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ABSTRACT

Fluid flow and solute transport in a variable-aperture rock fracture are
examined using a model of the aperture as a two-dimensional stationary
stochastic process and assumirg a parabolic velocity profile across the
fracture width at each point. The system is cross-sectinally averaged.
Effective homogeneous apertures are found which predict the mean velocity

and mean flux. The cube of the effective aperture for flux and the square

of the effective aperture for velocity are, in general, different tensors.
These tensors are functions of the mean, variance and correlation structure

of the logaperture process. Effective macrodispersion coeffecients are

found which are proportional to the mean velocity, the maximum correlation
scale, the logaperture variance and functions of the degree and orientation

of statistical anisotropy. The effective solute advection velocity has a
direction different from the mean velocity and its components are proportion-
al to it, the logaperture variance and functions of the degree and orientation
of statistical anisotropy. The component parallel to the mean velocity is
always less than or equal to it. This system differs from the two-dimensional
porous medium stochasiic model in this regard and in the fact that the off-
diagonal terms of the dispersion coefficient are nonzero for anisotropic
logaperture correlation functions. Existing field data confirms the advection
correction effect, but no studies to date have shown evidence of hydraulic or
dispersive anisotropy.

Thesis Supervisor Lynn W. Gelhar
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Chapter 1.

Introduction

Many problems in groundwater hydrology involve fractured rock
aquifers. For example, contamination sites often involve fractured
regimes, geothermal energy can be extracted from hot dry fractured
rocks underground, and crystaliine rock masses are being considered
for high level radioactive waste isolation. In spite of this and fif-
teen years of research, little is known about the proper way to model
fractured rock systems.

Hydrologists usually attempt to apply some sort of continuum
model to such a system, since that greatly simplifies their analyses.
In some cases, though, such as waste isolation, it is necessary to ac-
count for the effect of individual discontinuities on the hydrologic
regime. Sites for waste isolation are usually evaluated on their tight-
ness, that is, their lack of fractures. No site is completely free of
fractures, however, and thus the hydrology of those fractures that
exist will be dominated by discrete pathways and a continuum model
will probably not be appropriate. Moreover, research into the condi-
tions under which a continuum model will work often depends on an
accurate understanding of the processes controlling discrete systems.
Analytical and numerical field scale solute transport models also de-
pend on an understanding of the physics of transport in individual

fractures.



1.1. Review of single fracture fluid flow

Most researchers have modeled flow in a single fracture as flow
between a pair of parallel plates. This approach was first developed
extensively by D. T. Snow in a series of papers in the late 1960s
(Snow (1966, 1968a, 1968b, 1968c, 1969, 1970), Bianchi and Snow,
(1968)). In this model, which presumes full-developed laminar flow
with a parabolic velocity profile, the average fluid velocity, u, over
the fracture cross-section is given by

_ b*gJ
12w’

(1.1)

where b is the fracture’s aperture, g is the gravitational acceleration,
v is the kinematic viscosity and J is the magnitude of the hydraulic
gradient. ‘

Thus, for a unit width perpendicular to both the fluid velocity
and the plane of the fracture, the total flow, Q, is given by

b3gJ

1.2)
120 (1.2)

Q=

which is the well-known “cubic law” relating flow to aperture. The
logical definition of definition of fracture hydraulic conductivity, Ky,
is then \

b%g
= —. 1.3

12v (1.3)
This is the conductivity of only the volume of space occupied by
fractures.

Ky

In the case that the fracture walls are considered to have a finite
roughness, Castillo et. al. (1972), suggest that known relatonships
between friction factor and Reynolds number for flow in circular pipes
be used, with the definition of the Reynolds number as

R=—". (1.4)
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Figure 1.1: Variation of flow rate in natural fracture with different
stresses. Pratt et. al. (1977).

Alternatively, Rocka and Franciss (1977) report Lou.s’ (1969) empir-

ical result ,
b%g 1
Ki=1o0 (1 +8.8r1-5) (1.5)

where r is the relative roughness of the fracture walls.

Of course, we know that fracture walls are not perfectly parallel,
since a fracture will conduct flow while the walls are subjected to
normal stress. There must, then, be places of contact where this
stress is endured, while other areas are not in contact, permitting
flow.

Pratt et. al. (1977) studied the stress dependence of flow in three
granite fractures in the field. They found that even after the fracture
was closed (in that its modulus of elasticity was the same as for intact
rock) a significant amount of flow was still occurring. At low stress,
the fracture flow varied enormously, probably due to the cubic law.
However, for stresses above 30 bars, there was little or no decrease
in flow for large increases in stress (Figure 1.1). Laboratory tests by
Nelson and Handin (1977), Kranz et. al. (1979), Gangi (1978) and
Witherspoon et. al. (1980) have all confirmed this behavior.
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Witherspoon et. al. (1979) noted a scale effect on the asymptotic
value of K; for high stress. It appears that the larger the sample, the
higher the asymptotic value. They hypothesize that this is due to the
possibility that the smaller samples do not contain a statistically sig-
nificant sample of the asperity height distribution. A larger specimen
is more likely to sample asperities from the tail of the distribution,
which would tend to keep the fracture propped wider for the same
stress, thus producing a greater fracture conductivity.

