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Abstract

Live coding is an electronic music performance practice in which performers generate
music and visuals in real time by writing code. The cognitive approach to live coding
differs greatly from that of gestural music, in which performers leverage extensive
embodied knowledge of their instrument. These two domains, which each provide
unique tools for musical creativity and expressivity, are often performed separately.

This thesis considers the space between these two performance styles. The primary
goal is to suggest the potential of a combined modality by considering techniques for
gestural control over live code. A combination of live coding and gestural performance
may allow for a new cognitive approach and entirely new ways to live code.

To explore this idea, this thesis introduces GALiCA, a live coding system that
implements four techniques for manipulating code through gestural interaction with
a MIDI controller. These techniques are facilitated by a flexible sequencer concep-
tualization that allows for easy modification. Additionally, to guide the analyses,
this thesis synthesizes existing conceptual perspectives on the cognition involved in
gestural performance and live coding. The promising results and analyses of these
techniques may encourage further exploration into this new field and prompt new
cognitive approaches to electronic music performance.

Thesis Supervisor: Ian Hattwick
Title: Lecturer
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Chapter 1

Introduction

Live coding is an emerging musical performance practice in which a performer writes

lines of code to generate sound real-time in front of an audience. Live coders often

engage with their music through abstract concepts and symbols, thinking of ways

to convert ideas into code. This performance practice frees the live coder from han-

dling every moment’s sonic output, allowing the live coder high mental bandwidth.

This gives a live coder more freedom to consider high-level ideas than an acoustic

instrumentalist might have.

While this feature of live coding is very powerful, there are other music per-

formance practices that use real-time gestural interaction to great effect. Gestural

musicians can form embodied knowledge about their musical system, which is cogni-

tion that occurs outside of direct conscious decision-making. For example, a guitarist

knows how to strum an A chord without having to consider every finger’s position:

they only need to think of forming an A chord, and their fingers will fall into place.

This is a very effective and expressive performance technique. Although live coding

uses embodied knowledge to some extent, as it requires the transduction of an idea

into code through a keyboard, it does not rely on gestural interaction enough to create

strong embodied playing modes.

The goal of this thesis is to examine the potential in combining these two seemingly

distinct performance modalities: live coding and gestural performance. If the two can

be integrated in a way that preserves the unique performative benefits of both, then
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live coders may be able to find new ways of performance and greater creative potential

in live coding systems.

1.1 Context

Live coding is an extension of a much broader electronic music performance practice.

There are many modes of interaction with these live systems, ranging from gestural

electronic systems that are played similarly to a traditional acoustic instrument, to

music systems that generate experimental sounds through complex and undecipher-

able algorithms. A common theme of this field is finding novel interaction techniques

that allow for different modes of expression. This thesis aims to explore new inter-

sections between these existing practices and show the potential creative possibilities

of a system that incorporates both code-based and gestural interactions.

Other elements of electronic music performance are important in the development

of this thesis: MIDI controllers and sequencers. In order to create a system that

explores gestural live coding, there must be a way of transducing gesture into software

signals, and a way of using the code to produce sonic output. As illustrated in figure

1-1, this thesis uses the MIDI protocol to receive data from gestural controllers, and

also to transmit control data to software synthesizers. This thesis also builds on

the concept of a sequencer, a common means of scheduling sonic events in electronic

music performance, to generate messages for controlling sound synthesis. Both of

these techniques are very prevalent in electronic music and draw on existing practices.

1.2 Overview of GALiCA

In order to explore gestural interaction with algorithms, this thesis introduces a new

live coding system called GALiCA, with the the following features:

14



Figure 1-1: The GALiCA interface acts as a middle layer, receiving MIDI input from
a controller, using this input to modify code written in the codebox, and sending
MIDI messages to a user-chosen synthesizer.

• Uses a MIDI controller as primary input: although the system works with only

a codebox, its primary focus is implementing intuitive methods to control user

code using a MIDI controller.

• Receives MIDI input and sends MIDI output: The system essentially acts as a

middle layer which receives MIDI input from a controller, uses the MIDI input

to modify user-written code, then outputs MIDI messages to a user-chosen

synthesizer.

• Runs in the browser and employs JavaScript for user code input: the system

requires no local downloads and uses a language which many programmers are

already familiar with in order to decrease the barrier to entry.

• Creates timed musical events: the system employs a sequencer implementa-

tion that can generate timed musical events. The user can create and interact

with instantiations of the sequencer through both the codebox and the MIDI

controller.

• Uses user-defined MIDI mappings: the system allows users to map incoming

MIDI messages to features in the code. The user can choose how interacting

the MIDI controller will affect the code they have written.
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• Implements gestural algorithmic manipulation: the system supports four differ-

ent approaches for interacting with live coded algorithms through MIDI con-

troller input.

The source code for this system can be found at: https://github.com/hsavoldy/

GALiCA [46].

1.3 Thesis Structure

The primary contribution of GALiCA is the implementation and analysis of four ges-

tural approaches to live coding. An important supporting contribution is the system’s

sequencer concept, which is integral to the development of these approaches. All of

the work done in this project is motivated by a discussion of conceptual perspectives

on gesture, live coding, embodiment of knowledge, and sequencers. To explore these

ideas, this thesis is split into five main sections:

• Chapter 2, the Background, provides an overview of current research relating

to electronic music practices (such as sequencers), live coding, and cognitive

theories about embodiment. Its contents provide the basis for many of the ideas

presented in this thesis, specifically the conceptual analysis that motivates the

purpose of this project.

• Chapter 3, the Conceptual Analysis, analyzes previous research to present the

possible implications of incorporating gestural interaction into a live coding

system. It explores the differences and commonalities of these two approaches

and considers the effectiveness of a combined modality.

• Chapter 4, the Seq Class, introduces the sequencer conceptualization used in

this thesis. It details a conceptual overview and includes a discussion of the Seq

class’ implementation in the code.

• Chapter 5, MIDI Algorithm Interactions, describes the work that addresses

the primary objective of this thesis. It explores four new approaches to using
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gesture to modify live coded algorithms. It broadly describes each approach,

how the approach is implemented in the code, and a reflection of the usefulness

and potential of each approach.

• Chapter 6, the Conclusion, summarizes the contributions and analyses of this

thesis. It also considers the future work that would further advance this field.

1.4 Goals and Research Questions

The main goal of this project is to explore the creative potential of integrating live

coding, a predominantly symbol-level practice, with the use of a hardware gestural

controller. Although live coding systems with support for MIDI controllers exist, they

do not generally view the hardware as a means of manipulating the code algorithmi-

cally. As such, there is not a good understanding of how physical controllers can be

used to modify code, and more specifically, how they can be used to turn high-level

algorithmic concepts into embodied knowledge which can be drawn from in a live

performance.

To facilitate this exploration, the design of the GALiCA system is a primary

concern as well. Particularly, GALiCA’s central interaction mode, a sequencer, must

be designed to integrate gestural control as intuitively as possible. Because of this,

creating a flexible and useful sequencer concept is another main goal.

To guide the development and analysis of these goals, three primary research

questions are investigated in this thesis:

• How can live coding effectively incorporate gestural interaction? How could

this approach recruit the cognitive benefits of gestural performance, such as

the physical embodiment of knowledge, to increase the creative potential of live

coding?

• How can a standard MIDI controller facilitate gestural engagement with a sym-

bolic code editor?
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• What sequencer design characteristics enable users to leverage both gestural

and symbolic interaction to maximize expressive potential?
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Chapter 2

Background

GALiCA was created within the context of electronic music performance practice,

specifically the burgeoning practice of live coding. Other relevant topics within this

practice are the concept of a sequencer, as it exists within the history of electronic

music performance and as it is used today, as well as MIDI controllers. The first two

parts of this section will discuss the relevant background of these areas.

Another core aspect of this thesis is exploring how physical knowledge is embodied,

specifically within a music performance system. The last section provides a brief

discussion of the current literature establishing theories of embodied knowledge and

how they relate to musical performance, including live coding.

2.1 Electronic Music Performance

Electronic music performance is a practice that comprises a diverse set of performance

and aesthetic processes, but it is often characterized by novel uses of contemporary

technology, an emphasis on live interaction with electronic interfaces, and the use

of electronic mediums as a way to push the boundaries of music. As Collins [13]

states, "since the 1930s (well before the advent of tape) composers have been using

this property of electronics to produce not just new sounds but fundamentally new

approaches to organising the sonic world." Historically, a core component of live elec-

tronic music is questioning mainstream ideas about music performance, resulting in
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often experimental performances that take place in niche underground venues and

bars rather than large concerts [8]. It is through this lens that this thesis consid-

ers sequencers: not as tools to generate pre-produced or mainstream music, but as

methods for performers to engage with sound live in front of an audience.

The predominant sequencer concept, which is used in both hardware and software

music performance systems, is based off of historic hardware sequencers. Analog

sequencers first emerged in electronic live music around the 1960s, with the popular-

ization of modular synthesizers such as the Moog [31] and the Buchla series [10]. The

sequencer module was used to schedule signals, which could be routed to other mod-

ules. Often these signals were used as note values. This gave performers the ability

to create intricate and real-time modifiable melodic lines, which once started, would

continue playing without any oversight from the performer. Because of the useful-

ness of this module, sequencers became ubiquitous in modular-synthesizer racks, and

many electronic musicians became familiar with the mental model of a sequencer [31].

Years later, as live coding emerged, many systems adopted the sequencer concept as

a way for the live coder to create sonic events. 1

2.1.1 Sequencers

A sequencer is a means of scheduling musical events in time. Dannenberg [16] sug-

gests that "music is the presentation of sound in some form of temporal organization."

Viewed through this perspective, sequencers create sound events that are precisely

temporally defined within this organization. Because of the broadness of this defini-

tion, sequencers exist in many different forms and for many different applications.

Existing Sequencer Taxonomies

There are a few existing approaches to defining and classifying sequencers. Duignan

et al. created a taxonomy of sequencer user-interfaces, introducing criteria such as

abstraction level, linearization stage, and event ordering [20]. This taxonomy ap-

1For a full overview of the history of electronic music performance practices, read Joel Chadabe’s
Electric Sound [11].
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plies broadly to all sequencers, but this thesis is concerned with the application of

sequencers in live performance, and as such will limit the discussion to sequencers

which can be modified in real-time. In the terms of Duignan et al., these sequencers

have eager linearization and control event ordering, although the level of abstraction

can vary.

In another view on performance using sequencers, Püst et al. have introduced

a taxonomy of interactions in electronic music performance [44]. This taxonomy is

applied to two primary modes, that of sound design and sequencing. They argue that

performers often alternate between these two modes of performance, and that there

are four interaction classes which cut across these modes: creation, modification,

selection, and evaluation. They continue to use these interactions to evaluate a range

of hardware including sequencers and synthesizers.

This paper highlights the prominence of the sequencer as a primary performance

tool, and the interaction classes provide a framework to reflect on what occurs in

the act of performance. These interaction classes may be seen across a wide variety

of performance techniques, including gestural and live coding practices, but the way

they manifest may be different depending on the context.

