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ABSTRACT

Machine learning is becoming a pivotal tool in the analysis of datasets generated from
high-throughput biological omics experiments. However, omics data introduces distinctive
algorithmic challenges that set it apart from other domains where machine learning is ap-
plied. These challenges encompass issues such as limited data availability, complex noise,
ambiguities in representation, and the absence of definitive ground truth for validation. In
this thesis, I present three examples of machine learning applications to different omics
modalities in which I address these challenges. In my first project, I develop an approach for
contrastive representation learning with immunohistochemistry images, which suffer complex
technical and biological noise that render generic approaches ineffective; and I demonstrate
how this approach can be combined with noisy labels derived from transcriptomics to derive
an effective classifier of cell-type specificity. In my second project, I consider the problem
of predicting mass spectra of small molecules: previous methods suffer from a tradeoff be-
tween capturing high-resolution mass information and a tractable learning problem, which
I resolve by introducing a novel representation of the output space. In my third project, I
perform gene regulatory network inference using a number of different single-cell sequencing
platforms, and carry out a quantitative comparison of these technologies. In summary, this
thesis showcases the difficulties that arise in applying modern machine learning approaches to
high-throughput biological measurements, and empirical case studies of how these difficulties
may be overcome.
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Chapter 1

Introduction

1.1 Omics technology
Evolution has given rise to some of the most complex systems known to science. Our efforts
to understand the molecular mechanisms through which living organisms function – and
importantly their dysfunction in disease – have been greatly aided by the development of
‘omics’ technologies: high-throughput biological experiments that detect and quantify large
numbers of molecular species. These permit unbiased testing of biological hypotheses at scale,
and offer the potential to detect multivariate, nonlinear relationships reflecting macroscopic
biological states and microscopic biophysical interactions.

Omics technologies are broadly classified by the classes of biomolecules that they measure:
including but not limited to genomics [1], epigenomics [2], transcriptomics [3], proteomics
[4], and metabolomics [5]. Each of these approaches captures a certain step in the classical
picture – the ‘central dogma’ – of molecular biology (Figure 1.1).

Particular omics technologies vary widely in their implementations – ranging from single-
cell sequencing to fluorescence imaging to mass spectrometry – and can require incompatible
sample preparation protocols that render joint measurements impractical. While it is there-
fore easiest to measure each of these molecular layers in isolation from one another, the
evolutionary processes that give rise to biological systems do not abide by such strict com-
partmentalization. Rather, it is well known that each of these layers interact with the others
through dense feedback loops that span multiple spatial and temporal scales [7].

A fuller characterization of a biological system therefore necessitates measurement and
integration of signals from multiple omics modalities. The design and analysis of such ex-
periments is difficult and remains far from solved, and often necessitates approaches and
expertise orthogonal to those within any particular omics modality [6]. The term ‘multi-
omics’ encompasses the various research efforts involved in both acquiring such data to
study a particular biological system, and the development of technologies and algorithms to
generate and analyze it.
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1.2 Challenges in machine learning for omics
Omics technologies produce vast quantities of data. Machine learning presents a natural
analytical tool for this setting, and is by now routinely applied to a diverse array of com-
putational problems in biology [8, 9]. However, when a new biological research question
arises, this application is rarely straightforward: major challenges arise in both formulating
hypotheses of biological interest as machine learning problems, and conversely in adapting
state-of-the-art approaches from the machine learning literature to the biological context.
Here, we highlight four broad themes that capture a number of challenges particular to and
commonly encountered by machine learning investigations on high-throughput biological
data. (Elaboration on specific tasks is deferred to their respective chapters.)

Limited data

Biological data is costly to generate. While large-scale efforts in natural language processing
and computer vision can rely on readily-available corpora of text [10] and images [11] scraped
from the Internet, and may be annotated usefully by humans without advanced domain
expertise, biological datasets are generated via experimentation. Development and execution
of a biological experiment is a complex process that can take months to years, and requires
substantial time commitment from highly-trained experts, funding, and ethics approval.
The data generated by a biological experiment cannot generally be considered ‘labelled’
either: even when well-defined, ground-truth labels in biology are rarely available, often
subjective, and can demand even further confirmatory experimentation [12]. Practically,
this not only makes machine learning problems harder: the frequent absence of standard
benchmark datasets, against which different algorithms can be objectively compared, also
makes the process of machine learning research itself substantially more difficult [13, 8, 14].

Limitations in sample throughput of biological assays present a major challenge for ma-
chine learning. The particular molecular layer being measured is a major determinant:
while thousands of single-cell transcriptomes and epigenomes can by now be measured com-
mercially [15], single-cell proteomics has only recently begun development [16], and broad
sampling of the metabolome remains only feasible at the level of bulk samples [17]. There
is also often a tradeoff between measurement throughput and fidelity: sequencing the full
length of an mRNA transcript, instead of solely the 3’- or 5’-end, comes at an order of mag-
nitude cost in cell throughput [18]; multiplexed immunofluorescence imaging can measure
protein localization at subcellular resolution in whole tissues [19], but can only do so for
tens of proteins at a time; and the number of reads to acquire per cell is a major design
consideration in sequencing experiments [3]. Additionally, whether an experiment achieves
low or high sample throughput is context-dependent: the sample size is determined by what
constitute the observational units of interest, be those individual cells, distinct perturbations,
or unique patients [20].

Living organisms are complex nonlinear dynamical systems. Unfortunately, most high-
throughput omics measurements are destructive, meaning we cannot directly observe high-
dimensional cellular trajectories and must rely on reconstructions [21]. Even when time-
resolved measurement is a possibility, the sampling frequency at which we can measure
molecular variables is not generally the timescale at which the system evolves [22], nor
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can we generally observe all relevant variables simultaneously [6]. Given that no single
omics technology can capture every biomolecule, critical variables remain latent; this poses
challenges for learning and interpretation, especially when correlations between measured
variables result from latent confounders or mediators [23].

Noise

Omics measurements exhibit complex noise at multiple scales. This noise has both bio-
logical and technical origins: while the former is often of scientific interest, as it serves
functional roles [24] and facilitates system identification [25], the latter is usually considered
a nuisance. Unfortunately, it is often difficult to distinguish one from the other: as concen-
trations of biomolecules in the cell span several orders of magnitude [26], noise fluctuations
in a particularly abundant molecular species can exceed systematic shifts in the abundance
of a rarer one between two conditions of interest. The chemical and physical processes that
biological samples undergo in preparation for omics analysis can substantially perturb their
state [18, 27], and variability in these processes can manifest across experiments as batch
effects [28]. The magnitude of these technical effects can sometimes greatly exceed biological
effects between conditions of interest [29], and can affect generalization of machine learning
models [30]; moreover, there is a risk of learning spurious correlations when biological and
technical effects are confounded [31].

Sparsity poses a related challenge. Many omics measurements, notably single-cell se-
quencing, operate via counting molecules. As most molecular species are rare, there are
fundamental difficulties in sampling deeply enough to ensure a particular signal-to-noise for
all variables under observation [6]. In practice, this means single-cell sequencing data is
usually very sparse. Whether this sparsity is explainable solely through biological noise, or
arises from zero inflation processes during measurement, is technology-dependent and has
been the subject of considerable debate [32, 33]. Care must therefore be taken to account
for the origins of zeros when designing loss functions [34].

Label noise also poses difficulties. Some of the largest available omics datasets are com-
posed of submissions from the scientific community, and do not undergo extensive curation
to ensure consistency across studies [35]. Observations labelled as nominally representing
the same molecular variables can in fact describe different molecular species, causing obvious
problems for generalization and making meta-analyses difficult [17]; and important covari-
ates necessary to fully specify an experimental condition or measurement process are often
missing entirely [36]. Additionally, as there are classes of molecules and interactions that
any given measurement technology will be unable to observe, care must taken when gen-
erating labels (e.g. from orthogonal omics or low-throughput experimentation) to decouple
measurement limitations from the estimated performance of a machine learning algorithm.

Finally, direct measurement of the molecular variables involved in a biological process
of interest often proves challenging. As a result, we often resort to measuring an imprecise
proxy, such as the mRNA encoding a transcription factor, instead of the nuclear abundance
of the protein [37]; or a fluorescence signal from an antibody complementary to a protein of
interest, with potential off-target binding [19].

11



Representation

Omics datasets span a wide range of modalities: beyond observations-by-features matrices,
omics experiments can yield sequences, graphs, images, time series; more exotic data modal-
ities such as mass spectra, contact maps, hyperspectral images; and combinations of the
former. Not all of these formats are natively conducive to machine learning: transforming
them into ‘friendlier’ mathematical objects can require complex signal processing pipelines
that introduce difficult machine learning problems in their own right.

Certain omics modalities can be equivalently represented in multiple spaces: for example,
a mass spectrum can be represented as a list of real-valued tuples, a fixed-length vector, a
probability distribution over chemical formulas, or a weighted directed acyclic graph [36].
The optimal choice of input and output representation (prior to the learning process it-
self) for a given problem is therefore often not obvious, and necessitates knowledge of the
measurement technology and biological domain. This extends beyond familiar concerns of
feature engineering and selection in machine learning, and (as we demonstrate in Chapter 3
of this thesis) can greatly influence predictive accuracy and computational efficiency.

Representation learning also encounters unique challenges with biological data that arise
from the preceding discussion on noise. Dimensionality reduction is an important tool for
exploratory analysis of high-dimensional omics datasets [38, 39], but application of generic
approaches will reflect whatever the major factors of variability are in the data – which are
not always biological in origin [29]. As we demonstrate in Chapter 1 of this thesis, robustness
of learned representations to technical noise is important for both effective visualization and
performance on downstream tasks, but can be nontrivial to achieve when noise is complex.

Implementation

Substantial practical difficulties can arise when implementing and training biological machine
learning models, which often demand the researcher be an effective software engineer in
addition to their simultaneous roles of machine learning expert and biologist.

Omics datasets can be very large, especially in genomics [40] and imaging [41]. As
with other applied machine learning domains, developing deep learning models on terabyte-
scale datasets requires access to and fluency with distributed training on high-performance
computing clusters. While packages such as PyTorch Lightning [42] facilitate distributed
training, data storage and streaming during training is much less ‘plug-and-play’ and can
present unexpected bottlenecks to researchers inexperienced in software engineering and
parallel programming.

An orthogonal issue is the availability and quality of libraries for parsing, storing, and
processing data, which vary widely across different omics. While single-cell transcriptomics
research benefits greatly from mature open-source packages such as ScanPy [43], it is some-
thing of an exception: datasets produced by other omics – for example mass spectrometry,
where data formats are non-standardized and vendor-specific [35] – frequently necessitate
ad-hoc solutions, for which deep understanding of the measurement technology is essen-
tial. This difficulty is compounded when working with multi-omics data, which demands
familiarity with various software packages (ranging from commercial software packages to
academic research code), understanding of the domain-specific concepts therein, and fluency
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in debugging across multiple programming languages [44].

1.3 Overview of thesis
This thesis presents three chronologically-ordered case studies in developing machine learning
algorithms for high-throughput biological data modalities.

In Chapter 2, I develop an approach for self-supervised representation learning from
large-scale immunohistochemistry datasets. This is an imaging omics modality that exhibits
complex technical and biological noise, rendering state-of-the-art computer vision approaches
ineffective. I introduce modifications to the sampling schemes used in contrastive learning
that exploit the structure of biological experiments, and demonstrate this yields represen-
tations that capture biological semantics and are robust to technical confounding. I then
demonstrate how these representations can be combined with independent single-cell tran-
scriptomics data to derive an effective image classifier of cell-type specificity.

In Chapter 3, I present a novel model for predicting tandem mass spectra of small
molecules, which presents an important computational bottleneck in metabolomics. Pre-
vious approaches suffer from a tradeoff between capturing high-resolution mass information
and posing a tractable learning problem. I resolve this tradeoff by introducing a novel rep-
resentation of the output space that exploits latent discrete structure of chemical formulas.
I then discover an effective constant-sized empirical approximation, which permits applying
an efficient graph neural network architecture to the problem. This yields state-of-the-art
performance in both spectrum prediction, and in using these predicted spectra to carry out
compound retrieval of unknown spectra against a database of known structures.

In Chapter 4, I study the problem of multi-omics experimental design, specifically through
the lens of statistically inferring gene regulatory networks. In that work, carried out as
part of the Standards and Technologies Working Group of the Human Cell Atlas, I carry
out a controlled comparison of regulatory networks inferred from four different single-cell
sequencing assays. As no ground truth is available for this task, I develop quantitative
evaluation criteria that combine biological priors about gene regulation with orthogonal
measurements gathered from external datasets. I observe different predictive performance
between models trained on single-nucleus versus single-cell expression, which I connect to
differences in nuclear and cytoplasmic mRNA localization; and a tradeoff between predictive
performance and biological plausibility of inferred regulatory edges, suggesting influence of
factors beyond TF-target interactions.

In summary, each section of the thesis showcases difficulties that arise in practical appli-
cation of modern machine learning approaches to high-throughput biological measurements
generated in pursuit of real-world research questions, and specific examples of how these
challenges may be overcome.
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Figure 1.1: The five major classes of biological molecules measured in omics experiments.
In the classical view of molecular biology, the events in each layer are caused by those in
its direct predecessor, with evolution closing the loop: more recently, both low-throughput
molecular biology and high-throughput omics technologies find extensive bidirectional inter-
actions between all molecular layers. (Figure from [6].)
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Chapter 2

Self-supervised learning of cell type
specificity from immunohistochemical
images

Authors: Michael Murphy, Stefanie Jegelka, Ernest Fraenkel

This paper was presented at ISMB 2022 and subsequently published in Bioinformatics. I
conceived the idea, implemented the algorithms, carried out the analysis, and wrote the
manuscript. Stefanie Jegelka and Ernest Fraenkel provided input throughout and commen-
tary on the manuscript.

2.1 Abstract
Motivation: Advances in bioimaging now permit in-situ proteomic characterization of cell-
cell interactions in complex tissues, with important applications across a spectrum of biolog-
ical problems from development to disease. These methods depend on selection of antibodies
targeting proteins that are expressed specifically in particular cell types. Candidate marker
proteins are often identified from single-cell transcriptomic data, with variable rates of suc-
cess, in part due to divergence between expression levels of proteins and the genes that encode
them. In principle, marker identification could be improved by using existing databases of
immunohistochemistry for thousands of antibodies in human tissue, such as the Human Pro-
tein Atlas. However, these data lack detailed annotations of the types of cells in each image.
Results: We develop a method to predict cell type specificity of protein markers from un-
labeled images. We train a convolutional neural network with a self-supervised objective to
generate embeddings of the images. Using nonlinear dimensionality reduction, we observe
that the model clusters images according to cell types and anatomical regions for which the
stained proteins are specific. We then use estimates of cell type specificity derived from an
independent single-cell transcriptomics dataset to train an image classifier, without requiring
any human labelling of images. Our scheme demonstrates superior classification of known
proteomic markers in kidney compared to selection via single-cell transcriptomics.
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2.2 Introduction
A number of technologies for multiplexed antibody-based tissue imaging have been developed
in the past few years. These permit in-situ characterization of cell-to-cell surface interactions
and their intracellular proteomic correlates [1, 2, 3, 4, 5], at high spatial resolution, via cyclic
staining of the sample with antibodies conjugated to fluorophores [4], nucleotide barcodes [1],
or metallic tags [5]. A key consideration in such experiments is the selection of an antibody
panel, which can be a difficult and lengthy process. A basic criterion for this panel is to
incorporate antibodies for marker proteins specific to each cell type of interest in the tissue
under investigation. While suitable antibodies are readily available for certain well-studied
cell types [6], large-scale efforts such as the Human Cell Atlas [7] promise to identify rarer
cell types in the human body, for which selection of reliable antibody markers of cell type
becomes an important and nontrivial consideration in experimental design.

Single-cell transcriptomics can be used to resolve the cell types comprising a tissue sample
and their transcriptional profiles [8]. A number of recent efforts [9, 10, 11] study the problem
of identifying cell type-specific marker genes from transcriptomic data. However, direct
application of such approaches to the proteomic context assumes the availability of antibodies
targeting the proteins of the selected marker genes, and that such antibodies have been
validated in the tissue of interest. This is a strong constraint: while the literature continues
to grow, Lin, Fallahi-Sichani, and Sorger [4] currently list only 257 antibodies demonstrated
to work reliably with their approach [6].

Furthermore, even if a high-quality, validated antibody is available targeting a marker
gene discovered from single-cell RNA sequencing data of a particular cell type of interest, if
this gene is to be a useful marker proteomically in the tissue of interest, its transcript and
protein levels also must strongly correlate in the tissue of interest. This is not universally
the case, even for marker genes [12, 13, 14].

Finally, biases in single-cell sequencing protocols can lead to undersampling of certain
subpopulations of cells, which negatively affects the ability to detect marker genes via dif-
ferential expression [15, 16].

2.2.1 Human Protein Atlas

The Human Protein Atlas (HPA) is a large-scale compendium of proteomic experiments,
dating back to 2003 and spanning several technologies including imaging, mass spectrometry,
and bulk RNA sequencing [17]. Among the datasets incorporated in the HPA is a large-scale
immunohistochemistry (IHC) screen, in which tens of thousands of antibodies have been
imaged in tissue microarrays representing several major organs in the human body. In the
IHC protocol employed by HPA, a single antibody is imaged in each sample. The antibody
stains brown wherever it binds a protein target, and a hematoxylin counterstain indicates
nucleic acids in blue [18].

In principle, the HPA screen could also aid in selection of marker antibodies, if we could
reliably determine the type of each imaged cell. However, the HPA screen measures only one
antibody at a time. As a result, the staining pattern cannot be directly compared against
canonical cell type markers in order to establish its cell type specificity. At present, resolving
the staining pattern in an IHC image by cell type entails visual interpretation by a human
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expert [17]. This is prohibitive to carry out at finer spatial resolution than coarse anatomical
regions for large numbers of images, and is necessarily subjective in nature. Although cell
type labels are provided in the HPA, they are coarser than those discernible in modern
single-cell sequencing experiments: for example, most images of kidney in the HPA are only
annotated for staining in “glomeruli” or “tubules”, while single-cell RNAseq experiments have
defined, at varying resolution, between 13 [19] to 100 [20] types and subtypes of cells in the
kidney.

2.2.2 Self-supervised learning

Learning informative representations of images without human supervision has been a long-
standing problem in machine learning. One approach to this problem is self-supervised
learning, which trains a classification or generative model to predict some attribute of the
data that can be derived without a human labeler: for example, colorizing grayscale images
[21], identifying distorted copies of an image [22, 23], or imputing masked patches [24]. The
representation of the data learned by the self-supervised model is then used as input to a
simpler supervised learning model: very often, features extracted by the model as relevant
for the self-supervised task should also be relevant for solving the supervised learning task.

Recently, self-supervised methods that employ contrastive learning have even outper-
formed supervised pre-training on large-scale image recognition tasks [25, 26]. The idea
of contrastive learning is to learn a representation in which semantically similar (positive)
pairs of observations (x, x+) are placed nearby, while semantically dissimilar (negative) pairs
(x, x�) are placed far apart. This is achieved by learning an encoder f that minimizes the
contrastive loss function [27]:

E
x,x+,{x�

i }Bi=1
� log

ef(x)
>
f(x+)

ef(x)>f(x+) +
P

B

i=1 e
f(x)>f(x�

i )
(2.1)

where typically a minibatch of B negative examples x�
i

is used per query x instead of just
one.

Since this approach does not use any human supervision, the semantic content of an
image (e.g. its class label) is not available, and (dis)similarity information must be de-
rived automatically. Contrastive learning generates positive examples for a given x via data
augmentation that preserves semantics, e.g. randomly cropping, rotating, or tinting. Nega-
tive examples are obtained by sampling the training set uniformly or by more sophisticated
schemes [28, 29].

2.2.3 Contributions

In short, this work makes the following contributions:

• We show how to effectively apply self-supervised learning to immunohistochemistry
images, by developing a sampling procedure that generates meaningful positive and
negative examples, rather than having to engineer complex data augmentations;
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• We show that the learned embeddings can be combined with labelled data from a dif-
ferent source – single-cell transcriptomics – to obtain a classifier of cell type specificity,
without requiring human labelling of images; and

• We show applying both steps to immunohistochemistry of kidney yields a representa-
tion that clusters images according to cell type specificity, and better classifies known
proteomic markers than a purely transcriptomic approach.

2.2.4 Related work

Unsupervised and self-supervised learning have been employed previously to generate biologically-
informative representations of genes and proteins from high-throughput imaging data [30,
31, 32]. However, the cited works focus on immunofluorescence imaging acquired in immor-
talized cell lines: while such datasets can indicate subcellular localization for thousands of
proteins [33], they are by nature uninformative of cell type and tissue specificity. Immunoflu-
orescence images of single cells in culture also exhibit less sample-to-sample variability than
immunohistochemistry of tissue sections from human donors [34, 35, 36]. Here, we advance
contrastive learning as a means of imposing invariance to sources of variability specific to
immunohistochemistry.

Supervised learning has been applied previously to the HPA immunohistochemistry
dataset, also for predicting subcellular localization [37, 38, 39, 40]. Ghoshal et al. [41] train
a Bayesian neural network to classify cell type specificity of proteins imaged in IHC of testis,
for which they rely on a training set of images manually annotated with cell type labels. In
contrast, here we demonstrate how embeddings of IHC images learned via self-supervision
can be combined with independent single-cell transcriptomics to predict cell type specificity
without the need for human labeling beforehand.

Others have used deep learning representations to integrate imaging with transcriptomics
data: Ash et al. [42] use canonical correlation analysis of paired bulk RNAseq and autoen-
coder representations of H&E images to identify gene sets associated with morphological
features, and Badea and Stanescu [43] use intermediate activations of a classifier for the
same problem. While our procedure also exploits correlation of morphology and gene ex-
pression, the problem we address in this paper is fundamentally different: we seek to establish
cell type specificities of proteins to facilitate antibody selection in experimental design, while
the aforementioned are concerned with linking transcriptional programs and morphological
phenotypes.

2.3 Materials and Methods

2.3.1 HPA immunohistochemistry

The Human Protein Atlas includes approximately 7 million IHC images spanning tens of
thousands of antibodies, in tissue microarrays derived from tens of major tissues [17, 18].
Each image represents a circular section of tissue between 0.6mm-2mm in diameter that
has been stained with an antibody and a hematoxylin counterstain. There are typically 3
replicated images per antibody, each derived from a tissue sample from a different donor.
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Each image is captured via microscope at 20x optical magnification, and provided via the
HPA website at a resolution of approximately 3000 ⇥ 3000 pixels in medium-quality JPEG
format. The gene whose product is nominally targeted by the antibody is indicated, as is
its ‘staining’ classification: a qualitative assessment of the intensity of the antibody signal
as ‘high’, ‘medium’, ‘low’, or ‘not detected’. An anonymized identification number for the
donor of the tissue sample is also provided.

Each antibody in the HPA also undergoes a validation procedure to determine its bind-
ing specificity. Antibodies with ‘enhanced’ validation satisfy two criteria: (1) an antibody
passes independent antibody validation if it displays the same staining pattern as another
antibody targeting a non-overlapping epitope of the same protein in at least two tissues; (2)
an antibody passes orthogonal validation if its overall staining intensity matches expression
of its nominal gene target in bulk RNASeq across at least two tissues. Both criteria are
determined qualitatively by a human evaluator. In principle, it is unlikely for an antibody
to satisfy both of these criteria yet bind to something other than its nominal target [44].

