
Machine Learning Methods for Discovering Metabolite Structures 
from Mass Spectra 

 

by 
 

Samuel Lucas Goldman 
 

A.B. in Computer Science 
Harvard College, 2019 

 

Submitted to the Program of Computational and Systems Biology in Partial Fulfillment 
of the Requirements for the Degree of  

Doctor of Philosophy in Computational and Systems Biology 
 

at the 
 

Massachusetts Institute of Technology 
 

February 2024 
 

© Samuel Lucas Goldman. All rights reserved. 
 

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free 
license to exercise any and all rights under copyright, including to reproduce, preserve, 
distribute and publicly display copies of the thesis, or release the thesis under an open-

access license. 
 
 

Author……………………........................................................................................................ 
Computational and Systems Biology Graduate Program 

January 12, 2024 
 

Certified by......................................................................................................................... 
Connor W. Coley 

Assistant Professor of Chemical Engineering 
Assistant Professor of Electrical Engineering and Computer Science 

Thesis Supervisor 
 

Accepted by........................................................................................................................ 
Christopher Burge 

Professor of Biology 
Co-Director, Computational and Systems Biology Graduate Program 



2



Machine Learning Methods for Discovering Metabolite Structures
from Mass Spectra

by

Samuel Lucas Goldman

Submitted to the Program of Computational and Systems Biology
on January 12, 2024 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

ABSTRACT

Small molecule metabolites mediate myriad biological and environmental phenomena
across host-microbiome interactions, plant chemistry, cancer biology, and various other pro-
cesses. Mass spectrometry is often used as an analytical technique to investigate the small
molecules present in a sample, measuring both their masses and fragmentation spectra. How-
ever, the complexity and high dimensionality of spectral data makes it difficult to identify
unknown metabolites and their roles, with a large majority of detected metabolites remaining
unidentified in public data.

This thesis proposes a suite of new computational methodologies for higher accuracy an-
notation of small molecule metabolites from mass spectrometry data that integrate chemistry-
informed priors with modern deep learning advancements. I begin by decomposing and fram-
ing the metabolite annotation pipeline into four key tasks well-fit for supervised deep learning
including (A) molecular formula prediction, (B) spectrum-to-molecule property prediction,
(C) molecule-to-spectrum prediction, and (D) de novo generation of molecular candidates.
To address these various tasks, I first introduce the Molecular Formula Transformer to pre-
dict molecular property fingerprints from spectra by changing the tandem mass spectrum
input basis from scalar mass values to plausible molecular formula annotations. This method
is then extended to an energy-based-model formulation to predict the molecular formula of
an unknown molecule from its tandem mass spectrum. Following these initial efforts to learn
better representations of fragmentation spectra, I develop new neural networks capable of
generating fragmentation spectra from small molecules through two-step autoregressive mod-
eling. I show how this can be accomplished by generating either molecular formula peaks or
molecular fragment peaks.

Downstream of metabolite prediction, a separate key question is to identify the function
of discovered small molecules. To this end, I study and probe the ability to model enzyme-
substrate compatibility from high throughput screens within a single enzyme family. In a
final collaborative work, I further demonstrate how a new method for epistemic uncertainty
quantification, evidential deep learning, can be applied to molecular property prediction.
Altogether, this work outlines a path forward to a fully neuralized pipeline for the high
throughput identification of small molecule metabolites and their functions.

Thesis supervisor: Connor W. Coley
Title: Assistant Professor of Chemical Engineering

Assistant Professor of Electrical Engineering and Computer Science
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CSI:FingerID fingerprint distance function (“Bayes”). Top-k accuracy is com-
puted by ranking candidate compounds for each spectra and computing the
fraction of spectra for which the true compound appears in the top-k rankings,
aggregated across 3 test set data folds. . . . . . . . . . . . . . . . . . . . . . 53

2.3 D. Retrieval accuracy for all folds are segmented into various chemical classes.
For each class for which > 40 examples exist, the fraction of examples on which
MIST performs better, equivalently, or worse than CSI:FingerID are shown.
E. MIST latent space spectra distances more effectively cluster high similarity
compounds than MS2DeepScore [82], Spec2Vec [81], or cosine distances. Test
set compounds pairs are sorted by similarity according to various metrics and
the average structural similarity of pairs is computed using Tanimoto distance
at various percentiles for a single test fold. F. Contrastive spectra latent
vectors for a single test fold are projected into 2D space with UMAP and
colored by their respective compound class. Compounds 2 and 4 are example
spectra for which NPClassifier fails to return an annotation. G. Example
compounds from (F) reveal structural similarity of neighboring compounds
in the UMAP space derived from MIST’s spectral embeddings. Maximal
Tanimoto similarity to any example in the training set is shown in parentheses. 54
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2.4 MIST annotates putative and clinically relevant dipeptides. A.
Metabolite classes ranked by their Pearson correlation with IBD disease sever-
ity. All putative metabolites are assigned disease classes with NPClassi-
fier [101] and relative abundances are summed across classes. Within the
ulcerative colitis (UC) and Crohn’s disease (CD) cohorts, metabolite classes
are correlated with disease severity and sorted according to their correlation
with UC (top 20 shown; each computed for n=60 patients with UC, n=102
CD patients). Error bars indicate 95% confidence intervals around the mean.
B. Dipeptide relative abundances for each patient are plotted against disease
severity within the healthy (n=19), UC, and CD cohorts. Dipeptides correlate
with disease severity for UC patients (R2 = 0.23, p = 0.01, two-sided the Wald
test, adjusted with Benjamini-Hochberg) as observed by Mills et al. [102].
In the left boxplot, the data median line is shown; boxes show the interquar-
tile range, with whiskers indicating 1.5x interquartile ranges. Regression lines
are shown with 95% confidence intervals computed with bootstrapping. C.
Within the Dipeptide class, the distribution of individual metabolite correla-
tions are shown for both UC and CD cohorts. . . . . . . . . . . . . . . . . . 57

2.4 D. All putative dipeptide metabolites (red) are embedded into the latent
space of a single, contrastive MIST model alongside embeddings for reference
standard spectra from the original model training set and also labeled as
dipeptides (blue). All embeddings are projected in 2D space with UMAP
and plotted. Metabolites are colored by their coefficient of determination
R2 with UC disease severity as computed in C. E. Annotations for example
metabolites from D are shown across different compound clusters. Metabolites
with molecular formulae not in standards library are colored brown. F-G.
Example spectra and their MIST annotated compound are shown. Maximal
Tanimoto similarity to any example in the training set is shown in parentheses.
Explained subpeaks are annotated using CFM-ID [51] and shown as validation
of plausibility. Compound annotations are made using an ensemble of 5 MIST
models, contrastive distance retrieval, and the HMDB and PubChem reference
databases of molecules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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2.5 Putative alkaloids separate healthy and diseased IBD cohorts. A,B.
Putative metabolite classes from the Mills et al. cohort [102] are scattered
showing their fold change and respective p value comparing and ulcerative
colitis (UC) (A) and Crohn’s disease (CD) (B) cohorts to the healthy co-
hort. C. Distributions of patients’ relative abundances for piperidine and
pyridine alkaloids classes are shown for healthy, UC, and CD groups (n=19
healthy, n=22 UC, n=38 CD). Median lines are shown; boxes show the in-
terquartile range, with whiskers indicating 1.5x interquartile ranges. D. The
total number of putative metabolites in both significant classes are shown,
highlighting the number of metabolites with putative novel structures not
observed in the standards library. E,F. Individual metabolite abundance
fold changes and statistical significance are shown comparing the healthy co-
hort to UC (E) and CD cohort (F). G. Select putative annotated molecule
structures are shown for compounds 15 (isonicotinic acid, HMDB:0060665),16
(triacetonamine, HMDB:0031779),17 (piperettine, HMDB:0034371), and 18
(unknown). Spectra 15 and 16 are differentially less abundant for both UC
and CD. Novel compounds indicate those without spectra standards and are
labeled brown; compounds with respective standards are shown in blue. Max-
imal Tanimoto similarity to any example in the training set is shown in paren-
theses. Compound annotations are made using an ensemble of 5 MIST mod-
els, contrastive distance retrieval, and the HMDB and PubChem reference
database of molecules. The top chemical class annotation is found by run-
ning the top putative prediction through NPClassifier [101]. P values were
computed using independent two-sided t-tests and adjusted for multiple hy-
pothesis testing with the Benjamini Hochberg method. To have equal cohort
sizes for healthy and diseased patients, UC and CD cohorts were subsetted
to patients with disease severity score > 0.2. Blue scattered points indicate
differentially less abundant compounds or classes; red indicates differentially
increased abundance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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2.6 Model ablations affirm the value of domain-inspired model com-
ponents. A,B. MIST performance on fingerprint prediction compared to
ablated variants of MIST without pairwise interactions, without MAGMa
substructure supervision, using no simulated spectra, without fingerprint un-
folding and using only a feed forward network (FFN) using metrics of (A)
cosine similarity and (B) log likelihood (n=2,438 test spectra). C,D. MIST
fingerprint prediction accuracy improves as a function of dataset size for both
(C) cosine similarity and (D) log likelihood (n=819 test spectra). E. MIST
retrieval performance using a weighted sum of contrastive and fingerprint dis-
tance outperforms contrastive distance or fingerprint distance alone, a con-
trastive version of the model without finetuning, a FFN contrastive model,
or FFN fingerprints. F. Full MIST contrastive + fingerprint retrieval accu-
racy improves with training set size. All results are computed on the public
GNPS subset data released with CANOPUS. Model ablations are conducted
with 3 random splits of the data by molecular structure; dataset ablations are
conducted for a single split of the data. Log likelihood values are clamped to
a minimum of �5. Unless otherwise stated, error bars show 95% confidence
intervals for the mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.7 Unfolding fingerprint prediction module. A. The module starts with
a hidden representation and subsequently predicts increasing resolutions of
the fingerprint. B. At each intermediate fingerprint prediction ŷ(i), a corre-
sponding target vector is generated by “folding" the previous, higher resolution
fingerprint. An intermediate loss is calculated at each of these resolutions. . 72

2.8 Feed forward network binned spectra baseline. An input spectrum is
binned, a multilayer perceptron (MLP) is applied, and the output is projected
to a fingerprint prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.9 Forward simulation of spectra from molecules. A. An input spectrum,
molecule pair is first denoised and cleaned by labeling chemical sub-formulae.
This is converted into a binned spectra representation. B. To generate new
model training examples, molecules are fingerprinted, binned spectra predic-
tions are predicted by a neural network, and sub-formula are assigned to each
of the bins such that the spectra can be used as input to MIST. C. The forward
simulation neural architecture utilizes unfolding layers. A multilayer percep-
tron (MLP) projects the molecular fingerprint into a hidden representational
space. Forward-reverse models, G, are used to progressively grow the binned
prediction such that resolution increases at each step, similar to unfolding
layers. D. Illustration of the forward-reverse module, where intensities (zf )
and neutral losses (zr) are predicted. Neutral losses are reversed and mapped
onto intensity bins using the full mass as input then summed according to a
learned gate to get a single prediction of intensities in each bin. . . . . . . . 73
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2.10 Repeated analysis of clinically relevant dipeptides with the Pub-
Chem retrieval library. A. Metabolite classes ranked by their Pearson
correlation with IBD disease severity. All putative metabolites are assigned
disease classes with NPClassifier [101] and relative abundances are summed
across classes. Within the ulcerative colitis (UC) and Crohn’s disease (CD)
cohorts, metabolite classes are correlated with disease severity and sorted ac-
cording to their correlation with UC (top 20 shown; each computed for n=60
patients with UC, n=102 CD patients). Error bars indicate 95% confidence
intervals around the mean. B. Dipeptide relative abundances for each patient
are plotted against disease severity within the healthy (n=19), UC, and CD co-
horts. Dipeptides correlate with disease severity for UC patients (R2 = 0.20,
p = 0.02, two-sided the Wald test, adjusted with Benjamini-Hochberg) as
observed by Mills et al. [102]. In the left boxplot, the data median line is
shown; boxes show the interquartile range, with whiskers indicating 1.5x in-
terquartile ranges. Regression lines are shown with 95% confidence intervals
computed with bootstrapping. C. Within the dipeptide class, the distribution
of individual metabolite correlations are shown for both UC and CD cohorts.
Compound annotations are made using an ensemble of 5 MIST models, con-
trastive distance retrieval, and PubChem reference databases of molecules.
Input spectra are subsetted to be under 500 Da, have [M+H]+ adducts, and
utilize molecular formula as output by CSI:FingerID at the end of the com-
pound identification step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.11 Reanalyzing putative metabolite class differences between healthy
and diseased IBD cohorts using the PubChem database. A,B. Puta-
tive metabolite classes from the Mills et al. cohort [102] are scattered showing
their fold change and respective p value comparing and ulcerative colitis (UC)
(A) and Crohn’s disease (CD) (B) cohorts to the healthy cohort. P values were
computed using independent two-sided t-tests and adjusted for multiple hy-
pothesis testing with the Benjamini Hochberg method. To have equal cohort
sizes for healthy and diseased patients, UC and CD cohorts were subsetted
to patients with disease severity score > 0.2. Blue scattered points indicate
differentially less abundant compounds or classes; red indicates differentially
increased abundance. C. Distributions of patients’ relative abundances for
piperidine and pyridine alkaloid classes are shown for healthy (n=19), UC
(n=22), and CD (n=38) groups. Median lines are shown; boxes show the
interquartile range, with whiskers indicating 1.5x interquartile ranges. All
compound annotations are made using an ensemble of 5 MIST models, con-
trastive distance retrieval, and the PubChem reference database of molecules.
The top chemical class annotation is found by running the top putative pre-
diction through NPClassifier [101]. Input spectra are subsetted to be under
500 Da, have [M+H]+ adducts, and utilize molecular formula as output by
CSI:FingerID at the end of the compound identification step. . . . . . . . . 76

16



2.12 Dataset split similarity. Distribution plot of the most similar molecule in
the training set according to Tanimoto similarity for molecules in the train and
molecules in the test sets. Distributions are computed on the public GNPS
CANOPUS dataset (A.) and private proprietary CSI dataset (B.). . . . . . 77

2.13 Labeling data substructures. A. MIST is trained to build representations
of each peak in the spectrum. The model uses the precursor peak represen-
tation to predict a fingerprint of the full molecule, and when substructures
can be labeled for other peaks, the model learns to predict these as well.
B-D. Example substructure peak labels in the training set computed with
MAGMa. The full compound is outlined in red. Other substructures for the
top 6 highest intensity peaks are outlined in black. . . . . . . . . . . . . . . . 78

2.14 Single MIST model comparison to CSI:FingerID. Molecular finger-
prints are predicted by MIST and CSI:FingerID for every spectrum in the
test set using a single MIST model as in Figure 2. The performance for each
spectrum by cosine similarity to the true fingerprint (A) or log likelihood
(B) is evaluated and plotted. Points below the line represent instances where
MIST is more performant. C. Equivalent evaluation showing the likelihood
of predicting each fingerprint bit correctly across all spectra. D. The perfor-
mance of CSI:FingerID, MIST, and FFN, a baseline inspired by MetFID, are
shown. “Tanimoto," “Cosine," and “Log likelihood (spectra)" indicate perfor-
mance across spectra and “Log likelihood (bits)" indicates performance across
bits (higher is better). Median lines are shown; boxes show the interquartile
range, with whiskers indicating 1.5x interquartile ranges. Statistics are pooled
across n = 18, 700 test spectra (tanimoto, cosine, and spectra log likelihood)
and n = 5, 496 fingerprint bits (bit log likelihood). All results are aggregated
across 3 splits of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.15 Dataset ablations on the CSI2022 dataset validate that model per-
formance is limited by data set size. MIST fingerprint prediction ac-
curacy improves as a function of dataset size in terms of both (A) cosine
similarity and (B) log likelihood. Model performance is computed on the
partially proprietary CSI2022 dataset. Dataset ablations are conducted for
a single split of the data. Log likelihood values are clamped to a minimum
of �5. Error bars show 95% confidence intervals for the mean (n=3,116 test
spectra). For this ablation, MIST models are trained without simulated data
and without MAGMa auxiliary loss to reduce model training time. . . . . . . 81

2.16 Example molecules and their training precedents for Figure 2.3.
Each molecule is shown along side its nearest neighbor in the training set,
with its Tanimoto similarity listed. . . . . . . . . . . . . . . . . . . . . . . . 86

2.17 Example molecules and their training precedents for Figure 2.4.
Each molecule is shown along side its nearest neighbor in the training set,
with its Tanimoto similarity listed. Even in cases for which the proposed
molecular structure appears in the training set, it is predicted on the basis
of a new experimental spectrum that does not exactly match the reference
spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
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2.18 Example molecules and their training precedents for Figure 2.5.
Each molecule is shown along side its nearest neighbor in the training set,
with its Tanimoto similarity listed. Even in cases for which the proposed
molecular structure appears in the training set, it is predicted on the basis
of a new experimental spectrum that does not exactly match the reference
spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.1 MIST-CF and SIRIUS both address the MS/MS molecular formula
annotation problem. A. Input samples are first processed, recording a tan-
dem mass spectrum. Before assigning full molecular structures, the molecular
formula can first be inferred to constrain structure assignment. B. Method-
ological similarities and differences between MIST-CF and SIRIUS. A can-
didate precursor mass is first decomposed into plausible molecular formulae
and adduct pairs. MIST-CF (left) learns in a data-driven fashion to assign
scores and circumvents the need of fragmentation tree construction compared
to SIRIUS (right). Both methods rely on assigning subformulae (“subforms”),
which are molecular formula subsets of the candidate precursor formula that
match individual MS/MS peak masses. . . . . . . . . . . . . . . . . . . . . 92

3.2 Large numbers of formula candidates can be quickly filtered with a
simple feed forward neural network, FastFilter. A. Generated candi-
date formulae for a spectrum can be prioritized with a learned model. A scalar
score is generated for each candidate formula given an MS1 value and mass
tolerance via a feed forward neural network. Only the top ranked formulae are
selected for consideration with MIST-CF. B. The distribution of the number
of candidates for all recorded MS1 spectra in our spectra libraries NPLIB1
and NIST20. All candidate molecular formulae are generated for all 6 adduct
types considered with an allowed mass deviation of 10 ppm. C. FastFilter
model accuracy at various top k cutoff values. The top formula is nearly al-
ways recovered within the top 256 candidates. The 95% confidence interval of
the mean for recovery is shown across the 3 different formula splits considered
in this work. All results are computed for a single trained FastFilter model
on a large database of biologically-relevant molecules. . . . . . . . . . . . . 99
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3.3 MIST-CF is a highly-effective architecture for learning to rank plau-
sible MS1 formula annotations A. The MIST-CF architecture uses the
candidate molecular formulae to generate subformulae and encode these with
a Formula Transformer. B. The baseline feed forward network (FFN) sepa-
rately encodes the spectra and formula before feeding their concenation into
a multilayer perceptron (MLP). C. For all spectra in the test set, the fraction
recovered at various top k values for all methods is computed and shown.
D-E. The top 1 accuracy for the methods is grouped by the mass of the
MS1 precursor or adduct type. All results are computed for MIST-CF and
the following baselines: MS1 only (a feed forward network utilizing only the
molecular formula and context vector), a feed forward network, and a Trans-
former. All results are computed over 3 random formula splits and respective
training runs as described in Section 3.2, where the NIST20 is included in the
training sets. All spectra include up to 256 candidates to select from as se-
lected with the “COMMON” filter [50] and FastFilter. Error bars and shaded
regions show 95% confidence intervals of the mean. . . . . . . . . . . . . . . 100

3.4 MS/MS subpeaks drive MIST-CF performance. A. The (sub)Formula
Transformer in MIST-CF operates on only the Np highest intensity MS2 peaks.
Here, from that set of labeled MS2 peaks, the number of peaks used as input
to the spectrum is limited. As the number of included peaks increases, the
formula retrieval accuracy does too. B. The top 1 retrieval accuracy is shown
for all maximum subpeak numbers. All results are shown for MIST-CF trained
on the joint NPLIB1 and NIST20 dataset and tested on a single test split of
the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.5 MIST-CF more frequently assigns correct molecular formulae than
the SIRIUS formula assignment module on the NPLIB1 test set. A.
The number of spectra for which each method is able to predict a formula—
regardless of accuracy. B. The distribution of molecular masses for the spectra
both methods are able to annotate—regardless of accuracy— compared to the
distribution of molecular masses for spectra on which only MIST-CF succeeds.
C. Top k accuracy for both methods is shown. D. The rank at which each
method is able to recover the true molecular formula. This visualization high-
lights that there are many spectra for which MIST-CF achieves rank 1 that
SIRIUS does not predict in its top 3. MIST-CF models are trained on the
joint NIST20 and NPLIB1 dataset. SIRIUS is executed with a compound
and tree timeout of 300 seconds. All values are shown for 3 random formula
splits of the NPLIB1 data. Error bars and confidence intervals show 95% con-
fidence intervals for the standard error of the mean. Accuracy is computed
with respect to the total MS1 composition (i.e., summed adduct and formula)
to avoid biasing results against SIRIUS. . . . . . . . . . . . . . . . . . . . . 103

4.1 Tandem mass spectrometers measure fragmentation patterns of molecules,
resulting in characteristic peaks that are indicative of their struc-
ture. SCARF simulates these fragmentation patterns in silico. . . . . . . . 110
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4.2 Overview of various approaches to spectrum prediction. A. Fragmen-
tation prediction approaches use heuristics and scoring rules to break down
the molecule into fragments and their associated intensities. B. Binned pre-
diction approaches discretize the possible mass-to-charge values and predict
intensities for each possible bin. C. Formula prediction approaches predict
spectra as sets of molecular formulae and intensities. Our model SCARF uti-
lizes a two stage approach, first by predicting the product formulae present
(constrained by the precursor formula), which defines the x-axis locations of
the peaks, before secondly assigning intensities to these formulae (defining the
peaks’ y-axis values). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3 Illustration of the SCARF-Thread architecture. A. The formulae of
the product fragments can be represented using a prefix tree. SCARF-Thread
predicts this tree for new molecules at test time. It does so by expanding each
node at a given depth in parallel, treating the counts of subsequent elements as
dependent only on the counts of elements predicted so far (i.e., the prefix) and
the original molecular structure. B. The SCARF-Thread predictive task at
the C7 node from the prefix tree diagram shown in A. Here the network takes
as input (i) an embedding of the overall molecule; (ii) a vector representing
the counts of each element in the prefix so far (counts yet to be predicted are
represented using a special token), (iii) the difference of the counts predicted
so far from the precursor molecule, and (iv) a one-hot representation of the
element for which the counts are currently being predicted. The network
predicts which counts are valid next nodes in the prefix tree (where counts
that are greater than those in the original precursor molecular formula are
automatically masked out as invalid). See also Algorithm 9. . . . . . . . . . 114

4.4 The SCARF-Weave network, which takes in the product formulae
(e.g., predicted by SCARF-Thread) and predicts their intensities.
We use a Set Transformer architecture [91], such that our model takes in the
details of the other product formulae present when predicting intensities. . . 116

4.5 SCARF enables more accurate retrieval of ground truth molecules
within the NIST20 dataset. A. Average retrieval accuracy of SCARF at
various top k thresholds. Retrieval is conducted on the same test split, and
retrieval accuracy is averaged across models trained for three separate random
seeds. B-C. Example spectrum predictions made by SCARF (top) compared
to the ground truth spectrum (bottom). Up to 5 predicted peaks with the
highest intensity are annotated with their molecular formula explanation as
predicted by SCARF. The full molecule is shown inset. Further examples are
in the Appendix (Figure 4.6). . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6 Example spectra predictions from the NIST20 dataset for 10 ran-
domly selected test molecules. The ground truth spectra are shown un-
derneath in black, with predictions above in teal. Molecules are shown inset. 123
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4.7 Cosine similarity of predicted spectra stratified by properties. Re-
sults are stratified across molecular weight for both NPLIB1 (A) and NIST20
(B). We further stratify results across putative chemical classes of input
molecules using NPClassifier [101] for both NPLIB1 (C) and NIST20 (D).
The dotted line indicates the average predictive cosine similarity of SCARF
across all examples and averaged over three random splits. . . . . . . . . . . 126

4.8 Spectra dataset molecule characterizations. A. Distribution of the
molecular weight of compounds across NPLIB1 and NIST20. B-C. Chem-
ical classes contained in NPLIB1 (B) and NIST20 (C) with the top 15 classes
shown and all others grouped in ‘Other’. Chemical classes are computed using
NPClassifier [101]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1 ICEBERG enables the prediction of tandem mass spectra by effi-
ciently navigating the space of possible fragmentation events. A.
Example experimental mass spectrum. An input molecule, benzocaine, is
depicted entering a mass spectrometer collision cell and fragmenting. The
observation of the resulting charged fragments results in a characteristic spec-
trum. B. A combinatorial mass spectrum simulation. The root molecule,
benzocaine, is iteratively fragmented by removing atoms or breaking bonds,
resulting in a large fragmentation tree. Heuristic rules score nodes in the tree
to predict intensities. C. ICEBERG spectrum simulation. ICEBERG learns
to generates only the most relevant substructures. After generating fragments,
a neural network module scores the resulting fragments to predict intensities. 138

5.2 Overview of ICEBERG. A. The target fragmentation directed acyclic
graph (DAG) for an example molecule M, benzocaine. Fragments are col-
ored in black with missing substructures in gray. B. Example illustration
for the generative process at a single step in the DAG generation predicting
subfragments of S(2). The root molecule M, fragment of interest S

(2), and
context vector C are encoded and used to predict fragment probabilities at
each atom of the fragment of interest. A sample disconnection is shown at
atom a2, resulting in fragment S

(7). C. ICEBERG Score module. Fragments
generated from A are encoded alongside the root molecule. A Set Transformer
module predicts intensities for each fragment, allowing mass changes corre-
sponding to the loss or gain of hydrogen atoms, resulting in the final predicted
mass spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3 ICEBERG predictions are highly accurate. A. Cosine similarities to
true spectra on NPLIB1 (left) and NIST20 respectively (right) for CFM-ID
[73], 3DMolMS [157], FixedVocab [152], NEIMS (FFN) [84], NEIMS (GNN)
[150], MassFormer [86], SCARF [130], and ICEBERG. Error bars represent
95% confidence intervals using the standard error of the mean across three
random seeds on a single test set split. B. Time required to predict spectra for
100 molecules randomly sampled from NIST20 on a single CPU, including the
time to load models into memory. C,D. Comparison of NPLIB1 and NIST20
molecules in terms of synthetic accessibility (SA) score [182] and molecular
weight (Mol. weight). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
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5.4 Examples of predicted spectra from ICEBERG. Predictions are shown
as generated by ICEBERG trained on NPLIB1 for select test set examples
GNPS: CCMSLIB00003137969 (A), MoNA: 001659 (B), and GNPS: CCMSLIB00000080524
(C). The input molecular structures are shown (left); fragmentation spectra
are plotted (right) with predictions (top, blue) and ground truth spectra (bot-
tom, black). Molecular fragments are shown inset. Spectra are plotted with
m/z shifted by the mass of the precursor adduct. All examples shown were
not included in the model training set. . . . . . . . . . . . . . . . . . . . . . 147

5.5 ICEBERG enables improved spectrum retrieval over other methods
on both NPLIB1 (A) and NIST20 (B) compared to other spectrum
prediction models. Top k retrieval accuracy is computed by ranking a list
of 49 additional candidates by putative cosine similarity as predicted by the
model and determining the fraction of times that the true molecule is within
the first k entries. A 95% confidence interval across three random model
training seeds is shaded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1 Enzyme-substrate interaction modeling strategies. (A) Current ma-
chine learning-directed evolution strategies, which involve design-build-test-
model-learn cycles measuring protein variant activity on a single substrate of
interest. (B) The “dense screen” setting where homologous enzyme variants
from one protein family are profiled against multiple substrates. In this set-
ting, we can aim to generalize to either new enzymes (“enzyme discovery”) or
new substrates (“substrate discovery”). (C) Three different styles of models
evaluated in this study, where single task models independently build predic-
tive models for rows and columns from panel (B), whereas a CPI model takes
both substrates and enzymes as input. (D) An example CPI model archi-
tecture where pretrained neural networks extract features from the substrate
and enzyme to be fed into a top-level feed forward model for activity prediction.163
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6.2 Assessing enzyme discovery in family wide screens. (A) CPI mod-
els are compared against the single task setting by holding out enzymes for
a given substrate and allowing models to train on either the full expanded
data (CPI) or only data specific to that substrate (single-task). (B) AUPRC
is compared on five different datasets, arranged from left to right in order
of increasing number of enzymes in the dataset. Baseline models are com-
pared against multi-task models, CPI models, and single-task models. K-
nearest neighbor (KNN) baselines are calculated using Levenshtein edit dis-
tances to compare sequences; multi-task models use a shared feed forward net-
work (FFN) to compute predictions against all substrate targets, CPI models
utilize FFN with either concatenation (“[{prot repr.}, {sub repr.}]”) or dot
product interactions (“{prot repr.}•{sub repr.}”), and ridge regression is used
for single-task models. ESM-1b features indicate protein features extracted
from a masked language model trained on UniRef50 [206]. Halogenase and
glycosyltransferase datasets are evaluated using leave-one-out splits, whereas
BKACE, phosphatase, and esterase datasets are evaluated with 5 repeats of
10 different cross validation splits. Standard error bars indicate the standard
error of the mean of results computed with 3 random seeds. Each method is
compared to the single-task L2-regularized logistic regression model (“Ridge:
ESM-1b”) using a 2-sided Welch T test, with each additional asterisk repre-
senting significance at [0.05, 0.01, 0.001, 0.0001] thresholds respectively after
application of a Benjamini-Hochberg correction. (C) Average AUPRC on
each individual “substrate task” is compared between compound protein in-
teraction models and single-task models. Points below 1 indicate substrates
on which single-task models better predict enzyme activity than CPI mod-
els. CPI models used are FFN: [ESM-1b, Morgan] and single-task models
are Ridge: ESM-1b. (D) AUPRC values from the ridge regression model are
plotted against the average enzyme similarity in a dataset, with higher en-
zyme similarity revealing better predictive performance. (E) AUPRC values
from the ridge regression model broken out by each task are plotted against
the fraction of active enzymes in the dataset. Best fit lines are drawn through
each dataset to serve as a visual guide. . . . . . . . . . . . . . . . . . . . . . 167
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6.3 Assessing substrate discovery in family wide screens. CPI models and
single task models are compared on the glycosyltransferase, esterase, and phos-
phatase datasets, all with 5 trials of 10-fold cross validation. Error bars rep-
resent the standard error of the mean across 3 random seeds. Each model and
featurization is compared to “Ridge: Morgan” using a 2-sided Welch T test,
with each additional asterisk representing significance at [0.05, 0.01, 0.001,
0.0001] thresholds respectively, after applying a Benjamini-Hochberg correc-
tion. Pretrained substrate featurizations used in “Ridge: JT-VAE” are fea-
tures extracted from a junction-tree variational auto-encoder (JT-VAE) [236].
Two compound protein interaction architectures are tested, both concatena-
tion and dot-product, indicated with “[{prot repr.}, {sub repr.}]” and “{prot
repr.}•{sub repr.}” respectively. In the interaction based architectures, ESM-
1b indicates the use of a masked language model trained on UniRef50 as a
protein representation [206]. Models are hyperparameter optimized on a held
out halogenase dataset. AUCROC results can be found in Figure 6.9 in Sec-
tion 6.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.4 Evaluating single-task models on kinase repurposing and discovery
tasks Kinase data from Davis et al. is extracted, featurized, and split as
prepared in Hie et al. Multilayer perceptrons (MLP) and Gaussian process +
multilayer perceptron (GP+MLP) models are employed. We add variants of
these models without CPI training separate single-task models for each en-
zyme and substrate in the training set, as well as linear models using both
pretrained featurizations (“Ridge: JT-VAE”) and fingerprint based featuriza-
tions of small molecules (“Ridge: Morgan”). Spearman correlation is shown for
(A) held out kinases not in the training set and (B) held out small molecules
not in the training set across 5 random initializations. (C) We repeat the
retrospective evaluation of lead prioritization. The top 5 average acquired Kd

values are shown for the CPI models in Hie et al. compared against a linear,
single-task ridge regression model using the same features. (D) The top 25
average acquired Kd values are shown. . . . . . . . . . . . . . . . . . . . . . 171

24



6.5 Structure-based pooling improves enzyme activity predictions. (A)
Different pooling strategies can be used to combine amino acid representations
from a pretrained protein language model. Yellow coloring in the schematic
indicates residues that will be averaged to derive a representation of the pro-
tein of interest. (i) We introduce active site pooling, where only embeddings
corresponding to residues within a set radius of the protein active site are
averaged. By increasing the angstrom radius from the active site, we increase
the number of residues pooled. Crystal structures shown are taken from the
BKACE reference structure, PDB: 2Y7F rendered with Chimera [242]. (ii,
iii) We also introduce two other alignment based pooling strategies: cover-
age and conservation pooling average only the top-k alignment columns with
the fewest gaps and highest number of conserved residues respectively. (iv)
Current protein embeddings often take a mean pooling strategy to indiscrim-
inately average over all sequence positions. (B) Enzyme discovery AUPRC
values are computed for various different pooling strategies. Each strategy
is tested for different thresholds of residues to pool, comparing against both
KNN Levenshtein distance baselines and a mean pooling baseline. The same
hyperparameters are used as set in Figure 6.2 for ridge regression models.
The kinase repurposing regression task from Hie et al. is shown with Spear-
man’s ⇢ instead of AUPRC as interactions are continuous, not binarized. All
experiments and are repeated for 3 random seeds. . . . . . . . . . . . . . . . 173

6.6 Dataset substrates 6 exemplar molecule substrates are randomly chosen
from each dataset and displayed. . . . . . . . . . . . . . . . . . . . . . . . . 179

6.7 Dataset diversity Distributions of top-5 enzyme similarity (left) and sub-
strate similarity (right) are shown across enzyme datasets collected. Enzyme
similarity is calculated as the percent overlap between two sequences in their
respective multiple sequence alignment, excluding positions where both se-
quences contain gaps. Substrate similarity is computed using Tanimoto simi-
larity between 2048-bit chiral Morgan fingerprints. . . . . . . . . . . . . . . . 180

6.8 Enzyme discovery benchmarking with AUCROC On the 5 different
datasets tested, K-nearest neighbor baselines with Levenshtein edit distance
are compared against feed-forward networks using various featurizations and
ridge regression models in terms of AUC ROC performance. ESM-1b features
indicate protein features extracted from a masked language model trained on
UniRef50 [206]. Concatenation and dot product architectures are indicated
with “[{prot repr.}, {sub repr.}]” and “{prot repr.}•{sub repr.}” respectively.
Halogenase and glycosyltransferase datasets are evaluated using leave-one-out
splits. BKACE, phosphatase, and esterase datasets are evaluated with 5 re-
peats of 10 different cross validation splits. AUC ROC is calculated using
scikit-learn for each substrate task separately before being averaged. Er-
ror bars represent the standard error of the mean across 3 random seeds.
Each model and featurization is compared to “Ridge: ESM-1b” using a 2-
sided Welch T test, with each additional asterisk representing significance at
[0.05, 0.01, 0.001, 0.0001] thresholds respectively after applying a Benjamini-
Hochberg correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
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6.9 Full substrate discovery AUC ROC results. CPI models and sin-
gle task models are compared on the glycosyltransferase, esterase, and phos-
phatase datasets, all with 5 trials of 10-fold cross validation. Error bars rep-
resent the standard error of the mean across 3 random seeds. Each model and
featurization is compared to “Ridge: Morgan” using a 2-sided Welch T test,
with each additional asterisk representing significance at [0.05, 0.01, 0.001,
0.0001] thresholds respectively after applying a Benjamini-Hochberg correc-
tion. Pretrained substrate featurizations used in “Ridge: JT-VAE” are fea-
tures extracted from a junction-tree variational auto-encoder (JT-VAE) [236].
Concatenation and dot-product architectures are indicated with “[{prot repr.},
{sub repr.}]” and “{prot repr.}•{sub repr.}” respectively. In the interaction
based architectures, “ESM-1b” indicates the use of a masked language model
trained on UniRef50 as a protein representation [206]. Models are hyperpa-
rameter optimized on a held out halogenase dataset. . . . . . . . . . . . . . . 187

6.10 Substrate Discovery Extended Analysis (A) Average AUPRC on each
individual “enzyme task” is compared between compound protein interaction
models and single-task models. Points below 1 indicate substrates on which
single-task models better predict enzyme activity than CPI models. CPI
models used are “FFN: [ESM-1b, Morgan]” and single-task models are “Ridge:
Morgan”. (B) AUPRC values from the ridge regression model broken out by
each task are plotted against the fraction of active enzymes in the dataset.
Best fit lines are drawn through each dataset to serve as a visual guide. . . . 187

6.11 MSA and structure based pooling across all datasets tested (A) Ac-
tive site, coverage, conservation, and mean pooling are plotted for all 5 enzyme
discovery datasets tested. Both AUCROC and AUPRC values are shown.
These are compared against the Levenshtein distance baseline (dotted). (B)
Equivalent analysis is conducted on the filtered kinase dataset extracted from
Davis et al. with MAE, RMSE, and Spearman rank correlation shown [223].
The same hyperparameters are used as set in Figure 6.2 for ridge regression
models. All experiments are repeated for 3 random seeds following the same
split evaluation as in other enzyme discovery model benchmarking. . . . . . 188

6.12 Enzyme discovery halogenase prediction results Ground truth binary
enzyme-substrate activities (left) are compared against a single seed of predic-
tions made through cross validation using a single-task ridge regression model
(middle) and a CPI based model, FFN: [ESM-1b, Morgan] (right). . . . . . 189

6.13 Enzyme discovery glycosyltransferase prediction results Ground truth
binary enzyme-substrate activities (left) are compared against a single seed of
predictions made through cross validation using a single-task ridge regression
model (middle) and a CPI based model, FFN: [ESM-1b, Morgan] (right). . 190

6.14 Enzyme discovery BKACE prediction results Ground truth binary
enzyme-substrate activities (left) are compared against a single seed of predic-
tions made through cross validation using a single-task ridge regression model
(middle) and a CPI based model, FFN: [ESM-1b, Morgan] (right). . . . . . . 190
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6.15 Enzyme discovery esterase prediction results Ground truth binary enzyme-
substrate activities (left) are compared against a single seed of predictions
made through cross validation using a single-task ridge regression model (mid-
dle) and a CPI based model, FFN: [ESM-1b, Morgan] (right). . . . . . . . . 191

6.16 Enzyme discovery phosphatase prediction results Ground truth binary
enzyme-substrate activities (left) are compared against a single seed of predic-
tions made through cross validation using a single-task ridge regression model
(middle) and a CPI based model, FFN: [ESM-1b, Morgan] (right). . . . . . . 192

6.17 Substrate discovery glycosyltransferase prediction results Ground truth
binary enzyme-substrate activities (left) are compared against a single seed of
predictions made through cross validation using a single-task ridge regression
model (middle) and a CPI based model, FFN: [ESM-1b, Morgan] (right). . . 193

6.18 Substrate discovery esterase prediction results Ground truth binary
enzyme-substrate activities (left) are compared against a single seed of pre-
dictions made through cross validation using a single-task ridge regression
model (middle) and a CPI based model, FFN: [ESM-1b, Morgan] (right). . . 193

6.19 Substrate discovery phosphatase prediction results Ground truth bi-
nary enzyme-substrate activities (left) are compared against a single seed of
predictions made through cross validation using a single-task ridge regression
model (middle) and a CPI based model, FFN: [ESM-1b, Morgan] (right). . . 194

7.1 Evidential uncertainty for molecular prediction and discovery. (A)
Evidential direct message passing or atomistic neural networks learn molec-
ular representations, predict target properties, and infer the parameters of
an underlying evidential distribution that captures the evidence in support
of each prediction and enables uncertainty estimation. (B) Uncertainties are
applied during learning (I) to guide sample acquisition and during deployment
(II) to discover high confidence candidates with high empirical success rates. 197

7.2 Building and training evidential models. (A) Evidential layers can be
added to the end of exisiting molecular feature extractor neural networks. The
output of the evidential layer is the parameters (m) defining the molecule’s
evidential distribution. (B) For continuous regression learning problems, the
evidential distribution p(✓|m) can take the form of a Normal-Inverse-Gamma
distribution, where m = {�, �,↵, �}, to yield both property prediction and
uncertainty estimates. Color represents likelihood density (darker = greater
density). (C) The model (feature extractor and evidential layer) is trained
end-to-end using backpropagation with a dual-objective loss that jointly max-
imizes model fit and inflates uncertainty (i.e., minimizes evidence) on errors. 199
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7.3 Benchmarking evidential uncertainty for molecular property predic-
tion. (A) Lower-N regression tasks using 2D molecular representations for
uncertainty benchmarking. (B, C) Prediction error, measured as root mean
squared error (RMSE) or mean average error (MAE), at different confidence
percentile cutoffs for the Delaney (B) and QM7 (C) datasets. Mean ± 95%
confidence interval (c.i.), n = 10 independent trials. (D) Higher-N regression
tasks using 2D or 3D molecular representations. (E, F) Prediction error at dif-
ferent confidence percentile cutoffs for the Docking (E) and QM9 (F) datasets
for 2D direct message passing (D-MPNN; E) and 3D atomistic (SchNet; F)
neural networks, respectively. Mean ± 95% c.i., n = 5 independent trials. . . 201

7.4 Tunability of the evidential uncertainty. (A) The evidential regression
method can be fine tuned with a single hyperparameter, �, in order to achieve
more calibrated predictions for a given dataset. (B) Estimated confidence
(cumulative probability) against the observed proportion correct for an evi-
dential D-MPNN evaluated on the Delaney dataset. Dotted line represents
perfect calibration. Mean ± 95% c.i., n = 5 independent trials. (C) Area
between the observed calibration curve and the perfect calibration line across
several lower-N datasets for evidential D-MPNNs trained with varying �. Dot-
ted lines represent calibration of an ensemble of models. Mean ± 95% c.i.,
n = 10 independent trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.5 Evidential active learning and Bayesian optimization. (A) Experi-
mental scheme. (B) Active learning with explorative (solid) versus random
(dashed) sampling for D-MPNN evaluated on the QM9 dataset. Mean ± 95%
c.i., n = 10 independent trials. (C) Change in sample efficiency for explo-
rative acquisition in (B), evaluated as the percent decrease in predictive error
relative to a randomly-selected training set. (D) Bayesian optimization per-
formance on Enamine 50k data, measured by the percentage of top-500 scores
found as a function of the number of ligands explored. Solid traces represent
an upper confidence bound (UCB) acquisition strategy. Mean ± 95% c.i.,
n = 10 independent trials. (E) Average 10-nearest training set neighbors (10-
NN) Tanimoto distance for batch samples after the first round of acquisition
in Bayesian optimization experiments. Dots represent median; bars represent
interquartile range; lines represent upper and lower adjacent values. n = 10
independent trials, two-tailed unpaired t-test, ****P < 0.0001. . . . . . . . 204

7.6 Uncertainty guided nomination in virtual screens. (A) Experimen-
tal framework in which trained uncertainty-aware models are deployed on a
discovery dataset, and molecules are ranked based on predicted properties.
Uncertainty filtering is used to prioritize candidates among the top ranking
molecules. (B) Performance of evidential D-MPNN after training to predict
E. coli growth inhibition. (C) t-SNE visualization of training set (orange) and
discovery dataset (Broad library), colored by predicted evidential uncertain-
ties (blue). (D) Application of confidence filters to prioritize sets of antibiotic
candidates with high experimental hit rates. Mean ± 95% c.i., n = 10 inde-
pendent trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
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7.7 Uncertainty benchmarking and calibration for lower-N datasets. (A,
B) Prediction error, measured as MAE (A) or RMSE (B), at different con-
fidence percentile cutoffs for D-MPNNs evaluated on each of the 2D lower-N
datasets. (C) Estimated confidence (cumulative probability) against the ob-
served proportion correct for an evidential D-MPNN evaluated on each of the
2D lower-N datasets, with regularization parameter � = 0.2. Mean ± 95%
c.i., n = 10 independent trials. . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7.8 Uncertainty benchmarking and calibration for additional lower-N
Therapeutics Data Commons datasets. (A, B) Prediction error, mea-
sured as MAE (A) or RMSE (B), at different confidence percentile cutoffs
for D-MPNNs evaluated on each of the 2D lower-N datasets. (C) Estimated
confidence (cumulative probability) against the observed proportion correct
for an evidential D-MPNN evaluated on each of the 2D lower-N datasets, with
regularization parameter � = 0.2. Mean ± 95% c.i., n = 10 independent trials. 222

7.9 Spearman rank correlation between error and uncertainty. Spearman
rank correlation coefficient between the estimated uncertainty and the abso-
lute error for each point across lower-N (A), additional lower-N Therapeutics
Data Commons (TDC) (B), higher-N (C), and atomistic (D) datasets. Mean
± 95% c.i., n = 10 independent trials for lower-M and n = 5 independent tri-
als for atomistic and higher-N datasets. For QM9 in the higher-N D-MPNN
setting (C), standard error bars are computed across all tasks and independent
trials (n = 60). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.10 Task-specific cutoffs for QM9 dataset. RMSE at different confidence
percentile cutoffs for D-MPNNs evaluated on each of the individual tasks
from the QM9 dataset. Mean ± 95% c.i., n = 5 independent trials. . . . . . 224

7.11 Uncertainty benchmarking and calibration for higher-N 2D and 3D
datasets. (A, B) Prediction error, measured as MAE (A) or RMSE (B), at
different confidence percentile cutoffs for models evaluated on the higher-N 2D
and 3D datasets tested. (C) Estimated confidence (cumulative probability)
against the observed proportion correct for the higher-N 2D and 3D datasets
tested. Mean ± 95% c.i., n = 5 independent trials. . . . . . . . . . . . . . . . 225

7.12 Effect of � on uncertainty calibration. Evidential D-MPNNs are trained
with different regularization coefficients � on each of the lower-N datasets. Es-
timated confidence (cumulative probability) against the observed proportion
correct is computed and plotted across different �. Mean ± 95% c.i., n = 10
independent trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

7.13 Cutoff RMSE is robust to small � shifts. Evidential D-MPNNs are
trained with different regularization coefficients � on each of the lower-N
datasets. RMSE is computed at the 10% confidence cutoff for each model.
All computed errors are reported as the fold change of the top 10% RMSE for
the evidential method relative to that of the ensemble baseline. Mean ± 95%
c.i., n = 10 independent trials. . . . . . . . . . . . . . . . . . . . . . . . . . . 226
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7.14 Task-specific calibration for QM9 dataset. Estimated confidence (cu-
mulative probability) against the observed proportion correct is computed for
an evidential D-MPNN evaluated on QM9 and then broken down into task-
specific plots. Mean ± 95% c.i., n = 5 independent trials. . . . . . . . . . . . 227

7.15 Antibiotic discovery datasets and uncertainty predictions. (A) Dis-
tribution of OD600 values for the training dataset of small molecules and their
in vitro growth inhibitory activity against E. coli, as originally measured by
Stokes et al [43]. Lower OD600 values indicate less E. coli growth and hence
correspond to greater antibiotic activity. (B) Distribution of predicted OD600

values and evidential uncertainties for molecules in the Broad Drug Repurpos-
ing Hub discovery dataset. (C) Distribution of empirically determined OD600

for the subset of the discovery set (162 out of 6, 111 total molecules) that was
experimentally tested for in vitro growth inhibitory activity against E. coli. . 228
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Chapter 1

Introduction

Nothing was formerly further from my thoughts, than that I should ever trouble
the world with anything in chemistry. There are so many books already upon this
subject, and many of them wrote so well, that it is hardly possible for me... to
offer anything that has not been said before.

Herman Boerhaave
1668 – 1738

In the first half of the 18th century, Herman Boerhaave used careful elemental analysis
and techniques to isolate and identify the metabolite urea [1]. Fast forward nearly three full
centuries since, high throughput measurements of biochemical systems have now transformed
our understanding of biology at a range of scales. An exciting array of technologies have
emerged in the past 20 years to measure the DNA [2], RNA [3], and proteins [4] in biolog-
ical samples. Yet, despite these advances for measuring common macromolecules, the high
throughput measurement of small molecules like urea—critical building blocks that mediate
numerous processes—has received far less attention. The overarching goal of this thesis is
to introduce a framework of new computational tools to identify the structure and potential
functional properties of previously unknown metabolites.

1.1 Metabolites: “Canaries of the Genome”

The relative lack of attention toward small molecules can in part be explained by the high
structural complexity and diversity of small molecule structures. In contrast, DNA and
RNA molecules are long, polymeric strings of four repeating nucleic acid bases—adenine,
thymine/uracil, guanine, and cytosine. This highly structured repetitive nature has enabled
“sequencing” measurements [5] that read nucleic acids base-by-base. Proteins are similarly
composed of a constrained repetition of a 20 amino acid alphabet, which, combined with the
well-defined understanding of protein synthesis (i.e., DNA encodes proteins), simplifies high
throughput proteomic measurements. Small molecules stand apart with their branched and
complex structures.

Nevertheless, biologically produced small molecules, referred to as metabolites, per-
form a vast array of often underappreciated functions. As David Wishart, a leader in the
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field of metabolomics, elegantly describes, metabolites can be seen as the “canaries of the
genome” [6]. That is, small biological genetic changes in upstream enzymes can be magnified
by nearly 10,000 fold [7], so metabolite quantities may be sensitive responders and signatures
for understanding biochemical phenotypes.

Well-characterized metabolites serve as energy stores, basic building blocks for larger
molecules, and transport mechanisms. New and unanticipated functions for even com-
mon metabolites are continuously being discovered. An endogenously found metabolite
2-hydroxyglutarate was found to be an oncometabolite, produced more abundantly due
to mutations in the IDH1/IDH2 enzymes, often assosciated with cancers such as glioblas-
toma [8]. More recently, a high throughput screen of proteome stability revealed lactate to
regulate protein degradation pathways by active site inhibition of SENP1 [9].

Beyond primary metabolites, secondary metabolites (i.e., those not directly necessary for
survival or growth) produced across the kingdom of life perform their own considerable and
important functions [10]–[12]. Within the microbiome in particular, recent effort has focused
on identifying metabolite products that impact human health. New microbially derived
bile acid conjugates have been discovered [13] and separate bile acid synthesis pathways
have been correlated with longevity [14]. Another line of inquiry focused on understanding
the impact of the microbiome on cancer risk has identified a previously uknown class of
microbiome-dervied metabolites, indolimines, as having genotoxic properties [15]. In the
same way as metabolites may mediate cancer risk, metabolites have also been found to drive
gut-brain axis interactions [16]. Collectively, metabolites have emerged as potential targets
for therapeutic intervention. Not only do they find use as targets, but natural product
metabolites produced by plants, bacteria, and fungi can be repurposed outside of their
natural contexts as therapeutic medicines themselves [17].

While this thesis is motivated primarily by applications within human health, metabolites
and small molecules mediate key interactions and phenomena within the environment more
broadly [18]. Recent efforts have scrutinized the impact of pollutants. In a canonical example,
Tian et al. identified 6PPD-quinone, a tire rubber antioxidant, as a toxin causing coho
salmon mortality [19]. This was accomplished through an extensive analytical chemistry
investigation.

1.2 Measuring the Metabolome

Metabolomics cumulatively represents the science of measuring and identifying these such
small molecules (i.e., often defined as the chemical species under 1,500 Da) [20]. Tactically,
because of the discrete structure of small molecules, we cannot use sequencing-based methods
and instead utilize analytical chemistry techniques, most often mass spectrometry. While
other techniques such as nuclear magnetic resonance (NMR) exist to structurally character-
ize molecules, these often lack the sensitivity to characterize low quantities of sample and
perform bulk measurements of many different peaks [21]. As such, we consider mass spec-
trometry measurements herein, despite NMR remaining the gold standard for confirming an
individually identified structure of interest.

As the metabolomics practitioner’s weapon of choice, a mass spectrometer is an exquisitely
sensitive analytical chemistry instrument that can measure the mass of molecules down to
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less than single digit parts-per-million error (i.e., mass over charge errors on the order of
10�4) with up to femtogram-level sensitivity [22]. A common pipeline is to utilize a multi-
step workflow of liquid chromatography followed by tandem mass spectrometry, denoted as
LC-MS/MS. In the first chromatography step, the contents of an input sample of interest are
separated out by time according to their affinities to reduce complexity. Then, at each time
point, the eluting compounds are ionized (i.e., given a charge) and their masses are mea-
sured by the first mass analyzer, known as the MS1 measurement. Subsequently, the highest
intensity, most abundant molecules are isolated in the mass spectrometer to go through a
collision step, whereby the isolated molecule is fragmented and each fragment is measured.
This produces a characteristic spectrum that provides clues as to the identity of the molecule.
There are many different incarnations of this technology and excellent reviews of the various
technologies [23] and their histories [24]; I further define the relevant components of this
technology in each chapter when necessary.

Paradoxically, mass spectrometers are capable of detecting thousands of different molecules,
yet our ability to assign the detected masses to small molecule structures remains limited.
As reviewed by Alseekh et al., current methods cannot fully define the number of metabolites
present [25]. Even from our pool of putative metabolites we expect are present, we can only
identify a narrow 8,000 of the 114,100 metabolites predicted to be in humans [26] and 14,000
of the >200,00 metabolites predicted in the plant kingdom [27].

While some of this gap is due to challenges with the physical instrumentation and sepa-
ration techniques used to isolate metabolites, a large part of this gap surprisingly is due to
our inability to identify which compounds occur from their analytical chemistry signature.
Anecdotally, even for human serum measurements, which we would expect to be well char-
acterized, only roughly 300 of 2,000 consistently detected metabolites can be matched to
compounds. This same trend is true for public databases, with the largest Global Natural
Products Social (GNPS) database [28] reportedly only featuring compound annotations for
13% of its identified metabolites [29]. A key question then, is how to build new computa-
tional tools that will increase this number of metabolites we can discover? And beyond this,
how can we build technologies to not only identify, but also understand the function, of these
various metabolites?

1.3 Toward an AI/ML Analysis Pipeline

Parallel to the improving instrumentation and growing interest in metabolite-driven biology,
a separate revolution has been brewing over the last decade in the field of artificial intelligence
and machine learning (AI/ML). Beginning with superhuman image classification [30], [31],
deep learning methodologies have since replaced statistical learning approaches for everything
from natural language translation [32], [33] to image generation [34] to protein folding [35]–
[37]. At its core, these techniques eschew the traditional statistical learning paradigm of
carefully crafted input features in favor of adaptive basis functions; with enough data, the
power of auto-differentiation, and a well-framed loss function, large and over-parameterized
models are capable of learning to approximate even the most complex functions.

Most recently, especially large “foundation” models have taken center stage [38]. In
principle, with enough data, a large model can be trained once and then adapted to perform
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many disparate, downstream tasks. The most compelling case of this phenomenon can
be seen in natural language, where large language models trained with the objective of
completing the sentence subsequently find use in a range of tasks from translation to text
summarizing [32].

Unsurprisingly, there has been interest in targeting these powerful classes of deep learning
models to advance and solve some of the most pressing problems in science [39]. Some
more recent examples include small molecule synthesis planning [40], [41], small molecule
property prediction and discovery [42], [43], viral gene therapy vector optimization [44],
cancer detection [45], protein folding [35]–[37], and protein design [46]—all examples with
profound importance for discovering new therapeutics and medicines.

While foundation models find uses in natural language processing, given the varied num-
ber of tasks considered, each of the demonstrations above has required separate innovation for
neural network architectures, loss function, and training data. Protein folding is an especially
apt example. Over the course of a decade, old statistical learning pipelines and models were
slowly converted into deep generative models via a process Mohammed AlQuraishi dubbed
the “neuralization of structure prediction pipelines” [47]. Previous statistical methods con-
sidered a set of related protein sequences known as a “multiple sequence alignment,” which
could help constrain a protein, as well as a “template” structure of similar proteins. To reach
groundbreaking performance, the AlphaFold2 system developed custom deep neural network
components to gracefully accept, featurize, and convolve upon these varied inputs [35]. Sim-
ply inputting a sequence and training it to match a protein structure with existing deep
neural network methods was insufficient to rival statistical methods.