A Taxonomy of Hardware Sequencers

The previously mentioned taxonomies are useful considerations and are used to mo-

tivate a taxonomy of interaction types that are considered in the development of

GALiCA. In table 2.1, a taxonomy is applied to five popular hardware sequencers

with different algorithmic approaches: Doepfer’s A155 [18], intellijel’s Metropolis

[26], Make Noise’s René [41], Buchla’s 250e Dual Arbitrary Function Generator [12],

and the Klee sequencer [22]. The goal of this analysis is to uncover what interac-

tion modes are possible during live performance with a sequencer. This taxonomy

considers the following characteristics:

1. Algorithmic Approach: what approach guides the use of the sequencer. Each

sequencer can perform basic sequencing, but beyond that, they each have a
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Sequencer
Example

Features

Algorithmic
Approach

Step Increment
Manipulation

Step Index
Manipulation

Variable
Sequence
Length

A155 Basic Reset

Metropolis Gates per step
1 to 8

pulse counts
per step

Forward, Reverse,
PingPong, Random,

Brownian

Ability to
skip steps

René Cartesian Snake, Cartesian,
Presets

Toggle each
step

Buchla 250e Circular Dial-adjustable time
values for each step

Stage addressing
input Nested Loops

Klee Shift/bit registers Random, Pattern 8 or 16 steps

Table 2.1: Feature comparison of different hardware sequencers

novel concept that informs how they are performed. For example, the René

operates in a 2D Cartesian space rather than a 1D sequence. The Klee, on the

other hand, uses a 1D sequence but sums the voltages of multiple steps based

on a user-defined bit pattern.

2. Step Increment Manipulation: a sequencer’s ability to change its step increment

value, in other words, how the duration of the step can be altered. For example,

the A155 lacks the ability to perform a step that is any different length than

the clocking rate, so it cannot manipulate the step increment.

3. Step Index Manipulation: a sequencer’s ability to perform a non-linear pattern,

by altering the current index of the sequence. For example, the Metropolis

includes the ability to execute the sequence in reverse or in a PingPong pattern.

The A155 can technically alter the step index by allowing a reset input, which

will return the sequence to index 0.

4. Variable Sequence Length: a sequencer’s ability to change the length of the

sequence. The A155 cannot modify how long the 8 step sequence is (besides by
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manual input to the reset input), while the Buchla 250e very clearly integrates

creating a sequence that is some fraction of the entire circle of steps.

(a) The Doepfer A155 [19]
(b) The Intellijel Metropolix [27] (a new ver-
sion of the Metropolis)

(c) The Make Noise Co. René [36] (d) The Buchla 250e [9]

(e) Scott Stites’ Klee Sequencer [21]

Figure 2-1: The interfaces of the five examined sequencers.

Taxonomy Discussion

The design of these sequencers all suggest very different user interactions. For ex-

ample, the A155 and Metropolis display a linear sequence, the Buckla 250e uses a

circular sequence, and the Rene uses a Cartesian, grid-like sequence. They all differ

23



in interaction modes: the A155 clearly displays all actions through physical, single-

mapped dials and switches, while the Buchla 250e uses menus to obscure interactions

that the user must select. Some employ saved sequences, enabling performers to call

on previously created material, while others are maintain no memory and irrevocably

change throughout a performance but ensure that the state of the sequencer interface

always matches the state of the internals. Some interactions are relatively obscure

in their sonic outcomes, such as the consequences of shifting a bit in the Klee, while

interactions with the A155 are easily mentally tracked. All these sequencers have

different goals and purposes. The Buchla 250e is not even marketed as a sequencer,

with the manufacturer instead opting to call it a "function generator".

Despite their differences, all of these sequencers enable a performer to engage

real-time with a sequence through a chosen set of interactions. Each listed sequencer

could do what a A155 can do: execute a linear series of steps, with one step occurring

on each beat, whose value is chosen by an analog dial. However, the additional

interaction modes shift the way that a performer conceives of a performance. The

sequences that can be produced by a Cartesian layout may sound identical to those

produced by another means, but a performer using a René will have to implement

any sequence through a Cartesian conceptualization of a sequencer.

In live coding, it is possible to create a sequencer that can do everything these

sequencers can do, as well as boundlessly more. However, the sequencer model must

be presented in the code in some way. This impacts the performer, just as presentation

informs interaction modes for hardware sequencers.

2.1.2 MIDI Controllers

A primary method through which electronic music performers gesturally engage with

their systems is through MIDI controllers. MIDI controllers are physical interfaces

that send messages about note events and parameter values to a chosen channel using

the MIDI protocol.
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MIDI

MIDI (Musical Instrument Digital Interface) is a message protocol designed for digital

music devices to communicate with each other. One of the primary reasons MIDI was

created was to allow musicians to gesturally control electronic music systems. MIDI

controllers can take many different form factors, such as keyboards, drum pads, or

DJ controllers. MIDI messages can be broadly organized into note events (note on

and note off), continuous controller (CC) events (sending a value from 0-127), and

other system-wide messages, such as reset or clock messages. [34]

1. Note events: There are two note events, note on and note off. A note on

event includes information about the pitch of the note, the channel, and the

velocity. MIDI note pitches assign integer values to notes within a 12-tone

equal temperament system, where a C4 is a MIDI note 60. The velocity of the

message corresponds to the volume of the note, and the channel indicates which

channel the MIDI note should be played on. Note off events indicate that the

note sent by a previous note on event should stop. It typically includes a MIDI

note pitch and a channel number.

2. CC messages: These messages include a value from 0-127, a controller number,

and a channel number. The controller number indicates which controller of the

system should be adjusted to the CC value. There are a set of standardized CC

controller number mappings, such as controller number 7 corresponding with

volume control, although they are less well specified than MIDI notes [29].

3. Clock: Among the system-wide events, MIDI supports a MIDI clock. This is a

simple message that sends at a rate of 24 ppqn (pulses per quarter note) based

on the tempo of the system. This allows multiple MIDI systems to stay in sync

with each other, with one system sending MIDI clock pulses, and the others

receiving them.

4. Other system-wide events: MIDI contains a variety of other message types, such

as reset, start, stop, and song position pointers.
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Controller Examples

While all MIDI controllers communicate through the standardized MIDI protocol,

the controllers themselves can take any form factor. Many MIDI controllers mimic

existing instruments, most commonly keyboards. The Launchkey Mini [42] is an

example of a MIDI keyboard with both keys that send MIDI notes as well as dials

and pads which send CC events.

Figure 2-2: MIDI Keyboard Example, the Launchkey Mini (photo by Lark Savoldy)

MIDI controllers that mimic many other instruments exist as well, including drum

kits, wind instruments, and guitars.

Other common MIDI controllers include pad controllers, with an array of sensitive

pads which send either note or CC messages, and DJ controllers, with dials, faders,

and spinning discs which typically send CC messages.

(a) The Novation Launchpad S (photo by
LeoKliesen00 [33])

(b) The Vestax VCI-380 (photo by
TSchenke [50])

Figure 2-3: Common MIDI controllers
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2.2 Live Coding

Live coding is an electronic music performance practice in which a performer, or live

coder, uses a programming language to generate sound in front of an audience. It

comes from a rich history in electronic music performance and, because it is often

used as an experimental art form, there are many discussions surrounding what live

coding is and how it operates as a performance practice. For example, Live Coding: a

User’s Manual [8] considers "how the performance of live coding proposes new ways

of operating, posing questions and challenges to some of the underpinning values and

ideologies of a wider computational culture." These ideas motivate the research done

in this section.

2.2.1 Definition

Defining live coding is an open question among live coders. For example, Live Cod-

ing: a User’s Manual [8] states that "live coding has been described in terms such

as writing software in real time, changing a program while it is running, projecting

the screen for the audience to participate in, writing as an improvisatory practice,

composing live using textual notation, changing rules while following them, conver-

sational programming (conversing with the computer in its own native language),

thinking in public, and creating and using bespoke systems tailored for on-the-fly or

just-in-time performance." Live coding is a continuation of historic electronic music

performance practices, using general-purpose computers to perform rather than spe-

cialized hardware. As a part of this tradition, live coding aims to push the boundaries

of live performance. Therefore, "live coding" is not a strictly defined concept; some

even claim that it should defy definition by its nature: David Ogborn [8] states, “To

define something is to stake a claim to its future, to make a claim about what it

should be or become. This makes me hesitate to define live coding.” Even TOPLAP,

an organization created to explore and promote live coding, released a manifesto on

computer music performance that has been only a draft since its creation in 2004 [49].
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2.2.2 History and Performance Practices

Live coding emerged when personal computers became prevalent enough and com-

putationally powerful enough to be useful as an audio synthesis tool. This practice

took hold in the 1990s: live coders would bring their laptops to clubs and bars to

perform. Often, the audience would watch with no additional visual information, but

eventually, common practice shifted to projecting the code being written. As the

TOPLAP manifesto draft [49] states: "Show us your screens."

During this time, performers would use programming systems with an emphasis

on real-time audio processing, such as SuperCollider [38], to live code. Eventually,

languages created specifically for live coding were released, such as the ChucK on-

the-fly language by Ge Wang [51]. Many smaller, localized movements of live coding

began to converge in meetings and workshops, and TOPLAP formed, giving live

coding a name and a basis as a live performance technique.

Interest in live coding continued to spread, culminating in the creation of dozens

of live coding languages [48]. Today, live coding takes many forms. Festivals for live

coding, called Algoraves, feature live coders creating music for the audience to dance

to [17]. Live coding is also a subject of academic interest: an international confer-

ence dedicated to live coding, ICLC (the International Conference on Live Coding)

began 2015 [28], and NIME (The International Conference on New Interfaces for Mu-

sical Expression), a premier conference for live electronic performance research, has

featured 15 publications on live coding since 2007 [40].

2.2.3 Why Live Coding is Unique

The computer music that predated live coding shared many similarities with it, relat-

ing to the innumerable possibilities of an instrument that can be coded. The League

of Automatic Music Composers was an influential music group who pioneered com-

puter music, forming in 1977 [7]. Members of this group, John Bischoff and Tim

Perkis, created the album Artificial Horizon in 1988 [6] and wrote on the CD sleeve:

"for us, composing a piece of music is like building a new instrument, an instrument
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whose behaviour makes up the performance. We act at once as performer, composer

and instrument builder, in some ways working more like sculptors than traditional

musicians." This is the reality of live coding as well. Live coding differs considerably

from other live music practices (electronic and acoustic). It allows the performer im-

mense freedom: any idea that a live coder can translate into code can be conceivably

created during a performance. A live coder can choose to tweak small parameters in

the code, create new structures that drastically change the sound, even step back and

listen to how the sound evolves without their constant participation. Live coding is

a completely new way to engage with music and algorithms.

2.2.4 Implications of Live Coding

Because of the unique elements of live coding performance, there are many ways that

differences in performance may manifest. Nick Collins explores these ideas in a paper

he published in 2003 [14]. Some implications he points out are:

1. Arbitrarily complex changes in structure at performance time at the expense of

the high risk of running code: Although a live coder can create anything and

structure the sound however they can imagine, a live coder cannot debug real-

time. Any unintended bugs in the code will become present in the performance

the moment they are run. This puts a limitation on novel exploration during

a performance, because trying new material may result in unwelcome sonic

outcomes.

2. Computer languages are immensely rich, infinite grammars, but typing is not

a visually interesting performance method: using a programming language as

the mode of performance is incredibly powerful, as it allows the performer to

create anything. However, the audience may not be engaged by watching a live

coder bent over a computer as much as they may be in other kind of instrument

performance where a musician’s clear physical movement translate to sound.

3. Live coding creates a great intellectual challenge, but the concentration required

29



diminishes with the stress of performance: live coding requires a high level of

concentration because an incorrect keystroke can cause an error.

2.2.5 Examples

Live coding systems vary across many axes: many use a sequencer as a primary

interaction, some are built off of existing programming languages, and some do not

even use a traditional codebox, such as ORCΛ [45]. Some systems primarily use

samples to generate sound while others use oscillators and filters, calling to concepts

used in modular synthesizer racks. Four examples of popular yet distinct live coding

languages are explored below.

Gibber

Gibber [23] is a web-based live coding environment that uses JavaScript syntax. Sonic

events are sequenced and can take the form of samples or modular synthesizer-style

sound generation and modification.

