
MIT Open Access Articles

Investigating Student Mistakes in
Introductory Data Science Programming

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Singh, Anjali, Fariha, Anna, Brooks, Christopher, Soares, Gustavo, Henley, Austin Z. et
al. 2024. "Investigating Student Mistakes in Introductory Data Science Programming."

As Published: 10.1145/3626252.3630884

Publisher: ACM

Persistent URL: https://hdl.handle.net/1721.1/154064

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/154064

Investigating Student Mistakes in Introductory Data Science
Programming

Anjali Singh
University of Michigan
singhanj@umich.edu

Anna Fariha
University of Utah
afariha@cs.utah.edu

Christopher Brooks
University of Michigan
brooksch@umich.edu

Gustavo Soares
Microsoft, USA

Gustavo.Soares@microsoft.com

Austin Z. Henley
Microsoft, USA

austinhenley@microsoft.com

Ashish Tiwari
Microsoft, USA

Ashish.Tiwari@microsoft.com

Chethan M
Microsoft, India

chethanm@microsoft.com

Heeryung Choi
Massachusetts Institute of Technology

heeryung@mit.edu

Sumit Gulwani
Microsoft, USA

sumitg@microsoft.com

ABSTRACT
Data Science (DS) has emerged as a new academic discipline where
students are introduced to data-centric thinking and generating
data-driven insights through programming. Unlike traditional in-
troductory Computer Science (CS) education, which focuses on
program syntax and core CS topics (e.g., algorithms and data struc-
tures), introductory DS education emphasizes skills such as analyz-
ing data to gain insights by making effective use of programming
libraries (e.g., re, NumPy, pandas, scikit-learn). To better under-
stand learners’ needs and pain points when they are introduced
to DS programming, we investigated a large online course on data
manipulation designed for graduate students who do not have a
CS or Statistics undergraduate degree. We qualitatively analyzed
students’ incorrect code submissions for computational notebook-
based assignments in Python. We identified common mistakes and
grouped them into the following themes: (1) programming language
and environment misconceptions, (2) logical mistakes due to data or
problem-statement misunderstanding or incorrectly dealing with
missing values, (3) semantic mistakes due to incorrect use of DS
libraries, and (4) suboptimal coding. Our work provides instructors
insights to understand student needs in introductoryDS courses and
improve course pedagogy, and recommendations for developing
assessment and feedback tools to support students in large courses.

CCS CONCEPTS
• Applied computing → E-learning.

KEYWORDS
Introductory Data Science Programming, Types of Mistakes, Quali-
tative Analysis, Data Manipulation in Python

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0423-9/24/03. . . $15.00
https://doi.org/10.1145/3626252.3630884

ACM Reference Format:
Anjali Singh, Anna Fariha, Christopher Brooks, Gustavo Soares, Austin Z.
Henley, Ashish Tiwari, Chethan M, Heeryung Choi, and Sumit Gulwani.
2024. Investigating Student Mistakes in Introductory Data Science Program-
ming. In Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 1 (SIGCSE 2024), March 20–23, 2024, Portland, OR, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3626252.3630884

1 INTRODUCTION
The growing importance of Data Science (DS) education demands
more research on the curriculum and assessment practices in DS
courses [29]. The rapid growth of enrollment in DS courses requires
pedagogy and assessment approaches that work at scale, which
requires a deeper understanding of students’ difficulties in these
new courses. This is particularly important for introductory DS
(hereafter referred to as DS11) courses, such as data manipulation,
which form the foundation of students’ future DS undertakings.

Data manipulation courses typically cover topics such as data
cleaning, preparation, and exploration [9, 12], e.g., selecting, filter-
ing, aggregating, and transforming values in a DataFrame (the core
DS1 data structure). In a DataFrame each row represents a single
observation, and each column represents an attribute (or variable
in the statistics sense) of the observations. Practitioners spend sig-
nificant time on data manipulation activities, yet there have been
few efforts to formalize data exploration and cleaning. Such topics
are relatively neglected in teaching, especially when compared to
data modeling topics—covered in Statistics and Machine Learning
(ML) courses—using datasets that are already cleaned and ready
for ingestion [17, 47]. While significant efforts have been employed
to understand CS education, including the formation of the ACM
SIGCSE conference, CS1 pedagogy research may not generalize
to DS1 [36]. Beyond learning how to solve DS problems computa-
tionally, two other important aspects of DS education are precise
knowledge of the problem domain and data literacy [17] (a term
used to broadly describe the set of abilities around the use of data for
solving real-world problems [51]). While both CS1 and DS1 require
the students to learn the fundamentals of a programming language,
the DS1 approach tends to embed this in data manipulation activ-
ities that vary with the data being analyzed in contrast with the
1We refer to introductory DS as DS1, noting that currently this is not a standard term.

1258

https://doi.org/10.1145/3626252.3630884
https://doi.org/10.1145/3626252.3630884

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Anjali Singh et al.

CS1 approach of solving general-purpose computing tasks [19].
This can cause fundamental differences in how a student considers
computation: for instance, many DS libraries contain vectorized
functions, promoting their use to effectively manipulate data, as
opposed to implementing algorithms and data structures through
student-defined functions or classes [29, 36].

