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Abstract: In this work, we present a complete theoretical framework for analyzing the
distribution of polarized hadrons within jets, with and without measuring the transverse
momentum relative to the standard jet axis. Using soft-collinear effective theory (SCET), we
derive the factorization and provide the theoretical calculation of both semi-inclusive and
exclusive fragmenting jet functions (FJFs) under longitudinal and transverse polarization.
With the polarized FJFs, one gains access to a variety of new observables that can be used for
extracting both collinear and transverse momentum dependent parton distribution functions
(PDFs) and fragmentation functions (FFs). As examples, we provide numerical results for
the spin asymmetry A

cos(ϕS−ϕ̂Sh)
T U,T from polarized semi-inclusive hadron-in-jet production in

polarized pp collisions at RHIC kinematics, where a transversely polarized quark would lead
to the transverse spin of the final-state hadron inside the jet and is thus sensitive to the
transversity fragmentation functions. Similarly, another spin asymmetry, A

cos(ϕq−ϕS)
T U,L from

polarized exclusive hadron-in-jet production in polarized ep collisions at EIC kinematics
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would allow us to access the helicity fragmentation functions. These observables demonstrate
promising potential in investigating transverse momentum dependent PDFs and FFs and
are worthwhile for further measurements.
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1 Introduction

Jet substructure, originally developed to exploit the flow of energy within jets of particles at
the Large Hadron Collider (LHC) to enhance new physics searches [1], has since emerged as a
primary tool for studying Quantum Chromodynamics (QCD). Not only has jet substructure
been vastly studied in ongoing experiments at the Relativistic Heavy Ion Collider (RHIC) and
the LHC [2–7], but also in future facilities such as the Electron-Ion Collider (EIC) [8, 9]. For
example, at the LHC, the jet substructure has been successfully used to tag the origin of jets
in precision measurements and searches for new physics. At both the RHIC and the LHC, the
jet substructure has been an important tool for studying the properties of the hot and dense
quark-gluon plasma. On the other hand, at the EIC, as a good proxy of parton-level dynamics,
jet allows for a clean factorization between the target and current-fragmentation regions,
which is generally difficult in hadron productions [10–12] in deep inelastic scatterings (DIS).

Most recently, one particular set of jet substructure observables, the distribution of
hadrons inside the jet, has received a lot of attention [13–19]. Studying hadron distribution
inside the jet enables us to pinpoint fragmentation functions of various kinds and to explore
the elusive hadronization process. They are complementary to the more standard processes,
such as semi-inclusive hadron production in deep inelastic scattering and hadron production
in e+e− collisions, and allow us to study QCD factorization and to test the universality
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properties of the associated fragmentation functions in different processes [20]. For example,
one can measure the distribution of hadrons inside the jet as a function of the hadron
momentum fraction zh, where zh is the ratio of the transverse momentum of the hadron
(phT ) to that of the jet (pJT ), both relative to the beam axis. Such a zh dependence can be
used for extracting the zh-dependence of the collinear fragmentation functions (FFs) [21, 22].
On the other hand, if one measures both zh and the transverse momentum j⊥ distribution
of the hadrons with respect to the jet axis, one would be able to study the transverse
momentum-dependent fragmentation functions (TMD FFs) [23].

The theoretical object which describes the momentum distribution of hadrons inside a
fully reconstructed jet is called fragmenting jet functions (FJFs). For the zh-dependence
while integrating over the hadron’s transverse momentum with respect to the jet axis, we
would have collinear FJFs, which can be matched onto the standard collinear FFs. These
collinear FJFs have been studied in the so-called semi-inclusive jet production, as well as the
exclusive jet production. For semi-inclusive jet production, one measures the signal jet while
completely inclusive on other particles in the final state, see the studies in e.g. [21, 24–29]. On
the other hand, in the context being discussed, “exclusive” jet production refers to situations
where a fixed number of jets are produced in the final state but one vetoes additional jets.
For example, in the back-to-back electron-jet production in electron-proton collisions, our
factorization would depend on the exclusive FJFs, where we have an electron and a single
signal jet in the final state. See the studies along this line [30–34]. On the other hand,
measuring both zh and j⊥ distribution of the hadrons with respect to the standard jet axis
would give us the transverse momentum dependent fragmenting jet functions (TMD FJFs).
There are close relationships [23, 27, 35–37] between these TMD FJFs and the standard TMD
FFs [38–40]. More recently, studies have been advanced to the polarized sector, including
the polarization of both the parton initiating the jet and the hadron produced within the
jet [34, 41–43]. For a recent study exploring dihadron fragmentation functions (or two
hadrons) inside the jet, see [44, 45]. For the TMD study of the hadron with respect to the
Winner-Take-All jet axis, see [37, 46–48]. As for the TMD study inside the groomed jet,
see [36, 49, 50]. More recently, exploring the connections between TMD physics and the
energy-energy correlators has seen a lot of progress [51–53].

For the polarized collinear FJFs and TMD FJFs, we have performed studies in previous
publications, mainly in [34, 41] for semi-inclusive and exclusive jet productions. Even though
we provided theoretical formalism and illustrated some phenomenological studies there, for
the computations of FJFs, only partial results were available in those previous publications,
but not the complete full results. This is the goal of our current paper. We will perform
all the relevant computations and give all associated matching coefficients that allow us
to connect these FJFs to the standard FFs. In doing so, we also update our formalism
using the more recent approach outlined in the TMD Handbook [13]. We provide additional
phenomenological studies at the RHIC and the future EIC.

The rest of the paper is organized as follows: in section 2, we establish the theoretical
foundation for collinear FJFs, elucidate a number of correlations between the polarization
of the hadrons and fragmenting partons, and illuminate their physical significance and
connections to standard fragmentation functions. In section 3, we introduce the semi-inclusive
and exclusive TMD FJFs. We discuss their factorization and evolution properties, as well
as their relations to the standard TMD FFs. In section 4, we employ this framework to
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predict the spin asymmetry A
cos(ϕS−ϕ̂Sh)
T U,T for the semi-inclusive production of transversely

polarized Λ baryons inside jet in transversely polarized pp collisions at RHIC kinematics,
and A

cos(ϕq−ϕS)
T U,L for the exclusive production of longitudinally polarized Λ/Λ inside jet in

polarized ep collisions at EIC kinematics. Finally, we provide a summary of our findings in
section 5. We collect a few additional details in the appendix.

2 The collinear fragmenting jet functions (FJFs)

In this section, we introduce the definition of the semi-inclusive and exclusive fragmenting jet
functions (FJFs) in soft-collinear effective theory (SCET) [54–58] with both unpolarized and
polarized fragmenting hadron. Such FJFs are used to describe the longitudinal momentum
fraction distribution of hadrons within jets. We first provide the operator definitions of FJFs,
then perform the calculation to NLO, and lastly derive and solve the RG evolution equations.

2.1 Collinear FJFs in semi-inclusive jet productions

We can construct the semi-inclusive fragmenting quark and gluon jet functions using the
corresponding gauge invariant quark and gluon fields in SCET which are given by:

χn = W †
nξn , Bµ

n⊥ = 1
g

[
W †

niDµ
n⊥Wn

]
, (2.1)

where the subscript n indicates that the field is along the n-collinear direction, and nµ =
(1, 0, 0, 1) is the light-cone vector whose spatial component is aligned with the jet axis. In
eq. (2.1), the covariant derivative is iDµ

n⊥ = Pµ
n⊥ + gAµ

n⊥, where Pµ is the label momentum
operator. Moreover, Wn is the Wilson line of collinear gluons:

Wn(x) =
∑

perms
exp

(
−g

1
n̄ · P

n̄ · An(x)
)

. (2.2)

It is also useful to define the conjugate light-cone vector n̄µ = (1, 0, 0,−1), such that
n2 = n̄2 = 0 and n · n̄ = 2. Thus, any four-vector pµ can be decomposed as pµ = [p+, p−, p⊥],1
where p+ = n · p and p− = n̄ · p, namely:

pµ = p−
nµ

2 + p+
n̄µ

2 + pµ
⊥ . (2.3)

For a hadron in the reference frame where it has no transverse momentum and moves along
the +z-direction, it will have a large p−h component and a small p+h component, i.e., p+h ≪ p−h .
Thus the momentum ph and spin Sh of the hadron inside the jet can be parameterized as:

ph =
[

M2
h

p−h
, p−h , 0

]
, Sh =

[
−λh

Mh

p−h
, λh

p−h
Mh

, Sh⊥

]
. (2.4)

Here λh is the helicity of the hadron with mass Mh, and Sh⊥ is the transverse polarization
of the hadron inside the jet.

Having these collinear quark and gluon fields readily available, we can formulate the
correlator definitions for the quark and gluon semi-inclusive FJFs, each with different

1We use square bracket for vectors written in light cone coordinates.
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pJ
jet

h(ph, Sh)
q

Figure 1. Illustration for the distribution of hadrons h inside a jet that is initiated by a parton q.
The hadron has a momentum ph and spin Sh, while the jet has a momentum pJ .

polarizations [21, 30, 32, 59]:

Gh
q (z, zh, pT R, µ) = z

2Nc
δ

(
zh − ωh

ωJ

)
Tr
[

/̄n

2 ⟨0|δ(ω − n̄ · P)χn(0)|(Jh)X⟩

× ⟨(Jh)X|χn(0)|0⟩
]

, (2.5)

∆Gh
q (z, zh, pT R, µ) = z

2Nc
δ

(
zh − ωh

ωJ

)
Tr
[

/̄n

2 γ5 ⟨0|δ(ω − n̄ · P)χn(0)|(Jh)X⟩

× ⟨(Jh)X|χn(0)|0⟩
]

, (2.6)

Si
h⊥∆TGh

q (z, zh, pT R, µ) = z

2Nc
δ

(
zh − ωh

ωJ

)
Tr
[

/̄n

2 γi
⊥γ5 ⟨0|δ(ω − n̄ · P)χn(0)|(Jh)X⟩

× ⟨(Jh)X|χn(0)|0⟩
]

, (2.7)

Gh
g (z, zh, pT R, µ) = − zω

(d − 2)(N2
c − 1)δ

(
zh − ωh

ωJ

)
× ⟨0|δ(ω − n̄ · P)Bn⊥, µ(0)|(Jh)X⟩

〈
(Jh)X

∣∣Bµ
n⊥(0)

∣∣0〉 , (2.8)

∆Gh
g (z, zh, pT R, µ) = ϵµναβn̄αnβ

2
zω

(d − 2)(N2
c − 1)δ

(
zh − ωh

ωJ

)
× ⟨0|δ(ω − n̄ · P)Bn⊥, µ(0)|(Jh)X⟩ ⟨(Jh)X|Bn⊥, ν(0)|0⟩ , (2.9)

where Nc is the number of colors for quarks and (d − 2) is the number of polarizations for
gluons in d dimensional space-time. Note that we only consider massless quark flavors. For
studies about heavy meson, see e.g. refs. [22, 49, 60, 61]. The state |(Jh)X⟩ denotes the final
state, encompassing both unobserved particles labeled as X, and the observed jet J containing
an identified hadron h, which is collectively referred to as (Jh). Additionally, ω represents
the large light-cone component for the momentum of the quark or gluon initiating the jet,
whereas ωJ = p−J and ωh = p−h correspond respectively to the large light-cone component for
the momentum of the jet itself and the identified hadron within the jet, as shown in figure 1.
In our convention and the perturbative calculations performed below, we choose a frame
where the jet has no transverse momentum and ωJ ≃ 2EJ with EJ the jet energy. However,
in the actual experimental measurements at the collider experiments such as proton-proton
collisions at the LHC, the jet has a transverse momentum pT with a jet radius R [62] in
the lab frame. Since we will perform phenomenological studies for the relevant collider
experiments, we include pT R as an argument in our collinear FJFs in eqs. (2.5)–(2.9). At
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ω

ωJ

ωh = zhω = zhωJ ωh = ωJ

z = ωJ

ω
= 1

(A) (B) (C)

zh =
ωh

ωJ
= 1

Figure 2. Contributions required for studying semi-inclusive FJFs. In (A), both the quark and the
gluon are inside the jet, while in (B) and (C) only the quark or gluon is inside the jet.

the same time, the energy fractions z and zh are defined as:

z = ωJ

ω
, zh = ωh

ωJ
. (2.10)

As given in eqs. (2.5)–(2.7), to obtain the helicity and transversity distributions of the hadron
in quark FJFs, namely ∆Gh

q and ∆TGh
q , we replace the /̄n in eq. (2.5) by /̄nγ5 and /̄nγi

⊥γ5.
The unpolarized collinear FJF Gh

q,g represents the situation where an unpolarized quark or
gluon initiates a jet that carries a momentum fraction z of the parent parton, and we further
observe an unpolarized hadron h inside the jet which carries the momentum fraction zh of
the jet. Similarly, ∆Gh

q,g stands for the case where a longitudinally polarized parton initiates
a jet in which a longitudinally polarized hadron h is observed. Finally, ∆TGh

q is the case
for a transversely polarized quark going into a jet in which a transversely polarized hadron
is observed. Note that we do not have the corresponding ∆TGh

g for gluons when hadron h

is a spin-1/2 particle, due to the helicity-conservation constraint. This is the same reason
why the gluon transversity does not exist for the spin-1/2 nucleon [63].

Although the semi-inclusive FJFs Gh
i (z, zh, pT R, µ) are not perturbatively calculable,

they can be matched onto the standard collinear fragmentation functions as long as pT R ≫
ΛQCD [21]. The matching coefficients can be computed by replacing the hadron h by a
parton j and then computing Gj

i (z, zh, pT R, µ) perturbatively. Prior to describing the process
of computing the semi-inclusive FJFs, it is important to emphasize that the outcomes are
influenced by the choice of jet algorithms. To streamline our explanation, however, we solely
concentrate on the anti-kT algorithm [62] in this study.

We will now compute the bare partonic semi-inclusive FJFs Gj
i (z, zh, pT R) in order to

determine the UV counter terms. At the leading order (LO), one has a single parton. It is
this parton i that forms the jet as well as presenting the parton j inside the jet. Thus we
have z = 1 and zh = 1 at LO and bare polarized semi-inclusive FJFs are given by:

∆(T )G
j,(0)
i (z, zh, pT R) = δijδ(1− z)δ(1− zh) . (2.11)

Here and throughout the rest of the paper, we use the symbol ∆(T ) to collectively represent
both the longitudinally (∆) and transversely (T ) polarized cases.