TidalCycles

TidalCycles [39] is a system that uses SuperCollider as its audio engine, and Haskell

syntax for codebox input. Tidal also sequences sonic events and primarily uses audio

samples as its sonic output, although it is also capable of synthesizing sounds through

SuperCollider.

Sonic Pi

Sonic Pi [1] is a stand-alone application that uses Ruby for its syntax. It employs a

loop-based approach to sonic event creation and also has strong support for samples

as well as synthesized sounds
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2.2.6 Live Coding Sequencers

A commonality among live coding languages is the ability to sequence musical events.

However, these sequencers are implemented in different ways, drawing on different

sequencer conceptualizations. Tidal Cycles, Gibber, and Sonic Pi all conceptualize

sequencers in different ways.

• In Tidal Cycles, a concept of a sequencer is broadened into the term "cycle." A

series of musical events, such as drum hits or notes, can be written to occupy

one cycle, splitting the time of the cycle evenly among them by default. This

is a powerful tool, because it allows the live coder to create musical phrases

that always fit into one cycle, ensuring rhythmic consistency across different

structures in the code.

• In Gibber, the Seq class is the primary method of creating musical events. A

Gibber Seq object is defined with an array of values and an array of durations,

which operate separately, unlike a Tidal Cycle. Gibber’s philosophy is that

anything can be sequenced, consistent with traditional hardware sequencers,

which can sequence any arbitrary values.

• SonicPi does not have an explicit data structure that corresponds with a se-

quencer. Instead, musical events are placed inside loops which are called at

specified rates. In practice, this loop-based approach functions very similarly

to a sequencer.

Despite these syntactic differences, all systems can be used to create the same

sequences. However, the way in which a live coder would create that same sequence

could vary drastically across these three systems.

2.3 Physical Embodiment

Playing an instrument is inextricably tied to physical movement: an instrumentalist

must transduce a mental process into physical movement in order to produce a sonic
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response. The physicality of playing an instrument is an important factor in how it is

played and conceptualized. This is true for live coding practice as well: typing on a

physical keyboard is an embodied act. However, the physical embodiment of music in

a gestural performance can be quite different from that of a live coding performance.

This section will explore these similarities and differences after establishing the current

psychological theories of physical embodiment.

2.3.1 Cognitive Background

The neural processing of music is strongly linked to physicality. Janata and Grafton

[30] state that "when music engages the human mind most strongly—when performers

play music, or when listeners tap, dance, or sing along with music—the sensory

experience of musical patterns is intimately coupled with action." Whether listening

to music or playing it, the body engages just as the mind does. Concepts such as

muscle memory and embodied cognition, discussed below, are well understood with

respect to music.

Theories of embodied cognition are the reaction to the notion of mind-body di-

chotomy, which has been the dominant view of brain-body interactions for many

years. In this view, the mind is a completely distinct entity which performs cognition

independently of the body: the brain is the site of creativity and reason, while the

body acts as a machine that holds essential organs. Increasingly, scientific evidence

is questioning this separation. Theories of embodied cognition suggest that cognition

occurs not only in the brain, but also in the body. Cognition consists of one large,

inter-connected system of cells which connects the brain and all of the sensory organs

[35].

This view is consistent with the concept of muscle memory, a phenomenon well

understood in both academic research and individual experience. Muscle memory

refers to the ability of an individual to recreate a learned series of movements without

conscious effort. Different kinds of memory have been suggested, with procedural

memory referring to the ability to remember and carry out physical activities, and

perceptual memory referring to the recall of sensory input linked to specific motor
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skills. These kinds of memories work together to allow an unconscious recall of physi-

cal movements. When an instrumentalist interacts with their instrument, for example,

they are forging procedural and perceptual memory, both of which contribute to the

formation of muscle memory and embodied knowledge. [43]

2.3.2 Cognitive Experience of Live Coding

Live coding is an unorthodox way to physically engage with music. In contrast to

traditional music performers, live coders navigate abstract ideas such as algorithms

and concepts, rather than navigating a tightly coupled connection between sound and

gesture.

These two approaches may seem completely disjoint, but there is physicality inher-

ent to both practices. Malloch et al. [37] consider a spectrum of performance modes

along an axis of real-time involvement, which they label as "interruption tolerance."

Live coding and many gestural performance styles, such as acoustic instrument per-

formance, are on opposite ends of this axis. Live coding operates on a symbol level,

with a high degree of interruption tolerance, while acoustic instrument performance

operates on a signal level, with a low degree of interruption tolerance. They are not

wholly disjoint approaches. They do, however, employ embodied cognition in different

ways.

Baalman discusses how the live coder and the computer form a system that inter-

acts with each other to translate concepts into code [3]. Figure 2-4, a recreation of

a figure from Baalman’s paper, identifies not only the brain and the body to be one

cognitive system, but the computer as an extension to this system. These systems

interface through concepts, the human motor system, the physical computer inter-

face, then the computer software. As a live coder engages with the computer, the

computer engages back. Baalman states "... the longer we spend programming in

a particular language, the more our mind gets attuned to the language and shapes

our thinking about concepts to express. Not only our mind gets attuned, also our

body - as we type certain class names, our fingers can become attuned to particular

sequences of letters that form words that have meaning in the code. As such code is
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Figure 2-4: Human/Computer interaction feedback loop, a recreation of the figure
from Baalman [3]

an embodiment of our concepts." The design of the system is not a trivial component

of the live coder’s engagement with it: it informs the way that the live coder embodies

knowledge about it, and subsequently, how that knowledge is used.

However, there are distinct differences in the extent to which a live coder embod-

ies knowledge and to which an acoustic instrumentalist does. Sayer [47] suggests:

"The overhead of encoding motor skills for live coding is less burdensome and con-

sequently the cognitive resource gains of ‘automaticity’ are reduced compared with

instrumentalists. It is true that the act of typing is a motor skill but there is less

opportunity to build complex amalgamations of primitive units that facilitate direct

control over the sound elements in a rich parameter space. That’s not to say that fine

control over sonic material is not available to live coders but the means of accessing

it is more heavily reliant on process memory than pre-encoded units of behaviour

from object memory. ... I am suggesting that live coders may be less susceptible to

the influence of habit and mechanical modes of musical expression because the motor

skills required are less complex than instrumentalists and consequently less of their

behaviour is activated outside of their perceived conscious control or awareness." Be-

cause live coders do not have large amounts of physical pre-encoded behavior to draw
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on, they are not able to completely relinquish conscious control, despite their ability

to become proficient at typing and familiar with the code structures available. This

requirement of conscious control may hinder a live coder’s ability to enter a flow state
2, which has been recognized as a significant determining factor in achieving flow [52].

However, it is unclear to what extent a computer interface may inhibit flow, if at all.

2.3.3 Previous Gestural Live Coding

Although the field of gestural live coding has not seen much attention, a few projects

have considered this cross-section.

Wezen

Marije Baalman’s series Wezen [5] explores the relationship between gesture and mu-

sic. In one particular piece of this series, Gewording, Baalman transitions between

playing the instrument via gestural controllers on her hands, and live coding the

way that these controllers are mapped. Baalman discusses this interaction: "My

role shifted throughout the whole process, from being the actor and mover to be-

ing programmer.... This means that, since I embody movements and listen to many

variations of their sonification, I am aware of the kind of data that particular move-

ments will create. I can incorporate this knowledge into programming a sound and

its mapping to the sensors. At the same time, I create new scenarios by code in which

I can explore my movements and their effect on the sound. The sound informs my

movement, which in turn informs me in my subsequent mapping decisions." [4]

Baalman’s interaction mode, transitioning between using gesture and live coding

during a performance, is an example of successfully playing live code with gesture.

Live Coded Instrument

In their paper "Live Coding the Mobile Instrument" [32], Lee and Essl consider how

gestural interaction can be effectively introduced into live coding, considering the

2Flow is an established psychological phenomenon first posited by Mihály Csíkszentmihályi [15]
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difficulty of achieving "immediacy with live coding as if one would play a traditional

musical instrument." Their approach involves decoupling the live coder from the in-

strumentalist, so that the live coder is real-time programming the instrument while

the instrumentalist plays it, with a goal of incorporating the "instrumental virtuosity

and expressivity" into live coding. They successfully implemented and performed this

system, suggesting promising results for further gestural engagement with code.

The next chapter will explore more implications of bringing gestural control into a

live coding practice, drawing on the research done in this background, and considering

new conclusions for how a live coding practice may be able to incorporate gestural

control.
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Chapter 3

Conceptual Analysis

The purpose of this chapter is to investigate existing frameworks that relate gestural

musicianship to live coding. The resulting analysis guides the decisions and reflections

made throughout this thesis.

3.1 Features of Music Performance

This section considers several aspects of music performance in both live coding and

gestural music practices. For this thesis, a gestural musician is defined as a musician

who engages with a physical interface that directly translates gesture into sonic out-

put. The most common example of a gestural musician is an acoustic instrumentalist,

which informs most of the analysis done in this section.

3.1.1 Embodied Knowledge

Embodied knowledge is a nearly ubiquitous element of music performance. A per-

former may have concrete intellectual ideas about a performance, but they must

actuate a physical interface to realize these ideas. For example, a pianist may want

to play an A chord and must press keys to musically express this idea. Depending

on the musical interface, a performance’s reliance on embodied knowledge varies. In

most acoustic instrumental performances, embodied knowledge is crucial. An acoustic
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instrumentalist practices thousands of hours in order to develop the muscle memory

required to express complex ideas through the instrument. It is only through this

fluid physical recall of practiced structures that a trumpet player knows how their

fingers and breath must coordinate to create a desired note.

However, embodied knowledge is more than the muscle memory required to play

a note. Musical ideas may originate from the embodied knowledge rather than a

conscious cognitive process. For example, it is unlikely that a bebop musician care-

fully chooses every note in a complex improvised solo. There are physical limits on

conscious monitoring: an analysis of jazz solos has shown that the limit to impro-

visational novelty is about 10 actions per second [47]. Although a musician may

consciously consider higher level ideas about the structure of the solo, the individual

notes may be chosen by lower-level physical processes. This organization can be very

powerful, because the performer is able to generate expressive and complex outputs

through making physical choices on several levels, both conscious and unconscious.

In this way, the performer is a complex and carefully trained system, with knowledge

inputs from many different sources.

Live coding as a musical practice also relies on embodied knowledge, though less

obviously. The performer interfaces with a musical system through a computer key-

board, and through the language of code. When a live coder considers an input to

the system, they must translate it into code. This process is accomplished through

the coder’s familiarity with the keyboard as well as the structures available in their

programming language. For many programmers, writing a for loop is done through

muscle memory, and the ease of typing words on a keyboard enables quick transduc-

tion from an idea into a real input to the system. Unlike an acoustic instrumentalist,

live coders have the benefit of thousands of hours of practice on a computer keyboard

just from day-to-day life. However, this embodied knowledge plays a smaller part

in the performance. The live coder does not experience the same immediate sonic

response from embodied knowledge as the trumpet player described above, who can

choose notes unconsciously. Inputs to the system are almost always consciously cho-

sen and carefully encoded into the codebox, even though this process is facilitated by
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muscle memory.

The impacts of these differences are vast. Different physical interfaces demand

different types of embodied knowledge, and in addition to influencing the way that

the performer’s ideas are carried out, they influence the way that the performer thinks

about the system. A pianist and a trumpet player have different conceptions of what

they will play, as the way that they can carry out sonic production differs. The

differences between a pianist and a live coder are significantly larger.