Our work advances knowledge of the nascent field of DS Ed-
ucation through an evidence-based approach. We focus on DS1
student programming errors and misconceptions by investigating a
large online data manipulation course. Described in more detail in
Section 3, this Masters’ degree course introduces data cleaning and
analysis techniques using the popular pandas library in Python.
By understanding some of the mistakes these novice DS learners
make, we aim to understand the skills and competencies on which
DS1 learners require additional guidance and feedback. Therefore,
we explore the following research question:
RQ: What are novice learners’ mistakes and inappropriate strategies
when they are introduced to programming in a graduate level data
manipulation course?

We explore this question by qualitatively analyzing 47 students’
136 incorrect code submissions. Our key contribution is a categoriza-
tion of DS1 mistakes that instructors can use to understand student
needs and pain points, revise curricula, and provide directed feed-
back. To understand the competencies on which to support learners,
we consider both students’ mistakes and inappropriate program-
ming strategies given the course’s learning objectives. We show
that students’ code needs to be evaluated along five axes that should
accordingly inform the nature of instructional support they receive:
(1) programming in computational notebooks, (2) data literacy,
(3) programming with DS libraries, (4) programming strategies, and
(5) writing optimal code using vectorized operations and functions.
However, current assessment tools [6, 23, 33, 37, 52] focus primarily
on the correctness of the code output and do not support students’
skills acquisition along all of these competencies. Based on the iden-
tified mistake types, we provide pedagogical recommendations for
supporting learners in data manipulation courses and insights for
developing assessment and feedback tools to help students acquire
skills even in large courses. We also contribute the dataset of 136 in-
correct student code submissions labeled with mistake categories2.

2 RELATEDWORK
Data Science Education. There are several publications on course
design and experience reports of conceptualizing and teaching spe-
cific DS courses [3, 5, 9–12, 15, 19, 42, 43, 50]. The 2019 report by the
ACMTask Force on DS Education [16] provides suggestions for core
competencies a graduating student should leave with and suggests
topics that a full DS curriculum should integrate. Recently, Lau et
al. [30] reported their experience of balancing the Statistics and CS
concepts while launching a DS1 course. They demonstrated how CS
and Statistics instructors typically approach DS differently. Kross
and Guo shared their findings from interviewing DS practitioners
who taught novices in both industry and academic settings [29].
They found that practitioners often lack formal pedagogical train-
ing, raising the importance of conducting more research on DS
pedagogy for novices. This body of work reveals that despite the

2Dataset is available here

growing importance of DS, due to its recent formalization as an
academic discipline, more consensus is needed on DS1 teaching
practices. Our work addresses this research gap by identifying stu-
dent mistakes in DS1 courses to improve DS1 pedagogy.

Diagnosis of Programming Difficulties. Capturing and understand-
ing students’ common errors and misconceptions are important to
enhance instructors’ pedagogical content knowledge [41]. Several
computing-education researchers have analyzed students’ difficul-
ties in CS1, using a diverse set of definitions and approaches [1,
2, 8, 26, 28]. Luca et al. [13] developed a curated inventory of pro-
gramming language misconceptions, focusing primarily on syntax
and semantic errors. They described a way to organize a collection
of such misconceptions to present a synthesis of past research to
educators in an accessible form, thus, bridging the gap between
research and educational practice. Similarly, we provide actionable
insights to improve DS1 curriculum and assessment practices.

Limited research has explored DS student challenges. Nguyen et
al. [36] took a first step towards analyzing DS students’ code at scale
by leveraging metrics from traditional software engineering (e.g.,
Halstead Volume [24] and Cyclomatic Complexity [34]) in combina-
tion with DS-specific metrics such as number of library calls. They
identified metrics indicative of task complexity, submission run-
time, and submission score. However, these metrics operate over the
entire code as a single entity and, thus, cannot be used to isolate in-
correct parts of the code. Skripchuk et al. [48] qualitatively analyzed
incorrect student code to identify common errors and misconcep-
tions in open-ended projects from an upper-division ML course and
provided suggestions on how instructors can mitigate these errors.
We use a similar approach for a DS1 course and find some common
mistake categories, e.g., both works identified students who did not
leverage DataFrame operations for writing optimal solutions and
instead used for loops to iterate over DataFrame rows.

While scalable code analysis methods for DS1 are limited, there
is significant research on identifying students’ mistakes in CS1
courses using unsupervised techniques, such as code clustering [22,
25, 45], which typically rely on static code analysis by representing
code as Abstract Sytnax Trees (ASTs) or neural embeddings [38].
While these approaches work well in CS1, a challenge in DS1 is that
two qualitatively different solutions to a problem may have similar
ASTs, which is not commonly observed for CS1 problems. This is
due to the nature of DS1 programming, which relies extensively
on using existing API and library functions, where changing the
function parameter values does not lead to a change in the AST.
Since CS1 code clustering techniques do not generalize to DS1,
we qualitatively analyzed students’ incorrect code submissions to
reveal student mistakes. To instigate future research in this area, we
identified features of DS1 code that can be useful for automatically
detecting mistakes using semi-supervised approaches [18].