If the first lesson from the protein folding analogy is that custom neural network solu-
tions are needed to consider the biases imparted by statistical methods when working in
scientific domains, the second is that we need well-defined tasks and objectives. For over
two decades, the protein biology community organized public, carefully curated challenges
and metrics [48], as well as data [49], to test the ability to predict protein structure. Impor-
tantly, these competitions provided the data, guidelines, problem framing, and inspiration
that enabled an outside party, DeepMind, to solve a well-posed problem with AlphaFold2.

Returning to the case of mass spectrometry and metabolite identification, the field cur-
rently exists in a somewhat pre-neural network regime. At the time I commenced work on
this thesis, and even at the time of its completion, the two most widely used computational
prediction methods for resolving molecules from spectra, SIRIUS [50] and CFM-ID [51], are
either impossible or highly difficult to retrain and do not use deep learning. Prior to this
work, we have found vanishingly few public data benchmarks that jointly include training
data, evaluation data, and the performance of common methods.

In part, this lack of benchmarks stems more so from lack of clarity on the tasks themselves;
metabolomics processing pipelines have many moving parts and different steps with various
utility. To add rigidity to this framework, I introduce and articulate four key tasks that I
posit can be solved with deep learning (Figure 1.1):

A. MS1 formula prediction. Initial data processing steps provide a mass fragmentation
spectrum and its parent MS1 mass. The MS1 mass substantially narrows down the
chemical space and set of structures to consider, but we can go one step further by
predicting the exact molecular formula from a set of equivalent-mass options. Knowing
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the set of elements in the target molecule further constrains the structure elucidation
task. Several approaches such as SIRIUS [50] and BUDDY [52] have been proposed
already for this task but do not have standardized training data or evaluations.

B. Inverse spectrum-to-molecule prediction. Given the input molecular formula and
spectrum, we can then use models to predict key structural and functional properties
of the molecule, in the form of a molecular fingerprint. A core challenge of this task
is how to represent mass spectra into a neural network. Once a molecular fingerprint
is predicted, these can be compared to a database of molecular candidates to rank the
most likely identity for the spectrum of interest. CSI:FingerID [53] within SIRIUS [54]
was the leading approach to this task, with others more recently emerging [55], [56].
Such inverse models can also be used to predict the chemical class of the unknown
molecule, rather than features of the molecule itself [57], which we consider to be an
extension of this same task.

C. Forward molecule spectrum prediction. Rather than try to invert the physical
process, we can attempt to predict a spectrum from a molecule directly and follow
the so-called “forward” data generating process by which molecules are fragmented in
a mass spectrometer. This creates questions not about representing spectra as inputs
to a model, but rather how to represent spectra as outputs of a model. A forward
molecule-to-spectrum model can be used to create large synthetic libraries of putative
standards that can then be queried as an orthogonal strategy to identify a molecule
from its spectrum of interest. Many methods exist to address this challenge such as
CFM-ID [51]; we review these in more depth within Chapters 4 and 5.

D. Molecule candidate generation. A core limitation of tasks B and C as we have
described them is that they enable molecular annotation via a “retrieval” process. That
is, the user provides a reference database of potential molecule structures, like Pub-
Chem [58] or the Human Metabolome Database [59], that could explain the candidate
spectrum, and the molecules are either ranked by how closely their fingerprints match
the predicted molecular fingerprint of the spectrum (task B) or by how closely the
predicted spectrum of each molecule matches the true spectrum (task C). Given the
vastness of molecular space, it is highly likely that many structures we are measuring
are not yet recorded in databases. We assert that we should decouple the tasks of
searching molecule space and ranking candidate molecules by making “molecule can-
didate generation” into a separate task. While I do not explicitly address molecular
generation within this thesis, I see this as an important direction for future work. Some
work has arisen already to this end [60], [61], but evaluations are far from clear and
also implicitly conflate performance between spectrum-to-molecule prediction (task B)
and candidate generation tasks. A path forward will require decoupling the evaluations
accordingly and using standardized training and testing splits to evaluate performance,
as has been done for molecular generation in other drug discovery settings [62].

Data resources. Training datasets are a key criteria to addressing any one of these tasks
with machine learning. Typically, paired data containing molecules and their corresponding
spectra, is ideal for learning the various tasks above. This thesis has converged on using
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two separate datasets: the National Institute of Standards and Technology (NIST) spectral
library [63] and the GNPS dataset [28]. Both datasets provide a set of paired molecules
and their corresponding spectra. While each dataset contains duplicate entries for the same
molecular structures, often measuring spectra with slightly different instrument parameters,
I posit that the key axis for dataset quality is not the sheer number of spectra, but rather the
number of unique molecules. The NIST dataset has on the order of approximately 30,000
unique molecules, whereas the GNPS dataset has grown progressively to up to approximately
15,000 molecules. We use a subset of the GNPS dataset from 2021 throughout this thesis
as prepared by the authors Dührkop, Nothias, Fleischauer, et al. [57] that contains on the
order of approximately 10,000 unique molecules. The GNPS spectral standard subset that
we utilize is referred to as either CANOPUS or NPLIB1 throughout this thesis.
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Figure 1.1: Spectrum prediction workflow tasks. Raw data is first processed into a mass
spectrum with a precursor MS1 mass. Subsequently, a molecular formula can be predicted.
Beyond this, three separate classes of models can be used to help identify the molecule
structure, and the predictive direction of each model is shown.

1.4 Thesis Organization

This body of this thesis is separated according to the structure of six different project chap-
ters, the first four of which directly address tasks A, B, and C introduced above. The final
two content chapters address more general molecular modeling tasks that have implications
for how we can consider predicting the functional relevance of newly identified metabolites.
Throughout this work, we prioritize open-source code development and providing concrete
data and splits for others to compare to and improve upon our work.

• Chapter 2 begins by introducing a new strategy for representing spectra as inputs to
neural networks and solving task B for predicting molecule properties from an input
spectrum (Figure 1.1). I introduce the Molecular Formula Transformer neural network
architecture and our model MIST, and I demonstrate how this model compares favor-
ably to a hand-crafted kernel-based statistical method for the same task. I show how
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this model can be applied to clinical healthcare data from patients with inflammatory
bowel disease to identify signatures of disease and introduce benchmarks for others
attempting to address spectrum representation learning tasks in the future.

• Chapter 3 extends the MIST model to a new model, MIST-CF to address task A
of metabolite annotation (Figure 1.1), predicting the molecular formula from an input
mass spectrum. This work shows how our same neural network strategy can be adapted
into an energy-based modeling framework to cover a wider range of the spectrum
annotation and data processing pipeline.

• Chapter 4 switches to addressing the forward task of metabolite annotation, task C,
predicting spectra from molecular structures (Figure 1.1). We introduce a model,
SCARF, and the idea of decoding mass spectra as prefix trees of molecular formulae.

• Chapter 5 further continues the thread of predicting mass spectra from molecules as
introduced by SCARF. We design an improved model, ICEBERG, that instead of out-
putting spectra as sets of formulae, predicts output spectra as sets of sub-fragments of
the input molecule. This more physically-grounded approach proves to be increasingly
accurate and beneficial in the task of spectrum annotation, albeit requiring more time
at inference than SCARF.

• Chapter 6 is the first chapter to consider problems outside of mass spectrum data
processing and instead investigates how to predict the substrate specificity of certain
enzyme families using protein and small molecule representation learning. A bet-
ter understanding of enzyme substrate specificity would be helpful both in industrial
biotechnology applications of biocatalysis as well as understanding the pathways by
which newly identified metabolites may be synthesized.

• Chapter 7 considers another orthogonal challenge of quantifying uncertainty of neural
network predictions in the molecular sciences. This chapter utilizes a recently proposed
“evidential uncertainty” method to quantify the uncertainty of neural network model
predictions of small molecule properties. This work does not focus on metabolites, but
given the generality of these methods, could be extended in future work.

• Chapter 8 concludes this thesis and provides several directions and ideas for future
work.
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Chapter 2

Predicting Molecular Properties and
Substructures from Spectra

This work has previously appeared as S. Goldman, J. Wohlwend, M. Stražar, et al., “Anno-
tating metabolite mass spectra with domain-inspired chemical formula transformers,” Nature
Machine Intelligence, vol. 5, no. 9, pp. 965–979, 2023. I jointly conceptualized the project
and led the execution, implementation, and writing. Co-authors provided support, input,
and guidance through all stages.

2.1 Introduction

Untargeted metabolomics is an important tool in advancing our understanding of cellular
and environmental biochemistry [8], [14], [18], [65]–[67]. Liquid-chromatography tandem
mass spectrometry (LC-MS/MS) is a widely used experimental approach to identify new
metabolites, measuring both the mass of an intact molecule (MS1) and its fragments (MS2),
measured as a spectrum of peaks [68]. The analysis of these experiments is critically bot-
tlenecked by an inability to accurately annotate observed fragmentation spectra with the
chemical structures of the molecules that produced them, with as many as 87% remaining
unannotated [29]. In the many cases where the spectrum does not closely resemble a known
standard spectrum, imperfect computational tools must be used to infer properties of the
unknown molecule. Improving this inference step has the potential to drastically increase
the information gleaned across all routine untargeted metabolomics experiments [68].

Despite the recent breakthroughs in deep learning that have “neuralized" the adjacent
protein structure prediction field [35], [47], leading computational metabolomics annotation
tools still rely upon hand-crafted heuristics and kernel functions (i.e., quantitative functions
for comparing properties of mass spectra). Such methods can broadly be grouped into three
categories: networking, forward prediction, and inverse prediction. Networking methods
such as feature-based molecular networking [69], [70] cluster similar spectra to find neigh-
borhoods of similar compounds (e.g., bile acids [13]). Forward methods (e.g., MetFrag [71],
[72] and CFM-ID [51], [73]) augment the library of known metabolite standards by in silico
fragmentation of molecules to generate artificial data. On the other hand, inverse fragmen-
tation methods (e.g., CSI:FingerID [53] and FingerID [74]) predict molecular properties or
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the molecule structure from the spectra directly.
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Figure 2.1: MIST replaces the critical spectrum-to-fingerprint prediction step in
the computational workflow. A. A set of fragmentation peaks are extracted from a sam-
ple with tandem mass spectrometry. After predicting molecular property fingerprints, sev-
eral different downstream software tools can be used to annotate molecules from databases,
link metabolites to genomes, de novo generate plausible candidates, classify the unknown
metabolite into compound classifications, generate statistics for all observed spectra, and
calibrate certainty of annotations. B. The first step in the fingerprint prediction pipeline
common to MIST and CSI:FingerID is to annotate the spectrum with a molecular formula
for the full metabolite, then label each sub-peak with a molecular formula. C. CSI:FingerID
arranges annotated sub-peak formulae into a “fragmentation tree", and subsequently uses
many independent support vector machine models to predict fingerprint property bits. D.
MIST does not require a fragmentation tree, but rather directly utilizes molecular formulae
as inputs to a Formula Transformer in order to predict molecular fingerprints.

Inverse prediction of a molecule’s structural fingerprint from its spectrum is an entrenched
paradigm in metabolomics, most recently forming the backbone of the winning solution at
Critical Assessment of Small Molecule Identification 2022 (CASMI2022) [75], [76] (Figure
2.1A). In particular, CSI:FingerID, the state of the art method, assigns each peak in the
fragmentation spectrum a molecular formula and arranges these into a fragmentation tree
[77] (Figure 2.1B-C). A set of kernels are then used to train a support vector machine
to predict individual molecular fingerprint property bits describing the presence of certain
molecular substructures. Predicted fingerprints can then be queried against a database of
molecular structures [53] or used for a range of other downstream tasks and applications [57],
[61], [78]–[80]. The performance for all such tools is fundamentally limited by the first step
of fingerprint prediction, which we aim to improve with this work (Figure 2.1A).

While several inverse approaches leverage deep learning, they have failed to outperform
kernel CSI:FingerID when trained with equivalent data. Representation learning of spectra
such as Spec2Vec [81], MS2DeepScore [82], and sinusoidal embeddings [83] can be used to
learn a more meaningful distance between spectra to facilitate molecular networking. For-
ward models have incorporated feed forward networks and graph neural networks to predict a
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fragmentation spectrum directly from molecular structure [84]–[86]. In the inverse direction,
MassGenie [87], Spec2Mol [88], and MetFID [56] directly attempt to generate fingerprints
or SMILES strings [89] from mass spectra. Deep kernel learning has also been leveraged to
improve CSI:FingerID [90], but this approach still fundamentally relies upon hand-crafted in-
put features and cannot be edited, retrained, or fine-tuned by third parties. We hypothesize
that neural network approaches are limited by the lack in-domain knowledge incorporated
into their architectures. Neural representations that treat peak masses as discrete binned
values are unable to model exact masses of peaks, mass differences between peaks, or the
putative atomic compositions of peaks, all of which could help improve model generalization.

Here, we introduce Metabolite Inference with Spectrum Transformers (MIST), a neu-
ral network approach capable of outperforming current approaches despite not using hand
crafted kernels. Rather than using binned spectra as inputs, MIST represents a spectrum
as the set of molecular formulae of all peaks, borrowing inspiration from CSI:FingerID (Fig-
ure 2.1D). We then introduce inductive biases from the mass spectra domain: we implicitly
featurize neutral loss relationships between fragments, simultaneously predict the structures
of the metabolite and its fragments in each spectrum, use in silico forward augmentation to
provide more training data for our model, and introduce a novel “unfolding" architecture to
progressively increase the resolution of fingerprint predictions.

We further enhance MIST’s spectra annotation capabilities by contrastive representation
learning on the penultimate network layer. We show the utility of various model components
and the inductive biases described above through thorough ablation studies on a publicly
available dataset to provide a foundation for future model development. Finally, to demon-
strate MIST on real world data, we analyze clinical samples from an inflammatory bowel
disease patient cohort and propose new dipeptide and alkaloid structure annotations for
differentially abundant metabolites.

MIST is distributed as an open source tool that can be easily integrated into existing
pipelines, with or without retraining, and is freely available under the MIT license https:
//github.com/samgoldman97/mist.

2.2 Results

2.2.1 The MIST method
MIST accurately predicts fingerprints and compound annotations by using a deep neural
network to learn a meaningful representation of an input mass spectrum. An input spectrum
is composed of a single MS1 precursor mass and a list of mass over charge (m/z) peaks with
corresponding intensity values. Rather than discretize the observed peaks into a fixed-
length binned representation of intensities, MIST instead initially represents each spectrum
peak as a molecular formula, which can be pre-labeled (inferred) based upon its mass-to-
charge ratio using the SIRIUS algorithm [50] (Figure 2.2A). MIST then directly transforms
the representation at each peak by projecting these molecular formulae and intensities into
feature vectors via a shallow feed forward multilayer perceptron (MLP).

MIST learns relationships between multiple peaks and their inferred molecular formulae
with successive Set Transformer multi-head attention layers [91], [92]. We explicitly encode
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Figure 2.2: MIST accurately predicts compound fingerprints from mass spectra.
A. Overview of MIST model architecture. An input spectrum of (mass-to-charge, intensity)
pairs is transformed into molecular formulae vectors, encoded, and fed into a Molecular For-
mula Transformer along with pairwise neutral losses between formulae. An unfolding module
predicts full molecular fingerprints and a separate auxiliary module predicts substructure fin-
gerprints as a secondary training signal. B,C. Molecular fingerprints are predicted by MIST
and CSI:FingerID for every spectrum in the test set. The performance for each spectrum by
log likelihood to the true fingerprint (B) or cosine similarity (C) is evaluated and plotted.
Points below the line represent instances where MIST is more performant. D. Equivalent
evaluation showing the likelihood of predicting each fingerprint bit correctly across all spec-
tra.
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Figure 2.2: E. The performance of CSI:FingerID [53], MIST, and FFN, a baseline inspired
by MetFID [74], are shown. “Tanimoto," “Cosine," and “Log likelihood (spectra)" indi-
cate performance across spectra and “Log likelihood (bits)" indicates performance across
bits (higher is better). Median lines are shown; boxes show the interquartile range, with
whiskers indicating 1.5x interquartile ranges. Statistics are pooled across n = 18, 700 test
spectra (Tanimoto, Cosine, and Spectra log likelihood) and n = 5, 496 fingerprint bits (Bit
log likelihood). F. Performance differences by compound class as assigned by NPClassi-
fier. All classes with > 40 molecules are shown. G-I. Example molecules from stilbenoid,
aromatic polyketide, and sphingolipid classes. All results indicate predictions aggregated
across 3 separate independent splits and model re-trainings. MIST fingerprints are created
by averaging predictions from 5 separately trained models per split.

all pairwise neutral loss relationships [93] as inputs to the attention layer modules. This al-
lows MIST to update the initial representation at each of the peaks based solely on molecular
formula with information about all other peaks and the pairwise losses between them. To
obtain the final representation of the overall spectrum, we extract the learned representation
of the peak corresponding to the precursor formula of the parent compound.

To predict sparse fingerprints from this hidden representation, we introduce a novel “un-
folding" layer where MIST progressively predicts the molecular fingerprint with larger and
larger resolutions before reaching the final fingerprint prediction. This strategy enables the
network to first learn coarse-grained molecular properties before generating the full reso-
lution property vector, similar to how progressive growing has been used to generate high
resolution images in computer vision [94].

Simultaneously, we ensure the spectral representation learns to make use of information
reflected by each peak in the fragmentation pattern by incorporating a secondary auxiliary
loss task. We use the MAGMa algorithm [95] to label chemical substructures for our training
data and simultaneously train our model to predict fingerprints for substructures as an
additional training signal to improve performance (Figure 2.13).

A final key performance driver to MIST is the use of simulated data, inspired in part by
the knowledge distillation strategy employed by AlphaFold [35], [96]. We train a forward
neural network to predict spectra from molecules [84] and predict putative new spectra for
a database of (unlabeled) biological molecules to randomly add to the training set (Figure
2.9). We refer the reader to Section 2.4.1 for a more complete description of the method.

2.2.2 Formula transformers accurately predict fingerprints
We directly compare MIST to the state of the art fingerprint prediction model, CSI:FingerID,
within SIRIUS, to show the benefit of our approach. We prioritize direct comparison with
CSI:FingerID as it was the highest performing method at CASMI2022 [75], [76], a prospective
competition held in June 2022. MIST is trained on a dataset of positive ion spectra with
hydrogen adducts constructed from NIST [63], MONA [97], and the GNPS databases [28],
totaling 31,145 unique spectra of 27,797 unique compounds (Section 2.4.8). We train MIST
to predict the 5496-dimensional fingerprint used by CSI:FingerID and evaluate performance
on 3 separate splits of 20% data holdouts. We ensemble predictions from 5 separately
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trained MIST models with different random initializations; we note CSI:FingerID fingerprint
prediction is itself an ensemble of 5,496 separately trained models.

Of the 18,700 spectra in the test set holdouts, MIST predictions have higher cosine
similarity to the true prediction for 11,994 of the examples (Figure 2.2C), with similarly
encouraging results on log likelihood (Figure 2.2B,D). We additionally compare MIST to a
more straightforward feed forward neural network (FFN) operating on binned (discretized)
spectra, which performs substantially worse than both CSI:FingerID and MIST, indicating
the importance of a domain-inspired architecture (Figure 2.2E, 2.8). Even with a single,
non-ensembled model, MIST still performs better on over 55% of examples by cosine simi-
larity (Figure 2.14, Table 2.3). This performance advantage from MIST is consistent across
chemical classes, with especially strong accuracy on stilbenoids, aromatic polyketides, and
sphingolipids (Figure 2.2F-I).
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Figure 2.3: Contrastive fine-tuning improves compound annotation by database
retrieval. A. Overview of the contrastive fine-tuning workflow for MIST. Model weights
in the formula embedding module and attention layers are initialized from the fingerprint
prediction tasks (“Pre-trained base model”) and fine-tuned to project fingerprints into the
a latent hidden representation space shared with spectra. The model minimizes distance
between the spectra representations and their true structure’s representation and maximizes
distance to decoy small molecules. B,C. MIST top-k retrieval accuracy assessed against
CSI:FingerID by querying the PubChem reference database using predicted fingerprint cosine
distances, contrastive latent space distances, or a custom CSI:FingerID fingerprint distance
function (“Bayes”). Top-k accuracy is computed by ranking candidate compounds for each
spectra and computing the fraction of spectra for which the true compound appears in the
top-k rankings, aggregated across 3 test set data folds.
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Figure 2.3: D. Retrieval accuracy for all folds are segmented into various chemical
classes. For each class for which > 40 examples exist, the fraction of examples on which
MIST performs better, equivalently, or worse than CSI:FingerID are shown. E. MIST
latent space spectra distances more effectively cluster high similarity compounds than
MS2DeepScore [82], Spec2Vec [81], or cosine distances. Test set compounds pairs are sorted
by similarity according to various metrics and the average structural similarity of pairs is
computed using Tanimoto distance at various percentiles for a single test fold. F. Con-
trastive spectra latent vectors for a single test fold are projected into 2D space with UMAP
and colored by their respective compound class. Compounds 2 and 4 are example spectra for
which NPClassifier fails to return an annotation. G. Example compounds from (F) reveal
structural similarity of neighboring compounds in the UMAP space derived from MIST’s
spectral embeddings. Maximal Tanimoto similarity to any example in the training set is
shown in parentheses.

2.2.3 Contrastive fine-tuning improves metabolite retrieval
In principle, one could directly query predicted fingerprints against a database of fingerprints
for known biomolecules to retrieve the best matches. CSI:FingerID instead uses custom
Bayesian or heuristic distance functions to account for fingerprint bit correlations [98]. We
focus on building a learned distance metric by fine-tuning MIST with a contrastive learning
objective inspired by noise contrastive estimation [99] (Section 2.4.5) so that molecular finger-
prints and spectra can be projected into a shared latent space; similar spectrum-compound
pairs are trained to be close in terms of latent space distance (Figure 2.3A).

MIST with contrastive embedding leads to a top-1 annotation accuracy of 37.39% on ret-
rospective datasets, improving upon a 31.70% top-1 annotation accuracy if predicted finger-
prints are used to retrieve candidate compounds directly (Figure 2.3B; Table 2.4). Curiously,
despite the improved fingerprint accuracy of our model in comparison to CSI:FingerID, we
find that on the retrospective dataset, CSI:FingerID has equivalent top-1 accuracy (38.24%)
compared to our method and higher top-1 accuracy when retrieving methods using a custom
Bayesian fingerprint retrieval method (43.00%) [98]. Nevertheless, MIST achieves higher
k � 20 retrieval accuracy (Figure 2.3C, Table 2.4). This indicates that even when MIST
predicts the top-1 molecule incorrectly, it still captures important details of the true com-
pound.

Overall, we find that MIST retrieves the compound on 66% of examples with equivalent
or better rank than CSI:FingerID (strictly better on 29% of the data). Analyzing the fraction
of examples at which MIST is better by chemical classes, we see that there is not a clear
agreement with fingerprint prediction. Whereas MIST seems to have an advantage on fin-
gerprint prediction within sphingolipids (Figure 2.2F), we see that MIST and CSI:FingerID
have near equivalent sphingolipid retrieval accuracy (Figure 2.3D). We attribute this to the
fact that certain chemical classes have higher top-1% accuracy, possibly due to the bias
within the retrieval libraries themselves (e.g., 43/57 sphingolipids are retrieved correctly by
both methods). Even so, MIST appears to offer improvements on certain chemical classes
such as sesquiterpenoids.
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2.2.4 Neural embeddings elucidate compound class clusters
Given the increased retrieval accuracy at higher values of k, we next asked if MIST is capable
of meaningfully organizing chemical space in its learned latent space representation of mass
spectra. Molecular networking has long been an important tool to cluster spectra that may
represent similar molecules, used recently to guide the discovery of new bile-acid conjugate
molecules [13], [70]. A challenge of molecular networking is the choice of a meaningful
spectral distance and distance cut-off to define network edges.

MIST learns contrastive embeddings with inter-spectra distances that highly correlate
with metabolite structure similarity. We compare this effect directly against modified cosine
distance as implemented in MatchMS [100], along with MS2DeepScore [82] and Spec2Vec
[81], two recent representation learning strategies for embedding spectra (Figure 2.3E). For
38,850,289 pairs of spectra scored by spectral similarity, the average structural similarity of
the top 0.1% according to MIST is 0.32 compared to a theoretical maximum of 0.45 using
the top 0.1% of most similar pairs, whereas using MS2DeepScore and Spec2Vec yield lower
average structural similarities of 0.22 and 0.19 respectively. By this measure, MIST’s spectral
similarity metric represents a greater than 45% improvement in structural similarity from
the current state of the art.

MIST’s continuous embeddings can also be projected into two-dimensional space for
visualization with UMAP, revealing that spectra cluster by chemical class (Figure 2.3F).
Even molecules that NPClassifier [101] is unable to annotate are indeed quite structurally
similar to their neighbors (Figure 2.3G); while the unlabeled molecule 2 does not share the
characteristic coumarin motif with molecule 1, both molecules share a 4-piperidinecarboxylic
acid substructure not detected by chemical classifications.

2.2.5 MIST uncovers putative dipeptides in clinical cohort data
To show the utility of MIST on real world data, we applied MIST to identify unknown
metabolites from a recent clinical metabolomics dataset extracted from patients with ulcer-
ative colitis (UC) and Crohn’s disease (CD), two types of inflammatory bowel disease (IBD)
as reported by Mills et al. [102]. Mounting evidence has shown that the microbiome medi-
ates IBD treatment response and disease progression, including by the production of novel
metabolites [15], [103], [104].

Repeating the authors’ data processing pipeline, we extracted relative abundances for
1,990 tandem mass spectra across the 210-patient clinical cohort (73 UC, 117 CD, 20 healthy)
and annotated a total of 1,499 of these spectra using MIST to assign structures from the Hu-
man Metabolome Database (HMDB) when possible, falling back on PubChem for molecular
formulae without candidate structures in HMDB.

Putative metabolites were grouped into chemical classes using NPClassifier [101] and
relative abundances for each chemical class were calculated for each patient. We identified
correlation coefficients between the total abundance of each metabolite class and patient
disease severity within the UC and CD cohorts. Dipeptides exhibited the highest correla-
tion with disease severity for UC patients of any chemical class (R = 0.478, padjust = 0.01)
(Figure 2.4A,B). This is consistent with class-level metabolite analysis from Mills et al. and
their finding that increased activity of microbial proteases in dysbiosis led to dipeptide ac-

55



cumulation [102]. Peptides and amino acids are carbon sources for numerous inflammation-
associated microbes, particularly oral cavity residents who have been observed to colonize
and thrive in inflamed gut [105]. An understanding of such peptide structures could re-
veal nutrient niches and footprints of prevalent microbial proteases, possibly suggesting new
disease biomarkers or therapeutic targets [106].

A small subset of dipeptide metabolites had higher correlation with disease severity (Fig-
ure 2.4C). Curiously, dipeptide metabolites tightly cluster within latent space into different
groups (Figure 2.4D); at least four such clusters (compounds highlighted with arrows) contain
putative dipeptides that correlate with disease activity in the cohort. Because the chemical
class annotation tool is itself a predictive model, certain tripeptides were observed, despite
analyzing metabolites labeled as dipeptides.

We further inspected two of the novel annotations to determine whether MIST’s assigned
structure can explain the observed spectrum using the CFM-ID [51] in silico fragmentation
tool at an error threshold of 30 parts-per-million (Figure 2.4F,G). While compound 11
explains 6 high intensity peaks (Figure 2.4F), 13 only explains half of the peaks observed
in the spectrum (Figure 2.4G). Given that only four peaks of the six in the spectrum are
explained, this example may be a near match, rather than exact annotation, highlighting a
potential shortcoming of the model and the importance of manual inspection.
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Figure 2.4: MIST annotates putative and clinically relevant dipeptides. A. Metabo-
lite classes ranked by their Pearson correlation with IBD disease severity. All putative
metabolites are assigned disease classes with NPClassifier [101] and relative abundances are
summed across classes. Within the ulcerative colitis (UC) and Crohn’s disease (CD) cohorts,
metabolite classes are correlated with disease severity and sorted according to their correla-
tion with UC (top 20 shown; each computed for n=60 patients with UC, n=102 CD patients).
Error bars indicate 95% confidence intervals around the mean. B. Dipeptide relative abun-
dances for each patient are plotted against disease severity within the healthy (n=19), UC,
and CD cohorts. Dipeptides correlate with disease severity for UC patients (R2 = 0.23,
p = 0.01, two-sided the Wald test, adjusted with Benjamini-Hochberg) as observed by Mills
et al. [102]. In the left boxplot, the data median line is shown; boxes show the interquartile
range, with whiskers indicating 1.5x interquartile ranges. Regression lines are shown with
95% confidence intervals computed with bootstrapping. C. Within the Dipeptide class, the
distribution of individual metabolite correlations are shown for both UC and CD cohorts.
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Figure 2.4: D. All putative dipeptide metabolites (red) are embedded into the latent space of
a single, contrastive MIST model alongside embeddings for reference standard spectra from
the original model training set and also labeled as dipeptides (blue). All embeddings are
projected in 2D space with UMAP and plotted. Metabolites are colored by their coefficient
of determination R2 with UC disease severity as computed in C. E. Annotations for example
metabolites from D are shown across different compound clusters. Metabolites with molec-
ular formulae not in standards library are colored brown. F-G. Example spectra and their
MIST annotated compound are shown. Maximal Tanimoto similarity to any example in the
training set is shown in parentheses. Explained subpeaks are annotated using CFM-ID [51]
and shown as validation of plausibility. Compound annotations are made using an ensemble
of 5 MIST models, contrastive distance retrieval, and the HMDB and PubChem reference
databases of molecules.

In addition to finding metabolites that correlate with disease severity, we also searched for
metabolite classes that separate the healthy and IBD patients, as immunoregulatory metabo-
lite are continuously being uncovered [107]. We identified two differentially less abundant
classes that contain N-heterocycles: piperidine (UC padjust = 0.034, CD padjust = 0.014) and
pyridine (UC padjust = 0.006, CD padjust = 0.014) alkaloid classes (Figure 2.5A-C).

Within the piperidine and pyridine alkaloid metabolite classes, we observed a total of 14
and 19 metabolites respectively, the majority of which were annotated as chemically novel
structures by MIST (Figure 2.5D). MIST predicted putative compound annotations 15,
16, 17, and 18 as chemically diverse structures with significantly lower abundance than in
healthy patients, with compounds 15 and 16 differentially less abundant across both disease
cohorts (Figure 2.5E-G). Curiously, not all compounds have the characteristic saturated
and unsaturated six-member heterocycles expected for these alkaloid classes; compound 17
instead features a pyrrole ring. We attribute this to the approximate nature of automated
chemical class annotation.

This demonstration highlights the position of MIST in common metabolomic workflows.
However, we note that our results here are subject to biases both in the retrieval database
as well as the molecular formula annotations provided by SIRIUS; no predicted annotations
were experimentally verified. We include a more complete discussion of the compound classes
for which MIST and SIRIUS share consensus in Table 2.1.
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Figure 2.5: Putative alkaloids separate healthy and diseased IBD cohorts. A,B.
Putative metabolite classes from the Mills et al. cohort [102] are scattered showing their
fold change and respective p value comparing and ulcerative colitis (UC) (A) and Crohn’s
disease (CD) (B) cohorts to the healthy cohort. C. Distributions of patients’ relative abun-
dances for piperidine and pyridine alkaloids classes are shown for healthy, UC, and CD
groups (n=19 healthy, n=22 UC, n=38 CD). Median lines are shown; boxes show the in-
terquartile range, with whiskers indicating 1.5x interquartile ranges. D. The total number
of putative metabolites in both significant classes are shown, highlighting the number of
metabolites with putative novel structures not observed in the standards library. E,F. Indi-
vidual metabolite abundance fold changes and statistical significance are shown comparing
the healthy cohort to UC (E) and CD cohort (F). G. Select putative annotated molecule
structures are shown for compounds 15 (isonicotinic acid, HMDB:0060665),16 (triaceton-
amine, HMDB:0031779),17 (piperettine, HMDB:0034371), and 18 (unknown). Spectra 15
and 16 are differentially less abundant for both UC and CD. Novel compounds indicate
those without spectra standards and are labeled brown; compounds with respective stan-
dards are shown in blue. Maximal Tanimoto similarity to any example in the training set
is shown in parentheses. Compound annotations are made using an ensemble of 5 MIST
models, contrastive distance retrieval, and the HMDB and PubChem reference database of
molecules. The top chemical class annotation is found by running the top putative predic-
tion through NPClassifier [101]. P values were computed using independent two-sided t-tests
and adjusted for multiple hypothesis testing with the Benjamini Hochberg method. To have
equal cohort sizes for healthy and diseased patients, UC and CD cohorts were subsetted to
patients with disease severity score > 0.2. Blue scattered points indicate differentially less
abundant compounds or classes; red indicates differentially increased abundance.
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2.2.6 Public data benchmarking for future comparison to MIST
A critical impediment to the development of new models for structural elucidation in metabolomics
has been the lack of community standards for benchmarking algorithms. While competitions
like CASMI [108] provide test set data, they do not specify training datasets. We train a sep-
arate set of MIST variants on a publicly accessible and easily downloaded dataset, providing
future methods developers with the ability to directly compare to MIST on the prediction of
commonplace molecular fingerprints. Using this public dataset, we conduct a more easily re-
produced evaluation and ablation study of MIST on a 8030 spectra (7131 unique compounds)
subset of the GNPS dataset as prepared by Duhrkop et al. [28], [57].

Using this smaller but public dataset, we compare MIST first on the task of fingerprint
prediction to variants of MIST that do not include pairwise neutral loss featurization (“MIST
- pairwise"), use no auxiliary substructure losses (“MIST - MAGMa"), do not train on simu-
lated fingerprints (“MIST - simulated") or use only a feed forward neural network (“FFN").
We make predictions for 4096-bit circular Morgan fingerprints, which are straightforward to
generate using RDKit [109].

As with the larger proprietary dataset, MIST sharply outperforms the FFN model in
terms of cosine similarity and log likelihood (Figure 2.6A,B; Table 2.5). Interestingly, we
find that outside of using the overall Molecular Formula Transformer, fingerprint unfolding
has the largest effect on the performance of cosine similarity (Section 2.5.4). Unlike in the
case of CSI:FingerID fingerprint bit predictions (Table 2.6), pairwise embeddings do not
appear to improve performance of MIST, which may be a function of the limited public
benchmarking dataset size. In further support of dataset limitations, we find that cosine
similarity seems to be improving linearly as a function of dataset size in this regime on both
the public dataset (Figure 2.6C) and the full, partially proprietary dataset (Figure 2.15A).
Additional comparisons to sinusoidal transformer embeddings and different treatments of
peak intensities can be found in the (Section 2.5.6; Table 2.7).

We additionally test model performance on retrieval with various scoring functions includ-
ing the full MIST contrastive function (“MIST contrastive + fingerprint"), only contrastive
distance (“MIST contrastive"), only fingerprint distance (“MIST fingerprint"), contrastive
distance computed with a model that was not pretrained on fingerprint distance (“MIST
contrastive - pretrain"), contrastive distances for a feed forward network (“FFN contrastive")
and fingerprints computed with a FFN model (“FFN fingerprint"). The full MIST retrieval
using a weighted average of contrastive and fingerprint distances performs better than either
distance alone at 30.7% Top 1 accuracy and 75.7% Top-20 accuracy (Figure 2.6E, Table 2.8).

2.3 Discussion

We present a new computational method, MIST, for annotating metabolites in untargeted
metabolomics. The MIST architecture borrows insights from years of statistical analysis
of mass spectra, such as the use of neutral loss fragments and molecular sub-structures as
additional training signals, while remaining sufficiently flexible to adapt to its training data.
Because MIST is completely open source, it is straightforward to substitute any proprietary
mass spectra training data or target fingerprints to train a new model.
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Figure 2.6: Model ablations affirm the value of domain-inspired model compo-
nents. A,B. MIST performance on fingerprint prediction compared to ablated variants
of MIST without pairwise interactions, without MAGMa substructure supervision, using
no simulated spectra, without fingerprint unfolding and using only a feed forward network
(FFN) using metrics of (A) cosine similarity and (B) log likelihood (n=2,438 test spectra).
C,D. MIST fingerprint prediction accuracy improves as a function of dataset size for both
(C) cosine similarity and (D) log likelihood (n=819 test spectra). E. MIST retrieval perfor-
mance using a weighted sum of contrastive and fingerprint distance outperforms contrastive
distance or fingerprint distance alone, a contrastive version of the model without finetun-
ing, a FFN contrastive model, or FFN fingerprints. F. Full MIST contrastive + fingerprint
retrieval accuracy improves with training set size. All results are computed on the public
GNPS subset data released with CANOPUS. Model ablations are conducted with 3 random
splits of the data by molecular structure; dataset ablations are conducted for a single split of
the data. Log likelihood values are clamped to a minimum of �5. Unless otherwise stated,
error bars show 95% confidence intervals for the mean.
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We demonstrate how MIST can be used both for predicting molecular structure finger-
prints and also for learning a meaningful continuous representation, or latent space, with
contrastive learning. We showcase these capabilities by applying them in an integrated
workflow to annotate metabolites from an untargeted metabolomics study of an IBD patient
cohort. Curiously, we document that the improved MIST fingerprint predictions do not lead
to strictly better retrieval performance, potentially due to bias introduced by handcrafted
CSI:FingerID kernels, the ability of SVM-based kernel methods to predict rare fingerprint
bits [110], or other unknown reasons. Increasing our understanding of the retrieval task is
an important avenue for future research.

Along these lines, a key difficulty in mass spectrometry model development is the lack
of well standardized benchmarks, which have been essential to progress in machine learning
tasks. CASMI competitions simultaneously evaluate molecular formula annotation alongside
retrieval annotation, making the impact of modeling decisions difficult to fully deconvolute
from decisions such as the retrieval database. To facilitate future progress in this field,
we provide fully benchmarked model ablations on a small and tractable subset of public
GNPS data for both annotation and fingerprint prediction. Such standards will enable
better comparisons between models across studies.

A limitation of this work is that MIST is highly dependent on proper molecular formula
assignments from MS1 precursor masses. Higher accuracy formula annotations will be syner-
gistic with MIST. In addition, we note that MIST is only trained herein on spectra recorded
in positive mode with proton adducts (i.e., H+), limiting the utility of current trained mod-
els. Future work will explore how to model multiple spectra modes, collision energies, and
incorporate strategies such as pretraining to further improve prediction quality and expand
MIST into a more robust and user-friendly metabolite annotation tool.

MIST provides a competitive neural solution to transform a mass spectrum and pre-
dicted molecular formula to a molecular fingerprint or latent space embedding for structural
elucidation. Just as protein structure prediction has become powered almost completely by
neural network models, we anticipate a similar shift in small molecule structure elucidation
pipelines.

2.4 Methods

2.4.1 MIST architecture
MIST model architecture and features are described below. Full hyperparameter searches
and exact model parameters are described in the Tables 2.11 and 2.12.

Molecular formula inputs. Each fragmentation spectrum, S corresponding to a
ground truth molecule M is parsed from a corresponding ‘.ms’ file and contains a precursor
mass M0(S) for the full compound and a list of Np mass/charge, intensity tuples:

S = [(m1, I1), (m2, I2), . . . (mNp , INp)]

MIST assumes that a user has first determined the molecular formula for the precursor
compound M0(S) and removed adduct information (i.e., using SIRUIS, ZODIAC, or other
tools [50], [111]). MIST then attempts to assign each fragment peak mi a molecular formula
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subset from the precursor formula, filtering out all masses for which this conversion is not
possible. In this work, SIRIUS [50] is used to perform this step but may be replaced with
other approaches. Following formula assignment by SIRIUS, peaks are sorted in order of
decreasing intensity and only the top 60 most intense peaks are considered for molecular
formula labeling.

Formula embedder. Every molecular formula sub-peak is represented as a vector
c 2 R16, where each position in the vector is the integer count of atoms for common elements:
C, N, P, O, S, Si, I, H, Cl, F, Br, B, Se, Fe, Co, and As, each normalized by the maximum
observed atom count of that element in the dataset.

Each formula vector in the spectrum, including the root corresponding to M0(S), is
embedded into a continuous fixed length vector with a shared shallow multi-layer perceptron
(MLP) network:

h0(0)
i = FormulaEmbedder(ci) (2.1)

h0(0)
i = Dropout(ReLU(Wemb

2 Dropout(ReLU(Wemb
1 ci)))) (2.2)

where Wemb
1 2 Rh⇥16 and Wemb

2 2 Rh⇥h are learned parameters. Learned bias terms are
used but omitted for clarity.

Set Transformer. Each embedded formula is concatenated with its relative inten-
sity (normalized to be maximum 1 for each spectrum) as input to the transformer, h(0)

i =

[h0(0)
i ; Ii], where [a; b] denotes a concatenation between vectors/scalars a and b.
A series of multi-headed attention layers [92] as in the transformer neural network archi-

tecture are applied to progressively update the hidden representation at each peak.

h(l+1)
i = MultiheadAttention(h(l)

i , {h(l)
j }) (2.3)

Unlike the original transformer, which uses positional encodings to maintain the ordering
of inputs, we remove positional embeddings to make our model equivariant under permuta-
tions as in the SetTransformer [91]. Thus, each peak formula attends to other formulae in
the spectrum to update its internal representation.

Pairwise attention. The relationship between each peak sub-formula in the spectrum
can be explicitly written as the difference in atom counts between the two peaks. We
incorporate this pairwise relationship into our model using featurized attention [112], [113].

Before entering the pairwise attention module, an all-by-all formula difference is com-
puted for the input spectrum’s sub-formula list, {ci}, to extract and embed these features
using the same FormulaEmbedder module described above. Formula differences are always
positive and formula differences are only included when all differences have the same sign
(i.e., one sub-formula is a superset of another):

fi,j =

8
><

>:

FormulaEmbedder(ci � cj) ci > cj
FormulaEmbedder(cj � ci) ci < cj
FormulaEmbedder(0) otherwise

(2.4)

In the original transformer attention layers, attention is computed as

Kj = Wkh(l)
j , Qi = Wqh(l)

i , Vi = Wvh(l)
i (2.5)
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Ai,j / QiKj (2.6)

h(l+1)
i = Softmax(Ai)V (2.7)

We incorporate attention features by modifying the attention scores to combine formula
embeddings with formula difference embeddings as peak and interaction representations,
respectively:

Ai,j / (Qi + b1)Kj + (Qi + b2)fi,j (2.8)

Here, b1 and b2 are trainable biases and Wk,Wq,Wv are learned weight matrices.
Pooling. After iterating with L layers of multiheaded attention, a final hidden represen-

tation hout for the spectrum S is extracted using the hidden representation hout = h(L)
0 , where

the 0th hidden state corresponds to the precursor mass formula. We empirically find that
using the hidden representation at the precursor mass formula, rather than mean pooling
over all peaks, greatly improves performance.

Loss function. The loss function to train MIST is composed of several different terms
related to target fingerprint prediction (Ltarg), unfolding of fingerprints (Lunfold), and sub-
structure prediction (Lmagma). The relevant secondary terms are weighted by their corre-
sponding hyperparameters �unfold and �magma to derive a loss for the full spectra:

LMIST = Ltarg + �unfoldLunfold + �magmaLmagma (2.9)

Each term is defined in depth below.
MAGMa substructure prediction. In addition to training MIST to predict full spec-

tra fingerprints, we train MIST to predict 512-bit Morgan fingerprints for each labeled for-
mula substructure as an additional training signal to regularize the model. For each training
example composed of spectrum S and molecular structure M, we combinatorially enumerate
possible substructures of M using the MAGMa algorithm to assign putative substructure frag-
ments to peaks in S (Figure 2.13). We compute a Morgan fingerprint qi 2 {0, 1}512 for each
of the ith sub-fragments (peaks) [95]. We learn a separate prediction layer Wmagma

2 R512⇥d

and apply this to the final representation at each sub-peak after the Formula Transformer
layers:

q̂i = �(Wmagmah(L)
i ) (2.10)

where �(·) is the sigmoid activation function.
We derive an auxiliary substructure fingerprint loss from these predictions for all labeled

sub-structures in each spectrum which empirically enhances performance:

Lmagma =
1

|{qi}|

X

i

Lfp(q̂i,qi), (2.11)

where Lmagma is a clipped cosine loss function, Lfp(ŷ,y) = 1 �
ŷ · y

max(kykkŷk, 10�8)
. We

note that the number of magma substructure labels is less than the number of peaks, since
not all peaks have assigned substructures.

Fingerprint prediction by unfolding. The final representation hout
2 Rd is used to

predict the target binary fingerprint describing the molecular structure with dimension D:
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y 2 {0, 1}D. Previous approaches to fingerprint prediction have used simple feedforward
networks from some representation of the spectrum, e.g., ŷ = �(Whout). However, given the
sparsity of our target fingerprint, we instead introduce an unfolding module to progressively
grow the fingerprint by predicting ⌫ folded fingerprint intermediates ŷ(⌫), . . . , ŷ(1), with a
fingerprint loss calculation at each step. We deterministically define the folding function to
establish targets, ỹ(1), . . . , ỹ(⌫), for each intermediate prediction layer, mirroring how hashed
fingerprints like the Morgan fingerprint are folded into fixed-length vectors in the first place:

ỹ(0) = y (2.12)

ỹ(i)
2 {0, 1}b|ỹ

(i�1)|/2c (2.13)

ỹ(i)
k = min(ỹ(i�1)

k + ỹ(i�1)

k+|ỹ(i)|, 1) (2.14)

In doing so, each progressive target halves in length and bits are merged using the modulo
function (i.e., assuming there are K bits in the current fingerprint target, bit k is the 1 if
either bit k or bit k + K is 1 in the previous vector). During model training, the network
learns to invert this procedure such that the previous intermediate is first expanded then
gated using learned weights Wu

i 2 R|ỹ(i)|⇥|ỹ(i+1)|,Wg
i 2 R|ỹ(i)|⇥d,Wu

⌫ 2 R|ỹ(⌫)|⇥d. The lowest
resolution target (ŷ(⌫)) is predicted first and unfolded progressively:

ŷ(⌫) = �[Wu
⌫h

out] (2.15)
ŷ(i) = �[Wu

i ŷ
(i+1)] · �[Wg

ih
out] (2.16)

We define both a final fingerprint loss and unfolding loss corresponding to each layer:

Ltarg = Lfp(ŷ,y) (2.17)

Lunfold =
⌫X

i=1

Lfp(ŷ
(i), ỹ(i)) (2.18)

Forward model simulation. A key insight for MIST is to increase the total number of
spectra in the dataset and, consequently, the diversity of fingerprints predicted. To do this,
we train a “forward" simulator model to predict spectra from candidate molecule fingerprints
similar to Wei et al. [84]. Using the same train and test split as MIST, we learn a model
mapping from the binary fingerprint y to a binned representation of the spectrum, x 2
[0, 1]15000 that contains 15, 000 spectrum intensities from m/z 0 to 1500 with bin spacings of
0.1. The intensity in each bin is normalized to [0, 1] by dividing by the maximum intensity
observed in that spectrum (Figure 2.9A). Following Wei et al., we predict both fragment
intensities and neutral losses and pool these together (Figure 2.9D):

hfwd = MLP(y) (2.19)

zg,j = �(Wohfwd)j, zf,j = �(Wfhfwd)j, zr,My�j = �(Wrhfwd)j (2.20)

x̂ = G(hfwd) = zg · zf + (1� zg) · zr (2.21)

Here, MLP defines a shallow feed forward network transforming the input fingerprint into
a hidden representation. Wf and Wr transform the hidden representation into predictions
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of peaks and losses. Losses are converted into peaks by subtracting each predicted loss bin
from My, the bin of the full molecule mass. Wo transforms the hidden input into a set of
gates to balance the forward and reverse prediction terms, zf and zr.

To further increase the performance of the forward simulator, we use a similar unfold-
ing strategy as utilized in MIST for fingerprint prediction (Figure 2.9C). We apply several
repeated unfolding layers to predict � binned spectra with lower dimensions at each step
x̃(1), x̃(2), . . . , x̃(�). We define these by binning spectra targets with progressively lower reso-
lution:

x̃(0) = x, x̃(i)
2 [0,1]b|x̃

(i�1)|/2c, x̃(i)
j = x̃(i�1)

2j + x̃(i�1)
2j+1 (2.22)

To make predictions, we first predict the lowest resolution x̂(�) = G�(h
fwd), where G� is a

function that combines predictions for both fragment and neutral loss intensity predictions,
defined above. Following our strategy from fingerprint prediction, one strategy would be
to predict the higher resolution spectrum x̂(i) using a linear transformation of the coarser
prediction x̂(i+1). However, given the wide dimensionality, such learned transformations
would have shape W 2 R|x̃(i)|⇥|x̃(i�1)|. This is prohibitive with large bin sizes. Instead,
we alternatively elect to naively expand the representation x̂(i+1) by setting x̂(i)

j = x̂(i+1)
bj/2c

without any additional parameterization. We update this prediction as a function of the
original hidden representation, once again using the same generalized neural network layers
G, defined above, where Gp

i is used to predict x̃(i) as a function of hfwd and Gs
i predicts a

multiplicative factor to weight the expanded prediction vs. the new prediction:

x̂(i)
j = �(Gs

i (h
fwd))jx̂

(i+1)
bj/2c + (1� �(Gs

i (h
fwd))j)�(G

p
i (h

fwd))j (2.23)

Spectra are filtered to include peaks at only the positions for which chemical sub-formula
are labeled and sufficient intensities are observed. Unlike Wei et al., to train this model we
use a binary cross entropy loss for the presence of certain fragments, rather than a cosine
similarity loss to reduce the influence of low intensity peaks [84]. We define a binarized
spectrum x0 = 1(x > 0) and also a weighting factor s(x) = Softmax(x) to enforce that
peaks with higher intensities are weighted more heavily in our loss function:

LBCE(x̂,x) =
1

D

DX

d=1

s(x)d[x
0
d log[(x̂d)] + (1� x0

d) log[1� x̂d]] (2.24)

We apply this BCE loss at each unfolding layer step to get an unfolding loss and final
target loss, weighted by a factor �fwd to define the full forward loss:

Lfwd_targ = LBCE(x̂,x) (2.25)

Lfwd_unfold =
�X

i=1

LBCE(x̂
(i), x̃(i)) (2.26)

Lfwd = �fwdLfwd_targ + (1� �fwd)Lfwd_unfold (2.27)

To verify the utility of the reverse prediction layer and the unfolding layer in the forward
model architecture, we conduct a brief ablation study on the public dataset. We evaluate
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our model by both the fraction of true spectrum peaks each predicted spectrum covers
(“Coverage”) and cosine similarity. We find the full feed forward model outperforms on both
metrics, with coverage of 0.58 vs. 0.56 without unfolding and 0.52 without the reverse layer
(Table 2.10).

After training this model, we make spectra predictions for a randomly sampled set of
biomolecules while excluding the validation and test set molecules to avoid accidentally
biasing our model. We note that in additional experiments, including these molecules in
the augmentation had a surprisingly strong effect in biasing our model toward the true
predictions at test time, highlighting the ease for data leakage to inflate performance in this
setting. For each predicted spectrum, we convert the binned spectrum back to sub-formula
labels using combinatorial enumeration and using a maximum of 50 labeled sub-formulae
with the highest predicted intensity. We use a prediction threshold of 0.2 to call peaks
(Figure 2.9B).

During training, in each epoch we include the entire training set of experimental spectra.
We augment the training set in that batch to include a fraction of 1�freal simulated spectra,
with freal set during hyperparameter optimization, such that experimental spectra only make
up a fraction freal of each epoch.

Spectra noising. To make the model robust to peak shifts, each fragmentation spectrum
is noised using a similar protocol to MetFID [56]. During training, with a pnoise = 0.5
probability any given spectrum is augmented. Peaks within augmented spectra are randomly
selected for either intensity rescaling or removal. Full pseudocode is listed in Section 2.5.7.

2.4.2 Fingerprints
To directly compare against CSI:FingerID, we train models using the custom length 5,496
fingerprints included with SIRIUS as provided by the authors and computed using the Docker
image provided for MSNovelist [61]. For ablation datasets on public data, we use RDKit to
compute 4096-bit circular Morgan fingerprints with radius 2 [109], [114].

2.4.3 SIRIUS software
Throughout this work, we use the SIRIUS [50] software version 4.9.3 for molecular formula
annotation and direct comparison unless explicitly stated otherwise.

2.4.4 Feed forward baseline
We train a feed forward network baseline similar in concept to MetFID that maps binned
spectra to fingerprints [56]. We bin mass values for each spectrum into nbins equally spaced
bins from 0 to 1, 500. nbins is set in hyperparameter optimization. The model is trained
using cosine similarity loss between the predicted fingerprint and the true fingerprint as in
MIST’s architecture.
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2.4.5 Contrastive fine-tuning for database retrieval
After pre-training MIST to predict the true fingerprint y, we extract the model weights used
to produce the hidden representation hout = F (S) and treat this internal representation
as a contrastive space to conduct retrieval, where F defines the pretrained MIST feature
extractor. We learn a separate single layer projection Wc

2 Rd⇥|y| to map fingerprints into
the contrastive space.

We sample a set of ndecoy decoy training fingerprints, y0
1,y

0
2, . . .y

0
ndecoy

for each spectrum
and learn to project these into the latent space such that the true target fingerprint maps
closer to the latent hout than to the decoys. We utilize a softmax contrastive loss inspired
by noise contrastive estimation with temperature parameter ⌧ and cosine similarity func-
tion [99], [115]:

sim✓(S,y) = e⌧scos(F (S),Wcy) (2.28)

LNCE(S, {y,y
0
1, . . .y

0
ndecoy

}) = � log
sim✓(S,y)

sim✓(S,y) +
Pndecoy

n=1 sim✓(S,y0
n)

(2.29)

To sample decoys, we utilize the PubChem database (April 2022) to identify isomers
with high similarity to the ground truth for all spectra in the training set. We calculate the
256 closest examples for each isomer by Tanimoto similarity using Morgan fingerprints with
length 4096 and radius 2. In each batch, these are sampled proportional to an exponential
of their their Tanimoto similarity to the target:

p(y0
i;y) / e⌧sTani(y0

i,y)

Similarity is weighted by an additional temperature factor ⌧s = 4 enforcing that decoys with
high Tanimoto similarity are sampled more often.

We include forward simulated spectra in contrastive fine-tuning as well. Rather than
sample isomeric decoys from PubChem for these simulated examples, we extract decoy fin-
gerprints from the set of all forward simulated molecules to avoid further additional com-
putational complexity. We again sample decoys using Tanimoto similarity for hard negative
mining.

During contrastive learning we train the network using a weighted sum of the contrastive
loss and MIST loss with a hyperparameter �c:

Lcontrastive = �cLNCE + (1� �c)LMIST

2.4.6 Model training
All models are trained with the RAdam [116] optimizer. Learning rate and weight decay
hyperparameters are set for each dataset and detailed in Section 2.5.8. A validation set
containing 5% of the data is excluded from the training set and utilized for early stopping
during training with a patience of 20.
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2.4.7 Retrieval
Fingerprint retrieval. Retrieval results are calculated using the PubChem database (April
2022) unless otherwise stated. For each spectrum, a fingerprint is first predicted. All isomers
matching the spectrum’s molecular formula are rank ordered by cosine similarity between
the isomer fingerprint and the predicted fingerprint. For all ties, the optimistic lower rank
of the tied options is chosen. Ties are broken by selecting the minimum rank.

Bayesian retrieval. CSI:FingerID and SIRIUS internally utilize an adjusted distance,
rather than cosine similarity, that corrects for correlations between fingerprint bits [98].
We utilize rankings calculated with Bayes as provided for CSI:FingerID predictions by the
authors for direct comparison.

Contrastive retrieval. Contrastive retrieval results are computed by projecting finger-
prints and spectra into the same continuous latent space using the trained contrastive model.
We use a cosine distance metric in the latent space to rank isomers as in fingerprint retrieval.
We ensemble contrastive distance and fingerprint distances with hyperparameter �r = 0.3,
controlling the relative weights of fingerprint distance dfp(S,M) and contrastive distance
dc(S,M): d(S,M) = �rdfp(S,M)+(1��r)dc(S,M). This parameter was manually tuned
on a single data fold.

