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Messenger RNAs (mRNAs) are essential targets of gene regulation. The cell adapts and grows by
changing its gene-expression profile, which it can achieve by manipulating the rates of mRNA initiation
and decay and thus changing the relative abundances of transcripts. To understand the biological
significance of these transcriptomic changes it is useful to observe how these changes correlate with
emergent downstream behaviors and phenotypes. To manipulate and predict transcriptomic changes, it is
also helpful to identify the sites of RNA regulation (transcription initiation, termination, and decay). By
observing these sites of regulation, and how they change across different environmental and genetic
contexts we can learn to recognize the sequence determinants of these processes and anticipate under
which circumstances they will modulate gene expression changes. In order to record transcriptomic
histories and facilitate the correlation of these archives with emergent cellular behaviors I have developed
a molecular time capsule (MTC). An MTC is a self assembling protein capsule which captures highly
reproducible snapshots of the full cellular transcriptome for delayed retrieval and analysis. These
encapsulated records remain stable, even while the host transcriptome undergoes major remodeling.
These records are also cleanly separable from non-encapsulated RNAs originating either from the host
cell itself, or from other cells in a heterogenous population. To facilitate the identification of transcript
ends across multiple conditions, I have also developed analysis tools for end-enriched RNA sequencing
data (Rend-seq). Rend-seq is a variation of RNA-sequencing that aids in the interference of in vivo 5′ and
3′ ends in addition to determining their abundances. The tools I have developed for processing and
identifying transcript ends from these data have been bundled into an open source Python package:
rendseq. This package also powers an interactive website, rendseq.org, which increases the accessibility
of published Rend-seq datasets.

Thesis Supervisor: Gene-Wei Li

Title: Associate Professor of Biology
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Global Overview

Life as we know it perpetuates by converting genetic code into proteins. This process,

known as the central dogma of molecular biology, has been the subject of intense study. It is not

a simple one-step operation: segments of DNA must first be transcribed into messenger RNAs

(mRNAs) which are then translated into proteins. The cell exerts regulatory control over this

process by setting the rates of each of these steps, and by tuning the abundances of each

component in this pipeline. In this work I focus exclusively on transcriptional regulation,

highlighting some areas where our knowledge of transcriptional control is incomplete and

sharing new tools for precise quantitative measurements to help fill these gaps. This introduction

provides the background which contextualizes these methods.

In steady state the relative abundance of mRNAs correlates strongly with the relative

abundance of their gene products (Balakrishnan et al., 2022). RNA production can be tuned over

several orders of magnitude by adjusting the promoter activity. The rate of degradation is also

transcript specific and can depend on factors as diverse as the ribosome occupancy, its

interaction with small RNAs or proteins, or the presence or absence of various endonucleolytic

processing sites (Mohanty & Kushner, 2016). Control of these rates, which can be highly

dynamic and context dependent, determines the final abundance of a transcript. By manipulating

the rates of RNA initiation and decay the cell can respond to changes in the environment,

commit to a chosen developmental program, or initiate complex behaviors such as cell division.

However, which gene-expression changes precipitate a cell's commitment to a particular

developmental trajectory is not always easy to ascertain.

There exist varied methods for quantifying gene-expression changes over time; from

microscopy, to full genome RNA-sequencing, to inference methods, and more. Each of these
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methods has its own use cases where it excels. We will review these methods, as well as consider

the pros and cons of each in uncovering the transcriptomic origins of developmental program

selection.

Equally relevant are tools to help uncover the mechanism and identity of the biological

processes which set transcript abundance, i.e., transcription initiation, termination, RNA

processing, and decay. A better understanding of the controls of these processes will yield new

design tools to predict and control gene-expression levels, and thus also help predict and control

cell behavior. In this introduction we will explore what is known about these processes in

bacteria, as well as some of the methods and techniques used to study their regulation.

Introduction for the Molecular Time Capsules (MTCs)

MTC Overview: Why measure the changing transcriptome?

Cellular phenotypes are dynamic and can change in response to new

environments, stresses, and opportunities. Phenotypes are influenced by concurrent and

proceeding changes in the proteome and the transcriptome. These gene-expression profiles are

also dynamic and vacillate in response to internal and external stimuli and signals. It is through

these changes that cells can adapt and thrive. To better understand and manipulate cell behavior,

we can start by better understanding and manipulating the relationship it has with

gene-expression.

There are several motivating examples where the connection between

gene-expression profiles and phenotypic display is poorly understood. Antibiotic persistence, the
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non-heritable transient reduced susceptibility to antibiotics (Huemer et al., 2020), is one such

example. A better understanding of the expression to phenotype relationship is required and

could inform better drug treatment plans or drug design. Immune response is another example. It

is known that immune cell heterogeneity has an enormous impact on clinically relevant behavior,

but the suspected transcriptomic origins of this heterogeneity can be challenging to identify (Hu

et al., 2023; Liu & Cao, 2015). Both of these research problems, as well as many others, are

united in the need for better tools to measure transcriptomic dynamics over time, and to probe

how these dynamics relate to phenotypes of interest.

To understand, predict, control, and design cellular behaviors, it is necessary to gather the

right data about gene-expression profiles and the phenotypes they correlate with. In particular,

we need to observe what gene-expression changes precipitate interesting developmental

trajectories. In certain cases, we may also need to expand our observations of gene-expression

profiles outside of controlled laboratory conditions or else risk missing complex and unexpected

behaviors that occur in the wild.

Making these sorts of measurements can be technically challenging. Cells may

temporarily be inaccessible, prohibiting harvesting and measuring of their gene expression

profiles. For example: bacteria during their transit of the human digestive tract. These profiles

can also be challenging to capture if by the time one can distinguish which subpopulation of cells

should be measured the transient transcriptomic signatures of interest are already gone.

In this section of the introduction, I will provide an overview of the following:

● Techniques for measuring transcriptomic profiles.

● The particular challenges associated with measuring transcriptomic dynamics
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● Solutions to these challenges - with a summary of their relative merits and

shortcomings.

This information will contextualize and motivate the Molecular Time Capsule as a

worthy addition to the molecular biological toolkit, and hopefully provide a clearer sense of what

problems it can be used to investigate.

Measuring Gene-Expression Profiles

To quantify expression, one must first be able to identify RNA. This is achieved

by determining the sequence of nucleic acids in an RNA molecule. Once a process is developed

to identify the sequence of an RNA molecule, it can be used to quantify the abundance of all

such molecules in a sample. Where possible, this technique can even be applied to all RNAs in a

sample - yielding to a full-transcriptome measurement.

In the early days, the method for identifying the sequences of RNA relied on

running that RNA on a gel. Subsequent hybridization of this gel to a sequence specific labeled

probe, and analysis via scintillation counter (Eisenstein, 2005) would allow for RNA

identification and quantification. This method was ultimately improved upon in 1977 by the

development of Northern Blotting (Noyes & Stark, 1975), a precise and highly sensitive method

for quantifying RNAs in a sample that remains the gold standard for RNA quantification. The

design and sensitivity of this methodology means that individual components of an RNA

molecule (for example the 3′ end, the 5′ end or a splicing juncture) can be individually and

quantitatively probed. The drawbacks in this approach lie in the fact that it is inherently

low-throughput. Each gel can only support so many probes simultaneously without leading to
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channel bleedthrough between different probes, practically limiting the ability to scale up this

technique to generate quantitative full-transcriptome sequencing.

In 1985 a new technique for RNA quantification was unveiled: qPCR (Gödecke,

2018; Saiki et al., 1985), which allows for the quantification of RNA by converting it first to

cDNA and then amplifying that cDNA with target specific primers using PCR. qPCR then

measures the abundance of these amplified targets across amplification cycles to facilitate

inference about the relative abundance of the original RNA molecules. While initially quantified

by Southern Blot, there are now dedicated machines which can process and quantitatively assess

the concentration of dozens to hundreds of qPCR reactions simultaneously (Taylor et al., 2019).

However, qPCR remains highly sensitive to errors, and requires informed choices about what

genes to use for informative normalization. It is easier to increase the throughput of qPCR

measurements than it is for northern blots, however each gene-target still necessitates the design

and testing of the amplification efficiency and specificity of primers. Each sample must also be

mixed with its intended qPCR primers separately, making it challenging to generate multiplexed

measurements. While qPCR is a useful tool for assessing the changes in a specific gene-target

across conditions, it is not ideally suited to delivering full-transcriptome gene-expression

profiles.

The limitation of these low-throughput approaches for assessing multiple

sequences at once inspired the development of highly parallelizable assays for gene-expression

quantification in the 90s (Niemitz, 2007). These efforts culminated in the establishment of the

microarray as a highly parallelizable, multiplexed approach for assessing the abundance of a

multitude of transcripts simultaneously (Pease et al., 1994; Southern et al., 1992). The number of

sequences which could be simultaneously assayed was limited only by the diffraction limit of
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light. Though many individualized and specific hybridization probes needed to be assembled on

the glass slide.

In modern times RNA sequencing (RNA-seq) has become the successor to

microarray technologies, becoming the preferred method for generating full transcriptome

gene-expression profiles since its development in the early 2000s (Emrich et al., 2007; Lister et

al., 2008). Technological advancements in flow cell technology for DNA sequencing (Holt &

Jones, 2008) allowed for simultaneous sequencing of millions of transcripts, while

circumventing some of the biases of microarray technologies (Zhao et al., 2014). Continued

advances in detector technology and flow-cell fabrication have increased the throughput of RNA

sequencing to the point where in 2023 billions of reads can be quantified in a single several hour

run (Pervez et al., 2022).

As sequencing technology, library preparation, and analysis pipelines are all

improved - the challenge of collecting the right RNA sample to answer a specific research

question remains. This challenge has inspired an ongoing renaissance in molecular biological

innovation. Cells can be sorted into relevant populations before sequencing to help establish

sequence-function relationships (Peterman & Levine, 2016). Physical separation of single cells

powers single-cell sequencing (Hwang et al., 2018; Shalek et al., 2014) and the recapitulation of

spatial transcriptomic maps (Crosetto et al., 2015; Marx, 2021). We are constantly acquiring

more tools for controlling and ascertaining the precise origins and identities of the RNAs we

sequence.

There exist other modern methods for assessing RNA concentration in cells - for

example microscopy/fluorescence-based approaches which were not discussed here. We will
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briefly cover these techniques in an upcoming section entitled “Measuring Transcriptomic

Dynamics with Microscopy”.

Challenges in Mapping Gene-Expression Dynamics

One source of particularly motivating and challenging questions about gene-expression

profiles is how they change in time. How do changes in the transcriptome impact cellular

behavior, and which changes are the most influential? What did the in-situ transcriptome look

like when these cells were inaccessible, i.e., impossible to harvest and observe? These questions

and others like them drive us towards finding a solution to the problem: how can we measure

gene-expression dynamics over time?

Capturing the changes in transcriptomes is challenging as most methods for

full-transcriptome quantification are destructive end-point measurements. This presents a

problem as the emergence of a novel phenotype of interest may lag significantly behind the

fluctuating signal of the changing transcriptome. By the time we are able to observe which cells

display phenotype, its proceeding transcriptomic signature may no longer be observable.

Conversely, once we destroy a cell in order to measure it, it becomes impossible to know what

behaviors that cell would have gone on to express next.

There are also times where one may not be able to harvest cells when needed. The most

obvious example of this is for bacteria during their transit of mammalian digestive tracts. We

might be very interested in their behavior in these contexts, but without the ability to study them

in situ we remain blind to their gene-expression dynamics. One solution to this research

conundrum could be a technique for recording the transcriptome during the time of
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inaccessibility, so that later when the cells are once again retrievable it is possible to observe

their transcriptomic histories.

Both of these sets of research constraints require tools to help visualize transcriptomic

histories and/or allow for longitudinal monitoring of the transcriptome. By gaining access to the

historical transcriptomic record, it becomes possible to observe what transcriptome patterns

precede the emergence of a phenotype of interest. It also facilitates the interrogation of

transcriptomes in situ in contexts that would otherwise be difficult or impossible to access.

Mapping Phenotype to Transcriptomic Relationships Using Interventions

One solution to the challenge of mapping gene-expression to phenotype relationships is

to perform interventions on the transcriptome and record the effects (Steinmetz et al., 2002;

Winzeler et al., 1999). Genetic screens, which can under-express, over-express or mutate a

particular target, have been instrumental in identifying the causal structure of gene-expression

networks (Bakal et al., 2007; Echeverri & Perrimon, 2006).

This is the general strategy that has motivated recent developments of CRISPR-based

screening methods (Bock et al., 2022) such as Perturb-seq (Dixit et al., 2016) and CROP-seq

(Datlinger et al., 2017), which use CRISPR Cas9 to interfere with induction of a gene, also

known as CRISPR interference or CRISPRi (Qi et al., 2013). These approaches make use of

CRISPR tools to edit or repress large numbers of targets within a library of cells. This library can

then be screened according to some phenotype of interest (Doench, 2018).

Fluorescence-Activated Cell Sorting (FACS) can be used to sort single cells based on

characteristics such as protein and RNA content, size, chromatin organization, methylation state
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and accessibility (X. Chen et al., 2018) and even spatial origin (Satija et al., 2015) of single cells.

These cells can even be sorted using multiple such filtering criteria, allowing for the separation

of very specific phenotypes of interest. After sorting, each cell has a barcoded readout which

allows for the identification of which guide RNA, and thus which target is repressed, in each cell.

This approach has obvious appeal for, in contrast to purely observational methods, it can

yield conclusions about causal connections and structure in gene-expression networks. It has also

been shown to be capable of uncovering surprising complexity in gene-expression networks. For

example, it was deployed in vivo to successfully identify the point of action of Autism Spectrum

Disorder, and Developmental Delay risk genes (Jin et al., 2020), suggesting new functions for

these genes. It was also deployed to successfully study both single and combinatorial

perturbations that influence the Unfolded Protein Response in Mammalian cells (Adamson et al.,

2016), a study which revealed a branching complex network coupled with this cellular behavior,

and highlight how Perturb-seq, and related methods, can effectively be used to study complex

networks.

One uniting factor in both of these examples, as well as in most successful applications

of CRISPR-mediated screens, is knowledge of a relevant set of target genes in advance. Due to

the large number of genes in the cells, in order to gain sufficient statistical power for the

relationship between all potential genes and the phenotype of interest, a large number of cells

needs to be screened. Often, one might need to study multi-gene/combinatorial effects, in which

case the number of conditions to test becomes astronomical and practically impossible. These

limitations mean that CRISPR screens can be an impractical solution, both in terms of cost and

time for questions which lack a predetermined set of target molecules to investigate. Efforts have

been made to improve the cost efficiency of Perturb-seq like methods, for example Targeted
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Perturb-seq, or TAP-seq, though ultimately these optimizations still necessitate prior knowledge

of which targets of interest are worth observing (Schraivogel et al., 2020). The choice to only

look at a small set of genes makes it challenging to uncover new biology, potentially glossing

over alternative factors or pathways which can also contribute to a phenotype of interest, or

perhaps obscuring aspects of the regulatory network that remain unobserved, or which rely on

unobserved partners.

There is also variation in temporal dimension to consider. For example - is there a time

window between the inhibition of a specific promoter by CRISPR is most relevant? One could

imagine that within a single screen the time between inhibition, and sorting may vary. It is

possible that steady state inhibition of a specific target gives rise to different phenotypes (for

example a stress phenotype) than transient, biological repression would give rise to.