In this work, due to storage and processing limitations we restrict our scope to IHC
images from version 21 of the HPA taken in a single tissue: healthy kidney. Kidney was
selected in particular because it is a complex organ that displays substantial anatomical and
cellular diversity [45] and with which the authors of this paper are familiar. We further filter
these to only include images of antibodies that passed ‘enhanced’ validation, that display
either ‘medium’ or ‘high’ stain intensity, and that nominally target exactly one gene. This
yields a training set comprising 10,164 images of immunostained kidney sections covering
2,106 genes. Due to practical storage and memory limitations we also downsample these
images to 512⇥ 512 pixels. This averages out finer-scale detail, but as we later demonstrate,
still suffices to yield an informative embedding. We nonetheless anticipate our results will
improve as image resolution is improved and the model is scaled accordingly.

2.3.2 Contrastively learning representations of immunohistochem-

ical images

Contrastive learning is an effective approach for generating representations of images, both
for visualization via dimensionality reduction and downstream classification tasks. This ef-
fectiveness depends on having meaningful data augmentations to generate positive examples.
Simple image transformations that mimic natural variations in pose and lighting are suffi-
cient for successful applications of contrastive learning to large datasets of natural images
[46, 47, 25]. However, semantically equivalent biological images (e.g. IHC images of different
markers of the same cell type) can display much more complex variability. Examples include
morphological differences across tissue donors (due to e.g. age, sex, disease status), as well
as technical artefacts (tearing or folding during tissue preparation, stain discoloration across
batches) – all of which pose challenges for machine learning analysis of histological images
generally [48, 36, 49]. Figure 2.1 provides an example of such variability among semantically
equivalent images in the HPA.
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Figure 2.1: Semantically equivalent IHC images (here all of antibodies targeting the gene
PODXL) display substantial variation in morphology and staining. Such artefacts would be
difficult to capture via data augmentation.

Augmentations capturing variability of the sort shown in Figure 2.1 would be difficult
to engineer. Hence, instead of explicitly identifying and modeling such sources of variation,
we couple the contrastive learning algorithm SimCLR [46] to a biologically-informed scheme
we develop for sampling positive and negative examples. We observe that the HPA already
provides multiple semantically equivalent views at the level of genes : in addition to having
multiple biologically-replicated images per antibody of tissue samples from different donors,
we also often have images of multiple antibodies that target the same gene. Therefore,
rather than individual images, we treat the gene as the ‘observational unit’ in our data: for
each gene, we sample a positive pair of images from the ‘equivalence class’ defined by all
the images of antibodies for which that gene is the nominal target. To further increase the
diversity of our training set, following this sampling procedure we also apply standard image
augmentations to each member of the positive pair independently: specifically, we randomly
crop each image to a 256 ⇥ 256 patch, then randomly apply HSV color jitter, scaling, and
rotation.

However, the image embeddings resulting from this approach displayed substantial clus-
tering according to the donors from which they were derived. We believe this arises because
(as we show in Figure S1 of the supplement) the donors do not co-occur uniformly across
genes: the resulting imbalance in the positive pairs biases the encoder to push together
images from donors that co-occur more frequently, giving rise to this (undesirable) cluster-
ing structure. We design the sampling of negative pairs to counteract this effect, noting
that modified schemes for negative sampling are effective in contrastively learning debiased
representations [29] and promoting inter-class separation [28]. Here, rather than sampling
uniformly, we only draw negative examples from the same donor: this steers the encoder to
pull such clusters apart. We also provide further exposition and quantitative evaluation of
the different sampling methods in Appendix A of the supplement.

Rather than implementing a complicated scheme to generate stratified minibatches, we
simply implement this by masking negative pairs from different donors within the minibatch
when computing the contrastive loss. Defining the normalization term B0 =

P
B

i=1 1d=di to
be the number of negative examples sampled from the same donor d as image x, we use the
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following expression for the summand in equation (2.1):

� log
ef(x)

>
f(x+)

ef(x)>f(x+) + (B/B0)
P

B

i=1 1d=die
f(x)>f(x�

i )
(2.2)

Algorithm ?? shows pseudocode of our entire sampling procedure.

Algorithm 1 SimCLR with our modified sampling procedure.
Require: batch size B, temperature ⌧ , encoder network f , projection network �, set of

augmentations T , partition of dataset into genes Xg

while termination criterion is not met do
sample minibatch of genes {gi}Bi=1

for all i 2 1, . . . , B do
draw two images with donor labels (x, d) ⇠ Xgi , (x

0, d0) ⇠ Xgi

draw two augmentation functions t ⇠ T , t0 ⇠ T

x̃i, x̃0
i
= t(xi), t0(x0

i
) # augmentation

hi, h0
i
= f(x̃i), f(x̃0

i
) # representation

zi, z0i = �(hi),�(h0
i
) # projection

end for
for all i 2 1, . . . , B and j 2 1, . . . , B do
si,j = zT

i
z0
j
/(kzikkz0jk) # pairwise similarity

end for
for all i 2 1, . . . , B do
Bi =

P
B

k=1 di=dk
# normalization factor

li = � log exp(si,i/⌧)
exp(si,i/⌧)+(B/Bi)

P
k 6=i di=dk

exp(si,k/⌧)

end for
update networks f and � to minimize L = 1

B

P
B

i=1 li
end while
return encoder network f

2.3.3 Encoder architecture and training

As our encoder network f we use a DenseNet-121 [50] convolutional neural network, which
is initialized from weights pre-trained on ImageNet [51]. We use this architecture because it
was selected by the top performer in the HPA subcellular localization challenge of Ouyang,
Winsnes, Hjelmare, et al. [33]. We pass 256⇥256 RGB image patches into this encoder, which
transforms them to an 8⇥8 grid of 1024-dimensional embeddings. We then average-pool this
grid to a single 1024-dimensional vector, and linearly transform it to a D = 128-dimensional
real-valued embedding h. The projection head � [46] then applies a ReLU nonlinearity,
followed by a second 128d linear transformation, and normalization to the unit L2-ball. This
yields a vector z on which we compute the contrastive loss. We use a temperature parameter
of ⌧ = 1.0.

The model is implemented in PyTorch Lightning [52] using the Kornia [53] library for
data augmentation. We fit this model using the Adam optimizer [54] for 1000 epochs, with

25



learning rate 5⇥ 10�4 and batches of size 150, using 4 nVidia Volta V100 GPUs with 32GB
VRAM. Larger batch sizes did not fit in memory, even with the aid of PyTorch Lightning’s
automatic half-precision casting, which we employ here. To avoid arithmetic underflow we
compute the contrastive loss at full 32-bit precision.

2.3.4 Learning cell type specificity from auxiliary transcriptomic

labels

We next demonstrate how our embeddings can be used to classify IHC images according
to cell type specificity of the stained protein. As we generally lack human labels of cell
type specificity for these images, we instead train a classifier using auxiliary labels of speci-
ficity, derived from an independent single-cell transcriptomics dataset. Because transcription
imperfectly correlates with protein expression, these labels act only as a noisy proxy of pro-
teomic specificity. Therefore we should not seek a complex model that achieves very low
error – as this would likely capture noise that is unrelated to protein expression. Rather,
by restricting to only simple functions of embedded protein images, we prevent the classi-
fier from learning such noise, and steer it toward what we actually desire: predictions of
proteomic specificities. In this work we select a linear classifier for this task.

As our single-cell transcriptomics dataset, we use the processed data provided by Muto
et al. [19] via the cellxgene portal [55]. This dataset consists of single nuclei from non-tumor
kidney cortex from five donors (three male, two female) sequenced using the 10x Genomics
Chromium v2 platform. This yielded a matrix of 19,985 cells ⇥ 22,127 genes. Muto et al.
[19] performed unsupervised clustering of this data using the Louvain community-detection
algorithm, and assigned a cell type to each cluster based on expression of known lineage-
specific markers, resulting in 13 different cell types. The dataset provided on cellxgene also
maps the shorthand names used by Muto et al. [19] for these cell types to terms in the Cell
Ontology [56], which we use in this paper.

The learning problem is as follows: we first compute, for each gene g, its mean tran-
scriptional expression in each of the K cell types annotated in the single-cell dataset. We
then normalize this to a vector yg 2 �K , and train a linear classifier to predict yg from its
corresponding embedded images {hi 2 RD, i 2 1 . . . N : gi = g}:

min
A2RD⇥K

�

NX

i=1

y>
gi
log
�
softmax(h>

i
A)
�

(2.3)

where log is applied element-wise.
We fit the model in equation (2.3) to the same training set as before, minus 633 images

corresponding to a test set of marker genes indicated in [57]. We train for 1000 epochs using
the Adam optimizer with learning rate 0.01.

2.3.5 Evaluating predictions of proteomic specificity

As we lack large-scale annotation of cell type specificity for proteins in kidney, we instead
assess our model’s predictions at the scale of coarser anatomical regions, and compare these
to estimates of regional specificity derived solely from single-cell transcriptomic data.
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Figure 2.2: We first train an encoder on 10,164 IHC images from the HPA that pass quality
filtering, and compute embeddings for all 66,138 images, which we subsequently hold fixed.
We then compute mean expression in each of 13 cell types for each gene in Muto et al. [19].
We fit a linear classifier to embeddings of 9,299 high-quality images that (a) correspond to
11,657 genes in Muto et al, and (b) are not listed in Habuka, Fagerberg, Hallström, et al. [57].
We then evaluate this linear classifier on embeddings of 633 held-out HPA images matching
126 genes annotated as regional markers in Habuka, Fagerberg, Hallström, et al. [57]. We
aggregate along the image axis to yield gene-level predictions, and along the cell-type axis
to yield predictions for 4 anatomical regions. This permits us to compute ROC curves using
the labels of Habuka, Fagerberg, Hallström, et al. [57] and evaluate against baselines that
rely upon differential expression of transcripts between cell types to nominate markers.

We employ a list of marker genes identified as proteomically specific to particular kidney
anatomical regions by Habuka, Fagerberg, Hallström, et al. [57]. These markers were iden-
tified first by preselecting genes with kidney-specific expression in bulk RNAseq, and then
labelled with one of four anatomical regions of kidney cortex by manual inspection of IHC
images from an earlier version of the HPA. Of these markers, 126 are present both in version
21 of the HPA and in the single-cell transcriptomics dataset, and we limit our evaluation to
these. We hold out the corresponding images of these genes during training of the classifier.

The anatomical regions labelled in Habuka, Fagerberg, Hallström, et al. [57] each (with
the exception of proximal tubules) contain multiple transcriptionally-defined cell types. As
our model is trained to predict cell types, we map cell types in [19] to anatomical regions
in [57] according to the scheme shown in Figure 2.4, omitting two cell types (‘leukocyte’
and ‘fibroblast’) from our analysis that lack a clear correspondence to a single anatomical
region. We convert our model’s predictions from cell types to regions by summing the
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softmax probabilities for all cell types mapped to a given region, and then renormalizing.
This yields, for each image, a vector of predicted probabilities for each of the four regions.
But as our ground-truth labeling is only provided for genes (not for individual images), we
generate predictions at the gene level by taking the average of all such vectors for a given
gene.

As baselines, we consider assigning genes to cell types using the single-cell transcriptomics
data alone. For each gene, we perform differential expression testing for each cell type, and
use the test statistic as a score of cell type specificity. We then convert these scores per
cell type into anatomical regions by taking the maximum test statistic over all cell types
mapped to a given region. We do this separately for one-versus-rest T-tests and Wilcoxon
tests (using ScanPy’s [58] sc.tl.rank_genes_groups function), which are common practice
for marker detection in scRNA analysis [59].

We also compare against a published state-of-the-art algorithm for marker detection,
COMET [10]. We run COMET using default parameters and consider only test statistics
of positive singleton markers in our evaluation (as Habuka, Fagerberg, Hallström, et al. [57]
only specify labels for these).

We provide a schematic in Figure 2.2 that summarizes our training and evaluation work-
flow.

2.4 Results

2.4.1 Contrastively-learned embedding structure reflects cell type

specificity of immunohistochemical stains

We first use ScanPy’s UMAP dimensionality reduction [60] to visualize the embeddings
learned by our model. We also cluster these embeddings using Scanpy’s implementation
of the Leiden community-detection algorithm (resolution parameter 0.2). This is shown in
Figure 2.4, where we also color and size each image embedding according to the cell type
in which the corresponding gene is most expressed, per scRNA from Muto et al. [19]. This
reveals a number of clusters exhibiting specificity for particular cell types and anatomical
regions in the kidney. Importantly, this structure arises solely from our self-supervised
objective and without human supervision: at no point is cell type specificity of an image
ever provided as a label to our algorithm.

Exemplars from these clusters are shown in Figure 2.3. We identify these exemplars by
training an SVM (scikit-learn [61], RBF kernel, default parameters, 5-fold CV) to predict
each embedding’s cluster label, extracting the top 5 highest-scoring images for each class.

Clusters 1 and 11 are enriched in genes displaying ‘epithelial cell of proximal tubule’-
specific expression (hypergeometric test, p < 10�202 and p < 10�50 respectively).
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Figure 2.3: Exemplar images chosen from a subset of Leiden clusters with clear specificity
for kidney anatomical regions and subcellular localizations, with HPA antibody codes.

29



Figure 2.4: Visualization of 10,164 image embeddings via UMAP dimensionality reduction
demonstrates that our method captures biological semantics of IHC images. Each dot rep-
resents an embedding of a single IHC image. We color the embedding according to the cell
type in which its corresponding gene is most expressed, per the scRNA dataset of Muto
et al. [19], and size each according to cell type specificity (i.e. argmaxk ygk and maxk ygk
respectively). Cell types are grouped according to anatomical regions in Habuka, Fagerberg,
Hallström, et al. [57]; ‘leukocyte’ and ‘fibroblast’ do not correspond to any single region.
Leiden clusters are numbered and outlined.

While the reason for images of this cell type separating into two different clusters is
unclear to the unaided eye, hypergeometric testing for subcellular localization annotations
of the respective genes [62] indicates cluster 1 primarily enriches for localization in the cytosol
(p < 10�44), while cluster 11 enriches for both vesicles (p < 10�7) and plasma membrane
(p < 10�8).

This suggests our self-supervised approach may also be sensitive to subcellular localiza-
tion, confirming findings from the supervised setting [37]. Indeed, the images in cluster 0,
which enrich for loop of Henle (p < 10�21) and distal tubule (p < 10�14) cells, are also
strongly enriched for mitochondrial localization (p < 10�300). Similarly, clusters 7 and 8
enrich for nucleoplasmic localization (p < 10�170 and p < 10�152).

Clusters 9 and 10 both consist of genes expressed in the glomerulus. However, they display
specificities for different cell types within that region: cluster 9 enriches for ‘kidney capillary
epithelial cells’ (p < 10�31), ‘mesangial cells’ (p < 10�11) and ‘fibroblasts’ (p < 10�13), while
cluster 10 enriches for ‘glomerular visceral epithelial cells’ (p < 10�30).
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Figure 2.5: UMAP plots of image embeddings learned from three sampling schemes: image
augmentations only (left); + grouping positive examples by gene (middle); + stratifying
negatives by donor (right). Color indicates one of 18 anonymized donor labels. The last
scheme leads to visibly better mixing of donors across clusters.

Another cluster with interpretable anatomical specificity is 12, which enriches for genes
specific to ‘renal beta-intercalated cells’ (p < 10�16) and ‘renal principal cells’ (p < 10�18),
both of which are found in the collecting duct of the kidney. The cluster is also enriched
for ‘kidney connecting tubule epithelial cells’ (p < 10�22), which physically link the distal
tubule to the connecting duct [63].

2.4.2 Biologically-informed sampling captures semantic content and

imparts invariance to donor identity

Figure 2.5 displays the effect of our positive and negative sampling procedures via UMAP
visualizations of the resulting embeddings.

We first consider a self-supervised encoder trained using only standard image augmen-
tations (left). This does not result in a visualization with clear clustering structure, and
images tend to colocate with other images derived from the same donor. In comparison,
our approach of sampling positive examples from other images of the same gene (middle)
imparts clearly visible global clustering structure.

However, there remain some clusters exhibiting visible imbalance with respect to the
donor label. This is fixed when we additionally restrict negative examples to images derived
from the same donor (right). We quantify invariance of our representation to the identity of
the tissue donor via 5-fold cross validation accuracy of a logistic regression trained to predict
the donor label from the embedding. When sampling negatives uniformly, the donor label
can be accurately classified 39.7% of the time; our negative sampling procedure makes this
task more difficult, reducing to 29.5% accuracy.

2.4.3 Immunohistochemical classification yields superior predictions

of regional specificity over transcriptomics

We evaluate our model’s performance in classifying images of proteomic markers for the
four anatomical regions specified in Habuka, Fagerberg, Hallström, et al. [57], against the

31



common practice of one-versus-rest T-tests and Wilcoxon tests [59] as well as the state-of-the-
art method COMET [10]. Figure 2.6 shows one-versus-rest receiver operator characteristic
curves for each region.

Our approach incorporating immunohistochemistry demonstrates superior accuracy in
proximal tubule (�AUC = 0.061), glomerulus (�AUC = 0.191), collecting duct (�AUC
= 0.106), and comparable accuracy in distal tubules (�AUC = �0.011) over the best tran-
scriptional baseline for each region.

We provide two examples of markers for which immunohistochemical and transcriptomic
predictions disagree. Figure 2.7 shows a selected image from each, along with the corre-
sponding gene expression per each cell type in Muto et al. [19].

Habuka, Fagerberg, Hallström, et al. [57] label PTH2R as a proteomic marker of cells in
the glomerulus. Our model agrees, ranking the antibody HPA010655 for PTH2R third-most-
specific to glomeruli of the 217 antibodies targeting genes in Habuka, Fagerberg, Hallström,
et al. [57]. In comparison, the overall best-performing scRNA baseline (T-test) ranks PTH2R
last among the 126 marker genes by glomerular specificity, instead assigning it to proximal
tubules (ranked 8th of 126).

We suggest an explanation for the misclassification based on scRNA: using in-situ hy-
bridization, Usdin et al. [64] observe PTH2R is specifically transcribed in a small subpopu-
lation of glomerular cells in rat kidney. It is possible that biases in the scRNA sequencing
or analysis protocols negatively affected detection of that minority cell type [16, 15]. This
would present a potential mode of failure when relying upon single-cell transcriptomics data
to determine proteomic specificity.

Habuka, Fagerberg, Hallström, et al. [57] label SLC2A9 as a marker of proximal tubules.
The best transcriptomic baseline accurately classifies this gene, ranking it 6th of 126 in
proximal tubule specificity. Conversely, our method incorrectly classifies this gene’s antibody,
HPA066229, as most specific to distal tubules (ranked 25th of 217, versus 187th for proximal
tubules).

Rather than a mistake of our classifier, we suggest this may be a limitation of relying on
immunohistochemistry: visual inspection of the images of that gene also indicates staining
of distal tubules, highlighted with red arrows in Figure 2.7. However, So and Thorens
[65] confirm Habuka, Fagerberg, Hallström, et al. [57]’s annotation, indicating SLC2A9 is
known to selectively express in proximal tubules. This may indicate off-target binding of the
antibody: while Habuka, Fagerberg, Hallström, et al. [57] may have observed and accounted
for this in their annotation, our approach cannot discern such cases.

We also provide in Appendix B of the supplement a demonstration of our method applied
to IHC images and scRNA of testis. We benchmark against transcriptomic baselines as shown
here, as well as DeepHistoClass [41], a supervised learning algorithm trained on images of
testis that were manually labelled for cell-type specificity by human experts.

2.5 Discussion
In this paper, we develop a contrastive learning algorithm for learning representations of
immunohistochemistry images in the Human Protein Atlas. We demonstrate our approach
to sampling positive and negative examples leads to a representation that captures biolog-
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ical semantics of IHC images, without needing to engineer complex data augmentations.
When applied to images of the kidney, the resulting embeddings yield clusters that display
specificity for different cell types and anatomical regions. We then incorporate auxiliary la-
bels from an independent single-cell transcriptomics dataset to train an image classifier that
predicts cell type specificity without requiring human annotation of those cell types. This
classifier better recovers known proteomic markers than prioritization solely via differential
transcriptional expression.

One important potential application of our method is toward designing multiplexed spa-
tial proteomics experiments, for which antibody panel selection is an important consider-
ation. The ability to screen candidate marker genes beforehand for proteomic specificity,
as opposed to solely transcriptomic specificity, should save time during validation of such
panels.

While we only consider images of kidney here, our contrastive learning procedure is
applicable to any tissue represented in the Human Protein Atlas, and the embeddings can
be used for any prediction or visualization task for which invariances of the sort we learn
are desirable. We also point out that while training the model does necessitate the unique
scale of the HPA specifically, in principle it can be subsequently applied to any IHC image
acquired in a tissue that was represented in the training set. Our subsequent classification
step can also use any data type that associates genes or proteins with cell type specificity:
it is not limited to our particular choice of single-cell transcriptomics dataset, nor to the
granularity of cell type definitions therein. It therefore will benefit from efforts to discover
and catalog finer distinctions between cell types, such as the Human Cell Atlas [7].

In addition to cell type specificity, we also observe our approach is sensitive to subcellular
localization of markers. This result is unsurprising, as multiple previous works demonstrate
effective prediction of subcellular localization from IHC images in the supervised context
[37, 38, 39, 40]: here we find such information can also be detected without supervision. A
representation that disentangles these two modes of specificity would be a promising direction
of future work.

We note some limitations with our method in its current implementation. We had to
downsample the high-resolution images in the HPA substantially to accommodate our choice
of architecture, and GPU memory constraints prevented us from using larger batch sizes as
recommended for SimCLR [46]. We expect improvements in memory-efficient contrastive
learning such as He, Fan, Wu, et al. [25] will permit us to use HPA images at their native
resolution, which should yield finer distinctions between cell types and subcellular compart-
ments. We also anticipate multi-scale attention [66] will be particularly useful for distin-
guishing cell type markers by finer-scale features.

Finally, our approach is fundamentally limited by antibody cross-reactivity: while we
filter our training set using the HPA’s reliability criteria to counteract this, in principle an
approach that attempts to predict cell type specificity of proteins from immunohistochemical
images will fail when antibodies bind to proteins other than their nominal targets. On the
other hand, genes that exhibit systematic disagreement between immunohistochemical and
transcriptomic estimates of cell type specificity across multiple antibodies and tissues may
present interesting candidates for biological followup in their own right.
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2.6 Appendix

2.6.1 Comparison of sampling procedures

Figure 2.8: Top left, conditional probability of drawing a positive example from donor i for
an image from donor j; top middle, conditional probability of an embedding of an image
from donor i lying in the 30-nearest-neighbors of an embedding from donor j without our
negative sampling procedure; top right, the same, with our negative sampling procedure;
bottom left; marginal probability of drawing an example from donor i; bottom middle and
bottom right, same as top but with Leiden clusters.