2.4.8 Training datasets
CSI:FingerID NIST comparison. We directly compare against CSI:FingerID using an
[M+H]+ adduct dataset compiled from public data sources including the GNPS, MONA,
and NIST20 [28]. This dataset has a total of 31145 spectra and 27797 unique compounds.
We use cross validation, training on 3 independent structure-disjoint splits of the data as
computed and provided by the CSI:FingerID authors [53]. The structure-disjoint dataset
ensures that no two molecules with the same 2D InChiKey will be split across different folds,
but does not restrict maximal Tanimoto similarity across splits. An in depth discussion of
data splits can be found in Section 2.5.3.

GNPS CANOPUS benchmark. We utilize a public subset of the data including
spectra pulled from the GNPS and MONA. This dataset is further filtered to [M+H]+ spectra
and contains a total of 8, 030 spectra and 7, 131 unique compounds. We create structure-
disjoint splits as above (i.e., unique at the level of 2D InChiKeys) of this dataset using varying
fractions of the dataset in the training set, 0.2, 0.4, 0.6, 0.8. For each of these settings, 5%
of the training set is randomly sampled and set aside for validation to perform early model
stopping. This dataset is freely available and provided with the CANOPUS software tool [57].

Biomolecules. For forward simulation, we use biomolecules extracted from KEGG,
KNAPSAcK, HMDB, and others [117]–[119], again prepared by Duhrkop et al. [57]. This
dataset is only provided with InChIKey values, which cannot be mapped to molecular struc-
tures in the absence of a database lookup. We query PubChem to assign structural identities
for a total of 997, 554 unique structures. We randomly sample this dataset to include 300,000
molecules (10x the full training dataset). Further, in each split, we exclude any molecules
also appearing in the test and validation sets.

Compound retrieval libraries. PubChem was downloaded in its entirety [58] in
April 2022 in order to build retrieval HDF5 files for chemical isomers. Comparisons to
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CSI:FingerID using PubChem as a retrieval library were made using a version of the Pub-
Chem database provided by the CSI:FingerID authors at the same time. HMDB 5.0 [59]
was similarly downloaded.

2.4.9 Clinical data reanalysis
Stool metabolite samples were previously collected by Mills et al. [102]. Metabolomic data
was accessed under MassIVE accession number MSV000084908, including patient metadata
at MSV000086509. Mass spectrometry data was extracted and converted into relative abun-
dance tables and MS2 metabolite files using MZMine 3 [120] to be used by SIRIUS (molecular
formulae identification) and MIST (structure elucidation). MZMine 3 parameters were set
as specified by Mills et al., and an MS2 ppm tolerance of 10 was used for SIRIUS to identify
molecular formulae.

MIST annotations were made using ensembles of 5 models. Structural annotations were
first retrieved from the HMDB compound library; for all spectra without isomers in HMDB
(i.e., no molecules in HMDB share the putative molecular formula), PubChem was utilized
as a compound library for annotations.

Correlation coefficients with disease severity were computed within UC and CD co-
horts for all patients that were assigned disease activity levels. Healthy-UC and healthy-
CD comparisons were computed using independent two sided t-tests and adjusted with the
Benjamini-Hochberg method. To utilize more equal sized cohort comparisons, UC and CD
were subsetted to include patients with disease severity > 0.2 down to 40 and 22 patients
respectively when comparing to healthy control groups.

2.4.10 Chemical classifications
NPClassifier [101] version 1.5 was used to produce chemical classifications of each compound.
We query the public and easily accessed GNPS web server endpoint [28] and extract the
superclass definition for chemical classification. Compounds with no predicted annotation
are labeled as “Unknown."

2.4.11 Latent distance comparisons
Spectra are projected into a shared spectrum-structure latent space using the fine-tuned
contrastive MIST model. To assess the extent to which spectral similarity accurately reflects
structural (Tanimoto) similarity, we repeat analyses from Spec2Vec [81] within a single
fold of test data. We calculate all pairwise spectral similarities using cosine similarity and
sort from highest to lowest similarity. At each threshold, we compute the average Tanimoto
structural similarity. We compare to an arbitrary theoretical upper bound if paired spectra
were sorted by Tanimoto similarity directly.

Spec2Vec. A pretrained Spec2Vec version 0.8.0 [81] model is downloaded and directly
used to embed all spectra into latent space. We repeat the same analysis above using Cosine
similarity in Spec2Vec latent space.

MS2DeepScore. The pretrained MS2DeepScore version 0.4.0 [82] model is similarly
downloaded and directly used to embed all spectra into latent space before computing cosine
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distances.
Modified cosine similarity. Modified cosine similarity [70] is computed between

spectra themselves using the MatchMS Python library [100] version 0.17.0.
UMAP computation UMAPs for projected compounds are computed using the UMAP

Python package applied to latent contrastive spectra embeddings in the test set [121].

2.4.12 Code and data availability
Public data used for benchmarking MIST models as processed by Duhrkop et al. [57] can
be downloaded alongside our code with full directions included at https://github.com/
samgoldman97/mist. Data for NIST and head-to-head CSI comparisons is unavailable due
to strict licensing rules around the NIST20 [63] dataset. Data to repeat the retrospective
study and reanalysis of IBD data can be retrieved from the MassIVE database at acces-
sions MSV000084908 (raw data) and MSV000086509 (cohort info) and via Zenodo Record
8084088. PubChem (April 2022) and HMDB 5.0 data libraries used for compound retrieval
are publicly accessible with exact details for reproduction described alongside released code.

All code to replicate experiments, train new models, and load pre-trained models is
available at https://github.com/samgoldman97/mist.

2.5 Additional Results

2.5.1 Additional model details
Unfolding layers. Novel unfolding modules are introduced in MIST to progressively grow
the fingerprint prediction. Target fingerprints are compressed using modulo operations to
derive “lower resolution" targets. These lower dimensional vectors inherently have collisions
for properties. That is, rather than each bit indicating the presence of a single property or
motif, each bit represents the presence of one of several properties (Figure 2.7).

Binned feed forward baselines. A simple feed forward network inspired by MetFID
is utilized as a baseline (Figure 2.8) [56].

2.5.2 CSI:FingerID annotations for Mills et al. cohort
In Section 2.2.5, we conduct a prospective analysis to showcase how MIST can be used
with real world data. To evaluate the reasonableness of our annotations against the existing
tool, SIRIUS and CSI:FingerID [50], we repeat the annotation process with these tools.
Concretely, we use an equivalent MGF spectrum extraction process and pass this into SIRIUS
Version 5.6.3 for end-to-end formula, fingerprint, and structure annotation. We use SIRIUS
Version 5.6.3 as SIRIUS Version 4.9 was deprecated during the course of this work.

We constrain the compound search to the HMDB database [117] to match our MIST
pipeline. SIRIUS 5 stalled out and failed on the full MGF file including larger compounds;
correspondence with the authors revealed that larger fragmentation trees can lead to memory
errors. As such, we subsetted the dataset to feature only the 1,515 spectra with precursor ions
under 500 Da. 545 compounds were annotated with structures, of which 342 had equivalent
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Figure 2.8: Feed forward network binned spectra baseline. An input spectrum is
binned, a multilayer perceptron (MLP) is applied, and the output is projected to a fingerprint
prediction.

molecular formulae to those we extracted with SIRIUS 4.9 earlier. From this set, MIST
predicted equivalent InChIKeys on 58% of the spectra; a random selection from HMDB
isomers matched SIRIUS on 32%. We include a full table showing drop-off at each step in
the processing pipeline (Table 2.1).

Surprisingly, we observe in this workflow that the molecular formulae of compounds pre-
dicted by SIRIUS are different from molecular formulae we exported from SIRIUS as inputs
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Figure 2.9: Forward simulation of spectra from molecules. A. An input spectrum,
molecule pair is first denoised and cleaned by labeling chemical sub-formulae. This is con-
verted into a binned spectra representation. B. To generate new model training examples,
molecules are fingerprinted, binned spectra predictions are predicted by a neural network,
and sub-formula are assigned to each of the bins such that the spectra can be used as input
to MIST. C. The forward simulation neural architecture utilizes unfolding layers. A mul-
tilayer perceptron (MLP) projects the molecular fingerprint into a hidden representational
space. Forward-reverse models, G, are used to progressively grow the binned prediction such
that resolution increases at each step, similar to unfolding layers. D. Illustration of the
forward-reverse module, where intensities (zf ) and neutral losses (zr) are predicted. Neutral
losses are reversed and mapped onto intensity bins using the full mass as input then summed
according to a learned gate to get a single prediction of intensities in each bin.

to MIST. This is due to SIRIUS re-ranking molecular formulae during the compound retrieval
phase of their pipeline. Testing this, we run SIRIUS again with PubChem as a database
retrieval and find that of the 1,355 compounds that are annotated with molecular formu-
lae in the initial step, only 625 of these have the same molecular formulae after compound
retrieval.

To probe the robustness of our findings at the chemical class level, we repeat the MIST
processing pipeline with two changes: (1) we utilize 640 spectra and formula annotations
from the final step of SIRIUS’s pipeline, after re-ranking during retrieval from PubChem
and (2) utilize PubChem as a retrieval database. Under this analysis, we find 162 of the 640
spectra have equivalent annotations under SIRIUS and MIST, a greater than 25% agreement
even when searching the much larger PubChem database.

Using the resulting 640 revised annotations outputted from MIST, we repeat our prospec-
tive IBD analysis pipeline and find that dipeptides are still one of the most correlated classes
with disease severity (Figure 2.10). Further, when looking for differential abundance, we see
that piperidine and pyridine alkaloids, are still differentially abundant in CD patients (Figure
2.11). These class level differences are no longer present for UC patients. This discordance

73



emphasizes that automated annotation pipelines are not yet robust to changes in processing
parameters such as spectrum preprocessing, formula annotations, fingerprint prediction, and
retrieval library selection.

In the future, moving beyond fragmentation tree based predictions for formula annota-
tion will enable efficient annotation of larger compounds. Improving automated molecular
formula annotation and database retrieval library construction will similarly lead to higher
quality and more consistent annotations.

Table 2.1: Comparison of SIRIUS and MIST for annotating IBD cohort data.

Total spectra
MIST Pipeline 1,990
SIRIUS Pipeline (< 500 Da) 1,515
MIST identifies a structure in HMDB 705
SIRIUS identifies a structure in HMDB 724
SIRIUS and MIST both identify a structure in HMDB 545
SIRIUS and MIST annotate compounds with equiv. formula 342
SIRIUS and MIST find same InChIKey 200
SIRIUS and Random-HMDB find same InChIKey 110

2.5.3 Dataset splits
For both the proprietary NIST data and public benchmarking data, care is taken to ensure
that no two molecules with the same InChIKey appear across separate dataset split folds.
We can quantify and demonstrate this effect by computing the nearest neighbor compound
(according to Tanimoto similarity) in the training set for all molecules in the dataset. By
plotting the distributions of the “maximum similarity neighbor” for both datasets, we can
see that the training set features equivalent molecules (i.e., a neighbor with similarity 1.0)
with a distribution mean of 0.69 and 0.71 Tanimoto similarity across the private and public
datasets. In comparison, the test set distributions are more normal with means of 0.63 and
0.66 across the two datasets respectively (Figure 2.12).

2.5.4 Unfolding layer ablation
MIST contains unfolding layers for fingerprint prediction. We find that this leads to im-
proved performance via an ablation study. In our ablation study, we replace the unfolding
module with a single linear layer output to predict fingerprints. To verify that the unfolding
mechanism (rather than just more layers) is driving performance, we add a shallow 3 layer
FFN to the top of the MIST - unfolding model to match the 4 unfolding layers in the Unfold-
ing module, yielding a total of 15.1M parameters vs. 3.1M parameters for MIST and 2.8M
parameters for MIST - unfolding. We differentiate the two MIST ablation models as “MIST -
unfolding (linear)” and “MIST - unfolding (FFN)” respectively. To avoid high computational
cost of additional model features, we train these models without the auxiliary MAGMa loss
and without simulated spectra. As can be seen in Table 2.2, we find that without unfolding,
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Figure 2.10: Repeated analysis of clinically relevant dipeptides with the PubChem
retrieval library. A. Metabolite classes ranked by their Pearson correlation with IBD dis-
ease severity. All putative metabolites are assigned disease classes with NPClassifier [101]
and relative abundances are summed across classes. Within the ulcerative colitis (UC) and
Crohn’s disease (CD) cohorts, metabolite classes are correlated with disease severity and
sorted according to their correlation with UC (top 20 shown; each computed for n=60 pa-
tients with UC, n=102 CD patients). Error bars indicate 95% confidence intervals around
the mean. B. Dipeptide relative abundances for each patient are plotted against disease
severity within the healthy (n=19), UC, and CD cohorts. Dipeptides correlate with dis-
ease severity for UC patients (R2 = 0.20, p = 0.02, two-sided the Wald test, adjusted with
Benjamini-Hochberg) as observed by Mills et al. [102]. In the left boxplot, the data median
line is shown; boxes show the interquartile range, with whiskers indicating 1.5x interquartile
ranges. Regression lines are shown with 95% confidence intervals computed with bootstrap-
ping. C. Within the dipeptide class, the distribution of individual metabolite correlations
are shown for both UC and CD cohorts. Compound annotations are made using an ensem-
ble of 5 MIST models, contrastive distance retrieval, and PubChem reference databases of
molecules. Input spectra are subsetted to be under 500 Da, have [M+H]+ adducts, and uti-
lize molecular formula as output by CSI:FingerID at the end of the compound identification
step.
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Figure 2.11: Reanalyzing putative metabolite class differences between healthy
and diseased IBD cohorts using the PubChem database. A,B. Putative metabo-
lite classes from the Mills et al. cohort [102] are scattered showing their fold change and
respective p value comparing and ulcerative colitis (UC) (A) and Crohn’s disease (CD) (B)
cohorts to the healthy cohort. P values were computed using independent two-sided t-tests
and adjusted for multiple hypothesis testing with the Benjamini Hochberg method. To have
equal cohort sizes for healthy and diseased patients, UC and CD cohorts were subsetted
to patients with disease severity score > 0.2. Blue scattered points indicate differentially
less abundant compounds or classes; red indicates differentially increased abundance. C.
Distributions of patients’ relative abundances for piperidine and pyridine alkaloid classes are
shown for healthy (n=19), UC (n=22), and CD (n=38) groups. Median lines are shown;
boxes show the interquartile range, with whiskers indicating 1.5x interquartile ranges. All
compound annotations are made using an ensemble of 5 MIST models, contrastive distance
retrieval, and the PubChem reference database of molecules. The top chemical class anno-
tation is found by running the top putative prediction through NPClassifier [101]. Input
spectra are subsetted to be under 500 Da, have [M+H]+ adducts, and utilize molecular for-
mula as output by CSI:FingerID at the end of the compound identification step.

the linear and FFN output models are capable of achieving 0.6701 and 0.6617 cosine simi-
larity vs. 0.6818 from the unfolding model. This validates the improvements offered by the
unfolding layer.

2.5.5 MAGMa substructure labels
The MAGMa algorithm is used to take pairs of (molecule, spectrum) from the trained dataset
and attribute molecule substructures to MS2 peaks [95]. In brief, the algorithm works by
progressively removing atoms from the original structure to create substructures. Each time
an atom is removed, the resulting subfragments are given a tolerance of ±H to account for
hydrogen rearrangements. We highlight several spectra from the public GNPS dataset to
illustrate this substructure labeling (Figure 2.13B-D).

76



0.2 0.4 0.6 0.8 1.0

Max Similarity to Train

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

Train
Test

0.2 0.4 0.6 0.8 1.0

Max Similarity to Train

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

Train
Test

GNPS Subset Dataset CSI Private DatasetA B

Figure 2.12: Dataset split similarity. Distribution plot of the most similar molecule in
the training set according to Tanimoto similarity for molecules in the train and molecules in
the test sets. Distributions are computed on the public GNPS CANOPUS dataset (A.) and
private proprietary CSI dataset (B.).

Table 2.2: Fingerprint prediction accuracy on CANOPUS GNPS subset dataset
for MIST top model variations trained. All models are trained without any auxiliary
MAGMa loss and without any simulated spectra added to the training set. “MIST - unfolding
(linear)” indicates a model without unfolding layers featuring only a single linear layer to
predict fingerprint outputs. “MIST - unfolding (FFN)” indicates a MIST model trained
without unfolding layers, but instead using a dense feedforward network of 3 layers. Each
experiment was conducted on a single split of the data. Results are shown ± the standard
error of the mean.

Model Cosine similarity Log likelihood
MIST 0.6818± 0.0066 �0.0248± 0.0005
MIST - unfolding (linear) 0.6701± 0.0061 �0.0250± 0.0005
MIST - unfolding (FFN) 0.6617± 0.0063 �0.0255± 0.0005

2.5.6 Alternative transformer baselines
Contemporaneously with this work, ref. [83] have proposed to utilize a Transformer archi-
tecture applied to m/z values. In their architecture, m/z values are first transformed into
frequency encodings using a sinusoidal embedding, inspired by the original positional encod-
ings of the Transformer architecture [92]. Because the code is not available at the time of
this work, we develop our own in-house implementation of this approach and hyperparameter
optimize model parameters on our public-domain dataset, settling upon a 256 hidden size,
4 transformer layers, 0.3 dropout, 0 weight decay, and 0.0002 learning rate.

We find that in our data regime, the multi-scale Transformer performs equivalently to
the FFN baseline, as shown in Table 2.5. We hypothesize that this is due to the relatively
small amount of data in our training set compared to the original authors and also the lack
of explicit information about neutral loss relationships between peaks.
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Figure 2.13: Labeling data substructures. A. MIST is trained to build representations
of each peak in the spectrum. The model uses the precursor peak representation to predict
a fingerprint of the full molecule, and when substructures can be labeled for other peaks, the
model learns to predict these as well. B-D. Example substructure peak labels in the training
set computed with MAGMa. The full compound is outlined in red. Other substructures for
the top 6 highest intensity peaks are outlined in black.

2.5.7 Spectra noising
To increase generality as in MetFID [56], we introduce an algorithm to stochastically add
noise to input training spectra (Algorithm 2.5.1). Spectra are selected for augmentation with
a 50% probability. For each spectrum selected for augmentation, we define two augmentation
operations: remove, in which a peak is fully removed, and intensity, in which a peak’s
intensity is multiplied by a randomly sampled scalar value si ⇠ N (1, 1), truncated to a
minimum of 0. The probability of removing each peak, pj is proportional to its intensity
value to ensure high intensity peaks are less likely to be removed:

pj(remove) = 1� pj(keep), pj(keep) / exp[Ij] (2.30)

For each noised spectrum, we sample the number of peaks to remove from a binomial
distribution with premove = 0.5 and we sample a second binomial distribution for the number
of peaks to rescale with probability pintensity = 0.1.
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Algorithm 2.5.1: Noising a training spectrum
Data: S . Example spectrum

Result: Noised version of S
peaks |S| . Get the number of peaks

I  get_intens(S) . Get all intensities

if rnd() � 0.5 then
num_remove  Binomial(peaks, 0.5)
num_rescale  Binomial(peaks, 0.1)
for j 2 S do

modify_probsj  exp(Ij)
remove_inds  Sample(peaks, num_remove, modify_probs)
rescale_inds  Sample(peaks, num_rescale, modify_probs)
S  remove_peaks(S, remove_inds)
S  rescale_peaks(S, rescale_inds)

2.5.8 Hyperparameter optimization
The tree-structured Parzen estimator hyperparameter search algorithm [122] as implemented
by Optuna [123] was used to identify the best set of hyperparameters for each model. Hyper-
parameters were optimized once to maximize performance on a single validation split of the
data, excluding auxilary loss terms. RayTune [124] was used to enable efficient paralleliza-
tion across 3 RTX 3090 GPUs and a HyperBand scheduler was used to prune unpromising
hyperparameters for efficiency. We ensured the same compute resources were available for
tuning our models and each of the baselines and therefore capped resources at 100 trials on
3 GPUs. We conducted two separate hyperparameter sweeps to identify model parameters
best for predicting fingerprints from CSI:FingerID (NIST dataset) and also the Morgan 4096
bit fingerprints (CANOPUS benchmark dataset). Parameters are described in Table 2.11
and Table 2.12.

Table 2.3: Full performance metrics for CSI:FingerID, FFN, MIST, and a MIST
ensemble of 5 models are shown averaged across 3 structural splits of the data.
Log likelihoods are clamped such that they have a minimum of �5. Results are shown ±

standard error with an arbitrary number of significant figures.

Tanimoto similarity
(spectra)

Cosine similarity
(spectra)

Log likelihood
(spectra)

Log likelihood
(bits)

CSI:FingerID 0.7382± 0.0011 0.8759± 0.0006 �0.0352± 0.0002 �0.0352± 0.0008
FFN 0.5108± 0.0012 0.7418± 0.0009 �0.0710± 0.0003 �0.0710± 0.0016
MIST 0.7475± 0.0012 0.8774± 0.0007 �0.0345± 0.0002 �0.0345± 0.0007
MIST (5x) 0.7629± 0.0012 0.8892± 0.0006 �0.0309± 0.0002 �0.0309± 0.0007
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Figure 2.14: Single MIST model comparison to CSI:FingerID. Molecular fingerprints
are predicted by MIST and CSI:FingerID for every spectrum in the test set using a single
MIST model as in Figure 2. The performance for each spectrum by cosine similarity to the
true fingerprint (A) or log likelihood (B) is evaluated and plotted. Points below the line
represent instances where MIST is more performant. C. Equivalent evaluation showing the
likelihood of predicting each fingerprint bit correctly across all spectra. D. The performance
of CSI:FingerID, MIST, and FFN, a baseline inspired by MetFID, are shown. “Tanimoto,"
“Cosine," and “Log likelihood (spectra)" indicate performance across spectra and “Log like-
lihood (bits)" indicates performance across bits (higher is better). Median lines are shown;
boxes show the interquartile range, with whiskers indicating 1.5x interquartile ranges. Statis-
tics are pooled across n = 18, 700 test spectra (tanimoto, cosine, and spectra log likelihood)
and n = 5, 496 fingerprint bits (bit log likelihood). All results are aggregated across 3 splits
of the data.

Table 2.4: Full retrieval accuracy performance metrics for CSI:FingerID, FFN,
MIST, and a MIST ensemble of 5 models are shown averaged across 3 structural
splits of the data.

Top 1(%) Top 5(%) Top 10(%) Top 20(%) Top 50(%) Top 100(%) Top 200(%)
CSI:FingerID + Cosine 38.24 68.88 77.07 83.20 89.12 92.23 94.76
CSI:FingerID + Bayes 43.00 74.77 82.15 87.23 91.70 94.13 96.00
MIST + Cosine 29.72 59.56 69.26 73.60 84.10 88.13 91.84
MIST + Contrastive 34.45 69.28 79.04 85.75 91.63 94.56 96.49
MIST (5x) + Cosine 31.70 62.85 72.33 79.05 85.92 89.76 93.00
MIST (5x) + Contrastive 37.39 72.90 82.03 88.20 93.32 95.75 97.40
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Figure 2.15: Dataset ablations on the CSI2022 dataset validate that model perfor-
mance is limited by data set size. MIST fingerprint prediction accuracy improves as a
function of dataset size in terms of both (A) cosine similarity and (B) log likelihood. Model
performance is computed on the partially proprietary CSI2022 dataset. Dataset ablations
are conducted for a single split of the data. Log likelihood values are clamped to a minimum
of �5. Error bars show 95% confidence intervals for the mean (n=3,116 test spectra). For
this ablation, MIST models are trained without simulated data and without MAGMa aux-
iliary loss to reduce model training time.

Table 2.5: Full fingerprint prediction accuracy on CANOPUS GNPS subset
dataset for various model ablations. All model performances are computed on a merged
dataset of fingerprint predictions computed for 3 independent random structural split hold
outs of the CANOPUS dataset. FFN: Feed forward neural network. Transformer: A partial
reimplementation of [83]. Results are shown plus or minus the standard error of the mean.

Model Cosine similarity Log likelihood
FFN 0.5368± 0.0042 �0.0344± 0.0004
Transformer [83] 0.5267± 0.0039 �0.0333± 0.0003
MIST - unfolding 0.6796± 0.0035 �0.0244± 0.0003
MIST - simulated 0.6880± 0.0038 �0.0248± 0.0003
MIST - MAGMa 0.6907± 0.0038 �0.0228± 0.0003
MIST - pairwise 0.6963± 0.0037 �0.0232± 0.0003
MIST 0.6953± 0.0037 �0.0236± 0.0003

81



Table 2.6: Fingerprint prediction accuracy on primary CSI2022 dataset to com-
pare models with and without pairwise featurizations. Model performance values
are computed on a merged dataset of fingerprint predictions computed for 3 independent
random structural split test sets. All MIST models described were trained without simu-
lated data or MAGMa auxiliary loss features for quicker model runs. Log likelihoods are
clamped such that they have a minimum of -5. Results are shown ± standard error with an
arbitrary number of significant figures.

Model Cosine similarity Log likelihood
MIST + pairwise 0.8693 ± 0.0007 -0.0368 ± 0.0002
MIST - pairwise 0.8688 ± 0.0008 -0.0369 ± 0.0002

Table 2.7: Fingerprint prediction accuracy on CANOPUS GNPS subset dataset
for MIST models with various featurizations of peak intensities. All models are
trained without any auxiliary MAGMa loss and without any simulated spectra added to
the training set. “MIST + float intensity” indicates a concatenation of a single floating
point value of intensity between 0 and 1; “MIST + float intensity & pooling” indicates a
concatenation of a floating point intensity and selective intensity-weighted pooling of hidden
states in the transformer; “MIST + log intensity” indicates a concatenation of a single log-
transformed intensity value; “MIST + cat. intensity” indicates a concatenation of a one-hot
vector of intensity transformed into one of 10 evenly spaced categorical bins; “MIST + zero
intensity” indicates a concatenation of a constant float of zero rather than the true intensity.
Each experiment was conducted on a single split of the data and average results are shown
± the standard error of the mean.

Model Cosine similarity Log likelihood
MIST + float intensity 0.6818± 0.0066 �0.0248± 0.0005
MIST + float intensity & pooling 0.6775± 0.0063 �0.0262± 0.0005
MIST + log intensity 0.6743± 0.0065 �0.0264± 0.0005
MIST + cat. intensity 0.6743± 0.0066 �0.0252± 0.0005
MIST + zero intensity 0.6726± 0.0063 �0.02707± 0.0005

Table 2.8: Full retrieval accuracy on CANOPUS GNPS subset dataset for vari-
ous model ablations. All model performance values are computed on a merged dataset
of retrieval predictions computed for 3 independent random structural splits of 3 random
structural splits of the CANOPUS dataset. FFN: Feed forward neural network.

Top 1(%) Top 5(%) Top 10(%) Top 20(%) Top 50(%) Top 100(%) Top 200(%)
FFN fingerprint 17.309 37.121 45.611 54.634 63.946 71.329 77.359
FFN contrastive 20.632 44.996 54.389 63.536 75.062 80.558 86.095
MIST contrastive - pretrain 24.774 50.656 60.624 68.827 78.384 83.593 88.146
MIST contrastive 28.384 55.373 65.217 72.970 81.255 85.480 89.377
MIST fingerprint 29.368 55.332 63.536 72.231 80.476 85.726 89.418
MIST contrastive + fingerprint 30.703 58.120 68.927 75.709 84.094 87.916 92.355
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Table 2.9: Average molecular similarity between spectra pairs with the 0.1% high-
est similarity according to the specified distance function.

Method Average Tanimoto Similarity
Upper bound 0.451
MIST 0.324
MS2DeepScore [82] 0.219
Spec2Vec [81] 0.186
Modified Cosine [100] 0.133
Random 0.076

Table 2.10: Forward model ablations demonstrate the utility of unfolding and
reverse mass predictions. Three variants of the forward simulation model are trained on
a single split of the public GNPS dataset: “FFN” (full model), “FFN - unfolding” (full model
a single linear layer to map to the 15,000 dimension output), and “FFN - reverse” (full model
without predicting mass differences as in [84]). The average cosine similarity and coverage
(i.e., fraction of overlapping peaks between the top 100 predicted peaks and ground truth
spectra) between the binned spectra and true spectra are shown. Values are plotted ± the
standard error of the mean.

Model Cosine similarity Coverage
FFN 0.3839± 0.0056 0.5815± 0.0086
FFN - unfolding 0.3502± 0.0058 0.5555± 0.0088
FFN - reverse 0.2583± 0.0058 0.5160± 0.0088
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Table 2.11: Model hyperparameters searched and set for CSI fingerprint predic-
tion.

Model Parameter Grid Value

Forward learning rate [1e� 4, 1e� 3] 0.00086
scheduler [True, False] False
learning rate decay [0.7, 0.999] -
dropout {0.1, 0.2, 0.3} 0.2
hidden size, d {64, 128, 256, 512} 512
layers, l {1, 2, 3} 2
unfolding [True, False] True
unfolding layers, � [1, 2, 3, 4] 3
unfolding weight, �fwd [1e� 4, 1] 0.003
batch size - 64

FFN learning rate [1e� 5, 1e� 3] 0.00087
scheduler [True, False] False
learning rate decay [0.7, 0.999] -
dropout {0.1, 0.2, 0.3} 0.0
hidden size, d {64, 128, 256, 512} 512
layers, l {1, 2, 3} 2
spectra bins [1000, 2000, . . . 15000] 11000
batch size - 64

MIST learning rate [1e� 5, 1e� 3] 0.00026
scheduler [True, False] True
weight decay {1e� 6, 1e� 7, 0} 1e� 7
learning rate decay [0.7, 0.999] 0.97
dropout {0.1, 0.2, 0.3} 0.1
hidden size, d {64, 128, 256, 512} 256
layers, l {1, 2, 3, 4, 5} 3
fraction real data freal {0.1, 0.2, . . . , 1.0} 0.5
unfolding layers, ⌫ {1, 2, 3, 4, 5} 5
unfolding loss weight, �unfold {0.1, 0.2, . . . , 1.0} 0.6
magma loss weight, �magma {1, 2, . . . , 15} 2
probability noised spectrum, pnoise - 0.5
probability remove peak, premove - 0.5
probability rescale peak, pintensity - 0.1
batch size - 128

Contrastive learning rate [1e� 5, 1e� 3] 6e� 5
scheduler [True, False] True
weight decay {1e� 6, 1e� 7, 0} 0
learning rate decay [0.7, 0.999] 0.801
contrastive weight, �c {0.1, 0.2, . . . , 1.0} 0.6
fraction real data freal {0.1, 0.2, . . . , 1.0} 0.5
probability noised spectrum, pnoise - 0.5
probability remove peak, premove - 0.5
probability rescale peak, pintensity - 0.1
batch size - 32
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Table 2.12: Model hyperparameters searched and set for Morgan fingerprint pre-
diction.

Model Parameter Grid Value

Forward learning rate [1e� 4, 1e� 3] 0.00054
scheduler [True, False] False
learning rate decay [0.7, 0.999] -
dropout {0.1, 0.2, 0.3} 0.3
hidden size, d {64, 128, 256, 512} 512
layers, l {1, 2, 3} 2
unfolding [True, False] True
unfolding layers, � [1, 2, 3, 4] 3
unfolding weight, �fwd [1e� 4, 1] 0.0016
batch size - 64

FFN learning rate [1e� 5, 1e� 3] 0.00087
scheduler [True, False] False
learning rate decay [0.7, 0.999] -
dropout {0.1, 0.2, 0.3} 0.3
hidden size, d {64, 128, 256, 512} 512
layers, l {1, 2, 3} 2
spectra bins [1000, 2000, . . . 15000] 11000
batch size - 64

MIST learning rate [1e� 5, 1e� 3] 0.00077
scheduler [True, False] False
weight decay {1e� 6, 1e� 7, 0} 1e� 7
learning rate decay [0.7, 0.999] -
dropout {0.1, 0.2, 0.3} 0.1
hidden size, d {64, 128, 256, 512} 256
layers, l {1, 2, 3, 4, 5} 2
fraction real data freal {0.1, 0.2, . . . , 1.0} 0.6
unfolding layers, ⌫ {1, 2, 3, 4, 5} 4
unfolding loss weight, �unfold {0.1, 0.2, . . . , 1.0} 0.4
magma loss weight, �magma {1, 2, . . . , 15} 8
probability noised spectrum, pnoise - 0.5
probability remove peak, premove - 0.5
probability rescale peak, pintensity - 0.1
batch size - 128

Contrastive learning rate [1e� 5, 1e� 3] 0.00057
scheduler [True, False] True
weight decay {1e� 6, 1e� 7, 0} 1e� 7
learning rate decay (10k steps) [0.7, 0.999] 0.74
contrastive weight, �c {0.1, 0.2, . . . , 1.0} 0.6
fraction real data freal {0.1, 0.2, . . . , 1.0} 0.2
probability noised spectrum, pnoise - 0.5
probability remove peak, premove - 0.5
probability rescale peak, pintensity - 0.1
batch size - 32
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Molecule 1
Tanimoto Sim: 0.76

Example Molecule

Example: O=C(O)C1CCN(C(COC2=CC3=C(C4=CC=CC=C4C(O3)=O)C=C2)=O)CC1
Neighbor: CC1=C(C(=O)OC2=C1C=CC(=C2)OCC(=O)N3CCC(CC3)C(=O)O)C

Nearest Training Molecule

Molecule 2
Tanimoto Sim: 0.82

Example: COC1=C(OC)C(OC)=C(/C=C2C(C3=C(C=C(OCC(N4CCC(C(O)=O)CC4)=O)C=C3)O\2)=O)C=C1
Neighbor: COC1=CC(=C(C=C1)OC)C=C2C(=O)C3=C(O2)C=C(C=C3)OCC(=O)N4CCC(CC4)C(=O)O

Molecule 3
Tanimoto Sim: 0.67

Example: CCOC(C(NC(COC1=CC=C(Br)C=C1)=O)CC2=CNC3=CC=CC=C32)=O
Neighbor: COC1=CC=C(C=C1)OCC(=O)NC(CC2=CNC3=CC=CC=C32)C(=O)O

Molecule 4
Tanimoto Sim: 0.61

Example: CC1=C(C(NC(C(O)=O)CC2=CNC3=CC=CC=C32)=O)C=C(C4=CC=CC=C4)O1
Neighbor: CC(=O)NC(CC1=CNC2=CC=CC=C21)C(=O)O

Figure 2.16: Example molecules and their training precedents for Figure 2.3. Each
molecule is shown along side its nearest neighbor in the training set, with its Tanimoto
similarity listed.
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Example Molecule Nearest Training Molecule Example Molecule Nearest Training Molecule

Molecule 5
Tanimoto Sim: 1.00

Example: CC(C(C(NC(C(O)C)C(O)=O)=O)N)C
Neighbor: CC(C)C(C(=O)NC(C(C)O)C(=O)O)N

Molecule 6
Tanimoto Sim: 1.00

Example: CCC(C(C(NC(C(O)C)C(O)=O)=O)N)C
Neighbor: CCC(C)C(C(=O)NC(C(C)O)C(=O)O)N

Molecule 7
Tanimoto Sim: 1.00

Example: CCC(C(N)C(NC(C(O)=O)CC(N)=O)=O)C
Neighbor: CCC(C)C(C(=O)NC(CC(=O)N)C(=O)O)N

Molecule 8
Tanimoto Sim: 0.89

Example: NC(C(N1CCCC1C(N2CCCC2C(O)=O)=O)=O)CCC(O)=O
Neighbor: C1CC(N(C1)C(=O)C(CCC(=O)O)N)C(=O)O

Molecule 9
Tanimoto Sim: 1.00

Example: O=C(C(N)CC(O)=O)N1C(C(O)=O)CCC1
Neighbor: C1CC(N(C1)C(=O)C(CC(=O)O)N)C(=O)O

Molecule 10
Tanimoto Sim: 0.75

Example: NC(C(O)=O)CCCC(C(O)=O)NC(CCC(C(O)=O)N)=O
Neighbor: C(CC(=O)NC(CCC(=O)O)C(=O)O)C(C(=O)O)N

Molecule 11
Tanimoto Sim: 0.36

Example: NC(C(O)=O)CCC/N=C1NC(C(N\1)CC(C(CO)O)O)=O
Neighbor: C(CC(C(=O)O)N)CN=C(N)N

Molecule 12
Tanimoto Sim: 0.37

Example: CCCCCC(C(NC(C(N1CCCC1CO)=O)C(C)C)=O)CC(NO)=O
Neighbor: CC=CCCCCC(=O)C(C)C(=O)N1CCCC1CO

Molecule 13
Tanimoto Sim: 0.59

Example: NCC(N1CCCC1C(NCC(N)=O)=O)=O
Neighbor: C1CC(N(C1)C(=O)CN)C(=O)O

Molecule 14
Tanimoto Sim: 1.00

Example: O=C(CN)N1C(C(NC(C(O)=O)CCC/N=C(N)/N)=O)CCC1
Neighbor: C1CC(N(C1)C(=O)CN)C(=O)NC(CCCN=C(N)N)C(=O)O

Figure 2.17: Example molecules and their training precedents for Figure 2.4. Each
molecule is shown along side its nearest neighbor in the training set, with its Tanimoto
similarity listed. Even in cases for which the proposed molecular structure appears in the
training set, it is predicted on the basis of a new experimental spectrum that does not exactly
match the reference spectrum.
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Molecule 15
Tanimoto Sim: 1.00

Example Molecule

Example: O=C(C1=CC=NC=C1)O
Neighbor: C1=CN=CC=C1C(=O)O

Nearest Training Molecule

Molecule 16
Tanimoto Sim: 0.35

Example: CC1(CC(CC(C)(N1)C)=O)C
Neighbor: CC1(CCCC(=O)C1)C

Molecule 18
Tanimoto Sim: 0.33

Example: C/C=C/CC(C(O)=O)NC(C1=C(CCC)C(C(C)=O)=C(C)N1)=O
Neighbor: CCC1=C(NC(=C1C(=O)C)C)C(=O)NC2=C(C=CC(=C2)S(=O)(=O)NC)C

Molecule 17
Tanimoto Sim: 0.97

Example: O=C(N1CCCCC1)/C=C/C=C/C=C/C2=CC(OCO3)=C3C=C2
Neighbor: C1CCN(CC1)C(=O)C=CC=CC2=CC3=C(C=C2)OCO3

Figure 2.18: Example molecules and their training precedents for Figure 2.5. Each
molecule is shown along side its nearest neighbor in the training set, with its Tanimoto
similarity listed. Even in cases for which the proposed molecular structure appears in the
training set, it is predicted on the basis of a new experimental spectrum that does not exactly
match the reference spectrum.
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Chapter 3

Inferring the Precursor Mass Molecular
Formula from Spectra

This work has previously appeared as S. Goldman, J. Xin, J. Provenzano, et al., “MIST-CF:
Chemical Formula Inference from Tandem Mass Spectra,” Journal of Chemical Information
and Modeling, 2023. I jointly led the conceptualization, execution, and writing for this
work. I contributed to all of these tasks equally alongside the second author, Jiayi Xin,
an undergraduate student whom I supervised and mentored through the duration of this
project. Other authors contributed to this work and all processes in various ways.

Through peer review and initial publication of this work, we referred to the precursor
formula defining the elemental composition of a molecule as a “chemical formula” rather
than a “molecular formula.” It has since come to our attention that “chemical formula” is
ambiguous and can also apply to skeletal formula representations of molecules, rather than
the elemental composition as we intended. In this thesis, I have adjusted “chemical formula”
to “molecular formula” in all such instances for disambiguation, with the one exception being
the title of the method MIST-CF.

3.1 Introduction

The discovery of previously unknown small molecules in biological samples is rapidly expand-
ing our knowledge of plant chemistry [66], [126], cancer biology [8], [15], host-microbiome
interactions [13], [14], [127], and other metabolite-mediated human biology [67]. Similar
small molecule discoveries in the environmental sciences have led to new insights regard-
ing the exposome and pollutant effects, resolving mysteries such as high salmon mortality
rates. [18], [19] Increasing our ability to detect and identify the so-called “dark metabolome”
with analytical chemistry techniques represents an exciting opportunity in experimental and
computational chemistry.

Tandem mass spectrometry (MS/MS) is a particularly well-suited analytical technique
for this, as it allows for the high throughput characterization of small molecules from com-
plex mixtures. [68] In an MS/MS experiment, both an intact ionized mass (MS1) and a set
of fragment peak masses (MS2) can be measured for each unknown molecule. This frag-
mentation spectrum serves as a structural representation of the molecule, ideally allowing
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the practitioner to match a small molecule structure to each resulting spectrum based upon
database spectra matches. Due to the vastness of chemical space, however, many observed
spectra have no precedent; in a large public MS/MS database, 87% of observed spectra
remain unannotated [29].

In such instances without spectral matches, we must rely on informatics and predictive
modeling to identify the likely molecular structure. This pipeline almost always begins by
inferring a molecular formula from the observed spectrum (Figure 3.1A). There are many
formula options for each observed MS1 value, especially for higher mass compounds. Speci-
fying the molecular formula (e.g., C6H12O6, C9H11NO3, etc.) constrains the space of potential
compound candidates to a set of isomers, whereas the MS1 alone only constrains the space
of candidates to those with similar masses. Automated assignment is far from trivial; while
the the maximum formula annotation accuracy was 94% in in the recent Critical Assess-
ment of Metabolite Identification in 2022 (CASMI20220), [75] the median score was 71%,
and these percentages were calculated only for the submitted predictions, rather than the
total number of spectra tested. Improving the automated prediction accuracy of this step
promises to improve, simplify, and speed up downstream analyses.

Molecular formula annotation tools can be grouped into two categories: database depen-
dent and database independent. Database dependent searches place restrictions on potential
formulae, querying the candidate mass and spectrum against databases including NIST [63],
GNPS [28], HMDB [26], or large compound libraries such as PubChem [128]. Relying on
databases inherently limits annotations to formulae that have already been observed. On
the other hand, database independent (de novo) molecular formula annotation considers all
possible molecular formulae, though the task becomes more challenging due to the larger
number of candidates. A recent bottom-up computational approach, BUDDY [52], is a hy-
brid of the two approaches and assigns database formulae to MS2 peaks and neutral losses.
By combining peak and neutral loss annotations, BUDDY generates potential candidates
not present in databases. However, overall annotation performance is a function both of how
the candidate space is defined and an algorithm’s ability to rank them; this limits our ability
to perform a direct comparison to or analysis of BUDDY. Herein we focus specifically on de
novo formula annotation for maximal flexibility using only MS/MS information.

Notably, both MZmine [120], [129] and SIRIUS [50], [54], [77] have developed widely
used methods for scoring molecular formula candidates using MS/MS information for de novo
annotation. While MZmine evaluates each candidate formula based on the number of MS/MS
peaks it can explain, [129] SIRIUS scores them through a more expressive fragmentation tree
strategy [50], [54], [77]. SIRIUS first proposes candidate formulae through an exhaustive
enumeration step up to a certain mass error from the observed MS1, labels the MS2 peaks
with potential “subformulae” of the candidate MS1 annotation, performs an optimization
to arrange these subformula annotations into a fragmentation tree, and finally computes
a likelihood of the molecular formula based upon the tree and isotopic patterns. Despite
their success and widespread use, these methods offer room for improvement in terms of
both accuracy and speed. We recently observed program timeouts using SIRIUS for larger
molecules (i.e., over 800 Da) during fragmentation tree calculations [64]. An additional,
lesser appreciated component of SIRIUS is that the method re-ranks candidate molecular
formula based upon compound scores in the structure annotation step; this phase implicitly
reposes SIRIUS as a database dependent search and led to changes in formula annotations
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in our previous study, particularly with respect to adduct assignments [64]. It is unclear
which pipeline steps lead to the high empirical formula annotation rates and the extent to
which the tree score can be improved.

In this work, we present MIST-CF: Metabolite Inference with Spectrum Transformers
for Chemical Formula prediction, an energy-based modeling approach to improving the
database-independent, de novo molecular formula assignment step conditioned on both the
MS1 mass and MS/MS spectrum. We previously demonstrated that Formula Transform-
ers can be used to replace both the SVM module and fragmentation tree kernels used by
CS:FingerID during the annotation step. [64] This study now demonstrates that fragmen-
tation trees can be replaced throughout the MS/MS processing pipeline for equally accu-
rate, fast, and robust predictions. As part of this, we develop a simple peak subformula
assignment routine, thus circumventing the need for fragmentation tree construction. We
rigorously evaluate the performance of MIST-CF on two datasets: a public dataset subset
from the GNPS [28] we term NPLIB1 [57], [130] and a variant of NPLIB1 including spectra
from the commercial NIST20 dataset [63]. By training and evaluating our model both with
and without data from NIST20, we enable reproducible evaluation of select trained models
even in the absence of a NIST20 license. MIST-CF achieves equivalent formula annotation
accuracy on the positive mode CASMI2022 challenge spectra to the winning SIRIUS solution
and outperforms the out-of-the-box SIRIUS assignments by a margin of 19% (i.e., 86.8% vs.
67.8% accuracy). Altogether, this demonstrates a path forward for replacing fragmentation
trees in MS/MS data processing with a fully integrated deep learning processing structure
annotation pipeline.

We release MIST-CF as an open source tool that can be easily integrated into existing
pipelines, with or without retraining, and is freely available under the MIT license at ref.
Zenodo 8151513 and https://github.com/samgoldman97/mist-cf.
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Figure 3.1: MIST-CF and SIRIUS both address the MS/MS molecular formula
annotation problem. A. Input samples are first processed, recording a tandem mass spec-
trum. Before assigning full molecular structures, the molecular formula can first be inferred
to constrain structure assignment. B. Methodological similarities and differences between
MIST-CF and SIRIUS. A candidate precursor mass is first decomposed into plausible molec-
ular formulae and adduct pairs. MIST-CF (left) learns in a data-driven fashion to assign
scores and circumvents the need of fragmentation tree construction compared to SIRIUS
(right). Both methods rely on assigning subformulae (“subforms”), which are molecular for-
mula subsets of the candidate precursor formula that match individual MS/MS peak masses.
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3.2 Methods

3.2.1 Preliminaries
In an MS/MS experiment, an input small molecule M is ionized, often by the addition of
an adduct (denoted by one-hot vector, A), measured, and fragmented in order to produce
an MS/MS spectrum S. The spectrum is composed of peaks that can each be represented
as mass, intensity pairs:

S := {(M (1), I(1)), (M (2), I(2)), . . . (M (|S|), I(|S|))} (3.1)

Herein we consider only positively charged ions and peaks and assume that each fragment
carries only a single positive charge; m/z and mass are used interchangeably when describing
observed peaks.

In addition to the observed MS/MS spectrum S, we also have access to the MS1 mea-
surements denoted as the precursor mass M . The core challenge of formula annotation is
to determine the molecular formula of M given M and S. We denote the target molecular
formula as a vector of integers, F .

We represent the target molecular formula as a vector F , in which each index (F)j 2 Z+

corresponds to the integer count for the observed jth element, where the parenthetical denotes
an index into the vector. In total, we consider a set of common elements, “C”, “N”, “P”, “O”,
“S”, “Si”, “I”, “H”, “Cl”, “F”, “Br”, “B”, “Se”, “Fe”, “Co”, “As”, “Na”, and “K” for formula vectors
of size 18. We consider common positive mode adducts when generating molecular for-
mula candidates: [M+H]+, [M+Na]+, [M-H2O+H]+, [M+NH4]+, [M]+, and [M-2H2O+H]+.
The adduct candidate is specified by a one-hot vector A. For de novo molecular formula
annotation, M can be decomposed into potential formula and adduct candidate options
exhaustively using a highly efficient dynamic programming algorithm [54] within small 1
to 5 parts-per-million (ppm) mass tolerances. The generated (formula, adduct) candidates
{(F (1),A(1)), (F (2),A(2)), . . . , (F (k),A(k))} can be further filtered based on presence in a
database or using various heuristics such as number of ring double bond equivalents if de-
sired [131].

In addition to inferring the molecular formula for the full molecule, a step common to SIR-
IUS fragmentation tree generation [77] and CSI:FingerID [53] is to derive corresponding sub-
formula annotations for the MS/MS peaks. In this way, a spectrum can be considered as a set
of (subformulae, intensity) pairings, in which the set of peak masses {M (1),M (2), . . .M (|S|)

}

is replaced with a set of molecular formula vectors {f (1),f (2), . . . ,f (Np)}, where each molec-
ular formula is a subset of the precursor formula, i.e., f (j)

✓ F ; peaks for which no formula
can be assigned are excluded from the list. Because the fragment peaks are also charged,
the observed masses are a summation of the mass of the subformula and its adduct. We
define the MS2 peak adduct for the ith peak a(i), the mass of which must be subtracted
when considering molecular formula assignment. The parts-per-million difference at each
peak between the adduct-adjusted peak mass and assigned subformula is referred to as ✏(i)

to indicate measurement error.

93



3.2.2 An energy-based model for formula annotation
As exhaustive molecular formula candidate generation can be solved via dynamic program-
ming, [54] the key challenge in de novo formula annotation is to score how well each candidate
formula matches the observed MS1 and MS2 spectra. Taking a probabilistic lens and fol-
lowing previous work in metabolomics and proteomics, [54], [132] our goal is to learn the
probability of a candidate molecular formula and adduct, p✓(F (i),A(i)|S,M). We assume
the MS1 is useful only for candidate generation, and so the problem is simplified to approx-
imating p✓(F (i),A(i)|S).

Energy based models (EBM) are a probabilistic modeling framework drawing inspiration
from physics in which a probability distribution is defined by an energy function, E✓. [133]
Mathematically, EBMs take the form:

p✓(x) =
e�E✓(x)

Z(✓)
, (3.2)

where the denominator Z(✓) =
R
x e

�E✓(x)dx is referred to as a partition function and serves
to normalize the energy to a valid probability, but is typically intractable to evaluate exactly.
EBMs have reemerged in recent years, with work across the chemical sciences for reaction
prediction, [134] retrosynthesis, [135] and scoring protein side-chain positions. [136] These
models are naturally suited for ranking applications. In our case, we factorize the probability
of the candidate formula conditioned on the spectrum as an EBM of the form:

p✓(F (i),A(i)|S) =
eG✓(F(i),A(i),S)

Z(✓)
, (3.3)

where G✓(F ,A,S) defines an arbitrary neural network energy function that takes as input
the candidate formula, adduct, and full fragmentation spectrum. For any differentiable G✓,
the energy function can be learned via a softmax loss function, aggregated over minibatches,
and minimized via stochastic mini batch gradient descent:

L(F (True),A(True),S) = � log
eG✓(F(True),A(True),S)

eG✓(F(True),A(True),S) +
PK

k=1 e
G✓(F(k),A(k),S)

, (3.4)

where {(F (k),A(k))}Kk=1 defines a set of “decoy” formulae for which G✓ will learn to assign a
low score. In practice, we sample these decoy formulae during data preprocessing from the
space of formulae with equivalent masses within a 10 ppm tolerance. We further filter candi-
date decoys to a maximum of 256 decoys per spectrum using the FastFilter model described
below in order to sample “harder” decoys. The trained model can be applied independently
to each candidate formula at inference time to yield a ranked list of assignments.

Our approach is conceptually similar to SIRIUS [50], [54], [77], but differs in that SIRIUS
uses a heuristic maximum a posteriori (MAP) estimator to score fragmentation trees. This
requires manually setting parameters such as the frequency of observing various fragments
in the data. By using a flexible energy function trained via supervised learning, MIST-
CF does not require manual parametrizations nor necessitate fragmentation tree generation.
SIRIUS also allows for the incorporation of isotopic information from the MS1 to help identify
molecular formula candidates. We focus solely on the MS2-related score rather than isotopic
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MS1 information, as this can be subsequently added and is often excluded from entries in
spectral database such as the GNPS [28].

3.2.3 The MIST-CF architecture
MIST-CF parametrizes the energy function using a Molecular Formula Transformer [64] we
denote as G(MIST)

✓ (F ,A,S). For the input (F ,A,S), we first attempt to label each spectrum
peak (M (i), I(i)) with a plausible chemical subformula f (i) such that the spectrum can be
represented by a set of subformulae (i.e., f (1),f (2), . . .f (3)). Peaks are sorted by intensity
and a maximum number, Np are retained, set to 20 by default. MIST-CF then subsequently
encodes these subformula peaks with a Molecular Formula Transformer, a Set Transformer
variant [92], [137] we previously defined as part of the MIST architecture. [64] The full MIST-
CF pipeline is illustrated in Figure 3.1B, compared side-by-side to the SIRIUS model that
requires a fragmentation tree calculation. We review the exact structure of this model below
by describing each modeling step.

Subformula annotation The first step in scoring a candidate formula for a spectrum is
to assign a subformula to as many MS2 peaks as possible. We begin by subtracting the
precursor adduct mass from all mass values in the MS2. This approach assumes that the
subpeaks have the same adduct ionization as the precursor ion, but could be modified in
future iterations of MIST-CF. All possible subformulae are enumerated and filtered with a
ring double bond equivalent heuristic [131] to remove implausible formulae and generate a
candidate set {f |f ✓ F ,RDBE(f) � 0}. The mass for each subformula is compared to all
adduct-adjusted spectrum masses and the peak masses are assigned their nearest subformula
match within a variable ppm tolerance for each instrument type (Unknown/Ion Trap: 15
ppm; Q-ToF: 10 ppm; Orbitrap/FTICR: 5 ppm). An important contribution of this work
with respect to the original MIST model [64] is that this subformula assignment is now
achieved with a compact and open source NumPy [138] module, reducing the reliance on
SIRIUS for high quality MS2 subformula annotations.

Formula embeddings The subformula-annotated peaks are treated as integer vector in-
puts. Rather than pass these into a neural network directly, we first featurize each integer
vector count into a sinusoidal embedding vector [130], [139] and concatenate the result-
ing output. Briefly, each integer element count, v, in the input formula is encoded by our
counts-based encoder into the vector:

Abs
✓

sin

✓
2⇡v

T1

◆
, sin

✓
2⇡v

T2

◆
, sin

✓
2⇡v

T3

◆
, . . .

�◆
, (3.5)

where the periods (T1, T2, etc.) are set at increasing powers of two up to 256 to discriminate
all possible element counts given in the input, and Abs(·) is the absolute value function that
results in only non-negative embeddings. While some information may be lost with this
activation, empirically, using only positive embeddings was found to be helpful in prior work
and has been maintained for consistency [130]. Integer encodings of dimension 8 (log2(256))
for all 18 considered elements within a formula are flattened and concatenated, leading to a
full formula encoding Enc(F) 2 R144+.
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Spectra context In addition to the encodings, the instrument type is considered as a
one-hot vector covariate distinguishing between Ion Trap, Q-ToF, Orbitrap, and FTICR
instruments. We denote this instrument type one-hot as c.

Transformer architecture Each peak subformula is first encoded into a hidden state
vector that is then passed into the Transformer, with the precursor formula included as a
special formula annotation f (0) := F . In addition to encoding the formula, we add additional
features for the formula difference between the MS1 formula and each MS2 formula candidate
vector (also converted into a sinusoidal embedding), a floating point scalar value for the
MS2 peak intensity (set to 1 for the MS1 precursor formula candidate), the observed mass
error between the observed adduct-adjusted mass and the monoisotopic mass of the MS2
subformula candidate (set to 0 for the MS1 precursor formula candidate), a one-hot encoding
for the adduct type (assumed to be the same within a single spectrum), the instrument type
one-hot vector, a Boolean flag set to 1 only at the precursor MS1 formula, and the number
of total annotated peaks with subformula. These representations are embedded into hidden
dimension d with a shallow single hidden layer MLP:

h̃(i) = [Enc(f (i)),Enc(F � f (i)), I(i), ✏(i)I(f (i)
6= F),a(i), c, I(f (i) = F), Np] (3.6)

h(i) = MLP(h̃(i)) (3.7)

A standard multi-head Transformer, with a slight modification to include featurized at-
tention between peaks as described previously in the MIST architecture [64], is then used to
transform these peak representations into a score:

G(MIST)
✓ (F ,A,S) = MLP

�
Pool(Transformer

�
[h(0),h(1), . . .h(Np)]

�
)
�
, (3.8)

where Pool(·) denotes the conversion of the variable length output of the transformer into a
fixed length vector by selecting the output representation at only the special h(0) position.
Due to certain training set examples not including MS1 masses, we take care to avoid in-
putting the relative mass difference between the assigned precursor formula and MS1 mass
which is artificially set to 0. This helps avoid additional machine bias, as many of the training
spectra have theoretical MS1 mass, rather than a measured MS1.