Practical constraints demand prior knowledge of what transcripts and targets should be

interrogated. In practice this means this approach needs to scale up immensely in order to combat

biases which keep unexpected factors hidden and obscure higher order multi-factor effects.

Furthermore, it may demand knowledge of biologically relevant concentrations of certain

transcripts - for example to maintain correct stoichiometric ratios of gene-products (Lalanne et

al., 2018; G.-W. Li et al., 2014).

While intervention and observation of effect remain the gold-standard for establishing

causal relationships, these techniques suffer when applied to large spaces of hypothesis. This

reality can lead to conclusions which are potentially underpowered, or else which run the risk of

unintentionally missing key elements. What these techniques would benefit from is some

orthogonal method which can serve as a hypothesis generator for which gene targets, and what

expression levels are worth testing for their relationship to phenotypes of interest.
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Measuring Transcriptomic Dynamics with Microscopy

Fluorescence microscopy (Zou & Bai, 2019) is a well-established approach for

quantifying transcript abundances over time and correlating those measurements with a variety

of visually-readable phenotypes. Quantitative Fluorescence Time-Lapse Microscopy (QFTM)

tracks fluorescent microscopy images over time - facilitating longitudinal tracking of

fluorescently labeled targets in single cells (Muzzey & van Oudenaarden, 2009; Young et al.,

2011). This approach is appealing because it allows one to directly quantify which transcripts are

present in a cell almost continuously. By genetically modifying organisms to fluorescently tag

mRNAs of interest, their expression levels can be quantified real time in living cells. Here we

will first overview methods to assess live-cell dynamics of transcription using fluorescence

microscopy, then we will discuss their relative merits with respect to the problem of assessing

genotype-to-phenotype relationship mapping.

One approach for quantifying mRNAs in living cells is by attaching a label to the

transcript via the affinity of a fluorescently tagged protein to a genetically encoded structure.

This approach was first demonstrated in 1998, using the bacteriophage derived MS2-tag system

(Bertrand et al., 1998; Ferguson & Larson, 2013; Peña et al., 2015), but has also been

demonstrated with similar systems such as the 𝝀N22 derived system (Schönberger et al., 2012),

and the BglG system (J. Chen et al., 2009). Each of these approaches place a stem-loop structure

into the target RNA and expresses a partner stem loop binding protein. This stem loop binding

protein is modified to be fluorescent. When target RNA and fluorescent protein are expressed

simultaneously, the protein binds to the RNA. The fraction of bound protein can then be assessed

by observing the diffusion patterns of the fluorescent molecule. From this analysis a

23

https://paperpile.com/c/UyrdZg/b4Olr
https://paperpile.com/c/UyrdZg/wGWv9+JL6BZ
https://paperpile.com/c/UyrdZg/wGWv9+JL6BZ
https://paperpile.com/c/UyrdZg/raBxP+ksB8g+eCCrw
https://paperpile.com/c/UyrdZg/j0BdY
https://paperpile.com/c/UyrdZg/xCRMd


concentration of the target molecule of interest can be ascertained, and can be correlated with the

phenotype of the cells.

Another class of fluorescently labeled proteins which can bind RNAs are those which are

CRISPR/Cas derived. Both fluorescently labeled Cas 9 (Nelles et al., 2016) and Cas13a (Yang et

al., 2019) have demonstrated capacities for fluorescently labeling target transcripts in vivo in a

programmable fashion. This means that by changing the target sequence of the CAS molecule

one can selectively label certain RNAs of interest and track their abundance in the cell.

In 2011 RNA aptamers were designed which bind small molecules and give rise to

fluorescence (Paige et al., 2011; Strack et al., 2013). This discovery opened the path for

genetically encoding fluorescence into RNAs in much the same way that proteins can be

genetically tagged for fluorescence. This is achieved by adding the aptamer tag to the end of the

transcript, and supplying the small molecule to the media which will aid fluorescence when

bound to the aptamer tag. These classes of tags have been improved on (X. Li et al., 2020;

Sunbul et al., 2021), using intensity or lifetime of the fluorophore to track multiple RNA species

at once (Sarfraz et al., 2023).

Lastly another common class of approaches for fluorescently labeling RNA relies on the

delivery of fluorescently labeled materials to the cell. Micro-injection of fluorescent full length

transcripts (Glotzer et al., 1997), or injection of fluorescently labeled dUTPs which are then

synthesized into fluorescent transcripts (Sinha et al., 2008) are two such examples of this. While

these two approaches are relevant to the study of transcription dynamics within living cells, they

are not useful for questions regarding gene-expression of specific targets in the cell, and thus we

don’t consider them further here.
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What all of these approaches for labeling transcripts have in common is that they are

limited to labeling only a few genes at once. This means that even with the most up-to-date

protocols for multi-channel fluorescent microscopy, researchers often need to have at least some

prior knowledge of which genes or proteins to target for the most informative observations.

Without prior knowledge, it can be difficult to deploy these techniques to identify new or

unexpected transcriptome dynamics. Once targets of interest are known, any combination of

these RNA labeling strategies would be an effective method for orthogonally verifying that

specific transcript abundance changes proceed or seed developmental trajectories. Much like the

intervention-based approaches discussed earlier however, these sets of techniques still rely on

hypothesis generation in advance in order to limit the set of observed targets to a tractable size.

Inferring Transcriptomic Dynamics by Rates of Change:

Recently there has been a surge of research into methods for leveraging RNA-seq data to

infer transcriptomic dynamics over longer time scales. This can be achieved by modifications to

the analysis or preparation of a single time point sample that allow one to estimate the rate of

change in abundance of a transcript in addition to its current quantity. This rate of change, or

velocity, refers to whether the abundance of a particular gene is changing in time, either

increasing or decreasing, as well as how fast that change is occurring.

Once the current levels of gene-expression and gene-expression change are established -

the goal becomes to create a map in the high-dimensional landscape of gene-expression, and to

predict flows within it. By creating such a map, or vector field, one can begin to perform

inference about the complex temporal dynamics of gene-expression and to predict future

expression levels or cellular phenotypes given the current gene-expression levels.
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There are currently two popular methods for establishing this rate of change. The first of

these methods infers the rate of transcriptomic change from a ratiometric analysis of unspliced

and spliced mRNAs (Gray et al., 2014; La Manno et al., 2018; Zeisel et al., 2011). Unspliced

mRNA, or pre-mRNA, levels can be predictive of the future levels of spliced, or mature,

mRNAs. The levels of each population of transcript can be assessed by sequencing across the

boundary of introns and exons to establish the percentage of transcripts which are spliced.

It is also possible to use metabolic pulse labeling to distinguish between newly

synthesized mRNAs and older mRNAs (Herzog et al., 2017; Q. Qiu et al., 2020; Rabani et al.,

2011), as has been demonstrated by methods such as SLAM-seq, TimeLapse-seq, TUC-seq. This

approach allows for the interrogation of prokaryotic mRNA rates of change, which don’t

typically undergo splicing. To label transcripts using this method a nucleotide analog, most

commonly 4-thiouridine (4sU), is added to the media of cells before harvesting. As this

metabolic label is taken up by the cells, it is incorporated into their newly synthesized RNAs.

Upon harvesting, the extent of this modification to a given transcript can then be assessed, either

by inducing mutation at the site of incorporation (for example a conversion from 4sU to C), or by

biotinylated recovery of the metabolically labeled RNAs and subsequent sequencing.

While both of these approaches can be applied to bulk/population level measurements,

unless there is some sort of synchronicity in the population this technique is most informative

when applied to single cells (La Manno et al., 2018; Q. Qiu et al., 2020). Each individual cell can

be thought of as a single point in the “phase diagram” of gene expression levels and expression

change velocities. After obtaining enough estimates of these points the analysis problem

becomes the inference of paths within the phase-diagram (Bergen et al., 2020; X. Wang &

Zheng, 2021; Weng et al., 2021). These analysis packages might take in splicing data,
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metabolically labeled data or a combination of the two and use them to recreate vector maps.

They seek to explain how a cell at one confluence of expression and expression change will flow

towards another point of expression and expression change (X. Qiu et al., 2022).

This reliance on inference to interpret transcriptomic dynamics does have its limitations

however. For example, when looking at RNA velocity inferred from pre mRNA and mature

mRNA ratios, only a small number of transcripts can be described with the simple kinetics

assumed in descriptions of RNA velocity (Bergen et al., 2021). In fact the phase diagrams

created using these assumptions are typically inferred from only a handful of genes (Bergen et

al., 2020).

These limitations mean that more complex models must be employed in order to extract

dynamical information for the vast majority of genes in the genome, which themselves might

come with many different parameters (Gorin et al., 2022). The tuning and selection of these

different parameters is itself often a challenging and underpowered task, and should reduce the

confidence in any gene-specific inferences. Thus while RNA velocity may be a useful tool for

describing the relationships between different cells, it does not yet have the inference power to

be used as a reliable tool for pinpointing which transcripts precipitate developmental trajectories

of interest in all cases. Methods for longitudinal tracking of variation may in certain cases still be

preferable or complimentary to this approach.

Continuous Harvesting of RNA for Monitoring:

Longitudinal tracking of cells can be achieved by simply taking multiple measurements

of RNA over time. It has been shown that multiple samples of RNA can be extracted from a
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living cell without causing death using several recently characterized techniques. These

techniques allow for the removal of a small fraction of the cellular cytoplasm, which can then be

used for RNA sequencing and analysis. Collecting multiple such cytoplasmic samples over time

yields a measurement of gene-expression changes over time.

One recent system, COURIER (Horns et al., 2023) (Controlled output and update of

RNA for interrogation, expression and regulation), allows for the controllable active export of

RNA molecules from the cell, allowing both for communication between cells and also for

recovery and analysis of excreted RNA payloads. Though cells naturally shed RNA over the

course of their lives, this system increases the amount of RNA that is excreted from any cell -

boosting both the sensitivity and information content of signals.

These packages of RNA are collected from the supernatant of the media and are filtered

and clarified before the RNA is separated and sequenced. One issue that arises with using this

method however is that it is challenging to identify which purified RNA package originated from

which cell. Without physical separation of sub-populations of cells, as a means to help with the

identification of which COURIER packet originated from which cell, this type of measurement

becomes akin to a bulk time series measurement. Unlike bulk series measurements the cells

being monitored are not destroyed in the process of harvesting the sample. Without further

modifications to the protocol it seems that the inference that can be performed on these samples

is identical to the forms of inference that could be performed on bulk time series measurements

alone.

As such, used in its current form COURIER does not provide any inference advantages

over simply taking multiple harvested samples from the population over time. This point does

not discount its potential usefulness as an observational tool in situations where any cellular
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destruction is undesirable, or as a method to facilitate inter-cell communication (as the authors

discuss and demonstrate in their paper). This lack of identifiability prohibits the ability to

correlate excreted RNA from one time point with a downstream behavior or phenotype that

might emerge in only a subpopulation of cells meaning it is ill-suited to study the subtle

transcriptomic origins of developmental trajectory commitment.

Another technique for continuous, non-destructive monitoring of transcriptomics is the

direct removal and labeling of cytoplasm from living cells. The removed sample can then be

processed and analyzed in a similar manner to single cell RNA sequencing samples. This process

was recently demonstrated in a technique called Live-Seq (W. Chen et al., 2022) where

researchers were able to recapitulate scRNA-seq clusters based on cell type and state. This

approach had clear advantages over vanilla scRNA-seq because it allows for longitudinal

tracking of cells, and the correlation of downstream phenotypes with upstream expression

profiles.

The main challenge preventing Live-seq from being adopted more widely for the study of

developmental trajectories is a scaling and accessibility issue. Cells must be operated on by a

specialized instrument in order to recover their RNA, a process which has very low throughput.

In addition, there is not wide-spread accessibility/knowledge of the mechanical mechanism in

order for it to be put to wide use. Using Live-seq to study transcriptomic dynamics in hard to

access locations is also clearly not tractable as any environment where it is impossible to recover

RNA for regular sequencing would also prohibit any use of a microscope/cytoplasmic removal.

Genomic Recording Techniques:
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By recording a snapshot of the transcriptome in the genome of a living cell, one

can correlate that captured transcriptomic history with phenotypes expressed after its recording.

These forms of transcriptomic records remain with the cell and its lineage, meaning that by

separating cells based on emergent phenotypes one can successfully recover only those

transcriptomic records which preceded the sorting phenotype. There has been a recent growth in

research towards techniques which facilitate genomic recording of gene-expression information

in living cells. To record transcriptomic histories into DNA, these methods must utilize a

technique to reverse the flow of genetic information and use RNA abundance information to

change the genome (Ishiguro et al., 2019; Sheth & Wang, 2018). Due to the increased stability of

the genome, these records can then be maintained in the cell and may be recovered later by

targeted sequencing of the site of recording. This record is also heritable, making it possible to

trace transcriptomic histories along cellular lineages. There exist several different methods which

have demonstrated the use RNA abundances to trigger changes in the DNA

One such method uses tracrRNAs, trans-activating CRISPR RNAs, to target

specific transcripts. When combined with gene-specific guide RNAs these designed tracrRNAs

trigger mutations in an accompanying and complementary recording construct. The resultant

accumulation of mutations over time serves as a readout of the concentration of the various

targeted transcripts over the recording window. This method has been demonstrated via a

technique known as TIGER (Jiao et al., 2023) (transcribed RNAs inferred by genetically

encoded records).

While this approach represents an exciting method for converting transcript

abundances into genomic records, it does come with several limitations. For instance, it can only

be used to interrogate a select number of transcripts within a single cell. In addition, as the
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authors demonstrated, any target will require extensive engineering of the tracrRNA/gRNA

combos, which will then have to be tested before deployment in order to allow for informative

and reliable normalization of the readout. Lastly the reliance on mutation as a readout of

abundance suggests the existence of a saturating abundance of the target. Beyond such a

saturating abundance it would be challenging to infer RNA levels from the mutated record as

mutations may start to either overwrite one another, or the efficacy of mutation in the region may

decrease. These limitations make TIGER unsuitable for studying the origins of developmental

trajectories. However it is worth noting that this technique is still useful for applications which

require integrated measurement of a known set of target genes in difficult to reach contexts. For

example, applications which demand sentinel record-keeping cells to track evidence of specific

gene-expression programs.

Another demonstrated method achieves genomic recording by tagging specific

transcripts of interest with retron-inspired RNA barcodes. In combination with a properly

calibrated CRISPR-Cas system these RNA barcodes can be captured and recorded in a CRISPR

array when their corresponding RNAs are induced. Because CRISPR arrays add new records at

the end of the array it is even possible to infer the order of expression of the various targets by

observing the order of barcoded spacers in the array. This technique has been demonstrated via

the Retron-Cascorder (Bhattarai-Kline et al., 2022) and a related method called TRACE (Sheth

et al., 2017). These methods have similar pros/cons as TIGER, meaning that they are limited

with their scope of recording, making them also unsuitable for studying unknown origins of

phenotypic heterogeneity.

