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Abstract
In this paper, we present a methodology that uses an optical tactile sensor for efficient tactile exploration of embedded objects 
within soft materials. The methodology consists of an exploration phase, where a probabilistic estimate of the location of 
the embedded objects is built using a Bayesian approach. The exploration phase is then followed by a mapping phase which 
exploits the probabilistic map to reconstruct the underlying topography of the workspace by sampling in more detail regions 
where there are expected to be embedded objects. To demonstrate the effectiveness of the method, we tested our approach on 
an experimental setup that consists of a series of quartz beads located underneath a polyethylene foam that prevents direct 
observation of the configuration and requires the use of tactile exploration to recover the location of the beads. We show 
the performance of our methodology using ten different configurations of the beads where the proposed approach is able 
to approximate the underlying configuration. We benchmark our results against a random sampling policy. Our empirical 
results show that our method outperforms the fully random policy in both the exploration and mapping phases. The explora-
tion phase produces a better probabilistic map with fewer samples which enables an earlier transition to the mapping phase 
to reconstruct the underlying shape. On both the exploration and mapping phases, our proposed method presents a better 
consistency as compared to the random policy, with smaller standard deviation across the ten different bead configurations.

Keywords Force and tactile sensing · Sensor-based control · Probabilistic inference · Active perception · Shape 
reconstruction

Introduction

The sense of touch is fundamental for humans to safely and 
robustly interact with their environment, it is arguably the 
most informative sense, in some instances more so than 
the sense of sight. With a single touch humans can detect 
temperature, surface smoothness, object shape and orienta-
tion, and object hardness. With minimal effort, people can 

leverage their sense of touch in occluded spaces like pockets 
or drawers and accurately assess what is being touched.

While robotics have seen a significant increase in capa-
bilities, dexterity that is comparable to humans has not yet 
been achieved. In the last decade, a great effort has been ded-
icated to providing robots the ability to sense the environ-
ment through touch, specifically with optical tactile sensors. 
Examples of such sensors are GelSight [1], which is able 
to provide high-resolution relief maps of object surfaces; 
Soft-Bubble [2] which has shown to be able to classify, esti-
mate the pose and tracking objects; and DenseTact 2.0 [3], 
capable of not only reconstruct the shape of the object but 
also provide a 6-axis wrench estimation. In this paper, we 
have decided to use DenseTact 2.0, which has a force range 
of -11 to 3 N in the vertical direction. Furthermore, Dense-
Tact 2.0 has been shown to provide an accuracy of 0.3633 
mm per pixel for shape reconstruction, 0.410 N for forces 
and 0.387 N mm  for torques [3]. Successful applications 
of DenseTact 2.0 in robotics tasks include manipulation of 
small objects for in-hand reorientation and identification for 
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effective classification [4], as well as the ability to pick up 
small objects from flat surfaces, where the relative geometry 
of the sensor to the object poses a challenge [5]. For more 
details on the manufacturing and training, please consult [6].

Tactile information for robotic manipulation is particu-
larly appealing when the sense of sight cannot provide 
reliable information to complete the task. A guiding exam-
ple is a person forming an inventory of objects within an 
occluded pocket without taking the objects out for visual 
inspection. This task requires the classification of soft versus 
hard objects and the person may explore the environment 
through tactile motion primitives such as pinching, squeez-
ing, or pushing to identify the contents.

Robots with this capability will likely have a significant 
societal impact. For industrial applications, robots would be 
able to classify packages at distribution centers without hav-
ing to open them; for in-home care, robots that are equipped 
with this capacity could assist humans in retrieving objects 
hidden within soft objects such as blankets or within clothes 
in a more efficient and natural way. In medical applications, 
tactile sensation could aid physicians in assessing superficial 
anatomical structures providing reliable relief maps for fur-
ther evaluation. Even for bionic prosthesis, forming a relief 
map and reproducing the haptic sensation on another part of 
the user’s body could provide the user with the sensation of 
touch that was lost (Fig. 1).

Extracting Local Information Through Touch

Optical tactile sensors to estimate mechanical properties 
and differentiate heterogeneous objects have proven to be an 
effective sensing method in previous work. Yuan et al. [7, 8] 
used the GelSight sensor to estimate the hardness of every-
day objects with different shapes, improving the object’s rec-
ognition that could provide information for an appropriate 

grasping strategy. Yuan et al. [9] also demonstrated the use 
of optical tactile sensors to actively recognize properties in 
clothing including characteristics such as thickness, fuzzi-
ness, softness, and durability and even estimate character-
istics such as preferred washing methods or the season it is 
meant to be worn.