Model training All models are trained using the aforementioned loss calculated using
decoy formula. We sample minibatches of b spectra, where there are up to k = 32 decoys
sampled for each spectrum in the minibatch, resulting in a total of O(bk) candidate formula
encoded per batch. To sample the most plausible “hard” negative decoys in each batch,
we utilize a FastFilter module described in detail below. All models are implemented in
Python version 3.8 using PyTorch version 1.9 and PyTorch Lightning [140] version 1.6 and
trained with the Adam optimizer. [141]. Hyperparameters are optimized with Ray Tune [124]
version 2.0. Each model was trained on a single NVIDIA RTX A5000 GPU with training
times taking under 3 hours of wall time.

96



3.2.4 Generating formula candidates
By default, MIST-CF utilizes the mass decomposition algorithm embedded within the SIR-
IUS software [50], [142], [143] (independent module from the rest of their pipeline) to decom-
pose MS1 precursor masses into candidate formula options. We do not restrict the number
of common elements C, N, O, or H. We set the maximum number of S and P atoms to 5
and 3, respectively, and limit each halogen (i.e., F, Cl, Br, I) to a maximum of one per
formula, allowing for the recovery of 96% of formulae in the public NPLIB1 dataset. This
constraint can be changed at inference time as desired. The chemical filter option “COM-
MON” is used to generate formulae for energy-based model training, and the “RDBE” filter
is applied during inference. The default mass deviation is set to 10 ppm during training for
all spectra by default, unless otherwise specified. For retrospective analysis on the NPLIB1
and NIST20 datasets, we resample individual parent masses using a truncated Gaussian
centered around the exact mass with a standard deviation of 1/5 the instrument-specific
ppm tolerance (Unknown/Ion Trap: 15 ppm; Q-ToF: 10 ppm; Orbitrap/FTICR: 5 ppm) as
defined in BUDDY [52]. We utilize SIRIUS version 5.6.3.

During inference, the user can choose to avoid this step in if they have their own, more
narrow list of potential formulae candidates (e.g., generated by database search, knowledge
about the chemical space being measured, or external tools such as BUDDY). In such cases,
the exhaustive formula candidate generation step can be skipped and MIST-CF’s energy
function can be used to directly evaluate the input candidate list.

3.2.5 Downselecting candidate formulae with a learned filter
Due to its energy-based formulation, the computational cost of MIST-CF scales linearly
with the number of candidate precursor formulae. The evaluation of each formula requires
assigning subformulae to peaks within a fragmentation spectrum, which is far faster than
inducing a tree structure over subformulae but not negligible. To limit the space of candidate
formulae, in addition to utilizing heuristics such as COMMON or RDBE as mentioned earlier,
we train a data-driven filter we term FastFilter (Figure 3.2A) to further narrow the option
set.

G(FF)
✓ is a feedforward neural network that takes as input an encoded precursor formula

candidate, Enc(F), and learns, in the same fashion as MIST-CF, to predict an energy value
based solely on the formula—not information about the spectrum—to approximate a non-
normalized likelihood p✓(F (i)|M). Because no spectrum information is needed, we train a
single FastFilter model using a large database of biologically-relevant molecules, contain-
ing 200,388 molecular formulae extracted from various sources such as KNApSAcK, [118]
HMDB, [26] KEGG, [119], and PubChem [128], as prepared by Duhrkop et al. [57] To avoid
dataset leakage, all molecular formulae masses that appear in spectral libraries used for
model training/testing are excluded; the remaining masses are split in an 80%/10%/10%
ratio for training, validation, and testing of FastFilter. We use G(FF)

✓ to select the top k
candidates during inference (256 by default), or decoys during training, to further score with
G(MIST)

✓ (F ,A,S). Formulae are represented as input to the positive sinusoidal embedding
vectors as in MIST-CF, and exact training parameters including learning rate, hidden size,
and layers are described in Section 3.6.
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3.2.6 Datasets
We evaluate MIST-CF in terms of its ability to predict precursor molecular formulae for
MS/MS spectra from NPLIB1, a public natural products dataset extracted from the GNPS
database [28]. NPLIB1 is prepared as in Goldman, Bradshaw, Xin, et al. [130] and extracted
from Duhrkop et al. [57] The dataset contains positive mode MS/MS spectra for compounds
under 1,500 Da containing a predefined set of elements and adducts. In total NPLIB1
contains 10,709 spectra, 8,553 unique structures and 5,433 unique molecular formulae. We
employ molecular formula splits in which 20% of the remaining 5,433 molecular formulae are
selected randomly and added—with their corresponding spectra—to the test set. 10% of the
remaining data is used for validation and early stopping.

In addition to the public data, we use the commercial NIST20 library [63] to supplement
the training dataset. We extract all Orbitrap high resolution positive mode mass spectra
containing common elements and adducts. Examples with molecular formulae found in the
test set are excluded to avoid biasing the model. In total, the combined dataset has 45,838
unique spectra, 30,950 unique 2D molecular structures, and 15,315 unique molecular formula.
By using identical public test sets, we are able to report performance metrics with and
without commercial library inclusion to enable replication studies and future methodological
improvements.

3.2.7 Baseline models
In addition to learning G✓ using the MIST architecture, we select three separate baseline
neural architectures: a feed forward network (FFN) inspired by MetFID [56] that acts on a
binned representation of the spectrum, G(FFN)

✓ ; ‘MS1 Only”, a variant of G(FFN)
✓ in which the

binned spectrum is set to 0 for all spectra; and a Transformer model that utilizes multiscale
sinusoidal embeddings (Transformer) [83], G(TF)

✓ . These models are trained and hyperpa-
rameter optimized equivalently to MIST-CF. In the FFN baseline, the binned spectrum
representation is concatenated to the encoded MS1 candidate formula, the one-hot adduct
representation, and the context vector, then passed into a multilayer perceptron module.
The Transformer baseline concatenates the MS1 candidate formula encoding and context
vector to the sinusoidal embedding at each of the top 100 most intense peaks, along with
the intensity. An additional “cls” token is added to the peaks containing the mass of the
MS1 candidate and intensity of 2. These are subsequently passed into a set of multi-head
attention Transformer layers. The output is pooled at a special “cls” token. A single linear
layer then predicts a scalar energy value.
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3.3 Results

3.3.1 FastFilter constrains candidate formulae with high precision
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Figure 3.2: Large numbers of formula candidates can be quickly filtered with a
simple feed forward neural network, FastFilter. A. Generated candidate formulae
for a spectrum can be prioritized with a learned model. A scalar score is generated for
each candidate formula given an MS1 value and mass tolerance via a feed forward neural
network. Only the top ranked formulae are selected for consideration with MIST-CF. B.
The distribution of the number of candidates for all recorded MS1 spectra in our spectra
libraries NPLIB1 and NIST20. All candidate molecular formulae are generated for all 6
adduct types considered with an allowed mass deviation of 10 ppm. C. FastFilter model
accuracy at various top k cutoff values. The top formula is nearly always recovered within
the top 256 candidates. The 95% confidence interval of the mean for recovery is shown across
the 3 different formula splits considered in this work. All results are computed for a single
trained FastFilter model on a large database of biologically-relevant molecules.

A key limiting factor in de novo formula identification is the large size of the candidate space,
particularly for molecules with higher masses. We first quantify the size of the candidate
space. We process the full set of training spectra, including both NPLIB1 and NIST20,
into molecular formula candidates with the permissive RDBE filter. Over 15% of spectra
have greater than 5,000 formula candidates (Figure 3.2B). By training a light-weight model,
FastFilter, to predict how likely each formula is to appear in a biologically-relevant database
of small molecules, we are able to filter the candidates down to a smaller subset. We are able
to recover the true formula 99% of the time within the top 256 candidates (Figure 3.2C).
This guarantees the computational tractability of the MIST-CF pipeline, as subformula
labeling would be prohibitively expensive for spectra with hundreds of thousands or millions
of candidate formulae.
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3.3.2 Molecular Formula Transformers provide meaningful repre-
sentations
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Figure 3.3: MIST-CF is a highly-effective architecture for learning to rank plausi-
ble MS1 formula annotations A. The MIST-CF architecture uses the candidate molec-
ular formulae to generate subformulae and encode these with a Formula Transformer. B.
The baseline feed forward network (FFN) separately encodes the spectra and formula before
feeding their concenation into a multilayer perceptron (MLP). C. For all spectra in the test
set, the fraction recovered at various top k values for all methods is computed and shown.
D-E. The top 1 accuracy for the methods is grouped by the mass of the MS1 precursor or
adduct type. All results are computed for MIST-CF and the following baselines: MS1 only
(a feed forward network utilizing only the molecular formula and context vector), a feed
forward network, and a Transformer. All results are computed over 3 random formula splits
and respective training runs as described in Section 3.2, where the NIST20 is included in the
training sets. All spectra include up to 256 candidates to select from as selected with the
“COMMON” filter [50] and FastFilter. Error bars and shaded regions show 95% confidence
intervals of the mean.

We evaluated four different architectures for encoding spectra and formulae to determine
the best neural network architecture for the energy-based modeling framework described in
Section 3.2. MIST-CF uses a Transformer model to convolve upon MS2 subformula with
context information concatenated to each formula (e.g., adduct, instrument type) (Figure
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3.3A). We compare this model to a feed forward neural network (Figure 3.3B), a standard
Transformer applied to sinusoidal embeddings of each m/z value [83], and a variant of the
feed forward network that does not embed the spectrum (“MS1 only”). Importantly, all
baseline neural network models are provided with the same context vectors, training set,
and hyperparameter optimization schemes to enable fair comparison.

We find that MIST-CF outperforms all other architectures tested, likely due to its ability
to explicitly combine the representation of the spectrum and formula candidate, rather than
via intra-architecture concatenations (Figure 3.3B). We test the model by holding out a
number of spectra and molecular formulae from model training. For each test spectrum, up
to 256 formula and adduct candidates are re-ranked by each model. MIST-CF outperforms
the next best model at top 1 accuracy by a > 10% margin (Figure 3.3C; Table 3.1). Curiously,
the feed forward network and Transformer network show little difference from each other,
indicating that neural network architecture (i.e., FFN vs. Transformer) has less impact than
the input information provided to the model (i.e., subformula labels)—the main strength of
MIST-CF. All models are able to perform at least as well as the MS1 only model, consistent
with our intuition that the models are learning more than just database bias.

All models decrease in accuracy as the masses of compounds increase (Figure 3.3D) due
to the growing number of plausible candidates. Similarly, models struggle on adducts that
appear less often in the training dataset, such as potassium adducts (Figure 3.3E). This
is one such area where manually parametrized models such as SIRIUS [50] may be better
suited to generalization. Data-driven methods such as MIST-CF are empirically better at
correctly retrieving formulae with common proton or sodium adducts.

Integrating the higher quality Orbitrap training spectra from NIST20 leads to improved
performance on the same test set. MIST-CF models trained on NPLIB1 alone achieve a
top 1 accuracy of 0.741 compared to a top 1 accuracy of 0.769 for models that train on the
NIST20 in addition (Table 3.1). This > 2% absolute improvement underscores that formula
prediction accuracy may be enhanced with the upcoming release of new spectral libraries
and higher quality data. [29]

Table 3.1: MIST-CF outperforms comparable neural network baselines at molecu-
lar formula annotation from MS/MS. Models were trained to predict held out NPLIB1
test examples using training sets consisting of “NPLIB1” or “NPLIB1 + NIST20.” The best
value in each column is typeset in bold. Models were evaluated using three independent
formula splits. Values are shown ± standard errors of the mean.

Training dataset NPLIB1 NPLIB1 + NIST20

Top k 1 2 3 1 2 3

MS1 Only 0.609± 0.002 0.773± 0.003 0.833± 0.003 0.623± 0.007 0.785± 0.008 0.847± 0.008
FFN 0.635± 0.009 0.786± 0.009 0.847± 0.007 0.652± 0.006 0.804± 0.009 0.867± 0.008
Transformer 0.639± 0.006 0.791± 0.009 0.851± 0.006 0.626± 0.014 0.772± 0.008 0.840± 0.011

MIST-CF 0.741± 0.010 0.878± 0.009 0.919± 0.007 0.769± 0.006 0.897± 0.007 0.931± 0.005
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Figure 3.4: MS/MS subpeaks drive MIST-CF performance. A. The (sub)Formula
Transformer in MIST-CF operates on only the Np highest intensity MS2 peaks. Here, from
that set of labeled MS2 peaks, the number of peaks used as input to the spectrum is limited.
As the number of included peaks increases, the formula retrieval accuracy does too. B. The
top 1 retrieval accuracy is shown for all maximum subpeak numbers. All results are shown
for MIST-CF trained on the joint NPLIB1 and NIST20 dataset and tested on a single test
split of the data.

One of the core methodological decisions in MIST-CF is the application of a Formula
Transformer to the set of labeled subformulae in the MS2 spectrum. To verify that these
peaks are informative for the model, we repeated benchmarking experiments for a single split
of the data, this time modulating the maximum number of peaks (rank-ordered by intensity)
viewable by MIST-CF.

Model performance rapidly increases as the maximum number of included peaks increases,
sharply rising from 0.673 to 0.719 for 1 and 3 spectrum peaks respectively, where Np = 0 is
functionally equivalent to the MS1 Only baseline with an accuracy of 0.623 (Table 3.1). There
are diminishing returns of including lower intensity peaks, with 1, 5, 10, 20, 50 maximum
formula peaks achieving top 1 accuracies of 0.673, 0.729, 0.754, 0.756, and 0.774 respectively
(Figure 3.4). Making the model aware of a greater number of fragments enables more
generalizable and accurate predictions. This builds confidence that the model is learning
more than database biases, drawing information from even minor peaks to inform predictions.
As can be seen, the absolute difference in performance appears to level off beyond 20 with only
more marginal increases toward Np = 50. Given that the performance benefit is marginal
for many more peak annotations, we maintain our peak default Np = 20 unless otherwise
stated to reduce the runtime of the method.
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3.3.3 MIST-CF compares favorably to existing formula annotation
tools
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Figure 3.5: MIST-CF more frequently assigns correct molecular formulae than
the SIRIUS formula assignment module on the NPLIB1 test set. A. The number
of spectra for which each method is able to predict a formula—regardless of accuracy. B.
The distribution of molecular masses for the spectra both methods are able to annotate—
regardless of accuracy— compared to the distribution of molecular masses for spectra on
which only MIST-CF succeeds. C. Top k accuracy for both methods is shown. D. The
rank at which each method is able to recover the true molecular formula. This visualization
highlights that there are many spectra for which MIST-CF achieves rank 1 that SIRIUS
does not predict in its top 3. MIST-CF models are trained on the joint NIST20 and NPLIB1
dataset. SIRIUS is executed with a compound and tree timeout of 300 seconds. All values
are shown for 3 random formula splits of the NPLIB1 data. Error bars and confidence
intervals show 95% confidence intervals for the standard error of the mean. Accuracy is
computed with respect to the total MS1 composition (i.e., summed adduct and formula) to
avoid biasing results against SIRIUS.

The widely used SIRIUS tool [50] is the de facto state of the art for the task of molecular
formula annotation. We therefore perform a head-to-head comparison of MIST-CF and SIR-
IUS on the same NPLIB1 test set. Herein, MIST-CF considers all candidate MS1 formulae
within 10 ppm of the recorded MS1 mass and utilizes FastFilter to down select to 256 can-
didates for full evaluation. We run the SIRIUS formula module from the command line with
tree and compound timeouts of 300 seconds to avoid excessive execution times. With these
constraints, MIST-CF is able to predict a formula for every spectrum, whereas SIRIUS fails
for 10.77% of the spectra (Figure 3.5A). Failed spectra are associated with larger masses on
average (700.80 Da) than successful ones (378.06 Da).

Model accuracy is evaluated in terms of the summed elemental composition of the formula
and adduct. SIRIUS does not distinguish tree scores with different adduct assignments as we
do in MIST-CF by design (e.g., [C6H12O6+H]+ and [C6H14O7+H-H2O]+ would appear to have
equivalent tree scores). On the NPLIB1 test set when using full RDBE decoys (i.e., candidate
formula not constrained with the “COMMON” filter as in Table 3.1), MIST-CF successfully
predicts molecular formulae with a 71% top 1 accuracy (80% top 1 when considering joint
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formula and adduct accuracy), compared to SIRIUS’s 48% accuracy (evaluated on joint
formula and adduct predictions). This represents a >20% improvement in absolute top 1
prediction accuracy (Figure 3.5C). On a per-spectrum basis, SIRIUS rarely makes correct
predictions MIST-CF does not, with a total of approximately 3% of spectra falling into
this category, whereas MIST-CF appears to predict 36% of spectra correctly when SIRIUS
cannot (Figure 3.5D).

Beyond the improvement in accuracy, MIST-CF required approximately one-third the
wall time of SIRIUS (evaluated on compounds under 700 Da for which SIRIUS does not
time out) when both methods are run on a single CPU core (Section 3.6).

3.3.4 MIST-CF is competitive on the CASMI2022 challenge
We selected the dataset released as part of the Comparative Assessment of Small Molecule
Identifications 2022 (CASMI2022) [75] for additional validation. Our training datasets were
generated prior to the competition announcement, minimizing the risk of training dataset
bias and simulating a prospective use case. Herein, we focus only on the formula identification
challenge rather than the full task of structural elucidation.

We extract all positive mode MS/MS files from the provided mzML files using MZmine
3 [120] and apply both MIST-CF and SIRIUS to predict molecular formulae for each of the
extracted 304 spectra. Using our constraints on element types, 296 of the 304 formulae are
recoverable (97%), excluding species such as iodixanol (C35H44I6N6O15). We use an MS1
tolerance of 5 ppm.

Model performance was evaluated on three key metrics: the accuracy of predicting for-
mula correctly, the accuracy of predicting the adduct correctly, and the accuracy of predicting
the total elemental composition of the formula and adduct combined. As discussed above,
we use this last metric because evaluating the accuracy of the molecular formula alone would
bias the comparison for MIST-CF.

We consider three variants of SIRIUS: SIRIUS, SIRIUS (CSI:FingerID) and SIRIUS
(Submission). SIRIUS (CSI:FingerID) provides formulae as re-ranked by their CSI:FingerID
score when searched against PubChem. SIRIUS (Submission) uses predictions submitted by
the SIRIUS authors at the latest competition under file name “duehrkop_CASMI2022.csv.”
This submission reportedly used a mix of ion identity molecular networking [144], which can
be used to more accurately resolve adduct types, along with manual curation to improve
performance.

Encouragingly, we find that MIST-CF is competitive with SIRIUS (Submission), achiev-
ing a nearly equivalent collective joint formula and adduct accuracy of 0.862, despite our
automated classification and no additional manual curation (Table 3.2). If evaluating SIR-
IUS (Submission) on the subset of 272 spectra for which a prediction was submitted, a higher
accuracy is achieved compared to MIST-CF, as MIST-CF predicts all test set spectra; of
the 32 spectra on which MIST-CF outperforms SIRIUS (Submission), SIRIUS (Submission)
only submitted predictions for 7. This is in contrast to the 34 spectra on which SIRIUS
outperforms MIST-CF. Nevertheless, when using default parameters, MIST-CF reaches a
top 1 formula accuracy of 0.842 (including adduct prediction) compared to an accuracy of
0.516 for SIRIUS (CSI:FingerID). These results illustrate the competitiveness of MIST-CF
and demonstrate that accurate, prospective formula annotation does not require computing
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full fragmentation trees. In addition to testing our default MIST-CF model, we also test a
variant with Np = 50 as a comparison. Performance is equivalent for the joint accuracy of
formula and adduct pairs. However, accuracy in predicting the formula alone increases, as
the model appears to be marginally better at adduct assignment.

Table 3.2: Model accuracy of MIST-CF and SIRIUS evaluated on CASMI2022.
“Accuracy (F)” indicates accuracy of predicting the exact formula correctly. “Accuracy (A)”
indicates the fraction of spectra for which the first predicted (formula, adduct) pair includes
the correct adduct. “Accuracy (F + A)” indicates the fraction of spectra for which the
total elemental composition of the top predicted formula and adduct matches the elemental
composition of the summed true formula and adduct. “Predicted” indicates the number of
spectra for which a formula and adduct prediction was made. “SIRIUS” makes predictions
with the default command line tool described above; “SIRIUS (CSI:FingerID)” predicts for-
mula, adduct pairs using CSI:FingerID rankings against PubChem; SIRIUS (Submission)
is taken directly from the previous CASMI2022 results. MIST-CF (20 peaks) uses default
20 subformula peaks, whereas MIST-CF (50 peaks) utilizes 50 subformula peaks. Accuracy
(F) and Accuracy (A) are not reported for SIRIUS because the method does not distinguish
between formula, adduct pairs that sum to the same molecular formula, and our metrics de-
fault to the worst-case ranking for ties (i.e., somewhat unfairly penalizing methods such as
SIRIUS that have more ties). All accuracies are reported for the top 1 prediction and divided
by the total number of spectra (304), not the total number of predicted spectra. Numbers
typeset in bold indicate the best result in the column.

Method Accuracy Accuracy Accuracy
(F) (A) (F +A) Predicted

SIRIUS version 5.6.3 - - 0.641 274
SIRIUS version 5.6.3 (CSI:FingerID) 0.516 0.543 0.678 254
SIRIUS (Submission) 0.865 0.855 0.868 272

MIST-CF (20 peaks) 0.842 0.901 0.862 304
MIST-CF (50 peaks) 0.822 0.885 0.868 304

3.4 Conclusion

We have introduced a data-driven neural network model, MIST-CF, for inferring molecu-
lar formulae from MS/MS spectra, trained using an energy-based modeling framework. We
benchmark this model extensively to show how our recent Molecular Formula Transformer
architecture is uniquely suited to this task of integrating formula and spectra information.
MIST-CF outperforms other learning-to-rank neural network architectures and ties the win-
ning solution at the CASMI 2022 competition within the positive mode category, despite
using zero MS1 isotopic information or manual prediction refinement.

This work defines a clear problem formulation for learning to rank MS1 candidate formula
from MS/MS data, including open source code and data splits. To address this task, we re-
lease open source and trained models with low memory and run-time concerns, even for large
molecules. In addition to these models, we develop a smaller and light-weight neural network
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formula filtering model to help prioritize biologically-relevant molecular formula candidates.
This work continues to demonstrate the efficacy of our recent Molecular Formula Transformer
network architecture in thorough benchmarking comparisons [64]. As part of this, we have
greatly simplified and improved the the Molecular Formula Transformer implementation to
now utilize custom formula embeddings, a simple and open source subformula assignment
routine (i.e., no longer fragmentation trees), additional model inputs such as instrument
type, and multiple adduct types. Applying these same changes to the Molecular Formula
Transformer architecture for fingerprint prediction is likely to yield similar improvements.

There are many avenues for improving upon MIST-CF. We have trained models only for
positive-mode data; we do not directly address the integration of MIST-CF scores with MS1
isotopic scores; we do not consider adduct switching in MS2 subformula assignment; we still
rely upon SIRIUS’s algorithmic decomposition of exact masses into formula candidates due
to their fast implementation; and we have not yet explored the use of forward structure-
to-spectrum models [130], [145] for data augmentation. There is also an opportunity to
combine MIST-CF with the recently reported BUDDY [52] by re-ranking formulae generated
by BUDDY rather than relying on the FastFilter.

Altogether, we are optimistic about the potential to integrate this model into existing
pipelines for small molecule metabolite identification. By addressing the task of molecular
formula annotation, this work moves us one step closer to our vision of an integrated neural
network driven metabolite annotation pipeline.

3.5 Data and Software Availability

All code to replicate experiments, train new models, and load pre-trained models is avail-
able at https://github.com/samgoldman97/mist-cf. The code to parse NIST can be found
in https://github.com/samgoldman97/nist-parser but this optional subset of training data
requires a license and cannot be shared publicly. The exact repository version used in this
work has been archived at Zenodo record 8151490 (data) and Zenodo record 8151513 (code).

3.6 Additional Results

3.6.1 SIRIUS configuration
SIRIUS version 5.6.3 [50] is used as a baseline throughout the work. For consistency, we
utilize a 300 second (5 minute) timeout for each compound and set equivalent adducts and
formula as used in MIST-CF. An example call signature using our parameters, as we use in
CASMI2022 is shown in Listing 3.1.
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Listing 3.1: An example call to SIRIUS for annotating the formula for an input MGF file,
$INPUT_MGF

$SIRIUS_PATH \
−−co r e s $CORES \
−−output $OUTFOLDER1 \
−−input $INPUT_MGF \
formula \
− i " [M+H]+ , [M+K]+ , [M+Na]+ , [M+H−H2O]+ , [M+H−H4O2]+ , [M+NH4]+ , [M]+" \
−e "C[0 − ]N[0 − ]O[0 − ]H[0 − ]S [0 −5]P[0 −3] I [0 −1]Cl [0 −1]F[0 −1]Br [0 −1] " \
−−ppm−max 5 .0 \
−−t ree−t imeout 300 \
−−compound−t imeout 300 \
f i n g e r p r i n t \
s t r u c tu r e \
write−summaries \
−−output $OUTFOLDER2

3.6.2 Timing experiments
To demonstrate that MIST-CF has reasonable runtime properties, we conduct a simple
timed experiment. 10 random sample test set spectra under 700 Da from the NPLIB1
were selected and set aside in an MGF file. Using the command line call signature for
formula prediction on a Linux workstation, we test the wall time to predict formula for these
spectra with all pre-specified elements, a maximum ppm of 10 from the MS1, and all adduct
possibilities considered within MIST-CF. We repeat the same procedure for SIRIUS, using
a compound and tree timeout of 1 minute to avoid excessively large times. We conduct
these experiments using only 1 CPU core. We find that in three separate trials, MIST-CF
completed in 39.31 ± 0.49 seconds (mean ± standard error of the mean), whereas SIRIUS
completed in 112.61± 0.21 seconds (mean ± standard error of the mean).

3.6.3 Hyperparameter setting
To enable fair comparison across models, hyperparameters were tuned for MIST-CF, the FFN
binned prediction baseline, the transformer binned prediction baseline, and the FastFilter
model. Parameters were tuned using RayTune [124] with Optuna [123] and an ASHASched-
uler. Each model was allotted 50 different hyperoptimization trials for fitting. MIST-CF,
the FFN baseline, and the Transformer baseline were hyperparameter optimized on a smaller
10, 000 spectrum training subset of the combined NPLIB1 and NIST20 datasets. MIST-CF
was hyperparameter optimized using a maximum of 10 peaks per spectrum. The FastFilter
model was hyperparameter optimized directly on the biological molecules dataset. Parame-
ters are listed in Table 3.3.
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Table 3.3: Hyperparameter settings for MIST-CF, FFN, Transformer, and the
FastFilter model to select batches of molecular formula.

Model Parameter Grid Value

MIST-CF Learning rate [1e-4, 1e-3] 0.00045
Learning rate decay fraction [0.7, 1.0] 0.8830
Weight decay {1e-6, 1e-7, 0.0} 0.0
Hidden size {32, 64, 128, 256} 128
Dropout [0, 0.5] 0.1
Number of layers [1, 2, 3, 4] 2
Batch size {4, 8, 16} 4

FFN Number of bins {1000, 2000, 3000, ..., 10000} 5000
Learning rate [1e-4, 1e-3] 0.0005
Learning rate decay fraction [0.7, 1.0] 0.8477
Weight decay {1e-6, 1e-7, 0.0} 0
Hidden size {32, 64, 128, 256, 512} 512
Dropout [0, 0.5] 0.4
Number of layers {1, 2, 3, 4} 4
Batch size {16, 32, 64} 64

Transformer Learning rate [1e-4, 1e-3] 0.00025
Learning rate decay fraction [0.7, 1.0] 0.8601
Weight decay {1e-6, 1e-7, 0.0} 1e-7
Hidden size {32, 64, 128, 256, 512} 32
Dropout [0, 0.5] 0.2
Number of layers {1, 2, 3, 4} 2
Batch size {8, 16} 8

FastFilter Learning rate [1e-4, 1e-3] 0.0003
Learning rate decay fraction [0.7, 1.0] 0.8642
Weight decay {1e-6, 1e-7, 0.0} 0
Hidden size {32, 64, 128, 256, 512} 256
Dropout [0, 0.5] 0.1
Number of layers {1, 2, 3, 4} 3
Batch size {16, 32, 64} 64
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Chapter 4

Generating Mass Spectra as Subformula
Sets with Prefix-Trees

This work has previously appeared as a conference publication, S. Goldman, J. Bradshaw,
J. Xin, et al., “Prefix-Tree Decoding for Predicting Mass Spectra from Molecules,” in Ad-
vances in Neural Information Processing Systems 37, 2023. I jointly conceptualized and
subsequently led this project. John Bradshaw contributed to the experiments, implementa-
tion of various features of the model, and was especially helpful in shaping the writing and
presentation of this work.

4.1 Introduction

As the primary tool to discover unknown small molecule structures from biological samples,
tandem mass spectrometry (MS/MS) experiments have enabled the identification of numer-
ous important molecules implicated in health and disease [13], [67], [146]. Tandem mass
spectrometers are capable of isolating, fragmenting, and measuring the resulting fragment
masses of small molecules from a sample, producing a signature (a mass spectrum) for each
detected molecule (Figure 4.1, top).

Computationally predicting mass spectra from molecules in silico (Figure 4.1, bottom)
is thus a longstanding and important challenge. Not only does this assist practitioners
in better understanding the fragmentation process, but it also enables the identification of
molecules from newly observed spectra by comparing an observed spectrum to virtual spectra
generated from a database of candidate molecules. While a large library of empirical mass
spectra could theoretically serve the same purpose, the size of such libraries is limited by
the slow and expensive process of acquiring pure chemical standards and measuring their
spectra, motivating computational prediction.

We argue that there are three core, interrelated desiderata for a forward molecule-to-
spectrum simulation model, or “spectrum predictor”. An ideal spectrum predictor should be
(i) accurate, being able to predict the exact set of fragment masses and intensities with a
precision comparable to experimental measurements; (ii) physically inspired, to avoid making
physically nonsensical (“invalid”) suggestions and to provide interpretations of the chemical
species responsible for each peak for the benefit of human expert chemists; and (iii) fast, such
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Figure 4.1: Tandem mass spectrometers measure fragmentation patterns of
molecules, resulting in characteristic peaks that are indicative of their struc-
ture. SCARF simulates these fragmentation patterns in silico.

that it is computationally inexpensive to predict spectra for many (e.g., millions) hypothetical
molecules.

Unfortunately, many existing spectrum predictors do not meet these criteria. Methods
to date have tended to follow one of two approaches: (a) physically motivated fragmentation
approaches or (b) molecule-to-vector (or “binned”) approaches (Figure 4.2A-B). Fragmenta-
tion approaches (e.g., [71], [73], [95], [147]; Figure 4.2A) take an input molecule and suggest
bonds that may break, creating fragments that are scored by ML algorithms or curated
rulesets. While interpretable, these methods are often slow and restrictive; certain mass
spectrum peaks are generated by complex chemical rearrangements within the collision cell
that cannot be approximated by bond breaking alone. That is, the bonds in observed frag-
ments are not a subset of those in the original molecule [148], [149]. On the other hand,
binned prediction approaches (e.g., [84], [86], [150]; Figure 4.2B) are less physically grounded,
using neural networks to directly learn a mapping from molecules to vectors representing dis-
cretized versions of the spectra. These methods, while fast, lack interpretability and due to
discretization have a mass precision lower than that of most modern spectrometers, limiting
their accuracy.

We propose to address the shortcomings of previous work by predicting mass spectra
from molecules at the level of molecular formulae (e.g., CxNyOzHw...) and introduce a
new method, Subformulae Classification for Autoregressively Reconstructing Fragmentations
(SCARF) to do so. Because the molecular formula for each input molecule is known, each
subformula in the predicted set of peaks is constrained to contain a subset of the atoms in
the original formula. Our primary contributions are:

• posing mass spectrum prediction as a two step process: first generating the set of
molecular formulae for the fragments, then associating these formulae with intensities;
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• overcoming the combinatorial subformula option space by learning to generate formula
prefix trees;

• demonstrating the empirical benefit of SCARF in predicting experimental mass spectra
quickly and accurately using two separate datasets, providing a benchmark for future
work.

4.2 Background

We provide a short introduction of tandem mass spectrometry suitable for a general machine
learning audience, detail previous approaches to modeling this process as they relate to our
proposed approach SCARF, and explain how such tools can be utilized to discover molecules
from new spectra. We refer interested readers to [151] for further details on the physical
process of mass spectrometry.

4.2.1 Tandem mass spectrometry
Tandem mass spectrometers (MS/MS) measure fragmentation patterns of molecules in a
multi-stage process. The input to the process is a solution containing a precursor molecule,
M 2 X , associated with a molecular formula, F , defining the counts of each element present;
for instance F = C16O4H12 for the precursor molecule shown in Figure 4.1. The precursor
molecule is first ionized (i.e., made charged), often by bonding or associating with an adduct
(e.g., a proton, H+) present in the solution. The charged product is then measured by a
mass analyzer (MS1), where its mass-to-charge ratio (m/z) is measured.

This precursor ion is then filtered into a collision cell. Here, through interactions with
an inert gas, the precursor ion is broken down into a set of one or more product ions, each
of which is associated with a new chemical formula; for example, one might be f 1 = C7OH4
for the process shown in Figure 4.1. Finally, this set of product ions is measured by a second
mass analyzer (MS2), along with the set of their intensities, yi 2 R+ (i.e., their relative
frequencies over several repetitions of this process), creating for each ion what is referred to
as a peak. The collection of all peaks makes up a molecule’s mass spectrum, and is commonly
represented as a plot of intensities versus m/z (Figure 4.1, right).

4.2.2 Predicting mass spectra from molecules (spectrum predic-
tors)

Fragmentation prediction. A complex but physically grounded strategy is to model the
bond breakage processes occurring in the collision cell (Figure 4.2A). Examples include Met-
Frag [71], MAGMa [95], and CFM-ID [73], which recursively fragment molecules (either
bond or atom removals) to generate fragment predictions. These methods combine ex-
pert rules and local scoring methods to enumerate molecular fragmentation trees to predict
spectra. CFM-ID [73] learns subsequent fragmentation transition probabilities between frag-
ments with an expectation maximization algorithm to determine intensities at each fragment.
Rule-based methods and full tree enumeration reduce the flexibility of these approaches, and
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Figure 4.2: Overview of various approaches to spectrum prediction. A. Fragmenta-
tion prediction approaches use heuristics and scoring rules to break down the molecule into
fragments and their associated intensities. B. Binned prediction approaches discretize the
possible mass-to-charge values and predict intensities for each possible bin. C. Formula pre-
diction approaches predict spectra as sets of molecular formulae and intensities. Our model
SCARF utilizes a two stage approach, first by predicting the product formulae present (con-
strained by the precursor formula), which defines the x-axis locations of the peaks, before
secondly assigning intensities to these formulae (defining the peaks’ y-axis values).

along with the inherent ambiguity in the fragmentation process, limit this strategy’s overall
accuracy and speed.

Binned prediction. An increasingly popular and straightforward approach to spectra
prediction is to map molecules to discretized 1D mass spectra from either molecular finger-
print [84] or graph inputs [86], [150] (Figure 4.2B). Specifically, these methods divide the
m/z axis into fixed-width “bins” and predict an aggregate statistic of the peaks found in each
bin (such as their maximum or summed intensity). While more flexible and end-to-end than
fragmentation-based approaches, these methods do not impose the same physical constraints
or shared information across fragments, making them less interpretable and susceptible to
making invalid predictions. Further, discretizing the input spectrum inherently restricts the
precision of such models compared to exact-mass predictions.

Formula prediction. We introduce the strategy of predicting spectra at the level of molec-
ular formulae, an intermediate between binned and fragmentation prediction (Figure 4.2C).
Simultaneous to our work, two groups have separately explored formula prediction strate-
gies [152], [153]. However, to generate plausible subformulae candidates, they either generate
a fixed vocabulary of formulae [152] or restrict their model to molecules under 48 atoms
for exhaustive enumeration [153], which is smaller than many compounds of interest. We
overcome the combinatorial problem of formula generation using prefix trees, allowing our
method to scale and eliminating the need for large, fixed vocabularies.

4.2.3 Mass spectrum libraries
One important use of spectrum predictors is in building large in silico libraries of molecule
spectra to augment the small size of existing, experimentally derived databases (on the
order of 104) which are expensive to curate. These spectra libraries are then leveraged
downstream in different ways, for example for training molecular property predictors directly
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from mass spectra [55]. Another common application of spectra libraries is to infer an
unknown molecule’s structure from a newly observed spectra – a particularly hard problem,
with only 13% of spectra measured from clinical samples identifiable using current elucidation
tools [29]. In this problem, spectra libraries are used as part of a process called retrieval :
The newly observed spectra is compared with the existing spectra in the library using a fixed
or learned spectral distance function, such as cosine distance [81], [82], [100], [154], and the
molecules associated with the closest spectra are returned as possible matches. In practice,
the retrieval process is constrained to choosing among isomers (i.e., molecules with the same
molecular formula, and therefore molecular weight, but with different bond configurations)
due to the high resolution of modern mass spectrometers (i.e., absolute errors on the order
of 10�4 to 10�3 m/z for MS1 measurements) [50], [52], [111].

Given the varied use cases of spectra libraries, we focus on evaluating spectrum predictors
in terms of both (a) their prediction accuracies (Section 4.4.2), using metrics such as “cosine
similarity”, and (b) their use in generating virtual spectral libraries to assist with retrieval
(Section 4.4.3).

4.3 Model

Here, we describe our model, SCARF, for predicting mass spectra from precursor molecules
via first predicting subformulae of the precursor molecule, referred to as product formulae.
Building upon the notation introduced in the previous section, we continue to denote pre-
cursor molecules1 as M 2 X , and their associated formula vector as F 2 Ne

0, defining at
each position, j 2 {1, . . . , e}, the count of each possible chemical element present, Fj (with
zero indicating none of that chemical element is present). Likewise, we define the set of n
product formulae as {f i

}
n
i=1, and associate with each an intensity, yi. Note that the mass2

corresponding to a given formula (and, as such, the x-axis location of the peak on a mass
spectrum) is determined deterministically from the counts of each elements present.

At a high level, SCARF generates mass spectra through the composition of two learned
functions: �

(f i, yi)
 n
i=1

= gWeave
✓

⇣
gThread
✓ (M) ,M

⌘
, (4.1)

first mapping from the original molecule to a set of product formulae, gThread
✓ : M 7! {f i

}
n
i=1,

and then mapping from this set of formulae (and the original molecule) to the respective
intensities, gWeave

✓ : ({f i
}
n
i=1,M) 7! {(f i, yi)}

n
i=1 . The particularities of both functions are

described in detail below. The specific architectures and hyperparameters used are deferred
to the appendix; model code can be found at https://github.com/samgoldman97/ms-pred.

1We model and discuss uncharged molecules and formulae, despite mass spectrometry measuring the
masses of adduct ions. In practice, we reduce all molecules to uncharged candidates by simply shifting all
the spectra weights by the m/z of their respective adducts, which we assume to be equal to the (known)
adduct of the parent molecule.

2We assume singly charged adducts (as is common practice, [73]), such that masses and mass-to-charge
ratios are interchangeable.
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Figure 4.3: Illustration of the SCARF-Thread architecture. A. The formulae of the
product fragments can be represented using a prefix tree. SCARF-Thread predicts this
tree for new molecules at test time. It does so by expanding each node at a given depth
in parallel, treating the counts of subsequent elements as dependent only on the counts
of elements predicted so far (i.e., the prefix) and the original molecular structure. B. The
SCARF-Thread predictive task at the C7 node from the prefix tree diagram shown in A. Here
the network takes as input (i) an embedding of the overall molecule; (ii) a vector representing
the counts of each element in the prefix so far (counts yet to be predicted are represented
using a special token), (iii) the difference of the counts predicted so far from the precursor
molecule, and (iv) a one-hot representation of the element for which the counts are currently
being predicted. The network predicts which counts are valid next nodes in the prefix tree
(where counts that are greater than those in the original precursor molecular formula are
automatically masked out as invalid). See also Algorithm 9.

4.3.1 SCARF-Thread: Generating product formulae using prefix
trees

SCARF-Thread is tasked to learn a mapping to the set of product formulae, {f i
}
n
i=1, given

the original molecule. Naively, one might try to define this model autoregressively, predict-
ing the set formula by formula, chemical element by chemical element. However, such an
approach soon runs into a number of problems as (i) the predictions are not invariant to
set and ordering permutations; (ii) the time complexity of prediction would scale poorly,
being proportional to both the number of elements and number of product formulae (i.e.,
O(e⇥ n)); and (iii) the predictions would likely contain duplicates.

We therefore take a different approach using the insight that the set of all product
formulae can be compactly represented as a prefix tree (Figure 4.3A). In this tree, edges
at a given depth represent valid counts of a particular chemical element, which are often
identical across multiple product formulae (shown in the circles). By following each path
from the root node to the different leaf nodes, we can reconstruct each product formula (as
the orange dashed path does for a single product formula).
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We thus propose SCARF-Thread as an autoregressive generator to define a probability
distribution over such a prefix tree (Algorithm 9). We assume that each product formula is
a subset of the precursor formula, meaning that the precursor formula sets an upper bound
on the maximum number of each element3. At each node in the tree (corresponding to
a prefix f

0
<j), we pose the prediction of the set of child nodes (corresponding to the set

of valid counts of the subsequent element) as a multi-label binary classification problem
(Figure 4.3B). Concretely, we use a neural network module for this task, giving it as input
a context vector representing the node being expanded:

c0 = [gnn(M), counts(f
0

<j), counts(F � f
0

<j), one-hot(j)], (4.2)

where gnn(·) specifies a neural encoding of the molecular graph (Section 4.7.5), counts(·)
specifies a count-based encoding of the associated prefix (Section 4.7.5), and one-hot(·) spec-
ifies a one-hot encoding of the node’s depth (or equivalently, which element the predicted
count is for). In our experiments, we use a fixed ordering of the chemical elements (Section
4.7.2), but optimizing or even learning the tree construction order could be carried out [155].

Formulae as differences. Following [84], we find it helpful to not only parameterize
product formulae in terms of their element counts, but also in terms of the elements that
they have lost, i.e., their difference from the precursor formula. On the input side, this is
already covered by including in the context vector a count-based embedding of the prefix
formula minus the product formula (counts(F � f

0
<j)). However, on the output side this is

achieved by combining the probabilities of a “forward” and a “difference” network:

p(f
0

j = a|f
0

<j,M) = ↵a�
�
MLP

F (c0)
�
a
+ (1�↵)a�

�
MLP

D(c0)
�
Fj�a

, (4.3)

where MLP
F (·) and MLP

D(·) specify multi-layer perceptrons (MLPs) for predicting the prob-
ability of observing a count of a and a loss of Fj�a atoms respectively; ↵ is a variable (output
from a third, unshown network) deciding how to weight these predictions; and �(·) is the
element-wise sigmoid function.

4.3.2 SCARF-Weave: Predicting intensities given product formulae
Given the product formulae outputs from SCARF-Thread, SCARF-Weave predicts corre-
sponding intensities at each formula. This is a set-to-set problem, well suited for any equivari-
ant set2set architecture [156, Section 3.1]. In our experiments, we use a Set Transformer [91],
[92], which enables the model to consider all the formulae present in the mass spectrum (and
their possible interactions) when predicting final intensities.

We choose to represent formula in the set similarly to the context vectors used in SCARF-
Thread. For each input, we concatenate a vector embedding of the initial molecular graph
with count-based embeddings of the product formula and its difference from the precursor
formula (Figure 4.4). We again defer the particularities of the embedding functions to the
Appendix (Section 4.7.5).

3While it is possible for fragments to fuse together, potentially taking the count of a chemical element
over the number in the original precursor formula, we postpone the extension to modeling such rare events
to future work.
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Figure 4.4: The SCARF-Weave network, which takes in the product formulae
(e.g., predicted by SCARF-Thread) and predicts their intensities. We use a Set
Transformer architecture [91], such that our model takes in the details of the other product
formulae present when predicting intensities.

4.3.3 Training and inference
Provided with a dataset of molecules and formula-labeled mass spectra, we could train the
two components of SCARF separately. However, in practice we find it beneficial to first
train SCARF-Thread and then train SCARF-Weave on its outputs so that the distribution
the latter model sees is the same at training and prediction time. SCARF-Weave is trained
using a cosine loss (Section 9), as this most closely resembles the “retrieval” setting (Section
4.4.3).

SCARF-Thread is trained using the binary cross entropy losses associated with the multi-
label classification tasks at each non-leaf node in the prefix tree. We use teacher forcing,
i.e., we train on each level of the tree in parallel by conditioning on the ground-truth set
of prefixes at each stage. In our experiments, when generating the set of product formulae
from this model we always pick the top 300. Empirically, we find that this provides better
performance than picking a variable number based on a likelihood threshold.

4.4 Experiments

We evaluate SCARF on spectra prediction (Section 4.4.2) and molecule identification in a
retrieval task (Section 4.4.3).

4.4.1 Dataset
We train and validate SCARF on two libraries: a gold standard commercial tandem mass
spectrometry dataset, NIST20 [63], as well as a more heterogeneous public dataset, NPLIB1,
extracted from the GNPS database [28] by [57] and subsequently processed by [64]. We pre-
pare both datasets by extracting and preprocessing spectra, as well as filtering to compounds
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that (a) are under 1,500 Da (i.e., typically under 100 heavy atoms), (b) only contain prede-
fined elements, and (c) are only charged with common positive-mode adduct types (Section
4.4.1).

Overall, NIST20 contains 35,129 total spectra with 24,403 unique structures, and 12,975
unique molecular formulae; NPLIB1 contains 10,709 spectra, 8,553 unique structures and
5,433 unique molecular formulae. Both datasets are evaluated using a structure-disjoint
90%/10% train/test split with 10% of training data held out for validation, such that all
compounds in the test set are not seen in the train and validation sets.

Annotating spectra. We emphasize that SCARF can be trained with any product for-
mula annotations, which can be labeled [63] or inferred with varied computational strate-
gies [50]. Herein, we utilize the MAGMa algorithm [95]. In brief, for a given molecule-
spectrum pair in the training dataset, the molecule is combinatorially fragmented at each
atom up to a depth of 3 breakages to create sub-fragments. This creates a bank of possible
molecular formulae, and each peak in the spectrum is assigned to its nearest possible formula
within a mass difference of 20 parts-per-million.

4.4.2 Spectra prediction
Predicting product formulae (SCARF-Thread). SCARF-Thread is trained and used
to reconstruct prefix trees and evaluated by its ability to recover the ground truth product
formula set. The set of generated product formulae is rank-ordered by the probability of
each product formula and filtered to the top k predicted product formulae. The fraction
of ground truth formulae (22.29 peaks on average in NIST20) contained in the top k set is
computed as coverage.

We compare coverage achieved by SCARF-Thread to several baselines: (i) CFM-ID [73],
a fragmentation based approach (Section 4.7.3); (ii) a random baseline that samples product
formulae from a uniform distribution; (iii) a frequency baseline, which ranks product formulae
by the frequency the product formula candidate (or product formula difference) appears in
the training set; (iv) an LSTM autoregressive neural network baseline (Section 4.7.3) that
is trained to predict molecular formula vectors in sequence from highest to lowest intensity;
and two model ablations, (v) SCARF-Thread-D and (vi) SCARF-Thread-F, which only make
uni-directional elements difference or forward predictions of element counts respectively (i.e.,
↵ in Equation 4.3 is fixed to 0 for (v) and 1 for (vi)).

In general, SCARF-Thread starkly outperforms all baselines tested (Table 4.1). By
generating 300 peaks, SCARF-Thread is able to cover on average 91% and 72% of the true
formulae in the ground truth test set for NIST20 and NPLIB1 respectively. Our difference-
and forward-only directional prediction ablations demonstrate the benefits of modeling both
the atom counts for each element and the differences in counts from the original molecule.

Predicting mass spectra. We next evaluate the strength of SCARF-Weave for intensity
prediction on the same test dataset. We compare against five baselines: a fragmentation-
based approach, CFM-ID [73]; two NEIMS [84] binned prediction models (Section 4.7.3),
using either feed forward network modules (FFNs), as in the original work, or graph neural
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Table 4.1: Model coverage (higher better) of true peak formulae as determined by
MAGMa at various max formula cutoffs for the NIST20 and NPLIB1 datasets.
Best result for each column is in bold. Results are computed for a single test set; all re-
trained models (i.e., Autoregressive and SCARF variants) are averaged across three random
seeds.

Dataset NIST20 NPLIB1

Coverage @ 10 30 300 1000 10 30 300 1000

Random 0.009 0.026 0.232 0.532 0.004 0.014 0.126 0.336
Frequency 0.173 0.275 0.659 0.830 0.090 0.151 0.466 0.688
CFM-ID 0.197 0.282 – – 0.170 0.267 – –
Autoregressive 0.204 0.262 0.309 0.317 0.072 0.082 0.095 0.099

SCARF-Thread-D 0.248 0.425 0.839 0.941 0.158 0.284 0.681 0.856
SCARF-Thread-F 0.249 0.476 0.855 0.943 0.155 0.306 0.708 0.859
SCARF-Thread 0.308 0.552 0.907 0.968 0.164 0.309 0.724 0.879

network modules (GNNs) as in SCARF-Weave and described by [150]; a retrained variant
of 3DMolMS ([157]; Section 4.7.3), a binned spectrum predictor that utilizes a point cloud
neural network over a single molecular conformer input generated by RDKit [158]; and
FixedVocab, a formula prediction model that predicts intensities at a fixed library of formulae
and formulae differences inspired by GRAFF-MS ([152]; Section 4.7.3).

To enable fair comparison across models, we predict test spectra at 15k bins (0.1 bin
resolution between 0 and 1500) with a maximum of 100 peaks for each predicted molecule.
With the exception of CFM-ID, all models are hyperparameter optimized (Section 4.7.5),
retrained completely, and conditioned on the same covariate inputs as SCARF; such steps
lead to large performance boosts to the prior NEIMS method in particular. We evaluate the
quality of our predictions based upon four core criteria reflecting our original desiderata of
accuracy, physical-sensibleness, and speed:

1. Cosine sim.: Cosine similarity between the ground truth and predicted spectra, indi-
cating spectrum prediction accuracy.

2. Coverage: The fraction of ground truth spectrum peaks covered by the predicted
spectrum.

3. Valid : The fraction of predicted peaks that can be explained by a subformula (that
obeys basic ring-double bond equivalent heuristics [131]) of the predicted molecule.

4. Time (s): The wall time it takes (using a single CPU and no batched calculations) to
load the model and predict spectra for 100 randomly selected molecules.

SCARF is more accurate than all other approaches on NIST20, improving cosine sim-
ilarity over a GNN binned prediction approach by over 0.02 points in NIST20 and 0.01
in NPLIB1 (Table 4.2). Further, our method is more physically grounded insofar as all
predicted peaks are guaranteed to be valid subformulae, unlike the unconstrained binned
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Table 4.2: Spectra prediction in terms of cosine similarity, coverage (proportion
of ground-truth peaks that are covered by the top 100 non-zero predictions),
validity (the fraction of predicted peaks for which a chemically plausible expla-
nation is possible), and time. Best value in each column is typeset in bold (higher is
better for all metrics but time). Results are averaged across 3 random seeds on a single data
split for all retrainable models (i.e,. not CFM-ID).

Dataset NIST20 NPLIB1

Metric Cosine sim. Coverage Valid Cosine sim. Coverage Valid Time (s)

CFM-ID 0.412 0.278 1.000 0.377 0.235 1.000 1114.7
3DMolMS 0.510 0.734 0.945 0.394 0.507 0.919 3.5
FixedVocab 0.704 0.788 0.997 0.568 0.563 0.998 5.5
NEIMS (FFN) 0.617 0.746 0.948 0.491 0.524 0.949 3.9
NEIMS (GNN) 0.694 0.780 0.947 0.521 0.547 0.943 4.9

SCARF 0.726 0.807 1.000 0.536 0.552 1.000 21.1

approaches, where nearly 5% of peak predictions cannot be explained by a valid molecular
formula. Importantly, SCARF still operates 2 orders of magnitude faster than CFM-ID
(Table 4.2).

The heterogeneity, reduced dataset size, and increased average molecular weight (Figure
4.8) of NPLIB1 leads to substantially worse absolute performance across all models. Inter-
estingly, in this setting, the FixedVocab approach [152] performs better, perhaps because
the strict priors of formula constraints are more helpful with fewer and more challenging
training examples. We further stratify results by molecule size in Figure 4.7, showing that
all models are generally more accurate on smaller compounds. We additionally validate that
cosine similarity is not merely measuring a model’s ability to predict the parent mass peak
by computing a modified cosine similarity with the original molecule’s mass masked (Table
4.9).

4.4.3 Retrieval
A key application for forward spectrum prediction is to use predicted spectra to determine the
most plausible molecular structure assignment. We posit forward spectrum prediction models
should be particularly helpful in differentiating structurally similar molecules and design a
retrieval task to showcase such potential. For each test set molecule, we extract 49 potential
“decoy" options based upon the most structurally similar isomers (i.e., compounds with
the same precursor formula) within PubChem [128] as judged by Tanimoto similarity using
Morgan fingerprints. While retrieval could be conducted on the entirety of PubChem or other
similarly large molecular databases, we believe this subset retrieval setting is more practical
and better mirrors a real-world setting (see Section 4.7.4 for justification). We predict the
spectra for all molecules and rank them according to their similarity to the ground truth
spectrum, computing the accuracy for retrieval. Herein, we specifically emphasize models
and retrieval on the NIST20 dataset, as it is a much larger and higher quality dataset.

SCARF reaches a top 1 and top 5 retrieval accuracy in this task of 18.7% and 54.1%
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Figure 4.5: SCARF enables more accurate retrieval of ground truth molecules
within the NIST20 dataset. A. Average retrieval accuracy of SCARF at various top k
thresholds. Retrieval is conducted on the same test split, and retrieval accuracy is averaged
across models trained for three separate random seeds. B-C. Example spectrum predictions
made by SCARF (top) compared to the ground truth spectrum (bottom). Up to 5 predicted
peaks with the highest intensity are annotated with their molecular formula explanation
as predicted by SCARF. The full molecule is shown inset. Further examples are in the
Appendix (Figure 4.6).

respectively, representing an improvement over the methods with the second best top 1 ac-
curacy of 17.5% (NEIMS (GNN)) and top 5 accuracy of 52.2% (Fixed Vocab) (Figure 4.5A).
We highlight two example predictions from SCARF (Figure 4.5B-C), with additional ran-
domly sampled test set predictions shown in Figure 4.7.1. We repeat similar experiments
within NPLIB1, but find that cosine similarity performance is uncorrelated with relative
ranking performance; feed forward fingerprint based approaches are better at retrieval, de-
spite relatively weak cosine similarity (Section 4.7.1). FixedVocab [152] performs especially
well on NPLIB1, again likely due to the helpful biases imparted by constraining the formula
vocabulary.

This result underscores previous observations regarding how database and model biases
can skew retrieval results under certain settings [159]. That is, models may be more or less
robust for certain classes of molecules, so the composition of these classes in the retrieval
library may affect the retrieval accuracy accordingly. The observed discrepancy between
cosine similarity and retrieval performance can further be explained by the dataset shift
required for computing retrieval accuracy; cosine similarity is evaluated on “in-domain” data,
whereas retrieval relies also on accuracy on unlabeled data that may be “out-of-domain.”

4.5 Related Work

Forward vs backward models. Computational tools to identify mass spectra are often
divided into two categories: forward and backward models. Forward models, i.e., spectrum
predictors, such as SCARF or the methods discussed in Section 4.2, operate in the causal
direction and try to predict the spectrum given the molecule. Backward models start from
the spectrum and predict features or even full molecule structures. Early backward models
used heuristics, expert rules, and even neural networks [160]–[162]. Such approaches have
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more recently been augmented with kernel methods and more modern, deep representa-
tion learning techniques [53], [56], [64], [83]. These models are complementary to spectrum
predictors.