Lastly, a compelling method for recording RNA in the genome comes from systems

which can record arbitrary transcripts, as a function of their abundance in the cell, into a CRISPR
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spacer. This was first demonstrated in 2016 when it was shown that a naturally occuring

Reverse-Transcriptase-Cas1 fusion could facilitate CRISPR spacer acquisitions derived from

RNA (Silas et al., 2016, 2017). The RT part of the hybrid converts random transcripts into DNA,

and the CRISPR-Cas1 inserts them into the CRISPR array as a spacer. However, it was

discovered that this system was unable to maintain its functionality in E. coli, leading to the

testing of a different system of RT-Cas1 and Cas2 from F. saccharivorans. This system proved to

be heterologously maintained in E. coli. Record-seq is a genome recording method which makes

use of this novel system to direct the acquisition of E. coli RNA derived spacers and recover

these recorded transcriptional histories by targeted deep RNA sequencing (Schmidt et al., 2018).

In addition to the initial proof-of-concept experiments, Record-seq has demonstrated success

recording the transcriptomes of E. coli as they pass through the digestion systems of mice

(Schmidt et al., 2022; Tanna et al., 2020).

This method changes the scope of questions that can be answered using

genome-recording techniques. As it can capture a record of full transcriptome, rather than being

limited to a select set of targets, it can be used for novel hypothesis generation of transcripts of

interest. While the initial results and applications with this technique demonstrate its potential as

a tool for studying genotype to phenotype relationships, it currently has several areas which need

to be improved upon before it can be used to study the subtle gene-expression changes thought to

drive sub-population phenotypic heterogeneity.

To begin with each cell has a very small probability per unit time of acquiring an

RNA-derived spacer. It is estimated that only 1.9 104 E coli will acquire a spacer during a

recording window of at least 12 hours. The low rate of spacer acquisition may require that this

method be used over very long recording times, reducing the temporal resolution of any
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transcriptional history that is recorded. In addition it implies that a large number of E. coli cells

may need to be sequenced in order to yield sufficient information about the recorded

gene-expression profile. Lastly, and likely due in part to the long recording times used by this

technique, Record-seq is not highly reproducible across different biological replicates, with the

highest reported Pearson coefficient between two samples being 0.786 (Schmidt et al., 2018).

With this low of a Pearson coefficient it will be challenging to ascertain whether specific

transcripts which seem to be “upregulated” in one Record-seq sample versus another are truly

due to underlying biological differences between the two samples or are due to noise in the

measurement.

MTC Background Summary

How transcriptomes change over time, and the relationship between

transcriptomic profile dynamics and phenotypic expression, are motivating topics of study. By

better understanding genotype-to-phenotype relationships we will be more prepared to predict,

control, and design bacterial behaviors. However, the transcriptomic origins of many phenotypes

remain challenging to uncover. Many techniques for detecting or intervening on the abundances

of transcripts over time, such as fluorescent microscopy, CRISPR guided screens, or targeted

recording of specific transcripts can not address this problem on their own. As these approaches

are limited in the number of targets they can simultaneously record or effect, they require tools

for hypothesis generation. Full transcriptome recording techniques do offer a promising avenue

for increased coverage, but they may lack the reproducibility, the temporal resolution and the

throughput to be appropriate for applications requiring subtle gene-expression differences.
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What is needed is a method to generate a list of candidate targets which are

known to correlate with phenotypes of interest. We can then interrogate this list using directed

quantitative approaches, such as Perturb-seq, in order to establish causal links between

gene-expression levels and phenotypes of interest. Such a method would need to be highly

reproducible - any genes which appear to be different between recording conditions ought to

reflect differences in the host transcriptome during recording rather than reflecting noise in the

recording apparatus. These records ought to be cleanly separable from the current host

transcriptome - such that signals from later time-points don’t contaminate the historical records

of the transcriptome. Lastly it is essential that the transcriptomic records are static over time -

allowing for a variable time from snapshot collection and harvesting. A system with these

combined properties could serve as a powerful, low-cost hypothesis generator for

gene-expression and phenotype networks.

Rendseq introduction

rendseq Overview: What Are Transcripts:

The prevailing direction of information flow in living organisms is from DNA to

RNA to protein. In this simplified view, DNA serves as the heritable genetic code, RNA as a

message passing intermediate, and protein as the substance which forms the physical forms of

cells and performs most of the critical processes of life. mRNA transcripts, the focus of this

work, are the central players in this pipeline. mRNAs are essential targets for gene-regulation.

Their levels can be tuned over many orders of magnitude, and in steady state mRNA levels serve

as strong predictors of protein products (Balakrishnan et al., 2022).
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mRNA transcripts are often merely thought of as substrates for the

protein-making machinery of the cell. This apparent simplicity obscures the potential for

complex regulation of the transcript before the translation process is ever initiated, for example

via regulation of the steady state levels of each transcript. The rate of transcription initiation from

any transcription start site (TSS) can be highly variable and subject to feedback loops and other

forms of regulation by transcription factors (G. Wang et al., 2015) or alternative sigma factors

(Kazmierczak et al., 2005). These transcripts are then actively destroyed by the cell - a process

which can be influenced by the 3′ structure of transcripts, relative abundance of nuclease motifs

(Agarwal & Kelley, 2022), and the rate of translation (Wu et al., 2019). Together these tunable

rates of production and decay set the steady state levels of a transcript across many orders of

magnitude.

Transcripts that share the same TSS may end at different sites, depending on the

strength and mechanism of downstream terminators. Similarly, any given terminator can

terminate transcripts originating from any number of TSSs. These overlapping transcripts with

disparate starts and ends are known as transcription isoforms. In prokaryotes, the identities and

relative abundances of different transcript isoforms is a critical mechanism for controlling the

relative abundances of genes in a polycistronic mRNA (Cao et al., 2015). Eukaryotic RNAs

encoding for the same gene can also exist as transcription isoforms, and can be recombined in

combinatorially complex patterns. This process, known as RNA splicing, (Berget et al., 1977;

Wilkinson et al., 2019) is essential for understanding gene expression control in Eukaryotes.

All of these factors - where a transcript starts, where it ends, how it is rearranged,

and the speed and mechanism of RNA decay all contribute to what we mean when we talk about

a transcript's identity, and the influence it has over the production of protein products. In the
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following sections I will provide a condensed review of what is known about each of these

processes. I will provide a very high level view of each process, as well as include references to

various review articles which provide more detail than I intend to go into here. Then I will

introduce a technique specifically designed for the purpose of identifying RNA ends in vivo

(Rend-seq) as well as current analysis challenges faced by this technique.

What Defines Transcript Boundaries?

A full length transcript starts at a Transcription Start Site (TSS) and ends at the

point of termination. These original boundaries can be changed as the RNA is processed or

decayed. We will now go through a quick review of the processes of transcription initiation,

transcription termination and factor mediated RNA decay in prokaryotes. We will apply special

focus to the issues of where these processes happen (as well as suspected regulatory triggers of

these processes) and what sort of signature they leave on the distribution of transcript ends in a

living cell.

Transcription Initiation

Transcription initiation is the first step in the process of converting DNA to RNA.

It is a highly regulated process that can significantly impact the final abundance of transcripts

(Häkkinen & Ribeiro, 2016). It describes the process through which RNA polymerase (RNAP) is

loaded onto a specific sequence location and transcription begins. Here I will provide a quick

overview of some of the major players in the process of transcription initiation and what factors

are thought to shape their actions. The players and interactions which facilitate this process are
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illustrated in Figure 1.1 which can serve as your guide as you read the following descriptions. I

will provide a quick overview of RNAP, promoters, transcription factors, and sigma factors, as

well as the role each places in the process of transcription initiation in prokaryotes.

RNA Polymerase

The RNA Polymerase (RNAP) is the machinery which performs the work of

transcription. It is a multisubunit enzyme. The core enzyme is composed of the α (2 copies), ꞵ,

ꞵ′ and ⍵ subunits (Sutherland & Murakami, 2018). These subunits are joined by the modular σ

subunit (discussed in more detail below) to form the version of RNAP fully prepared to initiate

transcription: the holoenzyme.

Fig 1.1: A cartoon illustration of key players in the transcription initiation process.

The RNAP holoenzyme, composed of the α, ꞵ, ꞵ′ and ⍵ subunits is bound to a sigma (σ) factor.

This complex demonstrates a potential binding conformation between the RNAP a promoter,
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with the α subunits interacting with the UP element, and the sigma factor interacting with the

-10, the -35, the extended -10 and the discriminator sequence (Mejía-Almonte et al., 2020). Not

all interactions will happen for all promoters.

Promoters

The promoter refers to the stretch of DNA where RNAP binds and initiates transcription.

The holoenzyme bound to the promoter is a structure known as the “closed complex”, while once

the DNA double strand is unwound it transitions to being an “open complex” (Browning &

Busby, 2004). The promoter is situated just upstream of the transcription start site (TSS). The

particular sequence and structural features of the promoter determine its affinity to Sigma factors

or transcription factors, and thus it plays a pivotal role in determining the regulation of when a

gene is turned on, and the loading rate of RNAP across different conditions.

From analyzing the transcription initiation sites of many bacterial promoters, a

“consensus” structure containing a -10 and -35 region was established to describe the structure of

bacterial promoters (Hawley & McClure, 1983). This simple model has since been expanded on -

for example via the discovery of an additional element called the UP or upstream element that is

believed to influence transcription initiation by interactions with the α subunit of RNAP (Ross et

al., 1993; Yan & Fong, 2017). There is also an additional extended -10 element, a 3-4 base pair

motif located upstream of the -10 unit which can facilitate additional recognition and interactions

with the σ subunit of the holoenzyme (Browning & Busby, 2004). Some promoters also contain a

GC-rich sequence known as the discriminator (Josaitis et al., 1995; Travers et al., 1986) which
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facilitates additional interactions with certain sigma factors and is believed to have special

regulatory significance for amino-acid starvation responses.

Sigma factors

As mentioned before, sigma factors are a necessary component of the holoenzyme - the

form of RNAP that performs transcription initiation. Sigma factors depart as the enzyme

transitions into elongation mode, leaving behind the core enzyme. Sigma factors are unable to

bind DNA while in their free state. When bound to RNAP however, the sigma factor undergoes a

conformational change, exposing DNA-binding domains (Feklístov et al., 2014). In this way they

serve as exchangeable modular subunits of RNAP which determine its sequence specificity.

Sigma factors act as a type of transcription factor in bacteria, one that interacts directly

with RNAP. When RNAP binds to specific sigma factors, it elicits an allosteric shift in the sigma

factor to expose DNA-binding domains. These different DNA binding domains have different

sequence or structure specificity which defines the set of targets each sigma factor will

recognize. These binding domains serve to guide RNAP to different locations in the genome. In

addition to guiding RNAP to the correct location in the genome for transcription initiation, sigma

factors can also perform strand separation of the dsDNA once they arrive. Because of their

modular nature they can easily be swapped out for one another prompting a change in the

behavior and specificity of RNAP. Sigma factors orchestrate sweeping changes in the

transcriptome when their levels change in the cell. Each sigma factor often has specificity to

many different locations in the genome, meaning that altering the expression level of a given

sigma factor will often lead to a cascade of other genes being up or down regulated.

There are several different families of sigma factors, classified by their conserved

homology to one another (Feklístov et al., 2014). A well known group of sigma factors are
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known as the σ70 family of factors (Paget & Helmann, 2003) - named for their similarity to the

housekeeping sigma factor which was originally discovered. The most abundant type of sigma

factor are actually the recently discovered ECF sigma factors (Helmann, 2002). The diversity of

sigma factors hints at the diversity of possible recognition motifs that accompany them. Rapid

and robust identification of true transcript ends in different conditions is one fruitful avenue

toward discovering more of the functions and specificity of these factors.

Transcription Factors

In addition to sigma factors, bacteria have transcription factors which activate or

repress transcription of specific genes. These factors can have either a narrow or broad effect on

the transcriptome, and are categorized as local or global based on the extent of their effect

(Seshasayee et al., 2011). They will bind to the area of DNA near the TSS of their target genes.

Depending on the proximity and orientation of this binding site to the TSS, this binding event

can either repress or promote the rate of transcription initiation (Seshasayee et al., 2011).

LacI is the most famous “local” Transcription Factor. Even though LacI is such a well

characterized promoter, yet even this well known transcription factor is still the subject of active

research into its sequence to expression landscape (Swerdlow & Schaaper, 2014). A more

streamlined discovery process of potential promoters powered by rapid identification of TSSs in

a variety of different conditions provides new sequence contexts for understanding how promoter

sequence and structure exert control over gene expression. Identification of the potential

emergence of alternative promoters (which can emerge within the body of another transcript and

can be challenging to identify with traditional techniques) or the change in position or RNAP

loading rate of a particular promoter across different conditions can facilitate the identification of
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where new transcription factors initiate, or how changes in the genetic or environmental context

may change the behavior of individual promoters.

Transcription Termination

Transcription termination is another essential process for tuning transcript

abundances. The position and method of termination allows for the timely recycling of RNAP

(Kang et al., 2020) and can inform the stability of transcripts and their susceptibility to

exo-nucleolytic decay (Richards et al., 2008) as well as informing the relative abundances of

gene products in the same operon (Lalanne et al., 2018). In prokaryotes there are 2 known forms

of transcription termination which give rise to programmed and repeatable termination: intrinsic

termination and factor-mediated termination. These two modes of termination result in disparate

ends of transcripts and each generates its own unique signature which can be identified by

looking at the distribution of transcription ends.

Intrinsic Termination

Intrinsic termination is characterized by a unique sequence/structure signature in

the 3′ end of RNA transcripts. This structure canonically consists of a GC-rich hairpin structure

followed by a downstream Uracil-rich region (Gusarov & Nudler, 1999). Oftentimes the region

of sequence upstream of the hairpin is also enriched for Adenines and it is thought that the

downstream U-tract may also pair, either before or after transcription termination, with this

upstream A-tract. The hairpin structure and downstream U-tract are the most conserved features

of intrinsic terminators across species.

Intrinsic Termination is thought to occur when the RNAP is positioned over the

U-tract - an area with lower than average strength of the RNA/DNA hybrid. It is thought that
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while being positioned at this spot the upstream hairpin undergoes a nucleation event, which

ultimately causes disassociation of the elongation complex and freeing of the RNAP (Ray-Soni

et al., 2016). There is some evidence that external factors - NusA and NusG also contribute to

pausing at the point of termination (Guo et al., 2018; Mandell et al., 2021, 2022) which is

thought to increase the likelihood of successful termination. In certain cases, such as for certain

B. subtilis intrinsic terminators, there is evidence that even Rho plays a role in stimulating

transcription termination (Mandell et al., 2022), evidence which blurs the distinction between

intrinsic and “Rho-mediated” transcription and demonstrating that there is more to be discovered

about the regulation and performance of intrinsic termination. Successful intrinsic termination of

a transcript results in a 3′ end without a free phosphate (Vasilyev et al., 2019). Intrinsic

termination repeatedly happens at the same location over and over again.

Intrinsic termination will often occur over a very localized distribution of

sequence positions, either at a single position, or over several adjacent positions. This means it

gives rise to a very localized distribution of RNA ends, and that many transcripts which use an

intrinsic terminator for termination will share a common 3 end.

Factor Mediated Termination

The other main form of termination in bacteria is Rho-mediated termination.

Though there may be other factors which are as yet poorly characterized (especially across

diverse bacteria), the canonical example of a factor which leads to termination is Rho. Rho is

known to function in bacteria as diverse as B. subtilis and E. coli, though it is not essential in all

organisms (including B. subtilis and Staphylococcus aureus) and is missing from other organisms

altogether (such as Cyanobacteria). Rho can also be conditionally essential for some organisms,
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for example it becomes essential for Caulobacter crescentus under oxidative stress (Mitra et al.,

2017).