At the next-to-leading order (NLO), we have to consider the 1 → 2 splitting process in
the real emission diagrams as shown in figure 2, as well as virtual diagrams. In dimensional

– 5 –



J
H
E
P
0
3
(
2
0
2
4
)
1
4
2

regularization, since virtual diagrams become scaleless integrals and vanish, we thus only
consider the real diagrams. Following the discussion in [21], we consider the cases of both
partons in the jet and only one parton in the jet as shown in figure 2. They are given by
the same integrals over the transverse momentum q⊥ of the parton j, but are constrained by
different Heaviside functions. Working in pure dimensional regularization with d = 4− 2ϵ

dimensions, we have:

∆(T )G
j,(1)
i (z,zh,ωJ)=

αs

2π

(eγE µ2)ϵ

Γ(1−ϵ)

(
δ(1−z)∆(T )P̂ji(zh, ϵ)

∫ dq2⊥
(q2⊥)1+ϵ

Θanti-kT
both

+δ(1−zh)∆(T )P̂ji(z,ϵ)
∫ dq2⊥

(q2⊥)1+ϵ
Θanti-kT

j

)
, (2.12)

where the Θanti-kT
both and Θanti-kT

j are the jet algorithm constraints with both partons in jet
(figure 2A) and only one parton in jet (figure 2B, 2C), respectively, and the superscript
“anti-kT ” indicates that anti-kT algorithm is used. The form of Θanti-kT

both and Θanti-kT
j are

given by the Heaviside functions [21, 64, 65]:

2.1.1 NLO calculation

Θanti-kT
both = θ

(
zh(1− zh)ωJ tan R

2 − q⊥

)
, (2.13)

Θanti-kT
j = θ

(
q⊥ − (1− z)ωJ tan R

2

)
, (2.14)

where R is the angular separation between three vector momenta inside the jet [64]. This
is to be compared with the jet radius R in the hadron collider that specifies the separation
in pseudo-rapidity and azimuthal angle as in

√
(∆η)2 + (∆ϕ)2. For jets with a small jet

radius R ≪ 1, we have

R = R

cosh(η) , (2.15)

where η is the jet pseudo-rapidity. Note that

ωJ tan R
2 ≈ 2EJ

R
2 = pT cosh(η) R

cosh(η) = pT R , (2.16)

and we will thus include the argument pT R in the FJFs.
The longitudinally polarized functions ∆P̂ji(z, ϵ) in eq. (2.12) are given in [66]:

∆P̂qq(z, ϵ) = CF

[
1 + z2

1− z
− ϵ(1− z)

]
, (2.17)

∆P̂gq(z, ϵ) = CF [2− z + 2ϵ(1− z)] , (2.18)

∆P̂qg(z, ϵ) = TF [2z − 1− 2ϵ(1− z)] , (2.19)

∆P̂gg(z, ϵ) = 2CA

[ 1
1− z

− 2z + 1 + 2ϵ(1− z)
]

. (2.20)
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The transversely polarized splitting functions ∆T P̂ji(z, ϵ) only exist for ∆T P̂qq because there
is no gluon transversity fragmentation function for spin-1/2 hadron as we mentioned above.
We have the following expression for ∆T P̂qq(z, ϵ) [67]

∆T P̂qq(z, ϵ) = CF

[ 2z

1− z

]
. (2.21)

By inserting the Θ functions for anti-kT algorithm and carrying out the integration in
eq. (2.12), we obtain the bare results2 for longitudinally polarized semi-inclusive FJFs
∆Gj

i,bare(z, zh, pT R) with i, j ∈ {q, g}:

∆Gq
q,bare(z,zh,pT R)= δ(1−z)δ(1−zh)

+αs

2π

[(1
ϵ
+L

)
∆Pqq(z)δ(1−zh)−

(1
ϵ
+L

)
∆Pqq(zh)δ(1−z)

]
+δ(1−z)αs

2π

[
2CF (1+z2

h)
( ln(1−zh)

1−zh

)
+
+CF (1−zh)+2∆Pqq(zh) ln(zh)

]

−δ(1−zh)
αs

2π

[
2CF (1+z2)

( ln(1−z)
1−z

)
+
+CF (1−z)

]
, (2.22)

∆Gg
q,bare(z,zh,pT R)= αs

2π

[(1
ϵ
+L

)
∆Pgq(z)δ(1−zh)−

(1
ϵ
+L

)
∆Pgq(zh)δ(1−z)

]
+δ(1−z)αs

2π

[
2∆Pgq(zh) ln(zh(1−zh))−2CF (1−zh)

]
−δ(1−zh)

αs

2π

[
2∆Pgq(z) ln(1−z)−2CF (1−z)

]
, (2.23)

∆Gq
g,bare(z,zh,pT R)= αs

2π

[(1
ϵ
+L

)
∆Pqg(z)δ(1−zh)−

(1
ϵ
+L

)
∆Pqg(zh)δ(1−z)

]
+δ(1−z)αs

2π

[
2∆Pqg(zh) ln(zh(1−zh))+2TF (1−zh)

]
−δ(1−zh)

αs

2π

[
2∆Pqg(z) ln(1−z)+2TF (1−z)

]
, (2.24)

∆Gg
g,bare(z,zh,pT R)= δ(1−z)δ(1−zh)

+αs

2π

[(1
ϵ
+L

)
∆Pgg(z)δ(1−zh)−

(1
ϵ
+L

)
∆Pgg(zh)δ(1−z)

]
+δ(1−z)αs

2π

[
4CA

(
2(1−zh)2+zh

)( ln(1−zh)
1−zh

)
+

]

+δ(1−z)αs

2π

[
2∆Pgg(zh) ln(zh)−4CA(1−zh)

]
−δ(1−zh)

αs

2π

[
4CA

(
2(1−z)2+z

)( ln(1−z)
1−z

)
+
−4CA(1−z)

]
, (2.25)

where the logarithm

L ≡ ln
(

µ2

(pT R)2

)
. (2.26)

2More details on the q⊥ integral and relevant expansions as ϵ → 0 can be found in appendix A.
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This indicates that the natural scale for the collinear FJFs is given by µG ∼ pT R. As for
the transversely polarized semi-inclusive FJFs, we obtain:

∆TGq
q,bare(z, zh, pT R) = δ(1− z)δ(1− zh)

+ αs

2π

[(1
ϵ
+ L

)
∆T Pqq(z)δ(1− zh)−

(1
ϵ
+ L

)
∆T Pqq(zh)δ(1− z)

]
+ δ(1− z)αs

2π

[
4CF zh

( ln(1− zh)
1− zh

)
+
+ 2∆T Pqq(zh) ln(zh)

]

− δ(1− zh)
αs

2π

[
4CF z

( ln(1− z)
1− z

)
+

]
. (2.27)

Here the functions ∆(T )Pji(z) are the longitudinally (transversely) polarized Altarelli-Parisi
splitting kernels:

∆Pqq(z) = CF

[
1 + z2

(1− z)+
+ 3

2δ(1− z)
]

, (2.28)

∆Pgq(z) = CF [2− z] , (2.29)

∆Pqg(z) = TF [2z − 1] , (2.30)

∆Pgg(z) = 2CA

[ 1
(1− z)+

− 2z + 1
]
+ β0

2 δ(1− z) , (2.31)

∆T Pqq(z) = CF

[ 2z

(1− z)+
+ 3

2δ(1− z)
]

, (2.32)

where β0 ≡ 11
3 CA − 4

3TF nf and nf is number of flavors. The “plus” distributions are defined
as usual by: ∫ 1

0
dz f(z)[g(z)]+ =

∫ 1

0
dz
(
f(z)− f(1)

)
g(z) . (2.33)

2.1.2 Renormalization and matching onto collinear FFs

In this section, we will renormalize the bare semi-inclusive FJFs obtained in the previous
section, and then match the results to the standard collinear FFs. In doing so, it is important
to point out that the 1/ϵ poles with a factor of ∆(T )Pij(zh)δ(1− z) in eqs. (2.22)–(2.25)
and (2.27) are the infrared (IR) poles, that would be matched onto the standard longitu-
dinally (transversely) polarized collinear FFs. On the other hand, the poles with a factor
of ∆(T )Pij(z)δ(1− zh) are the ultraviolet (UV) poles which will be taken care of by renor-
malization. Since the UV poles do not involve the variable zh, we should expect that zh is
merely a parameter in renormalization. This is exactly the same as the unpolarized situation
studied in [21]. With this in mind, the relationship between the bare and renormalized
semi-inclusive FJFs is given by

∆(T )G
j
i,bare(z, zh, pT R) =

∑
k

∫ 1

z

dz′

z′
∆(T )Zik

(
z

z′
, µ

)
∆(T )G

j
k

(
z′, zh, pT R, µ

)
, (2.34)

where ∆(T )Zik

(
z
z′ , µ

)
is the renormalization matrix and ∆(T )G

j
k(z′, zh, pT R, µ) are the renor-

malized semi-inclusive FJFs. For the aforementioned reason, the convolution only involves the
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variable z. The renormalized semi-inclusive FJFs satisfy the following RG evolution equations:

µ
d
dµ

∆(T )G
j
i (z, zh, pT R, µ) =

∑
k

∫ 1

z

dz′

z′
∆(T )γ

G
ik

(
z

z′
, µ

)
∆(T )G

j
k

(
z′, zh, pT R, µ

)
, (2.35)

with the anomalous dimension matrix given by:

∆(T )γ
G
ik

(
z

z′
, µ

)
= −

∑
k

∫ 1

z

dz′

z′

(
∆(T )Z

)−1
il

(
z

z′
, µ

)
µ

d
dµ

∆(T )Zlk

(
z′, µ

)
, (2.36)

and
(
∆(T )Z

)−1
il

is the inverse of the renormalization matrix that is defined such that:

∑
k

∫ 1

z

dz′

z′

(
∆(T )Z

)−1
il

(
z

z′
, µ

)
∆(T )Zlj

(
z′, µ

)
= δijδ(1− z) . (2.37)

Up to O(αs), the renormalization matrix is

∆(T )Zij(z, µ) = δijδ(1− z) + αs(µ)
2π

1
ϵ
∆(T )Pji(z) , (2.38)

and therefore the anomalous dimension matrix is given by:

∆(T )γ
G
ij(z, µ) = αs(µ)

π
∆(T )Pji(z) . (2.39)

We therefore observe that the evolution of the renormalized polarized semi-inclusive FJFs
conforms to the time-like DGLAP equation for collinear polarized FFs [68]:

µ
d
dµ

∆(T )Gh
i (z, zh, pT R, µ) = αs(µ)

π

∑
k

∫ 1

z

dz′

z′
∆(T )Pji

(
z

z′

)
∆(T )Gh

j

(
z′, zh, pT R, µ

)
, (2.40)

where the leading order splitting kernels are given in eqs. (2.28)–(2.32). Notice that the
hadronic FJFs have been reinstated since the hadronic and partonic FJFs would contain the
same UV counter terms and thus follow the same RG evolution equations. As we mentioned
in the previous section that the natural scale for the collinear FJFs is given by µG = pT R,
thus one would use the above renormalization group equations to evolve these FJFs from
their natural scale pT R to the hard scale pT for the jet production. The effect of this would
be to resum the logarithms of the jet radius R for narrow jets R ≪ 1. Analogous behaviors
were observed in the context of the semi-inclusive unpolarized FJFs in [21].

With the UV poles eliminated by renormalization, we can proceed to dealing with the IR
poles, which can be addressed by matching onto the collinear polarized FFs. Such matching
can be done at a scale µ ≫ ΛQCD as follows:

∆(T )Gh
i (z, zh, pT R, µ) =

∑
j

∫ 1

zh

dz′h
z′h

∆(T )Jij
(
z, z′h, pT R, µ

)
∆(T )Dh/j

(
zh

z′h
, µ

)
, (2.41)

where again, the hadronic semi-inclusive FJFs and collinear FFs are reinstated. Here,
∆(T )Dh/j(zh, µ) is the collinear fragmentation function characterizing a parton j fragmenting
into a hadron h. Specifically, ∆Dh/j (∆T Dh/j) is the helicity (transversity) fragmentation
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function describing a longitudinally (transversely) polarized parton fragmenting into a lon-
gitudinally (transversely) polarized hadron. And the matching relation above holds, with
a power correction of order O

(
Λ2
QCD/

(
pT R)2

))
[21, 31, 33]. In this case, however, different

from the renormalization procedure, zh is being convoluted and z is merely a parameter. This
process is similar to the approach used for unpolarized FJFs described in [21], except that
instead of the unpolarized FFs, collinear polarized FFs are used in this case. The perturbative
results at the parton level for the polarized collinear FFs are given by:

∆(T )Dj/i(zh, µ) = δijδ(1− zh) +
αs

2π
∆(T )Pji(zh)

(
−1

ϵ

)
. (2.42)

Finally, the matching coefficients ∆(T )Jij for anti-kT jet algorithm are as follows

∆Jqq(z,zh,pT R,µ)= δ(1−z)δ(1−zh)+
αs

2π

{
L

[
∆Pqq(z)δ(1−zh)−∆Pqq(zh)δ(1−z)

]
+δ(1−z)

[
2CF (1+z2h)

( ln(1−zh)
1−zh

)
+
+CF (1−zh)+∆Ianti-kT

qq (zh)
]

−δ(1−zh)
[
2CF (1+z2)

( ln(1−z)
1−z

)
+
+CF (1−z)

]}
, (2.43)

∆Jqg(z,zh,pT R,µ)= αs

2π

{
L

[
∆Pgq(z)δ(1−zh)−∆Pgq(zh)δ(1−z)

]
+δ(1−z)

[
2∆Pgq(zh) ln(1−zh)−2CF (1−zh)+∆Ianti-kT

gq (zh)
]

−δ(1−zh)
[
2∆Pgq(z) ln(1−z)−2CF (1−z)

]}
, (2.44)

∆Jgq(z,zh,pT R,µ)= αs

2π

{
L

[
∆Pqg(z)δ(1−zh)−∆Pqg(zh)δ(1−z)

]
+δ(1−z)

[
2∆Pqg(zh) ln(1−zh)+2TF (1−zh)+∆Ianti-kT

qg (zh)
]

−δ(1−zh)
[
2∆Pqg(z) ln(1−z)+2TF (1−z)

]}
, (2.45)

∆Jgg(z,zh,pT R,µ)= δ(1−z)δ(1−zh)+
αs

2π

{
L

[
∆Pgg(z)δ(1−zh)−∆Pgg(zh)δ(1−z)

]
+δ(1−z)

[
4CA

(
2(1−zh)2+zh

)( ln(1−zh)
1−zh

)
+

−4CA(1−zh)+∆Ianti-kT
gg (zh)

]
−δ(1−zh)

[
4CA

(
2(1−z)2+z

)( ln(1−z)
1−z

)
+
−4CA(1−z)

]}
, (2.46)

∆TJqq(z,zh,pT R,µ)= δ(1−z)δ(1−zh)+
αs

2π

{
L

[
∆T Pqq(z)δ(1−zh)−∆T Pqq(zh)δ(1−z)

]
+δ(1−z)

[
4CF zh

( ln(1−zh)
1−zh

)
+
+∆TIanti-kT

qq (zh)
]

−δ(1−zh)
[
4CF z

( ln(1−z)
1−z

)
+

]}
, (2.47)
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where we have defined ∆(T )Ianti-kT
ij as:

∆Ianti-kT
ij (zh) = 2∆Pji(zh) ln(zh) ,

∆TIanti-kT
ij (zh) = 2∆T Pji(zh) ln(zh) .

(2.48)

The matching coefficient functions ∆Jij for the longitudinally polarized case have been given
in the previous publication [34] with a different notation J L

ij . Here, we provide the detailed
steps of how such matching coefficients are derived. At the same time, the matching coefficient
for the transversely polarized case ∆TJqq is presented here for the first time.