Figure 2.8 suggests the co-occurrence of donors among positive pairs is reflected in the
geometry of the learned embeddings: specifically, the conditional probabilities of observing
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Sampling method AUC-P AUC-G AUC-D AUC-C AUC Accuracy
Image augmentation 0.957 0.941 0.798 0.883 0.895 0.621
Image augmentation
+ sampling at gene level 0.972 0.954 0.877 0.950 0.939 0.397

Image augmentation
+ sampling at gene level
+ rejecting positives

0.989 0.991 0.934 0.953 0.967 0.464

Image augmentation
+ sampling at gene level
+ rejecting negatives

0.967 0.982 0.949 0.960 0.964 0.295

Table 2.1: Performance of different sampling strategies on the downstream classification task
(test AUC on proximal tubule (P), glomerulus (G), distal tubule (D), collecting duct (C),
and overall; higher better), and invariance to donor identity of the embeddings (5-fold CV
accuracy; lower better).

donor i as a positive example for donor j when grouping images by genes (top left), resemble
the proportion of images from donor i in the 30 Euclidean nearest neighbors of an embedding
of donor j (top middle; KL divergence between these two distributions for fixed j, averaged
across all j = 0.215). The negative sampling procedure drives these two donor-conditional
probability distributions farther apart (top right; average KL divergence = 0.349). It also
drives the proportion of images of donor i in a 30-NN of donor j much closer to what would
arise if each donor were just represented in the neighborhood proportionally to its total
number of images (bottom left; average KL divergence 0.228 before, 0.082 after).

We can similarly compute the probability of observing an image from donor i within a
Leiden cluster (resolution = 0.2) of the embeddings, conditional upon donor j also being
present in that cluster. While the relation to the donor co-occurrence is weaker to begin
with (bottom middle), the effect of the negative sampling is even stronger at the cluster
level: donors are assigned to clusters essentially randomly (bottom right).

We further note it is not possible with this dataset to directly correct the imbalance in
donor pairings by instead reweighting each gene’s positives: generally only a few (median 3,
maximum 6) of the 18 donors are represented per gene, so most pairings of donors will occur
for that gene with probability zero.

In Table 2.1 we provide quantitative metrics for the effectiveness of the different strategies
for sampling positive and negative pairs: both in terms of test performance on the down-
stream classification task, as well as invariance of the embedding to the donor identity. As
we describe in the main text, the latter is quantified via 5-fold cross validation accuracy of a
logistic regression trained to predict the donor label from the embedding: a more invariant
embedding will make this prediction task harder.

We also considered an alternative approach for sampling, which we include here for
completeness: rather than only sampling negative pairs originating from the same donor, we
only drew positive pairs from different donors. This was similarly implemented via masking
at the minibatch level. This did not affect the classification accuracy of the downstream
task (mean AUC = 0.967 across the four regions, versus 0.964 for negative sampling). It
also achieved the opposite of our desired effect, increasing linear separability of donors. The
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embeddings derived from this approach, as well as those of the other three we investigated,
are shown in Figure 2.9.
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Figure 2.9: UMAP plots of IHC image embeddings from the four sampling schemes. The
left column indicates the cell-type specificity of the respective gene in Muto et al. [19]. The
middle column, “Batch”, is an ordinal index of the individual TMA on which the image
was acquired (each TMA contains three images of the same antibody, each from a different
donor). It is clearly confounded with the donor label; despite only using the latter, our final
scheme visibly achieves the best mixing across clusters of this label as well.
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2.6.2 Evaluation on immunohistochemistry of testis

We also apply our method to a different tissue: healthy human testis. We select this tissue
because [41] provide (1) a manually-annotated test set of IHC images with cell-type labels
(as opposed to regional specificity), and (2) a supervised learning model, DeepHistoClass,
that provides a proteomic benchmark against which we can evaluate our method.

To train our encoder, we use 4777 images of testis from version 21 of the Human Protein
Atlas, selected using the same filtering criteria described in the main text for kidney. The
model and training parameters are identical to the procedure described in the main text.

To train our classifier, we employ cell type specificities from the scRNA dataset of
[67]. As the per-cell labels of cell type were not provided in the published data by the
authors, we derive them by running ScanPy’s Leiden clustering (default parameters) after
log-transformation and PCA, and assign clusters to cell types via manual inspection of tran-
scriptional marker genes described in [67]. UMAP plots labelled with these clusters are
shown in Figure 2.10 and our assignments of these to the cell types in [41].

Figure 2.10: Labelled UMAP embeddings of the scRNA data in [67]. Each point represents
a single cell. Cells labelled “NA” are not present among the labels in [41].

[41] provides a test set of human annotations for 1374 images from versions 18 and 19 of
the Human Protein Atlas, which we also employ as a test set (after removing 31 images also
present in our training set). Figure 2.11 shows the performance of their model, ours, and
transcriptomic tests of differential expression using [67]. (For both image-based methods, as
in the main text, we aggregate labels to gene-level via averaging over all images annotated
with a given gene.)
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Figure 2.11: AUC curves of our method, DeepHistoClass, and two transcriptomic baselines
for classifying marker genes in testis.

While we outperform the scRNA-only baselines, we observe that DeepHistoClass outper-
forms our approach in turn by a substantial margin. This is unsurprising. DeepHistoClass is
a supervised learning algorithm, and therefore has access to direct labels of proteomic speci-
ficity at the level of individual images during training. By comparison, our method only has
access to a noisy proxy in the form of transcriptomic specificity. The additional supervision
information used by DeepHistoClass comes at a cost: Ghoshal et al. [41] required human
experts to manually annotate thousands of immunohistochemical images. Our procedure is
much cheaper by comparison, requiring no human annotation of images, and is therefore
applicable even when expert annotation of cell types at that scale is impractical.

We also believe our practice of downsampling images to 512⇥ 512 adversely affected our
performance on testis. While cell identity in kidney largely corresponds with macroscopic
tissue organization, cells of different types in testis (such as spermatids at different develop-
mental stages) intermix spatially. These therefore likely necessitate finer-scale information
(e.g. cellular morphology, chromatin organization) to distinguish [68], which our down-
sampling procedure removes. In comparison, DeepHistoClass is trained on full-resolution
3000 ⇥ 3000 images. It is tractable to train that method at full resolution because it is
intrinsically less memory intensive, being a supervised learning algorithm with only linear
space complexity in batch size. SimCLR is on the other hand quadratic in this requirement
[46].
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Figure 2.6: One-versus-rest ROC curves with respect to the labels of regional specificity
in Habuka, Fagerberg, Hallström, et al. [57] for our classifier (blue) and the transcriptomic
baselines.
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Figure 2.7: Example images of PTH2R (top; antibody HPA010655) and SLC2A9 (bottom;
antibody HPA066229). Regions in the latter that appear to be stained distal tubules are
indicated by red arrows. Violin plot indicates the transcriptional expression of PTH2R (blue)
and SLC2A9 (orange) in each cell type of Muto et al. [19]. Brackets indicate anatomical
regions (G: glomerulus; P: proximal tubule; D: distal tubule; C: collecting duct).
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Chapter 3

Efficiently predicting high resolution
mass spectra with graph neural networks

Authors: Michael Murphy, Stefanie Jegelka, Ernest Fraenkel, Tobias Kind, David Healey,
Thomas Butler

This work was presented at ICML 2023 and published in the Proceedings of Machine Learn-
ing Research. I conceived the idea, developed the algorithms, carried out the analysis, and
wrote the manuscript. Thomas Butler provided guidance on algorithmic directions and eval-
uations, and contributed to the introduction section. All authors provided commentary on
the manuscript and input throughout.

3.1 Abstract
Identifying a small molecule from its mass spectrum is the primary open problem in compu-
tational metabolomics. This is typically cast as information retrieval: an unknown spectrum
is matched against spectra predicted computationally from a large database of chemical
structures. However, current approaches to spectrum prediction model the output space in
ways that force a tradeoff between capturing high resolution mass information and tractable
learning. We resolve this tradeoff by casting spectrum prediction as a mapping from an input
molecular graph to a probability distribution over chemical formulas. We further discover
that a large corpus of mass spectra can be closely approximated using a fixed vocabulary
constituting only 2% of all observed formulas. This enables efficient spectrum prediction
using an architecture similar to graph classification – GrAFF-MS – achieving significantly
lower prediction error and greater retrieval accuracy than previous approaches.

3.2 Introduction
The identification of unknown small molecules in complex mixtures is a primary challenge
in many areas of chemical and biological science. The standard high-throughput approach
to small molecule identification is tandem mass spectrometry (MS/MS), with diverse appli-
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cations including metabolomics [1], drug discovery [2], clinical diagnostics [3], forensics [4],
and environmental monitoring [5].

MS/MS generates an experimental signature – a mass spectrum – of an unknown molecule
by breaking it into fragments. The spectrum contains a (mass-to-charge ratio, height) tuple
for each resulting fragment, reflecting its elemental composition, electric charge, and ten-
dency to form. The problem of inferring the 2D structure of a molecule from its spectrum
is known as structural elucidation. Structural elucidation is the primary computational bot-
tleneck in MS/MS, and is far from solved: typically only 2�4% of spectra are identified in
untargeted metabolomics experiments [6]. A recent competition – the 2022 Critical Analysis
of Small Molecule Identification (CASMI) challenge [7] – saw no more than 30% accuracy,
with algorithmic approaches only marginally outperforming manual annotation by expert
chemists.

Because MS/MS is a lossy measurement, and available training sets are small, direct
prediction of structures from spectra is particularly challenging. The approach for small
molecule identification preferred in practice by most users of mass spectrometry is spectral
library search, which casts the problem as information retrieval [8]: an observed spectrum
is queried against a library of spectra with known structures. This provides an informative
prior, and has the advantage of easy interpretability. But as there are relatively few (104)
small molecules with publicly known experimental mass spectra, in spectral library search
it is necessary to augment libraries with spectra predicted from large databases (106 � 109)
of molecular graphs. This motivates the problem of spectrum prediction: the ability to
predict higher-quality spectra from large chemical structure databases could greatly increase
compound identification rates in real experimental settings.

Spectrum prediction is actively studied in metabolomics and quantum chemistry [9],
yet has historically received little attention from the machine learning community. A major
challenge in spectrum prediction is modelling the output space: a mass spectrum is a variable-
length set of real-valued tuples, which is not straightforward to represent as an output of a
machine learning model. The mass-to-charge (m/z) coordinate poses particular difficulty:
it must be predicted with high precision, as a key strength of MS/MS is the ability to
distinguish small fractional m/z differences (on the order of 10�6) representative of different
elemental composition.

Previous approaches to spectrum prediction force a tradeoff between capturing high res-
olution m/z information and tractability of the learning problem. Mass-binning methods
[10, 11, 12] represent a spectrum as a fixed-length vector by discretizing the m/z axis at reg-
ular intervals, discarding fine-scale information in favor of tractable learning. Bond-breaking
methods [13, 14] achieve perfect m/z resolution, but use expensive combinatorial enumera-
tion of substructures.

Our work presents a novel formulation that exploits the many-to-one relationship between
molecular graphs and chemical formulas. Specifically, we make the following contributions:

• We formulate spectrum prediction as a mapping from a molecular graph to a proba-
bility distribution over chemical formulas, allowing full resolution predictions without
enumerating substructures;

• We discover most mass spectra can be effectively approximated with a small fixed
vocabulary of chemical formulas, bypassing the tradeoff between m/z resolution and
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tractable learning; and

• We implement an efficient graph neural network architecture, GrAFF-MS, that out-
performs state-of-the-art in both prediction error and runtime on canonical mass spec-
trometry datasets, and yields superior accuracy on a large-scale structure retrieval
task.

3.3 Background
We denote vectors x in bold lowercase and matrices X in bold uppercase.

A molecular graph G = (V,E,a, b) is a minimal description of the 2D structure of a
molecule: it comprises an undirected graph with nodes V representing atoms, and edges
E ⇢ V ⇥V representing bonds. Each node i is labelled with a chemical element ai 2 {C, H,
N, O, P, S . . . }, and each edge (i, j) with a bond order bij 2 {1, 1.5, 2, 3}.

A chemical formula f (e.g. C8H10N4O2) describes a multiset of atoms, which we encode
as a nonnegative integer vector of atom counts in F

⇤ .
= Z{C, H, N, O, P, S . . . }

+ . Formulas may
be added and subtracted from one another, and inequalities between formulas are taken to
hold elementwise. The subformulas of f are the set F(f)

.
= {f 0

2 F
⇤ : f 0

 f}.
hµ, fi 2 R+ is the theoretical mass of formula f , in units of daltons (Da): this is a weighted

sum of the monoisotopic masses of the elements of the periodic table, µ 2 R{C, H, N, O, P, S . . . }
+ ,

with multiplicities given by f .
A mass spectrum S is a variable-length set of peaks, each of which is a (m/z, intensity)

tuple (mi, yi) 2 R2
+. We use the notation i 2 S to index peaks in a spectrum. We assume

spectra are normalized, permitting us to treat them as probability distributions:
P

i2S yi = 1.
A mass spectrum is implicitly always accompanied by a precursor formula P . We always
assume charge z = 1, as it is rare for small molecules to acquire more than a single charge.

3.3.1 Tandem mass spectrometry

A tandem mass spectrometer is a scientific instrument that generates high-throughput ex-
perimental signatures of the molecules present in a complex mixture. It operates by ionizing
a chemical sample into a jet of electrically-charged gas. This gas is electromagnetically
filtered to select a population of precursor ions of a specific mass-to-charge ratio (m/z) rep-
resenting a unique molecular structure. Each precursor ion is fragmented by collision with
molecules of an inert gas. If a collision occurs with sufficient energy, one or more bonds in
the precursor will break, yielding a charged product ion and one or more uncharged neutral
loss molecules. The product ion is measured by a detector, which records its m/z up to a
small error proportional to m/z times the instrument resolution ✏, typically on the order of
10�6. This process is repeated for large numbers of identical precursor ions, building up a
histogram indexed by m/z. Local maxima in this histogram are termed peaks : ideally, each
peak represents a unique product ion, with intensity reflecting its probability of formation.
This set of peaks constitutes the mass spectrum. A typical mass spectrometry experiment
acquires mass spectra for tens of thousands of distinct precursors in this manner. We depict
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this process in Figure 3.1A, and the relationship between precursor ion, product ion and
neutral loss in Figure 3.1B.

Figure 3.1: (A) The workflow of tandem mass spectrometry. A chemical mixture is ionized
and filtered to isolate precursor ions of m/z = M ; these are fragmented into product ions
(red) and neutral losses (blue), and a detector yields a histogram of product ions indexed
by m/z, with measurement error proportional to m/z. (B) An example fragmentation of a
precursor ion with formula C8H11N4O2. Fragmentation breaks bonds, cutting the molecular
graph into connected components. The component retaining the charge is the product ion;
its complement is the neutral loss. The peak at m/z = m represents the product ion; given
the precursor formula, we can equally specify this peak by its formula C3H4NO2, or the
formula of its neutral loss C5H7N3.

3.3.2 Mass decomposition

Modern mass spectrometry achieves sufficiently high resolution to detect small deviations in
m/z from integrality that are characteristic of different chemical elements. This property
is a key strength of the technology, because it permits annotating peaks with formulas
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through mass decomposition [15]. Given a product ion of m/z = m, a precursor formula
P , and an instrument resolution ✏, product mass decomposition yields a set F(P,m, ✏) of
chemically plausible subformulas of P whose theoretical masses lie within the (multiplicative)
measurement error ✏m of m. This can be cast as the following integer program, in which all
solutions with cost  ✏m are enumerated:

min
f2F⇤

|hµ, fi �m| (3.1)

s.t. f  P, f 2 ⌦ (3.2)

where ⌦ describes a general set of constraints that exclude unrealistic chemical formulas [16].
For modern instruments, ✏ is sufficiently small for there to typically be only one or a few
valid solutions. This allows us to later rely on product mass decomposition as a black-box
to generate useful formula annotations at training time.

3.4 Related work

Bond-breaking is the most studied approach to spectrum prediction [17, 13, 14, 18]. This
solves the problem of representing the output space by enumerating the structures of all
probable product ions: these are taken to be connected subgraphs of the precursor, generated
by sequences of edge removals. Each product ion structure is scored for its probability of
formation, and a spectrum is generated by associating this probability with each structure’s
theoretical m/z. Bond-breaking therefore achieves perfect m/z resolution, but suffers from
two major weaknesses: first, enumerating substructures scales poorly with molecule size, and
is not conducive to massively-parallel implementation on a GPU. We found a state-of-the-
art method [13] takes ⇠5s on average to predict a single mass spectrum, which precludes
training on the largest available datasets: using the same settings as its authors, training
[13] on ⇠300k spectra in NIST-20 would take an estimated three months on a 64-core
machine. It also poses serious limitations at test time, as inference with a large-scale structure
database like ChEMBL [19] requires predicting millions of spectra. The other weakness of
bond-breaking arises from a restrictive modelling assumption: rearrangement reactions [20]
frequently yield product ions that are not reachable from the precursor by sequences of edge
removals.1

Mass-binning is used for spectrum prediction by [10], and subsequently employed in
recent preprints [11, 12]. This approach represents a mass spectrum as a fixed-length vector
via discretization: the m/z axis is partitioned into narrow regularly-spaced bins, and each
bin is assigned the sum of the intensities of all peaks falling within its endpoints. Spectrum
prediction then becomes a vector-valued regression problem, which is conducive to GPU
implementation and scales better than bond-breaking. But because a target space with
millions of mass bins is too large, realistic bin counts lose essential high resolution information
about the chemical formulas of the peaks: discarding a key strength of MS/MS analysis in
favor of a tractable learning problem. Such models are also susceptible to edge effects, where

1While engineered rules are used in bond-breaking to account for certain well-studied rearrangements, we
found the state-of-the-art method CFM-ID still fails to assign a formula annotation within 10ppm to 42%
of monoisotopic peaks in the NIST-20 dataset.
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m/z measurement error of the instrument can cause peaks of the same product ion to cross
bin boundaries from spectrum to spectrum.

Other approaches include molecular dynamics simulation [21], which has extremely high
computational costs; and NLP-inspired models for peptides [22, 23], which are effective but
inapplicable to other types of molecules.

While this manuscript was under review, two GNN-based approaches to modelling mass
spectra as distributions over subformulas were also published. Rather than the fixed vocab-
ulary approximation we discover here, Zhu and Jonas [24] use an exhaustive enumeration
scheme to generate subformulas, which are then used in a formula-to-atom attention oper-
ation to predict a peak height for each. Goldman, Li, and Coley [25] decode a prefix-tree
of plausible subformulas from the molecular graph and predict intensities for these using a
set-to-set transformer.

3.5 GrAFF-MS

Our approach comprises three major components: first, we represent the output space of
spectrum prediction as a space of probability distributions over chemical formulas. We then
introduce a constant-sized approximation of this output space using a fixed vocabulary of
formulas, which we can generate from our training data; we later show this introduces only
minor approximation cost, as most formulas occur with low probability. Finally, we derive
a loss function that takes into account data-specific ambiguities introduced by our model of
the output space. These components together allow us to efficiently predict spectra using a
standard graph neural network architecture.

We call our approach GrAFF-MS: (Gr)aph neural network for (A)pproximation via
(F)ixed (F)ormulas of (M)ass (S)pectra.

3.5.1 Modelling spectra as probability distributions over chemical

subformulas of the precursor

Our aim is to predict a mass spectrum from a molecular graph. To do so, we must determine
how to best represent the output space: a spectrum consists of a variable-length set of peaks
located at continuous m/z positions, whose heights sum to one. We notice that peaks are
not located arbitrarily: the set of m/zs is structured, as the m/z of a peak is determined
(up to measurement error) by the chemical formula of its corresponding product ion. This
formula is sufficient to determine the m/z; in particular, we do not need to know the product
ion’s full 2D structure. We therefore model a mass spectrum as a probability distribution
over chemical subformulas F(P ) of the precursor P :

S = {(mf , yf ) : f 2 F(P )} (3.3)

where mf

.
= hµ, fi is the theoretical mass of formula f .

This is more efficient in principle than bond-breaking, which models a spectrum as a
distribution over at worst exponentially many substructures of the precursor. In contrast,
the number of subformulas is only polynomial in the coefficients of the precursor formula –
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and the majority of subformulas can be ruled out a priori as chemically infeasible [16]. It
is also less restrictive than bond-breaking, which relies on hand-engineered rules to capture
rearrangement reactions: enumerating subformulas is guaranteed to cover all possible peaks,
irrespective of whether the structure of their product ion is reachable by edge removals or
not. Yet our approach preserves the core advantage of bond-breaking over mass-binning:
predicting a height for each subformula yields spectra with perfect m/z resolution.

3.5.2 Fixed vocabulary approximation of formula space

In practice, enumerating subformulas is still a costly operation for larger molecules. One
way to avoid this would be to sequentially decode formulas of nonzero probability one at
a time: we opt not to do so, as this requires a more complex, data-hungrier model, and
necessitates a linear ordering of formulas, for which there is not an obvious correct choice.
Instead, we exploit a property of small molecule mass spectra that we discovered in this work
and illustrate in Figure 3.2: almost all of the signal in small molecule mass spectra lies in
peaks that can be explained by a relatively small number (⇠2%) of product ion and neutral
loss formulas that frequently recur across spectra.

Inspired by this finding, we approximate F(P ) via the union F̂(P ) = P̂ [ (P � L̂)
of a fixed set of frequent product ion formulas P̂ and a variable set of ‘precursor-specific’
formulas P � L̂ obtained by subtracting a fixed set of frequent neutral loss formulas L̂ from
the precursor P . This greatly simplifies the spectrum prediction problem: we now only need
to predict a probability for each of the formulas in P̂ and L̂, which we can accomplish with
time constant in the size of the precursor.

Stated explicitly, we approximate the spectrum as:

S ⇡ {(mf , yf ) : f 2 F̂(P )} (3.4)

where a height of zero is implicitly assigned to any formula not in F̂(P ).
The fact that we can equally represent a product ion by either its own formula or a

neutral loss formula relative to its precursor ion is crucial to generalization, as also noted
by Wei et al. [10]. If we only included frequent product ion formulas, we would explain
peaks of low mass well, which typically correspond to small charged functional groups. But
as formula space becomes larger with increasing mass, it becomes increasingly unlikely that
every significant peak of higher mass in an unseen compound will be explained. However,
such peaks do not represent arbitrary subformulas of the precursor: they tend to arise from
losses of small uncharged functional groups and combinations thereof, which we capture by
including frequent neutral losses.

Our algorithm to generate P̂ and L̂ involves listing all product ion and neutral loss
formulas yielded by mass decomposition of the training set, and ranking them by the sum
of the heights of all peaks to which each formula is assigned; we select the top K highest
ranked among either type. The algorithm is provided in appendix 3.9.1.

3.5.3 Peak-marginal cross entropy

To train our approach, we must rely on formula annotations generated by mass decom-
position. Because mass spectrometers have limited resolution, often more than one valid
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subformula has a mass within measurement error of a peak. These are considered equiprob-
able a priori, and need not be mutually exclusive: it is possible for a compound to contain
two distinct substructures with m/z difference smaller than the measurement error. As we
cannot pick a single formula in such cases, we approximate the full cross entropy loss by
marginalizing over compatible formulas: we term this the peak-marginal cross entropy. We
minimize this loss with respect to the parameters of a neural network ŷ(·; ✓):

min
✓

�

NX

n=1

X

i2Sn

yn
i
log

X

f2F̂n
i

ŷf (Gn; ✓) (3.5)

using F̂
n

i

.
= F̂(Pn)\F(Pn,mn

i
, ✏) to indicate the intersection of our fixed vocabulary with the

formula annotations for peak i of spectrum n. We provide a derivation from first principles
in appendix 3.9.2.