3.1.2 Coupling to Time/Real-Time feedback

In gestural performances, the performer’s actions are directly coupled to real-time

sonic output. A gestural musician recognizes that any adjustment to the system will

result in an immediate change in sound. Additionally, some gestural musicians, such

as acoustic musicians, are fully responsible for generating sounds: if the musician

stops playing, the music stops. This incurs a constant cognitive load.

Live coders, by contrast, may perform actions that result in an immediate sonic

response, but the majority of their actions will not. Typing into the codebox itself

does not change the sound, and even running a line of code may not result in aural

change until the code takes effect. For example, changing a note in a sequence will

not produce a sonic outcome until the associated step of the sequencer plays. The

asynchronous system changes are possible because the system plays automatically

once the live coder runs the code. This frees up cognitive capacity, as the live coder

is not responsible for generating real-time sounds.

Increased cognitive capacity enables more complex thoughts and awareness of the

system, but it comes at a cost of decreased involvement in each sonic output. A ges-

tural musician may not have the capacity to consider as many high-level architectural

choices for the music, but they will have tightly-coupled and intuitive control over

every sound; they possess more embodied knowledge of the system.
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3.1.3 Precision and Accuracy

Live coding can be considered precise because live coders have the ability to absolutely

and specifically control the algorithms creating the music. It is difficult for a gestural

musician to recreate a sound exactly, but it is trivial for the live coder, who can

specify the exact state and easily reproduce it.

However, gestural musicians may perform with more accuracy. Often, gestural

musicians can rely on their system being fixed, meaning that an input to the system

will predictably elicit some sonic output. A pianist is never surprised that pressing a

C4 key will produce a C4 with a volume corresponding to the force of the key press.

Because a live coder creates the environment that they are interacting with, they

often do not know how an input to the system will affect the sound. Despite the

exactness of code, the intention of a new input into a live coding system may not

be exact at all. The consistency of a gestural musician’s system may enable stronger

embodied knowledge, as the strong input/output patterns are observed repeatedly.

Inaccuracy is not necessarily a hindrance to the performer. Unexpected sonic

outcomes can alert a performer to the possibilities of a performance. Just as acoustic

musicians have found new ways of playing instruments through accidents and mistakes

(such as the discovery of the altissimo range of a saxophone), live coders can discover

new features of their system by experiencing unexpected outcomes. These occurrences

can also create a strong sense of liveness: the audience is witnessing the novelty of

the system alongside the live coder.

3.1.4 Exploration

The inexact intentions of a live coder’s input can allow for a different mode of playing,

with a focus on exploration rather than exact intentional generation. A live coder

may try different inputs into the system to experiment with different sounds, because

it is difficult to have an exact mental model of what each change will do. This mode

of playing allows for a different kind of performance.

Gestural performance also allows for sonic exploration. Despite the predictability
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of a gestural instrument, other factors may be unpredictable, such as other musicians’

choices in a jazz combo. A pianist may decide to test a different chord voicing which

could change the way a soloist’s notes sound. Additionally, a gestural musician can

try new gestures during a performance. However, the mental bandwidth consumed by

gestural performance may detract from the musician’s ability to plan experimentation,

and because of the likely static nature of a gestural musician’s system, the outcomes

of exploration may still be more predictable.

3.1.5 Composition

In part due to the cognitive load relief of performing with a live coding system, a live

coder can take on a compositional role. Because they do not need to focus on every

sonic output, they can create and adjust large structural elements of the sound. A

live coder can create and structure a sonic environment with an unlimited number of

different voices, each chosen by the live coder.

Gestural musicians can also compose, but to a lesser extent. There are funda-

mental limits to the number of voices they can play and the amount of cognitive

bandwidth they can supply to each one.

3.2 Combining Approaches

Gestural musicians and live coders operate in very different modes of performance.

While initially these differences may seem irreconcilable, they are not completely

distinct from each other: for each of the criteria explored above, they exist somewhere

on a spectrum. A large goal of this thesis is to explore the space between these

approaches. Malloch [37] presents a spectrum of music interaction along the axis of

real-time involvement, labeled "interruption tolerance," to indicate how immediately

an interruption will propagate into the sonic output of the system.
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Figure 3-1: The Symbol/Sign/Signal axis from Malloch [37]. The significant examples
are included in this recreation of Malloch’s figure.

Live coders handle symbolic representations of musical concepts, while gestural

musicians often directly manipulate the signals that correspond to the sonic output.

Though they are at different ends of this axis, the continuum suggests that these

approaches may not be unbridgeable. Interestingly, sequencing appears between these

two endpoints, suggesting potential for bridging the two.

3.2.1 Goals

Many aspects of gestural performance are powerful musical tools: the performer’s abil-

ity to engage physically with the sound of the performance allows for easy expressivity

of emotion. Strong coupling of physical interaction with immediate sonic output gives

gestural musicians a way to forge strong muscle memory pathways that can deepen

the performance, for both the performer and the audience. Many electronic music

performers have achieved similar interactions as gestural musicians through the use of

MIDI controllers. Through MIDI controllers, it may be possible to make the unique
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aspects of gestural instrument performance available to live coders:

1. Increased embodied knowledge of system: through use of a MIDI controller,

a live coder could use gestural interaction during a performance. This could

enable the live coder to develop a physical sense of the system, recruiting their

body to encode subconscious knowledge. This knowledge may add to the depth

and expressivity of the performance, as well as facilitate more intuitive interac-

tions.

2. Real-time feedback: physical controllers are designed for real-time feedback. It

is very intuitive to turn a controller’s knob, for example, and gauge how the

amount it is turned affects the sound through immediate aural response. Using

a physical controller may allow live coders to sense algorithms, similar to how

acoustic instrumentalists sense the complex processes of their instrument. In

both cases, it may not be necessary for the performer to exactly understand the

structure of the system for them to gain an intuitive sense of how perturbing

the system will affect its sound.

3. Physical exploration: live coding is unique in the extent to which it allows per-

formers to explore the system. By alleviating the real-time demand of generat-

ing in-time sounds, the performer is free to use high-level conscious processing

to consider ways to navigate the system they have created. Beyond exploring

the sonic space through written algorithms, a live coder may be able to use a

controller to use physical motions to interact with the sonic space. Physical

interactions are satisfying for both the performer and the audience; people are

used to exploring the world physically. This could change the way that the coder

conceives of changing, or creating, the system. This may allow for entirely new

modes of performance.

4. Parallelism: a live coder can only change one aspect of the code at a time, by

manipulating the code at the cursor position. Gestural musicians can engage

with several different aspects of their system simultaneously, e.g. a wind player
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can change the note, timbre, volume, vibrato, etc. simultaneously. A physical

controller may allow a live coder to engage in code similarly, adjusting multi-

ple code elements at the same time through different simultaneous controller

actuations.

3.2.2 Challenges

Although the intersection between these domains is promising, there are several in-

herent challenges.

1. Conceptual Model: Live coders and gestural musicians have different cognitive

models of a performance and different methods of performing. The thought

processes of a gestural musician, who must focus on the moment-to-moment

sonic production of the system, are starkly different from those of a live coder,

who is freed from that mental load and has a very different kind of control over

the system. Trying to find a middle ground between these disciplines may lose

the benefits of both.

2. Different Performances: Electronic music performances often emphasize differ-

ent features than acoustic instrumental performances do. For example, carefully

timing musical events to create sonorous sounds may be of little interest in a live

coding performance, in which the structure and timing of events are less rigidly

expected by both the performer and audience. The introduction of real-time

physical interactions, which are crucial and beneficial in acoustic instrumental

performances, may not add to a live coded performance.

3. Changing System: Many gestural instruments always stays the same. Every

performance, an instrumentalist knows how their instrument will respond to

different inputs. However, in a live coded system, the way that a controller is

mapped may change across different performances or even throughout the same

performance. This complexity may make the development of intuitive physi-

cal control and muscle memory very difficult, and may consequently confuse
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the performer and add additional cognitive load. It may not be possible to

gain embodied knowledge of what different controller interactions will produce

through the duration of a performance, making the controller useless.

4. Intended use of interfaces: a computer keyboard is optimized for writing charac-

ters into an interface, making it ideal for writing and manipulating algorithms.

This is how a live coder can have such precise control over the algorithms in

the system. Manipulating algorithms through a physical controller that was

meant for tuning stable parameters and sending note messages may be unintu-

itive and clunky. Live coders may rather opt for the interface that live coding

was designed for.

5. Practice of Live Coding: Live coding is often considered an experimental art

form that pushes the boundaries of conventional music-making. One important

component of a live coding performance is transparency. The TOPLAP live

coding manifesto draft [49] states: "Obscurantism is dangerous. Show us your

screens." Involving a physical controller may detract from this notion. Live

coders may want nothing to do with a physical controller, as using one may be

counter-intuitive to the purpose of live coding.

These challenges and potential benefits inform the implementation decisions made

in GALiCA, as well as the resulting analyses. Chapter 5 utilizes this discussion for

guiding the four implemented gestural approaches.
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Chapter 4

The Seq Class

This chapter discusses the conceptualization and implementation of the GALiCA

sequencer. The motivation of this section is to present a sequencer that optimizes for

flexibility and encourages creative and intuitive gestural interaction with live coded

algorithms.

4.1 Sequencer Overview

Most live coding systems are built around sequencing sonic events in time. This

process is often conceptualized with sequencers. Sequencers play a significant role

in the history of electronic music, and their ubiquity and familiarity to electronic

musicians makes them an ideal structure in live coding. Many live coding systems,

such as TidalCycles and Gibber, use a sequencer as the conceptual model for a class,

which the live coder uses to generate sound. Because of the universality of this

approach, and its wide range of expressive capabilities, a sequencer class was chosen

for GALiCA as well.

Fundamentally, a sequencer is anything that can schedule events in time. Se-

quencers typically have a series of steps that are indexed into. When a counter that

increases linearly with time (a clock) tells the sequencer that it is time to execute

a step, the sequencer will call an event based on the value of the current step. The

index is then incremented for the next step.
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Figure 4-1: A basic sequencer executing a step

Figure 4-1 shows the process of executing a step. The clock sends input to the

sequencer and triggers the step. Then, the sequencer selects a value based on its

current index and uses it to determine the sequencer’s output for that step. After the

output is computed, the sequencer executes the corresponding event (such as sending

a MIDI note). Finally, the index increments to prepare for the next step.

4.2 GALiCA Seq

One of the primary goals of the sequencer implemented in GALiCA’s Seq class is to

enable users to quickly and easily begin making music with the system. Users are

likely already familiar with sequencers, so using this concept to inform interactions

with the system may enable users to understand it quickly and intuitively.

The other primary goal is flexibility over what each Seq instance does. However,

a maximally flexible sequencer would be a blank codebox: there necessarily must be

a model based on a sequencer’s intended use that users can adapt to their needs.

Otherwise, users may not realize the creative potential of the Seq class. This will

take the form of some intended constraints. However, every variable and function in

a Seq instance can be overwritten. Some aspects are intended to be overwritten while
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others are not, but the user has full control over how each instance operates. That

is how the Seq class balances flexibility with useful abstraction: creating a model for

how a Seq instance can be used, but allowing users to modify it however they want.

This key idea is considered throughout the design choices of the Seq class.

Ultimately, the purpose of a GALiCA sequencer is to use this flexibility to enable

intuitive interactions with a MIDI controller, discussed in detail in chapter 5.

4.2.1 Overview

The elements of a sequencer described above are described in this section.

Clock

The timing of every Seq instance is governed by a global clock, which monotoni-

cally increments throughout the lifetime of the program. There are two options for

increasing the global clock over time:

1. Internal tracking: the clock increments internally based on timekeeping done

through a JavaScript worker.