In the medical setting, Gwilliam et al. [10] proposed the 
use of a capacitive tactile sensor for the detection of lumps 
in soft tissues of variable size and depth. The sensor was 
compared with the human finger outperforming it in the 
detection of lumps, requiring lower indentation depths and 
pressures. Jia et al. [11] later replicated the work using Gel-
Sight instead of the capacitive sensor, also showing better 
performance than the human finger.

Active Exploration for Shape Reconstruction

The above-mentioned works show the efficacy of the use of 
optical tactile sensors to infer local properties of the objects. 
However, rich interactions with the environment require not 
only the capacity to detect local properties such as hardness, 
but also to gain global information of the object such as 
shape. One common choice for shape representation using 
haptic sensory information is through the use of implicit sur-
faces via Gaussian Processes (GP). Dragiev et al. [12] show 
the performance of implicit surfaces GP shape estimation 
using tactile information from a seven-degrees-of-freedom 
hand.

Efficient shape reconstruction requires active and pur-
poseful exploration of objects’ surfaces. Martins & Fer-
reira [13] implemented a haptic exploration in simulation 
that allowed a humanoid robot to reconstruct the boundary 
between two different materials using a Bayesian model. 
Jamali et al. [14] used a GP to probabilistically reconstruct 
the shape of the object driving the exploration based on the 
estimated boundaries of the object. A similar approach was 
shown to work by Yi et al. [15]. A more recent work involv-
ing the use of GelSight was developed by Wang et al. [16] 
integrating the use of visual and tactile exploration with 
learned shape priors for 3D shape reconstruction. Liu et al. 
[17] demonstrated the application of optical tactile sensing 
along the entire surface of a finger for a three-finger robotic 
hand which enabled the recognition of a set of rigid objects 
with a single grasp.

Merging both local and global information for shape 
reconstruction was recently explored by Zhao et al. [18] 
with FingerSLAM. This method uses both visual and tac-
tile information to reconstruct the relief map by loop closure 
of the two sensing modalities. This method requires direct 
visualization of the surface and has only been tested on rigid 
objects.

As shown before, shape reconstruction has been exten-
sively studied for rigid and homogeneous objects using 

Fig. 1  Embedded object detection. In this work, we demonstrate the 
ability to detect and map objects embedded in a soft medium. This 
work has future applications which include medical automated assis-
tance for patient palpation
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tactile information. When the object is heterogeneous and/
or deformable, previous work has been focused on gathering 
local information to obtain mechanical properties or estimate 
the presence of anomalies such as lumps in medical applica-
tions. To the best of our knowledge, simultaneous detection 
and mapping for heterogeneous and deformable objects has 
not been addressed in the past. This paper makes a signifi-
cant contribution toward addressing this goal.

The main contributions of this paper are: first, we gener-
ate a probabilistic map of embedded objects locations using a 
Bayesian approach that samples a large region, improving on 
previous methods that sampled only local regions for object 
presence estimation. Second, we use this probabilistic map 
to drive the exploration of the workspace and approximate 
the shape of the embedded objects (heterogeneous medium), 
different from other papers where such shape reconstruction 
is done on rigid objects (homogeneous medium). Finally, 
our method is able to detect and approximate the shapes of 
closely embedded and discontinuous objects within the soft 
material, independent of their continuity, relying solely on 
their spatial grouping within the workspace.

The paper is divided in the following sections: Sect. 2 
describes the proposed framework which is divided into 
an exploration and a mapping phase. Each phase is driven, 
respectively, by a reduction of uncertainty and the maxi-
mization of the probability of the presence of embedded 
objects. Section 3 describes the experimental setup that was 
used to show the efficacy of our method using ten different 
configurations of the embedded objects. Section 4 presents 
the empirical results obtained across the ten different con-
figurations where we show that our framework outperforms 
a fully random policy on both the exploration and mapping 
phases.