2.2 Collinear FJFs in exclusive jet productions

Exclusive jet production, such as back-to-back dijet production in proton-proton collisions [69,
70] or back-to-back electron-jet production in electron-proton collisions [71], can provide
valuable insight into the understanding of the fundamental dynamics of hadron structure and
interactions. However, in such situations, typically the radiation outside the jet is restricted.
For example, in back-to-back dijet production, one usually restricts the transverse momentum
imbalance qT to be much smaller than the average transverse momentum of the jets. In this
case, the hard/collinear gluon emission outside the jet would move the imbalance qT away
from the back-to-back region. Because of that, the collinear radiation can only happen inside
the jet. Consequently, for jet function calculations in exclusive jet production, we only have
to consider figure 2A while B and C would not contribute. We refer to the corresponding
FJFs as exclusive FJFs below, which are key ingredients in the factorization formalism for
these processes. They describe the probability distribution for a parton in the jet to fragment
into a hadron with a given collinear momentum fraction in exclusive jet production.

The perturbative computations for exclusive FJFs ∆(T )G
j
i (zh, pT R, µ) are identical to

those for the semi-inclusive FJFs, except that we keep only the contributions from figure 2A.
Since both partons are always inside the jet, we always have z = 1, i.e. the jet carries all
the energy of the parton that initiates the jet in this case. Because of this, we no longer
keep the variable z in the FJFs and thus the exclusive FJFs only depend on zh. The RG
equations for exclusive FJFs can also be derived in the same manner as above, and we find
that they satisfy the following equation

µ
d
dµ

∆(T )G
h
i (zh, pT R, µ) = γi

G (µ)∆(T )G
h
i (zh, pT R, µ) , (2.49)

where the index i is not summed over, and the anomalous dimensions γi
G (µ) with i = q, g

at this order are given

γq
G (µ) =

αs(µ)
π

(
CF L + 3

2CF

)
, (2.50)

γg
G (µ) =

αs(µ)
π

(
CAL + β0

2

)
. (2.51)

A few comments are in order. First of all, it is important to emphasize that the RG equation
for exclusive FJFs is a multiplicative renormalization, instead of a convolution over z as in
the semi-inclusive FJFs given in the previous section. Secondly, the anomalous dimension
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γi
G (µ) is the same as that of the exclusive jet functions in [64] and exclusive unpolarized

FJFs [27, 33, 72]. Since in the factorization formalism, one simply replaces the exclusive jet
function with the exclusive FJFs, thus they should have the same anomalous dimensions
simply because of the RG consistency. At the same time, we find that the UV divergent
terms are all proportional to δ(1− zh) where the radiated gluon becomes soft, and thus the
result should be independent of the polarization of the partons. This explains the anomalous
dimensions for both longitudinally and transversely polarized FJFs are the same as the
unpolarized FJFs. The solution to the RG equation for the exclusive FJFs is then:

∆(T )G
h
i (zh, pT R, µ) = ∆(T )G

h
i (zh, pT R, µG ) exp

[∫ µ

µG

dµ′

µ′
γi

G

(
µ′
)]

, (2.52)

where the scale µG is the characteristic scale that eliminates the large logarithms in the
fixed-order perturbative calculations. The logarithm L indicates that the natural scale for
the exclusive FJFs is also given by µG = pT R, the same as for the semi-inclusive FJFs. One
would thus evolve the FJFs from the natural scale µG ∼ pT R to the hard scale of the process
µ ∼ pT and effectively resum the logarithm of jet radius, lnR.

Finishing the discussion on the RG equation for the exclusive FJFs, let us now turn to
their matching to the standard collinear FFs. Similar to the semi-inclusive FJFs, the exclusive
fragmenting jet functions ∆(T )G

h
i (zh, pT R, µ) are also closely related to the fragmentation

functions ∆(T )Dh/j and in this work we label the corresponding matching coefficients as
∆(T )Jij . Following [27, 31, 33, 72], one has the following expansion for exclusive FJFs:

∆(T )G
h
i (zh, pT R, µ) =

∑
j

∫ 1

zh

dz′h
z′h

∆(T )Jij(z′h, pT R, µ)∆(T )Dh/j

(
zh

z′h
, µ

)
. (2.53)

Again this equation is valid up to power corrections of order O
(
Λ2
QCD/

(
pT R)2

))
for light

hadrons. For heavy meson fragmenting jet functions, ΛQCD should be replaced by the heavy
quark mass mQ in the above equation [33, 73]. We provide the NLO results of matching
coefficients ∆(T )Jij , which depend on the jet algorithm. The results for unpolarized FJFs
with cone algorithm were given in [74], while those for anti-kT jets were first written down
in [72]. While the results for the unpolarized FJFs are available in the literature, the
coefficients for the polarized FJFs are given for the first time in our current paper. We provide
the detailed derivations of exclusive FJFs with polarizations for anti-kT jets in appendix B.
Here we only list the final results:

∆Jqq(zh, pT R, µ) = δ(1− zh) +
αsCF

2π

[
δ(1− zh)

(
L2

2 − π2

12

)
−∆Pqq(zh)L

+ 1− zh +∆Î anti-kT
qq (zh)

]
, (2.54)

∆Jqg(zh, pT R, µ) = αsCF

2π

[
−∆Pgq(zh)L − 2(1− zh) + ∆Î anti-kT

qg (zh)
]

, (2.55)

∆Jgq(zh, pT R, µ) = αsTF

2π

[
−∆Pqg(zh)L + 2(1− zh) + ∆Î anti-kT

gq (zh)
]

, (2.56)

∆Jgg(zh, pT R, µ) = δ(1− zh) +
αsCA

2π

[
δ(1− zh)

(
L2

2 − π2

12

)
−∆Pgg(zh)L

− 4(1− zh) + ∆Î anti-kT
gg (zh)

]
, (2.57)
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∆T Jqq(zh, pT R, µ) = δ(1− zh) +
αsCF

2π

[
δ(1− zh)

(
L2

2 − π2

12

)

−∆T Pqq(zh)L +∆T Î anti-kT
q (zh)

]
, (2.58)

where for anti-kT jets, the jet-algorithm dependent pieces, ∆(T )Î
anti-kT
ij (zh), are given by

∆Î anti-kT
qq (zh) = 2∆Pqq(zh) ln(zh) + 2

(
1 + z2h

)( ln(1− zh)
1− zh

)
+

, (2.59)

∆Î anti-kT
qg (zh) = 2∆Pgq(zh) ln

(
zh(1− zh)

)
, (2.60)

∆Î anti-kT
gq (zh) = 2∆Pqg(zh) ln

(
zh(1− zh)

)
, (2.61)

∆Î anti-kT
gg (zh) = 2∆Pgg(zh) ln(zh) + 4

(
2(1− zh)2 + zh

)( ln(1− zh)
1− zh

)
+

, (2.62)

∆T Î anti-kT
qq (zh) = 2∆T Pqq(zh) ln(zh) + 4zh

( ln(1− zh)
1− zh

)
+

, (2.63)

where the splitting kernels ∆(T )Pji(zh) [66, 67] have been introduced in eqs. (2.28)–(2.32).

3 The transverse momentum dependent FJFs (TMD FJFs)

In this section, we study TMD FJFs in both the semi-inclusive jet production and the
exclusive jet production, including polarizations of the initiating parton and the final observed
hadron inside the jet. They are termed as polarized TMD FJFs [34]. Some partial results
are available in the previous publications [34, 41], but never the complete results. For
example, the hard matching functions for both longitudinally and transversely polarized
cases are presented for the first time. Below, we provide the complete results for all the
relevant polarized semi-inclusive and exclusive TMD FJFs. The operator definitions of these
functions in SCET are presented, followed by their factorization formalism, which involves
hard functions, soft functions, and TMD FFs.

The kinematics is set up as in figure 3, a hadron h is observed inside the jet, carrying
a fraction zh of the jet longitudinal momentum (not labeled in the figure), a transverse
momentum j⊥ with azimuthal angle ϕ̂h, and a transverse spin Sh⊥ with azimuthal angle
ϕ̂Sh

. Both j⊥ and Sh⊥ are measured with respect to the jet axis zJ , while both azimuthal
angles ϕ̂h and ϕ̂Sh

are measured within the jet transverse plane and with respect to xJ , the
x-axis that is rotated into jet coordinates.3

3.1 TMD FJFs in semi-inclusive jet productions

Again we start with the semi-inclusive TMD FJFs, which is an essential ingredient for
studying the transverse momentum distribution of hadrons inside a jet in e.g. single inclusive
jet production in proton-proton collisions (p+ p → jet(h)+X) or in electron-proton collisions
(e+p → jet(h)+X). Following the previous publication [34], we define the general correlators

3Please see eqs. (4.8) and (4.9) for the parameterization of j⊥ and Sh⊥.
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j⊥

ϕ̂h

xJ

zJ
Sh⊥

ϕ̂Shh

Figure 3. Illustration for the distribution of hadrons inside a jet with transverse momentum j⊥ and
azimuthal angle ϕ̂h, and transverse spin Sh⊥ and azimuthal angle ϕ̂Sh

. Both azimuthal angles are
measured with respect to the jet coordinate xJ and within the jet transverse plane.

for TMD FJFs initiated by quark or gluon as:

∆h/q(z,zh,j⊥,Sh)=
z

2Nc
δ

(
zh−

ωh

ωJ

)〈
0
∣∣∣δ(ω−n̄·P)δ2(P⊥/zh+j⊥)χn(0)

∣∣∣(Jh)X
〉

(3.1)

×⟨(Jh)X|χn(0)|0⟩ ,

∆h/g,µν(z,zh,j⊥,Sh)=
zω

(d−2)(N2
c −1)δ

(
zh−

ωh

ωJ

)
(3.2)

×
〈
0
∣∣∣δ(ω−n̄·P)δ2(P⊥/zh+j⊥)B

µ
n⊥(0)

∣∣∣(Jh)X
〉
⟨(Jh)X|Bν

n⊥(0)|0⟩ ,

where we have the energy fractions z and zh defined the same as in eq. (2.10). One can
parameterize these correlators at the leading power [34, 40]:

∆h/q(z, zh, j⊥, Sh) = ∆h/q [/n] /̄n

2 −∆h/q [/nγ5] /̄nγ5
2 + ∆h/q [inνσkνγ5] in̄µσkµγ5

2 , (3.3)

∆h/g,kl(z, zh, j⊥, Sh) =
1
2δkl

T

(
δmn

T ∆h/g,mn
)
− i

2ϵkl
T

(
iϵmn

T ∆h/g,mn
)
+ Ŝ∆h/g,kl . (3.4)

Here we have defined ∆h/q[Γ] ≡ 1
4 Tr

(
∆h/qΓ

)
, and we have ŜOkl = 1

2

(
Okl + Olk − δkl

T Oρρ
)

and δkl
T = −gkl

T . The three terms on the right-hand side of eq. (3.3) correspond (in order) to
the TMD FJFs with unpolarized, longitudinally polarized, and transversely polarized initial
quarks. On the other hand, the three terms on the right-hand side of eq. (3.4) correspond
to unpolarized, circularly polarized, and linearly polarized gluons. More details have been
presented in the previous work [34]. For completeness, here we provide the parameterization
of quark TMD FJFs:

∆h/q[/n] = Dh/q
1 (z, zh, j⊥)−

ϵkl
T jk
⊥Sl

h⊥
zhMh

D⊥h/q
1T (z, zh, j⊥) , (3.5)

∆h/q[/nγ5] = λhG
h/q
1L (z, zh, j⊥)−

j⊥ · Sh⊥
zhMh

Gh/q
1T (z, zh, j⊥) , (3.6)

∆h/q[inνσkνγ5] = Sk
h⊥H

h/q
1 (z, zh, j⊥)−

ϵkl
T jl
⊥

zhMh
H⊥h/q

1 (z, zh, j⊥)−
jk
⊥

zhMh
λhH

⊥h/q
1L (z, zh, j⊥)

+
jk
⊥j⊥ · Sh⊥ − 1

2j2
⊥Sk

h⊥
z2hM2

h

H⊥h/q
1T (z, zh, j⊥) . (3.7)

The functions D, G and H on the right-hand side of eqs. (3.5)–(3.7) represent the TMD FJFs
initiated by unpolarized, longitudinally polarized, and transversely polarized initial quark
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respectively. The parameterization for gluon TMD FJFs is given by

δkl
T ∆h/g,kl = Dh/g

1 (z, zh, j⊥)−
ϵij
T ji
⊥Sj

h⊥
zhMh

D⊥h/g
1 (z, zh, j⊥) , (3.8)

iϵkl
T ∆h/g,kl = λhG

h/g
1L (z, zh, j⊥)−

j⊥ · Sh⊥
zhMh

Gh/g
1T (z, zh, j⊥) , (3.9)

Ŝ∆h/g,kl = jk
⊥jl
⊥

2z2hM2
h

H⊥h/g
1 (z, zh, j⊥)−

ϵ
j⊥{k
T S

l}
h⊥ + ϵ

Sh⊥{k
T j

l}
⊥

8zhMh
Hh/g

1T (z, zh, j⊥)

+ ϵ
j⊥{k
T j

l}
⊥

4z2hM2
h

(
λhH

⊥,h/g
1L (z, zh, j⊥)−

j⊥ · Sh⊥
zhMh

H⊥h/g
1T (z, zh, j⊥)

)
, (3.10)

where the functions D, G and H represent the TMD FJFs initiated by unpolarized, circularly
polarized, and linearly polarized gluons, respectively. The two G functions with circularly
polarized gluons are anti-symmetric of indices k, l = 1, 2, and the four H functions related to
linearly polarized gluons are symmetric and traceless combinations of k, l = 1, 2. We have
adopted the notation v

{k
T w

l}
T = vk

T wl
T + vl

T wk
T as in [13, 39].

Since TMD FJFs represent the hadron fragmentation inside a fully reconstructed jet,
their physical meaning is similar to that of standard TMD FFs as reviewed in [40]. Naturally,
we adopt the calligraphic font of the letters used by the corresponding TMD FFs as the
notations of TMD FJFs. For example, Hh/q

1 in eq. (3.7) is the so-called quark transversity
TMD FJFs, i.e. a transversely polarized quark initiates a jet, in which we further observe
a transversely polarized hadron. On the other hand, Gh/g

1L in eq. (3.9) is a helicity gluon
TMD FJFs, i.e. a longitudinally polarized gluon initiates a jet, in which we further observe
a longitudinally polarized hadron.

In this study, we focus on the kinematic region ΛQCD ≲ j⊥ ≪ pT R, necessitating the
adoption of the TMD factorization [20]. In the previous work [23], the TMD factorization
for transverse momentum distribution of unpolarized hadrons inside the jet was derived.
Over there, the evolution equations are based on the separate rapidity renormalization group
equations for the so-called “unsubtracted” TMD FFs and soft functions. Below, in the
process of reviewing the TMD factorization, we update the formalism with the more recent
language outlined in the TMD Handbook [13]. This new formalism makes the evolution
of the in-jet TMD FJFs simpler and more transparent than before. We then present the
hard matching functions, where the expressions for longitudinally and transversely polarized
cases are provided here for the first time.

3.1.1 TMD factorization

In the kinematic region under consideration, the radiation relevant at leading power is
restricted to collinear radiation within the jet, characterized by the momentum that scales
as pc =

[
p+c , p−c , pc⊥

]
∼ p−c

[
λ2, 1, λ

]
, where the power counting parameter λ ∼ j⊥/pT .