Mass spectra for proteomics. Although this paper has focused on small molecules,
similar trends of deep representation learning for mass spectra are also emerging in the
adjacent field of proteomics [163], with [164] recently proposing a benchmark challenge in
this domain. While small molecule and protein spectra are similar, proteomics spectra tend
to be more easily predicted as fragments are often formed at peptide bonds. We believe
adapting SCARF to this task would be an interesting direction for future work.

Neural set generation. Our work is also related to methods for modeling sets and mul-
tisets. SCARF-Thread generates a set as output, which has been studied elsewhere in the
context of n-gram generation [155], object detection [165], [166], and point cloud genera-
tion [167]. The product formulae sets we generate, however, are different to those considered
in these other task; in our setting, each member of the set (i.e., individual product formula)
represents a multiset of atom types (i.e., multiple carbons, multiple hydrogens, etc.) and is
constrained physically by the precursor formula.

4.6 Conclusion

In this paper we introduced SCARF, an approach utilizing prefix tree data structures to
efficiently decode mass spectra from molecules. By first predicting product formulae and then
assigning these formulae intensities, we are able to combine the advantages of previous neural
and fragment based approaches, providing fast and physically grounded predictions. We show
how these resulting predictions are both more accurate in predicting experimentally-observed
spectra and yield improvements in identifying a molecule’s structure from its respective mass
spectrum, as tested on a widely used dataset.

In term of limitations, our model is data dependent, as indicated by the relative per-
formance across the NIST20 and NPLIB1 datasets. SCARF is also highly reliant upon the
quality of product formula label assignment. The current commercial status of mass spec-
trometry training data poses a barrier to entry, and identifying high quality public domain
data is critical for future studies. A key contribution of this work is to retrain and optimize
the hyperparameters of competing methods on a publicly available dataset under equivalent
conditions to allow for future extensions. Directly training on a ranking-based loss or learn-
ing a model specific spectra distance function may be one way to improve upon our model’s
performance in the retrieval setting, and we outline additional potential ideas more explicitly
in Section 4.7.6.

Future directions will involve further developing SCARF for real world use cases such
as unknown metabolite elucidation in clinical samples. Specific directions will include more
carefully modeling covariates (e.g., collision energies and MS/MS instrument types), ground-
ing product formulae in molecular graph substructures, and utilizing such models to augment
inverse spectrum-to-molecule annotation tools.
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4.7 Additional Results

4.7.1 Extended results
We benchmark models in terms of retrieval accuracy as described (Section 4.4.3) for both the
NIST20 and NPLIB1 datasets (Table 4.3, 4.4). We recreate retrieval experiments using the
full PubChem retrieval library in Table 4.5. We reproduce main text results with standard
error values included in Tables 4.6, 4.7, and 4.8. We showcase additional spectra predictions
from our model trained on NIST20 in Figure 4.6.

Table 4.3: NIST20 spectra prediction retrieval top k accuracy for different values
of k. All values represent the mean across three separate random seeds ± the standard error
of the mean for a single test set.

top k 1 2 3 4 5 8 10

Random 0.026± 0.000 0.052± 0.001 0.076± 0.001 0.098± 0.001 0.120± 0.000 0.189± 0.001 0.233± 0.002
3DMolMS 0.055± 0.002 0.105± 0.000 0.146± 0.002 0.185± 0.004 0.225± 0.004 0.332± 0.003 0.394± 0.004
FixedVocab 0.172± 0.002 0.304± 0.002 0.399± 0.001 0.466± 0.004 0.522± 0.006 0.638± 0.005 0.688± 0.003
NEIMS (FFN) 0.105± 0.002 0.243± 0.006 0.324± 0.006 0.387± 0.006 0.440± 0.007 0.549± 0.005 0.607± 0.002
NEIMS (GNN) 0.175± 0.003 0.305± 0.001 0.398± 0.001 0.462± 0.002 0.515± 0.003 0.632± 0.003 0.687± 0.003

SCARF 0.187 ± 0.004 0.321 ± 0.006 0.417 ± 0.004 0.486 ± 0.004 0.541 ± 0.005 0.652 ± 0.004 0.708 ± 0.005

Table 4.4: NPLIB1 spectra prediction retrieval top k accuracy for different values
of k. All values represent the mean across three separate random seeds ± the standard error
of the mean for a single test set.

top k 1 2 3 4 5 8 10

Random 0.033± 0.001 0.061± 0.005 0.092± 0.003 0.118± 0.003 0.141± 0.006 0.216± 0.006 0.258± 0.006
3DMolMS 0.087± 0.001 0.159± 0.010 0.218± 0.004 0.268± 0.006 0.317± 0.006 0.427± 0.008 0.488± 0.005
FixedVocab 0.193± 0.003 0.314 ± 0.004 0.390 ± 0.003 0.448 ± 0.005 0.492 ± 0.001 0.587 ± 0.005 0.635± 0.006
NEIMS (FFN) 0.195 ± 0.003 0.313± 0.002 0.388± 0.003 0.447± 0.006 0.488± 0.002 0.585± 0.007 0.624± 0.010
NEIMS (GNN) 0.174± 0.007 0.285± 0.004 0.362± 0.002 0.422± 0.001 0.471± 0.002 0.586± 0.007 0.640 ± 0.005

SCARF 0.135± 0.007 0.242± 0.001 0.320± 0.001 0.389± 0.004 0.444± 0.002 0.569± 0.001 0.630± 0.008

Table 4.5: Retrieval accuracy on NIST20 for a single 500 molecule subset of the
test set using a library of 49 decoys or all decoys contained in PubChem (“None”).
Results were repeated for 3 random training seeds of the model and are shown ± the standard
error of the mean. The top value is shown in bold.

PubChem limit 50 None
Top k 1 2 3 1 2 3

FixedVocab 0.168± 0.003 0.308± 0.003 0.410± 0.005 0.145± 0.004 0.258 ± 0.004 0.323± 0.001
NEIMS (FFN) 0.102± 0.002 0.237± 0.003 0.315± 0.004 0.087± 0.003 0.183± 0.008 0.236± 0.007
NEIMS (GNN) 0.169± 0.003 0.300± 0.004 0.402± 0.005 0.138± 0.004 0.239± 0.005 0.312± 0.008

SCARF 0.204 ± 0.009 0.326 ± 0.005 0.432 ± 0.009 0.167 ± 0.003 0.258 ± 0.001 0.336 ± 0.003
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Figure 4.6: Example spectra predictions from the NIST20 dataset for 10 randomly
selected test molecules. The ground truth spectra are shown underneath in black, with
predictions above in teal. Molecules are shown inset.
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Table 4.6: Model coverage of true peak formulae as determined by MAGMa at
various max formula cutoffs for the NPLIB1 dataset. Results are calculated for a
single held out test split, shown ± the standard error of the mean across three random seeds
for all models that were retrained. The best value (i.e., highest) is typeset in bold for each
column.

Coverage @ 10 30 300 1000

Random 0.004 0.014 0.126 0.336
Frequency 0.090 0.151 0.466 0.688
CFM-ID 0.170 0.267 – –
Autoregressive 0.072± 0.001 0.082± 0.002 0.095± 0.001 0.099± 0.000

SCARF-D 0.158± 0.001 0.284± 0.003 0.681± 0.002 0.856± 0.002
SCARF-F 0.155± 0.002 0.306± 0.003 0.708± 0.003 0.859± 0.001
SCARF 0.164± 0.009 0.309 ± 0.014 0.724 ± 0.013 0.879 ± 0.004

4.7.2 Dataset preparation
NIST20 [63] is prepared by extracting all positive-mode experimental spectra collected in
higher-energy collision-induced dissociation (HCD) mode (i.e., collected on Orbitrap mass
spectrometers). Spectra are filtered, so that we keep only those for which the associated
molecule (M) has (i) a mass under 1,500 Da, (ii) contains only elements from a predefined
set (i.e,. C, N, P, O, S, Si, I, H, Cl, F, Br, B, Se, Fe, Co, As, Na, and K), and (iii)
is charged with common adduct types (i.e., [M+H]+, [M+Na]+, [M+K]+, [M-H2O+H]+,
[M+NH3+H]+, and [M-2H2O+H]+). Because non-standard empirical spectra databases [28]
often do not include the measured collision energies, we pool all collision energies for each
compound-adduct pairing to create a single spectrum. We refer the reader to Young et
al. [86] for detailed instructions for purchasing and extracting the NIST20 dataset.

All spectrum intensities are square-root transformed to provide higher weighting to lower
intensity peaks, normalized to a maximum intensity of 1 (i.e., through dividing by the
maximum intensity), filtered to exclude any noise peaks with normalized intensity under
0.003, and subsetted to only the top 50 highest intensity peaks. All peaks are mass-shifted
by the weight of the parent adduct (i.e,. if the spectrum is [M+H]+, the weight of a proton
is subtracted from each child peak).

Product formulae assignments

Because the precursor ion and adduct species are known for the training dataset, we subtract
the precursor adduct mass from every peak in the training set, and attempt to annotate each
peak with a plausible product formula (i.e., a subset of the true precursor formula).

We opt to constrain the training product formulae to be subsets of contiguous heavy
atoms of the parent molecule as derived with the MAGMa algorithm [95].

We note two important limitations of these heuristics. First, by using molecular sub-
structures to annotate product formulae, our model is less prone to correctly identifying
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Table 4.7: Model coverage of true peak formulae as determined by MAGMa at
various max formula cutoffs for the NIST20 dataset. Results are calculated for a
single held out test split, shown ± the standard error of the mean across three random seeds
for all models that were retrained. The best value (i.e., highest) is typeset in bold for each
column.

Coverage @ 10 30 300 1000

Random 0.009 0.026 0.232 0.532
Frequency 0.173 0.275 0.659 0.830
CFM-ID 0.197 0.282 – –
Autoregressive 0.204± 0.001 0.262± 0.002 0.309± 0.005 0.317± 0.006

SCARF-D 0.248± 0.001 0.425± 0.002 0.839± 0.002 0.941± 0.001
SCARF-F 0.249± 0.001 0.476± 0.002 0.855± 0.000 0.943± 0.001
SCARF 0.308 ± 0.002 0.552 ± 0.001 0.907 ± 0.002 0.968 ± 0.001

complex rearrangements. Second, it is also possible for adduct switching to occur. Namely,
if the precursor ion has a sodium adduct ([M+Na]+), some of the product formulae may
actually switch and acquire a hydrogen adduct instead. We assume no adduct switching in
our formulation, instead focusing on the novelty of the prefix tree decoding approach, as
these represent data labeling challenges, rather than modeling challenges.

In addition, any predictive models of product formulae distributions will more closely
predict spectra that would be produced on instrumentation similar to the training sets
utilized [148], [149]. Given this, we encourage users of such models to treat these predictions
as putative, rather than experimentally valid.

Dataset statistics

To probe the composition of our two primary datasets, we investigate both the molecular
weight and chemical classes contained in the NPLIB1 and NIST20 datasets. We find that
the average molecular weight is higher for NPLIB1 (Figure 4.8A), consistent with the in-
creased complexity of natural product molecules. We additionally compute chemical classes
of the compounds using NPClassifier [101] to identify the types of compounds present in
both datasets (Figure 4.8B-C). NPLIB1 is enriched for steroids, coumarins, and various
complex alkaloid natural products. On the other hand, NIST20 is enriched for small pep-
tides, nicotinic acid alkaloids, and pseudoalkaloids, among others. While these descriptions
are helpful to identify the dataset composition, chemical compound classification is itself a
learned classification and should be interpreted cautiously.

4.7.3 Baselines
We further describe select baseline models.
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Figure 4.7: Cosine similarity of predicted spectra stratified by properties. Results
are stratified across molecular weight for both NPLIB1 (A) and NIST20 (B). We further
stratify results across putative chemical classes of input molecules using NPClassifier [101]
for both NPLIB1 (C) and NIST20 (D). The dotted line indicates the average predictive
cosine similarity of SCARF across all examples and averaged over three random splits.

Figure 4.8: Spectra dataset molecule characterizations. A. Distribution of the molec-
ular weight of compounds across NPLIB1 and NIST20. B-C. Chemical classes contained
in NPLIB1 (B) and NIST20 (C) with the top 15 classes shown and all others grouped in
‘Other’. Chemical classes are computed using NPClassifier [101].
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Table 4.8: Spectra prediction in terms of cosine similarity, coverage (proportion of
ground-truth peaks that are covered by the top 100 non-zero predictions), valid-
ity (the fraction of predicted peaks for which a chemically plausible explanation
is possible), and time. Best value in each column is typeset in bold (higher is better
for all metrics but time). Values are shown ± the standard error of the mean computed
across three random seeds on a single test set for all models that could be retrained (i.e., not
CFM-ID).

Dataset NIST20 NPLIB1

Cosine sim. Coverage Valid Cosine sim. Coverage Valid Time (s)

CFM-ID 0.412± 0.000 0.278± 0.000 1.00 ± 0.000 0.377± 0.000 0.235± 0.000 1.00 ± 0.000 1114.7
3DMolMS 0.510± 0.000 0.734± 0.001 0.94± 0.001 0.394± 0.002 0.507± 0.001 0.92± 0.000 3.5
FixedVocab 0.704± 0.000 0.788± 0.000 1.00 ± 0.000 0.568 ± 0.002 0.563 ± 0.001 1.00 ± 0.000 5.5
NEIMS (FFN) 0.617± 0.000 0.746± 0.001 0.95± 0.001 0.491± 0.002 0.524± 0.001 0.95± 0.000 3.9
NEIMS (GNN) 0.694± 0.000 0.780± 0.000 0.95± 0.001 0.521± 0.002 0.547± 0.003 0.94± 0.001 4.9

SCARF 0.726 ± 0.001 0.807 ± 0.000 1.00 ± 0.000 0.536± 0.007 0.552± 0.008 1.00 ± 0.000 21.1

Table 4.9: Spectra prediction accuracy comparing inclusion (Cosine sim.) and
exclusion (Cosine sim. (no MS1)) of the precursor mass. For all compounds, the
peak at the mass of the input compound is masked in the prediction and ground truth to
compute Cosine sim. (no MS1). All results represent an average on a single test set across
three random seeds.

Dataset NIST20 NPLIB1
Cosine sim. Cosine sim. (no MS1) Cosine sim. Cosine sim. (no MS1)

CFM-ID 0.412 0.289 0.377 0.326
3DMolMS 0.510 0.517 0.394 0.390
FixedVocab 0.704 0.637 0.568 0.505
NEIMS (FFN) 0.617 0.557 0.491 0.454
NEIMS (GNN) 0.694 0.620 0.521 0.477

SCARF 0.726 0.663 0.536 0.466

CFM-ID baseline

CFM-ID [73] is a long standing and important approach to fragmentation prediction. Be-
cause CFM-ID is fit using a time intensive EM training approach on an analogous dataset,
we utilize the pretrained Docker implementation provided by the authors in line with [152].
CFM-ID has two options for predicting molecules in either positive or negative adduct mode
with hydrogen adducts (i.e., [M+H]+ or [M-H]-). To directly compare to our method, we pre-
dict spectra in positive mode and remove hydrogens from all predicted peaks, as all training
peaks are shifted by removing their adducts.

CFM-ID also produces predictions at three collision energies (i.e., low , medium, or high
fragmentation). Because we opt not to include these, we merge these predictions and re-
normalize the result to a maximum of 1.
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Table 4.10: NIST20 retrieval accuracy averaged across three random seeds of
model training stratified by the weight of the target molecule.

Dataset NIST20
Molecular weight 0 - 200 200 - 300 300 - 400 400 - 500 500 - 600 600 - 700 700 - 2000
Num. compounds 624 1358 900 387 129 56 89

Random 0.024 0.021 0.027 0.025 0.031 0.048 0.101
3DMolMS 0.039 0.041 0.057 0.077 0.070 0.125 0.199
FixedVocab 0.143 0.184 0.168 0.172 0.196 0.220 0.161
NEIMS (FFN) 0.110 0.122 0.092 0.078 0.111 0.083 0.064
NEIMS (GNN) 0.155 0.192 0.164 0.182 0.147 0.214 0.161

SCARF 0.191 0.211 0.165 0.163 0.168 0.161 0.169

Autoregressive baseline

When considering the task of generating spectrum formulae candidates, we compare SCARF-
Thread to an autoregressive recurrent neural network baseline, which is based around a long
short term memory (LSTM) module [168].

The LSTM generates formulae consecutively from a single concatenated encoding of the
input molecule and input full formula. At each step in the recurrent process, a one-hot
encoding of the previous predicted element count is concatenated to a one-hot encoding of
the element type being predicted in the current step. By embedding this information into the
network, we can avoid predicting element types that do not appear in the parent molecule’s
molecular formula. If the parent molecular formula has 5 element types, each autoregressively
predicted formula requires generating only 5 element type counts; this eliminates the need for
a stop condition between each formula. Formulae are generated autoregressively, from highest
to lowest intensity. When predicting the counts of the next element type, we employ the
same difference and forward count prediction strategy as used in SCARF for fair comparison.
The model is trained with a cross entropy loss and full hyperparameters are listed in Table
4.12.

NEIMS baseline

NEIMS [84] is a highly efficient binned spectrum prediction approach, originally developed
for gas chromatography-mass spectra (GC-MS). To enable a fair comparison, we optimize
its hyperparameters on our dataset and add higher resolution bins. Furthermore, we also
train a graph neural network-based version “NEIMS (GNN)” (in addition to the network
that more closely matches [84]’s original model and operates on the molecular fingerprint,
“NEIMS (FFN)”). The adduct type is either concatenated to all atom features—as for NEIMS
(GNN)—or to the fingerprint vector—as for NEIMS (FFN).

3DMolMS baseline

3DMolMS [157] is a binned spectrum prediction approach developed simultaneously to this
work. Unlike the other binned NEIMS approach, 3DMolMS utilizes a point-based deep
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neural network model operating on the point cloud of an input molecule. To project a 2D
molecule or SMILES string into 3D space, a single 3D conformer is first generated using
RDKit [158]. After several 3D convolutions, the atom-wise representations are pooled, co-
variates corresponding to the settings of the machine and experiment are concatenated, and
the result is projected into a fixed length binned spectrum.

To enable a fair comparison, we copy the 3DMolMS architecture into our modeling frame-
work with minor tweaks to the network. Rather than use variable sized hidden layers, we
fix hidden layer sizes to a single value across convolutions. In addition, we only use the
covariate of the adduct type for consistency with our model, excluding collision energy and
instrument type. We hyperparameter optimize the model independently. We find that the
performance of this model is substantially lower than the NEIMS baseline, likely due to the
additional use of the “difference” prediction module in the NEIMS approach that allows the
network to predict intensities at both fragments and neutral losses.

FixedVocab baseline

Concurrently to our work, Murphy, Jegelka, Fraenkel, et al. introduce an alternative formula
prediction strategy for mass spectrum prediction, a model they term GRAFF-MS [152].
Unlike SCARF, GRAFF-MS utilizes a fixed vocabulary of molecular formulae and molecular
formula differences, predicting intensities at each such value without learning to encode the
formulae. These formulae and formula differences are selected in a greedy fashion based
upon their frequency in the training set.

Because no code was released for this approach at the time this work was conducted,
we reimplement a variant of their approach that emphasizes the use of a fixed vocabulary
of formulae and differences. For methodological consistency, we utilize equivalent formula
annotations as used by SCARF (i.e., one annotation per peak), do not model collision ener-
gies or instrument types, and utilize the same graph encoder as SCARF for encoding each
molecule. We treat the number of fragment and difference formulae as a tunable hyperpa-
rameter (which is optimized along with the rest of the hyperparameters – see Section 4.7.5).
We mask all invalid formulae and differences and utilize a cosine similarity loss with the
original spectrum to train the model. To convert predicted formula and difference intensi-
ties into a binned spectrum, each formula-intensity pairing is projected into its respective
binned position using a scatter max calculation. We note that because alternative adducts
and isotopes are not labeled in our preprocessing step, we do not predict isotopic or adduct
variants for each fragment.

Given the differences between codebases, it is possible that the performance of our reim-
plementation does not exactly match the original implementation, and we instead refer to it
as “FixedVocab” rather than GRAFF-MS in table presentations. An earlier version of our
work understated the FixedVocab model’s performance due to an implementation decision
along these lines (specifically, not including the “0” neutral loss as a predicted vocabulary
entry). This has since been rectified, increasing the accuracy of the FixedVocab model.
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4.7.4 Retrieval subsets vs. PubChem
We restrict our retrieval experiments in Section 4.4.3 to only the top 49 decoys per test case
for two reasons. First, from a practical perspective, running the forward model on every
isomer match in PubChem (approx. thousands each, >1,000,000 for only 500 test cases)
makes benchmarking across all considered models substantially more challenging both for
this work and also future work. Second, we also believe that this top 50 challenge represents a
more realistic setting. In practice, retrieval compound libraries will often be carefully crafted
and designed to contain molecules similar to the unknown molecule rather than all possible
isomers (using either prior knowledge or “backward” models such as CSI:FingerID [53] and
MIST [64]). We conduct a side-by-side analysis on a small 500 molecule subset of the test
set comparing the setting described above (with 49 decoys) to a setting with no limit on the
number of decoys. The results are shown in Table 4.5, showing that SCARF still performs
well in this setting.

4.7.5 Model details
Here, we describe details of our model’s training setup, architecture, and hyperparameters
that were omitted from the main text. Definitive details can also be found in the code at
https://github.com/samgoldman97/ms-pred.

Training

We train each of our models on a single RTX A5000 NVIDIA GPU (CUDA Version 11.6),
making use of the Torch Lightning [140] library to manage the training. SCARF-Thread
and SCARF-Weave take on the order of 1.5 and 2.5 hours of wall time to train respectively.

Molecule encoding

Within both SCARF-Thread and SCARF-Weave, a key component is an encoding of the
molecular graph using a message passing graph neural network, gnn(M). Such graph neural
network models are now well described [169]–[171], so we will skip a detailed explanation
of them here. In our experiments, we use gated graph sequence neural networks [172]. We
made use of the implementation of this network in the DGL library [173] and use as atom
features those shown in Table 4.11 (which are computed using RDKit [158] or DGL [173]).

Molecular formulae representations

When forming representations of formulae (including formulae prefixes) we use a count-based
encoder, counts(f). This encoder takes in as input the counts of all individual elements in the
formula (which also can be “undefined” for counts of elements not yet specified – indicated
as ‘⇤’ in Figure 4.3B) and returns a vector representation in Rd. The encoder is based
upon the Fourier feature mapping proposed by [139], but using only sin basis functions (to
reduce the number of parameters required by our networks). [139] has shown that such
features perform better than encoding integers directly; furthermore, compared to learned
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Table 4.11: Graph neural network (GNN) atom features.

Name Description

Element type one-hot encoding of the element type
Degree one-hot encoding of number of bonds atom is associated with
Hybridization type one-hot encoding of the hybridization (SP, SP2, SP3, SP3D, SP3D2)
Charge one-hot encoding of atom’s formal charge (from -2 to 3)
Ring-system binary flag indicating whether atom is part of a ring
Atom mass atom’s mass as a float
Chiral tag atom’s chiral tag as one-hot encoding
Adduct type one-hot encoding of the adduct ion
Random walk embed steps positional encodings of the nodes computed using DGL

representations, using Fourier features enables us (at least in principle) to deal with counts
at test time that have not been seen during training.

To be precise, each possible count, v 2 N0, is encoded by our counts-based encoder into
the vector:

abs

✓
sin

✓
2⇡v

T1

◆
, sin

✓
2⇡v

T2

◆
, sin

✓
2⇡v

T3

◆
, . . .

�◆
,

where the periods (T1, T2, etc.) are set at increasing powers of two that enable us to
discriminate all possible element counts given in the input, and abs(·) is the absolute value
function such that we get positive embeddings. For the “undefined” count we learn a separate
encoding of the same dimensionality.

Further details of SCARF-Thread

Pseudo-code for the SCARF-Thread model is shown in Algorithm 9. Note that the second
for loop (on the line marked ‡) does not depend on previous iterations of the loop, so that
in practice we perform this computation in parallel. At training time we use teacher forcing
(Section 4.3.3), meaning the first for loop (marked †) is only run sequentially at inference
time.

The function scarf-thread-net(·) represents the network shown in Figure 4.3B and gener-
ates the set of subsequent valid element counts given a prefix (i.e., the child nodes of a given
prefix node). As discussed in the main text, we treat this as a multi-label binary classifica-
tion task and predict the binary label for each possible count using forward and difference
MLPs (Equation 4.3). We fix a maximum possible element count (i.e., the number of pos-
sible classes in this classification problem), N = 160. We do not allow product formulae to
have more of a given element than is present in the precursor formula, F , and we achieve
this by setting the probability of these classes to zero.

Further details of SCARF-Weave

As discussed in the main text, SCARF-Weave is based off [91]’s Set Transformer. After
forming the input encoding using the molecule and count-based encoder (Section 4.7.5 &
Section 4.7.5), we further refine this embedding using an MLP (multi-layer perceptron)
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Algorithm 4.7.1: Pseudo-code for SCARF-Thread, which generates prefix
trees from a root node autoregressively, one level at a time.
Data: Input molecule, M, with corresponding input formula, F .
Result: Set of product formulae, ⇢e = {f i

}
n
i=1.

1 hM  gnn(M) ; . Form embedding of precursor molecule.

2 ⇢0  {⇤} ; . Store the set of initial prefixes which is just the undefined formula, ⇤.

3† for j 2 [1, . . . , e] do . Loop over all possible elements.

4 ⇢j  { } ; . Create the set of prefixes the next time around.

5 hj  one-hot(j) ; . Encoding of which element we are predicting the count of.

6‡ for f
0
<j 2 ⇢j�1 do (in parallel) . Loop over all current prefixes.

7 c0 = [hM, counts(f
0
<j), counts(F � f

0
<j),hj] ; . Create context vector, Equation 4.2

8 {f i0
j }

n0
i0=1  scarf-thread-net(c0,F) ; . Predict the set of valid next element counts under this

prefix.

9 ⇢j  ⇢j [ create-new-prefixes(f
0
<j, {f

i0
j }

n0
i0=1) ; . Create new prefixes for the next element.

return ⇢e

network. The output of this is passed into a series of l3 Transformer [92] layers (Section 4.7.5
defines the exact number used in the experiments) with 8 attention heads each.

We use a cosine distance loss to train the parameters of SCARF-Weave. This loss is also
used for the FFN and GNN baselines (Table 4.2). To ensure consistency with the baselines,
we first project the output of SCARF-Weave into a binned histogram representation (Section
4.7.5 defines the number of bins used); for each bin we take the max intensity across all
applicable formulae. Given a predicted binned spectra, ŝ, and the ground-truth binned
spectra, s, the cosine distance is defined as the negative of the cosine similarity (computed
using PyTorch’s torch.cosine_similarity function [174]):

cos-sim (ŝ, s) =
ŝ · s

max (kŝk2ksk2, ✏)
, (4.4)

where ✏ = 1⇥ 10�8 is used to ensure numerical stability.

Hyperparameters

To enable fair comparison across models, hyperparameters were tuned for SCARF, the FFN
binned prediction baseline, and the GNN binned prediction baseline. Parameters were tuned
using RayTune [124] with Optuna [123] and an ASHAScheduler. Each model was allotted
50 different hyperoptimization trials for fitting. Models were hyperparameter optimized on
a smaller 10, 000 spectra subset of NIST20. Parameters are detailed in Table 4.12.

4.7.6 Limitations and future work
We outline several potential directions for future work to address limitations of this work.

1. Improving the gold standard training annotation pre-processing. Because SCARF is
flexible in that it can match distributions of formula assignments, a key step to im-
proving and building upon this approach is to develop more robust assignments of
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formula to training spectra. This includes adding complexity and removing potential
assumptions, such as allowing annotations to account for rearrangement, elimination,
or charge transfer. A second goal is to identify potentially low quality training spectra,
such as ones that emerge from mixtures, and remove these from the inputs. Another
potential way to handle such cases would be to model each spectrum peak as an en-
semble of potential equivalent-mass formulae, which would be particularly helpful in
relating SCARF to inverse models such as MIST [64] in which the structure of the
molecule and formula identity of each peak cannot be known a priori.

2. Incorporating other model covariates. Incorporating collision energy features explicitly
into the model, as well as negative-ion mode inputs, will increase its usability. This
could be enabled by aggregating public data containing these annotations.

3. Featurizing molecule inputs using different or more powerful molecular encoders. Re-
cent and simultaneous work to this used a pretrained graph encoder as part of a binned
spectrum prediction approach, MassFormer [86]. It is possible to include more powerful
molecule or formula encoders into SCARF.

4. Consideration of interpretability by subgraph attribution and combination with ICE-
BERG, which appears in Chapter 5. Following this initial work, we developed a second
model, ICEBERG [145], that uses a similar two step modeling approach, but instead
encodes fragments, not formula. This increases accuracy and robustness, especially for
retrieval, but substantially slows the model. In comparison to ICEBERG, SCARF still
has several benefits including speed, the lack of required substructure labeling, and
ability to capture potential skeletal rearrangements of molecules (i.e., discontinuities
in structure that may not be possible to model by only breaking bonds). An open ques-
tion and exciting opportunity in the future is to combine these two levels of abstraction
and make formula-level predictions with graph-level attribution or featurization.

5. Retrieval-specific loss functions to enhance retrieval performance. A significant finding
of this work was the noise associated with the retrieval task and lack of correlation with
spectrum prediction performance as measured by cosine similarity. Future work may
consider how to more directly define loss functions that reflect the task of retrieval.

Table 4.12: Model and baseline hyperparameters.

Model Parameter Grid Value

Autoregressive learning rate [1e� 4, 1e� 3] 0.0009
learning rate scheduler - StepDecay (5,000)
learning rate decay [0.7, 1.0] 0.85
dropout {0.0, 0.1, 0.2, 0.3} 0.2
hidden size, d {128, 256, 512} 512
gnn layers [1, 6] 1
rnn layers [1, 3] 3
batch size {8, 16, 32, 64} 64
weight decay {0, 1e� 6, 1e� 7} 1e� 6
use differences (Eq.4.3) {True, False} True

133



Table 4.12 – continued from previous page

Model Parameter Grid Value

conv type - GatedGraphConv
random walk embed steps (Table 4.11) [0,20] 20
graph pooling {mean, attention} mean

NEIMS (FFN) learning rate [1e� 4, 1e� 3] 0.00087
learning rate scheduler - StepDecay (5,000)
learning rate decay [0.7, 1.0] 0.722
dropout {0.0, 0.1, 0.2, 0.3} 0.0
hidden size, d {64, 128, 256, 512} 512
layers, l {1, 2, 3} 2
batch size {16, 32, 64, 128} 128
weight decay {0, 1e� 6, 1e� 7} 0
use differences (Eq.4.3) {True, False} True
num bins (Section 9) - 15, 000

NEIMS (GNN) learning rate [1e� 4, 1e� 3] 0.00052
learning rate scheduler - StepDecay (5,000)
learning rate decay [0.7, 1.0] 0.767
dropout {0.0, 0.1, 0.2, 0.3} 0.0
hidden size, d {64, 128, 256, 512} 512
layers, l [1, 6] 4
batch size {16, 32, 64} 64
weight decay {0, 1e� 6, 1e� 7} 1e� 7
use differences (Eq.4.3) {True, False} True
num bins (Section 9) - 15, 000
conv type - GatedGraphConv
random walk embed steps (Table 4.11) [0,20] 19
graph pooling {mean, attention} mean

3DMolMS learning rate [1e� 4, 1e� 3] 0.00074
learning rate scheduler - StepDecay (5,000)
learning rate decay [0.7, 1.0] 0.86
dropout {0.0, 0.1, 0.2, 0.3} 0.3
hidden size, d {64, 128, 256, 512} 256
layers, l [1, 6] 2
top layers [1, 3] 2
neighbors, k [3, 6] 5
batch size {16, 32, 64} 16
weight decay {0, 1e� 6, 1e� 7} 1e� 6
num bins (Section 9) - 15, 000

FixedVocab learning rate [1e� 4, 1e� 3] 0.00018
learning rate scheduler - StepDecay (5,000)
learning rate decay [0.7, 1.0] 0.92
dropout {0.0, 0.1, 0.2, 0.3} 0.3
hidden size, d {64, 128, 256, 512} 512
layers, l [1, 6] 6
batch size {16, 32, 64} 64
weight decay {0, 1e� 6, 1e� 7} 1e� 6
num bins (Section 9) - 15, 000
conv type - GatedGraphConv
random walk embed steps (Table 4.11) [0,20] 11
graph pooling {mean, attention} mean
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Table 4.12 – continued from previous page

Model Parameter Grid Value

formula library size {1000, 5000, 10000, 25000, 50000} 5000

SCARF-Thread learning rate [1e� 4, 1e� 3] 0.000577
learning rate scheduler - StepDecay (5,000)
learning rate decay [0.7, 1.0] 0.894
dropout {0.0, 0.1, 0.2, 0.3} 0.3
hidden size, d {128, 256, 512} 512
mlp layers, l1 [1, 3] 2
gnn layers, l2 (Section 4.7.5) [1, 6] 4
batch size {8, 16, 32, 64} 16
weight decay {0, 1e� 6, 1e� 7} 1e� 6
use differences (Eq.4.3) {True, False} True
conv type - GatedGraphConv
random walk embed steps (Table 4.11) [0,20] 20
graph pooling {mean, attention} mean

SCARF-Weave learning rate [1e� 4, 1e� 3] 0.00031
learning rate scheduler - StepDecay (5,000)
learning rate decay [0.7, 1.0] 0.962
dropout {0.0, 0.1, 0.2, 0.3} 0.2
hidden size, d {128, 256, 512} 512
mlp layers, l1 (Section 9) [1, 3] 2
gnn layers, l2 (Section 4.7.5) [1, 6] 3
transformer layers, l3 (Section 9) [0, 3] 2
batch size {4, 8, 16, 32, 64} 32
weight decay {0, 1e� 6, 1e� 7} 0
num bins (Section 9) - 15, 000
conv type - GatedGraphConv
random walk embed steps (Table 4.11) [0,20] 7
graph pooling {mean, attention} attention
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Chapter 5

Generating Mass Spectra as
Substructure Sets by Breaking Bonds

This work has previously been made available as a preprint S. Goldman, J. Li, and C. W.
Coley, “Generating Molecular Fragmentation Graphs with Autoregressive Neural Networks,”
arXiv preprint arXiv:2304.13136, 2023. It is undergoing revisions and reproduced here with
minor changes to the initially released preprint. I led this work’s conceptualization, im-
plementation, and writing, with input and support from co-authors. Co-author Janet Li
was essential in initializing this project, as she worked on a variant of this idea during an
undergraduate senior thesis that I mentored and supervised.

5.1 Introduction

Identifying unknown molecules in complex metabolomic or environmental samples is of criti-
cal importance to biologists [67], forensic scientists [175], and ecologists alike [18]. Tandem
mass spectrometry, MS/MS, is the standard analytical chemistry method for analyzing such
samples, favored for its speed and sensitivity [68]. In brief, MS/MS metabolomics experi-
ments isolate, ionize, and fragment small molecules, resulting in a characteristic spectrum
for each where peaks correspond to molecular sub-fragments (Figure 5.1A). Importantly,
these experiments are high throughput, leading to thousands of detected spectra per single
experiment for complex samples such as human serum.

The most straightforward way to identify an unknown molecule from its fragmentation
spectrum is to compare the spectrum to a library of known standards [29]. However, spec-
tral libraries only contain on the order of 104 compounds—a drop in the bucket compared to
the vast size of biologically-relevant chemical space, oft cited as large as 1060 [176]. Of the
many tandem spectra deposited into a large community library, 87% still cannot be anno-
tated [29]. The accurate prediction of mass spectra from molecular structures would enable
these libraries to be augmented with hypothetical compounds and significantly advance the
utility of mass spectrometry for structural elucidation. This paradigm of comparing un-
known spectra to putative spectra is well established in the adjacent field of proteomics due
to the ease of predicting protein fragmentations [177].

Because tandem mass spectrometry experiments physically break covalent bonds in a
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Figure 5.1: ICEBERG enables the prediction of tandem mass spectra by efficiently
navigating the space of possible fragmentation events. A. Example experimental
mass spectrum. An input molecule, benzocaine, is depicted entering a mass spectrometer
collision cell and fragmenting. The observation of the resulting charged fragments results in a
characteristic spectrum. B. A combinatorial mass spectrum simulation. The root molecule,
benzocaine, is iteratively fragmented by removing atoms or breaking bonds, resulting in
a large fragmentation tree. Heuristic rules score nodes in the tree to predict intensities.
C. ICEBERG spectrum simulation. ICEBERG learns to generates only the most relevant
substructures. After generating fragments, a neural network module scores the resulting
fragments to predict intensities.
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process known as “collision-induced-dissociation” (CID) to create fragments, simulating such
fragmentation events computationally is a natural strategy for prediction. Tools from the last
decade including MetFrag [71], MAGMa [95], and CFM-ID [51], [73] use fragmentation rules
(based on removing atoms or bonds) and local scoring methods to (a) enumerate molecular
fragmentation trees and (b) estimate the intensity at each node in the tree with a mix of
heuristic rules and statistical learning (Figure 5.1B).

However, these combinatorial methods are computationally demanding and often make
inaccurate predictions by overestimating the possible fragments (Figure 5.1B, bottom). We
recently found CFM-ID to be far less accurate than black-box neural networks [130], an
observation separately confirmed by Murphy, Jegelka, Fraenkel, et al. [152]. Further, current
learned fragmentation models are not easily adapted or scaled to new datasets; Murphy,
Jegelka, Fraenkel, et al. estimate it would take the leading fragmentation approach, CFM-
ID [73], approximately three months on a 64-core machine to train on an approximately
300,000 spectrum dataset.

Alternative strategies that utilize black box neural networks to predict MS/MS spectra
have been attempted. They encode an input molecule (i.e,. as a fingerprint, graph, or 3D
structure) and predict either a 1D binned representation of the spectrum [84], [86], [150],
[157], or a set of output formulae corresponding to peaks in the spectrum [130], [152], [153].
While we have demonstrated that predicting molecular formulae provides a fast, accurate,
and interpretable alternative to binned representation approaches [130], the improved accu-
racy surprisingly did not directly translate to better database retrieval for complex natural
product molecules contained within the Global Natural Products Social (GNPS) database
[28]. We hypothesized that combining the flexibility of neural networks to learn from ex-
perimental MS/MS data in reference libraries with the structural-bias of combinatorial frag-
mentation approaches could lead to increased prediction performance on complex natural
product molecules.

Herein, we introduce a hybrid strategy for simulating molecular fragmentation graphs us-
ing neural networks, Inferring Collision-induced-dissociation by Estimating Breakage Events
and Reconstructing their Graphs (ICEBERG). ICEBERG is a two-part model that simulates
probable breakage events (Generate) and scores the resulting fragments using a Transformer
architecture (Score) (Figure 5.1C; details in Figure 5.2). Our core computational contribu-
tion is to leverage previous exhaustive cheminformatics methods for the same task, specif-
ically MAGMa [95], in order to build a training dataset, from which our model learns to
make fast estimates prioritizing only likely bond breakages. In doing so, we lift MAGMa and
previous bond-breaking approaches into a neural network space with demonstrable benefits
in performance.

We evaluate ICEBERG on two datasets: NPLIB1 (GNPS data [28] as used to train the
CANOPUS model [57]) and NIST20 [63], which test the model’s ability to predict both
complex natural products and small organic standard molecules, respectively. We find that
ICEBERG increases cosine similarity of predicted spectra by over 0.05, a 10% improvement
over a recent state of the art method on NPLIB1 data. When used to identify molecules
in retrospective retrieval studies, ICEBERG leads to a 46% improvement in top 1 retrieval
accuracy on a challenging natural product dataset compared to the next best model tested.
ICEBERG is fully open-sourced with pretrained weights alongside other existing prediction
baseline methods available on GitHub at https://github.com/samgoldman97/ms-pred.
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5.2 Methods

5.2.1 Datasets
We train our models on the two datasets, NIST20 [63] as generated by the National Institute
of Standards and NPLIB1 extracted from the GNPS database [28] and prepared previously
by Dührkop, Nothias, Fleischauer, et al. [57] and Goldman, Wohlwend, Stražar, et al. [64] For
each spectrum in the dataset, we first merge all scans at various collision energies, combine
peaks that are within 10�4 m/z tolerance from each other, renormalize the resulting spectrum
by dividing by the maximum observed intensity, and take the square-root of each intensity.
We subset the resulting spectrum to keep the top 50 peaks with intensity above 0.003. This
normalization process is identical to our previous work [130] and emphasizes (a) removing
peaks that are likely noise and (b) combining various collision energies. We refer the reader
to [130] for exact details on dataset extraction.

To further normalize the dataset, for each spectrum, we subtract the mass of the adduct
ion from each resulting MS2 peak. Concretely, the precursor molecule is ionized with an
adduct ion, for instance, H+. In this case, the mass of each peak in the spectrum is
shifted by the mass of H+ before proceeding further. In doing so, we normalize against
different ionizations. While adduct switching is possible, we note that this is a rarer phe-
nomenon and can be easily interchanged at the data preprocessing step. We make the
simplifying assumption that all peaks are singly charged and use mass and m/z inter-
changeably. Ultimately, each spectrum Y can be considered a set of mass, intensity tuples,
Y = {(m0, y0), (m1, y1), . . . (m|Y|, y|Y|)}.

5.2.2 Canonical DAG construction
We build a custom re-implementation of the MAGMa algorithm [95] to help create explana-
tory directed acyclic graphs (DAGs) for each normalized and adduct-shifted spectrum.

Given an input molecule M, MAGMa iteratively breaks each molecule by removing
atoms. Each time an atom is removed, multiple fragments may form, from which we keep all
fragments of > 2 heavy (non-hydrogen) atoms. To prevent combinatorial explosion of DAG
nodes, we use a Weisfeiler-Lehman isomorphism test [178] to generate a unique hash ID of
each generated fragment and reject new fragments with hash IDs already observed. When
conducting this test, to remain insensitive to how this fragment originated, we hash only the
atom identities and bonds in the fragment graph, not the number of hydrogen atoms. For
instance, consider an ethane fragment in which the terminal carbon was originally double-
bonded to a single neighboring atom in the precursor molecule compared to an ethane
fragment in which the terminal carbon was single-bonded to two adjacent atoms in the
original precursor— our approach applies the same hash ID to both fragments. The molecular
formula and hydrogen status for the fragment is randomly selected from the fragments that
required the minimal number of atom removals. Each fragment corresponds to multiple
potential m/z observations due to the allowance for hydrogen shifts equal to the number of
broken bonds.

After creating the fragmentation graph for M, a subset of the fragments are selected to
explain each peak in Y , using the minimum mass differences of under 20 parts-per-million as

140



the primary filter and the minimal MAGMa heuristic score as a secondary filter. We include
nodes along all paths back to the root molecule for each selected fragment. To prune the
DAG to select only the most likely paths to each fragment, we design a greedy heuristic.
Starting from the lowest level of the DAG, we iteratively select the parent nodes for inclusion
into the final DAG that “cover” the highest number of peak-explaining nodes. Finally, the
“neutral loss” fragments are added into the DAG, as they provide useful training signals for
ICEBERG Generate to learn when to stop fragmenting each molecule.

5.2.3 Model details
DAG generation prediction Using the ground truth DAG as described above, we train
a neural network, ICEBERG Generate, to reconstruct the DAG from an input molecule and
adduct type. Concretely, our model learns to predict for each fragment, S(i), the probability
that it will fragment at the jth atom:

p
⇣
F [S(i)

j ]|S(i),M, C
⌘
= gGenerate

✓ (M,S(i), C)j (5.1)

To make this atom-wise prediction, we encode information about the root molecule,
fragment molecule, their difference, their respective molecular formulae, the adduct, and
the number of bonds that were broken between the root molecule and fragment. To embed
the root molecule, we utilize a gated graph neural network [172], GNN(M), where either
average or weighted summations are used to pool embeddings across atoms (specified by
a hyperparameter). We utilize the same network to learn representations of the fragment,
GNN(S(i)) and define GNN(S(i))j as the graph neural network-derived embedding of fragment
i at the jth atom prior to pooling operation. For all graph neural networks, a one-hot encoding
of the adduct type is also added as atom-wise features alongside the bond types and atom
types. We define the molecular formula f for each DAG fragment and specify an encoding,
Enc, using the Fourier feature scheme defined in [130]. We encode the root and ith node of
the fragmentation DAG as Enc(f0) and Enc(fi), respectively. Lastly, we define a one hot
vector for the number of bonds broken, b.

All the encodings described above are concatenated together and a shallow multilayer
perceptron (MLP) ending with a sigmoid function is utilized to predict binary probabilities
of fragmentation at each atom.

p
⇣
F [S(i)

j ]|S(i),M, C
⌘
= MLP

⇣
[GNN(M),GNN(M)� GNN(S(i)),

GNN(S(i))j,Onehot(b),Enc(fi),Enc(f0 � fi)
⇤⌘ (5.2)

The model is trained to maximize the probability of generating the DAG by minimizing
the binary cross entropy loss over each atom for every fragment in an observed spectrum.

DAG intensity prediction The trained Generate module is used to generate DAGs for
each input molecule in the training set. In this generation step, molecules are iteratively
fragmented beginning with the root M and the probability of each fragment is computed
autoregressively. We define the node indices for an ordering from each fragment S(i) back to
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the root node through its highest likelihood path ⇡[i], where ⇡[i, j] defines the jth node on
this factorization path.

p(S(i)
|M, C) = p(S(i)

|S
(⇡([i,1]),M, C)

|⇡[i]|Y

j=1

p(S(⇡[i,j])
|S

(⇡[i,j+1]),M, C) (5.3)

At each step, we maintain only the top 100 most likely fragments in the DAG as a practical
consideration until reaching the maximum possible fragmentation depth. To further reduce
complexity in the inference step, we maintain the highest scoring isomer from the DAG. This
resulting set of fragments is featurized and passed to a Set Transformer module to generate
output values at each fragment. Following the notation from the generative model, we
featurize each individual fragment with a shallow MLP to generate hidden representations,
hi:

hi = MLP

⇣
[GNN(M),GNN(M)� GNN(S(i)),GNN(S(i)),

Onehot(b),Enc(fi),Enc(f0 � fi)
⇤⌘ (5.4)

These are subsequently jointly embedded with a Transformer module and used to predict
unnormalized intensity weights at each possible hydrogen shift � alongside an attention
weight ↵ to determine how heavily to weight each prediction for its specified hydrogen shift.
To compute the attention weight, we take a softmax over all prediction indices that fall into
the same intensity bin (0.1 resolution), M(i, �):

ŷ(i)� = MLPinten

⇣
Transformer(h0, h1, h2, . . . , h|T |)i

⌘

�
, (5.5)

↵(i)
� = Softmaxk2M(i,�)

�
MLPattn

�
Transformer(h0, h1, h2, . . . , h|T |)k

��
i,�

(5.6)

The final intensity prediction for the bin at mass m is then a then a weighted sum over
all predictions that fall within this mass bin followed by a sigmoid activation function:

ŷm = �
⇣X

i

X

�

↵(i)
� ŷ(i)� I[M(i, �) = m]

⌘
(5.7)

The model is trained to maximize the cosine similarity between the predicted spectrum
and ground truth spectrum.

Model training All models are implemented and trained using Pytorch Lightning [140],
the Adam optimizer [141], and the DGL library [173]. Ray [124] is used to complete hyper-
parameter optimizations over all models and baselines. Models are trained on a single RTX
A5000 NVIDIA GPU (CUDA Version 11.6) in under 3 hours for each module. A complete
list of hyperparameters and their definition can be found in the Supporting Information.
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5.2.4 Baselines
A key component of this work is to extend our robust comparison to previous and contempo-
rary methods [130]. To conduct this benchmarking and specifically emphasize methodological
differences rather than data differences, we port and modify code from a number of previous
methods including NEIMS [84], NEIMS with a graph neural network [150] 3DMolMS [157],
SCARF [130] (Chapter 4), a modified version of GRAFF-MS we refer to as FixedVocab [152],
MassFormer [86], and CFM-ID [51] into a single GitHub repository.

Following our previous approach in [130], we emphasize conditioning on the same ex-
perimental settings of adduct type across methods for fair comparison, excluding collision
energies and instrument types as extensions for future work. We rigorously hyperparameter
optimize each method for our data regime and train each model on data splits with the
exception of CFM-ID for which retraining is not feasible [86], [130], [152].

All model predictions are transformed into binned representations for fair evaluation at a
bin resolution of 0.1 from mass 0 to 1, 500 Da. Further details are included in Section 5.5.2.

5.3 Results

5.3.1 ICEBERG is trained as a two-stage generative and scoring
model

Learning to generate likely substructures. ICEBERG simulates a mass spectrum by
generating the substructure fragments from an initial molecule that are most likely to be
generated by collision induced dissociation and subsequently measured in the mass spec-
trometer. We define an input molecule M (benzocaine example shown in Figure 5.2A) and
its observed spectrum Y , which is a set of intensities at various mass-to-charge values (m/z),
termed peaks. Each peak represents one or more observed molecular fragment.

A core question is then how to generate the set of potential fragments. These fragments
can be sampled from the many possible substructure options, S(i)

2 (N (i), E(i)) ✓M, where
the set of nodes and edges in substructures are subsets of the atoms and bonds in the
original molecule, M 2 (N,E). Most often, this sampling is accomplished by iteratively and
exhaustively removing edges or atoms from the molecular graph, creating a fragmentation
graph T 2 (S, E), where all the nodes in this graph are themselves substructures of the
original molecule S = {S

(0),S(1), . . .S(|T |)
} ( [71], [73], [95]) (Figure 5.1b). However, such a

combinatorial approach leads to thousands of molecular fragments, making this procedure
slow and complicating the second step of estimating intensity values for all enumerated
fragments.

We eschew combinatorial generation and instead leverage a graph neural network to
parameterize breakage events of the molecule, defining the Generate module of ICEBERG
(Figure 5.2A,B). Generate predicts the fragmentation graph iteratively, beginning with just
the root of the graph S

(0) = M, borrowing ideas from autoregressive tree generation [179],
[180]. At each step in iterative expansion, the model gGenerate

✓ assigns a probability of frag-
mentation to each atom j in the current substructure fragment S

(i), p(F [S(i)
j ]). Learned

atom embeddings are concatenated alongside embeddings of the root molecule and and a
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Figure 5.2: Overview of ICEBERG. A. The target fragmentation directed acyclic graph
(DAG) for an example molecule M, benzocaine. Fragments are colored in black with missing
substructures in gray. B. Example illustration for the generative process at a single step
in the DAG generation predicting subfragments of S(2). The root molecule M, fragment of
interest S

(2), and context vector C are encoded and used to predict fragment probabilities
at each atom of the fragment of interest. A sample disconnection is shown at atom a2,
resulting in fragment S

(7). C. ICEBERG Score module. Fragments generated from A are
encoded alongside the root molecule. A Set Transformer module predicts intensities for
each fragment, allowing mass changes corresponding to the loss or gain of hydrogen atoms,
resulting in the final predicted mass spectrum.

context vector C containing metadata such as the ionization adduct type in order to make
this prediction. An illustrative example can be seen for fragment S

(2) in Figure 5.2B. Atom
a2 has the highest predicted probability, so this atom is then removed from the graph, leading
to the subsequent child node S

(7) (Figure 5.2B). Importantly, the number of child fragments
is determined by how many disjoint molecular graphs form upon removal of the jth node
from the molecular graph; in this example, fragments S(1) and S

(4) originate from the same
fragmentation event of S(0) (Figure 5.2A).

In this way, ICEBERG predicts breakages at the level of each atom, following the con-
vention of MAGMa [95] rather than each bond as is the convention with CFM-ID [73]. We
strategically use this abstraction to ensure that all fragmentation events lead to changes in
heavy-atom composition. We acknowledge that this formulation does not currently allow for
the prediction of skeletal rearrangements and recombinations, which might further improve
the model’s ability to explain fragmentation spectra. We refer the reader to Section 5.2.3
for a full description of the model gGenerate

✓ (M,S(i), C)j, graph neural network architectures,
and context vector inputs.
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While this defines a neural network for generation, we must also specify an algorithm
for how to train this network. Spectral library datasets contain only molecule and spec-
trum pairs, but not the directed acyclic graph (DAG) T of the molecule’s substructures
that generated the spectrum. We infer an explanatory substructure identity of each peak
for model training by leveraging previous combinatorial enumeration methods, specifically
MAGMa [95]. For each training molecule and spectrum pair, (M,Y), we modify MAGMa
to enumerate all substructures of M up to a depth of 3 sequential fragmentation events.
We filter enumerated structures to include only those with m/z values appearing in the final
spectrum, thereby defining a dataset suitable for training ICEBERG Generate (see Section
5.2.2). As a result, each paired example (M,Y), in the training dataset is labeled with an
estimated fragmentation DAG. Generate learns from these DAGs to generate only the most
relevant and probable substructures for a molecule of interest (see Section 5.2.3).

Predicting substructure intensities. After generating a set of potential substructure
fragments, we employ a second module, ICEBERG Score, to predict their intensities (Fig-
ure 5.2C). Importantly, this design decision enables our models to consider two important
physical phenomena: (i) neutral losses and (ii) mass shifts due to hydrogen rearrangements
and isotope effects.

Because we elect to fragment molecules at the level of atoms (see Section 5.2.3), multiple
substructures can result from a single fragmentation event. In physical experiments, not all
of these substructure fragments will be observed; when fragmentation events occur in the
collision cell, one fragment often retains the charge of the parent while the other is uncharged
and therefore undetected, termed a “neutral loss”. By deferring prediction of intensities to a
second module, Generate needs not predict or track whether structures are ionized, greatly
reducing the complexity of the fragmentation DAG.

In addition to the occurrence of neutral losses, molecules often undergo complex rear-
rangements in the collision cell, leading to bond order promotions or reductions (e.g., spurious
formation of double bonds when a single bond breaks to maintain valence), the most clas-
sic of which is the McLafferty rearrangement [148], [181]. While other approaches attempt
to model and estimate where these rearrangements occur using hand-crafted rules [73], we
instead adopt the framework of Ridder, Hooft, and Verhoeven [95] to consider hydrogen tol-
erances. That is, for each generated molecular substructure S

(i) we consider the possibility
that this fragment is observed not only at its mass, but also at masses shifted by discrete
hydrogen masses, ±�H. This design choice also simplifies Generate by deferring specifica-
tion of hydrogen counts to the second model. In addition to accounting for a mass shift of
1 hydrogen, such flexibility also allows the model to predict the common M+1 isotopes for
carbon- and nitrogen- containing compounds.

Mathematically, we define a neural network, gScore✓ that predicts multiple intensities for
each fragment ŷ(i)� corresponding to different hydrogen shifts, �:

ŷ(i)� = gScore✓ (M,S(i), T , C)� (5.8)

In practice, we predict up to 13 intensities at each fragment (i.e., {+0H,±1H, . . . ,±6H}).
For each individual subfragment, the tolerance is further restricted to the number of bonds
broken, most often less than 6. We then take the masses of all fragments, perturb them by
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the corresponding hydrogen or isotope shifts, and aggregate them into a set of unique m/z
peaks by summing the intensities of perturbed fragments with the same m/z value.

To consider all fragments simultaneously in a permutation-invariant manner, gScore✓ is
parameterized as a Set Transformer network [91], [92]. We train this second module to max-
imize the cosine similarity between the ground truth spectrum and the predicted spectrum
after converting the set of substructures and intensities to m/z peaks.

Figure 5.3: ICEBERG predictions are highly accurate. A. Cosine similarities to true
spectra on NPLIB1 (left) and NIST20 respectively (right) for CFM-ID [73], 3DMolMS [157],
FixedVocab [152], NEIMS (FFN) [84], NEIMS (GNN) [150], MassFormer [86], SCARF [130],
and ICEBERG. Error bars represent 95% confidence intervals using the standard error of
the mean across three random seeds on a single test set split. B. Time required to predict
spectra for 100 molecules randomly sampled from NIST20 on a single CPU, including the
time to load models into memory. C,D. Comparison of NPLIB1 and NIST20 molecules in
terms of synthetic accessibility (SA) score [182] and molecular weight (Mol. weight).