The project website which contains results shown in fig-
ures and videos can be found here: sites. google. com/ stanf 
ord. edu/ embed dedob jectd etect ion/

Exploration and Mapping

We propose a framework for efficient tactile exploration and 
mapping for embedded rigid objects within matrices of soft 
materials using an optical tactile sensor. The method first 
generates a map that indicates the presence of hard objects 
below the surface (exploration). In this phase, a probabilis-
tic map is iteratively built by concurrently minimizing the 
expected uncertainty (as quantified by a Gaussian Process) 
and maximizing the spread of the samples (as measured 
by the space-filling metric of the discrepancy) for efficient 
exploration. The exploration is followed by a more thorough 
interaction in the areas of interest for an approximate recon-
struction of the underlying topography (mapping). This is 
achieved by maximizing both the probability of sampling 

an embedded object as well as the spread of the samples. 
The method is tested in an experimental setup that involves 
a series of bead clusters in a planar array which is then cov-
ered by a polyethylene foam. Figure 2 graphically represents 
the proposed method.

It is important to highlight that our proposed method fol-
lows the Sense-Plan-Act autonomy methodology of robotics 
as depicted in Fig. 3.

Exploration

The exploration phase of the method, which provides a 
probabilistic map of the location of the hard objects below 
the soft surface starts by sampling the workspace (E.1 in 
Fig. 2). Assuming that initially there is no prior information 
of the location of the embedded objects, the sampling can be 
performed using any desired strategy (e.g. randomized sam-
pling). It is desired to get a comprehensive understanding of 
the workspace avoiding oversampling some regions of the 
workspace or leaving some regions unexplored. A sampling 
plan that encourages a diversity of samples and maximizes 
coverage of the workspace is called a space-filling sampling 
plan. There exist many sampling plans that are considered 
space-filling, from which we have tested the Latin-hyper-
cube sampling, Halton Sequence, and Sobol Sequences. 
Among these sampling strategies, including a randomized 
sampling plan, we found empirically that Sobol Sequences 
[19] yields the best initialization for our experimental setup 
with eight initial samples to form the prior. Naturally, in an 
instance where a prior is available, the use of a sampling 
strategy can be omitted.

Using DenseTact 2.0, each sample produces a 
640 × 640 × 1 depth image (E.2 in Fig. 2). The image is sub-
sequently processed to check for the presence or absence of 
hard objects below the surface. To this end, the depth image 
obtained from the sample is compared against the image of 
the undeformed sensor, and a threshold � is applied: if the 
deformation (in absolute value) |�| associated with a given 
pixel is larger than � , then the depth information is pre-
served, otherwise the deformation is set to zero. The value 
of � is closely related to the error of the sensor: if there is a 
deformation smaller than the error of the sensor, it is likely 
that it is noise from the sensor and not an actual deformation 
on the sensor. However, the presence of the soft material 
may affect the value of the threshold whose influence is dif-
ficult to quantify and deserves an analysis of its own. From 
our experiments, it was observed that the value of � needed 
to be set to 1.55 mm to produce a good performance of our 
method. The depth image is saved as a point cloud for later 
use in the mapping phase of the algorithm.

Once the threshold is applied and deformation is 
detected in the depth image, the next step is to find the 
centroid of the indentations (E.3 in Fig. 2). The depth 

https://sites.google.com/stanford.edu/embeddedobjectdetection/
https://sites.google.com/stanford.edu/embeddedobjectdetection/
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image is run through a Canny Edge Detector [20] to find 
the contours of the clusters observed in the depth image. 
This allows us to form the convex hull of each cluster 
defined by the vertex set {vi,1,⋯ , vi,n} and easily obtain 

the centroid c̄i = (xi, yi) of such set (1) which serves as an 
approximation of the centroid of the convex hull. In (1) xi 
and yi are the horizontal and vertical coordinates of the i-th 
centroid respectively.

Fig. 2  Graphical representation of the proposed method. In the explo-
ration phase (E.1 through E.6) the probable areas of hard embedded 
objects below the soft surface are estimated. In the mapping phase 

(M.1 and M.2) a more thorough interaction of such areas is conducted 
to approximate the underlying topology

Fig. 3  Relation of the proposed 
method with the Sense-Plan-Act 
cycle of robotics
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This entire process is performed using the libraries cv.
Canny, cv.findContours, cv.convexHull and cv.
moments from OpenCV [21].