Rho-mediated termination plays several biologically important roles. Some

bacteria, such as E. coli, experience transcription and translation coupling (Johnson et al., 2020).

In these bacteria Rho is thought to terminate transcripts which are not being actively translated,

as there is no trailing ribosome to protect RNAP from termination. Even in bacteria which

experience runaway transcription, Rho still seems to play an important role in nonsense mediated

decay (Bidnenko et al., 2017).

Though the exact mechanism of Rho termination is as yet unknown, as evidenced by

current conflicting models of Rho termination (Hao et al., 2021; Molodtsov et al., 2023; Rashid

& Berger, 2023; Said et al., 2021), there are established signatures of Rho termination. For

example - Rho termination is thought to occur at/near Rho utilization site (Rut sites).

RNA Decay

Another mechanism for the regulation of mRNAs is via their rates of degradation. The

rapid degradation of mRNA in most bacterial species determines their short half lives (Richards

et al., 2008), which in turn facilitates the rapidity with which mRNAs levels are able to reach

steady state after changes to the rate of production. This in turn means that bacteria can rapidly

adapt their gene-expression levels in response to changes in the environment, in addition to

getting rid of mRNAs whose protein products are no longer needed, and returning the

ribonucleotides of a given RNA to the cellular pool for reuse.
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There are multiple mechanisms which facilitate degradation in bacteria. Here we will

disregard pathways associated with nonsense mediated decay and focus purely on factor

mediated decay of mature transcripts and their decay products. We will also focus purely on

prokaryotic mRNA degradation.

Ribonucleases perform the work of RNA decay in the prokaryotic cell. These are

composed of Endo and Exo (both 3 ′ -> 5′ and 5′ -> 3′ ) Nucleases. The role these nucleases play

on turnover and regulation of mRNAs in the cell has been the focus of decades of study since the

late 1970s (Apirion, 1973). Much of the pioneering work on nucleases took place in E coli,

which initially limited the understanding of the potential diversity of prokaryotic nucleases (for

example E. coli lacks any 5′ -> 3′ Exonucleases (Deutscher, 1985)). More modern work has

revealed that while some of the nucleases first identified in E. coli seem to be conserved across

many species (Huch et al., 2023), others are not, and there exist types of nucleases in other

organisms which are not found in E coli. These discoveries underline the point that there still

remains a diversity in mechanisms of RNA decay across bacterial phyla waiting to be fully

characterized.

Identifying Transcript Ends:

Studying the processes of RNA modification and regulatory control necessitates first

determining the precise identity of which transcripts are actually present in a given sample.

Unfortunately it is much easier to identify the beginning and end of a protein from looking at its

sequence than it is to find the start and end of a transcript. This is because proteins have a small,

canonical set of start and stop codons, whereas the sequence features which determine where a
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transcript starts and ends are not completely determined and vary more widely from species to

species.

Oftentimes one might often wish to not only identify the starts and ends of transcripts -

but to also make quantitative predictions about a relative transcripts abundance in different

conditions. Without knowledge of what features define transcript boundaries, and presumably

also set transcript abundance by informing the rates of transcription initiation and decay, it

becomes challenging to make models capable of quantitative prediction.

Because these features can be difficult to predict in-silico, it is oftentimes

preferable to measure the transcript boundaries from in-vivo samples. Regular RNA-sequencing

is not capable of doing this with high precision however. The ends of transcripts are often

represented as blurry slopes from which extracting a single nucleotide position of transcription

start/end becomes challenging.

Instead, there is a sequencing technique, called Rend-seq, which overcomes this

issue by enriching the ends of transcripts (Lalanne et al., 2018). It works by sparsely fragmenting

RNA then applying a size selection. Fragments which end at one of the original transcript ends

have a higher likelihood of ending up in the size-selected pool as they require only one

fragmentation event at the correct location to achieve the correct size, whereas internal reads

require two. See Figure 1.2 for an illustration of the protocol.

This technique has been shown to deliver single nucleotide resolution

identification of transcript boundaries coupled with transcript abundance. This high resolution of

transcript boundaries can then be used to see the boundaries and relative abundances of

transcriptional isoforms. This insight into the beginning and end of transcription can uncover

bioinformatic signatures hinting at the nature of transcriptional control across different
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organisms. For example - the observation that termination of transcription happens very close to

the site of translation termination served as the inspiration that led to the discovery of uncoupled

transcription and translation in B. subtilis.

Figure 1.2: A conceptual illustration of the Rend-seq protocol. RNA harvested from a

sample (1) is first subjected to a light fragmentation process (2). These fragmented transcripts are

subjected to a size selection, after which only fragments longer than ~15 nt and shorter than ~45
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nt will remain in a pool (3). This pool is sequenced and the 5′ and 3′ ends of each sequenced read

are recorded (4). This process generates (5) a Rend-seq track. Section 5 demonstrates a real

Rend-seq track for the B. subtilis gene rpsB.

Data Processing Techniques for Transcript End Finding:

As can be seen in Figure 1.2 Rend-seq data is characterized by long stretches of a

fluctuating baseline level of read density that can shift in their mean by several orders of

magnitude. These stretches of read density are periodically interrupted by sharp peaks in read

density corresponding to a transcript boundary in the original sample. The main analysis goal of

Rend-seq data is the rapid, automated and accurate identification of these peaks, but this task -

easy to achieve by visual inspection, can be none-the-less challenging to achieve for all locations

in the transcriptome.

The first challenging aspect with working with this sort of data is that it can vary

in abundance over several orders of magnitude, meaning no simple global solution, such as a

threshold, will suffice. To get around this limitation it is necessary to first pre-process the data to

convert it to a form where high abundance regions are comparable to low abundance regions.

In the past practitioners of Rend-seq have performed a localized-z-score

normalization of the data. This is done by taking the window of reads surrounding every

sequenced position and calculating its mean and standard deviation. These two values are then
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used to normalize the reads density at a given position to instead reflect a Z-score, with respect to

the assumed approximately gaussian context which surrounds it.

The problem with this approach is that the symmetric approximately gaussian

assumption does not hold for large stretches of Rend-seq data. Take for example the boundary of

a transcript. At the boundaries the distribution undergoes a jump in read density such that the

mean of the upstream and downstream distributions may differ by several orders of magnitude.

Treating these two populations as the same will inevitably contribute to an over-inflated estimate

of the standard deviation, potentially suppressing the z score of true peaks.

Another case where this assumption breaks down is with respect to transcription

units that may be close together, as can be the case for example when there are multiple

transcription start sites close together. In these cases the issue one runs into is that the peak

corresponding to one end of a distribution can now show up in the “background distribution” of

another peak , potentially suppressing the z scores of both true peaks due once again to an

overestimation of the standard deviation.

Both of these edge cases underscore the need for a method for

pre-processing/normalizing raw read counts that doesn’t miss true peaks by the breakdown of its

assumption of normality. Furthermore, it is likely that even after this normalization of reads it

could be worth exploring other methods that transform these normalized data into annotated

peaks.

Rendseq Summary
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The study of gene-expression regulation requires precise measurements of the

sites of regulation. This necessitates the ability to accurately identify where transcripts begin and

end as sequence encoded signals of transcriptional regulation in bacteria are often concurrent

with the sites of transcript ends. An expanded set of transcript boundary locations across a

variety of conditions will inform models which can predict and design gene expression levels

from sequence alone. It will also aid in the understanding of how different sequence contexts

inform the regulation of transcripts across a variety of conditions. A database of transcription

start sites, RNA decay processing sites and transcription termination sites could also serve as

modular building parts in a bioengineering tool box to construct transcripts with sequence to

expression relationships matching the problem at hand.

Methods, such as Rend-seq, exist which can aid in the inference of 3′ and 5′ ends of

transcripts in vivo across a variety of genetic and environmental conditions. While the current

method for identifying transcript ends works well for most use cases, it struggles in cases where

transcript ends are too close together, or when the step in density is too high. Furthermore, the

information embedded in Rend-seq datasets is not easily accessible to the broader scientific

community, limiting its ability to power predictive models for gene-expression or inform

researchers about the precise start and end position of transcripts they are studying. Both of these

current shortcomings of the Rend-seq analysis ecosystem suggest a need for a more thorough

approach to end identification for all transcripts in Rend-seq data-set as well as a more

streamlined and approachable method for accessing and viewing Rend-seq datasets.
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Chapter II

Molecular Time Capsules Enable
Transcriptomic Recording in Living Cells.
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Abstract

Live-cell transcriptomic recording can help reveal hidden cellular states that precede phenotypic

transformation. Here we demonstrate the use of protein-based encapsulation for preserving

samples of cytoplasmic RNAs inside living cells. These molecular time capsules (MTCs) can be

induced to create time-stamped transcriptome snapshots, preserve RNAs after cellular

transitions, and enable retrospective investigations of gene expression programs that drive

distinct developmental trajectories. MTCs also open the possibility to uncover transcriptomes in

difficult-to-reach conditions.

Introduction

Gene expression is dynamic and shapes future cellular states, but such temporal trajectories

remain challenging to map at scale. Many important biological processes, such as cellular

differentiation and disparate survivability under stress, are seeded by subpopulations of cells with

distinct transcriptomic signatures(Ackermann, 2015; Moris et al., 2016; Niepel et al., 2009;

Norman et al., 2015). Mapping these time-dependent trajectories requires capturing the

transcriptome specific to the transient and founding population before a distinguishable

phenotype has emerged. However, most methods to probe global gene expression necessitate

immediate destruction of the cell, preventing longitudinal tracking of subpopulations. Although

single-cell transcriptomics provide an opportunity to dissect populational

heterogeneity(Kolodziejczyk et al., 2015; Wagner et al., 2016), they are also end-point

measurements and must rely on inference methods, such as RNA velocity(Bergen et al., 2020,

2021; La Manno et al., 2018; Qiu et al., 2022), to postulate temporal dynamics.
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Meanwhile, live-cell methods for monitoring gene expression remain limited in coverage,

throughput, or temporal-resolution. Even with advanced multicolor fluorescence microscopy,

there are insufficient channels to simultaneously monitor the entire genome, therefore

necessitating prior knowledge on marker gene selection to investigate expression-to-phenotype

trajectories(Lin et al., 2023; Linghu et al., 2023; Young et al., 2011). Live-cell continual RNA

extraction using force microscopy (e.g., Live-Seq(Chen et al., 2022)) can achieve full genome

coverage and longitudinal tracking of single cells, though it currently has a limited throughput of

100s of cells and relies on specialized equipment.

Recent breakthroughs in gene-expression recording by DNA-editing(Bhattarai-Kline et

al., 2022; Jiao et al., 2023; Schmidt et al., 2018; Shipman et al., 2016; Silas et al., 2016; Tang &

Liu, 2018) provide another promising avenue for interrogating time-trajectories with a

sequencing readout. These genome-based recording techniques currently require hours of active

recording to accumulate dozens of events per lineage or are limited to recording a handful of

pre-selected gene targets. We reasoned that a whole-transcriptome recording method that can be induced

on-demand in a large population of cells could help elucidate the transitory expression changes that

drive cellular differentiation. A tool with this capability could also enable the investigation of

cell physiology in difficult-to-reach conditions, such as microbes in animal guts(Schmidt et al.,

2022; Shalon et al., 2023).

In this work, we present an RNA-preservation method for transcriptome-wide recording

inside living cells. Inspired by RNA viruses that use protein capsids to preserve their RNA

genomes, we used engineered proteins that can self-assemble into nanoscale cages(Butterfield et

al., 2017), encapsulating a fraction of cytoplasmic RNAs nonspecifically. We demonstrated that

these “molecular time capsules” can stably maintain time-stamped transcriptomic records even
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after changes in cellular states, and that the RNA contents can be extracted reproducibly and

unambiguously. We anticipate that this concept will be broadly applicable to different types of

scenarios, from studying the origin of heterogeneous responses to drug treatment for bacteria and

cancer cells to elucidating the transcriptome trajectories that underlie cellular differentiation.

To establish such a method, we demonstrate that self-assembled protein capsules can be

used to encapsulate and preserve a fraction of the cytoplasm in living cells (Fig. 2.1a). Capsule

assembly can be controlled on-demand via an inducible promoter, creating a time-stamped

record that is maintained in the cell. At a later time, such as when cells become phenotypically

distinguishable or accessible, the capsules can be isolated via affinity purification and their

content analyzed (Fig. 2.1b). We focus on their RNA content in this study, although these

“molecular time capsules” (MTCs) could in principle be also used for proteomic or metabolomic

studies.
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Fig. 2.1 Molecular time capsules provide reproducible transcriptome recording in living

cells.

a,Molecular time capsules (MTCs) are genetically encodable protein capsules that can self-assemble within living

cells. During assembly, MTCs can encapsulate RNAs (see inset). b,MTCs capture and protect snapshots of

transcriptomes for delayed retrieval and analysis. After a “recording” period, MTC production is shut off, and the

cells are allowed to continue along their developmental trajectory. After the phenotype of interest has emerged,

MTCs are retrieved by affinity purification and their encapsulated RNA is extracted. Sequencing analysis is

performed on the RNAs, facilitating historical recovery of the transcriptomic record that was captured during the
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recording window. c,MTC-captured snapshots of the transcriptome across 2 biological replicates plotted in units of

reads per million (RPM), where each dot corresponds to a gene with sufficient sequencing coverage. (Pearson

correlation coefficient of log-transformed RPM values: R = 0.993, n = 2,302 genes, only genes with > 100 reads are

considered). The inset plots the distribution of log-10 fold-change between the two replicates. The standard

deviation, 𝞂, of the fold-change distribution = 0.07, or 1.2-fold.

Several criteria are required for faithful transcriptome recording by MTCs. First, the

captured RNA content must be reproducible. Second, the retrieved RNA content must have

minimal contamination from non-encapsulated RNAs, whether from the host cell or from other

cells in the sample. Third, the RNA record must be stably preserved over time despite changes in

the host transcriptome. Here we demonstrate that these criteria are met using a de novo designed

protein capsule(Butterfield et al., 2017) (13.5-nm radius) expressed with a poly-histidine tag in

Escherichia coli, with the recording timing controlled via an Isopropyl

ß-D-1-thiogalactopyranoside (IPTG)-inducible promoter.
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Fig. 2.2 Molecular time capsules can be cleanly purified by protein purification.

Elution of the MTC protein complex is very clean. This protein gel contains samples from

various stages of the protein purification prep across 3 different testing conditions. Samples

marked “3” represent the purification conditions used throughout this paper. 1 and 2 represent

other conditions being tested. 1 = resuspension of cell pellets in 20mM Imidazole and a wash

buffer concentration of 20mM Imidazole. There is still significant contamination of the eluate

under these conditions. Condition 2 = resuspension in 20mM Imidazole and wash in 150 mM

Imidazole. 3 = purification condition used for the work in this paper, resuspend in 150 mM

Imidazole and wash in 150 mM Imidazole. All elutions were done at 500 mM Imidazole. Note
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that there remains capsules stuck to the beads in our current purification protocol, indicating an

avenue for improved yield from this protocol.