2. External tracking: the clock increments based on MIDI clock messages supplied

by an external program.

Every time the global clock increments, each Seq instance checks if it is time to

execute a new step.

Index

When a Seq instance receives a signal to execute a step, the next step value is selected

by indexing into an array of values, using the current index. After the step has been

selected, the index is incremented. By default, as with most sequencers, the index

increments by one, so that the following step is called next. However, many sequencers

allow for different index increments. In a GALiCA Seq instance, the user can define

both the index increment and the function that performs the increment.
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Figure 4-2: Examples of different increment values stepping through an array

With the default increment of 1, the values are stepped through sequentially.

When the increment is changed to 2, the step immediately following the current step

is skipped, and when the increment is a negative number, the array is stepped through

backwards.

Allowing for different increments gives the user more control over how each Seq

instance executes, and it invokes ideas from familiar hardware sequencers such as the

Arturia BeatStep Pro [2].

Output

Although the most common output for a sequencer is a note event, a traditional

hardware sequencer simply outputs a signal corresponding to a value. This opens

up endless possibilities for what a sequencer can sequence. To leverage this inherent

flexibility in a sequencer, GALiCA allows users to output any event of their choosing.

By default, this is sending a MIDI note message, but it can be anything. This is

explored in deeper detail in the section 4.3.2.
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4.3 Implementation Details

4.3.1 Values and Durations

The simple model of a sequencer described above does not discuss the amount of time

between each step. In some traditional sequencers, each step has the same length,

but the ability to adjust the length of each step has become more prevalent with

newer sequencers. GALiCA utilizes this idea to enable users to define the durations

of each step. This includes setting each step to be the same desired length as well

as using an array of durations that is indexed alongside the values array. This idea

draws inspiration from the Gibber Seq class [23].

Figure 4-3: An example of a sequence generated by separate arrays for values and
durations.

In figure 4-3, both arrays are stepped through with an increment of one. For

the first step, the value A is called and has a duration of 1. Both of these indexes

are incremented, resulting in a next step value of B and a next step duration of 2.

Once one unit of time has elapsed since step A was called, the next step occurs, so

B is called with a duration of 2. This pattern continues, resulting in the generated
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sequence shown.

The separate instantiation of values and durations allows users to choose exact

values for each, and the ability to separately control rhythm and value allows users to

easily produce extended repeating phrases. However, this choice comes with the chal-

lenge of no rhythmic bar constraints, leaving it up to the user to count out durations

and determine the total time of a Seq instances’ durations loop. This increases the

difficulty of keeping multiple sequencers in phase with each other. Because a primary

design consideration for the Seq class is flexibility, the freedom of separate values and

durations arrays was chosen despite this inconvenience1.

4.3.2 Functions

A GALiCA Seq instance has a variety of functions that are called to carry out se-

quencing. Additional functions are added to the control flow to enable increased

modifiability of each Seq instance. The functions called during a step are shown in

figure 4-4.

Figure 4-4: A flow diagram of the functions called during a GALiCA sequencer step.
The variables are represented by yellow ovals, and the functions are represented by
diamonds.

The values and durations arrays are shown as vals and durs. When the global clock

increments, each seq objects checks if it is time to execute, referencing the previous
1See TidalCycles for a different approach to organizing sequencer values and durations [39].
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step’s duration. If it is, then the Seq instance calls executeStep, which calls all the

functions necessary for a step. Two optional functions are then called: transform is

called and can optionally change the value retrieved from the values array, and then

callback is called which can perform any arbitrary function on each step. Finally, the

transformed value from transform is passed into stepFunc, which creates the desired

event for the step. These functions are described in greater detail below.

executeStep

This is the function called when it is time for a sequencer to perform a step. It calls

the functions described below and updates the step’s value, curVal. Although it is

possible for a user to overwrite this function, they would have to rewrite the necessary

code or otherwise call the necessary functions.

stepFunc

stepFunc is a variable that points to the primary function executed on each step.

Typically, this function initiates an event which utilizes the step’s current value (cur-

Val). It can be set to any function; by default, it is set to sendNote(). The GALiCA

Seq class includes two predefined functions which stepFunc can be set to:

1. sendNote() interprets each value in the vals array as a scale degree, based on

a global defined scale variable, which corresponds to an array of MIDI note

values. curVal is used to index into this array (negative values are allowed and

will index backwards through the scale array), and the corresponding MIDI

note is adjusted by the octave variable.

Once the current MIDI note value is determined, sendNote() sends a MIDI note

off message for for the prior MIDI note and then a MIDI note on message with

the current MIDI note value.

Two special characters modify this default behaviour. If curVal is set to an

underscore (_), the step is identified as a rest. In this case, a MIDI note off

value for the prior note is sent but no note on message is sent.
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Similarly, if curVal is set to a pair of underscores (__) then the current step is

identified as a tie. In this case no note off or note on message will be sent.

2. sendCC() behaves similarly to sendNote(): it uses curVal as the CC value (lim-

ited to the range 0-127) and sends a CC message to the corresponding channel.

Note that parameters required for these functions, such as velocity and channel

number, are included in each GALiCA Seq instance as well. However, users can

set stepFunc to any function and choose to ignore the functionality for MIDI or CC

sequencing, enabling the Seq instance to sequence any parameter in the code. For

example, one sequencer may sequence velocity values for another sequencer. This

could be accomplished through the following:

mySeq.stepFunc = function (){

otherSeq.velocity = this.curVal;

};

Now, every time mySeq executes a step, its curVal will set otherSeq’s velocity.

transform

transform is a function that performs an operation on curVal. It receives curVal as

a function parameter and returns a transformed curVal. By default, it returns the

original value. It is called immediately after the new curVal for the step is computed.

For example, a user may want to raise a note by a fifth based on a condition:

mySeq.transform = function(x){

return (condition ? x+7 : x);

};

If the condition evaluates to true, then curVal will be curVal+7 for this step. This

function runs separately from callback and stepFunc, so all three functions can be

edited without affecting each other.
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callback

callback is a function that is called immediately before stepFunc. It does not return

anything and does nothing by default. The purpose of the callback function is to

allow for user-defined scripts to be run on every step, separately from the primary

stepFunc. For example, if a user wanted stepFunc to be set to sendNote but also

wanted to change the rhythm of the sequence based on some boolean condition, they

may do the following:

mySeq.callback = function (){

condition ? this.durs = 1/2 : this.durs = 1/4;

};

This does not affect mySeq’s execution of a MIDI note on a step, which is done

in stepFunc, while still allowing extra code to run with every step.

Note that there is little functional difference between these mutable functions,

transform and callback, besides where they are called in the Seq class. A callback

could just as easily change curVal by manipulating this.curVal. The purpose of in-

cluding these separate manipulable functions is to encourage their corresponding uses.

If a user wants to transform curVal, it will be most intuitive to do so through trans-

form, and they may even want to modify the transformed curVal in callback. These

design choices reflect the broader goal: flexibility within the Seq class through user-

changeable design choices made with a conceptual intent. The transform function

was made with one concept in mind, but the user can choose to engage with this to

their desired extent.

4.4 Parsing

In order to enable certain sequencer operations, the code from the codebox must be

parsed and interacted with. This is done through CodeMirror [25].
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4.4.1 Recognizing Seq Instances

Adding Seqs

When a user executes a Seq instantiation, it would be inconvenient for the user to have

to additionally start the seq or add it to a data structure of Seq instances. Through

codebox parsing, the system will recognize a Seq creation and automatically add it

to a dictionary of Seq instances. This dictionary is checked whenever the globalClock

is increased. If any Seq instances in the dictionary indicate that it is time for a step,

they will execute.

Persistent Variables

CodeMirror is locally scoped so that any variables declared within the codebox will

not be available to the rest of the system. This is problematic, as the user may want to

refer to variables they have previously run. To counter this, the system parses variable

declarations and makes them globally scoped, allowing them to be referenced by the

user once they are executed.

4.4.2 Redefined Input Arrays

A Seq instance can be created with a named array. For example, an array called

notes:

notes = [1,2,3];

mySeq = new Seq(notes , 1/4);

If the notes list is redefined:

notes = [4,5,6];

This will not affect the vals of mySeq, because the notes variable now points to

a different object, and mySeq is using the de-referenced object. This is a rule in

JavaScript. However, a user may want to operate on an array that has been passed
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into Seq instances and see those changes reflected in the sequencers. To accomplish

this, the codebox is parsed to find where named arrays are used in Seq instantiations,

and whenever one of those arrays is redefined, the new array object replaces the

original one in each Seq instance in which it appears. Now, if the example above

occurs, mySeq’s vals will read: [4,5,6].

4.5 Reflection

The sequencer concept detailed in this section provides the means through which the

gestural interactions in chapter 5 are explored. The ability to modify the operation

of a sequencer, through changing not only the values and durations arrays, but also

the changing the step increment, modifying the step function, and creating transform

and callback code, opens up many opportunities to intuitively engage with the inner

workings of the sequencer. The ease of interacting with these changes allows for a

large space of modifications which require very little code from the user.
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Chapter 5

MIDI Algorithm Interactions

This chapter details four ways in which a MIDI controller can be used to interact with

algorithms written in the codebox. The motivation for this section is to develop and

evaluate techniques that integrate gesture into live coding, to examine the potential

of a combined modality.

5.1 Overview of Implementations

The four Algorithm Interactions described in this chapter are:

1. Controller-Created Ternary Expressions

2. Controller-Mapped Expression Variables

3. CC Variables and Callbacks

4. MIDI Note Callbacks

The following sections detail the motivation, implementation details, and analysis

of each technique.
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5.2 Ternary Expressions

Ternary expressions are a common technique that enable live coders to generate

conditional algorithms quickly. For example, (x > 0 ? x : 0) will return x if x

is positive, or 0 otherwise. This section explores using a MIDI controller to generate

these expressions, instead of a computer keyboard.

5.2.1 Goal

As discussed in section 3, live coding encourages sonic exploration. However, there are

limitations to this exploration. Algorithms must be precisely defined in a codebox. If

the performer decides to explore and alter the system’s sonic output, they must choose

which specific elements to adjust and choose exactly how to adjust them. All of this

occurs on a high cognitive level. The performer must conceptualize the algorithms and

parameters, then choose which ones to modify, one by one. If a performer wants to

change a value, they will have to select and enter a new chosen number, e.g. changing

the statement globalClock%5%2==0 into globalClock%5%3==0. Although this is a

useful method of interacting with the code, it does not recruit many of the physical

mechanisms that gestural musicians use to great effect.

This limitation could potentially be addressed by using a MIDI controller to write

codebox input. The first iteration of this idea is enabling the performer to use a MIDI

controller to create a ternary statement: a user could actuate CC dials and MIDI

buttons to create a usable conditional algorithm in the code. This is a completely

new type of control over the sonic production of the system. This makes it possible for

algorithms to not have to be precisely defined and conceptualized on a high cognitive

level. Instead, the performer can create an algorithm through a physically guided

process, and may even be able to develop muscle memory in doing so. The sonic

exploration of live code can become physical as well as conceptual. Because ternary

statements are commonly used in many live coding performances, this technique may

be a natural way to introduce tactile input into the code system.
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5.2.2 Implementation

Conceptualization

Instantiating a ternary statement from a physical controller requires re-conceptualizing

what a ternary statement is. Programmers are familiar with having the ability to

create arbitrarily long ternary statements with a very large value/operator selection.

Although most programmers likely type ternary statements from left to right, there

is no requirement that one must do so. Instead, a programmer could very easily write

the condition last, or modify the condition after having written the return values.

