30. Let g(β) be a real analytic function on [0, 1] and let

G(β) =
g(β)

ββ(1− β)1−β
.

Suppose that (a) G(1/2) > G(β) for every β ̸= 1/2 and (b) G′′(1/2) < 0. Then, there exists constants c2 > c1 > 0

such that
c2G(1/2)n ≥

∑
0≤ℓ≤n

(
n

ℓ

)
g(ℓ/n)n ≥ c1G(1/2)n.

In the remainder of the proof, we let q(κ) ≜ P[|Z| ≤ κ] where Z ∼ N (0, 1).
Equipped with Lemmas 29 and 30, we let

Z =
∣∣S̃α(κ, p)

∣∣ = ∑
σ∈Σn

1
{
σ ∈ S̃α(κ, p)

}
.

Theorem II.3 from the main text yields

(3.5) E[Z] = 2nq(κ)pαn(1− q(κ))(1−p)αn.

3.5. Second Moment Calculation. Next, fix any β ∈ [0, 1], let Z ∼ N (0, 1) and Zβ ∼ N (0, 1) with E[ZβZ] =

2β − 1. Define

qr,κ(β) = P[|Z| ≤ κ, |Zβ | ≤ κ](3.6)

qu,κ(β) = P[|Z| > κ, |Zβ | > κ].(3.7)

2Above κ∗, the model exhibits replica symmetry breaking behaviour, see [APZ19] for details.
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These are precisely the same quantities appearing in [APZ19, Equation 6]. Note that

Z2 =
∑

σ,σ′∈Σn

1

{
σ ∈ S̃α(κ, p),σ

′ ∈ S̃α(κ, p)
}
.

Taking expectations of both sides, we obtain

E[Z2] = 2n
∑

0≤ℓ≤n

(
n

ℓ

)
qr,κ(β)

pαnqu,κ(β)
(1−p)αn.

Soon, we will apply Lemma 30 to Gκ,α,p(β) where

(3.8) Gκ,α,p(β) =
qr,κ(β)

pαqu,κ(β)
(1−p)α

ββ(1− β)1−β
.

Suppose first that Gκ,α,p(·) satisfies the conditions of Lemma 30. Then, we immediately obtain

E[Z2] ≤ c2 · 2n ·G(1/2)n = c2 · 4n · q(κ)2pαn · (1− q(κ))2(1−p)αn,

for some c2 > 0. Observe that

qr,κ(1/2) = q(κ)2 and qu,κ(1/2) =
(
1− q(κ)

)2
.

Now recalling (3.5) and applying Lemma 29, we establish the desired result:

lim inf
n→∞

P
[
S̃α(κ, p) ̸= ∅

]
= lim inf

n→∞
P[Z > 0] ≥ E[Z]2

E[Z2]
≥ 1

c2
> 0.

3.6. Verifying Conditions of Lemma 30. Hence, it suffices to verify that Gκ,α(β) defined in (3.8) satisfies
the conditions of Lemma 30. We proceed analogously to [APZ19]. To that end, we let

Gr,κ,α(β) =
qr,κ(β)

α

ββ(1− β)1−β

and
Gu,κ,α(β) =

qu,κ(β)
α

ββ(1− β)1−β
,

and obtain

(3.9) Gκ,α,p(β) = Gr,κ,α(β)
pGu,κ,α(β)

1−p.

We then set Gκ,α,p(β) = exp
(
Fκ,α,p(β)

)
as in the proof of [APZ19, Proposition 6] and observe, using (3.9), that

(3.10) Fκ,α,p(β) = pFr,κ,α(β) + (1− p)Fu,κ,α(β),

where Fr,κ,α(β) is precisely the term arising in [APZ19, Equation 9] and Fu,κ,α(β) is the term defined in [APZ19,
Section 2.2.2]. Note that a necessary condition is Fκ,α,p(1/2) > Fκ,α,p(1) for all p, which boils down to the
condition

(3.11) α < − 1

p log2 q(κ) + (1− p) log2
(
1− q(κ)

) = α̃c(κ, p).