In this formulation, given a molecular graph G of a precursor with formula P , our model
predicts a probability ŷf for every formula f in the fixed vocabulary. This produces a
spectrum Ŝ = {(mf , ŷf ) : f 2 F̂(P )}. These per-formula probabilities are summed within
each observed peak across its compatible formulas to yield a predicted peak height, and the
cross-entropy between the observed and predicted peak heights across the entire spectrum
is minimized.

3.5.4 Model architecture

Formulating spectrum prediction as graph classification permits applying a typical GNN
architecture. GrAFF-MS uses a graph isomorphism network with edge and graph Laplacian
features [26, 27, 28]. This encodes the molecular graph by a dense vector representation,
which is then conditioned on mass-spectral covariates and passed through a feed-forward
network that decodes a logit for each formula in the vocabulary.

We start with the graph of the 2D structure G = (V,E), to which we add a virtual
node [29] and four classes of features: node features ai 2 Rdatom , edge features bij 2 Rdbond ,
covariate features c 2 Rdcov , and the top eigenvectors and eigenvalues of the graph Laplacian
vi 2 Rdeig ,� 2 Rdeig . We use the canonical atom and bond featurizers from DGL-LifeSci [30]
to generate a and b. Since a mass spectrum is not fully determined by the molecular graph,
c includes a number of necessary experimental parameters: normalized collision energy,
precursor ion type, instrument model, and presence of isotopic peaks. Further details are
provided in Table 3.3 in the appendix; there we also provide hyperparameter settings.

We first embed the node, edge, and covariate features into Rdenc , reusing the following
MLP block:

MLP(·) = LayerNorm(Dropout(SiLU(Linear(·))))

and transform the Laplacian features into node positional encodings in Rdenc using a SignNet
[28] with � and ⇢ both implemented as 2-layer stacked MLPs:

xatom

i
= MLPatom(ai) (3.6)

xeig

i
= SignNet(vi,�) (3.7)
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xbond

ij
= MLPbond(bij) (3.8)

xcov = MLPcov(c) (3.9)

taking i 2 V and (i, j) 2 E. We sum the embedded atom features and node positional
encodings, and pass these along with embedded bond features into a stack of alternating L
message-passing layers to update the node representations, and L MLP layers to update the
edge representations.

x(0)
i

= xatom

i
+ xeig

i
(3.10)

e(0)
ij

= xbond

ij
(3.11)

X(l+1) = X(l) + GINEConv
(l)(G,X(l),E(l)) (3.12)

e(l+1)
ij

= e(l)
ij

+ MLP
(l)
edge

(e(l)
ij
kx(l+1)

i
kx(l+1)

j
) (3.13)

where k denotes concatenation. The message-passing layer uses the GINEConv operation
implemented in [31]: for its internal feed-forward network, we use two stacked MLP blocks with
GraphNorm [32] in place of layer normalization. We similarly replace layer normalization
with GraphNorm in the MLPedge blocks. Both node and edge updates use residual connections,
which we found greatly accelerate training.

We generate a dense representation of the molecule by attention pooling over nodes [33],
to which we add the embedded covariate features. An MLP decodes this into a spectrum
representation xspec

2 Rddec :

ai = Softmaxi2V (Linear(xi)) (3.14)

xmol =
X

i2V
aix

(L)
i

(3.15)

xspec = MLPspec(x
mol + xcov), (3.16)

where MLPspec is a stack of L0
MLP blocks with residual connections. In principle, we may

now project this representation via a linear layer (wk, bk) into a logit zk for each of the K
product ion or neutral loss formulas in the vocabulary.

3.5.5 Domain-specific modifications

We must now introduce some corrections motivated by domain knowledge to produce realistic
mass spectra.

Depending on instrument parameters, tandem mass spectra can display small peaks
arising from higher isotopic states of the precursor ion, at integral m/z shifts relative to
the monoisotopic peak. We model this as a source of noise: rather than expanding our
vocabulary, we apply to all predictions a scalar offset for each isotopic state � 2 {0, 1, 2},
which we parameterize as a linear function of xspec.

As our vocabulary includes both product ions and neutral losses, we also face occasional
double-counting : depending on the precursor P , there are cases where the same subformula
f will be predicted both as a product ion (f 2 P̂) and a neutral loss (P � f 2 L̂). In
such cases we subtract a log(2) correction factor from both logits: this way the innermost
summation in Equation (3.5) takes the average of their contributions instead of their sum.
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Applying these corrections and softmaxing yields the final heights of the predicted mass
spectrum ŷ:

zk� = wkx
spec +w�x

spec + bk (3.17)
� I[k is double-counted] log(2)

ŷk� = Softmaxk�(zk�) (3.18)

where the subscript k is an index into our fixed vocabulary.

3.6 Experiments

3.6.1 Datasets

NIST-20

We train our model on the NIST-20 tandem MS library [34]. This is the largest commercial
dataset of high resolution mass spectra of small molecules, curated by expert chemists, and
is available for a modest fee.2 For each measured compound, NIST-20 provides typically
several spectra acquired across a range of collision energies. Each spectrum is represented
as a list of (m/z, intensity, annotation) peak tuples, in addition to metadata describing
instrumental parameters and compound identity. The annotation field includes a list of
formula hypotheses per peak that were computed by NIST using mass decomposition and
verified by expert chemists.

We restrict NIST-20 to HCD Orbitrap spectra with [M + H]+ or [M � H]� precursor
ions. We exclude structures that are annotated as glycans or peptides or exceed 1000Da in
mass (as these are not typically considered small molecules) or have atoms other than {C,
H, N, O, P, S, F, Cl, Br, I}.

We use an 80/10/10 structure-disjoint train/validation/test split, which we generate by
grouping spectra according to the connectivity substring of their InChIKey [36], and assign-
ing groups of spectra to splits. As the baseline CFM-ID only predicts monoisotopic spectra
at qualitative energy levels {low, medium, high}, we restrict the test set to spectra with cor-
responding energies {20, 35, 50} in which no peaks were annotated as higher isotopes. This
yields 287,995 (18,665) training, 36,265 (2,346) validation, and 4,424 (1,632) test spectra
(structures).

CASMI-16

It is well known that uniform train-test splitting can overestimate generalization in molec-
ular machine learning [37]. To address this issue, we employ an independent test set: the
spectra of the 2016 CASMI challenge [38]. This is a small public-domain mass spectrometry

2Open data is not the norm in small molecule mass spectrometry, as large-scale annotated data has
commercial value and requires substantial time commitment from teams of highly-trained human experts.
No public-domain dataset comparable to NIST-20 therefore exists. However, NIST-20 and its predecessors
are commonplace in academic mass spectrometry, and have been used in ML research [10, 35].
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dataset, constructed by domain experts specifically for benchmarking algorithms, and com-
prises structures selected as representative of those encountered ‘in the wild’ when performing
mass spectrometry of small molecules.

We use [M +H]+ and [M �H]� spectra from the combined ‘Training’ and ‘Challenge’
splits from Categories 2 and 3 of the challenge. We exclude any structures from CASMI-

16 with an InChIKey connectivity match to any in NIST-20, yielding 166 spectra of 151
structures. CASMI-16 spectra are acquired with collision energy stepping, which generates
a mixed spectrum from energies of {20, 35, 50}; for all methods we approximate this by
predicting only the middle energy.

GNPS

To simulate performance in a real experimental setting, we extracted a subset of spectra
from GNPS [39] that represent natural product molecules not found in NIST-20. This is
a challenging dataset, as GNPS spectra are contributed by the community in an uncurated
manner, and often are missing key covariates for spectrum prediction. To exclude obvious
poor-quality spectra, we only consider [M + H]+ and [M � H]� Orbitrap spectra, with
reported precursor m/z matching the theoretical mass. GNPS does not report collision
energy; we assume energy = 35, and only include spectra with a (number of peaks) to
(precursor m/z) ratio between the 10th and 90th percentiles of that quantity for NIST-20
spectra acquired at that energy. This results in 677 mass spectra of 606 structures.

3.6.2 Baselines

CFM-ID

CFM-ID [13] is a bond-breaking method, viewed by the mass spectrometry community as
the state-of-the-art in spectrum prediction [9]. We found CFM-ID prohibitively expensive to
train on NIST-20 (one parallelized EM iterate on a subset of ⇠60k spectra took 10 hours on
a 64-core machine) so we use trained weights provided by its authors, learned from 18,282
spectra in the commercial METLIN dataset [40]. Domain experts consider spectra acquired
under METLIN’s conditions interchangeable with those of NIST-20 [41] so it is reasonable
to evaluate their model on our data.

NEIMS

NEIMS [10] is a feed-forward network that inputs a precomputed molecular fingerprint and
outputs a mass-binned spectrum, which is postprocessed using a domain-specific gating op-
eration (“bidirectional prediction”). As NEIMS was originally developed for electron-impact
mass spectra, we retrained NEIMS on NIST-20, which necessitated two modifications: (1)
we concatenate a vector of covariates to the fingerprint vector, without which NIST-20

spectra are not fully determined; and (2) we bin at 0.1Da intervals instead of 1Da inter-
vals, to account for finer instrument resolution in NIST-20. We otherwise use the same
hyperparameter settings as the original paper, and early-stop on validation loss.
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3.6.3 Evaluation

Cosine similarity

We evaluate predictive accuracy against ground truth spectra via mass-spectral cosine sim-
ilarity [42]. This modifies the standard cosine similarity to allow for inexact matches in
the m/z coordinates between two spectra. For two spectra S and Ŝ, mass-spectral cosine
similarity C

S,Ŝ
is the maximal cosine similarity between vectors of peak heights taken over

all peak matchings within a mass tolerance window ⌧ . It is computed by solving a linear
sum assignment problem:

C
S,Ŝ

.
= max

xij2{0,1}

X

i2S, j2Ŝ:
|mi�m̂j |⌧

xij

yi
kyk2

ŷj
kŷk2

(3.19)

s.t.
P

i2S xij  1 (3.20)
P

j2Ŝ xij  1 (3.21)

We use the CosineHungarian implementation from matchms [43], with tolerance ⌧ = 0.1Da.

Time complexity

We also empirically compare dependence of runtime on input size between GrAFF-MS and
the bond-breaking method CFM-ID. For fair comparison, we time a forward pass for each
structure in the NIST-20 test split using only the CPU, without any batching. We include
time spent in preprocessing: our input is a SMILES string and experimental covariates, and
our output is a spectrum. As collision energy affects the number of fragments that CFM-ID
generates, we predict spectra at low, medium, and high energies and use the average runtime
of the three.

Spectral library search

We characterize retrieval performance on a large-scale spectral library search task. For each
method, we predict a library of mass spectra from the structures in NIST-20, which we
augment with 200k decoy structures sampled from ChEMBL within ±0.1Da of any NIST-

20 structure. [M+H]+ and [M�H]� spectra are predicted at collision energies {20, 35, 50},
resulting in a library of 1,262,025 spectra of 221,502 structures. We query each of the 4,424
experimental spectra from the NIST-20 test split against this library, restricting comparisons
to spectra with the same ionization mode and collision energy, of theoretical m/z within
0.1Da of the query. We rank the resulting matches by mass-spectral cosine similarity, and
compute recall-at-k: both of the correct 2D structure, and of any 2D structure with the
correct chemical formula.
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3.7 Results

3.7.1 A fixed vocabulary of products and losses captures the vast

majority of fragmentation events

Figure 3.2: Generalization of different heuristics for fixed-size vocabulary selection. For a
given vocabulary size on the x-axis, the y-axis indicates the sum of all explained peaks’
heights within a given spectrum, averaged over all spectra.

Figure 3.2 illustrates the fraction of ion counts explained on average across mass spectra
as the vocabulary size is varied. We observe most signal lies within peaks explainable by a
relatively small number of product ion and neutral loss formulas. In particular, the vocabu-
lary of K = 104 formulas we select from the NIST-20 training split (which contains 188,349
unique product ion and 351,165 unique neutral loss formulas) is sufficient to explain 98% of
ion counts in the structure-disjoint test split. This vocabulary generalizes beyond NIST-20

to both CASMI-16 and GNPS, suggesting this ‘formula sparsity’ is a general property of
small molecule mass spectra.

We also compare alternative strategies of picking only the top product ions or top neutral
losses: our approach of using both types of formulas explains more signal for a fixed K than
either type alone.
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3.7.2 GrAFF-MS outperforms bond-breaking and mass-binning

on standard MS/MS datasets

Table 3.1 shows GrAFF-MS produces spectra with greater cosine similarity to ground-truth
than either baseline. These results hold for our test split of NIST-20 and for the independent
test sets CASMI-16 and GNPS. We see all methods perform better on CASMI-16 than
NIST-20: this is likely because NIST-20 includes a minority of substantially larger molecules
(max weight 995Da) than CASMI-16 (max weight 539Da), with which all three methods
struggle. Conversely, the poorer performance of all methods on GNPS likely reflects the
difficulty of predicting the noisier spectra acquired in real-world biological experiments, as
compared to curated spectra generated from libraries of pure chemical standards.
Table 3.1: Mean cosine similarity between predicted and true spectra on the NIST-20 test
split, CASMI-16, and GNPS. 95% confidence intervals are computed via nonparametric
bootstrap.

NIST-20 Test
(N = 4424)

CASMI-16
(N = 166)

GNPS
(N = 677)

CFM-ID 0.53± .01 0.71± .04 0.26± .02
NEIMS 0.60± .01 0.57± .06 0.29± .02
GrAFF-MS 0.71± .01 0.78± .05 0.41± .03

To further characterize out-of-distribution performance, in Figure 3.3 we show how each
method’s performance on the NIST-20 test split decays as test examples decrease in similarity
to the method’s respective training set. Specifically, we compute, for each structure in the
test set, the maximum Tanimoto similarity between its radius-2 Morgan fingerprint and
that of any training structure. While all methods suffer out-of-distribution, GrAFF-MS

maintains its edge over the other methods at all but the very highest levels of dissimilarity
from NIST-20, where it approaches CFM-ID. CFM-ID’s more gradual decay compared to
the deep learning methods likely reflects the strong inductive bias of bond-breaking.

3.7.3 Representing peaks as subformulas scales better with molec-

ular weight than substructures

Figure 3.4 shows how our approach to modelling high resolution spectra scales better with
input size than bond-breaking. CFM-ID, which is written in optimized C++ code, takes
on average 4.9 seconds per structure in the NIST-20 test split, and scales quadratically
(R2 = 0.78) with input size. (We believe this is because larger molecules in NIST-20 tend to
be approximately path graphs – e.g. long hydrocarbon chains – with only quadratically many
connected subgraphs.) In comparison, running our research implementation of GrAFF-

MS on the CPU takes 1.3 core-seconds per spectrum, and scales approximately linearly
(R2 = 0.65). This pays off at larger molecular weight: for molecules > 500Da, our model
is 16⇥ faster on average. Realistically, large-scale library prediction will use the GPU: on
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Figure 3.3: Relationship between predictive accuracy on NIST-20 test structures and
structural similarity to the training set. Note that CFM-ID uses a different training set
(METLIN).

a single GPU with batch size 512, predicting all of the NIST-20 test spectra averages to
2.8ms per spectrum (mostly spent in CPU-bound preprocessing).

3.7.4 GrAFF-MS yields more accurate and faster structure re-

trieval against a large spectral library

In Table 3.2 we report recall at k = {1, 5, 10} of experimental spectra from the NIST-20 test
split on our spectral library search task. We see the superior performance of our approach
in the spectrum prediction task extends to better downstream retrieval accuracy, in terms of
both correct 2D structures and correct chemical formulas. Here the importance of speed at
inference time becomes apparent: while both deep learning methods took only a few minutes
on a single GPU, CFM-ID required more than 5 node-days of compute time on 8 96-core
nodes of an HPC cluster to generate this library.
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Figure 3.4: Empirical time complexity on NIST-20 structures with respect to molecular
weight. Each dot is a structure. Solid lines are quadratic (blue) and linear (red) fits; dotted
line indicates an average over all spectra computed using shuffled minibatches.

3.7.5 GrAFF-MS distinguishes very similar compounds and makes

human-like mistakes

In Figure 3.5 we show some particularly challenging examples of mass spectra. The top and
middle panels show two structurally similar compounds, differing only by the order of one
carbon-carbon bond. Our approach correctly predicts distinct spectra for each (C

SŜ
= 0.90,

top; C
SŜ

= 0.97, middle). The third molecule is an example where we fail to predict a
realistic spectrum (C

SŜ
= 0.04), but in a manner in which a human expert would also fail.

This molecule is a member of the phthalate class, which chemists recognize by a characteristic
dominant peak at 149Da [44]. Our model predicts this same peak, correctly recognizing a
phthalate. But in this case that peak is unusually minor – potentially reflecting a long-range
dependency in the graph that our approach failed to capture.
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Table 3.2: Recall-at-k of NIST-20 test spectra against synthetic libraries predicted from
NIST-20 and ChEMBL structures. We report retrieval accuracy of both the correct 2D
structure and of any structure with the correct chemical formula, as well as time taken to
generate the 1.2 million spectra in the library.

CFM-ID NEIMS GrAFF-MS

Structure, k=1 0.28±.01 0.27±.01 0.37±.01
5 0.56±.02 0.53±.02 0.67±.01
10 0.66±.01 0.61±.01 0.75±.01

Formula, k=1 0.34±.02 0.43±.01 0.52±.02
5 0.64±.02 0.65±.01 0.76±.01
10 0.74±.01 0.73±.01 0.83±.01

Inference Time 126h7m 7m32s 18m52s

3.8 Discussion
In this work, we develop GrAFF-MS, a graph neural network for predicting high resolution
mass spectra of small molecules. Unlike previous approaches that force a tradeoff between
m/z resolution and a tractable learning problem, GrAFF-MS is both computationally effi-
cient and capable of modelling the high resolution m/z information essential to modern mass
spectrometry. This is made possible by our discovery that mass spectra of small molecules
can be closely approximated as distributions over a fixed vocabulary of chemical formulas,
highlighting the value that domain-aware modelling can add to molecular machine learning.
Particularly surprising was that we outperform CFM-ID, which trades model expressivity for
an even stronger scientific prior that we expected would contribute to better generalization.
However, this prior incurs a heavy cost in time complexity, making it impractical to train
CFM-ID on hundreds of thousands of spectra as we did.

While a fixed vocabulary of fragments yields an architecture that is simple to train and
fast at inference time, it is possible that this can at times sacrifice flexibility: we may fail to
capture fragments of intermediate size that can arise from complex small molecules such as
natural products. We believe dynamic generation of this vocabulary, and the related problem
of learning generalizable formula representations, to be promising avenues for future work.

Overall we anticipate GrAFF-MS will both accelerate scientific discovery and demon-
strate mass spectrometry as a compelling domain for further machine learning research.

Software and Data

We provide code, data, and trained models at https://github.com/murphy17/graff-ms. The
NIST-20 license agreement prohibits including spectra from it; we therefore provide instruc-
tions on how to obtain it.
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Figure 3.5: Three compounds from CASMI-16, with spectra predicted by our model (blue)
against negated ground-truth (red). Oxygens are shaded red by convention.
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3.9 Appendix

3.9.1 Fixed vocabulary selection

Algorithm 2 describes our procedure for selecting the product ions P̂ and neutral losses L̂.
We use the shorthand F

n

i
= F(Pn,mi, ✏) to indicate the set of formulas computed by product

mass decomposition. When this yields more than one formula annotation for a peak, here
we split the peak height uniformly among all annotations.

Algorithm 2 Fixed vocabulary selection
Input: training spectra and precursors {(Sn, Pn)}Nn=1, vocabulary size K, tolerance ✏
Output: product vocabulary P̂ , loss vocabulary L̂

Initialize hash-tables ⇧,⇤ : ⇧(·) = 0,⇤(·) = 0
Initialize sets P̂ = ;, L̂ = ;
for n = 1 . . . N do

for (mi, yi) 2 Sn do
Compute mass decomposition F

n

i
= F(Pn,mi, ✏)

for f 2 F
n

i
do

l = Pn � f
⇧(f) ⇧(f) + yi/|Fn

i
|

⇤(l) ⇤(l) + yi/|Fn

i
|

end for
end for

end for
Sort ⇧ and ⇤ in descending value order
while |P̂|+ |L̂|  K do
f = first element of ⇧
l = first element of ⇤
if ⇧(f) > ⇤(l) then

Add f to P̂

Remove f from ⇧
else

Add l to L̂

Remove l from ⇤
end if

end while

(In our implementation, we do not actually compute the mass decomposition in the loop:
we instead simply read off the annotations provided already by NIST.)

3.9.2 Derivation of peak-marginal cross entropy

We derive our loss function from physical first principles, making a number of minor mod-
elling assumptions:
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• The number of precursor ions accumulated in a spectrum is Poisson with rate �.

• Each individual precursor ion is independently converted into fragment j with proba-
bility pj.

• The instrument resolution parameter ✏ is sufficiently small that separate peaks do not
overlap: there exists exactly one peak i(j) for every j : pj > 0 satisfying |hµ, fji�mi| 

✏mi (where fj is the chemical formula of fragment j).

By the splitting property, the number of ions of each fragment are independently Poisson
with rate �j = �pj. By the merging property, the height of peak i is also a Poisson r.v. Ki

with rate �i =
P

j2Ji
�j, where Ji denotes the set of fragments whose theoretical masses fall

within the measurement error ✏mi of peak i. The log-likelihood of peak height is (taking
equality up to constants C w.r.t. pj):

logP (Ki = ki) (3.22)
= ki log �i � �i � log ki! (3.23)

= ki log

 
X

j2Ji

�j

!
�

 
X

j2Ji

�j

!
+ C (3.24)

= ki log

 
X

j2Ji

�pj

!
�

 
X

j2Ji

�pj

!
(3.25)

= ki log �+ ki log

 
X

j2Ji

pj

!
� �

X

j2Ji

pj (3.26)

= C + ki log

 
X

j2Ji

pj

!
� �

X

j2Ji

pj (3.27)

where (3.24) uses merging, and (3.25) uses splitting. Because each product ion is assigned
to exactly one peak (no overlap), the peak heights {Ki : i 2 S} are independent. Let the
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total number of accumulated ions K =
P

i2S ki in spectrum S. Defining yi = ki/K:

logP ({Ki = ki : i 2 S}) (3.28)

=
X

i2S

logP (Ki = ki) (3.29)

=
X

i2S

 
ki log

 
X

j2Ji

pj

!
� �

X

j2Ji

pj

!
(3.30)

=
X

i2S

(Kyi) log

 
X

j2Ji

pj

!
� �

X

i2S

X

j2Ji

pj (3.31)

= K
X

i2S

yi log

 
X

j2Ji

pj

!
� � · 1 (3.32)

= C
X

i2S

yi log

 
X

j2Ji

pj

!
+ C 0 (3.33)

where (3.32) again uses our assumption that every fragment is assigned to exactly one peak.
Dropping the constants and negating the final term yields the peak-marginal cross-entropy
loss for a single spectrum.
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3.9.3 Model hyperparameters

We use a vocabulary of K = 10,000 formulas. We train an L = 6-layer encoder and L0 = 2-
layer decoder with denc = 512 and ddec = 1024, resulting in 24.1 million trainable parameters.
We use the deig = 8 lowest-frequency eigenvalues, truncating or padding with zeros. Dropout
is applied at rate 0.1. We use a batch size of 512 and the Adam optimizer [45] with learning
rate 5 ⇥ 10�4 and weight decay 10�5. We train for 100 epochs and use the model from the
epoch with the lowest validation loss. All models are trained using PyTorch Lightning with
automatic mixed precision on 2 Tesla V100 GPUs.