There are many possible conceptualizations, but three possibilities were considered

here:

Ternary Concept
Features

Backtracking Conditional Format
Conditional
Expression

Length

Return
Expression

length

Rigid Left-to-Right No <L value> <operator> <R value> 3 1

Value/Operator
Left-to-Right No <value> <operator> <value>

<operator> <value> ... ≥1 ≥1

Selector Yes - - -

Table 5.1: Main differences between ternary types
Note: "Length" is the sum of the number of values and the number of operators in an
expression.

1. The rigid left-to-right ternary: In this conceptualization, a ternary takes

the structure:

(<L value > <operator > <R value > ? <T value >:<F value >)

where “values” must be either a number or a variable. It is created from left

to right with no backtracking. The limitations are evident: the conditional

structure excludes single boolean variables as well as more complex expressions
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(unless they are stored in a variable, such as a = x%3). Creating a ternary

expression with this structure would involve a finite selection of values and

operators which are cycled through and once selected, unable to be changed, so

that the control will flow monotonically left to right.

2. The value/operator left-to-right ternary: In this conceptualization, a

ternary takes the structure

(<expression 1> ? <expression 2> : <expression 3>)

where each expression is modeled as a series of value+operator+value choices

which can be arbitrarily long, or as short as just one value. There is still a

finite selection of values and operators, but now there is an infinite space of

possibilities for each expression, unlike the rigid ternary. This added flexibility

comes at the cost of the assurance that the condition <expression 1> evaluates

to a boolean value. This ternary model still requires a strict left-to-right control

flow, with some ability to progress to selecting the next expression once the

current expression is complete.

3. The selector ternary: This conceptualization may use a rigid or a value/op-

erator structure, but the key difference is that the control flow does not need

to be strictly left-to-right. A choice may be backtracked to and altered by se-

lecting the location of a value or operator. The main creation may still be left

to right, with backtracking only used in cases where a previously chosen value

is changed, or the ternary may be initialized as (___ _ ___ ? ___ : ___)

in a rigid format, and the user can select which box to begin populating.

The complexity of each of these approaches increases from 1 to 3. Flexibility, the

ability to create many different ternary statements, is an important design consid-

eration. The use of the physical controller must not become cumbersome with too

many fine-grained choices: the most flexible system will be simply using the computer

keyboard to quickly type a ternary structure. However, there is a lower threshold on
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flexibility, past which the MIDI controller will not be a useful tool for creating ternary

structures at all. If the MIDI controller constrains the possible space of ternary struc-

tures too much, the desired ternary statement may be impossible to produce, and the

live coder may have to return to the computer keyboard.

Implementation

To create a ternary expression, the user begins by typing startTern() into the code-

box. When they run this line, the codebox freezes input from the user, and replaces

startTern() with the beginning of a ternary expression: "( x." The user can flip

through a number of variables by using a CC dial from their MIDI controller. The

dial range is split equally among all the available variables. For example, if there

are 4 variables, then the dial values are mapped into quadrants, as shown in figure

5-1. Once the user has selected their desired variable, pressing any MIDI note will

lock the choice and progress to the operator choices, which are mapped to dial values

as described before, as shown in figure 5-2. The user continues to select values via

the CC dial and continue on to progress through the ternary via MIDI notes until

the expression is complete, at which point the codebox is unfrozen, and the user can

begin typing into it again. This process is detailed in section 5.2.3. Using this general

technique, 3 approaches were attempted:

1. Full if/else: The first iteration of this design took the form of a full, multi-line

if/else conditional. When the user typed startIf() into the codebox, the if

appeared at the bottom of the screen, and the values were selected via the

CC dial/MIDI note method as described before. This was functional, but the

use of a full if/else conditional is limited. Additionally, replacing the startIf()

command with the expression is much more intuitive: once startIf() has been

used to make a conditional, the startIf() command is no longer useful. In the

worst case, it may clutter the screen or be accidentally started again by running

a block of code. Also, choosing the location of the conditional is important, and

the best way to do so is to type the “start” command in the desired location.

It is much more intuitive to replace the command with an in-line expression
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rather than a multi-line one, so ultimately, the ternary expression was chosen

over the if/else.

2. Rigid left-to-right: The first ternary expression was implemented in the rigid

left-to-right form, where each value can be a variable or a number, chosen from

a small selection of options, and the operator is chosen from {<=, >=, =}. This

rigid structure is only capable of producing a small set of ternary expressions.

A user may want to execute a more complex structure, such as “x/6 > y%3”,

leading to the decision to implement a value/operator format.

3. value/operator left-to-right: The final implementation takes the form of a val-

ue/operator left-to-right ternary with alternating variable and operator choices

and no limit on how large each subexpression can be. The user uses the CC dial

to select variables and progress through the expression with MIDI notes, and

each subexpression ends once the user chooses a space instead of an operator.

For example, if the user has already entered x + 3 < y, then for the next op-

erator, turned the CC dial until the space appeared and selected it, a “?” would

be entered, and the next step would be a variable entry. Although this method

allows users much more control over the statement structure, it can quickly

become cumbersome. The more choices there are, the more carefully the user

has to select. Additionally, the possibility for invalid statements increases.

4. Selector: There is no implementation for the selector ternary concept. Certain

mediums may be conducive to a selector ternary structure, but a codebox makes

implementing this concept in an intuitive way difficult.

5.2.3 Example

An example ternary for each of the implemented ternary conceptual structures, a

rigid ternary and a value/operator ternary, are described here. In each case, a CC

dial is used to select either a variable or an operator, where the range of the dial is

split among the number of options. Figures 5-1 and 5-2, show four and three options
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respectively, but a user could have many more.

Figure 5-1: A dial selecting a value Figure 5-2: A dial selecting an operator

Rigid Ternary

In the rigid ternary conceptualization, a user would begin by typing startTern()

and running the line.

startTern ();

After running the line, the codebox freezes, and the startTern() statement be-

comes the beginning of a ternary expression:

(x

The user can then cycle through a number of variables and numbers using CC

dials. Once the user selects the intended variable, CC1 in this case, the choice can be

locked in by sending a MIDI message. Once the MIDI message is sent, the ternary

expression moves on to allow the user to select a conditional operator:

(CC1 >=

Now, the same CC dial changes the operator type. Once the user lands on the
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chosen operator, “==” in this case, and presses a MIDI note, they can now choose the

variable to compare CC1 to:

(CC1 == CC1

Once they select the new variable, the ternary expression progresses by completing

a “?” and allowing the selection of a new variable, which will be the returned value if

the conditional evaluates to true:

(CC1 == x ? CC1

Now the user once again selects the value via the CC dial and continues through

the expression by sending a MIDI note, at which point a “:” populates, and the user

can choose the final value, which will be the returned value if the conditional evaluates

to false:

(CC1 == x ? CC2 : CC1

Once the user chooses this value, the ternary expression is complete. The fi-

nal parenthesis will populate, and the user will once again be able to type into the

codebox:

(CC1 == x ? CC2 : x)

value/operator Ternary

In a value/operator ternary, a user would begin the same way (with a larger number

of operator possibilities, such as + and -). The two approaches diverge once the

second value is selected. Suppose the user has selected up to this point:

(CC1 == x

At this point in the rigid ternary, the expression would progress to the true return
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value selection. In the value/operator ternary, however, the user can choose to either

progress by selecting a space, or continuing the conditional expression with a new

operator:

(CC1 == x +

Now, the user can select another value:

(CC1 == x + y

The user once again has the option to either complete the conditional expression

by selecting a space, or continue the expression by selecting another operator. In this

example, the user selects a space, and the conditional expression is complete. The

ternary progresses to selecting return values:

(CC1 == x + y ? CC2

Now, the user can once again create an expression here by selecting an operator,

or continue to the next return value by selecting a space.

(CC1 == x + y ? CC2 -

Once the user completes this expression, selecting a space will allow the user to

select the final return value:

(CC1 == x + y ? CC2 - CC3 : x*(CC4+CC5)

Once the user selects a space, the ternary expression completes, and the user gains

control of the codebox again.

(CC1 == x + y ? CC2 - CC3 : x*(CC4+CC5))
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5.2.4 Reflection

The MIDI controller-created ternary expression was successfully implemented and

provides a means to engage with codebox algorithms through a MIDI controller,

which opens up new possibilities when performing with a live coding environment.

However, there are several drawbacks to this approach that limit its usefulness.

First, the user may want to choose among many variable and operator options.

For example, a user may want access to CC values 1-10, a few variables, and a variety

of positive and negative integers. The CC dial is good at selecting among a few

options; however, once the number of options exceeds this low threshold, choosing

among them with a dial becomes difficult, as it is easy to overshoot the intended

value. This can become very frustrating, and the precision of a computer keyboard

may dissuade a user from using the MIDI controller to complete a task which can be

done very quickly by traditional typing.

Second, in the current implementation, the user does not have the ability to

backtrack, so mistakes are costly. If the user accidentally progresses after a mistake,

there is no way to go back and correct it, so the ternary statement will have to be

restarted. This could be fixed by including a means to go back and change values,

i.e. implementing a selector ternary, but doing so would introduce more complexity,

requiring perhaps different CC dials to be mapped to different actions (e.g. CC1 is

“select variable” and CC2 is “select ternary position”).

Third, externally editing the codebox is invasive and prone to errors. While creat-

ing a ternary structure, the codebox must be frozen, because changes to the ternary

function code will break the ternary creation process: the current implementation

uses regex matching to find the current algorithm and modify it. Giving the user

the ability to invoke a command that freezes the codebox makes it necessary to give

the user a way to regain control of the codebox. In the current implementation,

this is done with a separate button. Having a button solely for this purpose adds

unnecessary complexity to the user interface.

Fourth, unless one CC dial is dedicated to ternary expressions, CC dials will be
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mapped differently throughout the duration of a performance. For example, the dial

that sends CC1 messages may at certain points be used to alter CC1 values, and

at other points be used to select ternary operators/values. This requires the user

to shift mental models of the same controller which could become confusing during

a performance. This is exacerbated by the mapping change being implicit: running

startTern() changes the mapping in a way that is not immediately obvious. The

alternative, in which one dial is set aside for ternary expressions, is limiting because,

depending on the MIDI controller, this may reduce the number of available CC dials

significantly.

Fifth, this technique does not have an intuitive performance flow. A user must type

into the codebox to begin the ternary creation process, switch interfaces to use the

MIDI controller to complete it, then likely return to the codebox to continue editing

or run the expression. Without a strong incentive to creating a ternary expression

via the MIDI controller, creating a ternary via the codebox seems more effective.

Sixth, there is no immediate sonic feedback from these MIDI controller interac-

tions. A large contributing factor in forming physical associations through muscle

memory is immediate feedback. Additionally, it can be more satisfying to the audi-

ence when a visible physical input to the system results in a noticeable change. Using

a MIDI controller to silently add code to the codebox removes some of the potentially

satisfying and important components of physically interacting with the system.

Given these drawbacks, the idea behind the MIDI controller-created ternary ex-

pressions is interesting, but it may not be practical for a performance. It addresses

the ideas mentioned before: introducing a physical means of exploring the code and

adding some amount of interest through human variability and error to the perfor-

mance in a way that simply typing code cannot. Additionally, a user may be able

to create interesting ternary structures very quickly through muscle memory. As-

sociations formed through physical interactions can form embodied knowledge, and

physically interacting with the system in another capacity may shift the performer’s

mental approach to using the system in an interesting way.

However, the learning curve to efficiently create structures through this method
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is steep, and it is possible that even after spending time learning and practicing this

technique, a user may still not approach the efficiency of simply typing out a ternary

structure. Additionally, even if a performer becomes very skilled with this technique,

they will still have to change interfaces, from computer (to run startTern()) to MIDI

controller (to create the expression) and back (to run the expression). This process

may be too awkward for the performer to utilize and too error prone to create practical

ternary expressions.