Next, we have F
′′

κ,α,p(1/2) = pF
′′

r,κ,α(1/2) + (1 − p)F
′′

u,κ,α(1/2). Using the expressions for F
′′

r,κ,α(1/2) and
F

′′

u,κ,α(1/2) derived in [APZ19], we get

F
′′

κ,α,p(1/2) = 4p

(
−1 +

2

π

ακ2e−κ2

q(κ)2

)
+ 4(1− p)

(
−1 +

2

π

ακ2e−κ2(
1− q(κ)

)2
)

= −4 + α · 8
π
κ2e−κ2

(
p

q(κ)2
+

1− p(
1− q(κ)

)2
)
.
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So, it suffices to verify that

(3.12) α <
π

2κ2e−κ2

(
p

q(κ)2
+

1− p(
1− q(κ)

)2
)−1

to ensure F
′′

κ,α,p(1/2) < 0. We now establish our claim. Fix any κ > 0. Note that the argument of [APZ19] shows

(3.13) − 1

log2 q(κ)
<

π

2κ2e−κ2 q(κ)
2.

Define

ζ(p, κ) = − 1

p log2 q(κ) + (1− p) log2
(
1− q(κ)

) − π

2κ2e−κ2

(
p

q(κ)2
+

1− p(
1− q(κ)

)2
)−1

.(3.14)

Note that for any fixed κ > 0, p 7→ ζ(p, κ) is continuous. Furthermore, (3.13) yields ζ(1, κ) < 0. So, for any fixed
κ, there is a p∗κ for which ζ(p, κ) < 0 for every p ∈ [p∗κ, 1]. Now if ζ(p, κ) < 0, then we have

ζ(p, κ) = α̃c(κ, p)−
π

2κ2e−κ2

(
p

q(κ)2
+

1− p(
1− q(κ)

)2
)−1

< 0,

so that for any α < α̃c(κ, p), (3.12) holds. We now verify that Fκ,α,p(β) is maximized at β = 1/2, under
Assumption 3.1. As Fκ,α,p is symmetric around β = 1

2 , it suffices to consider β ∈ [1/2, 1]. Since F ′
κ,α,p(1/2) = 0

and F
′′

κ,α,p(1/2) < 0, and Fκ,α,p has at most one critical point in (1/2, 1), it must attain its maxima either at
β = 1/2 or at β = 1. Since Fκ,α,p(1/2) > Fκ,α,p(1), as verified in (3.11), the conditions of Lemma 30 are satisfied.

The second part of the Theorem 12 is established similarly. In this case, an inequality analogous to (3.13)
holds only when κ < κ∗ = 0.817, marking the onset of replica symmetric breaking, see [APZ19] for details. □

3.7. Proof of Theorem 14. Fix κ > 0 and α > 0. Let Ξκ(β, η,m, α) be the set of all m-tuples (σ1, . . . ,σm)

such that:

• For any 1 ≤ i ≤ ⌊nα⌋ and 1 ≤ j ≤ m, |⟨Xi,σj⟩| ≤ κ
√
n, where Xi ∼ N (0, In) are i.i.d.

• For 1 ≤ i < i′ ≤ m, n−1 ⟨σi,σi′⟩ ∈ [β − η, β].

In other words, Ξκ(β, η,m, α) = F(β, η,m, α, κ, 1). We next record the following result from [GKPX22, Theo-
rem 2.4].

Theorem 31. [GKPX22, Theorem 2.4] Let α∗
OGP(κ) = 10κ2 log2

1
κ . For any small enough κ and α ≥ α∗

OGP(κ),
there exists m ∈ N and 0 < η < β < 1 such that

P
[
Ξκ(β, η,m, α) ̸= ∅

]
≤ 2−Θ(n).

3.8. Part I: F(β, η,m, α, κ, p). Fix κ > 0 small, p ∈ [0, 1], and α > αOGP(κ, p) = (10κ2/p)(log2(1/κ)). Note first
that pα > α∗

OGP(κ) = 10κ2 log2
1
κ , thus there exists an ϵ > 0 such that

pα(1− ϵ) ≥ α∗
OGP(κ).