When the aperture in a fracture varies from point to point, it
becomes unclear as to which value to use in the cubic law to calculate
flow. One alternative is to define the “effective aperture” as

: (12Qu)1/3, (16)

but this is really a tautology. Wsitherspoon et. al. (1980) sought to
find another way to measure the aperture in the lab, and in doing so
found an independent check of the cubic law.

Their method was to subject a fracture specimen to vniaxial stress
while measuring the strain across both the fracture and portions of the
intact rock. By subtracting the deformation of the intact rock from
the total deformation, it was possible to deduce the deformation in the
fracture. Iligme 1.2 shows the relationship between this deformation
and the fracture’s aperture. The total aperture, b, is equal to the sum
of the apparent aperture, by, an? the residual aperture, b.. When the
fracture is closed, by = 0, but there is still flow, corresponding to the
residual aperture. The cubic law was then rewritten as

.?. = L (bt b, (1.7)
where n and b, are the unknowns, to be estimated from the stress-flow
data. The result was that in every case, the exponent n came very
close to 3, thus validating the cubic law for fractures whose walls are
in contact at places.

Another approach is to attempt to specify the aperture at every
point in the fracture and then solve for the flow analytically. Simpli-
fying assumptions are in order. For example, Neuzil and Tracy (1981)

7
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Figure 1.2: Relationship between apparent aperture, residual aper-
ture, total deformation and stress in a variable-aperture fracture.
Total deformation, AV,,, is equal to total aperture minus residual
aperture. Witherspoon, et. al. (1980)

have assumed that the aperture may be considered to vary orthogo-
nally to the flow, but is constant in the direction parallel to the flow.
Then, the effective aperture turns out the be the cube root of the
mean of the aperture distribution cubed:

b= ()", (1.8)

where the overbar represents the expected value. This is what we
expect in analogy with a set of resistors in parallel. Tsang and With-
erspoon (1981) also derived (1.8) for variation orthogonal to the How.
In order to analyze the effect of variation along the flow path, it is
necessary to integrate the total drop in head longitudinally, and then
relate the constant flux, Q, to the mean hydraulic gradient, conclud-
ing that

b=(53)"". (1.9)
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Figure 1.3: Dyestreaks in a fracture. Neuzil and Tracy (1981), from
Louis (1969).

However, these quasi-two-dimensional analyses are only partially
correct since they do not allow for flow or gradient direction to vary,
whereas it is well-known that in a two-dimensional conductivity field,
flow is diverted around areas of low conductivity. In fact, Figure 1.3
(Figure 1 in Neuzil and Tracy (1981), from Louis (1969)), shows such
a two-dimensional flow field. They claim that it supports their hy-
pothesis that flow along streamlines occurs in regions of essentially
constant aperture. It seems more plausible, though, that this evidence
supports a fully two-dimensional model, since the evidently random
variation in streamtube width and direction is inherently due to a
variable aperture. The analysis of flow in a fracture with a two-
dimensionally varying aperture is the subject of chapter 2 of this

paper.

1.2. Review of fracture mass transport

In a parallel-plate fracture with impermeable non-porous walls,
we expect that the assumed parabolic velocity profile will tend to dis-
perse any solute longitudinally. In addition, we expect that, along the
lines of Taylor’s (1953) analysis, after an appropriate start-up time,
molecular diffusion will quickly reduce any transverse concentration

9



gradient across the aperture and cause the dispersion coefficient to.
reach a constant value. In a capillary tube, this value is

d?u?

~ 180D, (1.10)

where d is the diameter of the tube, D,, is the coefficient of molecular
diffusion and u is the radially-averaged velocity in the tube. Elder
(1965) provided a way to calculate this for a pair of parallel plates.
The result is

b2u?

~ 210D,,’

where now u is the cross-sectionally averaged fluid velocity in the
fracture. That this value is slightly lower is reasonable, since there
is less of a velocity variation across the cross-section. Karadi et. al.
(1972) presented a method of calcuiating the average concentration
in a fracture at a point downstream from an arbitrarily time-varying
input boundary condition, assuming a constant longitudinal disper-
sivity.

Very little field or lab data exists on single-fracture dispersivities.
Novakowski et. al. (1984) used a two-well tracer test and found a dis-
persivity of 1.55 m. for an interwell distance of 10.6 mm. Gustaffson
and Klockars (1981) performed a two-well tracer test in fractured rock
at Studsvik, in Sweden, finding dispersivities on the order of 1 m. for
an interwell distance of 30 m. Carlsson et. al. (1979) also performed
a two-well tracer test, but did not report a dispersivity. Laboratory
tests by Grisak et. al. (1980) and Neretnieks were inconclusive regard-
ing dispersivities, but nevertheless found values of 0.15 m. and 0.025
m., respectively. All of these results are discussed in chapter 4.