Additionally, soft radiation of order j⊥ is also relevant. It is worth noting that harder
emissions are only permitted outside the jet cone and will thus only impact the determination
of the jet axis. Consequently, the hadron transverse momentum j⊥, which is defined with
respect to the jet axis, remains intact from the radiations external to the jet. Taking the
unpolarized case as an example, a factorized formalism for the unpolarized TMD FJFs within
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xJ

zJ
pf

pf + λ
λ⊥

ph k⊥j⊥

Figure 4. Illustration of the soft radiation (purple) and fragmentation process (red). The initial
fragmenting quark carries a momentum pf along the jet axis zJ . It undergoes a soft radiation of λ⊥,
and then fragments into a hadron with momentum ph. The momentum ph has a transverse component
of k⊥ with respect to the quark after soft radiation, or a transverse component of j⊥ with respect to
the jet axis.

SCET can be formulated [23]:

Dh/c
1 (z, zh, j⊥, pT R, µ, ζJ) = ĤU

c→i(z, pT R, µ)
∫

d2k⊥ d2λ⊥ δ2(zhλ⊥ + k⊥ − j⊥)

× D
h/i(u)
1

(
zh, k⊥, µ, ζ/ν2

)
Si(λ⊥, µ, νR/2) , (3.11)

where Si(λ⊥, µ, νR/2) is the in-jet soft function, and D
h/i(u)
1

(
zh, k⊥, µ, ζ/ν2) is the “un-

subtracted” TMD FFs with the superscript “(u)” to emphasize this fact. Here µ is the
standard renormalization scale as above while ν is a rapidity scale associated with the
rapidity divergence [75, 76], and ζ is the so-called Collins-Soper scale [20]. We also have a
scale ζJ to be defined below. The δ function establishes a relationship between the hadron
transverse momentum j⊥, relative to the jet axis, and two other momenta: the transverse
momentum λ⊥ of soft radiation, and the hadron transverse momentum k⊥ with respect to
the fragmenting parton. Notice that λ⊥ is multiplied by zh to adjust for the dissimilarity
between the fragmenting parton and the observed hadron. The relationship among the three
aforementioned transverse momenta is illustrated in figure 4.

As is common practice in TMD physics, we convert the aforementioned expression from
the transverse momentum space to the coordinate b-space with the following transformation:

Dh/c
1 (z, zh, j⊥, pT R, µ, ζJ) =ĤU

c→i(z, pT R, µ)

×
∫ d2b

(2π)2 eij⊥·b/zhD̃
h/i(u)
1

(
zh, b, µ, ζ/ν2

)
S̃i(b, µ, νR/2) , (3.12)

where we have defined the Fourier transform for both D̃
h/i(u)
1

(
zh, b, µ, ζ/ν2) and S̃i(b, µ, νR/2)

with i = q, g as:

D̃
h/i(u)
1

(
zh, b, µ, ζ/ν2

)
= 1

z2h

∫
d2k⊥ e−ik⊥·b/zhD

h/i(u)
1

(
zh, k⊥, µ, ζ/ν2

)
= 1

z2h

∫
dk⊥ k⊥2πJ0

(
bk⊥
zh

)
D

h/i(u)
1

(
zh, k⊥, µ, ζ/ν2

)
, (3.13)

S̃i(b, µ, νR/2) =
∫

d2λ⊥ e−iλ⊥·bSi(λ⊥, µ, νR/2) . (3.14)
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Here, J0(bk⊥/zh) is the Bessel function of the first kind. The µ- and ν-renormalization group
equations for the “unsubstracted” TMD FFs D

h/i(u)
1 are well known:

µ
d

dµ
ln D̃

h/i(u)
1

(
zh, b, µ, ζ/ν2

)
= γD

µ,i(µ, ζ/ν2), (3.15)

ν
d

dν
ln D̃

h/i(u)
1

(
zh, b, µ, ζ/ν2

)
= γD

ν,i(b, µ), (3.16)

where the leading order µ- and ν-anomalous dimensions are given by

γD
µ,q(µ, ζ/ν2) = αs

π
CF

(
ln
(

ν2

ζ

)
+ 3

2

)
, (3.17)

γD
µ,g(µ, ζ/ν2) = αs

π
CA

(
ln
(

ν2

ζ

)
+ β0

2CA

)
, (3.18)

γD
ν,i(b, µ) = αs

π
Ci ln

(
µ2

µ2
b

)
, (3.19)

with Cq = CF , Cg = CA, and µb ≡ 2e−γE /b.
On the other hand, the in-jet soft function up to the NLO is given by [23, 41, 77]

S̃i(b,µ,νR/2)=1+ αs

2π
Ci

[
−1
2 ln

2
(

µ2

µ2
b

)
−ln

(
µ2

µ2
b

)
ln
(

ν2 tan2(R/2)
µ2

)
−π2

12

]
. (3.20)

The corresponding µ- and ν-renormalization group equations are given by

µ
d

dµ
ln S̃i(b, µ, νR/2) = γS

µ,i(b, µ, νR/2) , (3.21)

ν
d

dν
ln S̃i(b, µ, νR/2) = γS

ν,i(b, µ) , (3.22)

where the anomalous dimensions are given by

γS
µ,i(b, µ, νR/2) = −αs

π
Ci ln

(
ν2 tan2(R/2)

µ2

)
, (3.23)

γS
ν,i(b, µ) = −αs

π
Ci ln

(
µ2

µ2
b

)
. (3.24)

It is instructive to compare this in-jet soft function S̃i with the standard soft function
S̃nn̄,i(b, µ, ν), which arises in the TMD factorization for the semi-inclusive deep inelastic
scattering (SIDIS) and Drell-Yan production (involving quarks) or for the Higgs production
in proton-proton collisions (involving gluons), whose expression is given by

S̃nn̄,i(b, µ, ν) = 1 + αs

π
Ci

[
−1
2 ln2

(
µ2

µ2
b

)
− ln

(
µ2

µ2
b

)
ln
(

ν2

µ2

)
− π2

12

]
. (3.25)

After replacing ν → ν tan(R/2), the in-jet soft function S̃i is exactly equal to
√

S̃nn̄,i at
the NLO:

S̃i(b, µ, νR/2) =
√

S̃nn̄,i(b, µ, ν)
∣∣∣∣
ν→ν tan(R/2)

. (3.26)
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Now since the standard “subtracted” TMD FFs are defined as a combination of “un-
subtracted” TMD FFs D̃

h/i(u)
1 and S̃i [13], we would define the “subtracted” in-jet TMD

FFs as a product of D̃
h/i(u)
1 and S̃i as follows:

D̃
h/i
1 (zh, b, µ, ζJ) ≡ D̃

h/i(u)
1

(
zh, b, µ, ζ/ν2

)
S̃i(b, µ, νR/2) , (3.27)

where the rapidity divergences cancel out between D
h/i(u)
1 and S̃i due to the sign difference

shown in eqs. (3.19) and (3.24). At the same time, we find that a slightly different Collins-Soper
scale ζJ arises in the in-jet “subtracted” TMD FFs, which is related to the Collins-Soper
scale ζ for the standard TMD FFs,√

ζJ ≡
√

ζ R/2 = pT R , (3.28)

where we have used tan(R/2) ≈ R/2 for narrow jets R ≪ 1. Note that in our regularization
scheme, the natural Collins-Soper scale for TMD FFs is

√
ζ = ωJ = 2EJ = 2pT cosh η and

using R = R/ cosh η, we obtain the natural scale
√

ζJ for the unpolarized TMD FJFs, which
is simply pT R. With this newly defined Collins-Soper scale ζJ , following [13, 78], we can
thus convert the ν-RG equations above as

d

d ln
√

ζJ
ln D̃

h/i
1 (zh, b, µ, ζJ) = K̃(b, µ) , (3.29)

where K̃(b, µ) = −γD
ν,i(b, µ) in eq. (3.19) is the so-called Collins-Soper evolution kernel. In

the small-b region where 1/b ≫ ΛQCD, it can be computed perturbatively and the four-loop
expressions are available in [79, 80]. Notice that K̃(b, µ) would become non-perturbative
in the large-b region, see recent numerical computations in lattice QCD [81–85]. On the
other hand, the standard µ-RG equation is given by

d

d lnµ
ln D̃

h/i
1 (zh, b, µ, ζJ) = γi

µ[αs(µ), ζJ/µ2] , (3.30)

where the anomalous dimension γi
µ[αs(µ), ζJ/µ2] are given by

γi
µ[αs(µ), ζJ/µ2] = −Γi

cusp[αs(µ)] ln
(

ζJ

µ2

)
+ γi

µ[αs(µ)] , (3.31)

where we have written the more general form [13] with Γi
cusp and γi

µ the cusp and non-cusp
anomalous dimensions. They have the perturbative expansion Γi

cusp[αs] =
∑

n=1 Γi
n−1 (αs/4π)n

and γi
µ[αs] =

∑
n=1 γi

n (αs/4π)n and at the next-to-leading logarithmic (NLL) order, we
have [31, 114]

Γq
0 = 4CF , Γq

1 = 4CF

[(
67
9 − π2

3

)
CA − 20

9 TF nf

]
, γq

0 = 6CF , (3.32)

Γg
0,1 =

CA

CF
Γq
0,1, γg

0 = 2β0 . (3.33)

One can solve the ζJ - and µ-RG evolution equation to obtain the “subtracted” in-jet TMD FFs

D̃
h/i
1 (zh, b, µ, ζJ) = D̃

h/i
1 (zh, b, µ0, ζ0) exp

[∫ µ

µ0

dµ′

µ′
γi

µ[αs(µ), ζJ/µ2]
]

× exp
[
K̃(b, µ0) ln

√
ζJ√
ζ0

]
. (3.34)
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One typically evolves the in-jet TMD FFs D̃
h/i
1 from the initial scale µ0 =

√
ζ0 = µb to the

final scale µ ∼ pT of the jet and
√

ζJ = pT R as mentioned above. On the other hand, at the
initial scale µ0 =

√
ζ0 = µb, one can expand D̃

h/i
1 (zh, b, µ0, ζ0) in terms of the corresponding

collinear FFs when µb ≫ ΛQCD.
To generalize the above TMD factorization to the polarized TMD FJFs, let us define

the following operator C :

C [D̃h/i,(n)] ≡
∫

bn+1 db

2πn!

(
z2hM2

h

j⊥

)n

Jn

(
j⊥b

zh

)
D̃h/i,(n)(zh, b, µ, ζJ) , (3.35)

where D̃h/i,(n) is n-th moment of the TMD FFs in the Fourier b-space:

D̃h/i,(n)(zh,b,µ,ζJ)=
1
z2h

2πn!(
z2hM2

h

)n ∫ dk⊥ k⊥

(
k⊥
b

)n

Jn

(
bk⊥
zh

)
Dh/i(zh,k⊥,µ,ζJ) . (3.36)

In addition, we suppress the superscript (0) when n = 0. One can easily verify that with n = 0
and D = D1, the combination of eqs. (3.13) and (3.27) would lead to eq. (3.36). It is important
to realize that each in-jet TMD FF D̃h/i,(n)(zh, b, µ, ζJ) would follow the same Collins-Soper
evolution equation as in eq. (3.29), as well as the same µ-RG equation as in eq. (3.30).
They are identical to the standard TMD FFs with the replacement ζ by ζJ . Thus, their
evolved results would be given exactly by eq. (3.34), except one replaces D̃

h/i
1 (zh, b, µ, ζJ) by

the corresponding TMD FFs D̃h/i,(n)(zh, b, µ, ζJ) defined above and given below for specific
TMD FFs. Note that the evolved in-jet unpolarized TMD FFs D̃

h/i
1 (zh, b, µ, ζJ) is given

by eq. (3.34), which depends on the TMD FFs D̃
h/i
1 (zh, b, µ0, ζ0) at the initial scale µ0 and ζ0.

Often, one further matches the TMD FFs at the initial scales onto collinear FFs. For example,
the matching coefficients for the unpolarized TMD FFs are known up to N3LO [86, 87]. On
the other hand, the matching coefficients for H̃

h/q
1 are known up to NNLO [88]. We can now

write down the factorization for all the TMD FJFs as:

Dh/c
1 (z, zh, j⊥, pT R, µ, ζJ) = ĤU

c→i(z, pT R, µ)C
[
D̃

h/i
1

]
, (3.37)

D⊥,h/c
1T (z, zh, j⊥, pT R, µ, ζJ) = ĤU

c→i(z, pT R, µ)C
[
D̃
⊥,h/i,(1)
1T

]
, (3.38)

Gh/c
1L (z, zh, j⊥, pT R, µ, ζJ) = ĤL

c→i(z, pT R, µ)C
[
G̃

h/i
1L

]
, (3.39)

Gh/c
1T (z, zh, j⊥, pT R, µ, ζJ) = ĤL

c→i(z, pT R, µ)C
[
G̃

h/i,(1)
1T

]
, (3.40)

Hh/c
1 (z, zh, j⊥, pT R, µ, ζJ) = ĤT

c→i(z, pT R, µ)C
[
H̃

h/i
1

]
, (3.41)

H⊥,h/c
1 (z, zh, j⊥, pT R, µ, ζJ) = ĤT

c→i(z, pT R, µ)C
[
H̃
⊥,h/i,(1)
1

]
, (3.42)

H⊥,h/c
1L (z, zh, j⊥, pT R, µ, ζJ) = ĤT

c→i(z, pT R, µ)C
[
H̃
⊥,h/i,(1)
1L

]
, (3.43)

H⊥,h/c
1T (z, zh, j⊥, pT R, µ, ζJ) = ĤT

c→i(z, pT R, µ)C
[
H̃
⊥,h/i,(2)
1T

]
. (3.44)

Here the superscripts U , L and T of Ĥc→i represent unpolarized, longitudinally polarized and
transversely polarized hard matching functions, respectively. The hard matching functions
will be provided in the next subsection. The above equations also show how various TMD
FJFs are matched onto their corresponding TMD FFs, with which the matching of the
scenarios listed in table 1 can be performed.
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Quark polarization

U L T

U D1 = H⊥1 = −

L G1L = − H⊥1L = −

H1 = −

H
ad

ro
n

po
la

riz
at

io
n

T D⊥1T = − G1T = −
H⊥1T = −

Table 1. Summary of the semi-inclusive TMD FJFs. The header row represents the polarization
of the quark (indicated by the blue line) that initiates the jet, while the header column indicates
the corresponding polarizations of produced hadrons (indicated by the red arrow from the red dot).
Shown here is for quark TMD FJFs, with U, L, T representing the unpolarized case, and longitudinal
and transverse polarization. For gluon TMD FJFs, one would interpret L, T, as circular and linear
polarization [40].