Next, for i.i.d.Yi ∼ Ber(p), 1 ≤ i ≤ M , a standard concentration bound [Ver10, Ver18] yields

(3.15) P

∣∣∣∣∣∣ 1M
∑

1≤i≤M

Yi − p

∣∣∣∣∣∣ ≤ pϵ

 ≥ 1− 2−Θ(M).

Set
T =

∑
k∈N:|k/M−p|≤pϵ

(
M

k

)
,
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and let I1, . . . , IT be an enumeration of all A ⊂ [M ] with |A| ∈ [Mp(1 − ϵ),Mp(1 + ϵ)]. Define the random
variable I = {i : Yi = 1}. Using (3.15), we have

(3.16) P
[
I ≠ Ii, 1 ≤ i ≤ T

]
≤ 2−Θ(M).

Next, for any m ∈ N, 0 < η < β < 1, we have

P
[
F(β, η,m, α, κ, p) ̸= ∅ | I = It

]
≤ P

[
Ξκ(β, η,m, pα(1− ϵ)) ̸= ∅

]
.(3.17)

Here, (3.17) follows by combining the following facts:

• The labels Yi are independent of Xi.
• |It| ≥ pα(1− ϵ)n ≥ α∗

OGP(κ)n.
• Conditional on I = It, any (σ1, . . . ,σm) ∈ F(β, η,m, α, κ, p) satisfies

|⟨Xi,σj⟩| ≤ κ
√
n, ∀i ∈ It, ∀1 ≤ j ≤ m

where Xi ∼ N (0, In), i ∈ It are i.i.d.

As pα(1− ϵ) ≥ α∗
OGP(κ), Theorem 31 immediately yields the existence of an m∗ ∈ N and 0 < η∗ < β∗ < 1 for

which
P
[
Ξκ(β

∗, η∗,m∗, pα(1− ϵ)) ̸= ∅
]
≤ 2−Θ(n).

Since the right hand side of (3.17) is independent of the choice of It, we have

max
1≤t≤T

P
[
F(β∗, η∗,m∗, α, κ, p) ̸= ∅ | I = It

]
≤ P

[
Ξκ(β

∗, η∗,m∗, pα(1− ϵ)) ̸= ∅
]
≤ 2−Θ(n).(3.18)

Now,

P
[
F(β∗, η∗,m∗, α, κ, p) ̸= ∅

]
=

∑
1≤i≤T

P
[
F(β∗, η∗,m∗, α, κ, p) ̸= ∅ | I = Ii

]
P[I = Ii] + P

[
I ≠ Ii, 1 ≤ i ≤ T

]
(3.19)

≤ 2−Θ(n)
∑

1≤i≤M

P[I = Ii] + 2−Θ(M)(3.20)

= 2−Θ(n) · P
[
I ∈ {I1, . . . , IT }

]
+ 2−Θ(M)(3.21)

= 2−Θ(n),(3.22)

where (3.19) follows from the fact that the events {I = Ii}, 1 ≤ i ≤ T and {I ≠ Ii, 1 ≤ i ≤ T} collectively
partition the probability space; (3.20) follows by combining (3.18) and (3.16); (3.21) uses the fact that the events
{I = Ii} are pairwise disjoint; and (3.22) uses the fact that M = pαn = Θ(n) for p, α = O(1). This establishes
Theorem 14 for F(β, η,m, α, κ, p).