3 METHOD
Course Context and Study Population. The DS1 course we analyzed
is the first technical course offered as part of a one-year online grad-
uate program in applied DS offered by the University of Michigan.
This program attracts students from diverse backgrounds, many of
whom are mid-career professionals. This program is designed for
students who have only introductory programming and statistics

1259

https://osf.io/uqe2s/?view_only=057e1c6bf5c7425286594a1f85958aac

Investigating Student Mistakes in Introductory Data Science Programming SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

knowledge. All the courses in the program are fast-paced 4-week
courses. The technical instruction is provided in the JupyterLab
computational notebook environment [27] using Python, and the
environment is set up with all the necessary libraries to complete
the course. Graduates of this program are expected to have practical
skills in a breadth of DS topics (e.g., applied ML, experiment design,
information visualization, etc.) using Python-based toolkits.

The DS1 course’s learning objectives include learning basic data
manipulation and cleaning techniques by effectively using the
re [44] and pandas [39] libraries. This includes ingesting, clean-
ing, manipulating, and transforming data and performing basic
inferential statistical analyses. Weekly programming assignments
(4 in total) are automatically graded using nbgrader [35], a tool that
facilitates creating and grading Jupyter-based assignments. Each
assignment consists of 3–4 individually graded questions. A series
of unit tests are used to provide feedback to learners regarding the
correctness of their solutions. Each question is graded as pass or
fail, and the overall assignment grade is equally weighted among all
questions. Importantly, students are allowed unlimited submissions
for each assignment until the deadline (one week after the assign-
ment is released), resulting in most students eventually achieving
full points for the assignment.

Data. All the assignments were based on the pandas library, except
the first one, which was the easiest and based on the re library.
Given the popularity of pandas and since we were interested in
understanding learners’ mistakes when they are introduced to DS1
programming, we chose the second assignment for analysis of
student errors and misconceptions. We sampled from a collection
of 542 notebook submissions for this assignment by 151 students
enrolled in the Fall’21 offering of the course. The assignment had
3 questions on selecting parts of the provided dataset, performing
simple manipulations, aggregating dataset values, dealing with
missing values, and performing a basic statistical correlation test.
All questions are based on the 2017 data on immunizations provided
by the U.S. Center for Disease Control (CDC) and its accompanying
252-page data guide. The assignment was designed as an authentic
DS inquiry with the goal of emulating typical data cleaning and
wrangling tasks performed by data scientists as the first step in a
DS workflow following data acquisition [17]. Figure 1 shows the
instructions for the second question in this assignment.

Sampling Procedure. We sampled notebooks for one assignment
question at a time. First, all notebook submissions were autograded
using nbgrader. Then, from the subset of students who had at least
one incorrect submission for a given question, we iteratively picked
a student at random and qualitatively analyzed a sequence of their
incorrect submissions until a correct submission was found. There-
fore, the sample consisted of multiple notebooks per student in-
cluding both intermediate and final submissions. The sampling
procedure was repeated until we achieved data saturation [20] for
each question (i.e., new mistakes were no longer discovered in sub-
sequent submissions that were analyzed). In this way, we sampled
136 notebooks submitted by 47 students in total. Table 1 shows
aggregates of the analyzed data.

Qualitative Analysis. We qualitatively analyzed the sampled submis-
sions to understand learners’ mistakes and inappropriate strategies,

Statistic Sampled Data Question 1 Question 2 Question 3

students 47 23 24 10
analyzed submissions 136 45 49 42
Max # submissions analyzed for a student 15 7 7 15
Mean (± std err) # submissions per student 2.89 (± 0.48) 1.96 (± 0.34) 2.04 (± 0.32) 4.2 (± 1.48)

Table 1: Summary of the data sample used in our analysis. The second
column presents statistics for the full sample, and the other columns
represent each question in the data sample.

one question at a time. The unit of analysis was a student’s code,
which they were asked to write in a single notebook cell. After
reading the code line-by-line, we referred to the other notebook
cells if we were unable to understand the student’s approach. For
instance, some students defined variables outside the cell in which
they coded. In our analysis, we also looked at: (i) the code output
and compared it with the correct output and (ii) Python interpreter
errors (if any). While analyzing a sequence of incorrect submissions
by a student, we noted all the mistakes in each submission.

Using thematic analysis [7] to explore the emergent themes,
the first author, who had previously been a teaching assistant for
another data manipulation course, consolidated a coding scheme
for mistake categories. This categorization was based on the mis-
conceptions that were likely to be causing the student mistakes.
The mistake categories were developed and refined after repeated
readings of the data. Following this, the first author and another
author (who had taught the DS1 course previously) independently
coded a random sample of 30 (20%) submissions using the coding
scheme, and labeled each submission with one or more mistake
categories. An 82.76% agreement was achieved by averaging the
Jaccard similarity (the intersection of all applied codes over the
union of all applied codes) for all 30 pairs of coded submissions. All
discrepancies were discussed and resolved to finalize the mistake
categories in this round of coding. Then the first author updated
the coding scheme and coded all the data.

4 RESULTS: TYPES OF DS1 MISTAKES
We now describe the types of DS1 mistakes we identified following
the method described in Section 3. To demonstrate how mistakes in
each category are manifested in students’ code, we primarily use ex-
amples of incorrect code submissions for the second question of the
assignment. In this question, students are asked to calculate, for the
genders male and female, the ratio of the number of children who
contracted chicken pox but were vaccinated against it (i.e., received
at least one varicella dose) versus the number of children who
were vaccinated but did not contract chicken pox. Students were
instructed to return the output as a dictionary with the keys “male”
and “female”. In the dataset, the column ‘P_NUMVRC’ indicates the
number of varicella doses received by a child, column ‘HAD_CPOX’
indicates whether a child contracted chicken pox (‘HAD_CPOX’=1)
or not (‘HAD_CPOX’=2), and column ‘SEX’ indicates gender (1 for
male and 2 for female).