Molecular Time Capsule Characterization and Reproducibility

First, we assessed the reproducibility of MTC-based recording by comparing the

encapsulated RNA content from three biological replicates. Poly-histidine-tagged MTCs were

purified using a Ni-NTA column (Figure 2.2) from exponential-phase cells that have been

expressing capsule proteins steadily (for >10 generations). Expression of MTCs only slightly

increases the population doubling time (from 20 minutes to 28.5 minutes) (Figure 2.3). When

expressed in this experiment, MTC transcripts represent 0.14% of all sequenced transcripts

(transcripts per million (TPM) = 1350 +/- 230). Our purification and RNA extraction methods

extract RNA specific to MTCs, as we are not able to recover a detectable amount of RNA from

wild-type E. coli cells subjected to the same protocol.
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Fig. 2.3 Doubling Time Effects of Extended Induction of MTCs. Inducing the MTCs

has a slight effect on growth rate. This is the semi-log plot of optical density (measured at

600nm) of cultures versus time (Minutes). WT corresponds to wild type MG1655 E. coli, while

the MTC refers to the wild type MG1655 E. coli which has pMP026, the MTC plasmid. Induced

samples had 1mM IPTG added at the moment of back-dilution from overnight culture (>10

doublings before a detectable OD 600 value). The “t” in the legend above corresponds to the
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calculated doubling time for each sample. The induced MTC sample has a doubling time of 28.5,

which is ~ 8.5 minutes slower than WT samples.

Fig. 2.4 MTC-encapsulated per gene RPM and general Lysate RNA per Gene RPM

across 3 biological replicates.MTCs have highly reproducible capture. Subfigures a-c

demonstrate the high reproducibility on a gene-by-gene basis of the read per million (RPM)

values of MTC-encapsulated mRNAs across 3 biological replicates (between replicates 1 and 2 P

= 0.993 (n = 2302); 1 and 3 P = 0.976 (n = 2277); 2 and 3 P = 0.985 (n=2395)). d-f demonstrates

the corresponding gene-by-gene RPM values of mRNAs taken from the general lysate (between

replicates 1 and 2 P = 0.995 (n = 2430); 1 and 3 P = 0.994 (n = 2374); 2 and 3 P = 0.997

(n=2364)). The high reproducibility across both sets of samples suggests first that the recorded
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transcriptome was similar across replicates, and that the MTC-captured transcripts are highly

reproducible across similar biological conditions. Note that while the samples are highly similar -

there are slight differences between the MTC samples which might point to transient

upregulation of certain regulons during the growth period. Previous transient transcriptomic

variations would not necessarily be visible at the final time point measurement (i.e. the general

lysate samples) so it is not surprising to see a higher degree of agreement between the Lysate

samples than across MTC-encapsulated samples. All Pearson coefficients (R) are calculated on

log-transformed values (as is plotted) for reads with > 100 sequencing reads. The “n” reported

for each Pearson coefficient corresponds to the number of genes used in that calculation.

Overall, the levels of encapsulated mRNAs, as measured by RNA-seq, agree across

biological replicates on a gene-by-gene basis. The median Pearson correlation coefficient of

log-transformed mRNA levels between replicates is R = 0.985 (Fig. 2.1c and Figure 2.4). This

reproducibility suggests that MTCs can facilitate differential expression analysis between

cellular states. The mRNA levels in the total cell lysate also correlate with MTC samples, albeit

less well compared to the reproducibility of MTC capture across biological replicates (median R

= 0.784, Figures 2.4 and 2.5). Interestingly, the majority of RNA fragments recovered from

MTCs are short (< 200 nt), suggesting that MTC-based capture leverages the abundant RNA

decay intermediates recently reported to dominate the transcriptome(Herzel et al., 2022). (Figure

2.6).
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Fig. 2.5 MTC-encapsulated transcripts versus Lysate transcripts across 3 biological

replicates. Three biological replicates of MTC-encapsulated mRNAs and lysate purified mRNAs

plotted on a gene-by-gene basis with read per million (RPM) value for each sample (between

replicates 1 and 2 P = 0.766 (n = 2147); 1 and 3 P = 0.783 (n = 2235); 2 and 3 P = 0.813

(n=2168)). While this represents a good agreement between MTC-encapsulated RNAs and lysate

RNAs, it is important to note that the variance which contributes to the spread is highly

reproducible - as is demonstrated in Extended Figure 3. This high reproducibility means that in

using the MTCs it is best to compare MTCs between two conditions or populations of interest to

detect potential up-regulated or downregulated genes rather than looking at the MTC versus

lysate RPM values. All Pearson coefficients (R) are calculated on log-transformed values (as is

plotted) for reads with > 100 sequencing reads. The “n” reported for each Pearson coefficient

corresponds to the number of genes used in that calculation.
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Fig. 2.6 Length Distribution of MTC Encapsulated RNAs in Comparison to General Lysate

RNAs.MTCs are dominated by short transcripts. Shown here is the output of the length

distribution measured via Fragment Analyzer. a, represents the read length distribution of

MTC-protected transcripts taken before the typical 200nt size selection step in library prep. b,

represents the length distribution of the corresponding total lysate sample, which is by contrast

dominated by the expected rRNA bands at ~16k nt and ~29-30k nt.
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MTC-encapsulated RNA recovery and stability

We next demonstrated that MTC-encapsulated transcripts can be cleanly recovered

without substantial contamination from non-encapsulated RNAs. To do so, we purified MTCs

from a heterogeneous cell culture in which MTCs are only expressed in one subpopulation (E.

coli, 50% of cells) but not in the other (Bacillus subtilis, 50% of cells) (Fig. 2.7a). These

bacterial species have distinct genomes, facilitating the identification of which species a

particular RNA originates from RNA-seq analysis.

Fig. 2.7 MTC-encapsulated RNAs can be recovered without detectable contaminations.

a, Total lysate and MTC samples are removed from a mixed “barnyard” sample consisting of both B. subtilis

(orange) and MTC-containing E. coli (green). The MTC sample refers to MTCs purified from the mixed population.

b, The percentage of reads in the MTC sample mapping to the E. coli genome is >99.97% (out of n = 5.2 x 106
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uniquely mapping reads), the mixed lysate sample has 53.1% (out of n = 3.2 x 106 uniquely mapping reads) of reads

uniquely mapping to E. coli genome. c, The gene-by-gene scatter plot in units of reads per million (RPM) for

samples purified from pure B. subtilis lysate (x axis) versus the mixed lysate sample (top y-axis) and the MTC

sample (bottom y-axis). E. coli genes are colored in green, whereas B. subtilis genes are colored in orange.

Although 46.9% of uniquely mapping reads from the heterogeneous lysate mapped to the

B. subtilis genome, MTCs extracted from the same lysate contain almost exclusively E. coli

RNAs (99.97%) (Fig. 2.7b). Every B. subtilis gene is depleted in MTCs (Fig. 2.7c). The level of

B. subtilis mapping RNAs (0.03%) in the MTC sample is close to the baseline level estimated

using an E. coli RNA sample sequenced in the same lane (0.1%). This result indicates that the

MTC-purification procedure specifically captures the encapsulated RNAs, and that the

transcriptome of a targeted subpopulation can be successfully isolated using MTCs without

contamination from non-encapsulated transcripts.

Fig. 2.8 MTCs preserve mRNA records after transcriptome changes.
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a,MTC encapsulated RNA samples and lysate samples are collected from before and after a stressful treatment of

4% ethanol. b and c, Both plots contrast the reads per million (RPM) of all genes with sufficient sequencing

coverage, with each point corresponding to a separate gene. The scatter plot places a dot for each gene

corresponding to its pre- (x) and post- (y)stress time-points. Only genes with more than 100 reads in both samples

are considered. Each plot has an accompanying inset showing the log-10 fold distribution between the pre- and

post-stress samples. b, The lysate pre- and post samples (points in blue). For the lysate samples, the Pearson

correlation coefficient of log-transformed RPM values is R = 0.744, and the standard deviation (𝞂) of the log-10

fold-change distribution = 0.40, which corresponds to 2.5-fold (n = 2477 genes). Genes with greater than or equal to

an order of magnitude change in expression between the pre- and post-stress samples are circled in red. c, The pre-

and post-stress MTC samples (points in orange). The Pearson correlation coefficient of the log-transformed RPM

values is R = 0.991, and the 𝞂 of the fold-change distribution = 0.08, which corresponds to 1.2-fold, (n = 2543

genes)

Finally, we demonstrated that MTCs provide stable transcriptome storage inside host

cells. Many factors could contribute to loss of MTC fidelity over time: the protein capsules could

disassemble and reassemble, RNA within MTCs could decay, and expression of MTC proteins

may be leaky after recording. To quantify the combined effect of all these potential sources, we

examined the maintenance of MTC-encapsulated RNAs before and after shifting their host cells

into a different environment that alters their transcriptomes. We first briefly induced MTC

expression for one hour by adding IPTG (Isopropyl ß-D-1-thiogalactopyranoside) to Luria Broth.

After washing off IPTG to shut off MTC expression, we introduced ethanol stress (4%) to the

cells (Fig. 2.8a). The stress led to substantial remodeling of the host transcriptome, with 81 genes

changed by >10-fold and an overall Pearson correlation coefficient of R=0.79 between mRNA

levels pre- and post-stress (Fig. 2.8b). By contrast, the MTC samples collected before and after

stress have almost identical RNA levels on a gene-by-gene basis, with an overall Pearson
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correlation coefficient of R=0.99 (Fig. 2.8c). The most extremely shifted gene in the host cell,

tnaA, changed by 124-fold, whereas this same gene only changed by 1.5-fold across the MTC

samples. These results demonstrate that MTC contents remain static despite large contextual

changes in the cell state.

Discussion

In summary, we established that MTCs can capture and preserve high-fidelity snapshots

of the transcriptome in living cells. This approach opens several avenues of future applications.

First, it will help elucidate the gene expression heterogeneities that precede distinct phenotypic

outcomes during development, cellular differentiation, or stress survival. To do so, cells carrying

pre-assembled MTCs can be sorted based on their final phenotypes, allowing their prior

transcriptomes to be analyzed. This is facilitated by the fact that MTC-records are physically

maintained inside the cell lineage (Horns et al., 2023). MTCs can therefore nominate candidate

genes for targeted studies. Second, MTCs can help elucidate cellular states adopted in

hard-to-access locations, where in situ sample collection is difficult. The comparatively short

recording time will enable precise capture of transitory responses, such as bacterial cells at

specific locations inside an animal (Schmidt et al., 2022). As MTC formation simply requires the

self-assembly of two protein subunits, we anticipate that it will be generalizable to new systems,

both eukaryotic and prokaryotic.
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Methods:

Strains: B. subtilis strains were taken directly from Bacillus subtilis subsp. Subtilis str. 168. E.

coli strains were generated from Escherichia coli, K-12 MG1655. This includes our wild-type

control, which was taken directly from Escherichia coli, K-12 MG1655 and an MTC-containing

strain which consists of Escherichia coli, K-12 MG1655 with the MTC-containing plasmid

(described below). The plasmid was constructed using the method described below and

transformed first into DH5𝝰 cells before being transformed into competent MG1655 cells using

the method described below.

Plasmids: pGL002 is a Kanamycin (Kan) resistant plasmid that contains constitutively produced

LacI and IPTG-inducible MTC. It has pMB1 origin of replication. The full plasmid map can be

found on our GitHub. This plasmid was constructed using the method described below. It was

transformed into the E. coli strain K-12 MG1655 using the method outlined in greater detail

below. This pGL002-containing E. coli strain was the one used for all experiments in this work.

Plasmid Assembly: Plasmid components were either amplified using PCR from a pre-existing

plasmid, followed by DpnI (NEB #R0176L) digestion, or were ordered directly as gene blocks

from IDT. Plasmids were constructed by Gibson assembly, using the protocol and reagents

associated with NEB #E2611 with a total volume of 4 µL. Plasmids were then transformed into

Zymo Mix & Go DH5𝝰 Competent Cells (Zymo T3007) for verification and amplification

before re-purification and transformation into MG1655 E. coli. All plasmid purification was

done using overnight culture and the Zymo Zyppy Plasmid Miniprep Kit (Genesee 11-30).
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Plasmids were verified using Sanger sequencing (performed by Quintara), or by whole plasmid

sequencing (performed by Plasmidsaurus). The plasmid associated with this work: pGL002

(Figure 2.9), will be deposited to Addgene.

Fig 2.9 Illustration of the plasmid map used for this work. The I53-50-v4N genome represents the
MTC transcripts, which comprises two parts: a pentameric and a trimeric subunit. The plasmid is resistant
to Kanamycin. It has a pMB1 origin, and uses a copy of lac to repress production of the MTCs.

Media: All experiments were conducted using Luria Broth (LB).
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Transformation: For transformation into Zymo Mix & Go DH5𝝰 competent cells (Zymo

T3007), 100 µL of cells were thawed on ice per reaction. Then 1-4 µL plasmid DNA was added

followed by gentle mixing. After 5-minute incubation on ice cells, 400 µL of prewarmed SOB

medium was added, and the mixture was incubated in an Eppendorf tube for 1 hr at 37 °C with

300 rpm shaking. The mixture was then spread on pre-warmed agar plates with the appropriate

antibiotic (50 µg/mL for MTC-plasmid-containing cells).

For transformation into non-competent wild-type MG1655 E. coli, the cells were made

competent using the protocol described by Chung et al.(Chung et al., 1989). 3 mL of LB was

inoculated with a colony from a fresh agar plate. Cells were incubated at 37 °C 230 rpm for 1.5

to 2 hrs. 200 µL of cells were added to 200 µL ice cold TSS buffer (LB broth containing 10%

(wt/vol) polyethylene glycol, 5% (vol/vol) dimethyl sulfoxide, and 50 mM Mg2+ at pH 6.5) and

1 µL plasmid. Cells were vortexed and incubated on ice for 20 - 30 minutes. Then cells were

incubated for 45 - 60 min at 37 °C on the thermomixer with 900 rpm shaking. Finally, cells were

plated on the appropriate antibiotic (50 µg/mL for MTC-plasmid-containing cells).

Assessing MTC reproducibility. (Experiment shown in Figure 2.1c, Extended Figures 3 & 4)

MG1655 containing pGL002 was streaked on a 50 µg/mL Kan marker plate and left to grow

overnight at 37 °C. The next day, 3 single colonies were selected from the plates and incubated

in separate test tubes with 5 mL LB and 50 µg/mL Kan for 2 hrs. These cultures were then

back-diluted to allow for 12 doublings before reaching OD 0.3 in 500 mL of pre-warmed LB

with 1 mM IPTG and 50 µg/mL Kan. Shortly before reaching OD 0.3, both the lysate and MTC

samples were harvested. MTC samples were harvested by splitting the volume into four 50mL

Falcon Tubes and spinning them down for 10 min at 4000 rpm at 4 °C in an Eppendorf 5810R
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Centrifuge. The supernatant was discarded, and the cell pellets were frozen for future protein

purification. The lysate sample was collected by placing 500 µL of culture directly into a

prewarmed RNA extraction solution (see below) and proceeding with RNA extraction.

Assessing the Contamination from bulk lysate. (Experiment shown in Figure 2.7) - Two

samples were harvested for this experiment - MG1655 containing pGL002 and Wild Type B.

subtilis cells (BS168).