At test time, we generate the top 100 most likely fragments from ICEBERG Generate
and predict intensities for these fragments and their possible hydrogen shifts using ICE-
BERG Score. We find this tree size allows our model to consider sufficiently many potential
fragments while maintaining a speed advantage over previous fragmentation approaches.

5.3.2 ICEBERG enables highly accurate spectrum prediction
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Figure 5.4: Examples of predicted spectra from ICEBERG. Predictions are shown
as generated by ICEBERG trained on NPLIB1 for select test set examples GNPS:
CCMSLIB00003137969 (A), MoNA: 001659 (B), and GNPS: CCMSLIB00000080524 (C). The
input molecular structures are shown (left); fragmentation spectra are plotted (right) with
predictions (top, blue) and ground truth spectra (bottom, black). Molecular fragments are
shown inset. Spectra are plotted with m/z shifted by the mass of the precursor adduct. All
examples shown were not included in the model training set.
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We evaluate ICEBERG on its ability to accurately simulate positive ion mode mass
spectra for both natural product like molecules and smaller organic molecules under 1,500
Da. Using the data cleaning pipeline from [130], we compile a public natural products
dataset NPLIB1 with 10,709 spectra (8,533 unique structures) [28], [57], [64] as well as a
gold standard chemical library NIST20 with 35,129 spectra (24,403 unique structures) [63].
We note that NPLIB1 was previously named ‘CANOPUS’, renamed here to disambiguate
the data from the tool CANOPUS [57]. Both datasets are split into structurally disjoint
90%/10% train-test splits, with 10% of the training data reserved for model validation (see
Section 5.2.1). We compare ICEBERG against an expansive suite of contemporary and
competitive methods [73], [84], [86], [130], [150], [152], [157]; all methods excluding CFM-ID
are reimplemented, hyperparameter optimized, and trained on equivalent data splits, further
described in the Supporting Information.

To measure performance, we calculate the average cosine similarity between each pre-
dicted spectrum and the true spectrum, as cosine similarity is widely used to cluster mass
spectra in molecular networking [69]. We find that ICEBERG outperforms the next method
MassFormer on the natural product focused dataset (Figure 5.3A; Table 5.3). ICEBERG
achieves an average cosine similarity of 0.627, compared to MassFormer with cosine similarity
of 0.568—a 10% improvement.

Surprisingly, however, this boost in performance extends only marginally to the gold
standard dataset, NIST20. ICEBERG, while still outperforming binned spectrum predic-
tion approaches (i.e., NEIMS [84]) on this dataset, is nearly equivalent to SCARF (0.727 v.
0.726) [130]. Still, our model performs substantially better than CFM-ID and uses only a
fraction of the computational resources (Figure 5.3B). Unlike previous physically inspired
models, because ICEBERG only samples the most relevant fragments from chemical space,
it requires just over 1 CPU second per spectrum.

We hypothesize that the discrepancy in performance improvement between NPLIB1 and
NIST20 may be partially explained by differences in the chemical spaces they cover. Many
molecules within NPLIB1 are natural products with more complicated chemical scaffolds.
To characterize this, we analyzed the distributions for both the synthetic accessibility (SA)
score [182], [183] (Figure 5.3C) and molecular weight (Figure 5.3D), both proxies for molec-
ular complexity. In concordance with our hypothesis, we find that SA scores and molecular
weight are substantially higher on NPLIB1 than NIST20: NPLIB1 has an average SA score
of 3.75, compared to 3.01 for NIST20; the datasets have average molecular weights of 413
Da and 317 Da respectively.

5.3.3 Model predictions are interpretable
In addition to accurate predictions, a key benefit of simulating fragmentation events is that
predictions are interpretable, even for highly complex molecules. Each predicted peak from
ICEBERG is directly attributed to a fragment of the predicted molecule.

By inspecting certain patterns and examples, we find expected broken bonds. Weaker
bonds such as carbon-oxygen and carbon-nitrogen bonds tend to more reliably break, com-
pared to carbon-carbon bonds and more complex ring breakages (Figure 5.4A). A second
strength of using fragmentation-based models can be seen in Figure 5.4B, where despite the
heteroaromatic ring structures, our model is still able to correctly predict peak intensities
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Figure 5.5: ICEBERG enables improved spectrum retrieval over other methods
on both NPLIB1 (A) and NIST20 (B) compared to other spectrum prediction
models. Top k retrieval accuracy is computed by ranking a list of 49 additional candidates
by putative cosine similarity as predicted by the model and determining the fraction of times
that the true molecule is within the first k entries. A 95% confidence interval across three
random model training seeds is shaded.

by predicting a small number of carbon-nitrogen breakages.
Further alignment can be seen within the intensity prediction module. Because ICE-

BERG predicts multiple intensities for each substructure corresponding to hydrogen shifts,
2 peaks can be present when a single bond breaks. In fragmentation example of Figure 5.4A,
the most intense peak is estimated at the mass shift of �1H from the original fragment, in-
dicating that ICEBERG correctly recognizes the hydroxyl group will likely leave as neutral
H2O and result in a hydrogen rearrangement.

5.3.4 Fragmentation simulations lead to improved structural eluci-
dation

We next demonstrate that ICEBERG improves the structural elucidation of unknown molecules
using reference libraries of model-predicted spectra. We design a retrospective evaluation
using our labeled data to resemble the prospective task of spectrum lookup within libraries.
For each test spectrum, we extract up to 49 “decoy” isomers from PubChem [128] with
the highest Tanimoto similarity to the true molecular structure. The consideration of up
to 50 isomers mimics the realistic elucidation setting, as an unknown spectrum can yield
clues regarding certain properties of its source molecule (e.g., computed using MIST [64],
CSI:FingerID [53], or molecular networking [69]), which narrows the chemical space of pos-
sible molecules to a smaller, more relevant set. We predict the fragmentation spectrum for
each isomer and, for each model, we rank these possible matches by their spectral similarity
to the spectrum of interest and compute how often the true molecule is found within the top
k ranked isomers for different values of k.

We find that ICEBERG improves upon the next best model by a margin of 9% accuracy
(a nearly 46% relative improvement) in top 1 retrieval accuracy for the NPLIB1 dataset
(Figure 5.5A; Table 5.5). Previous models with high spectrum prediction accuracies have
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Table 5.1: Comparing the accuracy of spectrum prediction on NIST20 using ran-
dom (easier) or scaffold (harder) split.

NIST20 Cosine sim.

Random split Scaffold split

CFM-ID 0.412 0.411
3DMolMS 0.510 0.466
FixedVocab 0.704 0.658
NEIMS (FFN) 0.617 0.546
NEIMS (GNN) 0.694 0.643
MassFormer 0.721 0.682
SCARF 0.726 0.669

ICEBERG 0.727 0.699

struggled on this task due to their poor ability to differentiate structurally similar isomers
[130]. Our structure-based model appears to excel in retrieval and may have out-of-domain
robustness beneficial to this task.

While the effect for top 1 retrieval accuracy on the NIST20 dataset is not pronounced
(i.e., tied with MassFormer), ICEBERG outperforms the next best model by an absolute
margin of over 5%, a 7.5% relative improvement at top 10 accuracy (Figure 5.5B, Table 5.4).
These results underscore the real world utility of ICEBERG to identify unknown molecules
of interest.

5.3.5 Challenging test splits better explain retrieval performance
The strong performance on the retrieval task, particularly for increasing values of k on
NIST20, suggests that ICEBERG is able to generalize well to decoys not appearing in the
training set and to account for how structural changes should affect fragmentation patterns.
While encouraging, we observed only minor increases in cosine similarity accuracy when
predicting spectra using NIST20 (Figure 5.3, Table 5.2).

To try to explain this apparent discrepancy, we reevaluate prediction accuracy on a more
challenging dataset split. We retrain all models on the NIST20 utilizing a Murcko scaffold
split of the data [42] with smaller scaffold clusters (i.e., more unique compounds) placed in
the test set. This split enforces that molecules in the test set will be more distant and less
similar to the training set, probing the ability of each model to generalize in a more stringent
setting than our previous random split.

In the more strict scaffold split evaluation, the improved accuracy of ICEBERG over ex-
isting models is striking (Table 5.1). We find that ICEBERG outperforms MassFormer and
SCARF by 0.017 and 0.03– 2% and 4% improvements respectively. These results suggest
that, particularly for standard libraries with more homogeneous molecules, more challenging
scaffold split evaluations may yield performance metrics that better correlate with perfor-
mance on the structural elucidation problem (retrieval).
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5.4 Discussion

We have proposed a physically-grounded mass spectrum prediction strategy we term ICE-
BERG. From a computational perspective, this integration of neural networks into fragmen-
tation prediction is enabled by (a) bootstrapping MAGMa to construct fragmentation trees
on which our model is trained, (b) posing the tree generation step as a sequential prediction
over atoms, and (c) predicting multiple intensities at each generated fragment with a second
module in order to account for hydrogen rearrangements and isotopic peaks. By learning to
generate fragmentation events, ICEBERG is able to accurately predict mass spectra, yield-
ing especially strong improvements for natural product molecules under evaluation settings
of both spectrum prediction and retrieval.

ICEBERG establishes new state of the art performance for these tasks, yet there are
some caveats we wish to highlight. First, while we learn to generate molecular substructures
to explain each peak, there are no guarantees that they are the correct physical explanations
given the number of potential equivalent-mass atom and bond rearrangements that could
occur. Second, while we achieve increased accuracy, this comes at a higher computational
cost of roughly 1 CPU second per molecule, nearly an order of magnitude more than other
neural approaches like SCARF [130]. Future work will consider more explicitly how to
synergize fragment- and formula- prediction approaches to achieve higher accuracy and speed.
In addition to model architecture modifications, we anticipate model accuracy improvements
from modeling other covariates such as collision energy, instrument type, and even jointly
modeling MS/MS with other analytical chemistry measurements such as FTIR [184].

The discovery of unknown metabolites and molecules is rapidly expanding our knowledge
of potential medical targets [13], the effects of environmental toxins [19], and the diversity of
biosynthetically accessible chemical space [185]. We envision exciting possibilities to apply
our new model to expand the discovery of novel chemical matter from complex mixtures.

5.5 Additional Results

We include a complete set of all model results and metrics (i.e., Cosine similarity, coverage,
validity, and time for 100 spectrum predictions) in Tables 5.2 and 5.3. Interestingly, while
cosine similarity is higher for ICEBERG on nearly all evaluations, the fraction of peaks in
the ground truth spectrum explained by the predicted spectrum, coverage, does not increase.
We posit that the more strict and rigid fragment-grounding causes our model to miss certain
lower intensity peaks. In doing so, however, the model is able to maintain higher accuracy.

We note that not all predicted fragments are valid, as a very small fraction of predicted
fragments fail the RDBE molecualr formula test [131] when hydrogen shifts are considered.

Full results for retrieval are shown for NIST20 and NPLIB1 and in Tables 5.4 and 5.5
respectively.

5.5.1 Graph neural network details
ICEBERG relies upon graph neural network embeddings of the molecule GNN(M). Given
the widespread use and descriptions of such models, we refer the reader to Li, Tarlow,
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Table 5.2: Spectra prediction accuracy on NIST20, and NIST20 (scaffold split).
Results are shown for CFM-ID [73], 3DMolMS [157], FixedVocab [152], NEIMS (FFN) [84],
NEIMS (GNN) [150], MassFormer [86], SCARF [130], and ICEBERG. Cosine similarity is
calculated at a bin resolution of 0.1 m/z; Coverage indicates the fraction of peaks in the
ground truth spectrum explained by the predicted spectrum on average; Valid indicates the
fraction of predicted peaks that can be explained as a subset of the precursor molecule’s
molecular formula (filtered to formulae with ring-double bond equivalents of greater or equal
to zero); Time (s) indicates the number of seconds required to predict 100 random spectra
from NIST20 on a single CPU including the time to load the model. Values are shown ± 95%
confidence intervals of the mean across three random seeds for the random split. Scaffold
split experiments are only repeated once and shown without confidence intervals. The best
value in each column is typeset in bold.

Dataset NIST20 (Random split) NIST20 (Scaffold split)

Metric Cosine sim. Coverage Valid Cosine sim. Coverage Valid Time (s)

CFM-ID 0.412± 0.000 0.278± 0.000 1.00 ± 0.000 0.411 0.272 1.00 1114.7
3DMolMS 0.510± 0.001 0.734± 0.002 0.94± 0.002 0.466 0.707 0.97 3.5
FixedVocab 0.704± 0.001 0.788± 0.001 1.00 ± 0.000 0.658 0.785 1.00 5.5
NEIMS (FFN) 0.617± 0.001 0.746± 0.002 0.95± 0.001 0.546 0.717 0.96 3.9
NEIMS (GNN) 0.694± 0.001 0.780± 0.001 0.95± 0.001 0.643 0.766 0.97 4.9
MassFormer 0.721± 0.004 0.790± 0.006 0.93± 0.006 0.682 0.789 0.96 7.7
SCARF 0.726± 0.002 0.807 ± 0.001 1.00 ± 0.000 0.669 0.807 1.00 21.1

ICEBERG 0.727 ± 0.002 0.754± 0.002 1.00 ± 0.000 0.699 0.771 1.00 82.2

Brockschmidt, et al. [172] for a description of the gated graph neural networks we employ.
We utilize the DGL library [173] to implement and featurize molecular graphs. Because
our fragmentation method relies upon iteratively removing atoms, we often have molecular
fragments with incomplete valence shells that would not be parsed by RDKit [158]. As such,
we opt for a more minimal set of atom and bond features described in Table 5.7 .

5.5.2 Additional baseline details
We compare ICEBERG to three classes of spectrum prediction models: binned prediction
models that encode a molecule and output a single fixed length discretized spectrum vector,
fragmentation prediction models such as ICEBERG that directly learn to fragment and break
the input molecule, and formula prediction models that predict molecular formula peaks
and corresponding intensities. We briefly describe each model used below, emphasizing the
novelty of their contribution.

For all baselines that utilize 2D graph neural networks that are not pretrained (i.e,.
NEIMS (GNN)), SCARF, and FixedVocab), we utilize a common graph neural network
base architecture consisting of gated graph neural network message passing steps as in ICE-
BERG (Section 5.5.1) [172]. Baseline GNNs are provided with a wide range of atom features
including element type, the degree of each atom, hybridization type, formal charge, a binary
flag denoting whether the atom is in a ring-system, atomic mass as a floating point value, a
one hot encoding of the chiral tag, the type of the atom, and a random walk embedding step.
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Table 5.3: Spectra prediction accuracy on NPLIB1. Results are shown for CFM-
ID [73], 3DMolMS [157], FixedVocab [152], NEIMS (FFN) [84], NEIMS (GNN) [150], Mass-
Former [86], SCARF [130], and ICEBERG. Cosine similarity is calculated at a bin resolution
of 0.1 m/z; Coverage indicates the fraction of peaks in the ground truth spectrum explained
by the predicted spectrum on average; Valid indicates the fraction of predicted peaks that
can be explained as a subset of the precursor molecule’s molecular formula (filtered to for-
mulae with ring-double bond equivalents of greater or equal to zero). Values are shown ±

95% confidence intervals as measured by three random seeds on a single test split. The best
value in each column is typeset in bold.

Dataset NPLIB1

Metric Cosine sim. Coverage Valid

CFM-ID 0.377± 0.000 0.235± 0.000 1.00 ± 0.000
3DMolMS 0.394± 0.004 0.507± 0.001 0.92± 0.001
FixedVocab 0.568± 0.003 0.563± 0.002 1.00 ± 0.000
NEIMS (FFN) 0.491± 0.003 0.524± 0.002 0.95± 0.001
NEIMS (GNN) 0.521± 0.003 0.547± 0.005 0.94± 0.001
MassFormer 0.568± 0.004 0.573 ± 0.009 0.95± 0.003
SCARF 0.536± 0.013 0.552± 0.016 1.00 ± 0.000

ICEBERG 0.627 ± 0.002 0.549± 0.003 1.00 ± 0.000

All models tested are provided the same set of experimental covariates: a onehot vector cor-
responding to the adduct type. For graph models, this is concatened as an atom level feature,
whereas in other models, it is concatenated to the intermediate hidden representation.

Binned prediction

1. NEIMS (FFN): Wei, Belanger, Adams, et al. [84] encode a fingerprint representation of
a molecule with a feed forward neural network and predict a fixed dimensional discrete
binned output vector. In addition to predicting a fragment vector, Wei, Belanger,
Adams, et al. also predict the mass differences from the precursor ion as an independent
vector and combine the two outputs with a learned, weighted sum. Originally trained
on EI mass spectrometry, we replicate this approach on our datasets of ESI mass
spectra.
Key hyperparameters are whether or not to use mass differences in the output pre-
diction, the number of feed forward layers, hidden size, and dropout between hidden
layers.

2. NEIMS (GNN): Zhu, Liu, and Hassoun [150] extend the NEIMS model to utilize graph
neural networks instead of feed forward networks applied to fingerprints. We utilize
our default graph neural network layer scheme described above, emphasizing that the
novelty of this contribution is to switch to a 2D graph neural network encoder from

153



Table 5.4: NIST20 spectra retrieval top k accuracy for different values of k, ± a
95% confidence interval across three random seeds on the same test set.

Top k 1 2 3 4 5 8 10

Random 0.026± 0.001 0.052± 0.001 0.076± 0.002 0.098± 0.001 0.120± 0.001 0.189± 0.003 0.233± 0.004
3DMolMS 0.055± 0.003 0.105± 0.000 0.146± 0.005 0.185± 0.007 0.225± 0.009 0.332± 0.005 0.394± 0.008
FixedVocab 0.172± 0.004 0.304± 0.004 0.399± 0.002 0.466± 0.007 0.522± 0.012 0.638± 0.009 0.688± 0.006
NEIMS (FFN) 0.105± 0.003 0.243± 0.012 0.324± 0.013 0.387± 0.011 0.440± 0.014 0.549± 0.010 0.607± 0.005
NEIMS (GNN) 0.175± 0.005 0.305± 0.003 0.398± 0.002 0.462± 0.004 0.515± 0.005 0.632± 0.007 0.687± 0.005
MassFormer 0.191 ± 0.008 0.328± 0.006 0.422± 0.003 0.491± 0.002 0.550± 0.005 0.662± 0.005 0.716± 0.003
SCARF 0.187± 0.008 0.321± 0.011 0.417± 0.007 0.486± 0.008 0.541± 0.009 0.652± 0.008 0.708± 0.009

ICEBERG 0.189± 0.012 0.375 ± 0.005 0.489 ± 0.007 0.567 ± 0.005 0.623 ± 0.004 0.725 ± 0.003 0.770 ± 0.002

Table 5.5: NPLIB1 spectra retrieval top k accuracy for different values of k, ± a
95% confidence interval across three random seeds on the same test set.

Top k 1 2 3 4 5 8 10

Random 0.033± 0.002 0.061± 0.010 0.092± 0.007 0.118± 0.005 0.141± 0.012 0.216± 0.012 0.258± 0.012
3DMolMS 0.087± 0.003 0.159± 0.020 0.218± 0.008 0.268± 0.012 0.317± 0.011 0.427± 0.016 0.488± 0.010
FixedVocab 0.193± 0.007 0.314± 0.008 0.390± 0.005 0.448± 0.010 0.492± 0.003 0.587± 0.010 0.635± 0.011
NEIMS (FFN) 0.195± 0.005 0.313± 0.005 0.388± 0.006 0.447± 0.012 0.488± 0.003 0.585± 0.014 0.624± 0.020
NEIMS (GNN) 0.174± 0.014 0.285± 0.008 0.362± 0.004 0.422± 0.001 0.471± 0.003 0.586± 0.013 0.640± 0.010
MassFormer 0.198± 0.003 0.308± 0.004 0.389± 0.001 0.454± 0.004 0.496± 0.012 0.599± 0.012 0.653± 0.005
SCARF 0.135± 0.014 0.242± 0.001 0.320± 0.003 0.389± 0.008 0.444± 0.004 0.569± 0.003 0.630± 0.015

ICEBERG 0.290 ± 0.008 0.439 ± 0.013 0.528 ± 0.010 0.587 ± 0.009 0.636 ± 0.004 0.723 ± 0.001 0.764 ± 0.005

fingerprints. In such a case, we also concatenate model covariates (i.e., adduct one
hot) as additional atom level features to the GNN).
Key hyperparameters are whether or not to use mass differences in the output predic-
tion, the number of GNN layers, the number of random walk embedding steps (i.e.,
positional encodings of the nodes computed using DGL), and dropout between hidden
layers.

3. MassFormer: Young, Wang, and Röst [86] further extend the NEIMS (GNN)) approach
using a pretrained graph neural network model, the Graphormer [137]. Rather than
train the model entirely from scratch to make a mass and mass difference prediction
vector, MassFormer encodes molecules using a large, 48M parameter model previously
pretrained. Our MassFormer implementation replaces the GNN with the Graphormer
model. Covariates (i.e., adduct type one hots) are concatenated after the Graphormer
encoding. We utilize the same scheme of Young, Wang, and Röst to use the pretrained
Graphomer Version 2, reinitialize all 12 intermediate Graphormer layers, reinitialize
the layer norm, and keep only the learned token embeddings. We allow this model to
predict mass differences as in NEIMS by default.
Key hyperparameters are the number of feed forward layers after the Graphormer
encoding, the dropout between these layers, and the hidden dimension size.

4. 3DMolMS: Hong, Li, Welch, et al. [157] replace the 2D graph neural network architec-
ture with a 3D point cloud graph neural network to predict binned spectra. However,
they do not predict mass differences as in MassFormer or NEIMS, substantially reduc-
ing model performance in our reimplementation setting.
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Table 5.6: Dataset details.

Name # Spectra # Molecules Description

NIST20 35,129 24,403 Standards library
NPLIB1 10,709 8,533 Natural products from GNPS [28]

Table 5.7: Graph neural network (GNN) atom features.

Name Description

Element type one-hot encoding of the element type
Hydrogen number one-hot encoding the number of hydrogens on each atom
Adduct type one-hot encoding of the ionization adduct
Random walk embed steps positional encodings of the nodes computed using DGL

Key hyperparameters are the hidden size of their encoder, number of layers in the 3D
neural network, number of top layers after the 3D neural network, and the number of
neighbors to utilize for message passing in 3D space.

Fragmentation prediction

1. CFM-ID: Wang, Liigand, Tian, et al. [51] parametrize a Markov model of fragmentation
by first combinatorially fragmenting a molecule of interest then subsequently estimating
transition probabilities across the fragmentation graph to predict peak intensities. We
utilize the pretrained version 4 available for public release, rather than retraining the
model.

Formula prediction

1. FixedVocab: Murphy, Jegelka, Fraenkel, et al. [152] recently introduced GRAFF-MS,
a model that predicts spectra at the level of molecular formula by pre-defining a list
of 10, 000 common molecular formula and molecular formula differences from the pre-
cursor. They encode the input molecule with a graph neural network and predict
intensities at each predefined molecular formula. Due to unavailability of source code,
we define a variation of their model we term FixedVocab that predicts intensities at
a library of the most popular formula fragments and formula losses in the training
dataset. We utilize a cosine similarity loss function to train the model. We revise the
name of this model to delineate the differences in loss function and consideration of
isotopes and adducts between our implementations.
Key hyperparameters are the hidden size of the model, number of graph neural network
layers, random walk embedding steps, graph pooling, and the size of the fixed-length
formula vocabulary.
An earlier version of this work under-reported the accuracy of this model, as the
implementation did not allow for the prediction of precursor compound masses.
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2. SCARF: In Chapter 4 [130], we introduced a similar strategy to Murphy, Jegelka,
Fraenkel, et al. [152], but rather than use a fixed vocabulary, they autoregressively
generate formula candidates as a prefix tree first with the SCARF-Thread model. This
smaller vocabulary size conditioned on the input molecule enables them to deploy a
second neural network model SCARF-Weave to explicitly encode the candidate formu-
lae with a neural network alongside the molecule in a second modeling step to predict
intensities.
We refer the reader to [130] for a complete description of hyperparameters, as this
model is used without changes from the original work.

5.5.3 Hyperparameters
To fairly compare the various methods, we apply a rigorous hyperparameter optimization
scheme. We use RayTune [124] with Optuna [123] and an ASHAScheduler to identify hyper-
parameters from a grid set of options. All models were allotted 50 different hyperoptimization
trials on a 10, 000 spectra subset of NIST20. Hyperparameter descriptions for ICEBERG are
provided in Table 5.8. Selected baseline and ICEBERG hyperparameters are defined in Ta-
bles 5.10 and 5.9 respectively. When possible, we recycle parameters as selected in Goldman,
Bradshaw, Xin, et al. [130], as the hyperparameter optimization scheme is equivalent.

Table 5.8: Hyperparameter descriptions for ICEBERG.

Name Model (Generate or Score) Description

learning rate both optimizer learning rate
learning rate decay (5, 000 steps) both step-wise learning rate decay every 5,000 model weight update steps
dropout both model dropout applied in-between linear hidden layers
hidden size both number of hidden layers
gnn layers both number of graph neural network layers to encode molecules and fragments
mlp layers both number of feed forward layers to encode concatenated representations
transformer layers Score number of set transformer attention layers after mlp encoding
batch size both number of spectra to include in each training batch
weight decay both optimizer weight decay
random walk embed steps Generate number of random walk embedding steps to for graph neural network atom features
graph pooling both how to combine atom features into a single representation
bin size Score binned spectrum resolution spacing from 0 Da to 1, 500 Da
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Table 5.9: ICEBERG Generate and Score hyperparameter grid and selected val-
ues.

Model Parameter Grid Value

ICEBERG Generate learning rate [1e� 4, 1e� 3] 0.00099
learning rate decay (5, 000 steps) [0.7, 1.0] 0.7214
dropout {0.1, 0.2, 0.3} 0.2
hidden size {128, 256, 512} 512
mlp layers - 1
gnn layers [1, 6] 6
batch size {8, 16, 32, 64} 32
weight decay {0, 1e� 6, 1e� 7} 0
random walk embed steps [0,20] 14
graph pooling {mean, attention} mean

ICEBERG Score learning rate [1e� 4, 1e� 3] 0.00074
learning rate decay (5, 000 steps) [0.7, 1.0] 0.825
dropout {0.1, 0.2, 0.3} 0.1
hidden size {128, 256, 512} 256
mlp layers [0, 3] 1
gnn layers [1, 6] 4
transformer layers [0, 3] 3
batch size {8, 16, 32, } 32
weight decay {0, 1e� 6, 1e� 7} 1e� 7
bin size - 0.1
graph pooling {mean, attention} mean

Table 5.10: Baseline hyperparameters.

Model Parameter Grid Value

NEIMS (FFN) learning rate [1e� 4, 1e� 3] 0.00087
learning rate decay (5, 000 steps) [0.7, 1.0] 0.722
dropout {0.0, 0.1, 0.2, 0.3} 0.0
hidden size, d {64, 128, 256, 512} 512
layers, l {1, 2, 3} 2
batch size {16, 32, 64, 128} 128
weight decay {0, 1e� 6, 1e� 7} 0
use differences {True, False} True
bin size - 0.1

NEIMS (GNN)) learning rate [1e� 4, 1e� 3] 0.00052
learning rate decay (5, 000 steps) [0.7, 1.0] 0.767
dropout {0.0, 0.1, 0.2, 0.3} 0.0
hidden size, d {64, 128, 256, 512} 512
layers, l [1, 6] 4
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Table 5.10 – continued from previous page

Model Parameter Grid Value

batch size {16, 32, 64} 64
weight decay {0, 1e� 6, 1e� 7} 1e� 7
use differences {True, False} True
bin size - 0.1
random walk embed steps [0,20] 19
graph pooling {mean, attention} mean

3DMolMS learning rate [1e� 4, 1e� 3] 0.00074
learning rate decay (5, 000 steps) [0.7, 1.0] 0.86
dropout {0.0, 0.1, 0.2, 0.3} 0.3
hidden size, d {64, 128, 256, 512} 256
layers, l [1, 6] 2
top layers [1, 3] 2
neighbors, k [3, 6] 5
batch size {16, 32, 64} 16
weight decay {0, 1e� 6, 1e� 7} 1e� 6
bin size - 0.1

MassFormer learning rate [1e� 4, 1e� 3] 0.00014
learning rate decay (5, 000 steps) [0.7, 1.0] 0.85
feed forward dropout {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} 0.1
feed forward hidden size, d {64, 128, 256, 512, 1024} 1024
feed forward layers, l [1, 6] 1
batch size {32, 64, 128} 128
weight decay {0, 1e� 6, 1e� 7} 1e� 7
bin size - 0.1

FixedVocab learning rate [1e� 4, 1e� 3] 0.00018
learning rate decay (5, 000 steps) [0.7, 1.0] 0.92
dropout {0.0, 0.1, 0.2, 0.3} 0.3
hidden size, d {64, 128, 256, 512} 512
layers, l [1, 6] 6
batch size {16, 32, 64} 64
weight decay {0, 1e� 6, 1e� 7} 1e� 6
bin size - 0.1
random walk embed steps [0,20] 11
graph pooling {mean, attention} mean
formula library size {1000, 5000, 10000, 25000, 50000} 5000

SCARF-Thread learning rate [1e� 4, 1e� 3] 0.000577
learning rate decay (5, 000 steps) [0.7, 1.0] 0.894
dropout {0.0, 0.1, 0.2, 0.3} 0.3
hidden size, d {128, 256, 512} 512
mlp layers, l1 [1, 3] 2
gnn layers, l2 [1, 6] 4
batch size {8, 16, 32, 64} 16
weight decay {0, 1e� 6, 1e� 7} 1e� 6
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Table 5.10 – continued from previous page

Model Parameter Grid Value

use differences {True, False} True
random walk embed steps [0,20] 20
graph pooling {mean, attention} mean

SCARF-Weave learning rate [1e� 4, 1e� 3] 0.00031
learning rate decay (5, 000 steps) [0.7, 1.0] 0.962
dropout {0.0, 0.1, 0.2, 0.3} 0.2
hidden size, d {128, 256, 512} 512
mlp layers, l1 [1, 3] 2
gnn layers, l2 [1, 6] 3
transformer layers, l3 [0, 3] 2
batch size {4, 8, 16, 32, 64} 32
weight decay {0, 1e� 6, 1e� 7} 0
bin size - 0.1
random walk embed steps [0,20] 7
graph pooling {mean, attention} attention
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Chapter 6

Predicting Enzyme-Substrate
Compatibility

While metabolomics and the previously outlined chapters provide strategies for identifying
metabolites, placing such discovered molecules in context is an orthogonal challenge. Specif-
ically, an understanding of how metabolites progress through metabolic pathways would be
broadly useful in considering various biochemical interventions (i.e., where in the pathway to
inhibit) and also to repurpose the transforming enzymes for other applications. This chap-
ter explores the ability to predict and model enzyme-substrate interactions in the context
of families of enzymes with large amounts of screening data available. The vast majority
of this text has previously appeared as S. Goldman, R. Das, K. K. Yang, et al., “Machine
learning modeling of family wide enzyme-substrate specificity screens,” PLoS Computational
Biology, vol. 18, no. 2, e1009853, 2022. I conceptualized this work with my advisor, Connor
W. Coley, and conducted all experiments and execution; I wrote the initial manuscript, with
support from all listed co-authors.

6.1 Introduction

Biology has evolved enzymes that are capable of impressively stereo-selective, regio-selective,
and sustainable chemistry to produce compounds and perform reactions that are “the envy
of chemists” [187]–[189]. Industrial integration of these enzymes in catalytic processes is
transforming our bioeconomy, with engineered enzymes now producing various materials
and medicines on the market today [188], [190]. As an exemplar of collective progress
in biocatalysis and enzyme engineering, Huffman et al. impressively re-purposed the entire
nucleoside salvage pathway for a high yield, 9-enzyme in vitro synthesis of the HIV nucleoside
analogue drug, islatravir [191]. In an effort to make these types of pathways commonplace,
there has been an explosion in new tools for automated computer-aided synthesis planning
(CASP) that can include not only traditional organic chemistry reactions [192], but also
enzymatic reactions, facilitating further growth of industrial biocatalysis [193]–[195].

Despite this progress in synthesis planning, suggesting an enzyme for each catalytic step
in a proposed synthesis pathway remains difficult and limits the practical utility of synthesis
planning software. Current enzyme selection methods often use simple similarity searches,
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comparing the desired reaction to precedent reactions in a database [196], [197]. Due to the
often high selectivity of enzymes, proposed enzymes for a hypothetical reaction step often
suffer from low catalytic efficiency. In the extreme case, the proposed enzyme may have
zero catalytic effect on the substrate of interest, despite showing moderate activity on a
similar natural substrate. Thus, the specificity of enzymatic catalysis can be a double edged
sword [198]. As an example, the phosphorylation step in the islatravir synthesis of Huffman
et al. required screening a multitude of natural kinase classes to find an enzyme capable of
phosphorylating the desired substrate with sufficient activity for subsequent directed evolu-
tion [191]. In the less extreme case, the enzyme of interest may have moderate activity but
suffer from low initial substrate loadings, proceed slowly, require higher catalyst loadings,
and produce low yields [188]. Nevertheless, an enzyme with moderate activity can serve as
a “hook” for further experimental optimization and directed evolution efforts.

Machine learning and predictive modeling provide an avenue to accelerate long develop-
ment cycles and identify enzymes with both initial activity and high efficiency. Sequence-
based machine learning methods have already been utilized in “machine learning guided
directed evolution” (MLDE) campaigns to help guide the exploration of sequence space to-
ward desirable protein sequences [199]–[201]. MLDE demonstrations often follow a similar
paradigm: given a screen of a single enzyme with mutations at select positions, predict the
function or activity of enzymes with new mutations. Further developments in pretrained
machine learning models can now provide meaningful embeddings at single amino acid po-
sitions that capture contextual and structural information about the protein from sequence
alone [202]–[207]. Pre-trained machine learning models of protein sequences, specifically
masked language models adopted from natural language processing [32] are trained to pre-
dict the identity of “masked” input tokens (i.e. amino acids). In doing so, the model learns a
meaningful intermediate representation of the protein and distill important structural con-
text around each amino acid position. This intermediate layer can then be extracted and
treated as a fixed embedding of the protein [208]. These pre-trained embeddings have proved
especially useful for the application of MLDE in low-N settings where the number of protein
measurements is small (Figure 6.1A) [209], [210]. Altogether, these approaches provide a
way to improve the efficiency of an enzyme given examples of other enzymes with activity on
the substrate of interest. However, this paradigm does not extend to meet the the challenge
of identifying a “hook” enzyme with sufficient initial activity on a non-native substrate, nor
can current approaches incorporate information from enzymes measured on other substrates.
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Figure 6.1: Enzyme-substrate interaction modeling strategies. (A) Current ma-
chine learning-directed evolution strategies, which involve design-build-test-model-learn cy-
cles measuring protein variant activity on a single substrate of interest. (B) The “dense
screen” setting where homologous enzyme variants from one protein family are profiled
against multiple substrates. In this setting, we can aim to generalize to either new enzymes
(“enzyme discovery”) or new substrates (“substrate discovery”). (C) Three different styles
of models evaluated in this study, where single task models independently build predictive
models for rows and columns from panel (B), whereas a CPI model takes both substrates
and enzymes as input. (D) An example CPI model architecture where pretrained neural
networks extract features from the substrate and enzyme to be fed into a top-level feed for-
ward model for activity prediction.

Instead, work to date to expand the substrate scope of an enzyme class of interest often
relies upon time consuming and ad hoc rational engineering based upon structure [211], [212],
simple similarity searches between the native substrate and desired substrate of interest [196],
or trial-and-error experimental sampling [213]. Once an enzyme with some activity for a
substrate of interest is found practitioners can resume directed evolution strategies similar
to those described above to increase efficiency [213]–[216].

The last strategy of experimental sampling often involves broad metagenomic sam-
pling [217]–[220], where homologous sequences are chosen for testing [219], [221], [222]. Re-
searchers will test a diverse set of “mined” enzymes for activity against a panel of substrates
containing the relevant reactive group. This experimental screening of enzymes against sub-
strates closely mirrors the data setting involved in discovering selective inhibitors in drug
discovery, where a panel of similar proteins such as kinases [223] or deubiquinating pro-
teins [224], [225] are screened against a family of compounds. While some work in this field
of compound protein interactions (CPI) has attempted to model the drug discovery fram-
ing of this problem [226], [227], the CPI modeling framework has not yet been extended to
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enzyme promiscuity and there exist few curated datasets to probe our ability to learn from
enzyme screens.

In this work, we model enzyme-substrate compatibility as a compound-protein interac-
tion task using a carefully curated set of recent metagenomic enzyme family screens from
the literature. We compare state of the art predictive modeling using pretrained embedding
strategies (for both small molecules and proteins) and CPI prediction models. Surprisingly,
we find that predictive models trained jointly on enzymes and substrates fail to outperform
independent, single-task enzyme-only or substrate-only models, indicating that the joint
models are incapable of learning interactions. To determine whether this is a quirk specific
to our datasets, we reanalyze a recent CPI demonstration and find that this trend general-
izes beyond enzyme-substrate data to CPI more broadly: learning interactions from protein
family data to go beyond single-task models remains an open problem. Finally, we intro-
duce a new pooling strategy specific to metagenomically-sampled enzymes using a multiple
sequence alignment (MSA) and reference crystal structure to enhance enzyme embeddings
and improve model performance on the task of enzyme activity prediction. Collectively, this
work lays the foundation and establishes dataset standards for the construction of robust
enzyme-substrate compatibility models that are needed for various downstream applications
such as biosynthesis planning tools.

6.2 Results

6.2.1 Data summary
In order to systematically evaluate our ability to build models over enzyme-substrate interac-
tions, we first need high quality data. Databases of metabolic reactions such as BRENDA [228]
describe large numbers of known enzymatic reactions, but are collected from many sources
at different concentrations, temperatures, and pH values. Instead, we turn to the litera-
ture to find high-throughput enzymatic activity screens with standardized procedures, i.e.,
exhibiting no variation in the experiments besides the identities of the small molecule and
enzyme. We extract amino acid sequences and substrate SMILES strings from six separate
studies measuring the activity of halogenase [219], glycosyltransferase [229], thiolase [230],
ß-keto acid cleavage enzymes (BKACE) [231], esterase [232], and phosphatase enzymes [233]
which cover between 1, 000 and 36, 000 enzyme-substrate pairs (Table 6.1). Enzymatic catal-
ysis (e.g., yield, conversion, activity) in each study was measured using some combination
of coupled assay reporters, mass spectrometry, or fluorescent substrate readouts. Data was
binarized such that every measured pair is either labeled as active (1) or inactive (0) at
thresholds according to standards described in the original papers (Methods). We conceptu-
alize these datasets as “dense screens” insofar as each dataset represents a number of enzyme
and substrate pairs measured against each other resembling a grid (Figure 6.1B). While
several of the experimental papers presenting these datasets include their own predictive
modeling [229]–[231], these demonstrations are not systematically compared with standard
splits and are not easily evaluated against new methods due to varied data formats. In com-
piling these, we expose new datasets to the protein machine learning community. Additional
details can be found in Section 6.5.
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In order to evaluate the ability of data-driven models to generalize beyond the set of
screened enzymes and substrates, we examine extrapolation in two directions: enzyme dis-
covery or substrate discovery (Figure 6.1C). In the former, we consider the setting of a
practitioner who is interested in finding enzymes with activity on some set of substrates
they have already measured. This parallels the setting where machine learning directed evo-
lution may also be applied, such as increasing the efficiency of an enzyme (Figure 6.1A). On
the other hand, for substrate discovery, we are interested in predicting which enzymes from
an already-sampled set will act on a new substrate that has not already been measured, a
formulation specifically relevant to synthesis planning. We omit the more difficult problem
of generalizing to new substrates and new enzymes simultaneously; we posit that we must
first be able to generalize in each direction separately in order to generalize jointly and note
that empirical performance on joint generalization in compound protein interaction is lower
in previous CPI studies [226]. We do not consider the task of interpolation within a dense
screen (Figure 6.1B), as this does not reflect any realistic experimental application.

6.2.2 Models
We aim to build a modeling pipeline that accepts both an enzyme and substrate and predicts
sequence, with enzymes and substrates specified by sequence and SMILES strings respec-
tively. To featurize enzymes, we turn to pre-trained protein language models, specifically the
currently state-of-the-art ESM-1b model [206]. Pre-trained representations are well-suited
to low data tasks and have been applied to protein property prediction [206], [207], [209] as
well as compound protein interaction [234]. While there has been an explosion in available
pre-trained protein representations including UniRep [207], SeqVec [235], MT-LSTM [202],
[203], ESM-1b stands out in its performance on contact prediction tasks, ease of use, and
also ability to effectively predict the functional effect of sequence variations, likely enabled
by its comparatively large scale (i.e., number of parameters and training sequences) [206]. To
featurize substrates, we test two primary featurizations: a pretrained Junction-Tree Varia-
tional Auto-Encoder (JT-VAE) [236] and the widely used Morgan circular fingerprints (1024
bits) [237]. Despite pre-trainining compound representations having only marginal benefits
on property prediction tasks [238], a recent CPI study [226] extracted compound representa-
tions from a pre-trained JT-VAE model and utilized these to identify new kinase inhibitors.
Due to the closeness in our proposed task, we follow their methodology and extract the same
embeddings for substrates to compare against Morgan fingerprints.

If a single model is able to successfully learn interactions and leverage the full “dense”
dataset, it should be able to take as input both enzyme and substrate representations and
outperform smaller, single-task models that either use only enzyme inputs or use only sub-
strate inputs (Figure 6.1C). To attempt to model interactions, we consider two simple top
models inspired by the CPI literature [226], [227], [234] that either (1) concatenate the
representations of the enzyme and substrate before applying a shallow feed forward neural
network or (2) project the representations of the enzyme and substrate to smaller and equal
length vectors using a shallow multi-layer perceptron (MLP) before taking their dot product
(Figure 6.1D). To evaluate these CPI based architectures, we consider three other model
classes for comparison: baselines utilizing simple similarity across enzymes and substrates
for prediction; multi-task models that learn to predict activity for enzymes against substrates
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Table 6.1: Summary of curated datasets with the number of unique enzymes,
unique substrates, and unique pairs in each dataset in addition to an exemplar
structure for the protein family.

Dataset # Enz. # Sub. Pairs PDB Ref.

Halogenase [219] 42 62 2,604 2AR8
Glycosyltransferase [229] 54 90 4,298a 3HBF
Thiolase [230] 73 15 1,095 4KU5
BKACE [231] 161 17 2,737 2Y7F
Phosphatase [233] 218 165 35,970 3L8E
Esterase [232] 146 96 14,016 5A6V
Kinase (inhibitors) [223] 318 72 22,896 2CN5

a While most datasets we use test all combinations, Yang et al. do not report experiments for some enzyme by substrate interactions

simultaneously but without any feature information about the substrates themselves (and
vice versa for substrate discovery); and single-task models with no information sharing across
substrate (enzyme) tasks. We refer the reader to Section 6.6 for a more complete description
of all model classes evaluated (Table 6.4).

6.2.3 Enzyme discovery
We test these various featurizations and model architectures first on the task of enzyme
discovery. To do so, we hold out a fraction of the enzymes as a test set and use the training
set to make predictions about the interactions between the held out enzymes and the known
substrates in the data set. For each dataset, we train the CPI model architectures described
above jointly on the entire training set. To test whether CPI models are able to learn
interactions, we also train several smaller “single-task” models. These single-task models are
specific to each substrate and accept only an enzyme sequence as input. If models are in fact
able to learn interactions, the CPI models should outperform the single-task models given
their access to more substrate measurements for each enzyme (Figures 6.2A and 6.1C).
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Figure 6.2: Assessing enzyme discovery in family wide screens. (A) CPI models are
compared against the single task setting by holding out enzymes for a given substrate and
allowing models to train on either the full expanded data (CPI) or only data specific to that
substrate (single-task). (B) AUPRC is compared on five different datasets, arranged from
left to right in order of increasing number of enzymes in the dataset. Baseline models are
compared against multi-task models, CPI models, and single-task models. K-nearest neigh-
bor (KNN) baselines are calculated using Levenshtein edit distances to compare sequences;
multi-task models use a shared feed forward network (FFN) to compute predictions against
all substrate targets, CPI models utilize FFN with either concatenation (“[{prot repr.}, {sub
repr.}]”) or dot product interactions (“{prot repr.}•{sub repr.}”), and ridge regression is used
for single-task models. ESM-1b features indicate protein features extracted from a masked
language model trained on UniRef50 [206]. Halogenase and glycosyltransferase datasets are
evaluated using leave-one-out splits, whereas BKACE, phosphatase, and esterase datasets are
evaluated with 5 repeats of 10 different cross validation splits. Standard error bars indicate
the standard error of the mean of results computed with 3 random seeds. Each method is
compared to the single-task L2-regularized logistic regression model (“Ridge: ESM-1b”) using
a 2-sided Welch T test, with each additional asterisk representing significance at [0.05, 0.01,
0.001, 0.0001] thresholds respectively after application of a Benjamini-Hochberg correction.
(C) Average AUPRC on each individual “substrate task” is compared between compound
protein interaction models and single-task models. Points below 1 indicate substrates on
which single-task models better predict enzyme activity than CPI models. CPI models used
are FFN: [ESM-1b, Morgan] and single-task models are Ridge: ESM-1b. (D) AUPRC val-
ues from the ridge regression model are plotted against the average enzyme similarity in a
dataset, with higher enzyme similarity revealing better predictive performance. (E) AUPRC
values from the ridge regression model broken out by each task are plotted against the frac-
tion of active enzymes in the dataset. Best fit lines are drawn through each dataset to serve
as a visual guide.

To evaluate each dataset, we calculate the area under the precision recall curve (AUPRC),
computed separately for each substrate column and subsequently averaged. AUPRC is able
to better differentiate model performance on highly imbalanced data than the area under
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the receiver operating curve (AUROC), which overvalues the prediction of true negatives.
Further, AUPRC does not require choosing a threshold to call hits like other metrics like
the Matthews Correlation Coefficient. We optimize model hyperparameters on the thiolase
dataset [230] prior to training and evaluating on the remaining five datasets. We additionally
report benchmarking performance for the thiolase dataset (Tables 6.6 and 6.7 in Section 6.6).

We observe that our supervised models using pretrained protein representations are in
fact able to outperform a nearest neighbor sequence-similarity baseline (“KNN: Levenshtein”)
that uses the Levenshtein distance, a simple unweighted global alignment distance used in
recent protein engineering studies [44], [209], to predict held out enzyme activity (Figure
6.2B and Tables 6.6 and 6.7 in Section 6.6). This affirms the potential of representation
learning to improve prediction and protein engineering tasks.

Surprisingly, however, CPI models do not outperform single-task models trained with
simple logistic regression (“Ridge: ESM-1b”) (Figure 6.2B). Multi-task models offer a slight
benefit on the halogenase dataset, but fail to outperform single-task models across the other
four enzyme families tested. Further, upon closer inspection, the comparative performance
of CPI based models on the halogenase dataset seem to be driven by relative performance
increases only on a small number of substrate tasks as demonstrated by the upper outliers
in Figure 6.2C. This is despite the CPI (and multi-task) models having access to a larger
number of enzyme-substrate interactions for training. In fact, models trained with CPI can
at times perform worse than models that predict the activity of enzymes on each substrate
task independently (Figure 6.2C), indicating an inability to learn interactions from the dense
screens collected.

The enzymes within each dataset were sampled with different levels of diversity by the
studies’ original authors. The phosphatase dataset represents a diverse super-family of en-
zymes [233], whereas the BKACE dataset represents a more narrowly sampled domain of
unknown function (unknown prior to the experimental screen) [231]. We find that the av-
erage pairwise Levenshtein similarity between sequences in the dataset is in fact correlated
with performance differences across datasets, such that more similar datasets seem to be
easier to predict (Figure 6.2D).

In addition to intra-dataset diversity, we also hypothesized that the balance, or fraction of
active enzymes, observed for each enzyme could partially explain the observed performance.
Plotting the AUPRC metric as a function of number of active enzyme-substrate pairs reveals
a strong positive correlation, validating that the number of hits observed in the training set
will largely determine the success of the model in generalizing beyond the training set (Figure
6.2E). This is equally a function of both the models and the AUPRC metric, which follows
a similar trend for random guesses that favor the majority binary class.

6.2.4 Substrate discovery
We next evaluate generalization in the direction of held out substrates, repeating the same
procedures as above. In this case, we restrict our analysis only to the glycosyltransferase
and phosphatase datasets where the number of substrates is > 50, using the halogenase
dataset to tune hyperparameters for each model. We report the results comparison on the
halogenase dataset (Tables 6.9 and 6.8 in Section 6.6).
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Similar to our conclusions in the case of enzyme discovery, we find that the CPI architec-
tures are not able to outperform simpler, single-task logistic regression models with Morgan
fingerprints (Figure 6.3 and Figure 6.10 in Section 6.6 and Tables 6.8 and 6.9) in Section 6.6.
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Figure 6.3: Assessing substrate discovery in family wide screens. CPI models
and single task models are compared on the glycosyltransferase, esterase, and phosphatase
datasets, all with 5 trials of 10-fold cross validation. Error bars represent the standard error of
the mean across 3 random seeds. Each model and featurization is compared to “Ridge: Mor-
gan” using a 2-sided Welch T test, with each additional asterisk representing significance at
[0.05, 0.01, 0.001, 0.0001] thresholds respectively, after applying a Benjamini-Hochberg cor-
rection. Pretrained substrate featurizations used in “Ridge: JT-VAE” are features extracted
from a junction-tree variational auto-encoder (JT-VAE) [236]. Two compound protein inter-
action architectures are tested, both concatenation and dot-product, indicated with “[{prot
repr.}, {sub repr.}]” and “{prot repr.}•{sub repr.}” respectively. In the interaction based
architectures, ESM-1b indicates the use of a masked language model trained on UniRef50
as a protein representation [206]. Models are hyperparameter optimized on a held out halo-
genase dataset. AUCROC results can be found in Figure 6.9 in Section 6.6.

Curiously, in both the enzyme discovery (Figures 6.14, 6.15, 6.13, 6.12, and 6.16) in
Section 6.6 and substrate discovery (Figures 6.18, 6.17, and 6.19 in Section 6.6) settings,
predictions made by CPI models exhibit far more “blocky” characteristics than the respective
single task models: when extrapolating to new enzymes, the prediction variance is not
sensitive to the paired substrate for CPI models. This indicates that our CPI models struggle
to condition their predictions to new enzymes (substrates) based upon the substrate (enzyme)
pairing.
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6.2.5 Reanalysis of kinase inhibitor discovery
The results for enzyme-substrate activity prediction demonstrate that models designed to
learn interactions are seemingly unable to do so in a manner that improves generalization.
We therefore wondered to what extent this failing was specific to enzyme-substrate data,
as opposed to being symptomatic of a broader problem and shortcoming in the CPI field,
including drug discovery. To interrogate this, we re-analyze models from a recent study
leveraging an inhibitor screen against the human kinome to discover new inhibitors against
tuberculosis [226]. In their study, Hie et al. train CPI models on a dense screen of 442
kinases against 72 inhibitors [223] using concatenated pretrained protein and pretrained
substrate features as the input to multi layer perceptrons (MLP), Gaussian processes (GPs),
or a combination of the two (GP + MLP), the combination being their most successful
(Methods). Unlike the binary classification enzyme activity setting, they predict continuous
Kd values.

We compare the MLP and GP+MLP models using pretrained representations against a
number of single-task models on two settings matching the original study: drug repurpos-
ing and drug discovery. Drug repurposing is analogous to enzyme discovery where certain
proteins are held out; drug discovery is analogous to substrate discovery where certain com-
pounds are held out. Single-task models are not presented with training data on other kinase-
compound pairs and are therefore unable to learn interactions in a generalizable manner. In
addition to the single-task MLP and GP+MLP models, we evaluate a simple single-task, L2-
regularized linear regression model (“Ridge”) using Morgan fingerprint features rather than
JT-VAE features. In concordance with our results on enzymatic data, we find that single-
task models consistently outperform CPI based models in terms of Spearman correlation
coefficient between true and predicted Kd on both repurposing (Figure 6.4A) and discovery
tasks (Figure 6.4B). This shows that ablating interactions by training single-task models can
increase performance over GP+MLP models.
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Figure 6.4: Evaluating single-task models on kinase repurposing and discovery
tasks Kinase data from Davis et al. is extracted, featurized, and split as prepared in Hie et
al. Multilayer perceptrons (MLP) and Gaussian process + multilayer perceptron (GP+MLP)
models are employed. We add variants of these models without CPI training separate single-
task models for each enzyme and substrate in the training set, as well as linear models using
both pretrained featurizations (“Ridge: JT-VAE”) and fingerprint based featurizations of
small molecules (“Ridge: Morgan”). Spearman correlation is shown for (A) held out kinases
not in the training set and (B) held out small molecules not in the training set across 5
random initializations. (C) We repeat the retrospective evaluation of lead prioritization.
The top 5 average acquired Kd values are shown for the CPI models in Hie et al. compared
against a linear, single-task ridge regression model using the same features. (D) The top 25
average acquired Kd values are shown.

Still, increased rank correlation between predictions and true Kd values does not nec-
essarily equate to the ability to select new inhibitors or new drugs. To directly test this,
we repeat the retrospective kinase-inhibitor lead prioritization experiments conducted in the
original analysis. Models are trained on a set of kinase-inhibitor pairings and used to rank
new kinase-inhibitor pairings. The acquisition preference is informed by predictions and, if
applicable, predicted uncertainty (Methods). When acquiring either 5 or 25 new data points
in cross validation, a single-task ridge regression model with equivalent pretrained features is
able to outperform both CPI based models (Figure 6.4C and 6.4D). Our findings are retro-
spective in nature and do not negate the value of prospective experimental validation [226],
but rather make clear that the field requires new methods to leverage the rich information
contained in protein, small molecule interaction screens and truly learn interactions. This
further reinforces the necessity for simple baseline models in protein engineering studies [239],
[240].
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6.2.6 Improving enzyme discovery models
Given that single-task models appear to match or even outperform models design for CPI,
we next asked if we could improve their generalization in the enzyme discovery direction
by leveraging the relationship between different protein sequences within the dataset. That
is, working within a single family of proteins should be more conducive to generalizations.
To directly impart this structural bias on our models, we considered how the construction
of the pretrained representation for each protein could be modified. Pretrained language
models produce a fixed dimensional embedding at each amino acid position in the protein.
To collapse this into a fixed-length protein-level embedding, the de facto standard is to
compute the mean embedding across the length of the sequence [202], [203], [206], [207],
[209]. However, for locally-defined properties, such as enzymatic catalysis or ligand binding
at an active site, this mean pooling strategy may be sub-optimal [241]. Previous approaches
have largely considered deep mutational scans with few mutations at carefully selected posi-
tions [200]. In these settings, mean pooling strategies may be a good approximation of local
protein structural changes, as embeddings at distal positions from the mutation would be
nearly constant across protein variants. In our setting, however, we have metagenomically
sampled sequences with large insertions and deletions, which presents an ideal testing ground
to evaluate pooling strategies.

We test 3 alternative pooling strategies to mean pooling, where we first compute a mul-
tiple sequence alignment (MSA) and pool only a subset of residues in each sequence cor-
responding to a subset of columns in the MSA (Figure 6.5A). We rank order the columns
in the MSA to be pooled based upon the (i) proximity to the active site of a single “refer-
ence structure” (Section 6.5.7) (ii) coverage (i.e., pooling columns with the fewest gaps), or
(iii) conservation (i.e., pooling columns that have the highest frequency of any single amino
acid type) (Table 6.1). To expand this analysis beyond catalysis to drug discovery, we also
consider a portion of the kinase inhibitor dataset from Davis et al. [223], subsetted down
to a single kinase family (PF00069), rather than the whole human kinome (Table 6.1). We
compare these pooling strategies across the enzyme discovery datasets tested, as well as
the protein-inhibitor kinase dataset. We use ridge regression models with pretrained ESM-
1b [206] embeddings, and split the data as in the enzyme discovery setting, varying only the
pooling strategy from our previous analysis (Figure 6.2). In the case of the kinase regression
dataset, we use the Spearman rank correlation to evaluate performance.