A common categorization for programming errors is to divide
them into syntactic, semantic, and logical errors [26]. We extend
this categorization to DS1 programming as follows:

4.1 Logical Mistakes
A program with logical mistakes does not behave as expected (in
our case, does not produce the expected output) according to the

1260

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Anjali Singh et al.

Figure 1: A snapshot of the analyzed assignment and two student submissions. Mistake-1 is a semantic mistake (function where() used
incorrectly), and a logical mistake due to dataset misunderstanding (attribute ‘PDAT’ incorrectly used instead of ‘P_NUMVRC’). Mistake-2 is
another semantic mistake due to incorrect use of the bitwise AND (&) operator on two DataFrame objects, which is an invalid operation.
Mistake-3 is a logical mistake due to problem-statement misunderstanding (ratio denominators incorrectly computed as the number of all
vaccinated children instead of vaccinated children who did not contract chicken pox).

problem statement. This typically does not throw a runtime error.
We further divide logical mistakes into the following subcategories
(some mistake types may belong to multiple subcategories):

4.1.1 Dataset misunderstanding. This category includes mistakes
from misunderstanding the dataset, its schema, or associated data
guide. Such mistakes can be caused due to the following reasons:
• Selecting incorrect dataset attributes (columns in a DataFrame).
Mistake-1 in Figure 1 is an example of this category. Instead of
using the column ‘P_NUMVRC’ from the DataFrame, the student
has used the ‘PDAT’ column which denotes whether a child has
adequate provider data. Based on the comment written by the stu-
dent before the line of code with Mistake-1, they misinterpreted
the meaning of the ‘PDAT’ column.

• Using incorrect dataset values or selecting the wrong rows from a
DataFrame. For instance, a student incorrectly used the values
‘male’ and ‘female’ instead of 1 and 2 when filtering rows
using the ‘SEX’ column.

4.1.2 Problem-statement misunderstanding. This category includes
mistakes due to incorrectly translating the problem-statement in-
structions into code due to misinterpretation. Sometimes it may be
difficult to conclude whether a student made a mistake because of
misunderstanding the problem statement or the dataset. For this
reason, we only categorize mistakes as belonging to the ‘problem-
statement misunderstanding’ subcategory if they do not involve
any misinterpretation related to the dataset.

Mistake-3 in Figure 1 is a mistake of this type as instead of
returning the ratio of vaccinated children who contracted chicken
pox versus vaccinated children who did not, the ratio of vaccinated

children who contracted chicken pox versus all vaccinated children
was returned. Other examples include rounding up ratios instead
of returning the actual ratios as instructed, incorrectly ordering
dictionary keys, and returning percentages instead of ratios.

4.1.3 Incorrectly dealing with missing values. Mistakes where stu-
dents incorrectly deal with a DataFrame’s missing values typically
belong to one of the two aforementioned sub-categories in addition
to this sub-category. For instance, instead of using the condition
df[‘P_NUMVRC’]>0, a student used the condition df[‘P_NUMVRC’]
!=0 to select rows indicating children who received at least one
varicella dose. This is incorrect as the column ‘P_NUMVRC’ consists
of missing values, which are counted in addition to the number
of rows where ‘P_NUMVRC’ is greater than 0. Another example is
from a solution to the third question, which required computing the
correlation between the ‘P_NUMVRC’ and ‘HAD_CPOX’ columns. A
student replaced all missing values in both columns with 0, leading
to incorrect computation of the correlation as missing values from
the ‘P_NUMVRC’ column are incorrectly counted towards children
receiving zero doses.

4.2 Semantic Mistakes
Semantic mistakes arise from incorrectly selecting or using a DS li-
brary, function, or operator, which may or may not throw a runtime
error. In addition to a logical mistake (mentioned in Section 4.1.1)
Mistake-1 in Figure 1 contains a semantic mistake as the where()
function from pandas was incorrectly used to select rows that sat-
isfy the given condition. However, this does not filter out the rows
where the condition is not satisfied, as where() is used for replacing

1261

Investigating Student Mistakes in Introductory Data Science Programming SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

values where the condition is False to some specific value (speci-
fied in the call through a parameter named other). Consequently,
in the subsequent lines of code, len(df) returns the length of the
full DataFrame rather than the number of rows where the condition
is satisfied. Another example of a semantic mistake is Mistake-2,
where the student attempted to use the bitwise AND operator di-
rectly on two DataFrame objects, which is not a valid operation.
The correct way of computing the numerator for the key “male”
is: df[(df[“HAD_CPOX”]==2)&(df[“SEX”]==1)]), i.e., combining
two boolean masks3 using a bitwise operator, with parentheses
around each mask to override the default operator precedence
rules. Some other examples of semantic mistakes that we observed
were: (i) dividing a DataFrame slice4 by another slice rather than
dividing their lengths to compute a given ratio, and (ii) using the
groupby() function incorrectly, where the student misunderstood
the output format of the object returned by groupby and performed
incorrect operations in subsequent lines of code.