3.9. Part II: F̃(β, η,m, α, κ, p). Fix κ > 0 small, p ∈ [0, 1] and α ≥ αOGP(κ, p). Similar to above, let It, 1 ≤ t ≤(
M
Mp

)
be the subsets of [M ] of size Mp and I = {i : Yi = 1}. Observe that for any m ∈ N, 0 < η < β < 1,

P
[
F̃(β, η,m, α, κ, p) ̸= ∅ | I = It

]
≤ P

[
Ξκ(β, η,m, pα) ̸= ∅

]
,(3.23)

using the facts (a) that the labels Yi are independent of Xi and (b) that on I = It, |It| = pαn and any
(σ1, . . . ,σm) ∈ F̃(β, η,m, α, κ, p) satisfies

|⟨Xi,σj⟩| ≤ κ
√
n, ∀i ∈ It,∀1 ≤ j ≤ m.
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For α ≥ αOGP(κ) =
10
p κ2 log2

1
κ , Theorem 31 immediately yields the existence of an m′ ∈ N and 0 < η′ < β′ < 1

for which
P
[
Ξκ(β

′, η′,m′, pα) ̸= ∅
]
≤ 2−Θ(n).

Notice that the right hand side of (3.23) is independent of t. With this, we establish Theorem 14 for the
F̃ (β, η,m, α, κ, p) through the law of total expectation and obtain

P
[
F̃(β′, η′,m′, α, κ, p) ̸= ∅

]
≤ 2−Θ(n).

3.10. Proof Sketch for Theorem 15. Let Xi ∼ D⊗n denotes the random vector Xi ∈ Rn with i.i.d. coordinates
drawn from D. For Ξκ(β, η,m, α) defined in Section 3.7, [GKPX22] establishes the following:

Theorem 32. [GKPX22, Theorem 5.2]

EXi∼D⊗n,1≤i≤M i.i.d.
[∣∣Ξκ(β, η,m, α)

∣∣] ≤ EXi∼N (0,In),1≤i≤M i.i.d.
[∣∣Ξκ(β, η,m, α)

∣∣] exp(Θ(
√
n
)
.

Theorem 32 is established using a multi-dimensional version of the Berry-Esseen theorem, see [GKPX22,
Section 5] for details. Next, [GKPX22, Theorem 2.4] shows that

EXi∼N (0,In),1≤i≤M i.i.d.
[∣∣Ξκ(β, η,m, α)

∣∣] = exp
(
−Θ(n)

)
,

for α ≥ α∗
OGP(κ). This, together with Theorem 32, immediately yield that Theorem 31 still remains valid if

Xi ∼ D⊗n, 1 ≤ i ≤ M are i.i.d., and D satisfies the assumptions in Theorem 15. With this, a reasoning identical
to that in the proof of Theorem 14 yields Theorem 15.

3.11. Numerical Experiments. In this section, we report numerical experiments that support Assumption 3.1.

3.11.1. The Function ζ(κ, p). See Figure 3.1 for a plot of ζ(κ, p) appearing in (3.14).

Figure 3.1. Plot of ζ(κ, p), truncated as ζ(0, 0) → −∞.

Furthermore, Figure 3.2 shows the region of (κ, p) pairs for which ζ(κ, p) < 0. Recall that for any given κ > 0,
we establish Theorem 12 for a range of p values, i.e. p ∈ [p∗κ, 1] for a suitable p∗κ. For any fixed κ > 0, the
corresponding p∗κ can be read off directly from Figure 3.2.
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Figure 3.2. Region of (κ, p) pairs with ζ(κ, p) < 0.

3.11.2. The Function Fκ,α,p(β). We now plot Fκ,α,p(β) in Assumption 3.1, where the axes correspond to p and β.
We plotted Fκ,α,p across p for a broad range of (κ, α) pairs, see Figure 3.3 for (κ, α) = (0.6, 1). This demonstrates
typical behavior: Assumption 3.1 is satisfied for all values of p. (3.10)

Figure 3.3. Fκ,α,p(β) for κ = 0.6, α = 1.
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See Figure 3.4 for a plot of Fκ,α,p(β) for κ = 1.8, α = 0.5, where the axes correspond to p and β. This
demonstrates a phase transition, where Assumption 3.1 is only satisfied for p ∈ [p∗κ, 1] for a suitable p∗κ. At p = 0,
corresponding to the UBP, Fκ,α,p(1/2) is not a local maximum. However, at p = 1, corresponding to the SBP,
Fκ,α,p(1/2) is a local maximum.

Figure 3.4. Fκ,α,p(β) for κ = 1.8, α = 0.5.
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