3.1.2 Hard matching functions

The hard matching functions ĤU,L,T
c→i describe the out-of-jet radiation during which an energetic

parton c, generated in a hard scattering event, undergoes a splitting into a parton i, which
subsequently initiates a jet with energy ωJ and radius R. The hard matching functions
for the unpolarized case ĤU

c→i are available previously [21, 59, 65, 89]. They describe the
splitting from an unpolarized initial parton c to an unpolarized parton i, irrespective of the
polarization of the final-state hadron inside the jet. Because of that, we would have the same
hard matching functions for both unpolarized TMD FJFs Dh/c

1 and the polarized TMD FJFs
D⊥,h/c

1T , as indicated in eqs. (3.37) and (3.38). We remind the reader that D⊥,h/c
1T stands for

the situation where an unpolarized parton c splits into an unpolarized parton i that fragments
into a transversely polarized hadron h. This arises from the correlation between the hadron’s
transverse momentum with respect to the jet axis and the transverse spin of the hadron itself.
For the same reasons, we have the same longitudinally polarized hard matching functions
ĤL

c→i for the TMD FJFs Gh/c
1L and Gh/c

1T , as indicated in eqs. (3.39) and (3.40). Likewise, we
have the same transversely polarized hard matching functions ĤT

c→i for the TMD FJFs Hh/c
1 ,

H⊥,h/c
1 , H⊥,h/c

1L , and H⊥,h/c
1T , as indicated in eqs. (3.41)–(3.44). Looking at table 1, the FJFs

listed in the same column possess identical hard matching functions, due to the fact that
the parton polarization is the same in the same column.

For completeness, we list the unpolarized results ĤU
c→i here. We then provide in addition

the results ĤL,T
c→i for the polarized cases.

ĤU
q→q′(z, pT R, µ) = δqq′δ(1− z) + δqq′

αs

2π

[
CF δ(1− z)

(
−L2

2 − 3
2L + π2

12

)

+ Pqq(z)L − 2CF (1 + z2)
( ln(1− z)

1− z

)
+
− CF (1− z)

]
, (3.45)
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ĤU
q→g(z, pT R, µ) = αs

2π

[(
L − 2 ln(1− z)

)
Pgq(z)− CF z

]
, (3.46)

ĤU
g→g(z, pT R, µ) = δ(1− z) + αs

2π

[
δ(1− z)

(
−CA

L2

2 − β0
2 L + CA

π2

12

)

+ Pgg(z)L − 4CA

(
1− z + z2

)2
z

( ln(1− z)
1− z

)
+

]
, (3.47)

ĤU
g→q(z, pT R, µ) = αs

2π

[(
L − 2 ln(1− z)

)
Pqg(z)− 2TF z(1− z)

]
, (3.48)

where the leading splitting kernels are given by:

Pqq(z) = CF

[
1 + z2

(1− z)+
+ 3

2δ(1− z)
]

, (3.49)

Pgq(z) = CF
1 + (1− z)2

z
, (3.50)

Pqg(z) = TF

[
z2 + (1− z)2

]
, (3.51)

Pgg(z) = 2CA

[
z

(1− z)+
+ 1− z

z
+ z(1− z)

]
+ β0

2 δ(1− z) . (3.52)

The hard matching functions for the longitudinally polarized parton case are given here
for the first time:

ĤL
q→q′(z, pT R, µ) = δqq′δ(1− z) + δqq′

αs

2π

[
CF δ(1− z)

(
−L2

2 − 3
2L + π2

12

)

+∆Pqq(z)L − 2CF (1 + z2)
( ln(1− z)

1− z

)
+
− CF (1− z)

]
, (3.53)

ĤL
q→g(z, pT R, µ) = αs

2π

[(
L − 2 ln(1− z)

)
∆Pgq(z) + 2CF (1− z)

]
, (3.54)

ĤL
g→g(z, pT R, µ) = δ(1− z) + αs

2π

[
δ(1− z)

(
−CA

L2

2 − β0
2 L + CA

π2

12

)

+∆Pgg(z)L + 4CA(1− z)− 4CA(2(1− z)2 + z)
( ln(1− z)

1− z

)
+

]
, (3.55)

ĤL
g→q(z, pT R, µ) = αs

2π

[(
L − 2 ln(1− z)

)
∆Pqg(z)− 2TF (1− z)

]
. (3.56)

Finally, for the transversely polarized case, we only have contributions from the q → q channel,
for the same reason mentioned before, i.e. gluon transversity FF does not exist for spin-1/2
hadron. The transversely polarized hard matching function is then given by

ĤT
q→q′(z, pT R, µ) = δqq′δ(1− z) + δqq′

αs

2π

{
∆T Pqq(z)L + CF

[
− 4z

( ln(1− z)
1− z

)
+

+
(
−3
2L − L2

2 + π2

12

)
δ(1− z)

]}
. (3.57)

Note that the leading order splitting kernels for the polarized cases are given in
eqs. (2.28)–(2.32).
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The hard matching functions ĤU,L,T
i→j (z, pT R, µ) follow the RG equations below:

µ
d
dµ

ĤU
i→j(z, pT R, µ) =

∑
k

∫ 1

z

dz′

z′
γU

ik

(
z

z′
, pT R, µ

)
ĤU

k→j

(
z′, pT R, µ

)
, (3.58)

µ
d
dµ

ĤL
i→j(z, pT R, µ) =

∑
k

∫ 1

z

dz′

z′
γL

ik

(
z

z′
, pT R, µ

)
ĤL

k→j

(
z′, pT R, µ

)
, (3.59)

µ
d
dµ

ĤT
q→q′(z, pT R, µ) =

∫ 1

z

dz′

z′
γT

qq

(
z

z′
, pT R, µ

)
ĤT

q→q′
(
z′, pT R, µ

)
, (3.60)

where indices i, j and k all represent partons q or g. The anomalous dimensions γU
ij (z, pT R, µ)

for the unpolarized hard matching functions are given by:

γU
qq(z, pT R, µ) = αs

π

(
Pqq(z)− CF Lδ(1− z)− 3CF

2 δ(1− z)
)

, (3.61)

γU
qg(z, pT R, µ) = αs

π
Pgq(z) , (3.62)

γU
gg(z, pT R, µ) = αs

π

(
Pgg(z)− CALδ(1− z)− β0

2 δ(1− z)
)

, (3.63)

γU
gq(z, pT R, µ) = αs

π
Pqg(z) . (3.64)

On the other hand, the anomalous dimensions for the polarized cases, γ
L(T )
ij (z, pT R, µ) are

given by:

γL
qq(z, pT R, µ) = αs

π

(
∆Pqq(z)− CF Lδ(1− z)− 3CF

2 δ(1− z)
)

, (3.65)

γL
qg(z, pT R, µ) = αs

π
∆Pgq(z) , (3.66)

γL
gg(z, pT R, µ) = αs

π

(
∆Pgg(z)− CALδ(1− z)− β0

2 δ(1− z)
)

, (3.67)

γL
gq(z, pT R, µ) = αs

π
∆Pqg(z) , (3.68)

γT
qq(z, pT R, µ) = αs

π

(
∆T Pqq(z)− CF Lδ(1− z)− 3CF

2 δ(1− z)
)

. (3.69)

Obviously, the natural scale for the hard matching functions is µ ∼ pT R as indicated in the
logarithm L in the perturbative results. Therefore, we can resum the large logarithms of
jet radius lnR by evolving the hard matching functions from scale µ ∼ pT R to the hard
scattering scale µ ∼ pT with the RG equations. We notice that similar to the unpolarized
case studied in [23]:

γU
ij (z, pT R, µ) = δijδ(1− z)Γi(pT R, µ) + αs

π
Pji(z) , (3.70)

where Γi are given by:

Γq(pT R, µ) = αs

π
CF

(
−L − 3

2

)
, Γg(pT R, µ) = αs

π
CA

(
−L − β0

2CA

)
. (3.71)

Following the same exercise, we can express the anomalous dimensions γ
L(T )
ij (z, pT R, µ) in

eqs. (3.65)–(3.69) into a general form:

γ
L(T )
ij (z, pT R, µ) = δijδ(1− z)Γi(pT R, µ) + αs

π
∆(T )Pji(z) , (3.72)

where the functions Γi(pT R, µ) in the first term are independent of polarization and are
therefore the same as the unpolarized Γi in eq. (3.71).
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3.2 TMD FJFs in exclusive jet production

For the exclusive jet production, exclusive TMD FJFs D̃
h/i
1 (zh, j⊥, pT R, µ, ζJ) arises in

the factorization formalism. Since one cannot have out-of-jet hard radiation as explained
in section 2.2, the factorization formalism in the j⊥ ≪ pT R region would be given by

D̃
h/i
1 (zh,j⊥,pT R,µ,ζJ)=

∫
d2k⊥d2λ⊥ δ2(zhλ⊥+k⊥−j⊥)D

h/i(u)
1

(
zh,k⊥,µ,ζ/ν2)Si(λ⊥,µ,νR/2)

=
∫ d2b

(2π)2 eij⊥·b/zhD̃
h/i
1 (zh,b,µ,ζJ) , (3.73)

where we have used eq. (3.27). Again for exclusive jet production, we no longer have the
dependence on z as in the semi-inclusive TMD FJFs. Following the same procedure as before,
we can generalize this to the polarized exclusive TMD FJFs. With the operator C defined
in eq. (3.35), the unpolarized exclusive TMD FJFs are given by:

D̃
h/i
1 (zh, pT R, j⊥, µ, ζJ) = C

[
D̃

h/i
1

]
. (3.74)

Similarly for exclusive TMD FJFs with different polarizations, we have:

D̃
⊥,h/i
1T (zh, j⊥, pT R, µ, ζJ) = C

[
D̃
⊥,h/i,(1)
1T

]
, (3.75)

G̃
h/i
1L (zh, j⊥, pT R, µ, ζJ) = C

[
G̃

h/i
1L

]
, (3.76)

G̃
⊥,h/i
1T (zh, j⊥, pT R, µ, ζJ) = C

[
G̃
⊥,h/i,(1)
1T

]
, (3.77)

H̃
h/i
1 (zh, j⊥, pT R, µ, ζJ) = C

[
H̃

h/i
1

]
, (3.78)

H̃
⊥,h/i
1 (zh, j⊥, pT R, µ, ζJ) = C

[
H̃
⊥,h/i,(1)
1

]
, (3.79)

H̃
⊥,h/i
1L (zh, j⊥, pT R, µ, ζJ) = C

[
H̃
⊥,h/i,(1)
1L

]
, (3.80)

H̃
⊥,h/i
1T (zh, j⊥, pT R, µ, ζJ) = C

[
H̃
⊥,h/i,(2)
1T

]
. (3.81)

4 Phenomenology

There has been growing phenomenological work for studying hadron distribution inside
the jet, in particular in connection with the 3D imaging of the hadrons. For example,
for single inclusive jet production in proton-proton collisions as well as electron-proton
scatterings, unpolarized and polarized collinear hadron distribution inside the jet have
been studied [21, 25, 34, 43]. The TMD distribution of hadrons inside the jet produced in
transversely polarized proton-proton collisions is sensitive to the Collins TMD FFs and has
been studied in [90]. For exclusive jet production, such as back-to-back Z+jet production
in proton-proton collisions and back-to-back lepton+jet production in DIS, TMD hadron
distribution inside jets has been studied [27, 41, 42, 91, 92].

Before we present the phenomenology, we first provide more details on TMD FFs. In
previous sections, we have discussed the evolution of FJFs in the perturbative region, i.e.,
1/b ≫ ΛQCD. However, to do calculations for phenomenology, we must take care of the
non-perturbative evolution of TMDs at the large-b region. In order to do this, we adopt the
b∗-prescription [93]. Alternative approaches can be found in [94–98]. The b∗ is defined as:

b∗ ≡
b√

1 + b2/b2max
, (4.1)
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where we choose bmax = 1.5 GeV−1. With this definition, the magnitude of b∗ approaches b

when b ≪ bmax, and approaches bmax in the large-b region. For the perturbative contribution,
we work at the NLL order, where we keep Γi

0,1 and γi
0 in eqs. (3.31) and (3.34). For the non-

perturbative contribution, we include the following non-perturbative Sudakov factor [99, 100]:

Sq
NP(b, Q0,

√
ζJ) =

g2
2 ln

(
b

b∗

)
ln
(√

ζJ

Q0

)
+ gh

z2h
b2 , (4.2)

where Q2
0 = 2.4 GeV2, g2 = 0.84 and gh = 0.042, and

√
ζJ = pT R following eq. (3.28). For

gluon TMD FFs, we use [23]

Sg
NP(b, Q0,

√
ζJ) =

CA

CF

g2
2 ln

(
b

b∗

)
ln
(√

ζJ

Q0

)
+ gh

z2h
b2 . (4.3)

Now that we have properly addressed the non-perturbative evolution, we can proceed with
predicting relevant observables. In this section, we provide two additional phenomenological
examples. For the case of single inclusive jet production, we compute the transverse momentum
distribution for hadrons inside the jet at RHIC kinematics, where a transversely polarized
proton collides with an unpolarized proton, producing a jet with a transversely polarized
Λ-baryon inside. This process will be sensitive to both transversity distributions h1 and
transversity TMD FJFs H1. For the exclusive jet production, we study back-to-back lepton
jet production in lepton-proton collisions, where the incoming proton is transversely polarized
and the final hadron inside the jet is longitudinally polarized. This observable is sensitive to
the “worm-gear” TMD PDFs g1T and longitudinally polarized TMD FJFs G1L.

4.1 Transverse spin transfer to Λ in jet in polarized pp collisions

For semi-inclusive process, we consider the pp collision in its center-of-mass frame:

p(PA, SA) + p(PB) → [jet(pJ)h(zh, j⊥, Sh)] + X , (4.4)

where PA and PB are the momenta of the incident protons, SA is the polarization of the
proton A. They are defined as:

PA =
√

s

2 (1, 0, 0, 1), PB =
√

s

2 (1, 0, 0,−1) , (4.5)

SA =
[
−λA

MA

p−A
, λA

p−A
MA

, ST

]
, (4.6)

where s is the squared proton center of mass energy. Notice that SA is written in light-cone
coordinate defined in eq. (2.3), and λA is the helicity of the incoming proton with mass MA,
p−A is the large light-cone momentum of the proton A, ϕS is the azimuthal angle between the
transverse spin ST of the initial proton and the reaction plane, with the reaction plane defined
by the incoming beam direction and jet axis direction (painted yellow in figure 5). For the jet
production, pJ is the jet momentum, with pT being the magnitude of its transverse component:

pJ = (pT cosh η, pT , 0, pT sinh η) . (4.7)

– 24 –



J
H
E
P
0
3
(
2
0
2
4
)
1
4
2

x

y
z

pA

pB

ST
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h
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Figure 5. Illustration for the distribution of hadrons inside jets in the collisions of a polarized proton
and an unpolarized proton or lepton. The reaction plane is painted yellow. For detailed illustration of
jet cone and hadron kinematics, please see figure 3.