In all cases tested, the active site pooling performance peaks when pooling only a small
number of residues around the active site (< 60 amino acids), showing gains in performance
over other pooling strategies as well as the mean pooling baseline (Figure 6.5B). This corre-
sponds to a distance of < 10 angstroms away from the active site (Figure 6.5Ai). This may
indicate an optimal range at which residue positioning is relevant to promiscuity. In the case
of the kinases, the Levenshtein distance baseline outperforms the mean pooling method with
respect to Spearman rank correlation, but using active site aware pooling outperforms both.
We find that the performance increase is steeper in the kinase repurposing setting compared
to other datasets, potentially due to both the regression nature of the dataset and also the
non-dynamic binding of compound inhibitors in comparison to the other tasks, which focus
on enzymatic catalysis not protein inhibition. Interestingly, for the halogenase dataset, no
alternative pooling strategies outperform mean pooling (Figure 6.11 in Section 6.6), likely
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because the halogenase enzymes have high variance in solubility, a global property that
could be driving enzyme activity [219]. Similarly, for the esterase dataset, coverage pooling
is far more effective, indicating that a combination of targeted pooling residue strategies
may be most effective (Figure 6.11 in Section 6.6). While performance gains from active site
aware pooling are modest, this strategy provides a simple but principled way to incorporate
a structural prior into enzyme prediction models, particularly for metagenomic data with
high numbers of sequence indels which may introduce unwanted variance into a mean pooled
protein representation.
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Figure 6.5: Structure-based pooling improves enzyme activity predictions. (A)
Different pooling strategies can be used to combine amino acid representations from a pre-
trained protein language model. Yellow coloring in the schematic indicates residues that will
be averaged to derive a representation of the protein of interest. (i) We introduce active site
pooling, where only embeddings corresponding to residues within a set radius of the protein
active site are averaged. By increasing the angstrom radius from the active site, we increase
the number of residues pooled. Crystal structures shown are taken from the BKACE ref-
erence structure, PDB: 2Y7F rendered with Chimera [242]. (ii, iii) We also introduce two
other alignment based pooling strategies: coverage and conservation pooling average only
the top-k alignment columns with the fewest gaps and highest number of conserved residues
respectively. (iv) Current protein embeddings often take a mean pooling strategy to in-
discriminately average over all sequence positions. (B) Enzyme discovery AUPRC values
are computed for various different pooling strategies. Each strategy is tested for different
thresholds of residues to pool, comparing against both KNN Levenshtein distance baselines
and a mean pooling baseline. The same hyperparameters are used as set in Figure 6.2 for
ridge regression models. The kinase repurposing regression task from Hie et al. is shown
with Spearman’s ⇢ instead of AUPRC as interactions are continuous, not binarized. All
experiments and are repeated for 3 random seeds.
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6.3 Discussion

Data-driven models of enzyme-substrate compatibility have the potential to drive new in-
sights in basic biology research and also to accelerate engineering efforts focused on the
design of new enzymatic synthesis routes. In addition, the same classes of models can be
used for compound-protein interaction prediction for both drug discovery and drug repur-
posing efforts.

In this work, we take a critical step toward opening up this suite of problems to machine
learning researchers by providing several high quality, curated datasets and standardized
splits to evaluate model performance and generalizability. While the small number of unique
enzymes and unique substrates in each dataset makes quantitative performance sensitive
to hyperparameters and dataset splitting decisions, this collection of data is an essential
starting point to develop new modeling strategies and motivate future, higher throughput
enzyme activity screening.

Our experiments show that pretrained representations for proteins, coupled with structure-
informed pooling techniques, can go beyond standard sequence similarity based approaches to
predict protein function, an exciting demonstration of how representation machine learning
can impact protein engineering. Nevertheless, despite this excitement, our analysis makes
clear that current CPI modeling strategies cannot consistently leverage information from
multiple substrate measurements effectively, a problem broadly applicable to CPI models.
That is, models designed to learn interactions do not outperform single-task models.

6.4 Conclusion

To predict enzyme-substrate compatibility or design selective inhibitors against a protein
family, we need new strategies to jointly embed proteins and compounds to enable more
robust extrapolation to new combinations thereof. Such a scheme would allow learned in-
teractions to be more explicitly transferred from larger databases onto smaller, but higher
quality screen. This will be an exciting frontier in protein and compound representation
learning, as the field seeks to go beyond protein structural prediction to protein function
prediction. Further, with the exception of our structure informed (MSA-informed) pooling,
our analysis remains sequence based. The relative performance of structure-based tools such
as molecular dynamics for the prediction of enzyme-substrate scope remains an exciting
question that this data, coupled with recent advances in protein structure prediction [35],
[37], can help to address.

6.5 Methods

6.5.1 Dataset preparation
Each dataset is collected from their respective papers [219], [223], [229]–[233]. Activity
binarizations are chosen to closely mirror the original dataset preparation with exact cutoff
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thresholds described in Section 6.6. Additionally, certain enzymes were filtered based upon
low solubility or activity that may result from screening decisions (Section 6.6).

Davis kinase filtering

Kinases used in reanalysis of Hie et al. are tested exactly as prepared [226]. To evaluate
structure based pooling using this dataset, we further subset the original dataset such that
each entry only contains one domain from the PFAM family, PF00069, described in the SI
with dataset statistics in Table 6.1.

6.5.2 Hyperparameter optimization
All hyperparameters are set on a held out enzyme-substrate dataset using the hyperparam-
eter optimization framework Optuna [123]. Hyperparameter optimization is set using up to
10 trials of leave-one-out cross validation on the thiolase dataset and halogenase dataset for
enzyme discovery and substrate discovery tasks, respectively. Hyperparameters are chosen
to maximize the average area under the precision recall curve. For nearest neighbor models,
the number of neighbors is treated as a hyperparameter between 1 and 10.

For logistic ridge regression models, the regularization coefficient, ↵ is set from {1e �
3, 1e�2, 1e�1, 1e0, 1e1, 1e2, 1e3, 1e4}. For both feed-forward dot product and concatenation
models, hyperparameters for dropout ([0, 0.2]), weight decay ([0, 0.01]), hidden dimension
([10, 90]), layers ([1, 2]), and learning rate ([1e � 5, 1e � 3]) are chosen. All neural network
models are trained for 100 epochs using the Adam optimizer and Pytorch [174].

For linear ridge regression used in reanalysis of kinase data, a default hyperparameter
regularizer value of ↵ = 1e1 is set.

6.5.3 Evaluation metrics
To evaluate models in the enzyme discovery direction, activity on each substrate is considered
to be its own “task”. The data is divided up into a set number of folds, and models are re-
trained to make predictions on each held out fold. A single, separate AUPRC value is
computed for the activity on each substrate task and then averaged across substrate tasks.
AUPRC values are computed using the average precision function from sklearn [243]. For
the halogenase, thiolase, and glycosyltransferase datasets, this is done with leave-one-out
cross validation. For the phosphatase, BKACE, and kinase datasets, to limit the number
of trials, we use 10 fold cross validation repeated 5 times. This procedure is repeated for 3
random seeds.

An identical procedure is conducted on the task of substrate discovery, where each enzyme
is separately evaluated as its own “task”. In this case, the glycosyltransferase, esterase, and
phosphatase datasets are evaluated with 5 repetitions of 10 fold cross validation.

6.5.4 Filtering imbalanced tasks
Certain enzymes have activity on only a few substrates and certain substrates have activity
on only a few enzymes. To avoid computing AUPRC values on these tasks, we filter to
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only incorporate tasks with a maximum fraction of either 0.9 positives or negatives. The
remaining tasks can be found in Table 6.3 in Section 6.6.

6.5.5 Kinase inhibitor reanalysis
We modify the code from Hie et al. directly to reproduce their GP, GP + MLP models,
and add our no-interaction models. GP + MLP models involve first fitting an MLP model
followed by a GP to predict residual loss. First, all kinases are converted into features
using a pretrained language model [202], [203] and all inhibitors are converted into features
using a pretrained JT-VAE [236] or Morgan fingerprints. We create a training set of kinase,
inhibitor pairs with labeled Kd values, and establish 3 separate segments of the test data:
new kinases (repurposing), new inhibitors (discovery), and new kinase+inhibitor pairs. The
data is split into four quadrants and one quadrant is used for training models. GP and linear
models are implemented with scikit-learn [243] and MLP models are implemented with
Keras [244], following parameter choices from the original study [226]. Linear regression
models are parametrized with ↵ = 10 and normalization set to True. Prior to training
single-task models, we standardize the regression target values based upon the training set
to have a mean of 0 and variance of 1, as we find it helps with stability with less training
data.

To test the ability of models to prioritize candidates, we repeat the train/test split and
rank the entire test set by predicted Kd, using an additional upper confidence bound (� = 1)
metric to adjust rank for the GP + MLP model that uses uncertainty. The top k = 5 and
k = 25 compound-kinase pairs are evaluated by their average true Kd. All kinase-inhibitor
reanalysis experiments were repeated for five random seeds.

6.5.6 Pooling strategies
We use the program Muscle with default parameters to compute a multiple sequence align-
ment (MSA) on each dataset for pooling. Because many positions in certain datasets have
high coverage, ties are randomly broken when choosing a priority for pooling residue embed-
dings. This explains the large variance in the glycosyltransferase results shown (Figure 6.5)
taken over several seeds. Coverage and conservation based pooling strategies are sampled
for i 2 {1, 2, 3, 6, 11, 19, 34, 62, 111, 200} pooling residues, each repeated for 3 random seeds.

6.5.7 Active site pooling
To pool over active sites of proteins, we identify a reference crystal structure within each
protein family or super family (Table 6.1). For each of these crystal structures, we select
either an active site bound ligand or active site residue(s) from the literature. We attempt
to pool residues within a Cartesian distance from these sites ranging from 3 to 30 angstroms
to roughly mirror the number of residues pooled for coverage and conservation methods.
Angstrom shells are calculated using Biopython [245] and an in depth description of active
sites used can be found in Table 6.2 in Section 6.6.
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6.6 Additional results

6.6.1 Data

Halogenase data

Halogenase data was prepared as described by Fisher et al. They measure the activity of 87
different proteins against 62 substrates using high throughput LC-MS based screening [219].
However, many sampled enzymes are either insoluble or display no halogenation activity. We
subset the proteins to a smaller set of 42 proteins that have some halogenation activity on at
least one of the substrates tested. We binarize data at the 8% conversion threshold, which
Fisher et al. report as removing false positives. Further, rather than test activity on both
the chlorination and bromination activity labels, we opt to use only the dataset measuring
bromination, which has more a higher percentage of active conversions.

SMILES strings are extracted from the ChemDraw file provided by Fisher et al. All
protein sequences with greater than 1000 amino acids were filtered from the enzyme dataset.

Phosphatase data

Phosphatase data is extracted from SI tables provided by Huang et al. Compounds listed
in the results using common names are converted using a combination of PubChem’s name
converter, cirpy, and manual re-drawing according to compounds in the SI [128], [246].

Sequence IDs are mapped to amino acid sequences using the UniProt database. All
entries that are no longer valid are identified using the UniParc database [247]. Enzyme-
substrate hits are called at a binary threshold cutoff of 0.2 OD as described in the original
paper to correct for background noise.

BKACE data

ß-ketoacid cleavage enzyme (BKACE) substrates are manually re-drawn and SMILES strings
are extracted from ChemDraw [231]. Enzyme sequences are extracted from the SI, and all
hits are binarized according to original procedure from Bastard et al. using a mixture of
Gaussians.

Thiolase data

Binary thiolase data is used and extracted as prepared by Robinson et al. and binarized at
a threshold of 1⇥ 10�8 [230].

Esterase data

Binary esterase data is used and extracted as prepared by Martínez-Martínez et al. All
enzymes that display > 0 activity are considered to be hits after binarization [232].
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Table 6.2: Active site structure references used in pooling. All structure informed
pooling strategies require a catalytic center in order to define various angstrom shells of
residues to pool over. This table provides the PDB reference crystal structure as well as
the reference residues or structural elements used to define the pooling center, from which
spherical radii originate.

Dataset PDB Ref. Ref. type Ref.

Halogenase [219] 2AR8 ligand 7-chlorotryptophan
Glycosyltransferase [229] 3HBF ligands UDP and 3,5,7-TRIHYDROXY-2-(3,4,5-TRIHYDROXYPHENYL)-4H-CHROMEN-4-ONE
Thiolase [230] 4KU5 catalytic residue C143
BKACE [231] 2Y7F ligand (5S)-5-amino-3-oxo-hexanoic-acid
Phosphatase [233] 3L8E ligand acetic acid
Esterase [232] 5A6V catatlytic residues S105, D187D, H224
Kinase (inhibitors) [223] 2CN5 ligand ADP

Glycosyltransferase data

Glycosyltransferase acceptors and donors were originally measured and classified as having
no, intermediate, or strong activity using a “green”, “amber”, or “red” classification sys-
tem [229]. We make the simplifying assumption to treat all intermediate activity enzymes
as a positive example in our binary classification formulation. Further, many more glycosyl-
tranferase acceptor substrates are tested than donors, and so we choose to predict activity of
glycosyltransferase-glycosyl acceptor substrate pairs. We use ChemDraw to extract acceptor
substrate SMILES strings.

Kinase data

The kinase data in this study is a panel of inhibitors screened against kinases, originally
collected by Davis et al. [223]. To compare models directly to Hie et al., we use identical
data preprocessing and featurization [226].

For the analysis of structure based pooling, we further processed this dataset for con-
sistency with family-wide protein screens. We subset the data to represent a single PFAM
family, PF00069 [248], and we use the hmmsearch tool to identify all proteins that satisfy
this domain [249].

Due to the large size of the kinase proteins, individual kinase domains were experimentally
cloned separately. Some protein entries have multiple measurements corresponding to the
first and second kinase domains within the protein. To account for this, we use the envelope
returned from hmmsearch to subset each protein down to its relevant domain(s). In the
interest of maintaining a dataset without point mutations, we further remove all proteins
that have specific deletions or insertions. Finally, all kinase-inhibitors without a measured
Kd are given a default value of 10, 000 as set by Hie et al.
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Table 6.3: Summary of valid substrate and sequence “tasks”. In each dataset, only
certain substrates and sequences are defined as valid “tasks” based upon the balance between
active and inactive examples. Each substrate or sequence used for an enzyme or substrate
discovery task respectively requires at least 2 positive examples and at a minimum, 10% of
examples in that task must be part of the minority class. This table defines the number of
valid substrate and sequence tasks.

Dataset Num entries # Seqs. # Subs. Valid subs. Valid seqs.

Thiolase 1095 73 15 11 70
Halogenase 2604 42 62 20 17
BKACE 2737 161 17 7 54
Glyco. 4347 54 91 35 48
Esterase 14016 146 96 59 106
Phosphatase 35970 218 165 103 102
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Figure 6.7: Dataset diversity Distributions of top-5 enzyme similarity (left) and substrate
similarity (right) are shown across enzyme datasets collected. Enzyme similarity is calculated
as the percent overlap between two sequences in their respective multiple sequence alignment,
excluding positions where both sequences contain gaps. Substrate similarity is computed
using Tanimoto similarity between 2048-bit chiral Morgan fingerprints.
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6.6.2 Models

Enzyme-substrate models

We consider 4 classes of models to learn from family-wide enzyme-substrate models:

1. Baseline: For simple baseline models, we consider non-parametric approaches such as
K-nearest neighbors using sequence edit distance and Tanimoto similarity. In addition,
we consider the case where we have random features, rather than meaningful ones.
With such inputs, we expect models will be able to learn only statistical biases in the
data.

2. Multi-task: In a multi-task approach, we consider models that share some inter-
mediate representation of the input. Considering the case of enzyme discovery, each
task represents measurements for enzymes {x1, x2, . . . xn} against a separate substrate.
For a single enzyme, xi, we denote {yi,1, yi,2, . . . , yi,m} as the activities of xi against
all m substrates. Thus, the goal is to learn some set of j 2 {1, 2, . . . ,m} functions
fj(xi) = ŷi,j. In multi-task learning, we force each function to have a shared interme-
diate representation, decomposing fj as:

fj(xi) = Hj(G(xi)) = ŷi,j

Therefore, each model must learn a common transformation G(xi) and is able to share
information across tasks. In practice, we can accomplish this multi-task learning setup
by using a multi-layer perceptron (MLP) model that has a single shared intermediate
layer and outputs m different values in the final layer corresponding to the input
enzyme’s activity against all m substrates.
For enzyme discovery, while this model class can share information across substrates,
there is no meaningful representation of the substrate itself included in this model. The
same properties hold for substrate discovery, with the tasks featuring measurements
against different enzymes instead.

3. CPI: On the other hand, the CPI based models are able to consider both meaningful
representations of the enzyme and the substrate. We use primarily feed forward neural
networks with concatenation and dot product layers that fuse representations of the
substrate and enzyme.

4. Single-task: We consider single task models that act on enzymes (substrates) mea-
sured against a single substrate (enzyme) target, independently from other substrate
(enzyme) targets. Unlike CPI and multi-task models, single-task models have no ability
to share information across tasks.

In addition to model classes, we test several different representations for both enzymes and
substrates. For enzyme representations, we consider three different featurization schemes:

1. Sequence: When considering sequence similarity in K-nearest neighbor approaches,
we featurize the enzyme as a sequence
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2. ESM-1b: ESM-1b [206] is a pretrained deep learning model that can extract mean-
ingful featurizations of full enzyme sequences at each respective position.

3. One-hot: In the multi-task learning setting, rather than force models to pass through
a shared intermediate, we can also encode each enzyme as a unique “one-hot" vector.
That is, the featurization for the ith enzyme in the dataset will be a zero vector with a
value of 1 at the ith position only, such that the sum of the vector is itself 1. Because
such an encoding does not give the model any structural information about the enzyme
or substrate, we utilize such a featurization in a second multi-task learning scheme.

To featurize substrates, we consider:

1. Morgan: Circular Morgan fingerprints have been a staple of cheminformatics based
regression.. We use 1024-bit Morgan fingerprints [237] to represent structural features
of each molecule.

2. Random: For baseline methods, we also consider randomly sampled compound fea-
tures and learn simple ridge regression methods.

3. One-hot: As with enzyme sequences, we consider one-hot based encodings of sub-
strates for multi-task enzyme discovery.

4. JT-VAE: In analogy to how we extract pre-trained representations from enzymes, we
also consider using the encoding from Jin et al.’s JT-VAE model [236].

Table 6.4: Summary and classifications of different models utilized.

Model class Model Enz. features Sub. features Enz. discovery? Sub. discovery? Model name
Baseline KNN Sequence - Yes No KNN: Levenshtein

KNN - Morgan No Yes KNN: Tanimoto
Ridge - Random No Yes Ridge: random feats.

Multi-task FFN ESM-1b - Yes No FFN: ESM-1b
FFN (concat.) ESM-1b One-hot Yes No FFN: [ESM-1b, one-hot]
FFN - Morgan No Yes FFN: Morgan
FFN (concat) One-hot Morgan No Yes FFN: [one-hot, Morgan]

CPI FFN (concat) ESM-1b Morgan Yes Yes FFN: [ESM-1b, Morgan]
FFN (dot) ESM-1b Morgan Yes yes FFN: ESM-1b • Morgan

Single-task Ridge ESM-1b - Yes No Ridge: ESM-1b
Ridge - Morgan No Yes Ridge: Morgan
Ridge - JT-VAE No Yes Ridge: JT-VAE

Compound-protein models

When conducting our re-analysis of the CPI study from Hie et al., we use similar com-
binations of models and features. For consistency with their work, we utilize their model
architectures, protein featurizations, and substrate featurizations. We showcase the differ-
ences among these in Table 6.5.
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Table 6.6: Full enzyme discovery area under the precision recall curve (AUPRC)
results. On the 6 different datasets tested (thiolase datasets used for hyperparameter
optimization), K-nearest neighbor baselines with Levenshtein edit distance are compared
against feed-forward networks using various featurizations and ridge regression models. Pre-
trained features (“ESM-1b”) indicate protein features extracted from a masked language
model trained on UniRef50 [206]. Two compound protein interaction architectures are
tested, both concatenation and dot products, indicated with “[{prot repr.}, {sub repr.}]”
and “{prot repr.}•{sub repr.}” respectively. Halogenase and glycosyltransferase datasets are
evaluated using leave-one-out splits, whereas BKACE, phosphatase, and esterase datasets
are evaluated with 5 repeats of 10 different cross validation splits. Average precision is cal-
culated using scikit-learn for each substrate task separately before being averaged. Average
values are presented across 3 random seeds ± standard error.
1Used for hyperparameter optimization

Dataset BKACE Esterase Glyco. Halogenase Phosphatase Thiolase1

Method Type Method

Baselines KNN: Levenshtein 0.564± 0.011 0.528± 0.002 0.539± 0.003 0.375± 0.014 0.316± 0.004 0.499± 0.001
CPI FFN: [ESM-1b, Morgan] 0.478± 0.012 0.579± 0.007 0.581± 0.008 0.489± 0.025 0.386± 0.006 0.536± 0.027

FFN: ESM-1b • Morgan 0.645± 0.007 0.588± 0.011 0.559± 0.010 0.463± 0.021 0.389± 0.002 0.541± 0.003
Multi-task FFN: [ESM-1b, one-hot] 0.433± 0.007 0.557± 0.007 0.526± 0.024 0.510± 0.043 0.361± 0.008 0.552± 0.013

FFN: ESM-1b 0.664± 0.011 0.572± 0.008 0.543± 0.024 0.420± 0.003 0.359± 0.005 0.487± 0.003
Single-task Ridge: ESM-1b 0.648± 0.011 0.583± 0.003 0.575± 0.000 0.446± 0.000 0.413± 0.005 0.519± 0.000

Table 6.5: Summary and classifications of different models utilized in our reanal-
ysis of Hie et al. [226]

Model class Model Prot. features Sub. features Repurposing? Discovery? Original study?
CPI MLP Bepler JT-VAE Yes Yes Yes

GP + MLP Bepler JT-VAE Yes Yes Yes
No CPI MLP Bepler - Yes No No

GP + MLP Bepler - Yes No No
MLP - JT-VAE No Yes No
GP + MLP - JT-VAE No Yes No

Linear Ridge Bepler - Yes No No
Ridge - JT-VAE No Yes No
Ridge - Morgan No Yes No

6.6.3 Extended results
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Table 6.7: Full enzyme discovery area under the receiver operating curve (AUC-
ROC) results. On the 6 different datasets tested (thiolase datasets used for hyperparame-
ter optimization), K-nearest neighbor baselines with Levenshtein edit distance are compared
against feed-forward networks using various featurizations and ridge regression models. ESM-
1b features indicate protein features extracted from a masked language model trained on
UniRef50 [206]. Two compound protein interaction architectures are tested, both concate-
nation and dot products, indicated with “[{prot repr.}, {sub repr.}]” and “{prot repr.}•{sub
repr.}” respectively. Halogenase and glycosyltransferase datasets are evaluated using leave-
one-out splits, whereas BKACE, phosphatase, and esterase datasets are evaluated with 5
repeats of 10 different cross validation splits. AUC ROC is calculated using scikit-learn for
each substrate task separately before being averaged. Average values are presented across 3
random seeds ± standard error.
1Used for hyperparameter optimization

Dataset BKACE Esterase Glyco. Halogenase Phosphatase Thiolase1

Method Type Method

Baselines KNN: Levenshtein 0.896± 0.003 0.686± 0.002 0.623± 0.002 0.506± 0.013 0.635± 0.003 0.560± 0.003
CPI FFN: [ESM-1b, Morgan] 0.793± 0.001 0.723± 0.003 0.636± 0.019 0.568± 0.036 0.676± 0.008 0.637± 0.025

FFN: ESM-1b • Morgan 0.884± 0.002 0.730± 0.004 0.647± 0.021 0.587± 0.025 0.678± 0.001 0.637± 0.011
Multi-task FFN: [ESM-1b, one-hot] 0.768± 0.006 0.714± 0.006 0.586± 0.018 0.616± 0.043 0.657± 0.002 0.651± 0.032

FFN: ESM-1b 0.892± 0.002 0.713± 0.002 0.624± 0.025 0.564± 0.003 0.669± 0.004 0.569± 0.024
Single-task Ridge: ESM-1b 0.892± 0.004 0.725± 0.001 0.653± 0.000 0.567± 0.000 0.703± 0.002 0.589± 0.000

Table 6.8: Full substrate discovery area under the precision recall curve (AUPRC)
results. CPI models and single task models are compared on the glycosyltransferase, es-
terase, and phosphatase datasets, all with 5 trials of 10-fold cross validation. Each model and
featurization is compared to “Ridge: Morgan” using a 2-sided Welch T test, with each addi-
tional asterisk representing significance at [0.05, 0.01, 0.001, 0.0001] thresholds respectively
after applying a Benjamini-Hochberg correction. Pretrained substrate featurizations used in
“Ridge: JT-VAE” are features extracted from a junction-tree variational auto-encoder (JT-
VAE) [236]. Two compound protein interaction architectures are tested, both concatenation
and dot-product, indicated with “[{prot repr.}, {sub repr.}]” and “{prot repr.}•{sub repr.}”
respectively. In the interaction based architectures, ESM-1b indicates the use of a masked
language model trained on UniRef50 as a protein representation [206]. Average precision is
calculated using scikit-learn for each substrate task separately before being averaged. Mod-
els are hyperparameter optimized on a held out halogenase dataset. Values represent mean
values across 3 random seeds ± standard error.
1Used for hyperparameter optimization

Dataset Esterase Glyco. Halogenase1 Phosphatase
Method Type Method

Baselines KNN: Tanimoto 0.609± 0.008 0.588± 0.006 0.464± 0.000 0.426± 0.002
Ridge: random feats. 0.327± 0.014 0.239± 0.032 0.258± 0.037 0.294± 0.006

CPI FFN: [ESM-1b, Morgan] 0.674± 0.019 0.673± 0.010 0.471± 0.005 0.462± 0.006
FFN: ESM-1b • Morgan 0.709± 0.018 0.693± 0.005 0.478± 0.033 0.506± 0.004

Multi-task FFN: Morgan 0.654± 0.011 0.689± 0.005 0.362± 0.019 0.442± 0.001
FFN: [one-hot, Morgan] 0.707± 0.019 0.677± 0.009 0.469± 0.009 0.493± 0.005

Single-task Ridge: Morgan 0.716± 0.010 0.699± 0.008 0.525± 0.000 0.504± 0.002
Ridge: JT-VAE 0.489± 0.004 0.505± 0.007 0.468± 0.000 0.411± 0.002
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Table 6.9: Full substrate discovery area under the receiver operating curve (AUC-
ROC) results. CPI models and single task models are compared on the glycosyltransferase,
esterase, and phosphatase datasets, all with 5 trials of 10-fold cross validation. Each model
and featurization is compared to “Ridge: Morgan” using a 2-sided Welch T test, with each
additional asterisk representing significance at [0.05, 0.01, 0.001, 0.0001] thresholds respec-
tively after applying a Benjamini-Hochberg correction. Pretrained substrate featurizations
used in “Ridge: JT-VAE” are features extracted from a junction-tree variational auto-encoder
(JT-VAE) [236]. Two compound protein interaction architectures are tested, both concate-
nation and dot-product, indicated with “[{prot repr.}, {sub repr.}]” and “{prot repr.}•{sub
repr.}” respectively. In the interaction based architectures, “ESM-1b” indicates the use of a
masked language model trained on UniRef50 as a protein representation [206]. Models are
hyperparameter optimized on a held out halogenase dataset. Values represent mean values
across 3 random seeds ± standard error.
1Used for hyperparameter optimization

Dataset Esterase Glyco. Halogenase1 Phosphatase
Method Type Method

Baselines KNN: Tanimoto 0.807± 0.001 0.855± 0.004 0.739± 0.000 0.680± 0.002
Ridge: random feats. 0.513± 0.019 0.483± 0.042 0.440± 0.051 0.481± 0.011

CPI FFN: [ESM-1b, Morgan] 0.808± 0.005 0.883± 0.004 0.726± 0.006 0.689± 0.004
FFN: ESM-1b • Morgan 0.831± 0.003 0.892± 0.001 0.728± 0.021 0.715± 0.003

Multi-task FFN: Morgan 0.784± 0.004 0.880± 0.007 0.583± 0.022 0.675± 0.002
FFN: [one-hot, Morgan] 0.833± 0.006 0.880± 0.002 0.750± 0.007 0.711± 0.005

Single-task Ridge: Morgan 0.841± 0.003 0.878± 0.005 0.745± 0.000 0.710± 0.001
Ridge: JT-VAE 0.724± 0.003 0.751± 0.004 0.682± 0.000 0.641± 0.001
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Figure 6.8: Enzyme discovery benchmarking with AUCROC On the 5 different
datasets tested, K-nearest neighbor baselines with Levenshtein edit distance are compared
against feed-forward networks using various featurizations and ridge regression models in
terms of AUC ROC performance. ESM-1b features indicate protein features extracted from
a masked language model trained on UniRef50 [206]. Concatenation and dot product ar-
chitectures are indicated with “[{prot repr.}, {sub repr.}]” and “{prot repr.}•{sub repr.}”
respectively. Halogenase and glycosyltransferase datasets are evaluated using leave-one-out
splits. BKACE, phosphatase, and esterase datasets are evaluated with 5 repeats of 10 dif-
ferent cross validation splits. AUC ROC is calculated using scikit-learn for each substrate
task separately before being averaged. Error bars represent the standard error of the mean
across 3 random seeds. Each model and featurization is compared to “Ridge: ESM-1b” using
a 2-sided Welch T test, with each additional asterisk representing significance at [0.05, 0.01,
0.001, 0.0001] thresholds respectively after applying a Benjamini-Hochberg correction.
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Figure 6.9: Full substrate discovery AUC ROC results. CPI models and single
task models are compared on the glycosyltransferase, esterase, and phosphatase datasets,
all with 5 trials of 10-fold cross validation. Error bars represent the standard error of the
mean across 3 random seeds. Each model and featurization is compared to “Ridge: Morgan”
using a 2-sided Welch T test, with each additional asterisk representing significance at [0.05,
0.01, 0.001, 0.0001] thresholds respectively after applying a Benjamini-Hochberg correction.
Pretrained substrate featurizations used in “Ridge: JT-VAE” are features extracted from
a junction-tree variational auto-encoder (JT-VAE) [236]. Concatenation and dot-product
architectures are indicated with “[{prot repr.}, {sub repr.}]” and “{prot repr.}•{sub repr.}”
respectively. In the interaction based architectures, “ESM-1b” indicates the use of a masked
language model trained on UniRef50 as a protein representation [206]. Models are hyper-
parameter optimized on a held out halogenase dataset.
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Figure 6.10: Substrate Discovery Extended Analysis (A) Average AUPRC on each
individual “enzyme task” is compared between compound protein interaction models and
single-task models. Points below 1 indicate substrates on which single-task models better
predict enzyme activity than CPI models. CPI models used are “FFN: [ESM-1b, Morgan]”
and single-task models are “Ridge: Morgan”. (B) AUPRC values from the ridge regression
model broken out by each task are plotted against the fraction of active enzymes in the
dataset. Best fit lines are drawn through each dataset to serve as a visual guide.
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Figure 6.11: MSA and structure based pooling across all datasets tested (A) Active
site, coverage, conservation, and mean pooling are plotted for all 5 enzyme discovery datasets
tested. Both AUCROC and AUPRC values are shown. These are compared against the
Levenshtein distance baseline (dotted). (B) Equivalent analysis is conducted on the filtered
kinase dataset extracted from Davis et al. with MAE, RMSE, and Spearman rank correlation
shown [223]. The same hyperparameters are used as set in Figure 6.2 for ridge regression
models. All experiments are repeated for 3 random seeds following the same split evaluation
as in other enzyme discovery model benchmarking.
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Figure 6.12: Enzyme discovery halogenase prediction results Ground truth binary
enzyme-substrate activities (left) are compared against a single seed of predictions made
through cross validation using a single-task ridge regression model (middle) and a CPI based
model, FFN: [ESM-1b, Morgan] (right).
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Figure 6.13: Enzyme discovery glycosyltransferase prediction results Ground truth
binary enzyme-substrate activities (left) are compared against a single seed of predictions
made through cross validation using a single-task ridge regression model (middle) and a CPI
based model, FFN: [ESM-1b, Morgan] (right).
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Figure 6.14: Enzyme discovery BKACE prediction results Ground truth binary
enzyme-substrate activities (left) are compared against a single seed of predictions made
through cross validation using a single-task ridge regression model (middle) and a CPI based
model, FFN: [ESM-1b, Morgan] (right).
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Figure 6.15: Enzyme discovery esterase prediction results Ground truth binary
enzyme-substrate activities (left) are compared against a single seed of predictions made
through cross validation using a single-task ridge regression model (middle) and a CPI based
model, FFN: [ESM-1b, Morgan] (right).
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Figure 6.16: Enzyme discovery phosphatase prediction results Ground truth binary
enzyme-substrate activities (left) are compared against a single seed of predictions made
through cross validation using a single-task ridge regression model (middle) and a CPI based
model, FFN: [ESM-1b, Morgan] (right).
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Figure 6.17: Substrate discovery glycosyltransferase prediction results Ground truth
binary enzyme-substrate activities (left) are compared against a single seed of predictions
made through cross validation using a single-task ridge regression model (middle) and a CPI
based model, FFN: [ESM-1b, Morgan] (right).
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Figure 6.18: Substrate discovery esterase prediction results Ground truth binary
enzyme-substrate activities (left) are compared against a single seed of predictions made
through cross validation using a single-task ridge regression model (middle) and a CPI based
model, FFN: [ESM-1b, Morgan] (right).
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Figure 6.19: Substrate discovery phosphatase prediction results Ground truth binary
enzyme-substrate activities (left) are compared against a single seed of predictions made
through cross validation using a single-task ridge regression model (middle) and a CPI based
model, FFN: [ESM-1b, Morgan] (right).
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Chapter 7

Evidential Molecular Prediction and
Discovery

This chapter continues the theme of predicting functional attributes of small molecules,
metabolites, and their interactions. Specifically, we consider how new computational meth-
ods for quantifying uncertainty can be used for molecular property prediction. This text
has previously appeared as A. P. Soleimany, A. Amini, S. Goldman, et al., “Evidential Deep
Learning for Guided Molecular Property Prediction and Discovery,” ACS Central Science,
vol. 7, no. 8, pp. 1356–1367, 2021. I contributed equally alongside the first two authors. All
co-first authors contributed to project conceptualization, the implementation of the methods,
and presentation of the work, with additional input from supervising advisors.

7.1 Introduction

As quantitative structure-activity relationship (QSAR) models are increasingly applied across
the chemical and physical sciences to guide time- and resource-intensive experimentation,
an understanding of when to trust model predictions is of critical importance [251]–[253].
Though neural networks have shown tremendous promise in QSAR modeling [254], [255],
they remain difficult to interpret, are susceptible to pathological failures in out-of-domain
regimes, and lack guarantees on their robustness. Therefore, a better understanding of
predictive confidence of neural models is essential, particularly for drug discovery and vir-
tual screening applications where model predictions can inform safety-critical experimental
pipelines.

Uncertainty quantification (UQ) methods can help meet this critical need to facilitate the
robust application of neural models in the chemical sciences. Indeed, significant work has
been done in establishing general methods to estimate epistemic uncertainties (i.e., model
uncertainty due to uncertainty in parameters and predictions) and aleatoric uncertainties
(i.e., data uncertainty due to noise inherent in the observations) of neural network pre-
dictions [256]. Recent studies have demonstrated the importance of focusing explicitly on
epistemic uncertainty in the contexts of property and reaction prediction in the chemi-
cal sciences [257], discovery in the biological sciences [226], as well as in healthcare more
broadly [258]. While a plethora of distance-based and non-parametric methods for UQ have
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been developed [259], [260], Bayesian neural networks [261] and sampling based approaches,
such as model ensembling [262] and dropout sampling [263], are still accepted as state of the
art for epistemic UQ in neural networks, due in part to their model-agnostic nature and ease
of implementation [257], [264], [265].

However, these approaches only generate approximations to the underlying uncertainty
functions via stochastic sampling, incurring computational costs and runtimes that are rou-
tinely an order of magnitude higher than those of single models. This poses a significant
challenge to using these epistemic uncertainty models in iterative active learning procedures,
scans of very large chemical libraries, and molecular dynamics simulations [265], [266]. Addi-
tionally, the most recent adaptations of atomistic neural networks for prediction of potential
energy surfaces and quantum mechanical properties have achieved state-of-the-art results
by using more expressive, larger network architectures that sacrifice speed for predictive
accuracy [267], [268]. Large model sizes compound the computational expense of deploying
sampling-based UQ methods and necessitate the development of more efficient approaches.
Though neural networks can be trained to obtain closed-form solutions of only aleatoric
uncertainty without sampling, these methods fail to provide estimates of epistemic uncer-
tainties, limiting their broad utility [269]–[273]. More generally, recent analyses have revealed
an overwhelming lack of consensus as to the top performing UQ methods across molecular
property prediction datasets [264], [274]. Thus, there remains a need for fast, calibrated, and
scalable UQ methods for QSAR models that provide estimates of model uncertainty and can
be deployed across a range of molecular property prediction and discovery tasks.

Emerging evidential deep learning algorithms have the potential to address these limi-
tations in their ability to directly learn grounded representations of epistemic uncertainty
without the need for sampling [275], [276]. Specifically, these methods formulate learning
as an evidence acquisition process, wherein new training examples add support to a learned
evidential distribution that parameterizes a probability distribution over the network’s like-
lihood function. Evidential learning therefore offers the promise of efficient and calibrated
uncertainty learning without the need for sampling. Furthermore, evidential neural networks
can be implemented without significant architecture changes, but rather via modifications
to the training loss function, and could thus enable tight integration with domain-specific
architectures. However, while evidential learning formulations for both regression [276] and
classification [275] have recently been presented, the utility of these methods on complex,
non-uniform inputs, such as molecular graphs pervasive throughout the chemical sciences,
has yet to be shown.

In this work, we establish evidential deep learning as a new approach to UQ for molec-
ular structure-property prediction (Figure 7.1). Specifically, this work makes the following
contributions:

1. Development of evidential message passing and atomistic networks that learn 2D or
3D molecular representations, respectively, and return well-calibrated epistemic uncer-
tainties without any sampling;

2. Evaluation of evidential uncertainties on benchmark QSAR regression tasks against
gold-standard, sampling-based UQ methods;

3. Validation of the relevance of evidential deep learning to key molecular discovery ap-
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Figure 7.1: Evidential uncertainty for molecular prediction and discovery. (A) Ev-
idential direct message passing or atomistic neural networks learn molecular representations,
predict target properties, and infer the parameters of an underlying evidential distribution
that captures the evidence in support of each prediction and enables uncertainty estimation.
(B) Uncertainties are applied during learning (I) to guide sample acquisition and during
deployment (II) to discover high confidence candidates with high empirical success rates.

plications that require sample prioritization from a larger screening library, namely:

(i) Uncertainty-guided learning for sample-efficient model training and accelerated
property optimization;

(ii) Uncertainty-guided deployment for prioritization of high confidence candidates in
virtual screening.

Taken together, our experiments validate a framework to use evidential deep learning as a
powerful and flexible replacement for UQ in molecular property prediction and discovery
tasks across the chemical sciences.

7.2 Approach

7.2.1 Formulating evidential learning for molecules
Evidential deep learning models [275], [276] are a recent approach to training single net-
works to estimate predictive uncertainties. While neural networks have been trained to
output probabilities, for example with Softmax [277] for classification or Gaussian distri-
butions (MVE) [269] for regression, these approaches estimate the probability of an output
but neglect the model’s uncertainty associated with that output. Evidential deep learning
extends the idea of learning the parameters of a probability distribution further to predict
higher-order distributions over the original likelihood parameters themselves. These higher-
order parameters define the evidential distribution and capture both the model’s prediction
as well as the degree of evidence associated with that prediction. These models estimate
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uncertainty by directly learning the parameters defining this evidential distribution, and are
closely related to Bayesian neural networks [263] and ensembling approaches [262] which
estimate the model’s uncertainty by sampling from the likelihood distribution, instead of
directly learning to output it.

In the regression setting (e.g., prediction of a continuous target), we are given a dataset
of paired training examples D = {xi, yi}Ni=1, for which the targets, yi 2 R, can be assumed
to be drawn i.i.d. from a Gaussian distribution with mean and variance ✓ = {µ, �2

}. In
the case of MVE networks, the likelihood parameters ✓ are deterministic and fixed, such
that the model is optimized during training to predict these values directly, preventing es-
timation of model uncertainty. As an extension to this approach, evidential models assume
these parameters are unknown and must instead be probabilistically estimated. This is done
by placing priors over the likelihood parameters, such that the mean µ is drawn from a
Gaussian distribution and the variance �2 is drawn from an Inverse-Gamma distribution.
The resulting higher-order distribution (also referred to as the evidential distribution) thus
can be represented by a Normal-Inverse-Gamma distribution, p(✓|m). This evidential dis-
tribution is specified by four parameters m = {�,�,↵, �}. For continuous targets, evidential
models directly learn these parameters m which in turn define full distributions on top of
the likelihood parameters {µ, �2

}, thus capturing the uncertainty in the model’s prediction
(Figure 7.2A, B). Accordingly, the model outputs four values per target, corresponding to
the four parameters of m, and is trained using a multi-objective loss that aims to jointly
maximize model fit while minimizing evidence on errors (Figure 7.2C).

In this work, we demonstrate that this evidential learning framework can be coupled
with molecular feature extraction networks to predict target properties and also estimate
uncertainty (Figure 7.2). We accomplish this by taking the molecular representation learned
by a feature extractor (e.g., a neural network operating on 2D molecular graphs) and feeding
it into a dense evidential layer which maps these higher dimensional learned features to
the four evidential parameters m which yield both property prediction and uncertainty
estimates. All models are trained end-to-end, from molecule input to evidential property
output, via backpropagation by optimizing the evidential loss function. Full model details
and code for implementation can be found in Section 7.6.

7.3 Results

7.3.1 Uncertainty benchmarking
We first sought to demonstrate that our evidential learning algorithm could produce desirable
uncertainties across both molecular and atomistic property prediction tasks. Given our
emphasis on downstream tasks that require choosing the correct molecule from a larger
screening library (Figure 7.1B), we evaluated whether predicted uncertainties are correctly
ranked with respect to error; that is, predictions with the lowest uncertainty should also be
expected to have the lowest error.

We integrated the evidential regression method into a directed message passing neural
network (D-MPNN) architecture and assessed its performance in the “lower-N” (dataset of
 10, 000 molecules) regression setting on commonly used benchmarking datasets [278] of
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inflates uncertainty (i.e., minimizes evidence) on errors.

aqueous solubility (Delaney), solvation energy (Freesolv), lipophilicity (Lipo), and atom-
ization energy (QM7) (Figure 7.3A). With smaller datasets, sampling approaches such as
model ensembling are not prohibitively expensive in practice, so evidential regression must
demonstrate more calibrated uncertainty predictions relative to standard sampling-based
UQ methods to justify its adoption.

Evidential regression performed well in its ability to rank uncertainties with respect to
error (Table 7.1, Figure 7.7). Specifically, the evidential method achieves the lowest error
across all methods tested when considering only the top 5% most certain predictions for
three of the four datasets tested (Delaney, Freesolv, QM7; Table 7.1). On both the Delaney
and QM7 datasets, error returned by the evidential model is well below the second best
performing method by the 50% confidence cutoff (Figure 7.3B, C). The drastic improvement
over ensembles in QM7 is consistent with previous observations that single neural network
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models are more accurate than ensembles in the top confidence percentiles on QM7 [264].
Still, in the lower-N setting, there is some variance in performance across datasets. On the
lipophilicity dataset, the RMSE computed at uncertainty cutoff percentiles of 0.25 and below
for evidential regression is higher (worse) than the dropout-based sampling method, showing
no advantage in selecting the most accurately predicted test set molecules over dropout
(Table 7.1, Figure 7.7). Furthermore, the evidential method yields higher rank correlation
between uncertainty and error than both ensembles and dropout on two of the four lower-N
datasets tested and is at least within one standard deviation of the ensemble method for three
of the four datasets tested, supporting its ability to better rank predictions (Figure 7.9).

To further evaluate performance in the lower-N setting, we conducted a similar analysis
on three additional lower-N datasets acquired from the Therapeutics Data Commons [238]
with tasks to predict hepatocyte clearance (“Clearance”), median lethal dose (“LD50”), and
plasma protein binding rates (“PPBR”). We find that evidence is competitive with sampling-
based methods here as well, with RMSE that is at least as low as the top performing sampling
method on all three datasets tested (Table 7.2). Furthermore, error for the evidential method
decreases steeply as a function of predicted certainty (Figure 7.8), and rank correlation
between error and uncertainty is highest for the evidential method on two out of the three
datasets tested (Figure 7.9).

Given these promising results in the lower-N setting, we next evaluated the generalizabil-
ity of the evidential method to larger scale datasets of � 50, 000 data points (Figure 7.3D).
Datasets of this size often represent large-scale chemical libraries [279] or are generated via
expensive physics-based simulations [280]. In these settings, the ability to quickly rank a
larger library based upon confidence is advantageous for guiding downstream analyses and
experimentation [281]. To this end, we compared UQ methods for 2D message passing
networks evaluated on each of two “higher-N” (� 50, 000 molecules) datasets: the QM9
dataset containing computer-generated quantum mechanical properties for small organic
molecules [278], [280], and a ligand docking dataset containing scores of 50,240 molecules
docked against thymidylate kinase using AutoDock Vina [282], [283].

For both these datasets, evidential regression predictions have lower error than both
ensemble and dropout-based methods for all confidence percentile cutoffs greater than 50%,
demonstrating steeper declines in error as a function of confidence (Figure 7.3E, Table 7.1).
Compared to the ensemble-based method, evidential regression also displays higher rank
correlation between uncertainty and error on both the docking dataset (⇢evidence = 0.163 ±
0.009, ⇢ensemble = 0.040 ± 0.018) and the QM9 dataset (⇢evidence = 0.469 ± 0.084, ⇢ensemble =
0.244 ± 0.097) (Figure 7.9). On the QM9 dataset with 2D molecular representations, the
evidential method exhibits steeper declines in error as a function of confidence cutoffs relative
to the ensemble baseline, both for individual tasks (Figure 7.10) and on the aggregated
uncertainty averaged across tasks (Figure 7.11A, B).

To demonstrate the utility of the evidential learning approach for a variety of chemistry-
specific neural model architectures, we integrated the evidential regression loss function into
an atomistic neural network, implemented via the SchNet pack software∗, that operates
on 3D molecular conformers (Figure 7.3D). While ensembles are more accurate with no
cutoff calculations (MAEensemble = 2.04 ⇥ 10�2, MAEevidence = 2.98 ⇥ 10�2; Table 7.1), the

∗https://github.com/atomistic-machine-learning/schnetpack
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Figure 7.3: Benchmarking evidential uncertainty for molecular property predic-
tion. (A) Lower-N regression tasks using 2D molecular representations for uncertainty
benchmarking. (B, C) Prediction error, measured as root mean squared error (RMSE) or
mean average error (MAE), at different confidence percentile cutoffs for the Delaney (B)
and QM7 (C) datasets. Mean ± 95% confidence interval (c.i.), n = 10 independent trials.
(D) Higher-N regression tasks using 2D or 3D molecular representations. (E, F) Prediction
error at different confidence percentile cutoffs for the Docking (E) and QM9 (F) datasets
for 2D direct message passing (D-MPNN; E) and 3D atomistic (SchNet; F) neural networks,
respectively. Mean ± 95% c.i., n = 5 independent trials.

evidential method still produces uncertainties that correlate well with error (Figure 7.3F).
When considering only predictions in the 95% confidence percentile, the evidential method
displays a quantitative improvement over the ensemble method (MAEensemble = 1.29⇥ 10�2,
MAEevidence = 1.12 ⇥ 10�2; Figure 7.3F, Table 7.1). Rank correlation between error and
uncertainty also reflects the steeper decrease of the evidential method relative to the ensemble
based method (⇢evidence = 0.361 ± 0.007 vs. ⇢ensemble = 0.220 ± 0.012; Figure 7.9C). Taken
together, these results demonstrate the promise of evidential regression in achieving well-
ranked uncertainty estimates across different dataset sizes and molecular representations,
highlighting the modularity of this method.

7.3.2 Calibration and tunability
After observing steep reductions in error with increasing confidence, we next investigated the
calibration of the predicted uncertainties – a critical property for the translation of any UQ
method. With a perfectly calibrated classifier, we expect to find the true target value in the
90% credible interval 90% of the time [284]. However, if a regression model is overconfident,
we would find the true value in the 90% credible interval less than 90% of the time and vice
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Delaney Freesolv Lipo QM7 (⇥102)

Cutoff Dropout Ensemble Evidence Dropout Ensemble Evidence Dropout Ensemble Evidence Dropout Ensemble Evidence

0.0 0.68 ± 0.02 0.65 ± 0.03 0.66 ± 0.02 1.00 ± 0.06 0.94 ± 0.06 0.96 ± 0.07 0.55 ± 0.01 0.53 ± 0.02 0.55 ± 0.02 1.18 ± 0.02 1.12 ± 0.02 1.15 ± 0.03
0.5 0.62 ± 0.03 0.55 ± 0.03 0.44 ± 0.01 0.79 ± 0.07 0.45 ± 0.04 0.42 ± 0.04 0.52 ± 0.01 0.40 ± 0.01 0.50 ± 0.01 0.88 ± 0.06 0.88 ± 0.06 0.39 ± 0.03
0.75 0.59 ± 0.03 0.50 ± 0.05 0.35 ± 0.02 0.85 ± 0.12 0.41 ± 0.05 0.36 ± 0.04 0.50 ± 0.02 0.38 ± 0.02 0.51 ± 0.02 0.65 ± 0.03 0.81 ± 0.06 0.23 ± 0.04
0.90 0.55 ± 0.03 0.51 ± 0.09 0.28 ± 0.02 0.66 ± 0.20 0.40 ± 0.06 0.35 ± 0.08 0.46 ± 0.03 0.38 ± 0.02 0.53 ± 0.03 0.69 ± 0.05 0.71 ± 0.11 0.10 ± 0.04
0.95 0.53 ± 0.06 0.45 ± 0.06 0.22 ± 0.02 0.75 ± 0.30 0.27 ± 0.04 0.38 ± 0.12 0.49 ± 0.04 0.36 ± 0.03 0.50 ± 0.04 0.73 ± 0.08 0.69 ± 0.11 0.10 ± 0.04

Enamine D-MPNN QM9 D-MPNN QM9 Atomistic (⇥10�2)

Cutoff Dropout Ensemble Evidence Dropout Ensemble Evidence Ensemble Evidence

0.0 3.40 ± 0.12 4.47 ± 0.18 5.60 ± 0.20 0.35 ± 0.00 0.33 ± 0.00 0.35 ± 0.00 2.04 ± 0.03 2.98 ± 0.08
0.5 3.64 ± 0.05 2.12 ± 0.02 1.55 ± 0.12 0.33 ± 0.00 0.32 ± 0.00 0.30 ± 0.00 1.45 ± 0.02 1.52 ± 0.02
0.75 3.42 ± 0.04 1.94 ± 0.04 1.04 ± 0.13 0.33 ± 0.00 0.32 ± 0.00 0.28 ± 0.00 1.36 ± 0.02 1.33 ± 0.02
0.90 3.30 ± 0.06 1.80 ± 0.03 0.63 ± 0.12 0.32 ± 0.00 0.32 ± 0.01 0.27 ± 0.00 1.31 ± 0.03 1.18 ± 0.03
0.95 3.26 ± 0.05 1.79 ± 0.05 0.42 ± 0.01 0.33 ± 0.01 0.32 ± 0.01 0.26 ± 0.01 1.29 ± 0.03 1.12 ± 0.03

Table 7.1: Model error at various confidence percentile cutoffs. For a given confidence
percentile cutoff, top performing methods based on prediction standard error of the mean (±
s.e.m.) are bolded. A cutoff of 0.95 indicates that only the top 5% most confident predictions
are considered. Full confidence plots for all datasets are shown in Figure 7.3 and Figures 7.7,
7.10, 7.11. Mean ± s.e.m. (RMSE for all D-MPNN models, MAE for atomistic); n = 10
independent trials for lower-N datasets, n = 5 independent trials for higher-N datasets.

versa for an underconfident model. Here, we explore the calibration properties of evidential
learning for molecular property prediction.

Evidential learning methods introduce regularization terms that minimize model evidence
in instances of high predictive error [275], [276]. Specifically, in the evidential regression
method, the training loss takes the form:

L(x) = LNLL(x) + �LREG(x)

where � controls the strength to which overconfident predictions are penalized by the reg-
ularization term LREG. Thus, � provides a tunable hyperparameter capable of modulating
the calibration of any model trained with evidential loss (Figure 7.4A). To investigate the ef-
fect of � on uncertainty calibration, we trained separate models with different regularization
strengths and computed empirical calibration curves that compare the fraction of test set
points that fall within a credible interval against the fraction of test set points expected to
fall within the predicted credible interval [260]. As expected, trained evidential D-MPNNs
move from overconfident to underconfident regions as � is increased, as shown on the Delaney
dataset (Figure 7.4B) and across other lower-N datasets (Figure 7.12).

To quantify the calibration accuracy, we calculated the area between the observed cali-
bration curve and the parity line (perfect calibration) for each value of � evaluated across
all lower-N datasets (Figure 7.4C). For all lower-N datasets except QM7, there exists a
value of � at which evidential regression is more calibrated than the ensemble baseline (Fig-
ure 7.4C). Based on these results, we choose a default of � = 0.2, as cutoff RMSE is robust
to small changes in � (Figure 7.13), and use this value for all evaluations unless stated oth-
erwise. This regularization strength yields predictions calibrated at least as well as those of
ensemble-based methods across all datasets and tasks tested (Figures 7.7, 7.11, 7.14). While
methods have been developed to re-calibrate and augment uncertainty predictions [284],
the ability to tune � via a hyperparameter search with the evidential regression formula-
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Figure 7.4: Tunability of the evidential uncertainty. (A) The evidential regression
method can be fine tuned with a single hyperparameter, �, in order to achieve more calibrated
predictions for a given dataset. (B) Estimated confidence (cumulative probability) against
the observed proportion correct for an evidential D-MPNN evaluated on the Delaney dataset.
Dotted line represents perfect calibration. Mean ± 95% c.i., n = 5 independent trials. (C)
Area between the observed calibration curve and the perfect calibration line across several
lower-N datasets for evidential D-MPNNs trained with varying �. Dotted lines represent
calibration of an ensemble of models. Mean ± 95% c.i., n = 10 independent trials.

tion presents an additional, attractive option for chemical science practitioners to quickly
calibrate uncertainty before applying general purpose re-calibration techniques.

7.3.3 Application I: Uncertainty-guided learning
Having verified that evidential uncertainties were well-calibrated to errors on property pre-
diction tasks, we next sought to use these uncertainties to guide learning towards improved
sample efficiency or accelerated molecular optimization. Concretely, in this section we in-
vestigate two applications, active learning and Bayesian optimization, that utilize UQ to
intelligently prioritize sample acquisition (Figure 7.5A).

Active learning for sample efficient training

As a first validation of the utility of evidential uncertainties for guided learning, we turned
to the QM9 dataset [280], a standard dataset for molecular property prediction that cap-
tures geometric, energetic, electronic, and thermodynamic properties, and asked whether
uncertainty-guided sample acquisition could yield a more sample-efficient learning process.
For QM9 active learning experiments, data acquisition was simulated as iterative selection
from the library repeated six times after initialization with a random 15% subset of the train-
ing data. At each step, the uncertainty was evaluated across the remainder of the training
data (i.e., samples that had not yet been selected). For explorative selection, the k samples
with the greatest estimated uncertainties at each iteration were added to the training set,
and the model was subesquently re-trained using this expanded dataset and then evaluated
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Figure 7.5: Evidential active learning and Bayesian optimization. (A) Experimental
scheme. (B) Active learning with explorative (solid) versus random (dashed) sampling for
D-MPNN evaluated on the QM9 dataset. Mean ± 95% c.i., n = 10 independent trials.
(C) Change in sample efficiency for explorative acquisition in (B), evaluated as the percent
decrease in predictive error relative to a randomly-selected training set. (D) Bayesian opti-
mization performance on Enamine 50k data, measured by the percentage of top-500 scores
found as a function of the number of ligands explored. Solid traces represent an upper con-
fidence bound (UCB) acquisition strategy. Mean ± 95% c.i., n = 10 independent trials. (E)
Average 10-nearest training set neighbors (10-NN) Tanimoto distance for batch samples after
the first round of acquisition in Bayesian optimization experiments. Dots represent median;
bars represent interquartile range; lines represent upper and lower adjacent values. n = 10
independent trials, two-tailed unpaired t-test, ****P < 0.0001.
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on a held out test set (Figure 7.5A). For all evaluations, random sample selection served as
a baseline for each uncertainty quantification method considered.