If deformation is present on the depth image, the location 
of the centroid of each cluster is added to the training data with 
label 1; if no deformation is present on the depth image, the 
location of the sample (center of the depth image) is added to the 
training data with label 0 (E.4 in Fig. 2). We have opted for the 
strategy involving the inclusion of a single training data point per 
cluster, as opposed to incorporating each individual pixel exhib-
iting deformation. This choice is driven by the need to address 
scenarios involving disjoint embedded objects and to facilitate 
predictions over larger areas of presence. By doing so, we pre-
vent the Gaussian Process from optimizing for local information 
and encourage it to capture a more holistic understanding.

To generate the probabilistic map of the location of the 
embedded objects, a Gaussian process for classification is 
used (E.5 in Fig. 2 and outlined in Algorithm 1). We have 
opted for the utilization of a Gaussian Process based on 
the premise that hard objects tend to form clusters and/or 
the sensor’s size is comparatively small in relation to them, 
mirroring scenarios outlined in the introductory applica-
tions of our manuscript. Given this assumption, the iden-
tification of a hard object, whether partially or entirely, 
has a significant influence on the likelihood of detecting 
additional objects in its proximity. This rationale justifies 
the adoption of a Gaussian Process in our approach.

A Gaussian process GP(�(⋅), �(⋅, ⋅)) is a prior over func-
tions defined by a mean function �(⋅) and a kernel function 
�(⋅, ⋅) . Different from a Gaussian process for regression, 
where we want to predict a continuous function value, 
in a Gaussian process for binary classification we care 
about a discrete variable y∗ ∈ {1, 0} at location x∗ given 
the observed classes Y at locations X using a predictive 
distribution p(y∗ = 1 | x∗,X,Y) [22, 23].

To compute such distribution, a latent function f(x) is 
introduced over which we perform a Gaussian process 
regression and then its output is passed through a logistic 
function (2), i.e. p(y = 1 | x) = �(f(x)) . Please keep in mind 
that the latent function f  serves as an intermediary vari-
able within our method and does not represent a physically 
interpretable quantity.

The probabilistic prediction is then defined as:

(1)c̄i =
1

n

n∑

j=i

vi,j

(2)�(z) =
[
1 + exp(−z)

]−1

(3)p(y∗ = 1 | x∗,X,Y) = ∫ �(f∗)p(f ∗ | x∗,X,Y)df∗

This integral is analytically intractable and is solved by first 
approximating the logit function with a probit function Φ(f ∗) 
and the second term by using a Laplace approximation [22]. 
With these approximations, the integral is Gaussian and can 
be computed, therefore: 

where k∗ = �(X,X∗) , k∗∗ = �(X∗,X∗) , W is a diago-
nal matrix whose entries are Wii = �(fi)(1 − �(fi)) , 
�� = �(X,X) + �I and � is a small value that provides 
numerical stability ( 1 × 10−5 in our case). The mean f̂ can 
be obtained iteratively, i.e. f̂ ← f

new using (5).

The predictive distribution can be approximated as follows 
[23]:

We use an (isotropic) square exponential kernel (7) with 
parameters � = [�1, �2] which are optimized automatically 
by maximizing the log marginal likelihood log p(Y | �) . In 
the experimental validation of our method Sect. 4 the values 
of � converged to [30, 15].

Algorithm 1  Gaussian process cassifier (E.5 in Fig. 2)

With every sample, we aim to reduce the uncertainty 
in our probabilistic map. Since a Gaussian process also 

(4a)p(f∗ | x∗,X,Y) ≈ N(f∗ | �,�)

(4b)� = k
T

∗
(Y − 𝜎(f̂))

(4c)� = k∗∗ − k
T

∗
(W−1 +�� )

−1
k∗

(5)f
new = �� (I +W�� )

−1(Y − �(f) +Wf)

(6)p(y∗ = 1 | x∗,X,Y) ≈ �
(
�(1 + ��∕8)−1∕2

)

(7)�(xi, xj) = �2
2
exp

(
−
(xi − xj)

T (xi − xj)

2�2
1

)
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returns the confidence of the predicted label y, a naive 
approach would be to choose a sample x∗ that has the 
highest uncertainty as measured by the covariance matrix 
� . However, in the tests conducted on real data, we 
found that this policy tends to oversample a region of the 
workspace before moving to others, which significantly 
delays the mapping phase of our algorithm. For this rea-
son, we incorporate the discrepancy of the set of samples 
X

∗ = {X, x∗} to decide the next sample. The discrepancy 
d(X) is a criterion used to quantify the space-filling char-
acteristics of a set of samples normalized over a unit 
hypercube and can be defined as follows [24]

H is the hyper-rectangular subset of the hypercube, #X is 
the number of samples, #(X ∩H) is the number of samples 
that lie in H , and �(H) is the volume of H . In general, the 
discrepancy is difficult to compute exactly and there exist 
approximate methods to do so. In our implementation, we 
compute the discrepancy of the samples using the Centered 
Discrepancy (CD) method [25]. With this, we can find the 
next sample using both the uncertainty of the Gaussian pro-
cess and the discrepancy of the samples (E.6 in Fig. 2).