4.3 Suboptimal Coding
Adata-processing code is suboptimal if it lacks proper optimizations
like vectorized operations, and, therefore, fails to scale to large
datasets. Suboptimal code may or may not throw an error. In our
data sample, we found instances of for-loops being used to iterate
over DataFrame rows such as to count the number of rows that
satisfy a given condition, instead of the more optimal method of
applying a Boolean mask to do the same. While it is not necessarily
incorrect to do so, this is an inappropriate DS programming strategy
as it can slow down the performance of the code, especially when
working with large datasets. Iterating through a DataFrame row
by row is a relatively slow operation in Python compared to using
vectorized operations (e.g., map(), groupby(), join(), merge(),
and filtering using Boolean masks), which have the ability to run
an operation across a whole DataFrame at once.

4.4 Language & Environment Misconceptions
This category consists of mistakes because of misunderstanding the
syntax or the programming environment (in our case, JupyterLab),
leading to Python interpreter errors, e.g., (i) incorrectly specify-
ing the path to the dataset file, (ii) using incorrect python syn-
tax, (iii) not defining a variable or failing to import a library, and
(iv) defining a variable or importing a library in a cell different
from the one in which the solution is being written, such that it
is out of scope. For instance, some students defined variables used
within a function in another function used for answering a different
question, thus making those variables out of scope. Another mis-
take in this category was not defining df (a common variable name
used for a DataFrame) or pd (a commonly used alias for pandas) or
defining them in a cell below the one where they were referred.

5 DISCUSSION AND IMPLICATIONS
We now discuss the results by structuring our discussion around
the DS1 competencies that emerged from our analysis.

3A pandas feature that enables filtering a DataFrame based on a set of conditions.
4A subset of a DataFrame that includes selected rows and/or columns.

Data Literacy and Programming Strategies. Beyond strategic knowl-
edge, problem-solving in DS requires accurate domain knowledge.
The mistakes related to misunderstanding the dataset and problem
statement or incorrectly dealing with missing values highlight stu-
dents’ struggle with understanding the dataset domain. The skills
needed include going over the dataset and its data guide (which can
be very long and tedious to read) and finding associations between
the ask in the problem statement and the information gathered
from the data. This is even more challenging for novices who lack
prior exposure to real-world datasets and, therefore, cannot quickly
identify candidate data elements from the data guide and reduce
those to the ones needed for a given question. Furthermore, data
guides may describe several different dataset attributes that have
similar yet slightly different meanings, which can be confusing for
novices. This applies to the 2017 CDC immunizations data guide
used in the analyzed assignment, which had several attributes with
similar meanings as the ‘P_NUMVRC’ attribute (which denotes the
number of varicella doses). For instance, the following is mentioned
on page 18 of the data guide: “Use PDAT = 1 to identify children with
adequate provider data (includes unvaccinated children)". It is likely
that the student who made Mistake-1 in Figure 1 quickly read this
line and misunderstood that PDAT = 1 is for unvaccinated children.

For novices, learning a new programming language is a high-
cognitive-load task [21]. In DS1, students learn about new libraries
and functions while also learning how to work with large datasets.
This raises the importance of supporting DS1 students in developing
correct assumptions about the data and dataset domain, especially
when they are going through the early stages of learning about
new programming libraries and functions. This can be achieved
by providing facilitative hints with specific details regarding the
dataset domain. This also raises the importance of teaching students
data literacy skills early on, such as by exposing students to real-
word datasets in high school education.

Programming in Computational Notebooks. Our analysis revealed
mistakes that were caused due to misconceptions about computa-
tional notebooks and defining libraries and variables inappropri-
ately, which made them out of scope. Similar student struggles have
also been cited in prior research [46]. Supporting students in under-
standing how the programming model of a computational notebook
environment works, along with the tools to identify, understand,
and address errors in code authored in notebooks can be helpful. In-
troducing students to debugging tools, such as JupyterLab’s built-in
debugger, can be helpful in this regard. Further, validating students’
knowledge of computational notebooks through formative assess-
ments before they are taught the main course concepts can equip
them with the necessary skillset for programming in notebooks.

Code Optimality. Several students did not use vectorizated opera-
tions to write code in a functional paradigm, as was taught. This
finding is also corroborated by prior research [48]. The autograder
used in the course was not equipped to detect suboptimal code.
Therefore, students received full points and were not discouraged
from writing suboptimal code. In CS1, one of the widely reported
causes of student difficulties is the misapplication of their prior
knowledge [41, 49]. In the course we analyzed, students may have
leveraged their prerequisite knowledge of iteration to DS1 program-
ming. Therefore, DS1 instructors could help students unlearn some

1262

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Anjali Singh et al.