5.3 Expression Variables

Rather than creating an entirely new algorithm through a MIDI controller— a task

which may be most well suited to a computer keyboard— a MIDI controller could be

used to select among existing algorithms. This section explores this possible approach

to interacting with codebox algorithms through a MIDI controller.

5.3.1 Goal

Although creating ternary expressions through MIDI controller input has potential

as a means of tactically engaging with code, there are several complications that can

be improved on:

• Precision issues: It is difficult to create a useful ternary expression due to the

precision constraints of MIDI controller input.

• Codebox editing: Modifying the user’s code in the codebox is not ideal because

it either requires suspending user input to the codebox or risking frustrating

bugs.

• Unintuitive interface flow: The user must type on the computer keyboard,

switch to the MIDI controller to create a ternary statement, then return to

the keyboard to run the code and continue to edit it.
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• Sonic response: There is no immediate aural feedback when manipulating the

controller, which can be an important factor in both developing muscle memory

and creating an engaging performance.

These limitations can be addressed by a different way of controlling algorithms in

the code: using a MIDI controller CC dial to change which expression a variable in

the code is mapped to. This would avoid the precise nature of actually implementing

each algorithm (which is done in the codebox), remove the need to freeze user input

to the codebox, and allow the user to dynamically adjust code to change the aural

response without returning to the computer keyboard.

The motivation behind this implementation is to introduce more intuitive physical

control over algorithms in the code. When a user is moving a CC dial and swapping

out algorithms, they may begin to forge an association between a sound and the

dial position, eliminating the need to mentally track the specifics of each algorithm.

Rather than manipulating code through the conscious awareness of algorithmic de-

tails, the user may build embodied knowledge of the state of the system and use that

to direct changes, basing these choices on an awareness of how a physical movement

impacts the sound of the code. When multiple variables are mapped to CC dials, the

user may create an even more intricate understanding of how dial movements interact

with each other. This ability could enable a new space of rich interactions with the

code that is not available from typing into the codebox.

5.3.2 Implementation

The user interface is now split into 3 screens: the codebox, a box showing what

algorithm each variables is assigned to, and a box showing the available algorithms,

shown in figure 5-3.
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Figure 5-3: The layout of the GALiCA Expression Variable interface

The user can create a new algorithm by running the function addToAlgs(expression),

where expression is a string containing the desired algorithm. Although JavaScript

allows variables to be set to expressions, the current implementation uses a string as

input so that if the expression contains other variables, the result of the expression

will update as they do. After the function has been executed, the new algorithm will

appear in the Available Algorithm div.

To create a new expression variable, the user can run the line assignAlg(varName,

CCNum), where varName is a string containing the desired variable name, and CCNum

is the CC number of the CC dial which will be used to control which expression the

corresponding variable is mapped to. Once assigned, any adjustment to this CC dial

will always change the variable’s value.

Similar to the way that CC dials choose values as described in the Ternary Expres-

sions section, the range of the CC dial is split into the number of available algorithms.

If there is only one, then all values of the CC dial, 0-127, will map to that algorithm.

If there are two algorithms, then CC values 0-63 will map to one algorithm, and values

64-127 will map to the other. As the user adds more algorithms, the corresponding

range of values for each becomes smaller.

When a new expression is selected, the system will replace all instances of the
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assigned variable with its corresponding expression: the code will run exactly as

though the expression appeared wherever each variable does. The code specified in

the codebox therefore does change based on MIDI controller input, but the appearance

of the codebox does not change, removing the need to suspend user input to alter the

codebox directly.

5.3.3 Example

A user might begin by choosing to change a conditional expression by a variable.

First, they may add a few different conditions to the Available Algorithms:

addToAlgs("globalClock %6%5%2 == 0");

addToAlgs("Math.random () > 0.7");

addToAlgs("seqA.curVal == 5");

When the user runs this block of code, the Available Algorithms box will be

updated correspondingly, as shown in figure 5-4.

Figure 5-4: The Available Algorithms box, populated with user-added algorithms

Now, if the user wants the variable a to contain a conditional expression, which

73



is mapped to CC1, they can run the line:

assignAlg("a", 1);

After the user runs this line, the Algorithm Assignments box will update, as in

figure 5-5.

Figure 5-5: The Algorithm Assignments box, showing the current algorithm assigned
to a

When the user turns CC dial 1, the variable a will map to a different expression,

based on which expression corresponds to the range the CC dial is in. The mapping

of CC dial 1 is shown in figure 5-6.
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Figure 5-6: A CC dial selecting among the three available algorithms

The selected algorithm will update in the Algorithm Assignments box. For exam-

ple, if the CC dial is turned to the top third of its range, the variable a will update

to the corresponding algorithm, shown in figure 5-7.

Figure 5-7: The Algorithm Assignments box once a has been changed to a new
algorithm

Now, the user can use the variable a in the code. For example, in the callback of

a sequencer called SeqA:
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seqA.callback = function (){

a ? this.velocity =0 : this.velocity =120;

};

When the user moves the CC dial and changes which condition a is mapped to,

that condition will populate the expression used in the callback. In this example, the

condition will determine the rhythm of seqA by setting some notes to a zero velocity,

so as the user moves CC1, the rhythm will change.

5.3.4 Reflection

This technique allows for a more intuitive way for users to adjust algorithms from

MIDI controller input. It resolves one of the primary problems with algorithm creation

that was uncovered by trying to create ternary expressions through MIDI controller

input: the space of potential algorithms is infinite. An algorithm can take many

different structures and use an large space of variables and numbers. This makes cre-

ating an algorithm through the limited controls of a MIDI controller very challenging.

By using a MIDI controller to select among codebox algorithms, the creation of the

algorithms is left to the codebox, the most reasonable domain for doing so. The user

can create any of the infinite possible algorithms, but still interact with them through

the controller.

This technique also provides immediate sonic feedback to changes in CC value.

The user can intuitively interact with the MIDI controller and note how adjusting

each dial changes the sound of the code. Through this, the user can continue an

engaging performance solely by interacting with the MIDI controller, allowing for

the physical exploration of the code without going back-and-forth between computer

keyboard and MIDI controller.

However, there are a few inherent issues with this design. First, if a function calls

one of these variables, and it is subsequently removed from the codebox, it will no

longer change with CC input. The called variable must be on screen in order for it to

change with the corresponding CC dial. This is due to the current implementation
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and could potentially be addressed.

Another limitation with this design is that, currently, if the user wants to use

expressions with different return types (e.g. a conditional expression which returns a

boolean or an algebraic expression that returns an integer), some CC values will cause

errors in the code if all expressions are listed under Available Algorithms. This could

be addressed by having different classes of expressions, but it would add complexity

to the system. Additionally, there is no compiler that checks whether an algorithm is

valid at the time when it is added to Available Algorithms, as it is added as a string.

This could cause frustration when the expression is put in the code and throws an

error. A fix could be to compile the expression as a test and inform the user in the

console if does not compile, but this is not currently supported.

Nonetheless, this approach has the potential to be an exciting new performance

tool. A performer may use the controller to explore code as it is being written, or they

may choose to do most of the live coding in the beginning of the performance, then

switch to primarily playing the MIDI controller. Either performance mode would be

a different way of engaging with a live coding system, and there is great potential to

involve embodied cognition in these performances.

5.4 CC Callbacks and Variables

Traditionally, CC dials are used to set parameters of virtual instruments. However,

there may be great creative potential in setting a variable in the code to a CC value,

so that moving a CC dial changes that value in the code. This section consider the

implications of this approach.

5.4.1 Goal

After a value has been written into the codebox, it only changes if either it has been

set to a variable that changes over time (for example, x is sequenced by a sequencer),

or it is deleted and replaced by the user who then reruns the line of code. In the first,

the value change is totally automated by another process and no longer controlled by
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the user. This can be positive as it frees the user’s mental load, but correspondingly,

it deprives the user from engaging with the parameter on a signal level.

In the second, the user has the freedom to write any value they wish very quickly.

If, for example, they know that they want x to be 7 instead of 2, they can do so

almost instantly. However, it is difficult to explore a range of values in this way.

Every time the value is modified, the code must be manually rerun. If the user wants

to try setting x to values between 1 and 20, for example, then the process of doing so

is very arduous, and it requires the same repeated stereotyped movement: delete old

value, write new value, enter line. This limits the way that variable modification can

be physically embodied.

A new way to explore variable spaces is through setting the value of a variable

in the code with a CC dial on a MIDI controller. Through this technique, the user

can explore a range of values for a variable with physical movement. Additionally,

each CC value can be mapped to a callback function, so when a CC value is changed,

the code can rerun itself. Now, the user does not need to tediously enter and run

lines of code: the changes can be done swiftly and physically. In this way, the user

can form a physical understanding of how changes in a variable’s value correspond

with dial movement. The act of changing a value is physically embodied, rather than

quantitatively noted. This may pull the live coding performance into signal level

playing and give the user the ability to expressively interact with the sonic output

real-time in an intuitive way.

5.4.2 Implementation

The implementation of this concept is simple: when the system receives CC input

from CC channel x, it stores the received value in a variable called CCx and runs a

callback called CCx_func. For example, if a message is received from CC channel 1

with the value 5, CC1 is set to 5, and CC1_func() is called.

The user can write the variable CC1 anywhere in the code, and when it is accessed,

it will always equal the most recent CC data from channel 1. If CC1 is used in

an expression that is only called once, then the expression can be re-called in the
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corresponding CC callback. For example, if a variable x is declared as x = CC1 + 5,

and the user wants its value to update with changes to CC1, then the user can run the

line: CC1_func = function(){x = CC1 + 5;}. Now, every time CC1 is changed, x

will change as well.

5.4.3 Example

To include a CC value in the code, a user simply needs to write its corresponding

variable. There is no need to initialize it. Here is an example of a user setting a

sequencer’s transform function based on the current CC value from CC12:

seqA.transform = function(x){

return x+CC12 %5;

};

Rotating the CC12 dial on the MIDI controller will alter the value that is added

to seqA’s output every step.

If a user wants to set a sequencer’s volume to a CC dial, they may write:

seqA.velocity = CC12;

Note that this will only update when the line is run. To make the line run every

time a new CC12 value is received, the user can write:

CC12_func = function (){

seqA.velocity = CC12;

};

Now, when CC12 changes, SeqA’s velocity will change correspondingly.
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5.4.4 Reflection

The implementation and use of MIDI-controlled CC variables is far simpler than

the previously discussed MIDI controller-created ternary expressions and expression

variables, but it may be even more powerful. Changing a value in the code is a very

intuitive interaction, and the ability to engage with algorithms in a predictable but

interesting way, while entirely away from the computer keyboard, opens up a new

way to perform.

A user can map any value in the code to a CC dial: from note pitches and durations

to more obscure values hidden in complex algorithms. A performer could physically

participate in the code in a completely predictable way, such as mapping a CC dial to

a sequencer’s velocity, and perform more closely with how an acoustic instrumentalist

may perform. Alternatively, they may choose more complex variables and participate

in an exploratory way, such as scaling the received CC values to a sine wave or

an exponential curve. A performance mapping could include some dials mapped to

the former and others to the latter, enabling different modes of performance even

just on the MIDI controller. As the performer builds an intuitive understanding

of how the system sonically responds to movements of a dial, they could choose to

use that throughout the performance and engage with it as embodied knowledge, or

spontaneously change the mapping and force themself to start the process of learning

the system all over again. This simple idea may have large implications for new ways

to perform code. Assigning callbacks to CC messages is a traditional form of mapping

CC dials within the NIME community, but because of the flexibility of live coding,

there are many new possibilities in conceptualizing and implementing this technique.