The selection of the next sample could be benefited by the 
presence of a human in the loop, which could be valuable in 
medical applications or in prostheses as outlined in the intro-
duction. The entire loop (steps E.1 trough E.6) is repeated to 
choose the next sample.

Mapping

The mapping phase of the algorithm has a similar proce-
dure to the exploration phase, however, the emphasis of this 

(8)d(X) = supremum
H

||||
#(X ∩H)

#X
− �(H)

||||

(9)minimize
X

∗
[det�(X∗), d(X∗)]

phase is to reconstruct the shape of the embedded objects 
rather than forming the probabilistic map of their location. 
Because of this, we sample the areas with a high probabil-
ity of presence according to the Gaussian process (M.1 in 
Fig. 2) following the same loop as in the exploration phase. 
The difference now is that we aim to sample areas with a 
high probability of presence rather than reduce the uncer-
tainty in the workspace. The sampling strategy is then modi-
fied in step E.6 as:

With each additional sample, we continue training the 
Gaussian process as well as reconstructing the underlying 
topography of the workspace (M.2 in Fig. 2) which can then 
be visualized as a point cloud and further processing can be 
done if needed.

Experimental Setup

The experimental setup is presented in Fig. 4 where Dense-
Tact 2.0 is attached to a desktop computer numerical con-
trol (CNC) machine for data collection. A perforated acrylic 
sheet with 5.5-millimeter holes in a 10 × 34 array with a 
center distance of 8.5 mms both vertically and horizontally, 
provides an easy to reconfigure test bed Fig. 4a. The perfo-
rated acrylic sheet allows us to locate quartz beads of 6 mms 
of diameter in the desired configurations for our experimen-
tal validation of the framework described in section 2. This 
array provides an effective area of 90.4 × 300 mms.

Once the beads have been placed in the desired loca-
tions, the array is covered with a sheet of polyethylene 
foam with a thickness of half an inch (12.7 mm). The 
foam is secured in place with two longitudinal acrylic 
strips that are clamped to the CNC bed as shown in 
Fig. 4b.

(10)minimize
X

∗
[−p(y∗ = 1 | X∗,Y), d(X∗)]

Fig. 4  Experimental configuration for the detection and mapping 
of embedded rigid objects in soft material matrices. a A perforated 
acrylic sheet allows to accommodate quartz bead clusters in any 
desired configuration. b The beads are covered with a layer of poly-

ethylene foam and secured in place with two longitudinal acrylic 
strips. c Side by side of the raw image from camera and the resulting 
depth image from DenseTact 2.0
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For the evaluation of the performance of the frame-
work, we evaluated ten different configurations of the 
beads on the acrylic sheet (Fig. 5). Due to the dimensions 
of the workspace, each configuration was comprised of 
three bead clusters, each cluster with thirty-four beads 
on average. All the data was collected at the same depth 
of 12 mms below the surface of the foam. The beads are 
dyed red to be identified with a computer vision program, 
that together with an AprilTag [26] allows us to easily 
reconstruct the configuration for evaluation of the per-
formance of our framework.

We are interested in reconstructing the underlying 
shape of the embedded objects. To accomplish this, it 
is necessary for the soft material to have relatively low 

stiffness against the sensor. In our case, DenseTact 2.0 
has a Shore 00 hardness of 49.7, while the polyethylene 
foam has a Shore 00 hardness of 24.7 when pressed seven 
millimeters. For this reason, we limited our experiments 
to a single type of soft material. However, it is important 
to highlight that with a stiffer material, it is still possible 
to apply the exploration phase of our method as long as 
the sensor is able to detect the presence of the embedded 
materials as in [10] and [11].