Competency What it Means Pedagogical Recommendations
Programming in
computational
notebooks

• Can effectively program and debug in the
computational notebook environment

• Demonstrate how the programming model of a given computational notebook
environment works, along with debugging strategies using DS debugging tools

• Validate this competency early on before students move on to the main concepts
Data literacy • Can adequately study the data and its

schema
• Can relate the data to the data guide while
programming

• Can appropriately handle missing values in
datasets from different domains

• Emphasize the conceptual principles of data cleaning and how alternative ap-
proaches are realized in code and effect analyses

• Discuss a diversity of authentic datasets with missing or anomalous values and
familiarize learners with the implications of various data cleaning and missing
value imputation techniques

• Support students in understanding the dataset domain through facilitative hints
containing knowledge of the dataset domain

Programming
with DS libraries

• Can choose appropriate libraries and their
functions, methods, attributes, and operators

• Can appropriately set function parameters

• Provide worked examples to help students understand the usage of libraries or
functions; as pandas documentation is enriched with worked examples, specific
examples could be extracted from there

Programming
strategies

• Building upon ‘data literacy’ and ‘program-
ming with DS libraries’, can devise effective
strategies for problem-solving

• Remind students of the task constraints that their incorrect code does not satisfy,
e.g., by highlighting the specific part of the problem-statement that the student
misinterpreted and elaborating on it

Code optimality • Can write code that scales for large datasets,
using vectorized operations and functions

• Explain why certain strategies are suboptimal; demonstrate using examples of
optimal code by comparing runtimes with suboptimal code over large datasets

Table 2: Implications for supporting novice data science learners corresponding to each of the five identified competencies.

CS1 concepts that do not transfer well to DS1. This can be done
through both directed pedagogy and autograder tools that detect
suboptimal code and provide feedback to make the code more op-
timized. Setting limits on runtime and memory may be useful, as
done by the UNCode autograder [23]. However, the use of such lim-
its may be problematic, as underlying computational architectures
rapidly undergo iteration, necessitating the need to regularly verify
that the set limits are appropriate. We recommend computing the
number of times a loop executes or using static code analysis [31]
to detect whether a loop is used to iterate over a DataFrame.

Programming with DS Libraries. Semantic mistakes were primarily
caused due to incorrect knowledge of pandas functions. In CS1,
the focus is on teaching language constructs and then using them
to build up an understanding of algorithms and data structures.
In contrast, in DS1 particular libraries (as opposed to language
constructs) are taught immediately, and learners then apply their
understanding of the library functions to accomplish tasks. The
libraries are generally sophisticated software products, and under-
standing their implementation details is beyond students’ skillset.
For instance, pandas uses many levels of inheritance and is layered
on top of NumPy, making exploration of its inner workings difficult
for novices. Further, pandas has an order of 100 methods, and each
method has an order of 10 arguments [14], which makes navigating
the library’s built-in functions even more challenging for novices.
Teaching with worked examples of DS functions and operations can
be helpful, and tools such as Pandas Tutor [40] can be used to visu-
alize how different functions and operations transform DataFrames
in a step-by-step manner.

Based on the aforementioned DS1 competencies, we provide
pedagogical recommendations for supporting learners in Table 2.

Towards Automatic Feedback Tools for DS1. Scaling feedback
generation is necessary to provide individual support to each learner
in large courses. One way to do so is using automatic methods to
detect DS1 mistakes from student code. However, as discussed in

Section 2, scalable program analysis methods for DS1 are limited.
Moreover, the lack of portability of unsupervised approaches from
CS1 to DS1 suggests that semi-supervised or supervised approaches
may be more useful for DS1. One such approach has been described
by Effenberger et al. [18], which utilizes domain knowledge to de-
fine context-specific features (e.g., variable value sequences in CS1)
to generate interpretable clusters of student code. Based on our find-
ings, some useful features of DS1 code (other than ASTs) that can
be used to generate interpretable clusters are: (i) code output, (ii) li-
brary and function calls, (iii) function parameter values, (iv) dataset
attributes and values, and (v) code optimality metrics, e.g., number
of loop executions. Features (ii)–(iv) can be extracted by parsing
the code’s AST. Features (i) and (v) require code execution. These
features can further be used to analyze students’ DS1 code at scale,
rather than manually, as we did. These features can also be used to
prompt Large Language Models [4, 32] (which can generate high-
quality text-based responses to natural language prompts) along
with relevant information such as the problem statement, a correct
solution, the incorrect solution, and students’ prior knowledge in
the prompt text, to generate hints for incorrect DS1 code.

6 LIMITATIONS AND FUTUREWORK
Based on an analysis of various types of mistakes and inappropriate
programming strategies of learners in a data manipulation course,
we provided guidelines for improving DS1 pedagogy and assess-
ment tools. We focused specifically on a single course with adult
learners. Hence, it is possible that the reported errors were due to
specific teaching decisions and may not generalize to other DS1
courses. However, given the lack of literature on DS1 errors, our re-
sults and the shared dataset serve as an important starting point to
identify areas in which students require more assistance. Addition-
ally, our analysis may not provide enough context about the factors
contributing to the students’ mistakes, such as their prior knowl-
edge and motivation. Thus, there is a need to broaden such inquiry
both within and across the different courses in DS programs.

1263

Investigating Student Mistakes in Introductory Data Science Programming SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

REFERENCES
[1] Ella Albrecht and Jens Grabowski. 2020. Sometimes It’s Just Sloppiness-Studying

Students’ Programming Errors and Misconceptions. In Proceedings of the 51st
ACM Technical Symposium on Computer Science Education. 340–345.