5.5 MIDI Note Callbacks

CC Callbacks and variables are a creatively powerful tool. However, the use of a dial

to initiate a callback suggests a continuous function, rather than a single event. One

potential approach to allow a live coder to gesturally introduce a single event is a

MIDI note callback.
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5.5.1 Goal

When a live coder wants a new sound, they must run a new line of code. If the live

coder wants to explore changes in sound, such as how a sequence sounds when its

pitches are from a major scale versus when they are from a minor scale, they must

manipulate and run lines of code. Although this process is a simple procedure for the

live coder, its repetitive nature suggests the opportunity for gestural engagement.

The goal of MIDI note callbacks is to allow live coders to initiate events in the

code, for example, switching between a major and a minor scale, by pressing a MIDI

note on their controller. Similarly to CC callbacks, this may allow a live coder to

form an embodied understanding of the algorithms they are executing, and work with

them in a new way beyond the computer keyboard. This shift from symbol to signal

level playing may have large implications for the performance style and cognitive

approach.

5.5.2 Implementation

MIDI note callbacks are implemented similarly to CC callbacks. If the system re-

ceives a MIDI note on message with note value x, it runs a callback function called

midix_func. For example, if the note on message contains a note value of 6, an F,

then midi6_func() is called. Any octave of a note maps to the same callback func-

tion; this is to avoid complexities with MIDI controller octaves and ensure that the

user can easily execute a desired callback. For example, if the note on message con-

tains a MIDI note 66, corresponding to a higher octave of F, then the same callback

is called: midi6_func(). These functions can be set by the user in the same way as

described for CC callbacks.

5.5.3 Example

If a live coder wanted to change the scale of all sequencers in the project to be minor,

they could do so by calling setScale(minor). To switch it to major, they could

run setScale(major). The process of running these lines of code is not particularly
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taxing, but a MIDI controller can do it instead.

To make a MIDI note C switch all sequencers to a minor scale, the user can run

this line:

midi0_func = function (){setScale(minor)};

and to make a MIDI note D switch the scale to a major:

midi2_func = function (){setScale(major)};

Now, when the user presses any button on their MIDI controller that corresponds

to a MIDI note C, the sequencers will play in minor, and if they instead press any

MIDI note D, the scale which switch to major.

5.5.4 Reflection

The concept of a MIDI note callback is similar to that of a CC callback, but the

way it is conceptualized is very different. Being able to assign a discrete event to

a button push on a physical controller is a powerful tool for a live coder. In some

ways, it challenges the mental distinction between a function and a signal, as the

user can interact with functions as though they were signals. Rather than typing and

executing code to initiate an event, the user simply pushes a button and the event

occurs. New ways of conceptualizing functions may introduce new ways of interacting

with the code.

With this technique, any event that can be expressed in code can be easily assigned

to a MIDI note. This could be a low level event, such as changing the pitches in

a sequencer, or a much larger scale event, such as using one button to transition

to a completely different sound, perhaps by muting a large numbers of sequencers,

switching virtual instruments for sequencers, and changing the tempo. This technique

could be a powerful compositional tool, and the composition may be able to occur in

a physically embodied way.
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Chapter 6

Conclusion

The purpose of GALiCA is to examine the implications of combining live coding

with gestural performance, to discover which resulting performance mechanisms are

intuitive, useful, and worthy of further exploration, and to uncover less successful

interaction modes which are less promising. The system was used as a testing grounds

for four gestural approaches to algorithmic modification: ternary expression creation,

expression variable selection, CC callbacks and variables, and MIDI note callbacks.

Each approach incorporates gestural interaction through MIDI input from a standard

MIDI controller.

This thesis also presents a sequencer class that was designed to facilitate the

combination of live coding and gestural musicianship. The structure of GALiCA’s

Seq class includes functionality seen in other types of live coding sequencers, but each

Seq object is also highly modifiable. Performers can edit a Seq object however they

can imagine, and this is further facilitated by a unique conceptualization of sequencer

interactions.

6.1 Sequencer Design Analysis

GALiCA’s sequencer class was designed to allow for flexibility and modifiability while

still providing conceptual clarity and a straightforward workflow. Constructing the

Seq class to be highly modifiable is helpful for the gestural interaction potential of the
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system: the ability to modify sequencers on-the-fly encourages new ideas for gestural

interaction. All sequencers have a designed conceptual model. GALiCA’s sequencer

design was driven by considering which conceptual model will encourage the most

creativity and showcase the sequencer’s potential.

Because GALiCA is a live coded system, users have the capability to live code a

sequencer from scratch and modify a Seq object however they want. However, com-

plete open-endedness can be so free that the user may not realize the system’s creative

potential, and constructing desired structures from scratch may be time-consuming

and cumbersome. After all, complete open-endedness would be a blank codebox.

Therefore, a template sequencer class with a wide range of described interactions

may encourage a high level of creativity and give the user the ability to interact with

the system in a conceptually interesting way rather than an implementation-focused

way. In other words, giving a user a useful conceptual model can be powerful.

Unique functions were introduced into the class, such as transform, callback, and

stepFunc. These functions are already incorporated into each Seq instance’s oper-

ation, so the user can redefine a function and not have to manage its place in the

sequencer. These functions allow for the operation of a Seq object to be modified

on-the-fly, showing the user a very large space of potential and easily implemented

interactions.

In addition to these special functions, a number of default functions that enable

quick creation of useful sequencers were also included. Important functions are shown

in figure 6-1.

Many potential models were considered for the GALiCA’s Seq design. There are

numerous ways to conceptualize a sequencer, and this is just one of them. Overall, this

model was successful for the purposes of this project, balancing typical use-cases of

sequencers (such as sending notes by default) with open-ended modification potential

that has a low overhead to implement.
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Figure 6-1: A flow diagram of the functions called during a GALiCA sequencer step.
The variables are represented by yellow ovals and the functions are represented by
diamonds

6.2 Gestural Interaction Analysis

Four different approaches were implemented to explore gesturally interacting with

algorithms. These approaches had very different outcomes, with each suggesting a

different performance style.

The first approach involved using a MIDI controller to construct ternary state-

ments by cycling through available values and operators via CC messages. This idea

came from the prevalence of concise ternary statements in live coding performances,

which allow for quickly-created and interesting algorithmic patterns. Although suc-

cessful in its execution, there were a few primary challenges with it:

• The performer would have to switch from computer keyboard to the MIDI

controller to create the expression, then back to the computer keyboard to

execute the code.

• The codebox had to be modified by the system in order to display the current

ternary expression. This could increase the likelihood of program bugs.

• The gestural interaction did not elicit any sonic outcome that could be paired

with movements, because code execution occurred after gestural input. This

could hinder some of the cognitive benefits of gestural interaction.
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Although a useful first attempt, this approach would likely not provide much perfor-

mative benefit.

The next approach iterated on some of the shortcomings of the ternary statement

construction. Instead of creating algorithms from scratch, this approach lets the user

dynamically cycle through algorithms in the code that have already been written.

This technique was much more successful, as the performer can engage with real-

time sonic changes through physical manipulation and not have to switch between

interfaces. Additionally, codebox editing is not required. Through this approach,

a live coder may spend some of the performance solely playing code on the MIDI

controller, although there are many potential performance techniques.

The final two approaches explore a completely different form of physical input:

assigning code parameters to CC values, and code events to MIDI note events. Tradi-

tionally, live coders must redefine values in the code and re-run every necessary line if

they wanted to explore how changing parameter values affects the code’s sound. With

this new approach, by assigning callbacks to CC and MIDI notes and using values tied

to CC dials, performers can use gesture to real-time update values in the code and

execute algorithmic events. This allows the performer to form associations between

physical movement and sonic outcomes resulting from the algorithmic modification.

The use of CC messages for continuous value inputs and MIDI note messages for

discrete events could be used to great effect in a performance.

Analyzing these approaches reveals some characteristics of successful gestural en-

gagement. If a performer wants to make a single change to the code, such as creating

a ternary expression, they will likely prefer a computer keyboard. The benefit of

gestural interaction in this case is not clear; a computer keyboard will be simpler and

more intuitive to use. However, if a performer wants to continually change the code

based on sonic response, they may find great benefit from being able to do so with a

physical controller. A gestural controller allows the performer to scan through ranges

of variables or algorithms, which is not accessible with a computer keyboard.

There are many potential styles of interaction using these gestural approaches.

A performer may, for example, begin by live coding a system, then perform for the
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remainder of the time on a MIDI controller. A performer may also switch back and

forth throughout a performance to construct different sounds, or they may even use

both nearly simultaneously, writing new algorithms and testing how parameters on

the MIDI controller affects them.

6.3 Contributions

This project serves as an exploration into the possibilities and implications of gestural

live coding through MIDI controllers, as well as a discussion of conceptual models for

sequencers. The main contributions are:

• An overview of the cognitive and performative implications of combining ges-

tural musicianship in the signal domain with live coding in the symbol domain.

• A new conceptual model of a sequencer that encourages modification of se-

quencer operation through novel re-definable functions.

• Functional examples of gestural control over live code algorithms and parame-

ters, as well as a discussion of their implications on performance.

• Examples of using a MIDI controller to transduce physical interaction into useful

algorithmic signals in a software system.

• A live coding system, GALiCA, that implements the approaches described

above.1

6.4 Further Work

Beyond any concrete implementation goal, the overarching goal of GALiCA was to

suggest the potential of gestural live coding. This approach has seen little attention

in current live coding practices, and any success of GALiCA may show the perfor-

mative potential of this new modality. Further work could more deeply consider the
1Source code at https://github.com/hsavoldy/GALiCA [46]
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implications of this approach on performance and further evaluate its usefulness in a

live coding practice.

Additionally, there is a large amount of work that can be done in exploring the

conceptualization of a sequencer. A live coded sequencer can be conceptualized as

anything, and the implications of this conceptualizations may be vast for a live coding

performance. Further work may build off of the ideas presented here about what

makes a sequencer concept useful, and create new interaction modes that open up

more creative possibilities.

There are also implementation details in GALiCA that were not fully explored

due to the scope of this project:

• Visual Feedback: using a MIDI controller as input to the code system could be

benefited by some form of visual feedback. For example, displaying how values

mapped to the controller are changing. This could be done in a way that avoids

editing the codebox itself.

• MIDI Controller Profiles: providing a default controller mapping, or allowing

users to save a mapping, could potentially enhance the experience of using a

gestural live coding system.

• MIDI Flexibility: the choice to have the system send MIDI output rather than

generate sounds itself allows users to choose any available external synth to

generate sound, which can grant a lot of freedom. However, MIDI itself is a

very limited protocol. Future work could be developed from this project in

exploring uses of MIDI 2.0 [24].

Finally, the actual cognitive impacts of this new modality need further explo-

ration. Research can be done as live coders become familiar with performing with

a gestural live coding system, examining how their performances change, how their

conceptualization of the system and their interaction style with it are affected, and if

the benefits of gestural performance are seen in this new modality.
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6.5 Conclusion

GALiCA provides a foray into an exciting potential direction of live coding, one

in which a live coder is able not only to type into a codebox, but also participate

in their code through gestural interaction, leveraging embodied knowledge of the

system. Through a highly flexible sequencer class, GALiCA explores four different

techniques for physically engaging with code. This work is a promising addition to

gestural live coding, showcasing a few approaches that may completely change how

a performer engages with a live coding system. GALiCA considers what is possible

through a live coded sequencer and how physical embodiment can play a role in

coding. Ultimately, it suggests the creative and expressive potential of a live coding

system that incorporates gestural input to engage with live coded algorithms.
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