Results and Discussion

Figure 6 shows the performance of the exploration phase 
with up to sixty-four samples after the prior. The results 
are benchmarked against a fully random policy where the 
prior is also formed with eight randomly chosen samples. 
Regarding this random policy, we implemented a discretiza-
tion of the workspace at 2.5 mm intervals in both vertical 
and horizontal directions. This discretized grid serves as 
the basis for randomly selecting samples from across the 
workspace. We only benchmark our approach against the 
aforementioned random policy, as the existing literature has 
not addressed the problem of embedded object localization 
and mapping. While no prior work has directly tackled this 
specific problem, the closest method we found is the work 
conducted by Jamali et al. [14]. This previous work relies on 
the continuity of the mapped object, which in our case such 
continuity is not necessary.

Because the main result of the exploration phase is the 
probabilistic map of the presence or absence of embedded 
objects (categorical variable), we evaluate the performance 
using the Cross-Entropy loss (11) with a density of 0.5 mms 
both horizontally and vertically:

Fig. 5  Top-down view of the configurations of the quartz beads 
below the foam for the evaluation of the performance of the proposed 
method

Fig. 6  Performance of the exploration phase showing the average 
over the ten configurations shown in Fig. 5 with a solid/dashed lines 
and the shaded region indicating the corresponding standard devia-
tion. a Shows the Cross-Entropy loss of our proposed method in red 

and a fully random policy in green. b Shows the uncertainty, both 
maximum (dashed line) and average (solid line), for our proposed 
method and a fully random policy
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As can be seen in Fig. 6a the proposed method has a better 
performance as compared with the fully random policy. Our 
proposed method has two distinct behaviors: before 14 to 
16 samples after the prior, the loss decreases rapidly; after 
14 to 16 samples after the prior, the loss continues decreas-
ing but with a slower rate. As shown in Fig. 7, with sixteen 
samples after the prior, the probabilistic map has capture the 
main characteristic of the true distribution of the embedded 
objects. Different from our proposed method, the random 
policy more or less decreases at the same rate up to sixty 
additional samples after the prior. Eventually, with enough 
samples, both strategies reach a similar loss. However, it is 
important to highlight that our proposed method has a bet-
ter consistency as reflected in a tighter standard deviation.

In terms of uncertainty, Fig. 6b, there is a similar behavior 
to the loss: before 14 to 16 samples there is a rapid decrease 
of uncertainty, both the maximum and average value, followed 
by a slower rate of decrease. As shown in the figure, both 

(11)
LCE = −

1

N

N∑

i=1

[
yi log p(yi = 1 | X,Y)

+(1 − yi) log p(yi = 0 | X,Y)
]

maximum and average uncertainty are lower in our method 
compared to the random strategy.

Since we are interested in forming a quick idea of the 
location of the embedded objects to sample the areas with a 
high probability for the mapping phase, it is valuable that our 
method can capture the main features with approximately 14 
to 16 samples, with a lower uncertainty than a fully random 

Fig. 7  Example of the progression of the exploration phase of the 
proposed method (E.4 in Fig. 2) as a top-down view of one configura-
tion. a Shows the probabilistic map, given by equation (6), obtained 
after the prior and additional eight, sixteen, thirty-two, and sixty-
four additional samples as well as the ground truth. Darker regions 

denote a high probability of presence, while lighter regions denote a 
low probability of presence. b Shows the associated variance of the 
plots shown in (a) given by equation (4c). Darker regions denote high 
uncertainty, while lighter regions denote low uncertainty

Fig. 8  Performance of the mapping phase showing the average over 
the ten configurations shown in Fig. 5 with a solid line and the shaded 
region indicating the corresponding standard deviation
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sampling strategy. Given the observed trend in Fig. 6, we 
choose to have an exploration phase of 16 samples (or equiva-
lently a Cross-Entropy loss of around 0.45 for the given size of 
the workspace) after the prior before proceeding to the map-
ping phase of our method.