The MG1655 containing pGL002 cells were streaked from a glycerol stock onto an LB +

50 µg/mL Kan plate and grown overnight. A colony from this plate was selected the next day

and added to 10mL of LB with 50 µg/mL Kan and grown overnight at 37 °C on a rotator drum

spinning ~ 225 rpm. This overnight culture was then diluted into a volume of 500 mL to achieve

12 doublings before reaching OD 0.3 in pre-warmed LB with 50 µg/mL Kan. The culture was

grown at 37 °C on a shaker plate - shaking at ~ 225 rpm. At OD 0.3 1mM IPTG was added. At

OD 2 the culture was divided between 50mL Falcon tubes and spun for 10 minutes at 4000 rpm

in a pre-chilled (4 °C) Eppendorf 5810R Centrifuge. The Supernatant was then discarded, and

the cell pellets were flash frozen in liquid nitrogen and stored at -80 °C.

The B. subtilis cells (BS168) were inoculated directly from a glycerol stock into 5 mL

LB, then grown for 2 hours at 37 °C on a rotator spinning ~ 225 rpm. This culture was then

diluted to achieve 12 doublings before reaching OD 0.3 in pre-warmed LB. At OD 2 the culture

was divided between 50 mL Falcon tubes and spun for 10 minutes at 4000 rpm in an Eppendorf

5810R Centrifuge. The Supernatant was then discarded, and the cell pellets were flash frozen in

liquid nitrogen and stored at -80 °C.
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Assessing the stability of encapsulated RNAs. (Experiment shown in Figure 2.8) - MG1655

containing pGL002 was streaked on a 50 µg/mL Kan marker plate and left to grow overnight at

37 °C. The next day single colonies were selected from the plates and incubated in a test tube

with 5 mL LB and 50 µg/mL Kan for 2 hrs. This culture was then back diluted in a 500 mL

volume with 50 µg/mL Kan to achieve 10 doublings before reaching OD 0.3. Once the cultures

reached OD 0.3 MTC recording was initiated by the addition of 1 mM IPTG. After 1 hr, the

capsule induction was shut off by filtering and washing the cells. The filter was washed with half

the original cell volume of prewarmed LB. The cells were then resuspended in the original

volume of LB without any antibiotics or IPTG. Pre-Stress Lysate and MTC samples were

collected 15 minutes post-wash. The MTC sample was collected by filtering 2 volumes of 125

mL of culture. The cells were then resuspended in 2 50 mL Falcon tubes in pre-chilled (4 °C)

LB. These tubes were then centrifuged for 10 min at 4000 rpm at 4 °C in an Eppendorf 5810R

Centrifuge. The supernatant was discarded, and the cell pellets were frozen for future protein

purification. The lysate sample was collected by placing 500 µL of culture directly into a

prewarmed RNA extraction solution (see below) and proceeding with RNA extraction. To the

remaining 250 mL of culture, we added a 4% ethanol stress, and allowed the cells to grow for 45

minutes before harvesting the post-stress MTC and lysate samples in a manner similar to the one

described above.

Table 2.1 Summary and description of all samples collected and sequenced:

84



Sample
Name

Sequencin
g Library
ID

OD 600
of
rehydrate
d cells
before
Protein
Purificati
on (*note
- sample
diluted
before
measurem
ent)

RNA
yeild
(ng/uL)
Measured
by QuBit
HS RNA
kit

ng RNA per cell
(Note - we assume
8*10^8 E coli cells
per mL per OD of
1) We also use the
fact that cells were
resuspended to a
total volume of
40mL before
purification

Sample/Harvesting Notes - Note all cultures
were grown in Luria Broth (LB). OD's reported
ar OD 600 values (where cultures may have
been appropriately diluted before measurment).

Lysate
Rep 1 230724Li - 96 - Collected at OD 0.19

Lysate
Rep 2 230724Li - 128 - Collected at OD 0.177

Lysate
Rep 3 230724Li - 100 - Collected at OD 1.64

MTC Rep
1 230724Li 0.99 9.98 3.15E-10

Collected at OD 0.19, then RNA was extracted
from purified MTCs

MTC Rep
2 230724Li 0.87 10.8 3.88E-10

Collected at OD 0.177, then RNA was extracted
from purified MTCs

MTC Rep
3 230724Li 0.78 4 1.60E-10

Collected at OD 0.164, then RNA was extracted
from purified MTCs

Early Cap 230712Li 6.88 6.16 2.80E-11

Induced at OD 0.264, 1 hr post induction cells
were filtered and washed, then rehydrated. This
sample was collected 15 minutes post
resuspension in prewarmed LB.

Early
Lysate 230712Li - 60 -

Induced at OD 0.264, 1 hr post induction cells
were filtered and washed, then rehydrated. This
sample was collected 15 minutes post
resuspension in prewarmed LB.

Late Cap 230712Li 9.84 6.18 1.96E-11

Induced at OD 0.264, 1 hr post induction cells
were filtered and washed, then rehydrated. This
sample was collected ~ 55 min post
resuspension in prewarmed LB (40 minutes
after the "Ealry or Pre stress sample)

Late
Lysate 230712Li - 54

Induced at OD 0.264, 1 hr post induction cells
were filtered and washed, then rehydrated. This
sample was collected ~ 55 min post
resuspension in prewarmed LB (40 minutes
after the "Ealry or Pre stress sample)

85



B. sub
Lysate 230712Li - 172

Collected at OD 2.0 by centrifugation, 4000
rpm for 10 min at 4C followed by flash
freezing.

E. coli
Lysate 230712Li - 156

Induced at OD 0.3 with 1 mM IPTG, harvested
at OD 2.0 by centrifugation, 4000 rpm for 10
min at 4C followed by flash freezing.

Mixture
Lysate 230712Li - 182

The "mixture sample" was made by mixing 9:1
B sub to E coli (based on their OD 600 values,
which does not correspond to the ratio of cells
due to difference in OD 600 to cell count
conversion factors). OD600 of rehydrated E.
coli was 6.77. The OD of the rehydrated B.
subtilis was 5.56. The mixture lysate sample
was taken as 250uL of this resuspended
mixture, with 250uL buffer.

E. coli
MTC 230712Li 6.77 79.8 3.68E-10

Induced at OD 0.3 with 1 mM IPTG, harvested
at OD 2.0 by centrifugation, 4000 rpm for 10
min at 4C followed by flash freezing.

Mixture
MTC 230712Li 0.68 4.2 1.93E-10

The "mixture sample" was made by mixing 9:1
B sub to E coli (based on their OD 600 values,
which does not correspond to the ratio of cells
due to difference in OD 600 to cell count
conversion factors). OD600 of rehydrated E.
coli was 6.77. The OD of the rehydrated B.
subtilis was 5.56.

Protein Purification: Harvested Cell Pellets were rehydrated in 40 mL Lysis Buffer (150 mM

Imidazole, 250 mM NaCl, 25 mM Tris-HCL, pH 8, with Protease Inhibitors) and the OD 600

values of each rehydrated solution were measured. Each sample was then sonicated using the

450W Ultrasonic Homogenizer (10 to 300 mL) from US Solid following a program of 2 seconds

on at 25% power, followed by a 6 second off break for a total of 10 minutes. Lysate was then

clarified by centrifugation at 4 °C using a Sorvall RC-5B Refrigerated Superspeed Centrifuge at

10,000 rpm for 45 min, after which the clarified supernatant was retained for loading on the

protein column. To prepare the protein column we loaded 2 mL (1 mL column volume) of Nickel

NTA resin onto the 5 mL Polypropylene columns from Qiagen and the resin buffer was allowed
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to drain. The resin was then rinsed with 15 column volumes of ddH2O followed by 15 column

volumes of wash buffer (150 mM Imidazole, 250 mM NaCl, 25 mM Tris-HCL, pH 8) to

equilibrate the column. After this the clarified supernatant was loaded onto the column. The

column was then washed with 15 column volumes of the wash buffer followed by an elution

with the elution buffer (500 mM Imidazole, 250 mM NaCl, 25 mM Tris-HCL, pH 8). 3 column

volumes of the elution buffer were used, but only the last 2 column volumes were kept. The

purified proteins were then treated with RNase A (1 µL/mL 20 °C for 10 minutes) before

proceeding with RNA extraction.

RNA Extraction: A prewarmed (65 °C) solution of 500 mL phenol acid chloroform with 29 µL

20% SDS was added to 500 mL of sample in a 1.5 mL Eppendorf (split between multiple tubes if

needed). Samples were incubated at 65 °C for 5 minutes at 1,400 rpm, followed by a 5-minute

incubation of the samples on ice. Samples were then spun at 20,000 g for 2 minutes after which

the top aqueous layer was transferred to a new non-stick tube. 45 µL 3M NaAc (pH 5.4), 500 mL

100% Isopropanol and 1 µL GlycoBlue coprecipitant was added. The tubes were chilled at -80

°C for 30 min and then spun at 20,000 g for 60 min at 4 °C. The supernatant was discarded

before 250 mL pre-chilled 80% Ethanol was added and the sample was spun again at 20,000 g

for 5 min. The supernatant was discarded and the samples were resuspended in 100 µL 10 mM

Tris 7. Samples were then cleaned using the modified version of the Zymo-5 RNA Clean and

Concentrator columns to remove all RNAs < 200 nt (to remove tRNAs). Finally the sample was

eluted in 85 µL DEPC-water and we proceeded immediately with DNase treatment.
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DNase Treatment:We added 10 µL 10x Turbo DNase buffer and 5 µL Turbo DNase to 85 µL

RNA (from previous step). The sample was incubated for 20-30 min at 37 °C in an Eppendorf

thermomixer without shaking. We added 330 µL 100% Ethanol, 11 µL 3M NaAc (pH 5.4) and 1

µL GlycoBlue coprecipitant to the mixture. The tubes were then chilled at -80 °C for 30 min+

(possible stopping point) and then spun at 20,000 g for 60 min at 4 °C. The supernatant was

discarded and then 250 mL pre-chilled 80% Ethanol was added and the mixture was spun at

20,000 g for 5 min. The supernatant was discarded and the pellet was then resuspended in 13.5

µL DEPC-water. The concentrations were then measured using the High Sensitivity RNA kit for

Qubit, after which we proceeded with library preparation.

Library Preparation: Libraries in this paper were prepared using NEB’s rRNA Depletion Kit

(Bacteria) for rRNA removal with beads (NEB #E7860). Post rRNA removal samples were

prepared for either Illumina or Singular Sequencing using NEBNext Ultra II RNA Library Prep

Kit for Illumina with Beads (NEB#E7775). Singular specific primers for the libraries sequencing

on Singular which had the S1/S2 handles instead of Illumina’s p7/p5 handles.

Code Availability: Raw sequencing fastq files were trimmed using seqtk and cutadapt to remove

bases of low quality and adapters. Reads were then aligned using bowtie (version 1)(Langmead

et al., 2009), after which the density of the 5’ ends was quantified using SAMtools(Li et al.,

2009) and the CDS files for each genome were used to quantify how many transcripts were

found within each gene. The complete scripts for raw analysis, as well as processed data files (in

the format of counts per gene) can be found on our GitHub
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(https://github.com/gwlilabmit/MTC_2023_Scripts). Jupyter notebooks also exist for each of the

plotted subfigures and extended figures.

Data Availability: Raw fastq files associated with this work have been deposited to the NCBI’s

SRA database. These files are associated with Bioproject PRJNA1024409, and are publicly

available at the link https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1024409, Processed

data files and figure source data can be found on our GitHub

(https://github.com/gwlilabmit/MTC_2023_Scripts), Non-sequencing data (i.e. the doubling rate

data in Extended Figure 2) can also be found in the GitHub.
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Abstract

Transcription initiation, termination, and RNA processing have critical regulatory roles for gene

expression through their ability to tune mRNA abundances. The sequence features governing

these processes can be studied by mapping the transcript ends that they define. We recently

developed end-enriched RNA sequencing (Rend-seq) for identifying transcript ends in bacteria

with single-nucleotide resolution. Here, we present both rendseq, an open-source Python package

that automates end identification from Rend-seq datasets, and rendseq.org, an interactive web

platform for exploration of published Rend-seq datasets. These tools facilitate the interrogation

of in vivo RNA termini and can inform future studies of RNA regulatory control.

Introduction

Messenger RNAs (mRNAs) are targets of gene regulation. The sequence context of mRNA 5ʹ

and 3ʹ ends contains much of the information needed to define the transcript’s abundance by

determining the rates of transcription initiation, termination, and mRNA processing. However,

unlike proteins whose termini are straightforward to computationally determine from genomic

sequences, it is challenging to predict the 5ʹ and 3ʹ ends of transcripts (Cassiano & Silva-Rocha,

2020).

In vivo measurement or inference of transcript ends can recover RNA 5ʹ and 3ʹ

boundaries across multiple environmental, cell state, and genetic conditions. Building a

comprehensive database of transcript ends could inform improved computational methods for

predicting transcription initiation, termination, mRNA processing, and decay. Such a database
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could also provide a set of regulatory building blocks, e.g., promoters, terminators, and RNA

processing sites that could then be tested for their performance as modular components in

informed transcript unit design.

End-enriched RNA sequencing (Rend-seq) (Lalanne et al., 2018) is a variation of RNA

sequencing that can quantify the abundances of transcripts as well as identify their 5ʹ and 3ʹ ends

with single-nucleotide precision. Rend-seq combines a sparse fragmentation of input RNA with a

subsequent size selection to generate a pool of short transcripts for sequencing. Any fragment

containing either the original 5ʹ or 3ʹ end of the pre-fragmentation transcript is enriched. This is

because fragments containing one of the original ends only require one fragmentation event to

end up in the final pool, whereas fragments with neither original end must undergo at least two

events. Due to the size selection, both the 5ʹ and 3ʹ ends of each fragment can be recovered via

sequencing. Rend-seq tracks are generated by recording these 5ʹ-mapped and 3ʹ-mapped reads,

creating 4 tracks per experiment: a 5ʹ-mapped track and a 3ʹ-mapped track for both the forward

and reverse strands. These are stored in a wiggle (.wig) format and can then be viewed in

genome browsers (Fig 3.1a).

We present rendseq, an open-source Python package that automates the extraction of

peaks (corresponding to transcript ends) from Rend-seq data. We have also made a web

interface, rendseq.org, to make published Rend-seq datasets easily accessible and explorable.

Users can explore a variety of Rend-seq datasets across different conditions to see how the end

profile distribution changes between different genetic and environmental conditions. Lastly, we

seek to use rendseq.org to ease the adoption of both the Rend-seq protocol and analysis platform

by using it to host a growing set of learning resources.
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Implementation

We have developed rendseq, an open-source Python package available on both GitHub and PyPi,

to facilitate the identification of transcript ends in Rend-seq data. The locations of these ends are

identifiable by the peaks in Rend-seq tracks. Robustly labeling all the peaks in a sample can be a

challenging data analysis task to automate. This is because the abundance of different transcripts

can vary by several orders of magnitude. Together, this means that naive approaches, such as

direct thresholding, cannot reliably identify transcript ends.

rendseq overcomes this challenge by pre-processing each track using a modified Z-score

transformation. For each position, we compute the Z-score using data only from its immediate

neighbors instead of all positions in the genome. Furthermore, the upstream and downstream

read densities are treated as separate distributions to reflect the structure of Rend-seq data, i.e.,

peaks mark the transitions in RNA levels. Outliers are removed from these distributions to

suppress the effect of other peaks (e.g., alternative transcription start sites) that might fall close to

one another, thereby allowing us to identify closely spaced RNA ends. The modified score for

each position is then set to be the smaller of the two Z-scores calculated with respect to the

upstream and downstream distributions. These transformed data files can then be thresholded to

find peaks. We provide a useful default for this threshold which performs well on Rend-seq

datasets we have generated. For users who wish to change this default we also supply tools, such

as plotting the distribution of transformed values, to help choose a new threshold value.