3.9.4 Mass spectral covariates

Table 3.3: Mass spectral covariates used in our model.

Feature Range Comment

Collision energy [0, 200]
Thermo Scientific PSB104,
“Normalized Collision Energy Technology”

Precursor type [M +H]+, [M �H]� Includes ionization mode & adduct composition

Instrument model
Orbitrap Fusion Lumos,
Thermo Finnigan Elite Orbitrap,
Thermo Finnigan Velos Orbitrap

Different limits of detection

Has isotopic peaks False, True Proxy for width setting of precursor mass filter
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Chapter 4

Comparing single-cell sequencing
platforms for gene regulatory network
inference

This section of the thesis describes work I carried out as a member of the Standards and
Technologies Working Group (STWG) of the Human Cell Atlas. These results will be included
in a manuscript under preparation, jointly authored by the STWG. Helpful discussions were
had with Ernest Fraenkel and Stefanie Jegelka.

Abstract
Single-cell omics measurements present the possibility of statistically inferring the topology
and parameters of gene regulatory networks. However, the quality of such inferences depends
heavily upon the biomolecular variables measured and technical biases induced by the par-
ticular choice of measurement technology. In this work, we consider three different single-cell
sequencing platforms – single-cell RNA sequencing, single-nucleus multiome sequencing, and
single-cell CAGE sequencing – measured in a complex tissue (human kidney cortex), and
compare them along three different axes: single-cell versus single-nucleus isolation; tran-
scriptomic versus multimodal measurements; and chromatin accessibility versus promoter
usage as epigenomic measurements. We adopt various resampling strategies to control for
technical variation in cell-type biases and read depth, and use elastic-net linear models as
a fast and interpretable approach to inferring regulatory networks that can be compared
across different measurement modalities. We employ a number of auxiliary external datasets
for hypothesis generation and quantitative ground-truth evaluation. Among our findings, we
observe evidence of subcellular mRNA localization influencing statistics of single-cell versus
single-nuclear expression; superior predictability of the latter relative to the former; and a
general trade-off between biological plausibility and predictive power of inferred regulatory
networks, both with and without epigenomic constraints.
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4.1 Introduction
Contemporary omics sequencing experiments can measure tens to hundreds of thousands of
molecular variables in thousands of single cells. Measurements of this scale raise the possi-
bility of inferring topologies and parameters of biological regulatory networks with greater
throughput and less bias than classical low-dimensional biochemical approaches. As such
networks are heavily tissue-specific [1], the completion of the Human Cell Atlas (HCA) [2]
project – which aims to acquire broad and deep single-cell sequencing data in all major
human organs – will be an important step toward this goal.

A major experimental design consideration in construction of this Atlas is the selection of
which particular sequencing assay, and combinations thereof, to carry out. Different single-
cell assays can measure different classes of molecular variables – e.g. gene expression [3],
chromatin accessibility [4], surface protein expression [5] – either separately or jointly [6], and
entail different sample preparation protocols that introduce sampling biases and expression
artifacts. Toward this end, the Standards and Technologies Working Group (STWG) of the
HCA consortium was established to better understand and quantify the technical biases and
complementarity of a number of single-cell sequencing assays under consideration for the
Atlas. A major aspect of this investigation – with which the author of this thesis was tasked
– was to understand how regulatory networks inferred from these assays compare to one
another and to biological ground-truth.

This is a challenging task for a number of reasons: firstly, it necessitates establishing
a common algorithmic approach and comparison methodology for inferring and evaluating
networks derived from measurements spanning heterogeneous measurement modalities. We
also need to establish clear hypotheses to investigate, and must take care to separate potential
biological effects of interest from already well-studied technical biases. Finally, we must
deal with a problem pervasive to biological machine learning: ground-truth gene regulatory
networks in complex tissues are simply not known at scale, so we must rely upon domain
knowledge and external datasets to devise metrics for evaluation.

4.2 Background
Both the assays directly performed by the Standards and Technologies Working Group, and
the external data sources we use to validate them, span a diverse range of modalities and
experimental protocols. We briefly explain each of these assays in this section.

4.2.1 Single-cell RNA sequencing

Due to its relative technical ease and commercial maturity, the predominant approach for
high-throughput molecular characterization of biological systems is single-cell RNA sequenc-
ing [3]. Briefly, this technology begins with physical isolation of single cells or nuclei into mi-
crofluidic droplets, and lyses them to extract the RNA content. Individual RNA transcripts
are then reverse-transcribed into DNA, which includes barcoding with a unique molecule
identifier (UMI) and a cell identifier, and amplified via PCR. An illustration is shown in
Figure 4.1.
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Figure 4.1: Single-cell RNA sequencing. Following tissue dissociation, single cells or nuclei
are isolated into microfluidic droplets, and their RNA content is extracted. Individual RNA
molecules are hybridized to probe sequences, here complementary to the 3’-end poly-A tail,
that uniquely identify the molecule and cell, and reverse-transcribed to DNA. The comple-
mentary DNA fragments are amplified by PCR, and then read out by a sequencer. (Figure
from [7].)

The full transcript is not generally sequenced in high-throughput single-cell RNA exper-
iments: the easiest approach sequences only the 3’ end of transcripts possessing a poly-A
tail. 5’-end sequencing [8] is more technically difficult, and relies on capturing the methy-
lated guanine ‘cap’ at the 5’-end of mRNA transcripts. However, it provides the benefit
of directly reading the sequence of the transcription start site. Full-length sequencing [9]
permits characterizing alternate promoter usage and splicing isoforms, but achieves much
lower cell throughput [7].

Different experimental design choices in the single-cell RNA workflow are known to induce
particular technical biases. Single-cell versus single-nuclear sequencing entail different sample
preparation protocols: enzymatic dissociation of a tissue into single cells induces global
stress response [7], and tends to damage certain cell subpopulations more than others [10].
In comparison, single-nucleus isolation is easier technically and does not induce this stress
response: however, it excludes cytoplasmic transcripts, which constitute the majority, and
depletes specific cell types as well [10]. As polyadenylation rates vary across genes, the choice
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of 3’- versus 5’-end sequencing can also induce sampling bias [11].
It is likely that technical differences in cell type recovery and induced stress between

single-cell and single-nuclear sequencing will lead to differences in inferred gene regulatory
networks. However, biological factors could also be involved: cytoplasmic versus nuclear
localization of mRNAs can vary greatly across genes [12, 13, 14] and enriches for various reg-
ulatory processes [15, 16]. In the nucleus, the rate at which transcripts are exported varies
widely across different genes [17, 18], as selective export of already-transcribed mRNAs per-
mits faster translational response to stimuli than needing to wait for transcription first [12].
In the cytoplasm, localization of mRNA transcripts physically near to the regions of the cell
where their protein products are needed permits fast translational response by free-floating
ribosomes [19]. Additionally, RNA instability is known [20] to enrich for certain biologi-
cal processes – primarily global regulatory processes, such as RNA splicing, transcriptional
regulation, and ribosome biogenesis – for which fast response is evolutionarily favorable,
and differential half-lives in the nucleus versus the cytosol will affect the steady-state con-
centrations of mRNA in each [16]. Depending on depth of sequencing, sampling primarily
cytoplasmic versus nuclear mRNA pools could therefore risk undersampling genes subject
to these forms of regulation.

Furthermore, the properties of expression noise in one fraction versus the other also differ.
Battich et al [21] indicate nuclear transcript counts are overdispersed relative to cytoplasmic
counts of the same genes: after controlling for global cell state variables with slower timescales
than transcriptional bursting, they find the variance of cytoplasmic transcript abundance
approaches the theoretical limit under a Poisson process. They attributed this variance
reduction to smoothing brought about by nuclear buffering of transcriptional bursts. As
the experimental design of [21] only measured a single gene at a time within any given
cell, they only consider the effect of nuclear buffering on expression variance. However,
it is conceivable that the smoothing brought about by nuclear buffering could attenuate
not just independent noise, but also correlated fluctuations between different genes. As we
rely on such correlations to detect statistical dependence, it may be the case that RNA
measurements derived primarily from the cytoplasm (i.e. single cell RNA sequencing) have
less power per read to detect gene co-regulation than those selected from solely the nucleus,
which are spatially and temporally closer to the events of transcription.

4.2.2 Single-cell multiome sequencing

Single-cell RNA sequencing is a powerful approach for identifying cell types and states,
and their characteristic gene expression patterns. However, when used as a technology for
inference of transcriptional regulatory networks, it suffers fundamental limitations. Ideally,
each directed edge in a gene regulatory network would reflect the process illustrated in
Figure 4.2: the binding of a protein to a region of DNA that proximally causes (e.g. by
directly participating in a transcription preinitiation complex, or physically blocking one
from forming) an increase or decrease in the rate of transcription of the target. This is
valuable both for scientific interpretability, and because it facilitates the confirmation or
falsification of the existence of inferred edges via experimental intervention.

However, single-cell RNA sequencing only directly measures one of the molecular vari-
ables in this process – the abundance of the target transcript – and moreover only as a
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Figure 4.2: The ultimate cause of a transcriptional event is the binding of a ligand to a surface
or intracellular receptor, which initiates a signalling cascade ending in the post-translation
modification of a transcription factor. This activated TF translocates to the nucleus (if
not already localized there), and binds to an accessible region of DNA to which its pocket is
complementary. If this site is physically close to a gene it has evolved to regulate, this binding
will cause a transcription preinitiation complex to form at the promoter region of the gene.
This complex includes RNA polymerase II, which transcribes the RNA molecule. Following
initiation of the transcriptional event, numerous other processes influence the lifespan of the
nascent RNA transcript, including 5’-end capping, 3’-end polyadenylation, nuclear export,
ribonucleoprotein complex formation, and degradation in the cytoplasm. (Figure from [22].)

population, with different transcripts resulting from potentially many different transcrip-
tional events, which are also subject to post-transcriptional regulation via mRNA splicing,
export, and degradation. Unfortunately, an assay that can directly observe these microscopic
events at high throughput remains out of reach. While regulatory networks can nonetheless
be inferred from single-cell RNA sequencing data [23, 24], the fact that important molecular
variables remain latent risks detecting spurious or indirect correlations in addition to direct
physical mechanisms.

Multimodal single-cell measurements, which observe additional molecular variables in-
volved in gene expression, can in principle aid in ruling out spurious connections between
transcription factors and their putative targets. A commercially mature example of such an
assay is single-nucleus multiome sequencing [25]: in addition to quantifying nuclear tran-
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scripts, multiome also uses ‘assay for transposase-accessible chromatin’ (ATAC) sequencing
to detect regions of DNA that are ‘open’ – i.e. not wound around histone proteins – and
hence physically available for transcription factors to bind to. The principle of this assay
is depicted in Figure 4.3; briefly, each cell’s DNA is isolated, and exposed to an enzyme
that transcribes complementary DNA from regions of open chromatin. These short DNA
sequences are aligned to the genome, and aggregated across cells into longer ‘peaks’: the
final measurement is a count-valued matrix of cells by peaks.

As there are only two copies of each chromosome in most eukaryotic cells, single-nucleus
ATAC data tends to be much sparser than RNA sequencing. It moreover provides no direct
information about whether a TF was bound to a particular genomic locus, or what that TF
might have been: for this one must rely on indirect proxies, e.g. enrichment of TF binding
motifs in accessible peaks [27] or correlation between peak accessibility and gene expression
of TFs [28]. Once connections between TFs and peaks have been established, the set of
permitted links in a gene regulatory network can then be constrained, e.g. to only those TFs
with evidence of binding to peaks near in the genome to a particular gene.

4.2.3 Single-cell CAGE sequencing

Single-cell cap analysis gene expression (CAGE) sequencing is an alternative implementation
of single-cell RNA sequencing, which captures and sequences the 5’-end of transcripts, via
capture of the 5’-cap, as opposed to the poly-A tail at the 3’-end. While more technically
involved to carry out than 3’-end sequencing, it provides the added benefit of reading the
sequence of the transcription start site (TSS) that gave rise to each transcript. This impor-
tantly permits detection of alternate promoter usage, which is a widespread mechanism of
transcriptional control: more than half of human genes undergo regulation by switching of
promoters [29].

As each detected transcript is now associated with a promoter sequence, we can consider
CAGE-seq as a multimodal assay in its own right, to which we can apply the same tools – e.g.
TF motif enrichment – that we use for ATAC-seq analysis, with the added benefit of much
higher read counts. It moreover is a more ‘causal’ measurement than single-nucleus ATAC
sequencing: we know that a particular promoter region caused the expression of a detected
transcript when we directly measure that region as part of the transcript, rather having to
rely on ‘guilt by association’ of an ATAC peak merely being physically near to the gene
or correlated with its expression. It is on the other hand more limited than ATAC-seq, in
that it only samples the subset of the accessible genome corresponding to promoter regions,
whereas ATAC-seq is in principle unbiased and can capture regulatory binding events far
from the transcription start site.

4.2.4 Immunohistochemistry

A major difficulty in biological machine learning is the rarity of ground truth data against
which omics measurement technologies and algorithms can be evaluated. Moreover, when
such data does exist, it is often acquired through low-throughput molecular biological ex-
periments, which suffer from selection biases relative to high-throughput omics data and
typically employ very different measurement technologies, often with their own sources of

80



Figure 4.3: Single-nucleus ATAC sequencing isolates the nucleus of each cell, and exposes
its DNA content to an enzyme that replicates regions of DNA not spooled around histone
proteins. The resulting DNA fragments are amplified, sequenced, and aligned to the genome,
and reads are pooled across cells to identify peaks representing accessible loci. Motif enrich-
ment is used to associate each peak with candidate TF binders; if such peaks are located
proximally to the transcription start site of a particular gene, it suggests the motif-enriched
TF is involved in regulation of that gene. (Figure from [26].)

technical error. In such situations, we must be careful about what we actually define to
be ‘ground truth’ and (in a classification problem – e.g. gene regulatory network inference)
what counts as a false positive or a false negative.
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This issue notwithstanding, there are basic biophysical principles that – irrespective of
measurement technology – we can safely assume correct predictions to satisfy, and which we
can make use of in quantitative evaluations. For example, in order for a gene to act as a
transcription factor in a particular tissue, we expect that it should not only be transcribed
in cells of that tissue – i.e. detected via RNA sequencing – but also translated into a protein
and transported back into the nucleus. We might therefore evaluate a particular approach
to regulatory network inference in terms of how much ‘influence’ is assigned to transcription
factors with or without evidence of nuclear protein expression in the tissue in question.

A large-scale experimental repository of such evidence can be found in the Human Protein
Atlas (HPA) [30]. Among other data types, the HPA includes replicated images of tens of
thousands of antibodies, covering much of the measurable proteome, in several major human
tissues, imaged via immunohistochemistry (IHC). Immunohistochemistry provides spatially-
resolved measurements of protein expression by staining a tissue sample with an antibody
complementary to an epitope on a target protein of interest, which is then imaged via
optical microscope at sufficient magnification to distinguish subcellular localization patterns.
Classically, IHC measures a single protein at a time, in combination with a nucleic acid
counterstain: however, multiplexed implementations of the technology have been developed
more recently [31]. Examples of immunohistochemistry images are shown in Figure 4.4.

Immunohistochemistry is favored for its relative experimental simplicity; however it is
known to suffer from substantial technical variability and artifacts arising from off-target
binding of the antibody [32, 33]. To mitigate this issue, the images in the Human Protein
Atlas undergo extensive manual curation by expert pathologists, and staining patterns are
assess for reproducibility within and between antibodies as well as with respect to bulk RNA
sequencing [34]. Importantly, this manual curation process also involves annotation of each
antibody for cell-type specificity and subcellular localization (albeit, as discussed elsewhere
in this thesis, at relatively coarse scale). As the annotated proteins cover a substantial
fraction of the known TF-ome, we can use these data to quantitatively evaluate our gene
regulatory inferences.

4.2.5 Chromatin immunoprecipitation sequencing

The nuclear protein localization data found in the Human Protein Atlas permits evaluation
of gene regulatory inferences at the level of transcription factors. However, it ignores another
condition that our mechanistic picture of transcriptional regulation requires TFs to satisfy:
once within the nucleus, they must bind to accessible chromatin in order to modulate the
transcription of their targets. An assay that provides this binding information is chromatin
immunoprecipitation (ChIP) sequencing [35]. This technology uses an antibody comple-
mentary to a transcription factor of interest to specifically precipitate bound DNA-protein
complexes containing that TF from a cell lysate. The precipitate is then treated to denature
the TF, and the DNA content is extracted, amplified, sequenced, and aligned to the genome.
An illustration is provided in Figure 4.5.

ChIP-seq provides valuable direct experimental measurement of links between transcrip-
tion factors and accessible genomic loci that we can exploit when evaluating inferred regula-
tory networks. However, the technology is limited to transcription factors for which reliable
antibodies compatible with the protocol and system of interest are available. It also indicates
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Figure 4.4: Example IHC images from the HPA of two transcription factor proteins in
kidney. The antibody stain is brown, and the nucleic acid counterstain is blue. Top, HNF4A
displays nuclear localization in cells of the proximal tubule, suggesting it is active; bottom,
SP4 is highly expressed but localizes only to the cytoplasm – indicating the protein (at least
in the conformation targeted by the selected antibody) is not physically participating in
transcription.

nothing about which regulatory targets are being modulated by those bound TFs.

83



Figure 4.5: Chromatin immunoprecipitation (ChIP) sequencing uses an antibody comple-
mentary to a protein of interest to extract DNA bound to that protein. The DNA is purified,
amplified, and sequenced. The resulting fragments, when mapped to the genome, form peaks
corresponding to loci where the protein of interest was bound. (Figure from [36].)

4.2.6 Single-molecule in-situ sequencing

Previous studies comparing single-cell and single-nuclear transcription focus on technical
effects (e.g. cell type biases and transcriptional stress responses) arising from sample prepa-
ration [10, 7]. However, numerous studies have identified systematic differences between the
gene composition of nuclear and cytoplasmic mRNA pools, and associated these with major
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biological processes [12, 13, 14, 15, 16]. It is conceivable that favoring one compartment over
the other risks undersampling genes involved in such processes.

As any biological compartment specificity would be confounded with stress responses
arising from tissue dissociation, differential expression in single-cell versus single-nucleus se-
quencing cannot tell us whether this biological bias is recapitulated in either technology –
we require measurements of gene expression in both fractions in cells that undergo identical
sample preparation protocols (ideally, in the exact same cells). Highly-multiplexed single-
molecule imaging experiments satisfy this requirement: instantiations of this approach (such
as MERFISH [37] and SeqFISH+ [38]) label a sample with hundreds to thousands of polynu-
cleotide probes, complementary to selected genes, and sequence these in-situ via fluorescent
readout of a unique barcode per probe. The process is illustrated in Figure 4.6.

Figure 4.6: Fluorescence in-situ hybridization (FISH) optically measures single mRNA
molecules in-situ using fluorescent probes complementary to a target mRNA. To avoid ex-
cessive spectral overlap or optical crowding, multiplexed methods such as SeqFISH+ use
multiple probes per gene (top) and separate readout of groups genes in time (bottom). Fol-
lowing decoding of barcodes to genes, spot detection, and cell segmentation, the output of
such an experiment is a set of 2-D coordinates per cell, each representing an individual RNA
molecule of a known gene. (Figure from [38].)

In-situ sequencing datasets permit joint quantification of the cytoplasmic and nuclear
mRNA fractions in single cells, which lets us directly compare gene-wise means and variances
without needing to control for complex technical or biological confounders. However, such
data are limited by the number and selection criteria of the probes.

4.2.7 Gene regulatory network inference

Inference of gene regulatory networks (GRNs) from omics data is a long-standing open
problem in computational biology. It has followed parallel developments in sequencing tech-
nologies: while the earliest algorithms used bulk RNA sequencing data [39], today single-cell
sequencing offers orders of magnitude more samples from which to learn.
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Typically, GRN inference is understood to mean identifying links between transcrip-
tion factors (TFs), and the genes whose expression they physically regulate, by detecting
statistical dependences in gene expression data [40]. Such links can be signed, indicating
activatory or inhibitory relationships. Algorithmic implementations of GRN inference have
been diverse, ranging from correlation clustering [41] and penalized linear regression [42] to
complex nonlinear models [23, 43, 44], and are highly dependent on the data modalities (e.g.
bulk RNA-sequencing [41], single-cell RNA-sequencing [23], multimodal assays [43], RNA
velocity [44]) and experimental designs (e.g. time courses [24], CRISPR perturbations [45])
to which they are applied.

Gene regulatory inference can also be viewed as an instance of a more general problem in
machine learning – causal structure learning – and algorithms from that line of research have
been translated to this context [46, 47]. However, the common view of GRN inference in
computational biology, embodied in algorithms such as SCENIC [23], is more stringent: by
requiring each edge to represent a physical binding interaction between a TF and a regulatory
genomic locus, we rule out edges that correspond to indirect causal relationships between
genes. (In practice, the only causal edges one can learn from exclusively gene expression
data are indirect regardless: a TF does not act on a target through its mRNA transcript,
but through the protein it encodes.) This constraint leads in principle to worse predictive
models, but is easier to interpret and more conducive to experimental validation. It also
eases the difficulty of directing causal edges: whether or not a gene encodes a transcription
factor is usually known in advance. This (with the exception of TF-TF links) reduces GRN
inference to sparse feature selection – ‘among the set of known TFs, which are regulators of
this gene?’ – and we view the problem through that lens in this thesis.

4.3 Methods

4.3.1 Datasets

Standards and Technologies Working Group

Following the filtering, integration, and annotation procedures carried out by collabora-
tors in the Mereu lab of the Josep Carreras Institute, we received a total of ⇠ 130k cells,
across 14 different types, measured by 3 sequencing technologies (single-cell RNA sequencing,
single-nucleus multiome sequencing, single-cell CAGE sequencing) in 19 different biological
replicates of kidney cortex. In Figure 4.7, we observe substantial variability in cell type
recovery rates and read depth within the same biological samples, reflecting already-known
biases of these two assays arising from dissociation protocols [7], which we later control for
by resampling.

External datasets

To validate inferred TF activities, we use immunohistochemistry annotations from version
23 of the Human Protein Atlas [30]. We use TFs with a motif in JASPAR 2022 [48] that
have an ‘Enhanced’ antibody score, and label a TF as ‘active’ if it is annotated as detected
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Figure 4.7: Number of cells (left) and median reads per cell (right) captured per type,
sample, and assay. Cell type recovery rates cluster strongly according to method of isolation
(single-cell versus single-nucleus). Certain samples also show major quality issues.

in nuclei (of any kidney cell type), and ‘inactive’ if it was detected only in cytoplasm or not
detected at all. This yields 42 active and 102 inactive TFs.