We find that active selection based on evidential uncertainties yields significantly im-
proved sample efficiency, reaching the same level of performance of the full training dataset
with over 60% less data (Figure 7.5B). Further, acquisition using evidential uncertainties re-
sults in increased data efficiency relative to dropout-based selection. For example, to achieve
an RMSE of 7.0, evidence-guided models required an average of 21% of the entire training
data compared to 55% for dropout-guided models (Figure 7.5B). We observe, consistent with
prior literature, that stochastically trained networks (e.g., trained with dropout) also suffer
from a baseline performance drop relative to their deterministically trained counterparts,
even when all data is considered. As expected, ensemble-based selection shows the greatest
improvement over random selection, which is consistent with the advantages that training
multiple independent models affords. However, this comes at a significant computational
cost, given that multiple independent models must be completely re-trained at each active
learning step. With growing interest in using uncertainties to inform full molecular dynamics
simulations [266] and to decide when to perform density functional theory simulations [265],
retraining 5 to 10 times as many models can drastically increase the expense and overhead of
a simulation. In contrast, evidential learning enables resource-efficient uncertainty estima-
tion at the cost of just a single deterministic model, while still achieving increased training
efficiency relative to random acquisition at a level nearly on par with ensemble-based se-
lection (Figure 7.5C). Specifically, while model ensembling achieves a better overall error,
the evidential method exhibits superior improvements in sample efficiency across different
stages of learning, attaining up to a 18% improvement in error relative to the random base-
line (Figure 7.5C). At any stage in learning, evidence-guided explorative sampling yields an
equal to or greater drop in error over random acquisition when compared to either dropout
or ensembling.

Bayesian optimization for accelerated molecular discovery

Instead of acquiring samples solely based on uncertainty, as with purely explorative active
learning, Bayesian optimization provides a framework to discover high performing com-
pounds (e.g., those with desired molecular properties) from a large search space by incor-
porating both predicted property scores and uncertainties to guide sample acquisition [282],
[285]. In this scheme, uncertainties can be used to explore the search space more conserva-
tively and to broadly enhance the overall diversity of acquired sample batches [286].

To this end, we investigated the utility of evidential uncertainty for Bayesian optimization
settings, where the aim is to rapidly discover compounds with target molecular properties.
We turned to the ligand docking dataset, previously benchmarked in Figure 7.3D, of 50,240
molecules docked in silico against thymidylate kinase [282]. Given this library of ca. 50k
molecules, we aim to identify those with the best ligand docking scores by only observing
ground truth docking scores for a small subset of the library. Data acquisition is initiated
by training on a random 1% subset (ca. 500 molecules) and then simulated as the iterative
selection of new samples based on an upper confidence bound (UCB) acquisition function
according to a given UQ method. In these experiments, a D-MPNN is used as the surrogate
model by which docking scores and uncertainties are estimated.

205



For all three UQ methods evaluated (dropout, ensemble, and evidence), UCB acquisition
yields clear improvements over the random baseline, representative of a brute-force search,
as measured by the percentage of top-500 (ca. top 1%) of scores found as a function of the
number of compounds explored (Figure 7.5D). Specifically, the evidential method discovers
over 50% of the top-500 docking molecules from the pool of 50k molecules after exploring
fewer than 2k molecules (less than 4% of the search space). Similar to the active learning
experiments, we also observe that the evidential method outperforms dropout sampling, but
does not exceed the performance of ensembling (Figure 7.5D, Table 7.3). While previous
studies on this dataset have shown that using greedy sampling based upon predicted docking
score outperforms UCB [282], we additionally evaluate the structural diversity of the newly
acquired pool, relative to the training set, in both greedy and UCB sampled molecules after
one round of acquisition (Figure 7.5E). Relative to its greedy baseline, the evidential UCB
method results in a statistically significant increase in the average Tanimoto distance between
sampled molecules and their respective 10-nearest training set neighbors, while the dropout-
and ensemble-based UCB methods do not (Figure 7.5E). Together, these results support
the use of evidential uncertainties within Bayesian optimization frameworks for accelerated
virtual screening and molecular discovery.

7.3.4 Application II: Uncertainty-guided inference for virtual screen-
ing

Though virtual screening is a common tool in computer-aided molecular discovery, all in silico
predictions of QSAR models must be experimentally validated, and often only a small frac-
tion of predictions or candidates nominated by QSAR models hold true in the real world [254],
[255]. Therefore, there remains a need for integrated methods that can help ensure the ro-
bustness of QSAR predictions. Fast and scalable UQ methods have the potential to meet
this need by guiding in silico discovery towards molecular candidates associated with greater
predictive confidences, based on the hypothesis that high confidence candidates are better
suited for downstream experimental validation. To this end, we next investigate the poten-
tial for evidential deep learning to discover high confidence drug candidates in retrospective
virtual screening campaigns. Concretely, we consider a virtual screening pipeline for an-
tibiotic discovery [43] and demonstrate how evidential uncertainties can be integrated to
more accurately prioritize drug repurposing candidates for use as antibiotics by additionally
filtering large screening libraries based on confidence in addition to predicted activity.

To achieve this, we develop a framework for uncertainty-guided prioritization in virtual
screening (Figure 7.6A). A large, labeled dataset of small molecules is used to train an eviden-
tial model which is in turn applied to a smaller, unlabeled discovery dataset to predict both
molecular properties as well as uncertainties. From these predictions, candidate molecules
are subsequently ranked by their associated property values, and then filtered further based
on confidence thresholds ranging from the 50th to 100th percentiles of greatest predictive
confidence (i.e., lowest uncertainties). Finally, among this filtered subset, experimental hit
rates (i.e., correlation of true versus predicted activities) are determined either retrospec-
tively, as in this work, or prospectively to assess the relative benefit of uncertainty-guided
prioritization versus naive nomination (i.e., without confidence filtering).
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To concretely demonstrate the utility of this approach, we considered the question of
antibiotic discovery and leveraged a recent dataset [43] of small molecules and their in vitro
growth inhibition against Escherichia coli (E. coli, measured as OD600) (Figure 7.15A). We
frame the prediction as a regression problem and train a D-MPNN with evidential loss and
outputs on this dataset of 2,335 small molecules to predict their OD600 values. The accuracy
of the resulting model is shown on a held-out validation set (Figure 7.6B).

Next, extending off the virtual screening pipeline presented by Stokes et al. [43], we ap-
plied the trained evidential D-MPNN model to an independent, unlabeled discovery dataset
with the aim of identifying high confidence candidate antibiotics. We leverage the Broad
Drug Repurposing Hub [287] as the discovery dataset and generate predictions for both es-
timated antibiotic activities as well as learned evidential uncertainties (Figure 7.15B). To
begin to understand how uncertainties scale and extend to this discovery dataset, we visualize
the structural overlap in chemical space between molecules in the discovery (Broad) dataset
compared to those in the training dataset, and annotate molecules in the discovery dataset
with their estimated evidential uncertainties (Figure 7.6C). Qualitatively, this analysis re-
vealed select regions of chemical space associated with higher evidential uncertainties that
also exhibit less overlap with the training set, consistent with the expected inflation of un-
certainties for out-of-distribution or distribution shifted domains. Furthermore, comparison
of predicted growth inhibition to evidential uncertainty demonstrates that predicted ac-
tive molecules (lower predicted OD600) trended towards higher uncertainties (Figure 7.15B),
an observation consistent with the stark imbalance and skewness of the training set (Fig-
ure 7.15A).

We then utilized evidential uncertainties to prioritize high confidence candidate antibi-
otics from the discovery dataset, with the goal of identifying molecule sets with high ex-
perimental hit rates, i.e., high likelihoods of having true growth inhibitory activity in the
real world (Figure 7.6A). To this end, following prediction of both antibiotic activity and
the associated evidential uncertainty, we rank molecules in the discovery dataset according
to their predicted antibiotic activities (i.e., lowest to highest predicted OD600, where lower
is better), and then select the top k ranking molecules based on predicted activity, as out-
lined in a previous virtual screen on this dataset [43]. We subsequently filtered the resulting
set of k molecules filtered based on confidence estimates for varying confidence thresholds.
Specifically, for a given confidence threshold p, molecules with estimated confidences below
the associated pth percentile are removed from the list of top k molecules, with p ranging
from the 50th to 100th percentiles of greatest predictive confidence.

Experimental hit rates (true OD600 < 0.2) for these model-nominated compounds were
then determined using the subset of candidates for which growth inhibitory activity against
E. coli had been determined [43] (Figure 7.15C). This analysis revealed that augmenting
network predictions with confidence-based filtering with evidential uncertainties can increase
the experimental hit rate relative to that of an unfiltered set of candidates (Figure 7.6D).
Increasing confidence percentiles enriched the candidate set for experimental hits, from a
hit rate of 78% for naive filtering to over 95% after confidence filtering using our evidential
method (Figure 7.6D). While filtering with ensemble-derived uncertainties also increased the
experimental hit rate above baseline, this difference was not as great as the relative increase
provided by the evidential method. These results suggest that evidential uncertainties can
be used to prioritize high confidence drug candidates in virtual screens in order to ultimately
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Figure 7.6: Uncertainty guided nomination in virtual screens. (A) Experimental
framework in which trained uncertainty-aware models are deployed on a discovery dataset,
and molecules are ranked based on predicted properties. Uncertainty filtering is used to pri-
oritize candidates among the top ranking molecules. (B) Performance of evidential D-MPNN
after training to predict E. coli growth inhibition. (C) t-SNE visualization of training set
(orange) and discovery dataset (Broad library), colored by predicted evidential uncertainties
(blue). (D) Application of confidence filters to prioritize sets of antibiotic candidates with
high experimental hit rates. Mean ± 95% c.i., n = 10 independent trials.

guide discovery towards greater likelihoods of experimental success.

7.4 Discussion

7.4.1 Contributions
In this work, we establish evidential deep learning as a scalable, efficient, and easy-to-use
uncertainty quantification method for molecular property prediction in the chemical and
physical sciences. By integrating our algorithm into both message passing and atomistic
networks operating on 2D graphs and 3D conformers, respectively, we demonstrate its mod-
ularity across different network architectures and its applicability across a range of tasks
in both lower-N and higher-N settings. Through benchmarking experiments against model
ensembling and dropout sampling methods, we show that our evidential algorithm exhibits
strong calibration and yields uncertainties that scale with prediction errors, supporting the
utility of our method for prioritizing candidate molecules from large screening libraries. Fur-
thermore, we validate the utility of evidential deep learning for uncertainty-guided learning
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and compound prioritization in virtual screening. We find that evidential uncertainties can
effectively guide sample acquisition to improve training efficiency and to accelerate virtual
screening in active learning and Bayesian optimization settings. Finally, by leveraging an ev-
idential message passing network to identify high confidence candidate antibiotics, we show
that evidential uncertainties can be used to direct retrospective virtual screening campaigns
towards compound sets with increased experimental validation rates.

7.4.2 Advantages of evidential learning in chemical science
The evidential deep learning framework offers several advantages relative to existing UQ
approaches for neural models in the chemical sciences. In contrast to other methods such
as Bayesian neural networks that require modifying architectures to output probability dis-
tributions over network weights [288], our algorithm can be incorporated into an existing
network architecture by modifying the loss function and the network’s final output layer.
Furthermore, our method presents key scalability and efficiency advantages over sampling-
based approaches for QSAR UQ, namely traditional model ensembling [262] and dropout
sampling [263], which necessitate training and/or evaluation of multiple surrogate models in
order to obtain approximations of epistemic uncertainty. While widely used, these methods
can incur high computational costs which may be prohibitive in settings that are resource-
constrained, that require iterative training, or that use large networks or large datasets. Our
method overcomes this limitation by directly modeling a higher-order probability distribu-
tion over the likelihood function and requires only a single forward pass through a network
to obtain uncertainty estimates [275], [276].

7.4.3 Opportunities and applications in molecular property predic-
tion

Because of its efficiency and ease of use, evidential deep learning may be particularly relevant
to uncertainty-guided virtual screening of large scale chemical libraries. Virtual screening
workflows often involve exhaustive prediction of the properties and performance of com-
pounds in large virtual libraries prior to prioritization of candidates for experimental val-
idation [279]. In this setting, evidential deep learning may be used to efficiently obtain
uncertainty estimates to understand when the predictions of QSAR models may not be
trusted, and furthermore to accelerate downstream sample annotation or acquisition, for
example via active learning. We envision that evidential learning can be incorporated as an
efficient, modular UQ method for virtual screening and compound discovery campaigns.

Opportunities for future work also exist in the context of neural networks as surrogate
models for quantum mechanical and molecular dynamics simulations [289], [290], where there
is increasing interest in using uncertainties to actively guide simulation experiments to deter-
mine when machine learned predictions can no longer be trusted [265], [266]. Furthermore,
though in this work we integrated evidential deep learning into the SchNet architecture [291],
continued development and integration of evidential methods into new atomistic machine
learning architectures [267] could help advance their deployment for prediction of poten-
tial energy surfaces and quantum mechanical properties, tasks that demand computational
scalability and efficiency.
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7.4.4 Scope and future work
While evidential deep learning provides key advantages over existing methods for UQ in
neural models, there are several considerations that motivate opportunities for future work.
First, the vast majority of our analyses here focus on regression problems in which networks
are trained to predict a continuous molecular property. Evidential deep learning models
were originally presented in the setting of multiclass classification [275], and as such are
also applicable to these domains as well. However, since the natural form of many molecular
properties is continuous (not discrete), we focus our analysis in this work on the applicability
of evidential methods specifically in the regression domain. We hypothesize that the benefits
of evidential UQ for classification will also be apparent in multiclass settings, where a single
input is being classified as one discrete class from a set of options, such as in protein secondary
structure or amino acid prediction, among other applications [292]. Future research to this
end will be important to validate the generality of evidential UQ for classification settings.

Furthermore, in this work, we focus on several metrics to evaluate the quality of uncer-
tainty estimates: confidence percentile cutoff errors, Spearman rank correlation coefficients
between error and uncertainty, and miscalibration area. We also acknowledge that these UQ
methods would be best evaluated in terms of their performance on realistic applications,
and accordingly demonstrate the use of evidential uncertainties for efficient Bayesian op-
timization, active learning, and virtual screening. Thus, future work is needed to identify
and formulate other impactful applications where effective UQ methods yield improvements
in downstream performance. This could help solidify the utility of uncertainty for machine
learning in the chemical, biological, and physical sciences, where guarantees in not only
model performance but also confidence are ultimately needed for wide-scale adoption.

Finally, in this work we use our evidential UQ method to guide learning and compound
screening in the retrospective setting, through active learning experiments and evaluation on
an antibiotic discovery dataset. While these evaluations support the utility of evidential deep
learning, and UQ more broadly, for similar analyses, they remain retrospective. Further work
to explore the utility of evidential uncertainties in the prospective setting [293], for example
to identify new, high confidence drug candidates that may in turn be experimentally tested
in the real world, could help facilitate the adoption of UQ approaches in discovery and
engineering pipelines.

7.5 Conclusion

In summary, we have developed a flexible, scalable, and efficient approach to uncertainty
estimation in neural networks for molecular property prediction in the chemical and physical
sciences. We demonstrated that evidential deep learning provides well-calibrated uncertain-
ties in structure-property prediction, and validated its relevance to uncertainty-guided active
learning and to prioritization of candidates in virtual screening. We expect that evidential
deep learning, which can readily be incorporated into existing network architectures and be
applied to a variety of predictive learning tasks, could help facilitate the robust and reliable
deployment of uncertainty-aware neural models for molecular property prediction, discovery,
and design.
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7.6 Methods

All code to reproduce experiments and results can be found at https://github.com/aamini/
chemprop. All scripts were written in Python; PyTorch [174] was used for building all ma-
chine learning architectures; RDKit [158] was used for various cheminformatics calculations

7.6.1 Evidential deep learning formulations
Evidential deep learning approaches seek to directly learn prediction uncertainties by formu-
lating learning as an evidence acquisition process [275], [276]. This is achieved by training
models to infer the parameters of a higher-order evidential distribution that models the ev-
idence behind individual predictions. That is, individual observations of training examples
lend support to this higher-order distribution, such that the predictions of the neural net-
work learner are represented as a distribution over the prediction likelihood function itself.
Estimates of uncertainty are then formulated using the parameters of the learned evidential
distribution and thus can be obtained directly from a single forward pass through the model.

Evidential learning is achieved through two modifications to a standard forward predic-
tion model. First, the network’s output layer is modified to output the parameters of the
evidential distribution, rather than a point estimate of a target label. Second, the resultant
model is trained with a specific loss function that jointly maximizes the model’s fit to the
data and also minimizes its evidence on errors, i.e., increases uncertainty when predictions
should not be trusted.

Evidential learning for regression In regression, we are given a dataset of paired train-
ing examples D = {xi, yi}Ni=1 where the targets are assumed to be drawn i.i.d. from a
Gaussian distribution with unknown mean and variance ✓ = {µ, �2

}. We seek to probabilis-
tically estimate the mean and variance assuming that the mean is drawn from a Gaussian
and the variance is drawn from an Inverse-Gamma distribution. The joint higher-order,
evidential distribution is thus represented as a Normal-Inverse-Gamma. Specifically, the
Normal-Inverse-Gamma distribution, p(✓|m), which is also the conjugate prior to the Gaus-
sian [294], is parametrized by m = {�, �,↵, �} and represents a distribution over ✓ = {µ, �2

}.
Therefore, in this work, the final layers of evidential D-MPNN and atomistic networks were
modified to output these Normal-Inverse-Gamma hyperparameters. Thus, the network has
4 outputs for every target task. Given a Normal-Inverse-Gamma distribution, the prediction
and uncertainty are formulated according to the distribution moments:

E[µ] = �| {z }
prediction

, Var[µ] =
�

�(↵� 1)| {z }
uncertainty

.

Evidential models are trained using a dual-objective loss L(x) that consists of two loss
terms, to both maximize model fit according to the negative log-likelihood and regularize
evidence on errors:

L(x) = L
NLL(x) + �LR(x)
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where L
NLL(x) is the negative log-likelihood and L

R(x) is an evidence regularizer [276]. The
regularization coefficient � controls the strength of uncertainty inflation relative to model
fit. All evidential models were trained according to this loss function, with � values specified
in the figure captions and corresponding Methods sections. We refer to the work of Amini
et al. for more details on the evidential regression formulation [276]. We also note that the
evidential method has been demonstrated in the context of discrete, multiclass classification
problems [275], despite the focus of this work (along with relevant prior literature in molecular
property prediction) being on continuous regression tasks.

7.6.2 Network architectures
To show its broad applicability in molecular property prediction, evidential regression was
integrated into networks operating on 2D molecular graphs and 3D conformers – directed
message passing neural network (D-MPNN) and atomistic neural network models, respec-
tively.

Directed message passing neural networks To investigate performance on 2D molec-
ular graphs, evidential methods were integrated into a state-of-the-art D-MPNN model [42].
The D-MPNN architecture is a variant of a message passing neural network (MPNN).
MPNNs operate on molecular graphs to first learn an encoded molecular representation
(i.e., molecule-level feature vector) by passing “messages” between atoms and/or bonds and
their direct neighbors. These messages build up a hidden state for each atom and/or bond,
and repeated message passing iterations yield a molecule-level feature vector. A feed-forward
network operating on this feature is used to produce a task-specific representation of an input
molecule.

D-MPNN models were implemented in PyTorch [174] within the Chemprop library [42].
D-MPNNs were implemented using standard settings: messages passed on directed bonds,
messages subjected to ReLU activation, a learned hidden dimension of 300, 3 layers, no
dropout, and the output of the message-passing phase fully connected to the output layer.
For evidential regression models, the final output layer was modified to infer a single eviden-
tial distribution for each task, with each task parametrized by four outputs (e.g., prediction
of 12 tasks uses 48 outputs). Models were trained using the Adam optimization algorithm.
Target values were normalized with a standard scaler for training. For evaluations, model
state was reloaded from the epoch with the lowest validation score after training was com-
pleted.

Atomistic neural networks To investigate performance on 3D conformer representa-
tions, evidential regression was integrated into the end-to-end atomistic neural network
SchNet [291]. Rather than operating only on the 2D graph, SchNet instead builds internal
representations of a molecule using 3D coordinate positions of each atom as inputs to the
model. SchNet employs “continuous filters”, where information is shared between molecules
not based upon discrete edges but rather continuous spatial distance between molecules (Fig-
ure 7.1). This model architecture has proved beneficial for predicting energies and forces, as
it is rotationally invariant and equivariant [291]. Similar to the message passing networks,
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SchNet alternates between transforming atom-wise representations individually and integrat-
ing interaction information. At the end of these internal hidden layers, information at each
atom is aggregated through summation to produce a fixed dimension hidden representation,
upon which a single feed forward layer is applied to produce an output value. In the case
of energy predictions, SchNet predicts energy at each atom separately and adds all energies
to predict the energy for the molecule. We refer the reader to the work of Schutt et al. for
more details [291], [295].

The final layer of SchNet was modified to infer a single evidential distribution over the task
of predicting U0 for the QM9 dataset, outputting four values rather than one, corresponding
to the parameters of the higher-order evidential distribution.

Unlike in the Chemprop library, where normalization is conducted prior to any training,
the SchNet model uses a customized scaler that normalizes both according to the target
values and a precomputed “atomref” value. Instead of transforming the target values and
training the model with modified target values, SchNet adds these normalization numbers to
outputs for each atom separately as part of its final layer by default. SchNet builds up final
energy values for each atom m, G(xi)m, and the final prediction for molecule xi is computed
according to:

ŷi =
X

m2Atoms(xi)

[�yG(xi)m + atomrefs(xi,m) + µy]

where

µy =
1

N

NX

i=1

1

|xi|

⇣
yi �

X

m2Atoms(xi)

atomrefs(xi,m)
⌘

�y =

vuut 1

N

NX

i=1

 
µy �

1

|xi|

⇣
yi �

X

m2Atoms(xi)

atomrefs(xi,m)
⌘!2

Here, SchNet tries to learn residual values at each atom. Because the evidential regression
method is most easily adapted for predicting and training on data with standard normaliza-
tion procedures, a custom standardization method was implemented to incorporate atomref
values, which we found to be empirically helpful. Specifically, the value U0 for each input
molecule was adjusted before inference according to:

y0i =
y � µy �

P
m2Atoms(xi)

atomrefs(xi,m)

�y

At inference time, the inverse of this scaler was computed to predict ŷ. Accounting for
such discrepancies in the scaling function could provide opportunities for future development
of atomistic neural network architectures.

7.6.3 Datasets
Lower-N 2D datasets The lower-N 2D datasets used in this study were extracted from
MoleculeNet [278] and used as prepared by Wang et al. [42]. For regression tasks (Ta-
ble 7.1), datasets of aqueous solubility (Delaney), solvation energy (freesolv), lipophilicity
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(lipo), and atomization energy (QM7) were evaluated. The datasets were split randomly
using a 80/10/10 split for training/validation/testing. SMILES strings were used as input
to D-MPNN models.

Lower-N 2D TDC Datasets In addition to the MoleculeNet lower-N datasets, eviden-
tial regression was additionally evaluated on three datasets from the Therapeutics Data
Commons [238] (TDC). For regression tasks (Table 7.2), datasets of heaptocyte clearance
(“clearance”) [296], plasma protein binding rates (“PPBR”) [296], and the lethal dosage of
drugs (“LD50”) [297] were used. The datasets were extracted from the TDC and split ran-
domly using a 80/10/10 split for training/validation/testing. SMILES strings were used as
input to D-MPNN models.

Higher-N 2D datasets For the 2D setting, the QM9 [280], [298] dataset with SMILES
strings input was extracted from MoleculeNet [278]. For both benchmarking and active
learning D-MPNN experiments using this dataset, all 12 output tasks of the QM9 dataset,
which reflect computer-generated quantum mechanical properties [278], [280], were predicted.
A ligand docking dataset based on Enamine’s Diversity Collection of 50,240 molecules was
used as a second higher-N 2D dataset. Target values consisted of docking scores of compounds
against thymidylate kinase (PDB ID: 4UNN31) using AutoDock Vina [283]. This dataset
was used as prepared by Graff et al. [282].

Higher-N 3D (atomistic) datasets For the 3D setting, a variation of the QM9 dataset
was utilized wherein atomic coordinates, not molecular graphs generated from SMILES
strings, were used as inputs. Atomic coordinates correspond to the coordinates of molecular
conformers in 3D space. In this setting, the single task of total formation energy at 0K,
U0 [295], was predicted for a given molecule input.

Antibiotic discovery datasets For virtual screening experiments for antibiotic discovery,
D-MPNN models were trained on a dataset of 2, 335 small molecules and their in vitro growth
inhibitory activity against Escherichia coli, as generated and reported by Stokes et al. [43].
In this dataset, growth inhibitory activity is reported as endpoint OD600, where lower OD600

values correspond to stronger growth inhibitory activity, and models were trained to predict
this as a continuous target (i.e., formulated as a regression problem). The Broad Drug Re-
purposing Hub [287] was used as a discovery dataset, as prepared by Stokes et al. [43]. Model
predictions were compared to empirically determined growth inhibitory activity against E.
coli for a subset of molecules from the Broad Drug Repurposing Hub, as measured by Stokes
et al. [43].

7.6.4 Uncertainty quantification baselines
Evaluations are focused on regression tasks, defined by a dataset D containing data points
(xi, yi) where yi 2 R is a scalar-valued target property and xi is a molecule representation,
represented as either a SMILES string or a set of coordinates for the 2D or 3D settings,
respectively.
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For baselines, we use gold-standard epistemic uncertainty quantification methods that
rely on sampling, i.e., creating a set of predictions that together constitute an ensemble from
which estimates of predictive variance can be obtained. Specifically, a set of predictions
E = {G1(x), G2(x), · · · , Gn(x)}, where each Gi(x) is an inference sample, is obtained such
that the individual samples (e.g., individual model predictions) can yield a final prediction
defined by:

Ĝ(x) =
X

G2E

G(x)

n
.

As previously proposed [262], [263], from the multiple samples obtained from this set of
models, the uncertainty U(x) is defined as the variance across predictions:

U(x) =
X

G2E

(Ĝ(x)�G(x))2

n
.

Traditional model ensembling For the ensemble baseline, distinct models Gi 2 E were
trained on different splits of the same training data and initialized with different sets of ran-
domly selected weights, as previously proposed [262]. Greater variance among model outputs
reflects greater uncertainties, due to the fact that for out-of-distribution regions not well rep-
resented in the training data, each ensemble member will be more significantly affected by
its initialization, ultimately resulting in more variable predictions. The computational cost
of this approach scales linearly with the size of the ensemble and clearly exceeds the cost of
training a single model. All evaluations utilized an ensemble size of 5.

Monte Carlo dropout sampling For the dropout baseline, a single model G is trained
with dropout, in which individual network weights are randomly set to zero at every training
step with probability p, also known as the “dropout rate”. At inference time, a set of pre-
dictions E is obtained for an input xi by application of randomly-generated dropout masks
to a trained model G. This strategy approximates Bayesian inference and can thus be used
to obtain prediction samples from which uncertainty can be estimated [263]. All evaluations
utilized a dropout rate of 0.2 and a set size of 5.

7.6.5 Uncertainty benchmarking experiments
Each dataset was randomly partitioned using an 80/10/10 split for training, validation,
and testing set splits respectively. For D-MPNN experiments, test set target values were
normalized using statistics from the train set such that the train set target values have
mean 0 and standard deviation 1 in each case (atomistic normalization previously described
separately).

For the D-MPNN models, each model was trained for 100 epochs using the Adam opti-
mizer with default parameters, and the best model was selected based upon validation loss.
We use the default Chemprop architecture and training procedure parameters as set by Yang
et al. [42], including a Noam learning rate scheduler with final learning rate of 10�4, batch
size of 50, hidden size of 300, depth of 3, and ReLU activations.
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For the atomistic neural network models, the default SchNet architecture parameters and
preparations of the U0 calculations from the QM9 dataset were used. For training, the same
training procedure as in Chemprop (optimizer, learning rate, and learning rate scheduler)
was used, with the learning rate in the Noam scheduler modified to 2 ⇥ 10�4, rather than
1⇥ 10�4, for greater stability in early model epochs.

Test set predictions and corresponding uncertainties were generated in each experiment
for downstream analysis.

Error vs. confidence cutoffs Test set predictions from each model run were sorted by
uncertainty, such that ri represents the index of the test set molecule, xri that has the ith

highest predictive uncertainty (e.g., xr1 is predicted with highest uncertainty and xrn with
most confidence where n is the total number of molecules evaluated). For every value of i, we
compute the error for the set of all predicted test set molecules of {xrj : j � i}. We compute
cutoff mean average error (MAE) and root mean squared error (RMSE) for different cutoff
values i, corresponding to different confidence cutoffs (e.g., 50% confidence cutoff can be
computed by setting i = d0.5ne):

MAEi =
1

n� i

nX

j�i

|yrj �G(xrj)|

RMSEi =

vuut 1

n� i

nX

j�i

(yrj �G(xrj))
2

Confidence cutoff errors were computed at even intervals of 30, exclusive, for all datasets
except for the lower-N datasets, in which case cutoff errors for all values of i were computed.

This procedure was repeated for different random starts of the model and random train-
ing/validation/testing splits, corresponding to independent experimental trials (n = 10 for
lower-N data, n = 5 for all else). Cutoff values at each confidence percentile were com-
puted separately for each random initialization in order to estimate standard deviations over
multiple trials at each confidence percentile.

In the multitask setting, cutoff errors were computed separately across each task to avoid
avoid artifacts due to averaging uncertainties across tasks. Thus, for n = 5 trials on the
QM9 dataset, cutoff errors were computed separately for each of the d = 12 tasks in each of
the n trials, leading to n ⇤ d = 60 computed cutoff error values at each confidence percentile.
Performance on separate tasks in QM9 is shown in Figure 7.10.

Spearman’s rank correlation coefficient We desire that, on average, predictions for
molecules made with higher certainty should also be more accurate. Therefore, Spearman’s
rank correlation coefficient was used as an additional metric to assess the ability of models
to rank errors, and was computed following the procedure outlined in Hirschfeld et al. [264].
Spearman’s rank correlation coefficient is defined by creating two vectors L1 and L2 and cor-
responding rank vectors rL1 and rL2 that sort the dataset in ascending order. The correlation
measures the agreement between these two ranking lists:
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⇢(L1, L2) =
cov(rL1 , rL2)

�(rL1)�(rL2)

If these two lists are perfectly correlated, then ⇢ = 1, whereas if they are perfectly
inversely correlated, ⇢ = �1. We desire an uncertainty estimation method where ⇢ between
error and predictive uncertainty is highest. Spearman’s rank correlation coefficients were
computed using the scipy.stats module [299].

Calibration analysis & miscalibration area In the regression case, the empirical prob-
ability of observing the true target values yi around the predicted values ŷi should match the
posterior predictive probability distribution p(ŷi) defined by the uncertainty quantification
method for a well-calibrated model [284]. That is, if we create 50% credible intervals around
each predicted point value ŷi, the true value yi should fall within that credible interval 50% of
the time. To evaluate this, we assess uncertainty calibration following the procedure outlined
in Tran et al. [260].

We assume the posterior predictive distributions to be Gaussian around the predicted
point value ŷi. We find the lower and upper bound values between which we expect to observe
a fraction e of the true values. For each data point xi, given an inverse CDF function for
the predictive distribution, F�1

i , we define lower bound, Lb, and upper bound, Ub, values
for each predicted point in the test set:

Lbi = F�1
i (0.5� e)

Ubi = F�1
i (0.5 + e)

We count the fraction of true predictive values where Lbi < yi < Ubi, which we denote
as the “estimated confidence”. We repeat this value at various expected probability values,
e, to create the calibration plots which show the expected proportion correct e against the
estimated confidence, i.e. the estimated cumulative probability.

To quantify the degree of calibration, we measure each model’s deviation from ideal
calibration by computing the area away from the parity line in which the estimated confidence
and observed proportion correct are matched. This integration was computed using the
scipy.stats.simps function [299].

For the lower-N datasets, the effect of the evidential regularizer strength was determined
by varying the regularization parameter �. Individual evidential D-MPNNs were trained
with varying regularization coefficients. Lower � leads to overconfident predictors, whereas
higher � leads to underconfident predictions, as they are penalized more for attributing
higher evidence to erroneous predictions.

7.6.6 Active learning on QM9 dataset
Experiments were conducted on the QM9 dataset with the objective of improving the pre-
dictive accuracy of the model in terms of its learning efficiency. In other words, the objective
of these experiments was to select a training dataset intelligently such that higher predictive
accuracy could be achieved with less data. Indeed, because data in the chemical sciences
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can often be limited and expensive to acquire, active learning can yield powerful predictive
models that require minimal data generation.

The general experimental set up consists of iterative rounds of model training, data
acquisition, and model assessment. All active learning experiments were conducted in the
2D setting using D-MPNN models. Briefly, models were initially trained on a randomly
selected subset of data from QM9, and performance was assessed on a held-out test set and
quantified via RMSE. At each iteration, m new data samples were selected and added to
the training set on the basis of an acquisition function ↵. Models were then re-trained from
scratch, and performance was again assessed on the held-out test set. This process was then
repeated until the entire training dataset (consisting of 80% of all of QM9) was acquired.
All experiments were conducted with n = 10 independent trials.

Two general acquisition strategies were tested in this study: first, an explorative strategy
in which the algorithm chooses to acquire instances about which it is most uncertain, and
second, a baseline strategy in which new data instances are acquired at random. These
strategies are labeled as “Explorative” and “Random”, respectively, in Figure 7.5. Evidential
deep learning, model ensembling, and dropout sampling were used as the UQ methods for
explorative selection. In all three instances, the value of the acquisition function for a
particular point x is given by the estimated uncertainty: ↵(x) = �̂(x). For each method,
the m samples with the greatest uncertainties were acquired at each iteration. Explorative
acquisition was compared to each method’s respective random acquisition baseline, given
differences in training and model output for each UQ approach.

7.6.7 Bayesian optimization on docking dataset
Bayesian optimization is an active learning approach that seeks to optimize an objective
function by iteratively selecting experiments to perform according to a model’s predictions.
In this work, Bayesian optimization was performed on a set of candidate molecules with
the objective of selecting molecules that optimize a target property f(x), in this case the
ligand docking score against thymidylate kinase from AutoDock Vina. We follow the general
procedure outlined by Graff et al. [282]. The objective function f(x) is calculated for n
randomly-selected molecules {x}ni=1, yielding a dataset D = {(xi, f(xi))}ni=1. A D-MPNN
model is then trained on these data, and predictions f̂(x) are passed to an acquisition
function ↵ which describes the utility of acquiring a new point. A set of m new points are
subsequently selected according to the acquisition function; the objective function for each
of these points is calculated; and these points are used to grow the dataset D. This process
was repeated iteratively for a fixed number of iterations. We refer the reader to recent works
for more details on the Bayesian optimization procedure [282], [285].

The following acquisition functions were tested in this study:

Random(x) ⇠ U(0, 1); Greedy(x) = µ̂(x); UCB(x) = µ̂(x) + ��̂(x).

Here µ̂(x) and �̂(x) are the model’s predicted mean and uncertainty at point x, respectively.
� = 2 for all experiments reported in the paper.

Search trajectory performance was evaluated by the fraction of top-k scores identified
during Bayesian optimization, calculated as the size of the intersection of the list of true
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top-k scores and the list of top-k scores found, then divided by k. Acquisition sample
diversity was measured as the average 10-nearest training set neighbors (10-NN) Tanimoto
distance for batch samples after the first round of acquisition in Bayesian optimization.

7.6.8 Uncertainty-guided virtual screening for antibiotic discovery
Evidential D-MPNNs were trained to predict a molecule’s growth inhibitory effect on E.
coli, following the general virtual screening pipeline presented by Stokes et al. [43]. Growth
inhibitory activity was measured as in vitro OD600 of E. coli following incubation with a
compound, where lower values correspond to more potent inhibition, and to estimate the
uncertainty associated with that prediction. The evidential D-MPNN model was trained
following the procedure outlined by Stokes et al. [43], with the notable exception that the
prediction task was formulated as a regression problem. Briefly, the molecular representa-
tion learned by the D-MPNN was augmented with 200 additional molecule-level features
computed in RDKit [158]. Models were trained on the primary dataset of the OD600 (target
values y) of E. coli following incubation with each of 2, 335 small molecules (input values x
in SMILES representation) using a 80/20 training/validation split. Models were trained for
30 epochs with five-fold cross validation and a regularization coefficient � = 0.1. Due to the
imbalanced distribution of OD600 values in this dataset (Figure 7.15A), the training dataset
was rebalanced by sampling molecules with OD600 > 0.2 with probability 0.1.

The trained evidential D-MPNN was applied to the Broad Drug Repurposing Hub [287]
to predict OD600 values and uncertainties for molecules in this discovery dataset. t-SNE anal-
ysis was conducted using scikit-learn’s implementation of t-Distributed Stochastic Neighbor
Embedding. Morgan fingerprints for each molecule using a radius of 2 and 2048-bit finger-
print vectors were first computed in RDKit, and t-SNE with Tanimoto (Jaccard) distance
metric and default parameters was then used to reduce the data from 2048 dimensions to
two dimensions. The distance between points in the t-SNE plots thus reflects the Tanimoto
distance of the corresponding molecules.

For the uncertainty-guided virtual screen, molecules from the Broad discovery dataset
were first ranked based on predicted OD600 values (lower is better), and the top 50 ranking
molecules were downselected. Confidence percentiles across this set were computed based
on uncertainty estimates returned by the evidential D-MPNN, and the set of 50 molecules
was subsequently filtered according to varying confidence percentiles. Specifically, for a
given confidence threshold p, molecules with estimated confidences below the associated pth

percentile are removed from the list of top 50 molecules, with p ranging from the 50th to
100th percentiles of greatest predictive confidence. The experimental hit rate for both the
initial set of 50 molecules (i.e., no confidence filtering) and each filtered set was determined
using empirically determined OD600 values reported in Stokes et al. [43]. The hit rate was
defined as the proportion of molecules in each candidate set with OD600 < 0.2 (as previously
reported [43]) relative to the total number of molecules in that candidate set. This screening
procedure was also used for the dropout and ensemble-based baseline methods, following
training and testing on the Stokes’ training and Broad discovery datasets, respectively.
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7.7 Additional Results

Delaney Freesolv Lipo QM7 (⇥102)

Cutoff Dropout Ensemble Evidence Dropout Ensemble Evidence Dropout Ensemble Evidence Dropout Ensemble Evidence

0.0 0.68 ± 0.02 0.65 ± 0.03 0.66 ± 0.02 1.00 ± 0.06 0.94 ± 0.06 0.96 ± 0.07 0.55 ± 0.01 0.53 ± 0.02 0.55 ± 0.02 1.18 ± 0.02 1.12 ± 0.02 1.15 ± 0.03
0.5 0.62 ± 0.03 0.55 ± 0.03 0.44 ± 0.01 0.79 ± 0.07 0.45 ± 0.04 0.42 ± 0.04 0.52 ± 0.01 0.40 ± 0.01 0.50 ± 0.01 0.88 ± 0.06 0.88 ± 0.06 0.39 ± 0.03
0.75 0.59 ± 0.03 0.50 ± 0.05 0.35 ± 0.02 0.85 ± 0.12 0.41 ± 0.05 0.36 ± 0.04 0.50 ± 0.02 0.38 ± 0.02 0.51 ± 0.02 0.65 ± 0.03 0.81 ± 0.06 0.23 ± 0.04
0.90 0.55 ± 0.03 0.51 ± 0.09 0.28 ± 0.02 0.66 ± 0.20 0.40 ± 0.06 0.35 ± 0.08 0.46 ± 0.03 0.38 ± 0.02 0.53 ± 0.03 0.69 ± 0.05 0.71 ± 0.11 0.10 ± 0.04
0.95 0.53 ± 0.06 0.45 ± 0.06 0.22 ± 0.02 0.75 ± 0.30 0.27 ± 0.04 0.38 ± 0.12 0.49 ± 0.04 0.36 ± 0.03 0.50 ± 0.04 0.73 ± 0.08 0.69 ± 0.11 0.10 ± 0.04

Enamine D-MPNN QM9 D-MPNN QM9 Atomistic (⇥10�2)

Cutoff Dropout Ensemble Evidence Dropout Ensemble Evidence Ensemble Evidence

0.0 3.40 ± 0.12 4.47 ± 0.18 5.60 ± 0.20 0.35 ± 0.00 0.33 ± 0.00 0.35 ± 0.00 2.04 ± 0.03 2.98 ± 0.08
0.5 3.64 ± 0.05 2.12 ± 0.02 1.55 ± 0.12 0.33 ± 0.00 0.32 ± 0.00 0.30 ± 0.00 1.45 ± 0.02 1.52 ± 0.02
0.75 3.42 ± 0.04 1.94 ± 0.04 1.04 ± 0.13 0.33 ± 0.00 0.32 ± 0.00 0.28 ± 0.00 1.36 ± 0.02 1.33 ± 0.02
0.90 3.30 ± 0.06 1.80 ± 0.03 0.63 ± 0.12 0.32 ± 0.00 0.32 ± 0.01 0.27 ± 0.00 1.31 ± 0.03 1.18 ± 0.03
0.95 3.26 ± 0.05 1.79 ± 0.05 0.42 ± 0.01 0.33 ± 0.01 0.32 ± 0.01 0.26 ± 0.01 1.29 ± 0.03 1.12 ± 0.03

Clearance LD50 PPBR

Cutoff Dropout Ensemble Evidence Dropout Ensemble Evidence Dropout Ensemble Evidence

0.0 47.45 ± 0.90 44.05 ± 0.68 5.60 ± 0.20 0.58 ± 0.01 0.56 ± 0.05 0.56 ± 0.01 11.67 ± 0.42 11.17 ± 0.40 11.35 ± 0.25
0.5 33.20 ± 2.12 38.81 ± 1.60 37.68 ± 2.35 0.50 ± 0.01 00.47 ± 0.01 0.49 ± 0.01 7.57 ± 0.68 6.42 ± 0.62 6.83 ± 0.59
0.75 30.33 ± 2.94 37.23 ± 2.94 32.02 ± 3.60 0.48 ± 0.011 0.44 ± 0.01 0.45 ± 0.02 6.47 ± 0.87 4.90 ± 0.71 4.90 ± 0.86
0.90 27.71 ± 3.62 38.87 ± 5.50 29.75 ± 5.64 0.47 ± 0.02 0.46 ± 0.018 0.44 ± 0.03 5.99 ± 1.12 4.97 ± 0.96 2.88 ± 0.87
0.95 27.94 ± 6.13 34.18 ± 5.96 25.84 ± 7.29 0.47 ± 0.03 0.47 ± 0.04 0.45 ± 0.038 5.26 ± 1.23 4.59 ± 1.24 0.91 ± 0.16

Table 7.2: Extended model error at various confidence percentile cutoffs including
TDC lower-N data. For a given confidence percentile cutoff, top performing methods based
on prediction standard error of the mean (± s.e.m.) are bolded. A cutoff of 0.95 indicates
that only the top 5% most confident predictions are considered. Full confidence plots for
all datasets are shown in Figure 7.3 and Figures 7.7, 7.10, 7.11. Mean ± s.e.m. (RMSE for
all D-MPNN models, MAE for atomistic); n = 10 independent trials for lower-N datasets,
n = 5 independent trials for higher-N datasets.

Evidence vs. Dropout Ensemble vs. Evidence Ensemble vs. Dropout

Ligands Explored FC p-value FC p-value FC p-value

550 0.959 ± 0.56 0.003669 0.926 ± 0.33 0.195383 0.845 ± 0.60 0.477471
775 1.052 ± 0.17 0.259450 1.144 ± 0.17 0.016443 1.196 ± 0.12 0.001081
1000 1.039 ± 0.11 0.242781 1.104 ± 0.11 0.013200 1.142 ± 0.09 0.000964
1225 1.057 ± 0.05 0.009547 1.073 ± 0.08 0.013934 1.131 ± 0.06 0.000046
1450 1.055 ± 0.05 0.007914 1.065 ± 0.06 0.007536 1.122 ± 0.05 0.000007
1675 1.056 ± 0.05 0.006281 1.045 ± 0.04 0.003669 1.104 ± 0.04 0.000010

Table 7.3: Statistical significance tests for Enamine 50k Bayesian optimization.
Pairwise comparison of uncertainty quantification methods for upper confidence bound
(UCB) acquisition in Bayesian optimization on Enamine 50k data (Figure 7.5D). Fold
changes (FC; mean ± s.d.) reflect the fold change between the mean percentage of top-
500 scores found for the first method listed relative to the second method listed. Significance
values reflect the result of two-tailed unpaired t-tests over n = 10 independent trials.
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Figure 7.7: Uncertainty benchmarking and calibration for lower-N datasets. (A,
B) Prediction error, measured as MAE (A) or RMSE (B), at different confidence percentile
cutoffs for D-MPNNs evaluated on each of the 2D lower-N datasets. (C) Estimated confi-
dence (cumulative probability) against the observed proportion correct for an evidential D-
MPNN evaluated on each of the 2D lower-N datasets, with regularization parameter � = 0.2.
Mean ± 95% c.i., n = 10 independent trials.
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Figure 7.8: Uncertainty benchmarking and calibration for additional lower-N
Therapeutics Data Commons datasets. (A, B) Prediction error, measured as MAE
(A) or RMSE (B), at different confidence percentile cutoffs for D-MPNNs evaluated on each
of the 2D lower-N datasets. (C) Estimated confidence (cumulative probability) against the
observed proportion correct for an evidential D-MPNN evaluated on each of the 2D lower-N
datasets, with regularization parameter � = 0.2. Mean ± 95% c.i., n = 10 independent
trials.
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Figure 7.11: Uncertainty benchmarking and calibration for higher-N 2D and 3D
datasets. (A, B) Prediction error, measured as MAE (A) or RMSE (B), at different
confidence percentile cutoffs for models evaluated on the higher-N 2D and 3D datasets tested.
(C) Estimated confidence (cumulative probability) against the observed proportion correct
for the higher-N 2D and 3D datasets tested. Mean ± 95% c.i., n = 5 independent trials.
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Figure 7.12: Effect of � on uncertainty calibration. Evidential D-MPNNs are trained
with different regularization coefficients � on each of the lower-N datasets. Estimated con-
fidence (cumulative probability) against the observed proportion correct is computed and
plotted across different �. Mean ± 95% c.i., n = 10 independent trials.
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Figure 7.14: Task-specific calibration for QM9 dataset. Estimated confidence (cu-
mulative probability) against the observed proportion correct is computed for an evidential
D-MPNN evaluated on QM9 and then broken down into task-specific plots. Mean ± 95%
c.i., n = 5 independent trials.
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Figure 7.15: Antibiotic discovery datasets and uncertainty predictions. (A) Distri-
bution of OD600 values for the training dataset of small molecules and their in vitro growth
inhibitory activity against E. coli, as originally measured by Stokes et al [43]. Lower OD600

values indicate less E. coli growth and hence correspond to greater antibiotic activity. (B)
Distribution of predicted OD600 values and evidential uncertainties for molecules in the Broad
Drug Repurposing Hub discovery dataset. (C) Distribution of empirically determined OD600

for the subset of the discovery set (162 out of 6, 111 total molecules) that was experimentally
tested for in vitro growth inhibitory activity against E. coli.
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Chapter 8

Conclusion

8.1 Contributions

This thesis introduces a set of practical and domain-tailored neural network models that
can be used to discover new metabolites and interpret mass spectrometry data. Collectively,
this is a step forward in an exciting journey to neuralize the small molecule annotation and
discovery pipeline, a process that has been especially impactful in the analogous field of
protein structure prediction.

Chapter 2 first focused on the task of predicting structural properties of target molecules,
using no prior information of the molecule’s identity but its mass spectrum signature. This
chapter introduced a formula-based representation of spectra as input to a Molecular Formula
Transformer in a model termed MIST and showed how this could be utilized immediately
to analyze mass spectrum data from IBD patient cohorts. All models and benchmarking
comparisons are open-source to democratize progress. Chapter 3 extended this neural net-
work architecture to neuralize an upstream component of the structure prediction pipeline,
molecular formula prediction of the MS1 precursor mass, in a model MIST-CF.

The following two chapters inverted our modeling efforts to address the molecule-to-
spectrum task using the same insights that drove improvements in performance within
MIST. Chapter 4 presented SCARF, a model that utilizes a novel neural network prefix-
tree decoding strategy to generate spectra at the level of molecular formulae, reasoning that
formula-based representations had resulted in large performance boosts in the MIST and
MIST-CF models.

Surprisingly, while SCARF led to high performance in spectrum prediction accuracy,
the predictions were only modestly beneficial in the task of retrieval; that is, predicted
spectra were not properly differentiated between highly similar isomer molecules. Chapter
5 improved upon this shortcoming by introducing ICEBERG, a model to predict spectra at
the molecule-substructure representation level.

Chapter 6 and Chapter 7 described two orthogonal efforts related to downstream metabo-
lite interactions and property prediction. Chapter 6 showcased how to predict compatibility
between enzymes and substrates using learned representations and high throughput screen-
ing data. Chapter 7 incorporated evidential uncertainty into neural network predictions for
small molecule properties.
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8.2 Future Work

8.2.1 Building deployment-ready systems
The prospect of utilizing the models described in this thesis to effectively discover new
biologically-derived metaboliltes and molecules from mass spectra is tantalizing. Further
productizing the models and tasks developed by this thesis will be necessary to ensure prime
time deployment and widespread use.

First, there is the practical component of packaging these models together into a system
that is ready for consumption by end users with little technical computational background.
I envision an effective system as accepting an input MGF file of unannotated tandem mass
spectra, using MIST-CF to predict molecular formula for the precursor molecule, pipelining
these output candidates into MIST to predict structural molecule fingerprints, querying the
predicted fingerprints against a database of molecule candidates, and utilizing ICEBERG
to re-rank the top 50 most promising candidates produced by MIST for increased accuracy.
The leading academic tool that is most widely adopted may not be the most accurate, but
will instead have the most optimal user experience.

Within this system, each individual component can be retrained with additional data and
extended for improved performance across wider breadths of chemical space. For instance,
all models can be extended and retrained to include negative mode ionization data and also
data from several different adduct types, as users are increasingly interested in negative-
mode acquisitions for chemical classes such as lipids. Such details were omitted in initial
model development to focus purely on the task and method development, without conflating
additional dependent variables related to data quality. Each individual model can also
benefit from small adjustments accordingly: MIST-CF could be extended to utilize isotopic
information to constrain the elements of plausible molecular formulae that are ranked, which
is currently a user input feature; ICEBERG could be re-trained to make predictions at
multiple collision energies (assuming this is provided with all training spectra); and MIST
could consider mass spectrometer instrument types as additional input features and co-
variates.

Beyond packaging the various models, there are several avenues for method development
that could improve model accuracy. Most excitingly, I envision ways to combine the inverse
spectrum-to-molecule and molecule-to-spectrum methods. I view the molecule-to-spectrum
forward methods such as ICEBERG as more accurate but less efficient at exploring the full
space of molecules present, as there are cost constraints at inference. I am optimistic that
MIST can be retrained on predictions produced by ICEBERG to enable the accuracy of
ICEBERG with the speed of MIST, a step I have already taken in subsequent unpublished,
open-source work; MIST (and inverse models generally) can be a surrogate for high accuracy
forward models that predict spectra from molecules. More general strategies and ideas for
combining the forward and inverse directions of modeling into a single joint training process
could be instrumental in unlocking new accuracy and even utilizing unlabeled spectra data,
as has been done in unsupervised neural machine translation [300].

Orthogonal information and measurements can also be integrated into the models de-
scribed to develop hybrid approaches. For instance, utilizing molecular networking data [69],
NMR structural data, or even clues from paired genomic data [301] could all help constrain
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the methods described above. Functional spectra readouts such as infrared spectra have
already shown promise in improving the accuracy of molecule retrieval [302].

All the future research directions presented thus far concern themselves with improving
models that rank candidate molecular structures. De novo molecular generation will be
critical in going beyond the limits of current molecule retrieval databases and would comple-
ment improvements in candidate ranking or scoring. Many complex molecules that we detect
analytically yet cannot annotate may be structurally novel (i.e., not found in large databases
such as PubChem). Combining de novo molecule generation methods [180] with inverse and
forward ranking methods described above could help overcome this limitation, with several
methods already beginning these efforts [60], [61], [88], [303]. My belief throughout this
thesis has been that ranking was more rate-limiting than candidate generation. While I still
believe this, we may soon reach an inflection point where generative models of molecules are
necessary to unlock higher structure elucidation accuracy.

8.2.2 Toward new discovery paradigms
Collectively, I am certain that these efforts will push the bounds of small molecule metabolite
and natural product discovery to exciting new heights. This will be especially true with
instrumentation improvements. Due to these multi-pronged advances, I expect metabolomics
and lipidomics generally to emerge as more useful and widely adopted techniques.

These tools in turn will unlock new biomarkers, diagnostics, and even targets for inter-
vening in human disease [67]. Toward this latter direction, improving the ease with which we
can conduct quantitation, not just identification, of metabolites will be key and will provide
exciting modeling avenues. One question, particularly in the case of therapeutics, is how to
identify not only correlative biomarkers but rather causal metabolites. Follow up biochemical
experiments to perturb or understand the mechanism by which a metabolite of interest acts
can be challenging. It is not trivial to determine the pathways, enzymes, and intermediates
that may have produced a target metabolite, nor the downstream receptors with which a
metabolite may engage. Nevertheless, metabolite targets for therapeutic intervention are an
exciting prospect that I expect to become more prevalent in the coming years.

More broadly than new biomarkers and targets, metabolomics and mass spectrometry
have the potential to form the basis of novel molecular discovery platforms. The key challenge
to deploying AI/ML in drug discovery is not new model development, as small molecule
representation learning is a mature field, with many high quality models, such as graph neural
networks, available to predict scalar properties from molecular structures [42]. Instead, the
bottleneck is the dearth of high quality and streamlined data. Richard Sutton suggested
with his so-called “bitter lesson” that scaling computation is a more promising direction than
crafting methods with human intuition and biases [304]; similarly in the field of AI for biology,
scaling data collection is more promising than crafting more clever algorithms and models.
New open source data aggregation projects such as the Therapeutics Data Commons [183]
have emerged to address this, alongside high throughput measurement platforms such as
DNA-encoded libraries [305], [306] and phenotypic image-based screening [307], [308].

As a high throughput assay for measuring small molecules, mass spectrometry is well
suited to this task of assaying small molecule functions in parallel in what is termed “func-
tional metabolomics.” Already, companies are using mass spectrometry to comb through
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natural products mined from the environments at record speeds, going beyond tradition-
ally time intensive fractionation assays to effectively prioritize chemical matter. Chemopro-
teomics platforms utilize mass spectrometry to identify protein sites amenable to covalent
ligands [309]. Next generation platforms such as equilibrium dialysis [310], affinity selection-
mass spectrometry [311], and native metabolomics [312] all hold similar potential to unravel
non-covalent protein-metabolite interactions. Analyzing the high dimensional, often noisy,
and complex data from these various measurements in order to produce large datasets of
biochemical data will be an important step toward AI enabled drug discovery.

Artificial intelligence and machine learning technologies are advancing at unprecedented
speeds. While computational methods are not silver bullets, there has been no better time
to leverage these tools for scientific discovery and life sciences innovation. It is tempting
to pursue computational advances on already available data and well-established modeling
tasks. Yet, I anticipate the most important breakthroughs will come when we exercise
creativity to jointly invent new measurement platforms and modeling tasks, focusing on the
exact data types and models most aligned with our ultimate scientific aims.
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