[2] Amjad Altadmri and Neil CC Brown. 2015. 37 million compilations: Investigating
novice programming mistakes in large-scale student data. In Proceedings of the
46th ACM Technical Symposium on Computer Science Education. 522–527.

[3] Ruth E Anderson, Michael D Ernst, Robert Ordóñez, Paul Pham, and Ben Tri-
belhorn. 2015. A data programming CS1 course. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education. 150–155.

[4] David Baidoo-Anu and Leticia Owusu Ansah. 2023. Education in the era of
generative artificial intelligence (AI): Understanding the potential benefits of
ChatGPT in promoting teaching and learning. Available at SSRN 4337484 (2023).

[5] Austin Cory Bart, Dennis Kafura, Clifford A Shaffer, and Eli Tilevich. 2018. Rec-
onciling the Promise and Pragmatics of Enhancing Computing Pedagogy with
Data Science. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education. 1029–1034.

[6] Douglas S Blank, David Bourgin, Alexander Brown, Matthias Bussonnier,
Jonathan Frederic, Brian Granger, Thomas L Griffiths, Jessica Hamrick, Kyle
Kelley, M Pacer, et al. 2019. nbgrader: A tool for creating and grading assign-
ments in the Jupyter Notebook. The Journal of Open Source Education 2, 11
(2019).

[7] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[8] Neil CC Brown and Amjad Altadmri. 2014. Investigating novice programming
mistakes: Educator beliefs vs. student data. In Proceedings of the tenth annual
conference on International computing education research. 43–50.

[9] Robert J Brunner and Edward J Kim. 2016. Teaching data science. Procedia
Computer Science 80 (2016), 1947–1956.

[10] Joshua Burridge and Alan Fekete. 2022. Teaching Programming for First-Year
Data Science. In Proceedings of the 27th ACM Conference on on Innovation and
Technology in Computer Science Education Vol. 1. 297–303.

[11] Data Carpentry. 2018. Building communities teaching universal data literacy.
Instructor Training. Building Teaching Skill: Getting Feedback (2018).

[12] Mine Çetinkaya-Rundel and Victoria Ellison. 2021. A fresh look at introductory
data science. Journal of Statistics and Data Science Education 29, sup1 (2021),
S16–S26.

[13] Luca Chiodini, Igor Moreno Santos, Andrea Gallidabino, Anya Tafliovich, André L
Santos, and Matthias Hauswirth. 2021. A curated inventory of programming
languagemisconceptions. In Proceedings of the 26th ACMConference on Innovation
and Technology in Computer Science Education V. 1. 380–386.

[14] Bhavya Chopra, Anna Fariha, Sumit Gulwani, Austin Z Henley, Daniel Perel-
man, Mohammad Raza, Sherry Shi, Danny Simmons, and Ashish Tiwari. 2023.
CoWrangler: Recommender System for Data-Wrangling Scripts. In Companion of
the 2023 International Conference on Management of Data. 147–150.

[15] Sarah Dahlby Albright, Titus H Klinge, and Samuel A Rebelsky. 2018. A func-
tional approach to data science in CS1. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education. 1035–1040.

[16] Andrea Danyluk, Paul Leidig, Lillian Cassel, and Christian Servin. 2019. Acm task
force on data science education: Draft report and opportunity for feedback. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education.
496–497.

[17] David Donoho. 2017. 50 years of data science. Journal of Computational and
Graphical Statistics 26, 4 (2017), 745–766.

[18] Tomáš Effenberger and Radek Pelánek. 2021. Interpretable Clustering of Students’
Solutions in Introductory Programming. In International Conference on Artificial
Intelligence in Education. Springer, 101–112.

[19] Alan Fekete, Judy Kay, and Uwe Röhm. 2021. A data-centric computing curricu-
lum for a data science major. In Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education. 865–871.

[20] Patricia I Fusch and Lawrence R Ness. 2015. Are we there yet? Data saturation
in qualitative research. The qualitative report 20, 9 (2015), 1408.

[21] Stuart Garner. 2002. Reducing the cognitive load on novice programmers. Associa-
tion for the Advancement of Computing in Education (AACE).

[22] Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip J Guo, and Robert C Miller.
2015. OverCode: Visualizing variation in student solutions to programming
problems at scale. ACM Transactions on Computer-Human Interaction (TOCHI)
22, 2 (2015), 1–35.

[23] Cristian D González-Carrillo, Felipe Restrepo-Calle, Jhon J Ramírez-Echeverry,
and Fabio A González. 2021. Automatic Grading Tool for Jupyter Notebooks in
Artificial Intelligence Courses. Sustainability 13, 21 (2021), 12050.

[24] Maurice H Halstead. 1977. Elements of Software Science (Operating and program-
ming systems series). Elsevier Science Inc.

[25] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo,
Loris D’Antoni, and Björn Hartmann. 2017. Writing reusable code feedback at

scale with mixed-initiative program synthesis. In Proceedings of the Fourth (2017)
ACM Conference on Learning@ Scale. 89–98.

[26] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. 2003. Identi-
fying and correcting Java programming errors for introductory computer science
students. ACM SIGCSE Bulletin 35, 1 (2003), 153–156.

[27] Jupyter 2022. https://jupyter.org/.
[28] Lisa C Kaczmarczyk, Elizabeth R Petrick, J Philip East, and Geoffrey L Herman.