Note here the y-component of pJ is zero because we put the jet within the reaction plane
(xz-plane). The hadron inside the jet has a transverse momentum j⊥ with respect to the jet
axis, and collinear momentum fraction zh of the jet momentum. Together with the hadron’s
transverse spin Sh⊥, they are given by:

j⊥ = |j⊥|
(
cos ϕ̂h cos θJ , sin ϕ̂h,− cos ϕ̂h sin θJ

)
, (4.8)

Sh⊥ = |Sh⊥|
(
cos ϕ̂Sh

cos θJ , sin ϕ̂Sh
,− cos ϕ̂Sh

sin θJ

)
, (4.9)

where θJ is the angle between jet axis and z-axis, ϕ̂h is the azimuthal angle between the
momentum ph of the produced hadron and the reaction plane, and ϕ̂Sh

is the azimuthal angle
between the transverse spin Sh⊥ and the reaction plane. The “hat” that decorates ϕ̂h and
ϕ̂Sh

indicates that these angles are measured in the jet coordinates.
For single inclusive jet production, the most general azimuthal dependence4 for the

hadron zh and j⊥ distributions inside the jet is given by [34]:

dσp(SA)+p→jeth(Sh)+X

dηd2pT dzhd2j⊥
=FUU,U +|ST |sin

(
ϕS−ϕ̂h

)
F

sin(ϕS−ϕ̂h)
T U,U

+λh

[
λAFLU,L+|ST |cos

(
ϕS−ϕ̂h

)
F

cos(ϕS−ϕ̂h)
T U,L

]
+|ShT

|
[
sin
(
ϕ̂h−ϕ̂Sh

)
F

sin(ϕ̂h−ϕ̂Sh)
UU,T +λA cos

(
ϕ̂h−ϕ̂Sh

)
F

cos(ϕ̂h−ϕ̂Sh)
LU,T

+|ST |
(
cos
(
ϕS−ϕ̂Sh

)
F

cos(ϕS−ϕ̂Sh)
T U,T

+cos
(
2ϕ̂h−ϕS−ϕ̂Sh

)
F

cos(2ϕ̂h−ϕS−ϕ̂Sh)
T U,T

)]
, (4.10)

4Here we consider the situation where only one of the incoming hadrons could be polarized and the
final-state hadron can be polarized.
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where FAB,C denotes the spin-dependent structure functions, with A, B and C indicating
the polarization of incoming proton A, incoming proton B (or electron), and the fragmented
hadron inside the jet. λA and |S⊥| are the longitudinal and transverse spin of the initial
polarized proton A, while λh and |ShT

| are the longitudinal and transverse polarization of
the hadron inside jet measured in the fragmenting parton helicity frame.

The structure function FUU,U (zh, j⊥) is defined by:

FUU,U (zh, j⊥) =
α2

s

s

∑
a,b,c

∫ 1

xmin
1

dx1
x1

f
a/A
1 (x1, µ)

∫ 1

xmin
2

dx2
x2

f
b/B
2 (x2, µ)

×
∫ 1

zmin

dz

z2
σ̂c

ab(ŝ, p̂T , η̂, µ)Dh/c
1 (z, zh, j⊥, pT R, µ, ζJ)

≡ C[ffD1σ̂] , (4.11)

where f
a/A
1 (x1, µ) and f

b/B
2 (x2, µ) are the collinear unpolarized PDFs in the proton with

corresponding momentum fractions x1 and x2, and σ̂c
ab is the hard function for unpolarized

parton a, b to unpolarized parton c. On the other hand, Dh/c
1 (z, zh, j⊥, pT R, µ, ζJ) are the

unpolarized TMD FJFs in eq. (3.12) and we have studied extensively in the previous section.
The lower integration limits xmin

1 , xmin
2 and zmin can be found in [21, 25]. The variables ŝ,

p̂T and η̂ are the squared parton center of mass energy, transverse momentum and rapidity
of parton c, respectively, and are related to their hadron analogues as:

ŝ = x1x2s , p̂T = pT /z , η̂ = η − 1
2 ln

(
x1
x2

)
. (4.12)

In eq. (4.11), we also defined the notation C[ffD1σ̂], where parton flavors are summed
for PDFs and FJFs along with their corresponding unpolarized hard functions. Using this
notation, we can write down the expressions for all the polarized structure functions:

F
sin(ϕS−ϕ̂h)
T U,U (zh, j⊥) = C

[
j⊥

zhMh
h1f1H⊥1 ∆T σ̂

]
, (4.13)

FLU,L(zh, j⊥) = C
[
g1Lf1G1L∆σ̂

]
, (4.14)

F
cos(ϕS−ϕ̂h)
T U,L (zh, j⊥) = −C

[
j⊥

zhMh
h1f1H⊥1L∆T σ̂

]
, (4.15)

F
sin(ϕ̂h−ϕ̂Sh)
UU,T (zh, j⊥) = −C

[
j⊥

zhMh
f1f1D⊥1T σ̂

]
, (4.16)

F
cos(ϕ̂h−ϕ̂Sh)
LU,T (zh, j⊥) = −C

[
j⊥

zhMh
g1Lf1G1T∆σ̂

]
, (4.17)

F
cos(ϕS−ϕ̂Sh)
T U,T (zh, j⊥) = C

[
h1f1H1∆T σ̂

]
, (4.18)

F
cos(2ϕ̂h−ϕS−ϕ̂Sh)
T U,T (zh, j⊥) = −C

[
j2⊥

2z2hM2
h

h1f1H⊥1T∆T σ̂

]
. (4.19)

The corresponding polarizations for hard functions σ̂c
ab, ∆σ̂c

ab and ∆T σ̂c
ab are given in table 2.

The expressions for FUU,U and F
sin(ϕ̂h−ϕ̂Sh)
UU,T were given in the previous publication [34]

while [90] performed a phenomenological study for F
sin(ϕS−ϕ̂h)
T U,U , that is related to the Collins
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c

a U L T

U σ̂c
ab

L ∆σ̂c
ab

T ∆T σ̂c
ab

Table 2. Hard functions for parton a, b to parton c. The header row represents the polarization
of the parton a while the header column indicates the polarizations of the parton c. Parton b is
always unpolarized.

TMD FFs. The detailed expressions for all the other structure functions are written down
here for the first time.

Relevant measurements have been performed for the π±-in-jet production in the case of
Collins FFs [101]. More relevantly, a measurement of transverse spin transfer to Λ/Λ hyperons
in polarized pp collisions (no jet is involved) was performed by the STAR collaboration at
RHIC [102]. This suggests that measuring the transverse polarization of Λ/Λ hyperons inside
the jet in transversely polarized pp collisions could be achieved at RHIC. This process would
correspond to the structure function F

cos(ϕS−ϕ̂Sh)
T U,T , which is sensitive to both transversity

PDFs h1 and transversity TMD FJFs Hh/q
1 . Below, we focus on this structure function and

define the following spin asymmetry for Λ-in-jet productions:

A
cos(ϕS−ϕ̂Sh)
T U,T ≡ F

cos(ϕS−ϕ̂Sh)
T U,T

/
FUU,U . (4.20)

In order to compute F
cos(ϕ̂h−ϕ̂Sh)
T U,T , we will need to parameterize the collinear transversity

PDF h1(x, µ), which appears in the initial state of F
cos(ϕS−ϕ̂Sh)
T U,T in eq. (4.18). For this, we

follow the parameterization in [103] and write the quark transversity as:

hq
1(x, Q0) = Nh

q xaq(1− x)bq
(aq + bq)aq+bq

a
aq
q b

bq
q

1
2(f

q
1 (x, Q0) + gq

1(x, Q0)) , (4.21)

at initial scale Q0 = 1.27 GeV, for up and down quarks q = u and d only. The f q
1 and gq

1
are the collinear unpolarized and helicity parton distributions respectively, for which we
use the parameters from [104]. Lastly, in the generation of TMD FFs grids, we also need
the transversity FFs. In this work we use the parameterization from [42], which assumes
a simple normalization of the collinear unpolarized FFs:

HΛ/q(z, Q) = NH
q DΛ/q(z, Q) . (4.22)

Here HΛ/q and DΛ/q are the transversity and unpolarized FFs of the Λ baryon, and NH
q is

the fitted parameter. We also follow the assumptions made in [42, 105] and demand:

DΛ/q = DΛ/q = 1
2DΛ/Λ←q , (4.23)

as for the unpolarized Λ baryon FFs that appear in the denominator of A
cos(ϕS−ϕ̂Sh)
T U,T , we

use the AKK parametrization [106]. For both the transversity PDFs and transversity FFs,
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Figure 6. Hadron j⊥-distribution within jets in pp collisions at
√

s = 200 GeV. Jets are detected in
the rapidity interval η ∈ (0, 0.9) (i.e., the jet is scattered forward relative to the polarized beam), and
are reconstructed using the anti-kT algorithm with R = 0.6. We vary the jet transverse momentum
from 5 to 15 GeV, and choose average zh at 0.2 (top row) and 0.4 (bottom row), which is within the
typical kinematic region according to [101]. The blue band is obtained by varying the parameters for
transversity PDFs and transversity FFs within their fitted uncertainties. While the yellow band is
obtained by keeping the fitted parameters of transversity FFs fixed at their central values and varying
only the parameters of transversity PDFs. The red lines show the theory obtained from the central of
the fitted parameters.

we also vary their fitted parameters according to the extracted uncertainties, weighted by
Gaussian random number with a mean of 0 and variance of 1.

Using the above setup, we now present the first prediction for the spin asymmetry
A

cos(ϕS−ϕ̂Sh)
T U,T . We choose the jet kinematics consistent with the available data from STAR [101],

with the center of mass energy at
√

s = 200 GeV, rapidity ranges η ∈ (0, 0.9) and η ∈ (−0.9, 0).
The jets are reconstructed using the anti-kT algorithm with radius R = 0.6. The numerical
implementation is very similar to that used in the longitudinal momentum distribution of
hadrons inside jets [21], with the numerical DGLAP evolution tool developed in Pegasus [107].
The RG evolution of the various parts of the cross sections is performed as outlined in [23].

In figure 6, the prediction to A
cos(ϕS−ϕ̂Sh)
T U,T for the jet(Λ) production at RHIC kinematics

is presented. The blue band is obtained by varying the fitted parameters of both transversity
PDFs and transversity FFs, while the yellow band is obtained by varying the parameters of
transversity PDFs only (with parameters for transversity FFs fixed at central values). We can
therefore deduce that the uncertainty of theoretical prediction for the observable A

cos(ϕS−ϕ̂Sh)
T U,T

comes largely from the transversity FFs, i.e., variation of NH
q in eq. (4.22). Given the

large uncertainty resulting from the currently available extraction of the transversity FFs
for Λ baryon, this observable, when measured in the future, can be used to constrain the
uncertainty on the Λ transversity FFs. In figure 7, the same predictions are presented but
with a negative rapidity range. Similar patterns occur as in figure 6, but with a much smaller
magnitude, indicating a much smaller probability of producing polarized final particles in
the opposite direction of the polarized beam.

– 28 –



J
H
E
P
0
3
(
2
0
2
4
)
1
4
2

0.2 0.3 0.4 0.5
−0.1%

0%

0.1%

0.2%

0.3%

A
co

s (
φ
S
−
φ̂
S
h
)

T
U
,T

p↑p→ jet(Λ↑)√
s = 200 GeV, η ∈ (−0.9, 0)

zh = 0.2

pT = 5 GeV

0.2 0.4 0.6 0.8 1.0

pT = 10 GeV

0.2 0.4 0.6 0.8 1.0 1.2

pT = 15 GeV

0.3 0.4 0.5 0.6
j⊥ (GeV)

−0.1%

0%

0.1%

0.2%

0.3%

A
co

s (
φ
S
−
φ̂
S
h
)

T
U
,T

p↑p→ jet(Λ↑)√
s = 200 GeV, η ∈ (−0.9, 0)

zh = 0.4

pT = 5 GeV

0.4 0.6 0.8 1.0 1.2
j⊥ (GeV)

pT = 10 GeV

0.4 0.6 0.8 1.0 1.2
j⊥ (GeV)

pT = 15 GeV

Figure 7. Same plot as figure 6, but with jet scattered backward relative to the polarized beam.

Overall, in proton-proton collisions for Λ-in-jet production, where one of the proton
beams is transversely polarized, and the resulting Lambda particles in the jet also exhibit
transverse polarization, a distinct observation emerges. Specifically, in the forward region
(positive rapidity), a moderate spin asymmetry A

cos(ϕS−ϕ̂Sh)
T U,T ∼ 1.5% can be observed at RHIC

kinematics, while in the backward region (negative rapidity), the spin asymmetry A
cos(ϕS−ϕ̂Sh)
T U,T

appears to be very small. This is largely due to the probing x range for the transversity PDF
h1(x, µ): in the forward rapidity region x ∼ 0.2 at pT ∼ 15GeV where h1(x, µ) is sizable [103];
in the backward rapidity region x ∼ 0.05 for pT ∼ 15GeV where h1(x, µ) is very small.

4.2 Back-to-back electron-jet production with longitudinally polarized Λ in jet

For exclusive jet production, we choose to study back-to-back electron-jet production in
deep inelastic ep scattering:

e(ℓ, λe) + p(P, S) → e
(
ℓ′
)
+ [jet(pJ)h(zh, j⊥, Sh)] + X , (4.24)

where ℓ and ℓ′ are the momenta of the incident and scattered lepton respectively. The incident
electron could carry a helicity λe and the scattered lepton is assumed to be unpolarized
but with a transverse momentum ℓ′T . Here we use P and S to represent the momentum
and polarization of the incoming proton, and the jet has a momentum pJ with transverse
component pT . The hadron inside the jet has a transverse momentum j⊥ with respect to
the jet axis and collinear momentum fraction zh of the jet, as well as a polarization Sh with
respect to the jet axis. The kinematics is shown in figure 8. In the back-to-back region where
|qT | ≪ |pT | with the transverse momentum imbalance qT ≡ ℓ′T + pT , TMD factorization
formalism for the full differential cross section has been given in the previous publication [41],
where various structure functions were defined and studied. For example, the structure
function F

cos(ϕq−ϕ̂h)
UU,U for π±-in-jet production is sensitive to Boer-Mulder function and Collins

function, while F
cos(ϕ̂h−ϕ̂Sh)
UU,T from Λ-in-jet production has the sensitivity to the polarizing
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Figure 8. Illustration for the distribution of hadrons inside jets in the collisions of a polarized proton
and an unpolarized lepton. For a detailed illustration of jet and hadron kinematics, please see figure 3.

TMD FFs D⊥1T . At the same time, in [92], the structure function F
sin(ϕS−ϕ̂h)

T U,U is computed
for π+/−-in-jet production, and is found to be able to further constrain the Collins FFs.

In this section, we studied yet another observable — the spin asymmetry A
cos(ϕq−ϕS)
T U,L

defined as

A
cos(ϕq−ϕS)
T U,L ≡

F
cos(ϕq−ϕS)
T U,L

FUU,U
, (4.25)

where the structure F
cos(ϕq−ϕS)
T U,L in the numerator denotes the spin-dependent structure

functions, with T , U and L being the polarization of incoming proton, incoming electron,
and the final-state hadron inside the jet, respectively. Here, ϕS is the angle between the
transverse spin of the incoming proton ST and the x-axis, while ϕq is the azimuthal angle
between the transverse momentum imbalance qT and the x-axis, see figure 8. Following [41],
this structure function can be factorized as follows:

F
cos(ϕq−ϕS)
T U,L (zh, j⊥)= σ̂0H(Q,µ)

∑
q

e2qG
h/q
1L (zh,j⊥,pT R,µ,ζJ)

×
∫

b2db

2π
J1(qT b)xM g̃

(1)q
1T (x,b,µ,ζ)Sglobal

(
b2,µ

)
Scs
(
b2,R,µ

)
,

(4.26)

where the global soft function Sglobal and the collinear-soft function Scs are given in [41].
The bar in Sglobal/cs indicates that their dependence on azimuthal angle is averaged. σ̂0 is
the partonic cross section of electron-quark scattering:

σ̂0 =
αemαs

ŝQ2
2
(
û2 + ŝ2

)
t̂2

, (4.27)

with the Mandelstam variables ŝ ≡ (xP + ℓ)2, t̂ ≡ (ℓ − ℓ′)2 and û ≡ (xP − ℓ′)2, where x is
the fraction of collinear momentum carried by the parton inside the incoming proton. The
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electromagnetic and strong coupling constants are denoted as αem and αs, and the virtuality
of the exchanged photon is defined as Q2 ≡ −(ℓ − ℓ′)2 = −t̂.