To make the Rend-seq datasets more accessible, we created an interactive database and

web platform hosted at rendseq.org. The architecture of rendseq.org is shown in Fig 3.1b.

Rend-seq wig tracks are uploaded internally to Google Cloud storage, triggering Google Cloud

Functions to create a transformed Rend-seq file using the latest version of rendseq. Each
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Rend-seq wig track is simultaneously compressed from wig to big-wig files to support lower

latency viewing. Files are compressed by using the ENCODE project’s wigToBigWig

functionality (Hitz et al., 2023) run by a bash script on a Google Cloud Run triggered by

EventArc. After processing is complete, the new Rend-seq dataset is added to the browsable list

of public Rend-seq datasets. Both the raw Rend-seq file and the transformed Rend-seq file can

then be referenced and displayed via the embedded genome viewer, powered by igv.js (Robinson

et al., 2023). The transformed file appears directly below each raw Rend-seq track, and is

zoomed in to display lines for all transformed values with a value of 10 or greater. Users can now

browse our published Rend-seq datasets without the need for any data processing or software

installation.

Features

Rendseq.org supports viewing of public Rend-seq datasets in the explore tab. Here, users can

simultaneously view multiple stacked Rend-seq tracks from the same organism, allowing

informative comparisons across growth and genetic conditions with an igv.js-powered (Robinson

et al., 2023) genome browser. Tracks for individual genes can be accessed by using the search

bar on the top of the plot. The browser supports viewing the datasets across multiple resolutions -

from single nucleotide to full genome.
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Fig 3.1 a) Example of Rend-seq data. Plotted are two overlaid wig tracks corresponding

to the 3′-mapped (blue) and 5′-mapped (orange) reads of the forward-strand mapping reads from

a Rend-seq experiment performed on Escherichia coli, zoomed in on the gene rpsB. b)

Illustration of rendseq.org data-processing implementation. All images correspond to the image

for each Google Cloud PlatformTM service used. To start, (1) Rend-seq tracks are uploaded to

Firebase Cloud Storage. This event triggers (2.1) a Cloud Run event which will compress each of

the Rend-seq wig files into bigwig files using the wigToBigWig functionality. It also triggers

(2.2) a Cloud Functions instance to begin analyzing each track using the rendseq package. Both

the compressed data file location, and the location of the peaks file are (3) added to the Cloud
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Firestore entry for this experiment, which can then be accessed by rendseq.org to display datasets

in the viewer.

Rendseq.org also hosts learning materials for the Rend-seq protocol in the “Learn” tab.

These materials are intended to help build intuition about how the Rend-seq protocol works,

facilitate adoption of the Rend-seq protocol, motivate the assumptions behind our data analysis

pipeline, and provide readers with use cases of Rend-seq. We welcome any new users of either

the sequencing technique or the analysis package to notify us (via an email to rendseq ‘at’

mit.edu) of published results for inclusion in the rendseq.org database. In this way we also hope

rendseq.org can grow to serve as the definitive database for all Rend-seq data sets and

applications.

Future Work

Although the rendseq package can be used to identify peaks, not all transcripts end profiles carry

this signature. For example, many genes in prokaryotes are known to undergo factor-mediated

transcription termination, such as Rho-dependent termination (Banerjee et al., 2006). Unlike

intrinsic termination, Rho-dependent termination does not always occur at the same genomic

position, meaning that Rho terminated transcripts can end with a downward sloping ramp rather

than a sharp peak (Johnson et al., 2020). Robustly identifying these features in Rend-seq data

would facilitate the study of alternative modes of transcription termination, and is a functionality

under development in rendseq.

Once ramps, which indicate that termination or degradation is taking place over a wide

stretch of sequence context, can be robustly identified, it will then be possible to automatically
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predict transcription isoform annotations from Rend-seq data. Transcription isoforms are

especially important in prokaryotes which often encode related genes in polycistronic operons

(Cao et al., 2015), whose relative levels are then tuned by changing the rates of transcription

termination, initiation, and decay (Lalanne et al., 2018). We aim to use this planned functionality

to add a new channel to the rendseq.org genome browser where users can visualize the annotated

transcription isoforms alongside the Rend-seq datasets.

Observing the distribution of RNA ends in vivo can reveal new biology. For example,

high-resolution mapping of transcript boundaries in exoribonuclease-deficient strains can

facilitate identification of RNA processing sites (Taggart et al., 2023). By revealing that the

precise 3ʹ ends of Bacillus subtilis transcripts are very close to translation termination sites,

Rend-seq also provided the motivation that led to the discovery of runaway transcription in B.

subtilis (Johnson et al., 2020). By providing easy access to Rend-seq datasets and streamlining

the data analysis process, we hope rendseq and rendseq.org will facilitate more discoveries into

the biology of transcription and RNA regulation.
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Conclusion
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Summary of Thesis Chapters

Molecular-biological tools empower our study of the microscopic dynamics which give

rise to life. New tools can facilitate novel modes of observation as well as inspire original

directions of inquiry and exploration. In this work I have presented some novel techniques to aid

the study of the mechanisms and dynamics of transcriptomic regulation. Transcriptional

regulation is a key process through which cells determine their developmental trajectories and

respond to changes in the environment. By achieving better measurements of this process we can

hopefully also achieve a greater understanding of the biology which governs it and better grasp

the repercussions of certain transcriptomic changes. This expanded knowledge of transcriptional

control and effect will complement efforts to predict, manipulate and design cellular behaviors.

Chapter I provides the summary and background necessary to contextualize the later

chapters. It is divided into two broad sections: one focused on the study of transcriptomic

dynamics in time and the second including a review of basic RNA regulatory processes and of

Rend-seq, a sequencing method whose data can aid in the inference of in vivo transcript ends. I

begin with an overview of why measuring transcriptomic variation in time and mapping it to

cellular behavior or outcomes can be a challenging task. From interventional data collected on

the single cell level, to fluorescence-microscopy tracking of RNA abundances over time to

genomic recording of transcript abundances in the genome, we explored different methods for

studying which gene-expression changes proceed and/or cause phenotypic behavior and

development. What united many of these methods is the common need for effective hypothesis

generation to reduce the space of tested genes and their expression levels. As this space is so

large, consisting of the potentially combinatorial interactions of thousands of genes at analog
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expression levels there are a huge number of conditions to test for their causal role in genotype to

phenotype relationships.

In the next part of the introduction I went over a quick review of some of the processes

which tune relative transcript abundance: transcription initiation, termination, and RNA decay.

By reviewing these processes, as well as discussing how they can be governed by sequence

context I aimed to provide motivation as to why identifying transcript ends with precision is a

useful exercise for uncovering new modes of RNA-regulation. I also aimed to motivate how

creating a corpus of sequence contexts of RNA ends across conditions can complement efforts to

build better models of transcriptional control. After providing context for what is known about

these biological processes I then explored a method for inferring from in vivo data where RNA

transcripts end (Rend-seq) 1. I concluded with a discussion of the existing analysis methods to

extract information about transcript ends from Rend-seq data.

Chapter II introduces a new method for the elucidation of transcriptomic dynamics over

time: the molecular time capsules (MTCs). These self-assembling protein capsules can be used to

capture and protect a “snapshot” of the full-transcriptome, allowing it to be recovered later and

analyzed. I demonstrated that the snapshot captured by the MTCs is highly reproducible. It can

be cleanly isolated from non-encapsulated RNAs without contamination of the recovered

transcripts. Furthermore, once captured, these snapshots are well maintained over time even as

the host transcriptome undergoes significant remodeling. My co-authors and I foresee several

applications where the MTCs can help elucidate fundamental biological questions: from

understanding the transcriptomic heterogeneity of immune response 2–4 or bacterial antibiotic

persistence 5,6, to uncovering the transcriptomic origins of cellular differentiation, we anticipate
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that the MTCs will be able to serve as effective hypothesis generators and identify candidate

genes for further studies into the link between transcriptomic variation and phenotypic effect.

Chapter III provides an overview of the analysis and data visualization platform I

constructed for inferring transcript ends from end enriched sequencing (Rend-seq) data. This

includes both an open source Python package, rendseq, which includes several methods for the

identification of peaks in Rend-seq data. These peaks correspond to the inferred 5′ and 3′ ends of

transcripts in vivo. This chapter also describes the web platform which hosts the interactive

web-database of our published Rend-seq datasets and tools to learn more about the Rend-seq

protocol: rendseq.org.

With new tools, both molecular biological tools, and analysis tools, it becomes easier to

answer otherwise challenging biological questions. In this chapter: Chapter IV, I am providing a

broad summary of the other chapters in this work, as well as highlighting what I believe to be the

main takeaways, potential applications, and future avenues for improvement for these tools.

Molecular Time Capsules can serve as a Hypothesis Generation
Tool for causal genotype-to-phenotype studies.

Organisms contain a large number of individual gene products with even minimal

bacterial cells containing hundreds of seemingly essential genes 7. Through tuning the expression

levels of these genes, or more commonly by tuning the expression levels of several genes

simultaneously, cells are able to adopt different phenotypes, respond to changes in the

environment, or commit to different developmental pathways and behaviors. Establishing

causality between gene-expression levels and cellular phenotypes can be cost and time

prohibitive unless one has the means to limit the number of hypotheses to explore. An effective

strategy for establishing a reduced set of candidate genes to test for their causal linkage to

108

https://paperpile.com/c/hXbjHs/u8Ct


phenotypes of interest is to first determine which gene expression changes correlate with the

emergence of these phenotypes. Once a set of correlating genes has been established, one can

perform experiments to ascertain which of these changes are both necessary and sufficient to

explain the adopted cell behavior. Observation has an advantage over model-driven hypothesis

generation in that it can capture unexpected correlative factors that a model with incorrect or

insufficient assumptions may miss. This is because models often rely upon well-established

biological principles and this bias can potentially obscure novel and interesting biology.

The characteristics of the MTCs mean they are well situated to serve as hypothesis

generators. They can reproducibly capture snapshots of the transcriptome. This means one

should be able to compare two MTC samples and infer that measured gene expression

differences reflect real differences in the captured transcriptome between samples. These

snapshots of MTC encapsulated RNAs can be cleanly separated from the host transcriptome.

This lack of contamination during the MTC extraction process means one can be confident that

the RNAs recovered from the MTC purification process are not merely remnants of the

host-transcriptome or other forms of contamination which would reduce one's capacity to

meaningfully interpret the MTC’s contents. Lastly, once captured MTC snapshots remain stable

over time. This observation should also increase confidence that MTC-encapsulated RNAs

continue to serve as a representative snapshot of the recorded transcriptome up until they can be

recovered from the cell.

Together these characteristics of reproducibility, clean recovery and stable storage

suggest it should be possible to use MTCs to capture a transcriptomic snapshot of a population,

then recover and analyze it later. One use case for this capability is to study transcriptome

dynamics conditional on a phenotype which is only revealed after the transcriptomic history is
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captured. This process would begin with a transient induction of MTC production, and thus

transcriptomic history recording, for the entire population. After an appropriate delay, some

fraction of that population may exhibit the phenotype of interest: for example resistance to stress,

special reactions to the external environment or commitment to a specialized cell fate. By sorting

the population based on this emergent phenotype and retrieving the MTC-encapsulated RNAs

from the sorted subpopulation, one can selectively query the transcriptomic history of only the

sub-population of interest. This technique can thus generate a profile of what the transcriptomic

history looks like conditional on the downstream phenotypes.

Building on our belief that the MTCs are an effective tool for conditionally querying the

transcriptome histories of interesting sub-populations, we are exploring ways to verify that it has

this capacity, and seeking new systems to apply it to. To do this we are focused on using the

MTCs in conjunction with Fluorescent Cell sorting (FACS). First we seek to demonstrate that the

MTC is able to recapitulate known transcriptomic variations which correlate with interesting

emergent phenotypes. It has been demonstrated that transient expression of genes involved in the

acid stress response, such as gadX, leads to a non-genetic reduced susceptibility to ciprofloxacin

8. To begin with we wish to characterize whether the MTC can indeed recover signatures of these

known correlational relationships. We will do this by first capturing a transcriptomic snapshot of

the cells using the MTCs, and then exposing the cells to ciprofloxacin stress. After treatment

with the antibiotic we will recover those cells which survived antibiotic treatment using live/dead

staining and FACS. We anticipate this experiment will demonstrate that the MTCs capture the

anticipated evidence of gadX upregulation in the survivors.

Once we are able to demonstrate this proof of principle we plan to use the MTCs to probe

the subtle transcriptomic origins of otherwise challenging to study biological processes - for

110

https://paperpile.com/c/hXbjHs/d2g3


example other forms of bacterial stress resistance, commitment of bacteria to certain cell states

or gene-programs and he origins of immune-cell heterogeneity. We believe that the MTCs should

be able to be applied across many different organisms, both prokaryotic and eukaryotic. If the

MTCs are able to generate a list of hypotheses we plan to establish causality between the set of

observed correlators and the phenotypes of interest by orthogonal interventional techniques.

rendseq and rendseq.org can increase the accessibility and ease
of use of Rend-seq data.

There exist motivating questions for which the knowledge about the precise starts and

ends of transcripts leads to actionable information. Such information can help inform designs and

directed mutations of transcript promoters and terminators, as well as help assess the steady state

ratios of different transcription isoforms. Some transcripts are known to have cryptic internal

promoters, which may or may not give rise to translatable transcripts. Identification of transcript

ends can thus help design cleaner transcripts and assess the extent to which transcription of one

product is influencing transcription of another. Many of these questions can be answered by

making use of pre-existing Rend-seq datasets, such as those which have already been published

by the Li Lab 1,9–11. By making it easy to view Rend-seq data and identify potential transcript

ends without the need to download or process any data, we believe that we have made our

currently published Rend-seq datasets more available, and thus more useful. I am excited to

share this resource with the broader scientific community and look forward to learning more

from them about how to improve it further.

In addition to making currently public Rend-seq datasets more accessible I have also

sought to make the Rend-seq protocol and analysis tools more widely available. To this end I

have co-authored, with my labmate Jenny Cascino, an illustrated protocol hosted on rendseq.org
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which provides step by step instructions on how to perform the Rend-seq protocol. I have also

created a guide to help gain intuition about how the Rend-seq protocol is able to enrich the ends

of transcripts. I have also created and maintained, along with the assistance of my co-authors, a

Python package which handles all the stages of Rend-seq analysis after bowtie alignment. The

backend of rendseq.org makes use of this package to facilitate automated analysis and feature

extraction of new Rend-seq datasets when they are uploaded to the database. We are currently

exploring the best way to facilitate new dataset uploads on the public portion of the website as

well. By opening the site to user uploaded datasets, users of Rend-seq could take advantage of

rendseq analysis without the need for downloading or running any analysis on their local

machines. We believe this could accelerate both the adoption of Rend-seq as a technique and the

analysis and sharing of Rend-seq datasets.

rendseq is a tool for uncovering transcriptomic ends from end-enriching sequencing data,

but it captures some ends better than others. In particular the current version of rendseq assumes

that all transcript ends will look like well-defined peaks. In reality we know many transcripts do

not end in a well defined peak spread out over a handful of adjacent nucleotides. For example, in

Rho-mediated transcription termination, termination actually takes place over an extended

stretch of sequence leading to a gradual tapering off of the 3′ end density rather than a well

defined peak. I, along with my collaborators, are exploring methods to robustly identify other

forms of transcription termination using rendseq - with a focus on ramps. Once ramp-like end

profiles can also be robustly identified it will be easier to automate construction of transcription

isoform atlases (collections of all overlapping transcripts and their relative abundances). It will

also be easier to identify which types of transcription termination prevail in certain organisms,
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and how the balance of transcription termination mechanisms changes across genetic and

environmental conditions.