2010. Identifying student misconceptions of programming. In Proceedings of the
41st ACM technical symposium on Computer science education. 107–111.

[29] Sean Kross and Philip J Guo. 2019. Practitioners teaching data science in industry
and academia: Expectations, workflows, and challenges. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. 1–14.

[30] Sam Lau, Deborah Nolan, Joseph Gonzalez, and Philip J Guo. 2022. HowComputer
Science and Statistics Instructors Approach Data Science Pedagogy Differently:
Three Case Studies. In Proceedings of the 53rd ACM Technical Symposium on
Computer Science Education V. 1. 29–35.

[31] Panagiotis Louridas. 2006. Static code analysis. Ieee Software 23, 4 (2006), 58–61.
[32] Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul

Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from using code
explanations generated by large language models in a web software development
e-book. In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1. 931–937.

[33] Hamza Manzoor, Amit Naik, Clifford A Shaffer, Chris North, and Stephen H
Edwards. 2020. Auto-grading jupyter notebooks. In Proceedings of the 51st ACM
Technical Symposium on Computer Science Education. 1139–1144.

[34] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on software
Engineering 4 (1976), 308–320.

[35] nbgrader 2022. https://nbgrader.readthedocs.io/en/stable.
[36] Huy Nguyen, Michelle Lim, Steven Moore, Eric Nyberg, Majd Sakr, and John

Stamper. 2021. Exploring Metrics for the Analysis of Code Submissions in an
Introductory Data Science Course. In LAK21: 11th International Learning Analytics
and Knowledge Conference. 632–638.

[37] OK 2020. https://okpy.org/.
[38] Benjamin Paaßen, Jessica McBroom, Bryn Jeffries, Irena Koprinska, and Kalina

Yacef. 2021. ast2vec: Utilizing Recursive Neural Encodings of Python Programs.
arXiv preprint arXiv:2103.11614 (2021).

[39] pandas 2022. https://pandas.pydata.org/.
[40] Pandas Tutor 2022. https://pandastutor.com/.
[41] Yizhou Qian and James Lehman. 2017. Students’ misconceptions and other

difficulties in introductory programming: A literature review. ACM Transactions
on Computing Education (TOCE) 18, 1 (2017), 1–24.

[42] Bina Ramamurthy. 2016. A practical and sustainable model for learning and
teaching data science. In Proceedings of the 47th ACM Technical Symposium on
Computing Science Education. 169–174.

[43] Suraj Rampure, Allen Shen, and Josh Hug. 2021. Experiences Teaching a Large
Upper-Division Data Science Course Remotely. In SIGCSE ’21: The 52nd ACMTech-
nical Symposium on Computer Science Education, Virtual Event, USA, March 13-20,
2021, Mark Sherriff, Laurence D. Merkle, Pamela A. Cutter, Alvaro E. Monge, and
Judithe Sheard (Eds.). ACM, 523–528. https://doi.org/10.1145/3408877.3432561

[44] re 2022. https://docs.python.org/3/library/re.html.
[45] Kelly Rivers and Kenneth R Koedinger. 2017. Data-driven hint generation in

vast solution spaces: a self-improving python programming tutor. International
Journal of Artificial Intelligence in Education 27, 1 (2017), 37–64.

[46] Adam Rule, Aurélien Tabard, and James D Hollan. 2018. Exploration and expla-
nation in computational notebooks. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. 1–12.

[47] Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen
Paritosh, and Lora M Aroyo. 2021. “Everyone wants to do the model work, not
the data work”: Data Cascades in High-Stakes AI. In proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems. 1–15.

[48] James Skripchuk, Yang Shi, and Thomas Price. 2022. Identifying Common Er-
rors in Open-Ended Machine Learning Projects. In Proceedings of the 53rd ACM
Technical Symposium on Computer Science Education-Volume 1. 216–222.

[49] John P Smith III, Andrea A DiSessa, and Jeremy Roschelle. 1994. Misconceptions
reconceived: A constructivist analysis of knowledge in transition. The journal of
the learning sciences 3, 2 (1994), 115–163.

[50] Greg Wilson. 2006. Software carpentry: getting scientists to write better code by
making them more productive. Computing in Science & Engineering 8, 6 (2006),
66–69.

[51] Annika Wolff, Daniel Gooch, Jose J Cavero Montaner, Umar Rashid, and Gerd
Kortuem. 2016. Creating an understanding of data literacy for a data-driven
society. The Journal of Community Informatics 12, 3 (2016).

[52] Florin Stefan Zamfir and Emil Pricop. 2022. On the design of an interactive auto-
matic Python programming skills assessment system. In 2022 14th International
Conference on Electronics, Computers and Artificial Intelligence (ECAI). IEEE, 1–5.

1264

https://jupyter.org/
https://nbgrader.readthedocs.io/en/stable
https://okpy.org/
https://pandas.pydata.org/
https://pandastutor.com/
https://doi.org/10.1145/3408877.3432561
https://docs.python.org/3/library/re.html

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	4 Results: Types of DS1 Mistakes
	4.1 Logical Mistakes
	4.2 Semantic Mistakes
	4.3 Suboptimal Coding
	4.4 Language & Environment Misconceptions

	5 Discussion and Implications
	6 Limitations and Future Work
	References