For the mapping phase, the evaluation of the performance 
is accomplished by using the Mean Squared Error (MSE) loss 
(12) between the ground truth z and the height reported by the 
sensor z̃ , again with a density of 0.5 mms both horizontally 
and vertically:

As seen in Fig. 8 the proposed method has a better perfor-
mance as compared with the fully random policy: through-
out the one hundred and twenty-eight samples the MSE 
error is consistently lower for our proposed method. This 
is expected since using a random policy it is possible that 
regions that do not have any embedded objects are sampled, 
especially in this case where the majority of the workspace 
does not have embedded objects. Our method in contrast 
does focus its sampling efforts on the areas that the explora-
tion phase estimates are embedded objects. Finally, although 
not as noticeable as in the exploration phase, our method is 
more consistent than the fully random policy as depicted by 
the tighter standard deviation in Fig. 8. Figure 9 provides an 
example of the progression of the shape reconstruction of 
the embedded objects below the polyethylene foam.

We choose these loss functions as they are standard for 
binary classification (Cross-Entropy loss) and regression 
(MSE). Furthermore, the choice of logarithm in cross-
entropy loss heavily penalizes misclassifications, better 
illustrating the need for an accurate probabilistic map before 
going to the mapping phase of our algorithm.

The performance of our method could be improved by 
incorporating local information about stress and force. 
Although DenseTact 2.0 provides a 6-axis wrench esti-
mation over the entire sensor, when we incorporated this 

(12)LMSE =
1

N

N∑

i=1

(zi − z̃i)
2

information in our method, due to some inconsistency and 
high variance of the measurements (either from issues in 
the calibration or undesired interactions between the soft 
material and the sensor) our method had a tendency to sub-
stantially favor depth information and for this reason, we 
dispensed with force and moment information.

Conclusion

In this paper, we have proposed a method for the explora-
tion and mapping of heterogeneous materials, where hard 
embedded objects are present within a matrix of a soft and 
deformable material, a situation in which sight cannot pro-
vide reliable or any kind of information and tactile sensing 
becomes the main mechanism of interaction. Our method 
has been motivated in applications such as package sort-
ing, medical diagnosis, and restoration of haptic sensation 
in individuals with prostheses.

The proposed framework is divided into two main phases. 
In the exploration phase, where a probabilistic map is gen-
erated by sampling the workspace and using a Gaussian 
process for classification we estimate the probability of the 
presence or absence of the hard embedded objects. The map-
ping phase exploits the probabilistic map generated by the 
exploration phase by sampling the areas of high probability 
of presence to reconstruct the underlying shape of the hard 
objects. We also present a strategy to obtain a prior of the 
location of the embedded objects using Sobol sequences 
when such a prior is not available.

We validate our approach using an experimental setup 
that located a series of quartz beads in clusters underneath 
a polyethylene foam, and by using the optical tactile sensor 
DenseTact 2.0 together with the aid of a computer numerical 
control (CNC) machine, we sample the workspace.

Our empirical results show that our method outperforms 
a fully random policy in both the exploration and mapping 
phases. In the exploration phase, our method presents two 
distinct behaviors, before 14 to 16 samples after the prior 

Fig. 9  Example of the progression of the mapping phase of the pro-
posed method (M.2 in Fig. 2) as a top-down view of one configura-
tion. The image shows the approximate topology obtained after the 

exploration phase and additional sixteen, thirty-two, sixty-four, 
and one hundred and twenty-eight additional samples as well as the 
ground truth. The scale on the right is given in millimeters
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there is a rapid decrease in both uncertainty and Cross-
Entropy loss, followed by a continuous decrease of both 
the uncertainty and loss with a slower rate. It is valuable 
to see the rapid decrease in both loss and uncertainty with 
few samples to be able to transition to the mapping phase 
and focus the attention of the samples on the shape recon-
struction aspect of the method. For the given size of the 
workspace, 16 samples (or equivalently a Cross-Entropy 
loss of around 0.45) were chosen to be the number of sam-
ples before switching to the mapping phase where we also 
demonstrate that our method outperforms the fully random 
policy. On both the exploration and mapping phases, our 
proposed method presents a better consistency as compared 
to the random policy, shown by the smaller standard devia-
tion across the ten different bead configurations.

Immediate extensions include the post-processing of 
the reconstructed shape depending on the application: for 
item recognition in packages and home assistance, the 
reconstructed shape can be passed through a convolutional 
neural network to identify the different objects; for medical 
applications, the reconstructed shape can be displayed to 
the physician using virtual reality for assessment; and for 
haptic sensation, the reconstructed shape can be reproduced 
on another part of the prosthesis owner’s body. Future work 
could include the sampling and reconstruction of three-
dimensional and/or curved surfaces and incorporate stress 
and force measurements into the method to obtain additional 
information on the embedded objects.
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