For ground-truth TF-target links, we query ChIP-Atlas [49] for TFs in any human kidney-
derived cell type passing a significance threshold of 50. To link these with target genes, we
only consider peaks with ±500bp of a known transcription start site, which we obtain from
version 4.1 of RefTSS [50]. Intersecting with JASPAR 2022 yields 112 TFs with promoters
in 14402 genes.

To obtain sets of genes whose mRNAs specifically localize to the cytoplasm or nucleus,
we use a collection of 3289 genes identified via APEX-seq [14] as differentially localized in
HEK-293T cells. We consider any gene exceeding a log2-fold-change of 0.75 in any nuclear
compartment (nucleus, nucleolus, lamina, nuclear pore) to be expressed in nucleus, the same
criterion for any cytoplasmic compartment (cytosol, endoplasmic reticulum, ER membrane,
mitochondria, mitochondrial membrane), and removed any overlapping genes. This yielded
1296 genes with nuclear localization, and 1335 genes with cytoplasmic localization.

To test hypotheses regarding overdispersion and predictive generalization, we use a Seq-
FISH+ dataset that imaged 219 genes in approximately 200k cells of mouse kidney, obtained
from http://kidneyviewer.spatialgenomics.com/. As the authors of that dataset do not
assign subcellular localizations, we used Cellpose [51] to segment their provided DAPI im-
age, and labelled any transcript overlapping a segmented nucleus as nuclear-localized. We
only included cells for which more than 50 unique molecules were detected in each of the
cytoplasm and nucleus.
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4.3.2 Algorithms

Resampling

The acquired sequencing data exhibit substantial heterogeneity with respect to cell type
coverage and read depth. As we are interested in how each assay acts as a view of biology,
we elect to control for this variability, whose origins are primarily technical in origin and
have been well-characterized before [10]. For each of our comparisons, we therefore carry
out three sequential steps of downsampling: first, to control for donor variability, we only
include biological samples that were measured in both assays under consideration. Within
each sample, we next control for cell type biases across assays. Using the cell type annotations
generated by our collaborators, we uniformly downsample cells such that the number of cells
within each (sample, cell-type) pair is the same across assays. Finally, we control for cell-
type-dependent effects in read depth by downsampling reads within each (sample, cell-type)
pair to the same total reads across assays, while preserving each individual cell’s fraction
of the total reads, using ScanPy’s [52] sc.pp.downsample_counts function. (Importantly,
we do not balance read depth by the common approach of multiplicative rescaling – e.g.
sc.pp.normalize_total – as this would affect our metric of dispersion.)

Gene regulatory network inference

We use least-squares linear regression with an elastic-net penalty to infer statistical links.
Given N cells with expression matrices X for transcription factors and Y for targets, we
minimize:

min
�

1
N
kY �X�k2

F
+ ↵(1� ⌘)k�k2

F
+ ↵⌘k�k1,1 (4.1)

where k · k2
F

denotes the squared Frobenius norm, k · k1,1 is the element-wise 1-norm, and
↵ 2 [0,1) and ⌘ 2 [0, 1] are regularization parameters. While more sophisticated approaches
exist (e.g. [23, 43]), we select the elastic net because it is a performant, interpretable approach
that straightforwardly permits incorporating epigenomic side-information when available,
and has been previously used for gene regulatory inference by a major consortium [42].

We independently regress the expression of each gene against the expression of the in-
tersection of the 720 vertebrate transcription factors listed in JASPAR 2022 with the genes
observed in each assay, which we further limit to only those transcription factors supported
by epigenomic (i.e. open chromatin or active promoter) evidence when available.

For speed we implemented elastic net regression on the GPU in PyTorch [53]. Our imple-
mentation also permits us to straightforwardly incorporate constraints on allowed TF-target
links via multiplicative masking of the TFs-by-targets coefficient matrix �. We fit the model
by running 1000 steps of (batch) gradient descent with a learning rate of 10, implementing
the L1 portion of the elastic-net penalty via soft-thresholding [54]. As conditioning, we first
preprocess inputs and targets by applying a log(1+x) transformation and root-mean-square-
normalizing each feature. We only include input or target features detected in at least 30
cells, in every sample and assay within a given comparison. We fix the L1 ratio ⌘ to 0.5,
and use 5-fold cross-validation (holding out cells within-sample) to select the regularization
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parameter ↵ 2 {5e�5, 1e�4, 2e�4, 3e�4} that maximizes mean gene-wise Pearson correla-
tion. We moreover do not fit an intercept term – we found test performance to consistently
improve when omitting this parameter.

Epigenomic prior networks

With multiome and CAGE-seq, we have the option of constraining permitted regulatory
network topologies to only those edges with mechanistic evidence of the transcription factor
binding to loci near the target gene. We use MOODS [55] to associate genomic loci with
JASPAR 2022 transcription factors via motif enrichment, filtering using the default threshold
p-value 10�5. It is straightforward to link these (TF, locus) pairs with target genes in CAGE-
seq, as each locus is detected as a promoter of a particular gene. However, connecting ATAC-
seq peaks with transcribed genes is more involved. We employ an approach similar to FigR
[28], where we identify correlated pairs of peak accessibility and gene expression variables
within a wide genomic window to allow for distal interactions. Specifically, we first link each
epigenomic peak to any gene with a RefTSS transcription start site within ±100kb. For each
gene, we then filter these links by computing the Pearson correlation between the vectors of
log-transformed per-cell gene expression and peak accessibility, plus a set of 100 background
peaks with similar GC content and total accessibility. We keep gene-peak links with both
positive Pearson correlation and Z-score > 1.645 relative to the background correlations, as
well as any gene-peak link where the peak lies in a promoter region of the gene, which we
take as ±500bp of any corresponding TSS.

4.3.3 Evaluation metrics

As we lack ground-truth regulatory networks in this setting, we instead quantitatively com-
pare gene regulatory inferences according to a number of criteria that reflect desirable qual-
itative properties.

1. Within-assay predictive error. We expect a more accurate gene regulatory network
should lead to lower predictive error on held-out cells. The design of our experiment
gives a natural splitting strategy: we fit a GRN to one sample, and evaluate it on each
of the rest. We quantify this as the mean gene-wise Pearson correlation, across all
genes and sample pairings.

2. Within-assay network reproducibility. We quantify reproducibility of regulatory
inferences via pairwise comparisons of networks within an assay. Specifically, for each
target gene, we take the size of the intersection of the sets of assigned TFs between
the two networks (i.e. with nonzero elastic net coefficients) over the union, and report
the average across genes and pairs of networks. We note this assumes conservation of
regulatory mechanisms across different biological samples.

3. Network sparsity. Among regulatory models with equal predictive power, Occam’s
razor tells us to prefer the sparsest. This is quantified as the mean number of TFs
selected per gene (in-degree), averaged over all networks.
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4. Cross-assay predictive error. This is a stronger version of the first criterion: we
now evaluate a model trained on data from one assay against expression data measured
in the other (again on held-out biological samples). Assuming observable regulatory
mechanisms are conserved across assays, and simply vary in their signal-to-noise ratio,
we hypothesize an assay with lower noise will make these easier to detect, yielding
models that generalize better to the noisier assay. This is again computed as the mean
Pearson correlation per gene.

5. Cross-assay network complementarity. We wish to know the extent to which
the regulatory links learnable from one assay are also present in the other. This is
measured as gene-wise recall of TFs – considering a pair of networks from a ‘source’
and a ‘target’ assay, for a given gene it is the fraction of TFs in the latter that are
present in the former – averaged over all genes and sample pairs.

6. Protein expression evidence for TFs. A necessary condition for a TF to partic-
ipate in transcriptional regulation is that it physically co-localize with the events of
transcription (i.e. in the nucleus). We compare assays in terms of how much regulatory
influence is apportioned to TF proteins with confident nuclear localization in kidney,
per the Human Protein Atlas. We specifically quantify this as the ratio of the squared
2-norm of elastic-net coefficients outbound from such TFs, to the 2-norm of coefficients
for all TFs confidently detected in HPA kidney samples (irrespective of localization).
A potential drawback of this approach arises if the TF is active but expressed at levels
below the detection limit of IHC, or if antibody used in the HPA does not bind the TF
in its active conformation – such cases would be incorrectly labelled as false positives.

7. ChIP-seq binding evidence in promoters. We assume that a high-confidence peak
observed in a bulk ChIP-seq experiment of a particular TF, found in the promoter
region of a gene, implies the TF is a ground-truth regulator of that gene. However this
only provides a subset of ground-truth edges: in particular it omits interactions with
enhancer regions, which we cannot reliably associate to a target gene using ChIP-seq
alone. We therefore only evaluate inferred edges against ChIP-seq data at the level
of recall: specifically, for each TF that was assayed in kidney-derived cells in ChIP-
Atlas, we report the size of the intersection between the set of genes to whose promoter
that TF bound, and the set of inferred regulatory targets; divided by the size of the
former. We point out this risks overestimating false negatives if a TF that binds in
some kidney-derived cell line does not do so in adult kidney.

4.4 Results and Discussion

4.4.1 Single-cell versus single-nuclear RNA sequencing

We first investigate differences between gene regulatory networks derived from single-cell
versus single-nuclear RNA sequencing, which we attempt to explain in terms of statistical
differences between cytoplasmic and nuclear transcript pools.
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Datasets employed

Among the kidney samples acquired by the STWG, 10 were subjected to both single-cell
RNA sequencing and single-nuclear multiome sequencing. Among these, we discard 4 sam-
ples displaying unusually low sampling of at least one cell type, leaving the samples lib_09,
lib_10, lib_15, lib_29, lib_51, and lib_55. Following subsampling, each sample mea-
sures an average of 1878 cells, with 2728 reads each.

Differential localization

In Figure 4.8, we first investigate whether gene-specific biases for cytoplasmic versus nuclear
transcript localization influence mean expression in either assay.

As differences between single-cell and single-nucleus expression reflect differences in sam-
ple preparation [7], we cannot directly identify differentially localized transcripts simply as
those differentially expressed between the two assays. Instead, we use genesets identified
by APEX-seq in HEK-293T cells as having preferential nuclear (N=1137) or cytoplasmic
(N=1237) mRNA localization. We compare the expression of these genes within assays to a
background set of 2994 genes also measured in APEX-seq.

For single-cell sequencing, we see this is the case: cytoplasmic transcripts are oversampled
(p = 1e-6, two-tailed T-test), and nuclear transcripts are undersampled (p = 0.01) in single-
cell sequencing. However, no significant differential expression is observed in single-nucleus
sequencing for either compartment. We speculate that compartmental specificity in quiescent
cells might therefore arise from cytoplasmic degradation rates, with nuclear export rates –
although known to vary widely in immune cells [18] – playing less of a role.

We also confirm nuclear and cytoplasmic genes enrich for differential expression across
assays, finding log-fold-change of single-nucleus versus single-cell is significantly more positive
for nuclear-localized genes (p=0.03) than background genes, and significantly more negative
(p=6e-8) for cytoplasm-localized genes.

Overdispersion

Battich et al [21] show cytoplasmic transcript counts have lower dispersion than nuclear
transcripts: transcriptional bursting noise is buffered by the pool of accumulated mRNA in
the nucleus, which is exported into the cytoplasm at slower timescales than bursting. Having
observed an association between compartment localization and measured mean gene expres-
sion, we next hypothesized these differences in biological noise levels between compartments
would also appear in single-cell and single-nucleus sequencing of a complex tissue.

We quantify noise by the index of dispersion [56], which is the observed variance normal-
ized to that expected of a Poisson process (d = 1):

dX =
s2
X

x̄

where s2
X

and x̄ are the sample variance and mean of random variable X respectively. We
compute two indices of dispersion for each gene, by counting mRNA molecules in separately
the nuclear and the cytoplasmic fraction, and compare them via paired T-test.
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Figure 4.8: Expression of compartment-specific genes identified by APEX-seq in single-cell
(top left) and single-nucleus (top right) sequencing. Bottom left: compartment specificity
is uncorrelated (r=-0.05, p=0.26) with overall gene expression in SeqFISH+. Bottom right:
compartment-specific genes exhibit expected differential expression between assays.
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Figure 4.9: Left: SeqFISH+ detects overdispersion in nuclear transcript counts relative to
cytoplasmic transcript counts of 219 genes. Right: 15,306 genes also show greater dispersion
in single-nucleus versus single-cell sequencing.

As shown in Figure 4.9, we confirm our hypothesis: we observe significant (p = 9e-
7, paired two-tailed T-test) over-dispersion of the same gene in single-nucleus sequencing
relative to single-cell. To verify this is a biological effect in kidney, and not solely an artifact
of tissue dissociation, we also compare cytoplasmic and nuclear indices of dispersion of 219
genes imaged in mouse kidney via SeqFISH+, and observe significant overdispersion there
as well (p = 2e-13).

Gene regulatory inference

Having established prior reason to expect differences in nuclear versus whole-cell (i.e. primar-
ily cytoplasmic) inferences, and controlled for cell-type biases and read depth, we now com-
pare single-cell versus single-nucleus sequencing in terms of predictive power, reproducibility,
and biological integrity of inferred gene regulatory networks. We fit those networks using
142 transcription factors and 4272 target genes that pass our quality filtering, and evaluate
them using the aforementioned metrics.

We show our results in Table 4.1. While performance in absolute terms is overall poor,
this is to be expected: modelling gene expression as solely a linear function of the mRNA
expression of a small set of transcription factors is a poor approximation. It nonetheless
reveals significant differences between the two assays under investigation: notably, single-
nucleus expression is easier to predict (with our model of choice) than single-cell expression.
We speculate unmeasured or non-transcriptional causes of mRNA abundance (e.g. genes
involved in mRNA degradation) might play a greater role in the cytoplasm than the nu-
cleus. The greater density of networks inferred from single-cell data (such causes might
correlate with linear combinations of several TFs), superior reproducibility within-assay of
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Single-cell RNA-seq Single-nucleus RNA-seq
Within-assay Pearson r 0.288± 0.004 0.319± 0.004
Within-assay edge IoU 0.257± 0.003 0.306± 0.003
Cross-assay Pearson r 0.276± 0.003 0.233± 0.003
Cross-assay edge recall 0.275± 0.003 0.18± 0.002
Gene in-degree 23.574± 0.192 15.536± 0.153
IHC TF weight 0.663± 0.006 0.555± 0.008
ChIP-seq edge recall 0.158± 0.05 0.073± 0.031

Table 4.1: Performance metrics for regulatory networks inferred from single-cell versus single-
nucleus RNA sequencing. 95% confidence intervals of the mean indicated.

single-nucleus (said combinations might vary across samples) and far poorer out-of-assay
performance of single-nucleus networks relative to single-cell would also support this.

We also considered whether superior predictability of nuclear versus whole-cell mRNA
abundances might relate to transcriptional bursting. If transcriptional noise is correlated
across different targets of the same transcription factor, it is conceivable this correlated noise
would be useful for detecting co-regulated genes, and moreover attenuated in the cytoplasmic
mRNA pool by nuclear buffering. However, we do not believe this is the correct explanation
here, as we fit an independent model to each gene, and only share information between
potentially co-regulated genes very weakly (during hyperparameter selection).

Surprisingly, despite its poorer predictive performance, scRNA apportions more signal to
TFs with proteomic evidence than snRNA does, and recalls far more ChIP-seq edges. The
reason for this is unclear to us, but may relate to the cytoplasmic mRNA abundance of a TF
being a closer proxy in principle to its protein expression than its nuclear mRNA abundance.

To test whether these findings arise from biological effects, as opposed to technical bi-
ases between single-cell and single-nucleus sequencing, we investigated whether these find-
ings were reproducible in SeqFISH+ data of mouse kidney. This evaluation faces limita-
tions: of the 219 genes probed in this dataset, only 8 represent TFs in JASPAR 2022.
We also use 5-fold cross validation within a single biological sample instead of evaluation
on a separate sample. However, because we have ⇠ 100⇥ more cells in this scenario,
we can use a more expressive model than linear regression: we choose scikit-learn’s
[?]HistGradientBoostingRegressor (with default parameters). Moreover, we directly ob-
serve cytoplasmic expression in this context, as opposed to the entire cell. Table 4.2 corrob-
orates our findings: nuclear expression is easier to predict than cytoplasmic in this context
as well.

Cytoplasm Nucleus
Within-compartment Pearson r 0.081 ± 0.005 0.131 ± 0.007
Cross-compartment Pearson r 0.112 ± 0.007 0.072 ± 0.004

Table 4.2: Performance metrics for regulatory networks inferred from cytoplasmic versus
nuclear mRNA pools in SeqFISH+ of mouse kidney.
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4.4.2 Single-cell ATAC-seq vs single-cell CAGE-seq

Both single-nucleus multiome sequencing and single-cell CAGE sequencing provide joint
single-cell measurements of transcription and an epigenomic modality. ATAC-seq samples
open chromatin across the entire genome, permitting unbiased detection of different classes
of genomic regions; but is very sparse and only indirectly permits connecting genomic loci
to genes through proximity and correlation. CAGE-seq only measures active promoter se-
quences, but directly associates each measured transcript with one such sequence. Moreover,
this association is causal : observing a promoter sequence at the 5’ end of a transcript implies
the binding of a TF to that specific site in the genome was part of the transcriptional event
that produced it. As it is not clear a-priori which should lead to better inferred regulatory
networks, we investigate both empirically.

Datasets employed

Of the available samples, we use the three – lib_09, lib_10, lib_36 – that were subjected
to both single-nucleus multiome sequencing and single-cell CAGE sequencing. Following
subsampling, each sample measures an average of 3716 cells, with 2631 reads each.

Comparing detections of TF binding sites

The epigenomic modalities of our two multimodal assays under consideration have very
different sampling biases. To understand whether these could influence estimates of TF
binding site accessibility, for each TF we count the overall number of reads assigned to loci
(peaks or promoters) with a motif match in JASPAR 2022. We show this in Figure 4.10.

Despite greater sparsity of epigenomic data relative to transcriptomics, the greater breadth
of loci sampled by ATAC-seq leads to ⇠ 2⇥ greater reads detected overall. There is a strong
correlation (r=0.87) between the number of reads detected per TF in the two assays, which
becomes almost perfect (r=0.98) when restricting to loci overlapping a known TSS in RefTSS.
However this may reflect prior multiplicity of motifs in the genome, rather than strong cor-
relation between the measurements. The near-unity slope between the two assays for TSS
loci was unexpected and might be coincidental or an artifact of subsampling.

We also examined the redundancy in TF activity information between loci overlapping
known TSS sites, and non-overlapping loci, within each assay. Specifically we assign, to each
TF with gene expression evidence, the total count of epigenomic reads across all cells within
loci matching that TF, for either class of locus. As expected, most reads in ATAC-seq lie
outside promoters (which should only constitute a small fraction of the accessible genome)
while CAGE-seq is biased toward promoters by design (but still detects transcribed 5’-ends
that do not match any known TSS). In both assays these are strongly correlated (p=0.63 in
ATAC-seq, p=0.70 in CAGE-seq), which may also arise from prior motif multiplicity.

Comparing estimates of promoter multiplicity

A major appeal of CAGE-seq is its ability to detect and quantify alternate promoter usage.
As shown in Figure 4.11, we investigated whether ATAC-seq is also capable of detecting
alternate promoter usage when it occurs.
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Figure 4.10: Left: cross-assay comparison of total reads in loci matched to JASPAR 2022
motifs, overall (blue) and restricted to those overlapping known promoters in RefTSS (or-
ange); right: within-assay comparison of total reads in loci overlapping versus outside of
known promoter regions.

Figure 4.11: Left: for each epigenomic modality, we count the number of unique detected
loci (promoters / peaks) overlapping any known TSS; right: we look at either assay as a
classifier of alternate promoter usage (not detected, single promoter, multiple promoter)

For each gene with expression evidence and associated promoter cluster in RefTSS, we
count the number of distinct peaks overlapping that cluster, and compare to the number
of (known) promoters identified by CAGE-seq. We observe a moderate (r=0.39) positive
correlation between the number of active promoters per gene detected by either assay. We
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can also consider each assay as a classifier of promoter usage (not detected, single, multiple).
ATAC-seq greatly overestimates promoter multiplicity in this case, which is unsurprising:
calling a peak an active promoter, simply because it overlaps a possible TSS of an expressed
gene, is less precise than the direct transcriptional readout from CAGE-seq. While it is
conceivable sequence features could be used to further refine this, we leave development of
such a classifier as a direction for future work.

Gene regulatory network inference

Our ultimate objective in this section is comparison of ATAC-seq versus CAGE-seq as the
epigenomic modality of a multimodal measurement. Before this comparison, we first carry
out an ablation of the epigenomic modality, studying its effect on GRN inference relative to
the respective transcriptomic modality of each assay alone. We might expect a-priori that by
excluding TF-target links that do not represent a direct physical regulatory interaction (i.e.
spurious correlations), using the epigenomic modality to constrain the set of regulatory links
learnable from transcriptomics data will lead to predictive models that generalize better.
However, this also limits expressiveness of the models that can be learned, and will moreover
lead to worse predictions if the ‘spurious’ correlations actually reflect confounders whose
activity is conserved across samples.

Single-nucleus multiome Single-nucleus RNA-seq
Pearson r 0.359± 0.004 0.375± 0.004
Within-assay edge IoU 0.281± 0.004 0.303± 0.004
Cross-assay edge recall 0.246± 0.004 0.317± 0.004
Gene in-degree 11.113± 0.125 14.666± 0.155
IHC TF weight 0.709± 0.010 0.592± 0.008
ChIP-seq edge recall 0.086± 0.040 0.064± 0.039

Table 4.3: Performance metrics for single-nucleus multiome, with and without ATAC-seq
constraints. (We only list a single Pearson r in the ablations as the transcriptomics datasets
compared across ‘assays’ are the same.)

We first compare the effect of including ATAC-seq as a prior constraint on GRNs inferred
from single-nucleus multiome sequencing; fitting (here and in all subsequent comparisons) 143
TFs against 4420 targets. The results are shown in Table 4.3. As expected, this prior selects
more biologically plausible networks: they assign more weight to TFs with nuclear protein
expression and recover more known TF-promoter links from ChIP-seq. Surprisingly, despite
greater biological plausibility, the constraint hurts predictive performance: this could re-
flect true TF-target links (or links necessary to capture non-TF confounders) being excluded
by insufficiently sensitive ATAC-seq or motif enrichment. The poorer within-assay repro-
ducibility of constrained networks may reflect variability across samples of the ATAC-seq
prior itself, which necessitates its own inference procedure.

In Table 4.4 we carry out the same ablation with single-cell CAGE sequencing, where
our epigenomic constraint consists of restricting allowed TF-target links to those where the
TF was detected in an active promoter. As expected this yields much sparser networks –
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Metrics Single-cell CAGE-seq Single-cell 5’-end RNA-seq
Pearson r 0.311± 0.003 0.354± 0.003
Within-assay edge IoU 0.409± 0.005 0.212± 0.003
Cross-assay edge recall 0.121± 0.002 0.236± 0.003
Gene in-degree 10.819± 0.126 22.002± 0.179
IHC TF weight 0.750± 0.010 0.540± 0.008
ChIP-seq edge recall 0.142± 0.045 0.140± 0.050

Table 4.4: Performance metrics for single-cell CAGE-seq, with and without active promoter
constraints.

potentially reflecting exclusion of TF-target interactions that bind to enhancer regions –
and comes (as with multiome) at a significant cost in predictive performance. However, the
constraint also greatly improves accuracy of active TF selection: although it surprisingly has
no effect on recall of TF-promoter links.