It is evident from eq. (4.26) that this spin asymmetry A
cos(ϕq−ϕS)
T U,L has sensitivity on both

“worm-gear” TMD PDFs g̃q
1T (x, b, µ, ζ), as well as the longitudinally polarized exclusive TMD

FJFs G1L(zh, j⊥, pT R, µ, ζJ) in eq. (3.76), which is connected to the helicity TMD FFs G
h/q
1L .

The observable describes the following scattering process: a longitudinally polarized quark
inside the transversely polarized proton (as denoted by the TMD PDFs gq

1T ) scatters with
an unpolarized electron and then initiates a jet in which a longitudinally polarized hadron
is observed. To generate a prediction, for the first moment of “worm-gear” distribution
g̃
(1)q
1T , we adopt its parameterization in k⊥-space from [108], and Fourier transform it to

the conjugate b-space:

g̃
(1)q
1T (x,b,µ,ζ)= 2π

M2

∫
dk⊥

k2
⊥
b

J1(k⊥b)gq
1T (x,k2

⊥)= g
(1)q
1T (x)exp

(
−1
4b2⟨k2

⊥⟩
∣∣
gq

1T

)
, (4.28)

where M ≈ 938.272 MeV is the proton mass and g
(1)q
1T (x) is the collinear function that is

parameterized at Q0 = 2 GeV [108]. Note that this is a simple parton model extraction
without TMD evolution, we thus also do not take into account TMD evolution for g̃q

1T . Since
CT10 PDFs [109] are used in the extraction of g̃q

1T , we will use them in the computation
of FUU,U as well. For the final-state hadron, we observe the longitudinally polarized Λ/Λ
production. The corresponding helicity TMD FFs is given by

G̃
Λ/q
1L (zh,b,µ,ζJ)=G

Λ/q
1L (zh,µb∗)exp

[∫ µ

µb∗

dµ′

µ′
γi

µ[αs(µ), ζJ/µ2]
]
exp

[
−Sq

NP

(
b,Q0,

√
ζJ

)]
(4.29)

where we use the TMD evolution in eq. (3.34) and we assume the non-perturbative Sudakov
is the same as the unpolarized case in eq. (4.2) [110]. For the collinear helicity FFs for Λ/Λ,
we take the parameterizations from [111], in which three scenarios are provided, each with a
different assumption for the source of contribution to Λ longitudinal polarization. Specifically,

• Scenario 1: only polarized s quark contributes;

• Scenario 2: u and d quarks have equal contributions, while the distribution of s quark
has an opposite sign relative to u and d quarks; u and d helicity FFs are negative

• Scenario 3: u, d, and s quarks have the same distribution functions, which are all positive.

With the above setup, we are able to make predictions for the exclusive process ep →
e + jet

(
Λ/Λ

)
+ X, in which we measure the longitudinal polarization of the final state Λ/Λ

inside the jet. In figure 9, we plot the spin asymmetry A
cos(ϕq−ϕS)
T U,L defined in eq. (4.25) with

EIC kinematics, where
√

s = 105 GeV, jet transverse momentum pT ∈ (10, 15) GeV, and
jet radius parameter R = 0.6. We also introduce the quantity event inelasticity y = 1 −
ℓ′

T√
s
e−ye ∈ (0.1, 0.9), where ℓ′T and ye are the measured transverse momentum and rapidity

of the scattered electron. Constraining the event inelasticity ensures that our calculation
stays in the region with reasonable resolution on x and Q2, as well as avoiding the phase
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Figure 9. Longitudinally polarized hadron j⊥-distribution (left) and qT -distribution (right) within
jets in ep collisions at

√
s = 105 GeV. The event inelasticity y is constrained within (0.1, 0.9).

Jets are detected with transverse momentum pT ∈ (10, 15) GeV, and are reconstructed using the
anti-kT algorithm with R = 0.6. For the j⊥-distribution, qT is chosen to be 0.5 GeV, while for the
qT -distribution, j⊥ is chosen to be 0.5 GeV. The uncertainty band is obtained by computing the 1-σ
band of the fitted parameters for the “worm-gear” PDFs g1T , and the three scenarios for Λ/Λ are
shown by blue (scenario 1), red (scenario 2) and green (scenario 3). We collectively denote Λ/Λ as
Λ. Scenario 1 is consistent with zero because the current extraction of the strange quark worm-gear
function is zero.

where QED radiative corrections are important [92]. On the left panel, we plot A
cos(ϕq−ϕS)
T U,L

as a function of hadron transverse momentum j⊥, while on the right panel, we plot the same
spin asymmetry as a function of the electron-jet transverse momentum imbalance qT . For
the j⊥-distribution (left), qT is chosen to be 0.5 GeV, while for the qT -distribution (right), j⊥
is chosen to be 0.5 GeV. The uncertainty band is obtained by computing the 1-σ band of
the fitted parameters for the “worm-gear” PDFs g1T , and the three scenarios for the helicity
fragmentation functions of Λ/Λ are shown by blue (scenario 1), red (scenario 2) and green
(scenario 3). We collectively denote Λ/Λ as Λ.

As can be inferred from figure 9, the different scenarios for helicity FFs provided in [111]
can result in drastically different values in A

cos(ϕq−ϕS)
T U,L . Notably, Scenario 1 is consistent with

zero because only the s quark helicity FFs contribute in this scenario. However, the current
extraction of the “worm-gear” function g

(1)q
1T (x) of the incident proton receives contributions

solely from u and d quarks, and the s quark worm-gear function vanish [108]. As for Scenarios
2 and 3, distinct measurable asymmetries emerge with different signs, simply because in
Scenario 2, both u and d helicity FFs are both negative, while they are positive in Scenario
3. This observable thus enables the discrimination of previously indistinguishable helicity
fragmentation functions for Λ/Λ from different quark flavors.

5 Conclusion

The study of fragmenting jet functions (FJFs) has become a topic of paramount importance
in high-energy physics, particularly at the LHC and RHIC, where measurements have been
made for a broad range of identified particles within jets. These studies not only provide
crucial information at the LHC and RHIC, but also hold the potential to yield novel insights
at the upcoming Electron-Ion Collider (EIC).
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It is thus important to study both longitudinal and transverse momentum distribution
of hadrons inside the jet, which are characterized by the so-called semi-inclusive fragmenting
jet functions and exclusive fragmenting jet functions. They are critical ingredients in the
factorization theorems. The semi-inclusive fragmenting jet functions arise in the situation e.g.
where single inclusive jet production in proton-proton or electron-proton collisions, while the
exclusive fragmenting jet functions appear in the situation e.g. where back-to-back electron-jet
production in electron-proton collisions. There have been partial results available in previous
publications, but never the complete full results, which we set up to do in this paper. In
this work, we have studied the hadron longitudinal momentum fraction zh distribution, as
well as the hadron transverse momentum j⊥ distribution within jets, for both semi-inclusive
and exclusive fragmenting jet functions. We set up factorization formalism within SCET
framework that allows for the systematic determination of these distributions. We first
calculated all the components of the factorization theorem up to NLO, then we resummed
all the associated large logarithms lnR and ln(pT R/j⊥).

In the phenomenology for semi-inclusive process, we study the transverse polarization of
Lambda hyperons inside the jet produced in transversely polarized proton-proton collisions,
which is sensitive to the elusive TMD transversity fragmentation functions. Our numerical
estimate shows that this observable is promising at the RHIC. For the exclusive jet production
process, we study the longitudinal polarization of Lambda hyperon inside the jet, in the back-
to-back electron-jet production in electron-proton collisions where the proton is transversely
polarized. We find that this observable is sensitive to the “worm-gear” TMD PDF g1T and the
TMD helicity fragmentation functions and its measurement is promising at the future EIC.
With the various applications for probing the 3D QCD structures, the future for fragmenting
jet observables is promising with all the planned measurements at the RHIC and the EIC.
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A Perturbative NLO semi-inclusive FJFs

As defined in section 2.1.1, we have the leading order and one-loop bare semi-inclusive FJFs
for longitudinally and transversely polarized quarks and gluons. To get the final expression
as given in eqs. (2.22)–(2.25) and (2.27), we first perform the q⊥ integral:∫ dq2⊥(

q2⊥
)1+ϵΘ

anti-kT
both (q⊥) =

−1
ϵ

(
ω2

J tan2
(R
2

))−ϵ

z−2ϵ
h (1− zh)−2ϵ , (A.1)

∫ dq2⊥(
q2⊥
)1+ϵΘ

anti-kT
j (q⊥) =

1
ϵ

(
ω2

J tan2
(R
2

))−ϵ

(1− z)−2ϵ , (A.2)
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then apply the following expansions as ϵ → 0:

1
(1− z)1+2ϵ = −1

2ϵ
δ(1− z) + 1

(1− z)+
− 2ϵ

( ln(1− z)
(1− z)

)
+
+O

(
ϵ2
)

, (A.3)

1
z2ϵ

= 1− 2ϵ ln(z) +O
(
ϵ2
)

, (A.4) eγE µ2

ω2
J tan2

(
R
2

)
ϵ

1
Γ(1− ϵ) = 1 + Lϵ + 1

12
(
6L2 − π2

)
ϵ2 +O

(
ϵ3
)

, (A.5)

where L ≡ ln

 µ2

ω2
J tan2

(
R
2

)
 = ln

(
µ2

(pT R)2

)
.

B Calculation of collinear exclusive FJFs

In this section, we provide the derivation for the matching coefficients ∆(T )Jij of the
exclusive fragmenting jet functions ∆(T )G

h
i (zh, pT R, µ) to the collinear fragmentation function

∆(T )D
h
i (zh, µ) for anti-kT jets. The unpolarized results were first written down in the appendix

of [72]. We start by specifying the phase space constraint from the jet algorithm, which
was nicely outlined in [64]. Consider a parton splitting process, i(ℓ) → j(q) + k(ℓ − q),
where an incoming parton i with momentum ℓ splits into a parton j with momentum q

and a parton k with momentum ℓ − q. The four-vector ℓµ can be decomposed in light-cone
coordinates as ℓµ =

(
ℓ+, ℓ− = ω, 0⊥

)
where ℓ± = ℓ0∓ ℓz. The constraint for anti-kT algorithm

with radius R is given by:

Θanti-kT = θ

(
tan2

(R
2

)
− q+ω2

q−(ω − ℓ−)2

)
. (B.1)

For fragmenting jet functions, the above constraint leads to a constraint on the jet invariant
mass m2

J = ωℓ+ [74], which is derived and listed as follows:

δanti-kT
= θ

(
zh(1− zh)ω2 tan2

(R
2

)
− m2

J

)
θ
(
m2

J

)
, (B.2)

where zh = ωh/ωJ = ωh/ω, ωh is the large light-cone momentum of the final hadron, and
ω = ωJ since both partons are in the jet (see figure 2 (A)).

The exclusive FJFs ∆(T )G
h
i (zh, pT R, µ) can be matched onto corresponding fragmentation

functions ∆(T )D
h
i (zh, µ) as listed in table 3:

∆(T )G
h
i (zh, pT R, µ) =

∑
j

∫ 1

zh

dz′h
z′h

∆(T )Jij(z′h, pT R, µ)∆(T )Dh/j

(
zh

z′h
, µ

)

+O
(

Λ2
QCD

(pT R)2

)
, (B.3)

where ∆(T )Jij are the matching coefficients. The exclusive FJFs ∆(T )G
j
i

(
zh, m2

J , µ
)

with
i, j ∈ {q, g} has been extensively studied in [31, 112]. Using pure dimensional regularization
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Quark polarization

U L T

U G h
q =

L ∆G h
q = −

H
ad

ro
n

po
l.

T ∆T G h
q = −

Table 3. Summary of the exclusive collinear FJFs. The header row represents the polarization
of the quark (indicated by the blue line) that initiates the jet, while the header column indicates
the corresponding polarizations of produced hadrons (indicated by the red arrow from the red dot).
Shown here is for quark FJFs, with U, L, T representing the unpolarized case, and longitudinal and
transverse polarization. For gluon FJFs, one would interpret L, T, as circular and linear polarization.

with 4− 2ϵ dimensions in the MS scheme, the bare results at O(αs) can be written in the
following compact form [33, 112, 113]:

∆(T )G
j
i,bare

(
zh, m2

J

)
= αs

2π

(
eγE µ2)ϵ
Γ(1− ϵ) ∆(T )P̂ji(zh, ϵ)z−ϵ

h (1− zh)−ϵ
(
m2

J

)−1−ϵ
. (B.4)

Generalized from [33], ∆(T )G
j
i,bare

(
zh, m2

J , µ
)

is related to ∆(T )G
h
i,bare(zh, pT R, µ) by:

∆(T )G
h
i,bare(zh, pT R) =

∫
dm2

J ∆(T )G
h
i,bare

(
zh, m2

J

)
δanti-kT

, (B.5)

notice that we reinstated hadronic FJFs. The splitting functions ∆(T )P̂ji(zh, ϵ) are given in
eqs. (2.17)–(2.21). By performing the integration over m2

J with the constraints imposed by the
jet algorithm δanti-kT

, one obtains the bare exclusive FJFs ∆(T )G
j
i,bare(zh, pT R). We present

the results for anti-kT jets here, as their explicit expressions are not available in the literature:

∆G q
q,bare(zh, pT R) = αs

2π

{
CF

( 1
ϵ2

+ 3
2ϵ

+ L

ϵ

)
δ(1− zh)−

1
ϵ
∆Pqq(zh) + CF (1− zh)

+ CF δ(1− zh)
(

L2

2 − π2

12

)
+∆Pqq(zh)(2 ln(zh)− L)

+ 3CF L

2 δ(1− zh) + 2CF

(
1 + z2h

)( ln(1− zh)
1− zh

)
+

}
, (B.6)

∆G g
q,bare(zh, pT R) = αs

2π

{−1
ϵ
∆Pgq(zh) + ∆Pgq(zh)

[
2 ln(zh(1− zh))− L

]
− 2CF (1− zh)

}
,

(B.7)

∆G q
g,bare(zh, pT R) = αs

2π

{−1
ϵ
∆Pqg(zh) + ∆Pqg(zh)

[
2 ln(zh(1− zh))− L

]
+ 2TF (1− zh)

}
,

(B.8)
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∆G g
g,bare(zh, pT R) = αs

2π

{
CA

( 1
ϵ2

+ 1
ϵ

β0
2CA

+ L

ϵ

)
δ(1− zh)−

1
ϵ
∆Pgg(zh)