Concluding Remarks

Transcriptional control is one of the main mechanisms through which cells determine

what gene-products to produce and thus what processes they wish to execute. Precise control of

transcription is essential, as protein production is often tightly coupled with RNA abundance,

and the relative ratios of certain protein products must often be produced in ratiometric quantities

in order to fulfill their biological roles 12,13. When studying transcriptional control, as with

studying most things, it is important to have precise and quantitative methods to facilitate

measurements and analyses. The molecular time capsules are tools designed for the observation

of transcriptomic dynamics over time in interesting sub-populations. I designed them with the

hope they will improve our ability to probe the relationship transcriptional programs have with

cellular phenotypes, and initial testing suggests they have the characteristics necessary to

perform as required. The analysis tools I created for rendseq are intended to promote quantitative

measurements of transcriptional control, and perhaps also aid in the identification of novel sites

of regulatory control.

The usefulness of new tools should be measured by how much they assist the researchers

who are willing to try them out. It is my sincere hope that these tools, the MTCs and rendseq and

rendseq.org, help unveil new biological discoveries for those who choose to use them.
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Appendix A

Comparing other Recording Methods to the
Molecular Time Capsules.
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In recent years there has been a growth of techniques aimed at quantifying transcriptomic

dynamics. In order to clarify the niche that the molecular time capsules (MTCs) hold in this

ecosystem, we will now discuss some of the advantages of the MTC when compared to the most

similar alternative method: genomic recording techniques.

There are a variety of different genomic recording techniques. Some approaches use the

presence or absence of an RNA to make records in the genome which can then be read and

converted to abundances of specific transcripts by analysis/post processing. Because these

techniques are targeted and do not cover the full transcriptome we limit our comparison to

full-genome recording techniques. In particular, we will compare to the only class of full genome

recording techniques demonstrated so far: those that reverse transcribe RNA into DNA and then

use Cas systems to place this DNA into a CRISPR array. For clarity we will refer to solutions

which make use of this approach as “full genome CRISPR recording systems” (or FGCRSs).

The FGCRS systems are currently rate limited by the probability per cell that an RNA is

reverse transcribed and successfully inserted into a CRISPR array during the recording window.

This low rate of spacer acquisition implies that many cells need to be used in order to capture

sufficient information about the transcriptome for statistically significant analysis. Recent

estimates of this number indicate that only 1 in ~1.9 x 104 E. coli will acquire a spacer during the

recording window. By contrast, we estimate that we recover the equivalent of ~6.8 MTCs per

cell. If we consider that each recovered MTC corresponds to 1 piece of information about the

transcriptome (reasonable given that most MTCs contain nucleic acids) then this comparison

suggests that the number of transcript spacers recovered per FGCRS would need to be improved

by ~ 3.4 x 104 fold in order to match the recording capacity per cell currently achieved by the

MTCs.
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The second area of comparison is time required for recording. The MTCs have

demonstrated a recording time as short as 1 hr. So far the minimal recording time demonstrated

by FGCRS systems has been on the order of ~12 hours. Shorter recording times lead to higher

temporal resolution of the transcriptomic record, which can in turn lead to better inference about

the observed transcriptomic state. The transcriptomic recording times should be on the same

scale as the events they wish to capture, which for bacteria whose RNAs have very short

half-lives and which can double as frequently as every 20 minutes, may require recording times

on the order of dozens of minutes.

The current long recording time of FGCRSs makes it difficult to assess their

reproducibility. Because the transcriptome changes so much during the time of recording (~12 h

during which the cell transitions from exponential to stationary) it is to be expected that the

captured record does not look like the last time point of the transcriptome, and that even two

biological replicates will may not look alike. This issue likely explains the lack of

sample-to-sample reproducibility seen in FGCRS systems (The highest Pearson Coefficient seen

between biological replicates using FGCRS recording is: 0.786, much lower than the lowest

log-transformed Pearson Coefficient seen between biological replicates of MTC recording: 0.976

(n = 2276 genes)). With shorter recording times it would be easier to make direct and fair

comparisons between the reproducibility of FGCRS systems and MTC based recording.
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Appendix B

Rend-seq track pre-processing and peak
identification.
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Supplement: Data-Preprocessing and Peak Calling Algorithms in rendseq:

Preprocessing Rend-seq files

rendseq will assist in the normalization of files after they have been aligned to genomes.

It takes an input either a sam file outputted from the bowtie assisted alignment of sequencing

files to the genome of interest or a wig file of read density as a function of genome position. The

first step in the rendseq analysis pipeline is to convert these aligned files into normalized

Rend-seq tracks. There are four Rend-seq tracks for every experiment, one for each the 5′ and 3′

mapping reads on both the forward and the reverse strands. When converting files from the sam

format rendseq will handle the occasional issue which arises when non-templated additions are

made to the 5′ end of reads during the library preparation process, and will remove the

nucleotides which do not match at the 5′ end before generating the 5′ end Rend-seq tracks. Each

of these Rend-seq tracks is saved in a wiggle, or .wig format.

Each Rend-seq file is then preprocessed before peak calling can proceed. The step of

pre-processing takes each Rend-seq track and converts it into a form where it is easier to make

comparisons across disparate parts of the genome. This normalized Rend-seq track can also be

saved in a wig format.

The first step of pre-processing is to pad the zero-values of the Rend-seq track. This

padding is done using gaussian generated values, with a mean of 0 and a standard deviation of 1.

It is important that they include a standard deviation, rather than just setting the values to 0.

Setting all values to 0 will cause the local estimation of the standard deviation to be artificially

low and could lead to a high false positive rate of peaks. Even though true reads densities do not

exist as floats we found that by treating these areas of low read coverage as decimal values

increased the performance of the peak-calling algorithm in areas with low read density.
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After padding, normalization proceeds - replacing each genomic position in the data with

its normalized value, referred to henceforth as a “score”. This score is calculated via a function

of the read density at that genomic position, and the surrounding read density. Only scores above

a threshold of 5 are kept, as in practice scores of less than 5 do not correspond to true peaks. The

score-generating function is a modified Z-score which considers the Z-score of the position with

respect to both the (optionally normalized) upstream and downstream read-density distributions.

It has several parameters: gap size (an integer), window size (an integer), percent trim (a float in

the range [0, 1]), and winsorize (a boolean). I will explain each of these parameters in more

depth and also explore the effects that each can have on score-generation.

Figure A2.1 Illustration of a Rend-seq track, and its corresponding z-score (ie the

pre-processed track). This example track is from the 3 ends of reads aligning to the forward

strand. In the center of the track is a peak. The Upstream and Downstream windows around this

peak have different read densities. The normalized score is calculated via a sliding window
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approach that creates upstream and downstream distributions for reference as a function of the

gap and window-size parameters.

The gap size is the distance upstream and downstream of the given genomic position to

exclude from any distribution calculations. This exclusion is important as peaks can often be

distributed across many read positions, meaning that a true peak's local density can artificially

inflate the estimation of the local distribution’s standard deviation, and may deflate the score we

assign to true peaks. This deflation can then lead to a higher false negative rate in peak

identification. The default value of the gap size is 5.

The window size refers to the total number of reads to include in the distribution. This

number ought to be large enough to provide a useful estimate of the mean and standard

deviation, but not so large as to cause it to include other genes or features in the distribution

being used for the mean and standard deviation estimation. The default value for the window size

is 50.

Percent trim aids in the trimming of the upstream and downstream distributions before

the mean and standard deviation are called. It will remove the top x % of reads, based on their

read density. The default is 0, though the user can supply a different percentage, which in certain

cases may be useful in removing extremely high values, such as peaks. Setting a value greater

than ~10% is not recommended however, as there are cases where a high percentage of trimming

will allow other features, such as noise, or the shadows which can accompany peaks, to appear as

peaks as well.

The boolean parameter winsorize serves a similar purpose as percent trim - although it

facilitates the removal of reads based on standard deviation. If set to true then the program will

normalize the upstream and downstream distributions before estimating their means and standard
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deviations. For a given window - any read which exceeds a standard deviation of 1.5 will be

dropped. We use a low standard deviation here, as it is important to remember extreme outliers

can lead to a very large standard deviation. We have found that a threshold for winsorization of

1.5 strikes a good balance between aiding in the elimination of true outliers (other peaks) and

leaving regions without extreme outliers undisturbed.

𝑧 𝑠𝑐𝑜𝑟𝑒(𝑥) =  (𝑥 − µ)
σ

Equation A2.1: The z-score of x with respect to a distribution with mean and standard deviation

is the distance between the mean and the value normalized by the standard deviation.

These normalized distributions are created for the region both upstream and downstream

of the peak location. Their mean and standard deviation are calculated, and these in turn are used

to calculate the z-score of the original position. See Equation 1 for a description of how z-scores

are calculated. The score which is assigned to that position is the minimum value of the upstream

and downstream z-scores. The reason behind separating the two distributions is that peaks often

accompany a step in read density, which can vary across several orders of magnitude. If one were

to treat the left and right distributions as the same then this transition in the underlying

generating function of the read density would lead to an artificially high standard deviation and

may lead to the suppression of true peaks. Rendseq assigns each score to be the minimum of the

z-scores calculated with respect to the right and left distributions. This choice was made because

true peaks will obtain high scores relative to both their right and the left distributions, whereas

other features, for example reads which are close to the step, would only have an extreme z-score

with respect to either the upstream or the downstream distribution, not both.
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Calling Peaks:

After normalized tracks have been generated they are used to call peaks. We currently

support two methods for identifying peaks. The first is to simply choose a z-score threshold

above which reads are considered peaks and below which reads are not considered peaks. The

second method makes use of a statistical hamiltonian monte carlo method to assign each location

in the genome a “peak” or “not peak” state.

The thresholding method is straightforward to apply. Once a threshold is selected, and

transformed values above that threshold will be called peaks, and all those below will not. The

trouble with this method lies in selecting the optimum threshold. Rendseq has a default threshold

of 12. In practice this threshold performs well on our Rend-seq data sets. Across different

organisms, or across different conditions it is possible that this threshold may not be appropriate.

As such we support several methods which can support the automatic selection of a more

appropriate threshold.

One method is to select a value for the threshold such that the number of values expected

to have that value is much less than 1. This method however is not recommended as it will

ultimately be a function of the length of the genome in addition to the underlying gaussian

assumption (longer genomes will require a higher expected value cutoff, and shorter genomes a

lower one). The total length of the genome should not affect whether a location is a peak or not.

In practice however, because most bacterial genomes are of similar lengths, this approach may

nonetheless be useful for setting a lower bound on the threshold.
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Figure A2.2 Expected vs observed scored Rend-seq values. An illustration of the divergence

between the expected number of certain z-scores (which is a function of the length of the

genome) and the observed number. Note that the observed number and the expected number

have an extreme divergence - this is largely driven by the true peaks in the distribution which

have extremely high scores. However, as the distribution is not perfectly gaussian the true curve

of the “expected values” is in truth stretched to the right of what is represented here.

None-the-less, one can still use this curve to either find a point of sufficient divergence between

the expected and the observed values, or find the point such that the expected number of

positions with a certain score falls below a certain threshold.

A more laborious, though effective method can be trying out a variety of different

thresholds and manually reviewing which peaks are added/removed as the threshold changes in

order to inform how confident one is in any given threshold.
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Figure A2.3 Illustration of HMM states and transition probabilities. There are two states in

the model: Peak state and Non-Peak state. Each of these states has transition probabilities to each

other as well as to themselves.

The other currently supported method for peak calling makes use of a hidden markov

model (HMM) 1 to call peaks by creating a sequence of peak and non-peak which is then

assigned to the sequence of read density. A diagram of the hidden markov model used in this

work can be viewed in Figure A2.3. This method assumes there are two hidden states: “peak”

and “not-peak”. Each of these states has some probability of transitioning to the other and to

themselves; probabilities collectively known as the transition matrix. Separately each of these

states also has a probability distribution over the likely observed data-sets (in this case the scored

Rend-seq data sets) known as the emission probabilities. Given the probabilities of transition and
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the probabilities of emission the one can make use of the Viterbi algorithm to find and return the

most likely sequence of hidden states for a particular Rend-seq dataset.

To test this method I employed a gaussian distribution to model both the emission

probabilities of both the peak state (which was centered around higher z-score values), and for

the non-peak state (which was centered around 0). By testing the mean and standard deviation of

these parameters I was able to test how robustly the methods call the peaks.

The transition probabilities were very robust to changes, as is commonly seen with

Hidden Markov Models. I set the value of the transition probability so that the mean length of

continuously labeled peak states was 3, and the mean length of continuously labeled non-peak

states matched a reasonable biological value for the average length of transcripts ~ 1000. The

mean represents the mean of the geometric distribution generated from particular transition

probabilities. As can be seen in figure A2.4, the number of peaks called as a function of what the

peak to not-peak probability or the peak to peak probability is very flat across several real scored

Rend-seq datasets. This suggests that the model is extremely robust to these parameters, and not

much tuning is needed to these parameters in order to control the output of the model.
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Figure A2.4 Robustness of the HMM to transition probabilities. Across several real data-sets

(represented by the colored lines) the number of peaks called remains very flat across several
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orders of magnitude values for both the Peak to Peak probability (P(P | P)) and the Not-Peak to

Peak transition probability (P (P | NP)).

In contrast to the apparent robustness of the transition probabilities however, the two

tunable parameters of the peak emission distribution, namely the mean and the standard

deviation do not seem to be quite as robust. For the standard deviation, it seems that the number

of peaks initially increases as the standard deviation increases before reaching a plateau. So long

as the correct number of peaks identified can be found in the plateaued region the standard

deviation will not need to be heavily tuned in order to fit the data.

The mean however seems to exhibit a linear decrease in the number of peaks as the value

of the mean increases. This result is not surprising - as the mean increases some values which

were initially classified as peaks are now better described as not-peaks. Overall the HMM seems

to agree best with other published peak-calling techniques when the mean of its emission

distribution is very high, and the standard deviation is also very high. There is still some degree

of parameter tuning which may need to be undergone for each dataset, suggesting that the

HMM-approach to peak calling may not have entirely solved the issues associated with selecting

an appropriate threshold seen with the simple threshold calling method, though it may in some

cases be less sensitive to parameter selection.

We plan to continue to add support and descriptions for both of these techniques, as well

as to look into other methods to robustly identify transcript ends. All of the code which executes

the methods described in this appendix can be found on this project’s Github

(https://github.com/miraep8/rendseq). The documentation for this section is hosted on read the

docs! (https://rendseq.readthedocs.io/en/latest/).
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Figure A2.5 Robustness of the HMM peak emission distribution parameters. The peak

emission probabilities are modeled as a simple gaussian distribution. As such it has two tunable

parameters: the center or mean of the distribution and the standard deviation of the distribution.

While the standard deviation seems to reach a plateau in terms of the number of peaks called,
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suggestion that there is a threshold beyond which tuning the standard deviation does not

influence the number of peaks called.
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