Single-cell CAGE-seq Single-nucleus multiome
Within-assay Pearson r 0.311± 0.003 0.359± 0.004
Within-assay edge IoU 0.409± 0.005 0.281± 0.004
Cross-assay Pearson r 0.312± 0.004 0.298± 0.003
Cross-assay edge recall 0.300± 0.004 0.296± 0.004
Gene in-degree 10.819± 0.126 11.113± 0.125
IHC TF weight 0.750± 0.010 0.709± 0.010
ChIP-seq edge recall 0.142± 0.045 0.086± 0.040

Table 4.5: Performance metrics for single-cell CAGE-seq versus single-nucleus multiome
sequencing.

In Table 4.5, we finally compare GRN inferences from the two multimodal assays. Single-
nucleus multiome sequencing yields considerably better out-of-sample predictions within-
assay. However, the cross-assay predictive power is better for CAGE-seq. The more re-
strictive CAGE-seq prior also leads to better edge reproducibility within-assay; surprisingly,
despite this restriction the cross-assay edge recall is essentially the same, and moreover
CAGE-Seq attains significantly greater biological plausibility than multiome. We find this
result counter-intuitive: perhaps the benefit of directly measuring causal genomic loci of
transcripts outweighs the cost of excluding regulation at enhancers. We nonetheless hesi-
tate to claim that CAGE-seq dominates ATAC-seq as an epigenomic modality for regulatory
network inference: as we previously established, single-cell sequencing alone leads to better
biological plausibility than single-nucleus in the absence of epigenomic constraints, and could
be playing a role here as well.

4.5 Conclusions
In this analysis, we find statistical differences between cytoplasmic and nuclear mRNA pools
identified in cell cultures also appear in single-cell and single-nucleus measurements in a
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complex tissue sample. We find gene regulation in single-nucleus RNA expression is better
modelled by a sparse linear model from known TFs to genes than it is in single-cell RNA
expression – however, regulatory networks inferred from single-cell expression are more bio-
logically plausible. Comparing epigenomic modalities, we find single-cell ATAC-seq is capa-
ble of detecting peaks corresponding to known alternate promoters, but CAGE-seq indicates
accessibility does not imply activity. Constraining regulatory inferences via epigenomic in-
formation enhances biological plausibility of inferred networks in both cases; however, both
assays experience reduced out-of-sample predictive power due to this integration, indicating
a trade-off between model robustness and expressiveness. We additionally note our con-
clusions may be limited by small sample sizes, and our corresponding choice to use linear
models: this was a result of controlling for upstream discrepancies in sample availability and
experimental protocols.
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Appendix A

Learning representations from mass
spectra for peptide property prediction

Authors: Michael Murphy, Kevin Yang, Stefanie Jegelka, Ernest Fraenkel

This work was presented at the 2022 ICML workshop on computational biology. I was
the primary contributor: I developed the algorithms, carried out the analysis, and wrote
the manuscript. I conceived of the idea when interviewing with Kevin Yang. Kevin Yang,
Stefanie Jegelka, and Ernest Fraenkel provided commentary on the manuscript and input
throughout.

A.1 Abstract
Peptide molecules have long been viewed as promising candidates for design of novel ther-
apeutics, and are likely to benefit from ML-guided approaches. However, learning to pre-
dict biological properties of peptides often suffers from a scarcity of labelled training data.
We demonstrate mass spectrometry, which provides high-throughput, multidimensional bio-
physical measurements of peptides, can be used to learn effective representations for peptide
property prediction. Specifically, our pretext task asks to identify masked residues of a pep-
tide sequence using its mass spectrum. This yields an encoder that we can then apply to
any peptide sequence, irrespective of whether we have spectra for it. Our approach is com-
petitive with a state-of-the-art evolutionary pretext task on a number of downstream tasks,
and requires orders of magnitude fewer pretraining examples.

A.2 Introduction
The functional diversity and ease of synthesis of peptide molecules makes them attractive
candidates for drug development [1]. However, an exponentially-large search space and
often-difficult experimental protocols make it challenging to design peptides with specific
properties via traditional laboratory techniques. Machine learning methods promise to fill
this gap [2, 3, 4]: given a surrogate model mapping sequence to biological function, we
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can screen large numbers of peptides in-silico and prioritize candidates for experimental
followup. Unfortunately, many property prediction tasks of therapeutic relevance suffer from
a scarcity of labelled sequences [2]. This calls for schemes such as multi-task learning [5],
active learning-guided experimental design [6], or self-supervised pretraining from unlabelled
protein sequences [7, 8].

The state-of-the-art in pretraining for amino acid sequences applies the masked language
modelling task introduced by Devlin et al. [9] to large protein databases: a subset of the
residues in a protein sequence are masked, and the model is asked to predict these from
the rest. The pretraining signal here is evolutionary : protein sequences are not random,
but rather arise through natural selection to maximize fitness. The masking pretext can
therefore be interpreted as predicting which residue(s) would maximize biological activity of
the protein encoded by the sequence.

While evolutionary pretraining enjoys a biologically plausible objective for protein se-
quences, typically hundreds of amino acids long, it may not be optimal for peptides, which
are at most tens of amino acids long, and are not usually evolutionarily selected for func-
tion in isolation from a larger protein. This precludes training a similar masking pretext on
peptide-length sequences without additional context, as they lack sufficient information to
identify the masked residue. Learning to extract this additional context from proteins incurs
a high computational cost, requiring tens to hundreds of millions of long sequences [8, 7]. We
resolve these issues by incorporating an information-rich, plentiful – yet to our knowledge,
previously-unexploited – data modality for pretraining of peptide property prediction tasks:
mass spectrometry.

A typical proteomics experiment produces mass spectra of tens of thousands of peptides
[10]. Following algorithmic annotation, each spectrum represents a histogram of ions formed
by fragmentation of an ionized peptide, which describes the propensity of the peptide to
cleave at each bond along the backbone. This depends on a number of related physical
properties, including the identities of the amino acids, the distribution of charge along the
sidechains and backbone [11], and the peptide’s secondary structure [12]. All these properties
are also central to biological activities – and, we conjecture, are more directly captured by
the biophysical signals measured in mass spectrometry.

In short, this work makes the following contributions:

• We identify mass spectrometry as a modality capturing information relevant to peptide
property prediction;

• We develop a pretext task that uses mass spectra to guide learning of a representation
that can be used for peptide sequences directly, and is hence applicable to peptides
that lack spectra; and

• We show that representations learned with this pretext task are competitive with
evolutionary pretraining on a number of peptide property prediction tasks, using far
fewer pretraining examples.

106



A.3 Related work
There is substantial recent interest in evolutionary learning of protein representations us-
ing large language models, primarily transformers [7, 13, 14], but also convolutional neural
networks [8]. These have recently been applied to peptide property prediction [15]. Others
pretrain for protein tasks by predicting other modalities from sequence, including 3D struc-
ture [16, 17] and functional annotations [18]; but to our knowledge, mass spectrometry has
not yet been used for this purpose. We also draw inspiration from successful application
of deep learning for NLP to other tasks in mass spectrometry, including predicting spectra
from sequence [19, 20] and sequence from spectra [21, 22].

A.4 Methods

A.4.1 Pretext task

Our objective is similar to the masked language model in [8] and [7], in which we randomly
mask a single residue from the peptide sequence and require our model to correctly impute
it.1 However, short peptide sequences alone do not provide sufficient context for this task.
We therefore additionally condition on the entire observed mass spectrum in addition to the
remainder of the sequence; which, as we later show, does contain sufficient information to
identify the masked amino acid. By returning an intermediate representation of the peptide
sequence prior to when it is merged with the spectrum, we can then apply the resulting
model to any peptide sequence – not just those for which we have spectra.

A.4.2 Model architecture

Our architecture, shown in Figure A.1, comprises two paired encoders: one for the sequence
modality, and one for the spectrum modality. The sequence encoder follows the same archi-
tecture as the CARP model described in [8]; briefly, it converts each amino acid symbol to
an 8-dimensional embedding vector, and then passes this sequence of embeddings through
a ByteNet dilated CNN as developed in [23], which yields a sequence-length encoding at its
output.

We represent a mass spectrum of a length-L peptide as an (L�1)⇥K-dimensional table
of probabilities of each of K ion types arising from cleavage of L�1 bonds, which we compute
by normalizing the observed counts across annotated peaks to sum to 1. We also concatenate
at each bond two scalar-valued properties of the spectrum as a whole: its observed electric
charge prior to fragmentation, and the collision energy at which it was measured. This is
passed into another ByteNet encoder, yielding at its output one embedding vector per bond.
The outputs of the two encoders are concatenated feature-wise (padding the bond encodings
to length L) and passed into a 2-layer ReLU classifier applied independently at each position,

1We initially tried a simpler pretext of predicting spectra from sequence: using only a sequence encoder,
and yielding a logit per ion type instead of per amino acid in Figure A.1. While this performed well on the
pretext (mean test R

2 = 0.93), we found it less effective on downstream tasks than our masking objective.
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yielding a vector of logits per each of t amino acids. We then index into the prediction at
the masked token and minimize cross-entropy loss against the true residue.

For both encoders we use the same depth and width as the smallest pretrained model in
[8], CARP-600k, which uses n = 16 layers of d = 128-dimensional ByteNet blocks. We train
using minibatches of 512 peptide-spectrum pairs with Adam [24] (learning rate = 5⇥ 10�4),
early-stopping on validation cross-entropy after 126 epochs.

A.4.3 Pretext dataset

We use a library of mass spectra generated in Part I of the ProteomeTools project [25].
This comprises 2,980,009 annotated mass spectra of 391,273 unique peptides derived from
the human proteome, composed of the 20 canonical amino acids plus two post-translational
modifications (methionine sulfoxide and carbamidomethyl-cysteine). The redundancy per
peptide arises through different combinations of charge states, collision energies, and modi-
fications, each of which generally yield distinct spectra. These spectra are provided as lists
of (mass, intensity) tuples, each of which is annotated with the bond and one of K possible
types of the respective fragment. We use an 85/5/10 train/validation/test split; to avoid
leakage, we cluster sequences using CD-HIT [26] (threshold 0.5, word length 3) and randomly
assign entire clusters to each split.

A.4.4 Peptide property prediction datasets

We identified a number of datasets of peptide sequences, labelled either positive or negative
for some biological property, as representative of potential objectives for peptide design.
Where applicable, we only include sequences comprising the 20 canonical amino acids, with
5  L  100:

• Mitochondrial Targeting. Zarin et al. [27] provide annotations of 5,348 N-
terminal intrinsically-disordered regions (IDRs) identified in a screen for mitochondrial
targeting in yeast. From these sequences we select 160 positive and 3,960 negative ex-
amples.

• Cdc28 Binding. Zarin et al. [27] also indicate whether the same IDRs are substrates
of the kinase Cdc28: this gives 80 positive examples and 4040 negative examples.

• Signal Peptide. SignalP [28] is a high-quality repository of annotated signal peptide
sequences derived from eukaryotes and prokaryotes. For simplicity we consider only
the SignalP 6.0 training set and ignore type annotations for the prokaryotic sequences,
resulting in a binary classification problem of 15,625 positives against 4,665 negatives.

• MHC Binding. The Dana-Farber Repository for Machine Learning in Immunology
[29] provides peptide sequences that bind a number of human and mouse MHC-II com-
plexes. We construct as our positive class the unique ‘binding’ peptide sequences across
the union of training sets listed at http://projects.met-hilab.org/DFRMLI/HTML/
natural.php, and the union of ‘non-binding’ peptides for the negative class; discard-
ing sequences appearing in both to yield 9,720 positive examples and 6,945 negative
examples.
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Within each task we carry out 3-fold nested cross-validation, again splitting via CD-HIT
clustering.

A.4.5 Downstream tasks

To apply our model to the downstream tasks, we discard the spectrum encoder and final
classifier, evaluate the sequence encoder on the input peptide sequence, and learn a new
classifier on the resulting embeddings. Because the encoder yields a sequence-length rep-
resentation, our classifier pools across positions via an attention layer [30], then applies a
2-layer ReLU binary classifier.

We compare to four baselines. (1) CARP-600k [8] is employed as representative of the
state-of-the-art in evolutionary pretraining. This model has essentially the same architecture
as our sequence encoder – permitting direct comparison of pretext tasks without confound-
ing from architecture – but is trained on far more data: 41.5 million full-length protein
sequences from UniRef50 [31]. (2) We also include our model initialized from random with-
out pretraining. Finally, we use two simple models: (3) a length-averaged prediction of a
linear classifier applied individually to each amino acid; and (4) a 3-layer, 128-wide CNN
with ReLU activations, kernel width of 5, and length-wise average-pooling, prior to a linear
output layer.

For pretrained models, we test both freezing the encoder weights and training only the
final classifier, and fine-tuning the entire network. All models use Adam (batch size 256,
learning rate 5⇥ 10�4), early-stopping on validation AUC.

A.5 Results and Discussion

A.5.1 Pretext accuracy

Our method identifies randomly-masked amino acids with 69.9% accuracy on the test set.
In comparison, evaluating the pretrained evolutionary model on peptide sequences achieves
only 10.4% accuracy: this is unsurprising, as the global protein context on which it depends
is missing. To confirm the spectral information is actually used, we also tried solving our
pretext using the sequence alone: this peaked at a maximal validation accuracy of 18% and
then proceeded to overfit, indicating masking alone is insufficient for peptides and spectra
are indeed necessary.

Figure A.2 shows a per-amino-acid confusion matrix. Reassuringly, errors tend to be
structurally-similar amino acids: in particular the branched-chain amino acids (I = isoleucine,
L = leucine, V = valine) and two of the three aromatic amino acids (F = phenylalanine,
Y = tyrosine). We also see methionine (M) and its modified form (m) are not frequently
confused. This suggests a potential blind spot of evolutionary pretraining, which does not
separately represent modified and unmodified amino acids.
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A.5.2 Interpretation of embeddings

We embed each sequence in our test set, average-pool lengthwise, and visualize the result
via UMAP [32] in Figure A.3. This indicates our sequence representation captures known
determinants of peptide fragmentation. Length dependence is apparent, as is clustering
according to: the number of basic amino acids, which determines the maximum charge a
peptide can carry and where it localizes [11]; the presence of proline (P), which bends the
peptide [33]; and the identity of the C-terminal amino acid, which reflects a selection bias
from using trypsin to digest proteins into peptides.

A.5.3 Downstream performance

Test AUC of our model and the baselines for the four tasks considered are shown in Table
A.1. On the Cdc28 Binding and Signal Peptide tasks, a model pretrained on mass
spectrometry is competitive with the state-of-the-art evolutionary approach. Our approach
also outperforms state-of-the-art on Mitochondrial Targeting. We suggest this is due
to our choice of data: mass spectral peak intensities are substantially determined by the
distribution of electric charge within the peptide, which is also known to determine mito-
chondrial targeting [27]. However, our approach fares poorly on MHC Binding; the lower
performance overall on that task may have resulted from our decision to pool sequences
across different MHC complexes.

The evolutionary pretext, trained on proteins, proves effective for peptides. This might
be due to the ByteNet architecture, whose first few layers of convolutional filters necessarily
detect peptide-sized features. But this evolutionary pretext also benefits from a much larger
corpus than our peptide task: CARP-600k is trained on about 100⇥ more sequences than our
model, each much longer than a peptide.

Model Mito Cdc28 SignalP MHC
CARP-600k FR 0.87 0.73 0.99 0.72

FT 0.86 0.78 0.99 0.73
Linear 0.86 0.56 0.82 0.67

3-layer CNN 0.85 0.71 0.92 0.75
Random init. FR 0.85 0.71 0.99 0.72

FT 0.83 0.74 0.94 0.68
MS pretrained FR 0.89 0.78 0.97 0.70

FT 0.89 0.71 0.99 0.72

Table A.1: Averaged 3-fold test AUC on downstream tasks, for: CARP-600k (SOTA); linear
and CNN baselines; our model, initalized from random; and pretraining on the MS pretext.
‘FR’ only trains the final classifier; ‘FT’ additionally trains the encoder.
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A.6 Conclusion
Here we show existing published mass spectrometry data can be used to derive representa-
tions for peptide property prediction that are competitive with a state-of-the-art evolutionary
pretext, while using far fewer sequences. Evolutionary and mass-spectral pretraining need
not be mutually exclusive: both enjoy plentiful data and may offer complementary views of
peptide and protein structure – particularly for modified amino acids, which are not explicitly
represented in evolutionary data, yet strongly influence protein structure and function [34]
and are represented with greater diversity in other ProteomeTools releases [35]. Integration
of these two modalities is a promising avenue for further exploration, especially for peptide
design tasks in which modifications or peptidomimetics [36] are included in the sequence
search space.
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Figure A.1: Our model’s architecture. We return the L⇥ d output of the sequence encoder
as our embeddings. See Yang, Lu, and Fusi [8] for a more in-depth exposition of the ByteNet
architecture.
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Figure A.2: Confusion matrix for the pretext task between masked (rows) and predicted
(columns) amino acids. Color indicates P (column | row). Entries > 0.05 are labelled.
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Figure A.3: UMAP visualization of peptide embeddings, colored according to properties
known to influence fragmentation.
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Appendix B

Statistical analysis of single-cell
metabolomics

I contributed this section to the review paper ‘Single cell metabolism: current and future
trends’, published in Metabolomics 2022.

While the statistical analysis of single-cell metabolomics remains in its infancy, single-cell
transcriptomics have matured to the point where sophisticated statistical tools for high-
dimensional data can be routinely applied as part of standard data processing workflows
[1]. This is largely facilitated by the widespread adoption among the scRNA community
of mature open-source data analysis packages written in modern scripting languages, such
as ScanPy [2] for Python, its extension SquidPy for spatial omics [3], and Seurat [4] for R.
Such tools can also be applied to MS-based single-cell metabolomics data once mass spectra
are converted to intensities of annotated metabolites. Rappez et al [5] used ScanPy to per-
form statistical analyses on a dataset of 740 metabolites from 29,738 hepatocytes, including
cell-to-cell normalization, nonlinear batch correction, UMAP dimensionality reduction [6],
Leiden clustering, and pseudotime trajectory analysis [7]. This revealed three clusters of
cells corresponding to homeostasis, steatosis, and an intermediate metabolic state, for which
marker metabolites were identified via hypothesis tests of differential expression. The ScanPy
package was also used in [8] to carry out clustering and differential expression testing for
mass spectra of single organelles, and in [9] for differential expression analysis, dimensionality
reduction, and clustering of mass spectra of single hepatocyte nuclei in-situ.

However, single-cell metabolomics data differs from other modalities in ways that may
present obstacles to further cross-application of existing statistical methods. Firstly, MS,
optical, and vibrational metabolomics data are natively continuous-valued signals, whereas
sequencing data is count-valued and often sparse. The meanings of zeroes also differ between
transcriptomics and MS-based metabolomics: while the technical versus biological origins
of sparsity in scRNA have been the subject of debate [10, 11], metabolite peaks can fail
to be detected in mass spectra for computational reasons: e.g. if they insufficiently exceed
background spectral noise during peak detection [12], or if they are mis-annotated due to
mass drift [13]. While such events may be digitally recorded as zeroes, they are better
understood and modelled as a form of random missingness [14]. Methods based upon MS
imaging of single cells also risk co-sampling of neighboring cells: although the authors of
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[5] indicate this minimally affected their analysis of cultured hepatocytes, this may bias
estimates of spatial autocorrelation of metabolites in tissues where cells are tightly packed
relative to the MS spatial resolution. Finally, a significant promise of single-cell omics is its
potential (through sufficiently large sample sizes) to infer regulatory relationships de-novo
between biomolecules. Many algorithms toward this end have been developed for single-cell
RNA data [15, 16, 17], as well as for mass cytometry [18, 19]. While in principle such methods
could also be applied toward learning metabolic networks from data, we caution these may
not be robust to sources of (co)variation specific to MS-based single-cell metabolomics, such
as in-source fragmentation [20], region-dependent ion suppression [21], or global metabolic
shifts arising from cell manipulation [22]: these may induce correlations between metabolites
that are primarily technical as opposed to biological in origin.
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Appendix C

Differentiable min-cuts for predicting
small molecule fragmentation

This section constitutes unpublished followup work to Chapter 3 of this thesis.

The lack of training data available for the small molecule spectrum prediction problem
suggests we should incorporate stronger inductive biases. Here I pressent an approach for
‘neuralizing’ bond-breaking. Specifically, I propose we model the (unnormalized) likelihood
of a fragmentation transition G ! H as decomposing over the bonds that are broken:

P (G! H) /
Y

(i,j)2G,i2H,j /2H

P (bond i� j breaks | G)

.
=
Y

(i,j)2G

p
xi(1�xj)
ij

� logP (G! H) =
X

(i,j)2G

wijxi(1� xj)

where wij

.
= � log pij is large when bond (i, j) is unlikely to break, and xi

.
= 1i2H . We

see this negative-log-likelihood matches the cost of a cut induced by an indicator vector
x 2 {0, 1}G. If we had a hypothetical dataset of ground-truth substructures H generated by
fragmentation of different molecules G, we could parametrize W = W (G; ✓) and estimate ✓
by minimizing a cross entropy:

✓⇤ = argmin
✓

X

G

X

H✓G

pG
H

X

(i,j)2G

wij(G; ✓)xH

i
(1� xH

j
) + logZ(G; ✓)

where pG
H

represent the probability of substructure H arising from fragmentation of G, and
Z(G; ✓) is a normalization constant.

However, in mass spectrometry we only observe chemical formulas bH = AGxH , where
AG is an elements-by-nodes indicator matrix (and associated probabilities pG

b
in the form of

peak heights); the substructures are latent, and generally combinatorially many substruc-
tures will be compatible with a given formula. We might therefore marginalize out all such
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substructures:

✓⇤ = argmin
✓

X

G

X

bAG1

pG
b
log

X

x:AGx=b

exp
X

(i,j)2G

wij(G; ✓)xi(1� xj) + logZ(G; ✓)

This is expensive. To efficiently learn W (G; ✓), I propose we only consider the most likely
substructure assignment, which is the cost of a min-cut compatible with b (recalling this is
a minimization of a negative log likelihood):

✓⇤ ⇡ argmin
✓

X

G

X

bAG1

pG
b

min
x2{0,1}G:AGx=b

X

(i,j)2G

wij(G; ✓)xi(1� xj) + logZ(G; ✓)

We may relax the inner min-cut problem as a convex quadratic program with an affine
constraint on the infinity ball. Rescaling x! 2x� 1, b! 2b� A1:

min
x

1

2
xTLx+ cTx

s.t. Ax = b

kxk1  1

where L = diag(W1) � W is the graph Laplacian matrix, and c 2 RG is a small N (0, ✏)
vector added to break symmetries. This is differentiable convex optimization; the forward
pass can be implemented using cvxpylayers, and the backward pass can be computed via
implicit differentiation of the KKT conditions. Unfortunately, cvxpylayers uses a CPU-
bound solver, so training is very slow. I therefore have derived equations for gradient ascent
on the dual problem, which turns out to be a LASSO problem that is easily parallelized on
GPU.