+ CAδ(1− zh)
(

L2

2 − π2

12

)
+∆Pgg(zh)(2 ln(zh)− L) + β0L

2 δ(1− zh)

− 4CA(1− zh) + 4CA

[
2(1− zh)2 + zh

]( ln(1− zh)
1− zh

)
+

}
, (B.9)

∆T G q
q,bare(zh, pT R) = αs

2π

{
CF

( 1
ϵ2

+ 3
2ϵ

+ L

ϵ

)
δ(1− zh)−

1
ϵ
∆T Pqq(zh)

+ CF δ(1− zh)
(

L2

2 − π2

12

)
+∆T Pqq(zh)(2 ln(zh)− L)

+ 3CF L

2 δ(1− zh) + 4CF zh

( ln(1− zh)
1− zh

)
+

}
, (B.10)

where, as given in the main text, β0 is defined as:

β0 ≡
11
3 CA − 4

3TF nf (B.11)

and ∆(T )Pji(zh) are given in eqs. (2.28)–(2.32). It is instructive to point out that the ϵ poles in
the first term of eqs. (B.6), (B.9) and (B.10) correspond to ultraviolet (UV) divergences, and
they are related to the renormalization of the FJFs ∆(T )G

j
i,bare(zh, pT R). All the remaining

ϵ poles in eqs. (B.6)–(B.10) are infrared (IR) poles, and they match exactly with those in
the fragmentation functions ∆(T )Dj/i(zh, µ), which we will show below. ∆(T )G

h
i,bare(zh, pT R)

is renormalized by:

∆(T )G
h
i,bare(zh, pT R) = Z i

G (µ)∆(T )G
h
i (zh, pT R, µ) , (B.12)

where i is not summed over in the above equation. The corresponding renormalization
group (RG) equation is:

µ
d
dµ

∆(T )G
h
i (zh, pT R, µ) = γi

G (µ)∆(T )G
h
i (zh, pT R, µ) , (B.13)

where the anomalous dimension γi
G (µ) is:

γi
G (µ) = −

(
Z i

G (µ)
)−1

µ
d
dµ

Z i
G (µ) . (B.14)

The solution to eq. (B.14) is then:

∆(T )G
h
i (zh, pT R, µ) = ∆(T )G

h
i (zh, pT R, µG ) exp

(∫ µ

µG

dµ′

µ′
γi

G

(
µ′
))

, (B.15)

where the scale µG should be the characteristic scale chosen such that large logarithms in the
fixed-order calculation vanish. The counter terms Z i

G (µ) are given by:5

Zq
G (µ) = 1 + αs

2π
CF

[ 1
ϵ2

+ 3
2ϵ

+ L

ϵ

]
, (B.16)

Zg
G (µ) = 1 + αs

2π
CA

[ 1
ϵ2

+ 1
ϵ

β0
2CA

+ L

ϵ

]
. (B.17)

5Note here the counter terms for polarized quark and gluon FJFs are the same as those of the unpolarized
ones as shown in [33]. For explanation, see the main text in section 2.2.
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From these results we obtain the anomalous dimension γi
G (µ) with the following form:

γi
G (µ) = Γi

cusp(αs) ln
(

µ2

(pT R)2

)
+ γi(αs) , (B.18)

where Γi
cusp =∑

n Γi
n−1

(αs
4π

)n and γi =∑
n γi

n−1
(αs
4π

)n. The lowest-order coefficients can be
extracted from the above calculations:

Γq
0 = 4CF , γq

0 = 6CF , (B.19)
Γg
0 = 4CA, γg

0 = 2β0 , (B.20)

and higher-order results can be found in [31, 114–117]. After the subtraction of the UV
counter terms specified in eqs. (B.16) and (B.17), the renormalized FJFs ∆(T )G

j
i (ω, R, zh, µ)

are given by:

∆G q
q (zh, pT R, µ) = αs

2π

{−1
ϵ
∆Pqq(zh) + CF δ(1− zh)

(
L2

2 − π2

12

)
+ CF (1− zh)

+ ∆Pqq(zh)(2 ln(zh)− L) + 3CF L

2 δ(1− zh)

+ 2CF

(
1 + z2h

)( ln(1− zh)
1− zh

)
+

}
, (B.21)

∆G g
q (zh, pT R, µ) = αs

2π

{−1
ϵ
∆Pgq(zh) + ∆Pgq(zh)

[
2 ln(zh(1− zh))− L

]
− 2CF (1− zh)

}
,

(B.22)

∆G q
g (zh, pT R, µ) = αs

2π

{−1
ϵ
∆Pqg(zh) + ∆Pqg(zh)

[
2 ln(zh(1− zh))− L

]
+ 2TF (1− zh)

}
,

(B.23)

∆G g
g (zh, pT R, µ) = αs

2π

{−1
ϵ
∆Pgg(zh) + CAδ(1− zh)

(
L2

2 − π2

12

)

+∆Pgg(zh)(2 ln(zh)− L) + β0L

2 δ(1− zh)− 4CA(1− zh)

+ 4CA

[
2(1− zh)2 + zh

]( ln(1− zh)
1− zh

)
+

}
, (B.24)

∆T G q
q (zh, pT R, µ) = αs

2π

{−1
ϵ
∆T Pqq(zh) + CF δ(1− zh)

(
L2

2 − π2

12

)
+ 3CF L

2 δ(1− zh)

+ ∆T Pqq(zh)(2 ln(zh)− L) + 4CF zh

( ln(1− zh)
1− zh

)
+

}
, (B.25)

where we can eliminate all large logarithms L by choosing µ ∼ pT R. At the intermediate
scale µG ≫ ΛQCD, one can match the FJFs ∆(T )G

h
i (zh, pT R, µ) onto the longitudinally

(transversely) polarized fragmentation functions ∆(T )Dh/j(zh, µ) as in eq. (B.3). In order
to perform the matching calculation and determine the coefficients Jij , we simply need
the perturbative results of the fragmentation functions ∆(T )Dj/i(zh, µ) for a parton i frag-
menting into a parton j. The renormalized ∆(T )Dj/i(zh, µ) at O(αs) using pure dimensional
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regularization are given by:

∆Dq
q(zh, µ) = δ(1− zh) +

αsCF

2π

(
−1

ϵ

)
∆Pqq(zh) , (B.26)

∆Dg
q (zh, µ) = αsCF

2π

(
−1

ϵ

)
∆Pgq(zh) , (B.27)

∆Dq
g(zh, µ) = αsTF

2π

(
−1

ϵ

)
∆Pqg(zh) , (B.28)

∆Dg
g(zh, µ) = δ(1− zh) +

αsCA

2π

(
−1

ϵ

)
∆Pgg(zh) , (B.29)

∆T Dq
q(zh, µ) = δ(1− zh) +

αsCF

2π

(
−1

ϵ

)
∆T Pqq(zh) . (B.30)

Using the results for ∆(T )G
j
i (zh, pT R, µ) and ∆(T )Dj/i(zh, µ), we obtain the following matching

coefficients:

∆Jqq(zh, pT R, µ) = δ(1− zh) +
αs

2π

[
CF δ(1− zh)

(
L2

2 − π2

12

)
+ CF (1− zh)−∆Pqq(zh)L

+ 3CF L

2 δ(1− zh) + ∆Î anti-kT
qq (zh)

]
, (B.31)

∆Jqg(zh, pT R, µ) = αs

2π

[
−∆Pgq(zh)L − 2CF (1− zh) + ∆Î anti-kT

qg (zh)
]

, (B.32)

∆Jgq(zh, pT R, µ) = αs

2π

[
−∆Pqg(zh)L + 2TF (1− zh) + ∆Î anti-kT

gq (zh)
]

, (B.33)

∆Jgg(zh, pT R, µ) = δ(1− zh) +
αs

2π

[
CAδ(1− zh)

(
L2

2 − π2

12

)
− 4CA(1− zh)−∆Pgg(zh)L

+ β0L

2 δ(1− zh) + ∆Î anti-kT
gg (zh)

]
, (B.34)

∆T Jqq(zh, pT R, µ) = δ(1− zh) +
αs

2π

[
CF δ(1− zh)

(
L2

2 − π2

12

)
−∆T Pqq(zh)L

+ 3CF L

2 δ(1− zh) + ∆T Î anti-kT
q

]
, (B.35)

where ∆(T )Î
anti-kT
ij (zh) are jet-algorithm dependent. For anti-kT jets, we have:

∆Î anti−kT
qq (zh) = 2∆Pqq(zh) ln(zh) + 2CF

(
1 + z2h

)( ln(1− zh)
1− zh

)
+

, (B.36)

∆Î anti−kT
qg (zh) = 2∆Pgq(zh)

[
ln(zh(1− zh))

]
, (B.37)

∆Î anti−kT
gq (zh) = 2∆Pqg(zh)

[
ln(zh(1− zh))

]
, (B.38)

∆Î anti−kT
gg (zh) = 2∆Pgg(zh) ln(zh) + 4CA

[
2(1− zh)2 + zh

]( ln(1− zh)
1− zh

)
+

, (B.39)

∆T Î anti−kT
qq (zh) = 2∆T Pqq(zh) ln(zh) + 4CF zh

( ln(1− zh)
1− zh

)
+

. (B.40)
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Substituting the matching coefficients ∆(T )Jij into eq. (B.3), and writing out explicitly
the plus functions, one obtains:

∆(T )G
h
q (zh, pT R, µ) =

{
1 + αs

2π
CF

[
2 ln2

(
pT R(1− zh)

µ

)
− π2

12

]}
∆(T )D

h
q (zh, µ) + · · · ,

(B.41)

∆G h
g (zh, pT R, µ) =

{
1 + αs

2π
CA

[
2 ln2

(
pT R(1− zh)

µ

)
− π2

12

]}
∆Dh

g (zh, µ) + · · · . (B.42)

Here the ellipses represent terms that are regular as zh → 1. Under the large zh limit, one
can find additional logarithms ∼ ln(1− zh). By choosing the scale µ = pT R(1− zh), we can
simultaneously resum both logarithms of R and (1− zh) [74]. A more rigorous resummation
at the threshold limit is given by [118].

C Separation of hard matching functions

In this work we follow the methodology outlined in [23] and separately evolve the hard
matching functions. Doing this have the benefit of simplifying the final evolution of the TMD
FJFs, for more details, please refer to [23]. In this section, we will only provide the result
of such separation. We start by noticing that the anomalous dimensions γ

L(T )
ij (z, pT R, µ) in

eqs. (3.65)–(3.69) include a purely diagonal piece δijδ(1− z)Γi(pT R, µ) and an off-diagonal
Altarelli-Parisi splitting function ∆(T )Pji(z) that has polarization dependence. Therefore
following the approach in [23], we can separate these two contributions by rewriting the
functions Ĥ

U(L,T )
i→j into two parts that follow different evolution equations:

Ĥ
U(L,T )
i→j (z, pT R, µ) = Ei(pT R, µ)ĈU(L,T )

i→j (z, pT R, µ) . (C.1)

The coefficients ĈU(L,T )
i→j (z, pT R, µ) follow the evolution equations governed by the Altarelli-

Parisi splitting functions:

µ
d
dµ

ĈU
i→j(z, pT R, µ) = αs

2π

∑
k

∫ 1

z

dz′

z′
Pki

(
z

z′

)
ĈU

k→j

(
z′, pT R, µ

)
, (C.2)

µ
d
dµ

ĈL(T )
i→j (z, pT R, µ) = αs

2π

∑
k

∫ 1

z

dz′

z′
∆(T )Pki

(
z

z′

)
ĈL(T )

k→j

(
z′, pT R, µ

)
, (C.3)

and as pointed out in [23], although the above evolution equations look like DGLAP equations,
it is only the combined TMD FJFs that will satisfy the standard timelike DGLAP evolution
equations. As for the functions Ei(pT R, µ), they follow the multiplicative RG equations:

µ
d
dµ

ln Ei(pT R, µ) = Γi(pT R, µ) , (C.4)

with Γi given in eq. (3.71) and their solutions are:

Ei(pT R, µ) = Ei(pT R, µJ) exp
(∫ µ

µJ

dµ′

µ′
Γi
(
pT R, µ′

))
, (C.5)
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with the fixed-order results provided in [23]. By choosing µJ = pT R, we obtain the initial
condition Ei(pT R, µJ) = 1 for the evolution given in eq. (C.4).

Collecting the results, for unpolarized hard matching function ĤU
i→j(z′, pT R, µ), one

find the coefficients ĈU
i→j(z, pT R, µ) in eq. (C.1) to be the same as in [23], here we list the

results for completeness:

ĈU
q→q′(z,pT R,µ)= δqq′δ(1−z)+δqq′

αs

2π

[
CF δ(1−z)π2

12+Pqq(z)L

−2CF

(
1+z2

)( ln(1−z)
1−z

)
+
−CF (1−z)

]
, (C.6)

ĈU
q→g(z,pT R,µ)= αs

2π
[(L−2ln(1−z))Pgq(z)−CF z] , (C.7)

ĈU
g→g(z,pT R,µ)= δ(1−z)+ αs

2π

[
δ(1−z)π2

12+Pgg(z)L− 4CA

(
1−z+z2

)2
z

( ln(1−z)
1−z

)
+

]
,

(C.8)

ĈU
g→q(z,pT R,µ)= αs

2π
[(L−2ln(1−z))Pqg(z)−2TF z(1−z)] . (C.9)

As for the coefficients of polarized functions Ĥ
L(T )
i→j (z, pT R, µ), given that Ei(pT R, µ) follow

the same evolution as in eq. (C.4), we can write eq. (C.1) as:

Ĥ
L(T )
i→j (z, pT R, µ) = exp

(∫ µ

µJ

dµ′

µ′
Γi
(
pT R, µ′

))
ĈL(T )

i→j (z, pT R, µ) . (C.10)

And we therefore only need to evolve the functions ĈL(T )
i→j (z, pT R, µ) from scale µ ∼ µJ = pT R

to µ ∼ pT following eq. (C.3). In particular, the fixed-order results are:

ĈL
q→q′(z,pT R,µ)= δqq′δ(1−z)+δqq′

αs

2π

[
CF δ(1−z)π2

12+∆Pqq(z)L

−2CF (1+z2)
( ln(1−z)

1−z

)
+
−CF (1−z)

]
, (C.11)

ĈL
q→g(z,pT R,µ)= αs

2π

[
(L−2ln(1−z))∆Pgq(z)+2CF (1−z)

]
, (C.12)

ĈL
g→q(z,pT R,µ)= αs

2π

[
(L−2ln(1−z))∆Pqg(z)−2TF (1−z)

]
, (C.13)

ĈL
g→g(z,pT R,µ)= δ(1−z)+ αs

2π

[
CAδ(1−z)π2

12+∆Pgg(z)L

+4CA(1−z)−4CA(2(1−z)2+z)
( ln(1−z)

1−z

)
+

]
, (C.14)

ĈT
q→q′(z,pT R,µ)= δqq′δ(1−z)

+δqq′
αs

2π

{
∆T Pqq(z)L+CF

[
−4z

( ln(1−z)
1−z

)
+
+π2

12δ(1−z)
]}

. (C.15)

So far, we have presented the perturbative expressions for polarized hard matching functions
in eq. (C.10) up to NLO.
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