We first must address a major problem here, which would prevent our subsequent use of
the inverse of L: L has a zero eigenvalue. However, that eigenvalue corresponds to the all-
ones vector, which cannot lie in the null-space of an indicator matrix – so even though the
objective is not strictly convex, the problem should have a unique solution. I make the objec-
tive strictly convex by adding an augmented Lagrangian-like term 1

2kAx� bk22. Rearranging
and adding a dummy variable z:

min
x,z

1

2
xT (L+ ATA)x+ (c� AT b)Tx

s.t. Ax = b

kzk1  1

z = x
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Now we redefine L L+ ATA, c c� AT b, and proceed:

L(x, z,�, ⌫) =
1

2
xTLx+ cTx+ ⌫T (Ax� b) + �T (z � x)

= �⌫T b+
1

2
xTLx+ (AT⌫ � �+ c)Tx+ �T z

g(�, ⌫) = inf
x,z

L(x, z, ⌫,�) s.t. kzk1  1

= �⌫T b+ inf
x

{
1

2
xTLx+ (AT⌫ � �+ c)Tx}+ inf

z

{�T z : kzk1  1}

= �⌫T b+ inf
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{
1

2
xTLx+ (AT⌫ � �+ c)Tx}� sup

z

{(��)T z : kzk1  1}

= �⌫T b�
1

2
(�� AT⌫ � c)TL�1(�� AT⌫ � c)� k � �k1⇤

= �⌫T b�
1

2
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�g(�, ⌫) =
1

2
(�� AT⌫ � c)TL�1(�� AT⌫ � c) + ⌫T b+ k�k1

Redefining g  �g gives us an unconstrained LASSO minimization. We may solve this via
(accelerated) proximal gradient descent, using the following update equations:

xt = L�1(�t
� AT⌫t

� c)

�t+1 = prox
��k·k1(�

t
� ��x

t)

⌫t+1 = ⌫t
� �⌫(b� Axt)

where ��, �⌫ are learning rates and prox
��k·k1 is the soft-thresholding operator.

For the backward pass, we define �(�, ⌫; ✓) = 0 as a fixed-point equation for the proximal
gradient iterates:

�(�, ⌫; ✓) =


�� ST�(�� �x(�, ⌫))

b� Ax(�, ⌫)

�

where �(�⇤, ⌫⇤; ✓) = 0 for an optimal dual solution (�⇤, ⌫⇤) = (�⇤, ⌫⇤)(✓) (using shorthand
✓

.
= (L, c), and ST� is the soft-thresholding operator). We now compute gradients @✓(�, ⌫)

using implicit differentiation:

@✓�(�
⇤(✓), ⌫⇤(✓); ✓) = @�,⌫�(�, ⌫; ✓)|�⇤,⌫⇤ · @✓(�

⇤, ⌫⇤) + @✓(�
⇤, ⌫⇤; ✓)

) @✓(�
⇤, ⌫⇤) = � [@�,⌫�(�, ⌫; ✓)]

�1
�⇤,⌫⇤ @✓(�

⇤, ⌫⇤; ✓)

In summary, this gives us a parametrization of bond-breaking as a constrained min-cut
problem with a fast forward pass and a numerically stable backward pass.
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Appendix D

Conditional denoising diffusion for
structural elucidation

This section describes a proof-of-concept I carried out in the final weeks of my PhD for
directly solving the MS structural elucidation inverse problem.

D.1 Background
Mass spectrometry structural elucidation is usually cast as an information retrieval problem:
given a database of known (structure, spectrum) pairs – generated either experimentally
or computationally – we identify an unknown spectrum by assigning it the identity of its
closest match in the database. This faces a major limitation: we can only accurately identify
a compound if it is present in our database. While it is in principle possible to produce an
exhaustive database by enumerating feasible compounds, this is extremely inefficient as the
space of compounds grows very quickly. ML approaches that directly solve the inverse
problem by generating a molecule structure conditional on a mass spectrum have only very
recently been developed [1, 2]. These represent molecules as SMILES strings, which are
generated a character at a time autoregressively.

Recently, discrete denoising diffusion models have been developed and are effective for
molecule generation [3]. We suggest a conditional form of this approach is particularly natu-
ral for structural elucidation. Firstly, modern tandem MS achieves sufficient mass resolution
to permit inferring the precursor formula via mass decomposition with high accuracy [4]. In
the context of discrete denoising diffusion, this specifies both the number of nodes in the
graph, and their elemental composition: rather than generating graphs of arbitrary size, we
need only generate an adjacency matrix of bonds (an isomer) compatible with the observed
formula. (By comparison, it is unclear how to impose such a constraint when autoregres-
sively generating a SMILES string.) We also believe iterative refinement of an adjacency
matrix better matches the ‘algorithmic structure’ of structural elucidation than autoregres-
sive generation of a SMILES string, and permits incorporating inductive biases about the
relationships between the observed peaks and the estimated matrix in a straightforward man-
ner. Importantly, here we show these inductive biases are necessary for effective structural
elucidation and lead to large gains in performance.
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D.2 Conditioning diffusion models on mass spectra
One obvious approach to implementing this diffusion model would be to train on spectrum-
structure pairs, and at each step in the reverse diffusion process, concatenate the (un-noised,
observed) mass spectrum as input to the model (e.g. a sequence of tokens) in addition to
the current noisy estimate of the adjacency matrix. This is what we first attempted, but
we saw limited success, both with real and synthetic data. In the case of real data (NIST-
20 [5] spectra, labelled with formulas via SIRIUS [6]), it was unclear whether our model
was actually using the spectrum at all in the generation process: valid isomers were being
sampled, but they were no closer to the true structure than those sampled when dropping
out the spectrum entirely. Ignorance of label information is a known issue in conditional
denoising diffusion generally, but approaches we experimented with – including classifier-free
guidance [7] – did not improve performance.

Switching to entirely synthetic spectra of simpler molecules improved the situation, but
still (as we later show) underperformed. We conjectured an alternative explanation as to
what was occurring: we supposed that spectrum information was being ignored because
the conditional problem was too difficult to solve solely as iterative refinement of atom-to-
atom links. In particular, we thought an important class of ‘intermediate variables’ were
being omitted: the membership of atoms in peaks. This was in part inspired by work
on graphically-structured diffusion models [8], which shows explicitly representing such vari-
ables can greatly boost performance in solving simpler combinatorial optimization problems.
(Conveniently, these variables can themselves be treated as links to predict, in a heteroge-
neous graph comprising atom and peak nodes – and, unlike with real spectra, are observed
and available as labels when using synthetic spectra.) If inferring whether a particular atom
in the (current estimate of) the adjacency matrix belonged to a particular peak is a necessary
subproblem to solve, by not explicitly representing this state, we are forcing the diffusion
model to infer it during its forward pass – and moreover redoing that computation from
scratch on every single forward pass. As early diffusion iterates do not specify useful ad-
jacency matrices, this subproblem would likely not be solved very usefully either – making
earlier iterates wasteful. There is also an information-theoretic view here: a discrete de-
noising diffusion of a symmetric adjacency matrix communicates at most O(

�
n

2

�
) bits across

iterations. If it is necessary for information about peak-atom assignments to persist across
iterations, there simply may not be enough space to do so.

Importantly, a useful byproduct of this approach would also be explicit association of
a substructure with each peak, which has benefits for interpretability. It also might make
the association between likelihood of a particular substructure compatible with a peak, and
properties of its cut-set, more explicit to the model.
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D.3 Methods

D.3.1 Data generation

Structures

To generate our synthetic training data, we begin by sampling small molecule structures
from the PCMQM4M-v2 dataset [9]. We only include molecules of CHNOPSX elemental
composition, and remove any molecules of nonzero charge or that have radical electrons.
We additionally only include molecules with between 10 and 20 heavy atoms: this is just to
allow fast testing of our proof-of-concept, which as described here entails multiple steps that
scale quite poorly with molecule size. When multiple molecules share the same InChiKey
connectivity substring, we discard all but one randomly. Of the molecules passing these
criteria, finally we sample 100k at random.

Simulating mass spectra and fragmentation graphs

We use CFM-ID [10] to predict mass spectra and fragmentation graphs from these structures.
Specifically we use cfm-predict, with default parameters for positive-mode ESI spectra, and
retain only the top 30 peaks by height. This yields three spectra per structure, at low /
medium / high energies. As cfm-predict only generates the final structures for each peak,
and does not provide the fragmentation DAG, we also run fraggraph-gen (positive-mode,
max depth 2), which generates protonated SMILES strings of all fragments and interme-
diates, and their graph connectivity. Both of these operations were run in parallel on the
MIT Supercloud, which necessitated using a more recent version of RDKit than the one
recommended by the CFM-ID authors. As that RDKit version uses a newer C++ standard,
some minor modifications to the CFM-ID C++ code were also necessary.

D.3.2 Preprocessing

Our spectrum simulator represents substructures as SMILES strings, which only specifies
substructures up to graph isomorphism. To supervise a denoising diffusion of atom-peak
labels, it is necessary to generate such labels in the first place: i.e. we must pick a particular
indexing of the nodes in the precursor molecule, and propagate it down the fragmentation
graph by identifying isomorphic subgraphs. This raises a number of issues that we address
here.

Steiner fragmentation subtrees

In a fragmentation DAG, there will generally be more than one path from the root node
(precursor molecule) to any fragment. Our approach to avoiding conflicting labellings in such
cases is to simply select a subtree from the DAG. As CFM-ID also models fragmentation
intermediates, there are generally nodes in the DAG that do not have corresponding peaks,
but are necessary to include in order to reach some peak from the precursor. Since label
propagation (as we next explain) is an expensive operation, our strategy for selecting this
subtree is, for each spectrum, to simply pick the smallest subtree that contains a path from
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the precursor molecule to every observed peak (i.e. to at least one substructure with the
same formula): this minimizes the number of propagations we must do. This can be cast as
a rooted directed Steiner tree problem [11]: we take the fraggraph-gen fragmentation DAG
and augment it with terminal nodes corresponding to each peak generated by cfm-predict,
to each of which we add an inbound edge originating from any substructure with the same
chemical formula.

We solve this exactly using Gurobi, assigning all edges a unit cost. We did not inves-
tigate the effect of different strategies for selecting this subtree – e.g. picking the subtree
describing the most probable sequence of fragmentations (per CFM-ID transition probabil-
ities) as opposed to the smallest. It is unclear how sensitive the final model should be to
such choices (and we expect CFM-ID to be a more serious source of bias anyway) – we leave
their investigation to future work.

Propagating atom labels

We can now assign an arbitrary atom indexing to the (protonated) precursor molecule, and
propagate it to the fragment nodes via traversing the fragmentation subtree. We do so by
solving an approximate subgraph isomorphism problem at each edge of this tree. (Approxi-
mation refers not to optimization – we solve exactly using Gurobi – but rather to the fact
that CFM-ID permits certain rearrangement reactions, meaning generally a child will only
be close to an edge subgraph of its parent, not exactly one.) We specifically find a match-
ing matrix ⇧ of nodes from parent to child that minimizes the bond-order discrepancy of
matched bonds:

min
⇧22M⇥N

k⇧AG⇧
>
� AHk

2
2

s.t. ⇧1N = 1M

⇧>1M  1N

where H is a child fragment of G on M  N nodes respective, and the adjacencies AG

and AH are weighted by bond order 2 {0, 1, 2, 3}. (Currently, we actually minimize the
1-norm, and left-multiply the term inside the norm by ⇧. This is much faster, and appears
to propagate valid labellings, but its correctness needs to be verified.)

We only run this optimization on the heavy-atom graph, which greatly boosts solution
speed compared to including the hydrogens: we presently do not incorporate information on
the hydrogen counts at all. (Importantly, this includes the special case of where the extra
proton is located.) We leave tuning of this parameter for future work.

We also note we can conveniently store these indices directly in the SMILES string
representation of each substructure using RDKit’s ‘atom map index’ functionality.

Finally, there is a possibility that our Steiner tree includes (because it might minimize
the overall cost of the tree) multiple substructures with the same formula: we have not
checked how often this occurs, but in case it does, we sample a labelled substructure from
all those compatible with each peak uniformly at random. (This might again benefit from
incorporating CFM-ID’s likelihood information).

128



D.3.3 Model

Molecule and spectrum featurization

An issue of some concern during the development of our model was GNN expressiveness:
for example, we observed empirically that a Graphormer-like [12] architecture led to poor
generation of ring structures. We additionally run into difficulties if we rely on feature
engineering (e.g. ring information) to overcome GNN expressiveness issues, as the graph
traversals involved are difficult to parallelize on GPU, and conversion back-and-forth between
GPU and CPU graph objects at the start of each diffusion iteration is costly.

One approach we found effective (inspired by [13]) was to represent molecules as complete
graphs with

�
N

2

�
edges on N nodes, labelling edges where no bond is present as ‘zero-order’

bonds. To encode positional information, we compute Laplacian eigen-features of the molec-
ular graph (to be clear, the sparsified version), using sign-flipping augmentation. Importantly
these can be computed efficiently on the GPU, and contain information on graph connectiv-
ity and presence of cycles. (In particular we use all eigenvalues, not just the top few: the
multiplicity of the zero eigenvalue is important here.)

To reduce the size of these graphs, we only use the heavy-atom subgraph, and represent
hydrogens as a count feature per heavy atom. We therefore also must provide the formula
of the precursor molecule as input to any model, as the noise process does not conserve
the (always known) total number of hydrogens. (We omit the additional proton added
by CFM-ID: the hydrogen counts represent those of a neutralized molecule. This may be
worth revisiting: knowledge of where charge localizes is informative for this task.) We also
strip stereochemistry information, and kekulize the molecules: aromatic bonds are converted
to explicit single or double bonds. (This was done to eliminate a spurious correlation we
observed, in which the model would label any ring structure as aromatic, irrespective of
elemental composition or ring size.)

We additionally label each bond with an indicator of whether or not it participates in a
cycle (which we later treat as an additional label to denoise). We suspect maintaining an
explicit local indicator of this global structural feature is useful: in particular, it permits the
model to ‘decide’ on the cyclicity of the molecule as a whole earlier on in the diffusion process
(well before actually assembling its cycles). (Reassuringly, we found the model predicts this
label with very high accuracy – but nonetheless believe an ablation study would be valuable
here.)

We represent the spectrum as a set of (formula, height) tuples: formulas are fixed-length
integer vectors of element counts. We square-root-transform the height (heights vary widely
in order of magnitude; this lessens this effect, and can also be looked at as dividing by the
MLE of standard deviation under a Poisson distribution), and normalize to a max height
of 1. We augment these spectra in two ways: we drop out peaks with probability 10% (we
expect redundant information between peaks on average), and we multiplicatively jitter peak
heights by 10% (which we empirically found represents average height fluctation in NIST-20
between spectra of stereoisomers). We also point out each molecule is representead in our
training data by three different spectra, one per each of the collision energies predicted by
CFM-ID.
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Diffusion process

We use the approach developed in DiGress [3]: at step t, our forward (noising) process pre-
serves each label (bond type / bond cyclicity per atom-pair, number of hydrogens per atom,
inclusion/exclusion of an atom-peak pair) with probability 1 � ↵(t), and with probability
↵(t) independently resamples its value according to its marginal frequency in the training
set. Our reverse (denoising) process takes as input a noisy estimate of these labels, plus
the observed spectrum and precursor formula, and predicts probabilities on the simplex per
label, from each of which a categorical sample is drawn independently. We use a cosine
schedule for ↵(t), with 500 diffusion time-steps. (We wonder whether this is an appropriate
schedule for our task – we observe minimal change past ⇠ 2/3rds of iterations – but leave
tuning for future work.)

Model architecture

Our model is implemented as a pure transformer, in which each node and edge in the
(densified) heterogeneous molecule-spectrum graph is represented as a token in a sequence.
The specific inputs and outputs per token type are described in the following table.

Token Number Input Output

Graph 1
MLP(precursor element counts)
+ MLP(eigenspectrum) -

Atom N
Element embedding
+ number-of-hydrogens embedding
+ Laplacian PE

Number of hydrogens 2 �5

Atom-pair
�
N

2

� Bond-type embedding
+ cyclicity embedding
+ summed Laplacian PEs of atoms

Bond type 2 �4,
cyclicity 2 [0, 1]

Peak K
MLP(fragment element counts)
+ Sinusoidal(height) -

Atom-peak NK
Membership embedding
+ MLP(fragment element counts)
+ atom Laplacian PE

Membership 2 [0, 1]

Our efforts to ensure expressiveness pay a major price in speed: the attention cost here
is quartic in the number of (atoms + peaks). This could potentially benefit from structured
attention masking, as described by [8] – however the optimal conditional independence struc-
ture may require some experimentation. We additionally tried low-rank attention approxi-
mations [14], but found PyTorch dense attention (which is very well optimized) was faster
for the small graphs we use.

The outputs indicated in the table are predicted as logits by linear output heads. We
minimize an (unweighted) sum of cross-entropy losses for each type of label.
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Model hyperparameters and training

The transformer uses a width of 256, depth of 8, and 8 attention heads. We use a batch size
of 100, and Adam with a learning rate of 0.0003, training for 200 epochs using 4 ⇥ 2 GPU
nodes on the MIT Supercloud. We did not carry out any hyperparameter tuning, beyond
scaling each size parameter down by a factor of 0.75: the larger model gave lower validation
loss.

We use a 95/5 formula-disjoint split of our data into training and validation sets. Inves-
tigation of more aggressive splitting strategies (e.g. scaffold / fingerprint splitting) is left to
future work.

D.3.4 Ablation baselines

Our focus here is in determining how to solve structural elucidation via diffusion model; while
we believe this has intrinsic advantages over previous approaches, we defer those comparisons
to future work. Instead, we consider two alternative implementations of our diffusion model:
one – the ‘naive’ approach – simply concatenates on the spectrum tokens to the molecule
tokens, and does not incorporate the peak-to-atom labels at all. We also compare both
approaches to performance of pure isomer sampling, without any MS information at all
beyond the formula of the precursor: this permits us to tell whether the information in the
spectrum is being used at all. (Otherwise all architectures and parameters are identical.)

D.4 Results and Discussion

D.4.1 Training curves

Figure D.1: Training and validation cross-entropies for our approach (green) and baselines
(no peak-atom links: gray; no spectrum: orange).

Reassuringly, the models with richer denoising tasks achieve lower training and validation
loss (i.e. predict greater probability for the correct labels); we also do not observe obvious
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overfitting by 200 epochs. We suspect this evaluation is however not very meaningful: it
might simply reflect the greater mutual information between inputs and outputs, as opposed
to a more powerful model.

D.4.2 Structure elucidation accuracy

Our ultimate evaluation therefore carries out the entire reverse denoising process, starting
with atom-atom and atom-peak adjacencies sampled from the prior. (This is what we would
do at test time.) Because it is presently very costly to do this with our model, we only draw
a single sample, for a single random collision energy from each of 1000 randomly-chosen
structures in our validation set.

We evaluate the quality and accuracy of this sampled structure on average, checking for
how frequently the sample describes a valid molecule (connectivity, valid valences); among
these, how many yield the correct number of hydrogens (recalling we do not represent these
explicitly); and how many yield an exact structure match. We also quantify structural sim-
ilarity via Jaccard similarity (size of intersection over union of set bits) of RDKit molecular
fingerprints of the sampled and true structure, as well as a bond edit distance between them
(computed as the optimal value of the approximate isomorphism objective described above).

Figure D.2: Structure elucidation performance of our approach and baselines. Standard
errors of means are indicated.

All approaches sample valid molecules at approximately the same rate. However, purely
marginal isomer sampling does much poorer at yielding molecules with the correct number
of protons. This is surprising and not obviously an effect of excluding mass spectrum in-
formation. One possible explanation is that the MLP module we use to embed formulas is
used for both precursor and fragment formulas: as the latter are omitted when excluding
the mass spectrum, this subnetwork sees much less training data.

Importantly, we see training the diffusion model to explicitly generate peak-atom links
helps greatly. It significantly boosts the means of both similarity metrics, and improves
the exact structure match rate (when drawing a single sample) by almost 5⇥. Comparing
to isomer sampling, which only guesses one structure correctly, we see both approaches to
spectrum conditioning nonetheless do incorporate the spectrum information. This might
reflect the simplicity of our training data – recalling that an early attempt (without peak-
atom information) trained on NIST-20 spectra appeared not to use it.

The figure shows the Jaccard similarity versus bond edit distance. We suggest the ob-
served bimodality in the Jaccard similarity is not ‘real’: it rather reflects a limitation of Jac-
card similarity for evaluating the sorts of errors that occur in structure elucidation. When

132



Figure D.3: Jaccard similarity versus bond edit distance for 1000 samples from our approach.

inspecting generations, a common failure mode we observe is the correct identification of
subgraphs corresponding to spectral peaks, but their incorrect assembly (i.e. an incorrect
arene substitution pattern). These errors correspond to small edits (such as changing the
endpoint of one edge), and can often be difficult fundamentally to detect in mass spectra –
however, they can lead to large changes in which graph motifs are present in the molecule,
and therefore which particular bits are set in the fingerprint.

D.5 Conclusion
Here we demonstrate, using synthetic data, how discrete denoising diffusion might be adapted
to solve the structure elucidation problem. In agreement with domain-agnostic work on
using diffusion models to solve combinatorial optimization problems, we see that making an
important class of intermediate variables – peak-atom assignments – explicitly represented
in the diffusion process leads to major performance gains.

However, due to time constraints this work remains at the proof-of-concept stage: we
anticipated substantial optimization of the approach will be necessary before it presents a
practical algorithm for MS structural elucidation. Below we highlight some future directions.

• Performance optimizations. Both real small molecules and their mass spectra
are typically larger than those used here. To scale to these, both the combinatorial
routines we call during preprocessing, and our model architecture, will need to be
better optimized (potentially using approximate solutions for the former; and for the
latter, perhaps a more efficient architecture that maintains the desired expressivity, or
requires fewer denoising iterates).
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• Hydrogen-count violations. These are an unfortunate artifact of what is normally
a sensible way to reduce the size of molecular ML problems. Rejection sampling may
be a simple way to achieve this with a faster model.

• Denoising fragmentation DAGs. We point out there is a third class of edges we
could potentially represent explicitly as well: peak-to-peak directed edges, representing
the fragmentation DAG.

• Better baselines. This approach should be compared against the (handful of) exist-
ing ML methods for de-novo structural elucidation. We caution that the pretraining
schemes employed by others will likely not translate readily to our context (nor ours
to theirs), making fair comparison difficult.

• Reranking predictions. The evaluation described here looks merely at a single
sample: we should ideally sample multiple structures per spectrum and rank them
by some criterion – for example the similarity between the observed spectrum and a
spectrum predicted from that structure by a separate forward model.

• Real data. It is unclear how to best apply this approach to real mass spectra, which
are limited in number and for which the ground-truth substructures are generally
unknown. One possibility would be to fine-tune a model trained using atom-atom and
atom-peak labels on synthetic data (which would necessarily inherit the biases of its
simulator) using solely atom-atom labels available in real data (omitting the atom-peak
term from the objective entirely). Another option would be a hybrid approach, using
CFM-ID or MAGMA [15] to label real spectra with synthetic substructures.
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