Much research has emphasized the concept of diffusive trans-
port in the porous but relatively impervious rock matrix bounding
the fracture flow, i.e., the so-called “matrix diffusion” model. An-
alytical and laboratory studies include Grisak et. al. (1980), Grisak
and Pickens (1980, 1981), Uffink (1983), Tang et. al. (1981), Sudicky
and Frind (1982, 1984), Rasmuson and Neretnieks (1981), Neretnieks
(1980, 1983), Neretnieks et. al. (1982), Erickson (1981), Barker (1982)
and Barker and Foster (1981). Numerical studies include Kank: et. al.

J

(1.11)
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(1980), Noorishad and Mehran (1982), Rasumson et. al. (1982) and
Huyakorn et. al. (1983a, 1983b). Field experiments which clearly
demonstrate the matrix diffusion effect are nonexistent to date. Each
model has different features but the essence is the same. Mathemati-
cally the inodel consists of two coupled one-dimensional second-order
differential equations. One describes transport longitudinally in the
fracture and the other describes diffusion transversely, but without

advection, into the porous rock matrix bounding the fracture.

Referring to the geometry of Figure 1.4, the mass balance equa-
tions, with all features added, are:

2 ]
Oct i _p oo go _ 2om (ac—"‘) (1.12)
b/2

ot 8z L oz? b \ 8z
Oem _ py Fem _ g, (1.13)
gt = ™ 922 i )
u' =u/Ry (1.14)
Dy, = D./Ry (1.15)
D', = Dp/Ram (1.16)

where ¢y = ¢¢(z,t) is the contaminant concentration in the fracture,
€m = ¢m(z,2,t) is the concentration in the rock matrix, Dy is the
longitudinal dispersion coefficient in the fracture, R4 is the retar-
dation factor for solution on the fracture walls, R;, is the matrix
retardation factor and K is the species’ decay constant. Decay chains
can also be accounted for (e. g., Kank: et. al.(1980), Sudicky and
Frind (1984)).

The initial and boundary conditions are:

cs(z,0) = ¢m(z,2,0) =0 (1.17)
(2, t) = cm(z, b/2,1) (1.18)
cf(oo,t) = em(00,2,t) =0 (1.19)
cr(0,t) = g(t) (1.20)

11
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with one of the following:
cm(z,00,t) =0 (1.21)

or

d
'a—zcm(zy B/2,t) =0, (1.22)

where g(t) is an arbitrary release scenario and B is the spacing be-
tween fractures in a set. Condition (1.22) is used in cases when the
lateral boundary has an effect, i.e., when

—1;- < /DT, (1.23)

where 7 is the travel time for a pulse of contaminant to pass through
the fracture. Otherwise, condition (1.21) may be used. Table 1.1

12



compares the features and solution techniques for the several matrix
diffusion models reported.

It is interesting to compare the matrix diffusion models to the tra-
ditional advection-dispersion model. In general, the matrix diffusion
model predicts much later breakthroughs and much lower concentra-
tions {Figure 1.5), due to a retarding effect whereby the front of a
pulse in the fracture loses mass to the matrix while the tail of a pulse
receives mass from the matrix. Whether this car be represented by
a single retardation factor is not clear. Barker and Foster (1981)
showed that when D!, — oo, the concentration is constant in the
z-direction, the mass being instantancously shared between the frac-
ture and matrix pore space. The peak of a pulse would travel with a

velocity given by
) u b
=— | —], 1.24
“ Ry (b + B‘P) (1-24)

where y is the porosity of the matrix. Then the fracture may be
considered to have an effective retardation factor

— b+ B
Rd/ = Rdf (———b-—(—e) . (125)

However, when D! is low enough to affect the problem, as in most
real situations, an originally Gaussian profile in the fracture becomes
increasingly skewed towards the upstream side. Neretnieks (1983) dis-
cussed this trend for the case when D; = 0. Neretnieks calculated the
first and second moments of this breakthrough, and concluded that
since the second moment is infinite no advection-dispersion model can
fit the curve. This is incorrect, though, since it is the spatial moments
which should be calculated when using the method of moments. This
indicates a need for more careful analysis. It seems possible that
some type of time-varying retardation factor and dispersion coeffi-
cients could yet represent the physics of this situation. In addition,
for some limiting cases, such as small B or large D, or travel time 7,
Taylor’s analysis would again become valid since the storage space in
the matrix would have little effect.

13



Author(s) solution b c d | comments
technique

Barker, 1982 analytical | T | yes | 1.21 | yes -

Burker and analytical, | T | yes | 1.21 | no | chromatography

Foster, 1981 numerical analogy,
infiltration

Erickson, 1981 analytical | T | no - no | spherical dilfusion

Grisak and analytical, | T | yes | 1.21 | no -

Pickens, 1980 numerical

Grisek and analytical | T | no | 1.22 | no -

Pickens, 1981

Grisak et. al., laboratory | T | yes | 1.21 | no -

1980

Huyakorn et. al., numerical | T | yes | 1.21 | yes | spherical or

(1983a) rectilinear
diffusion

Huyakorn et. al., numerical | T | yes { 1.21 | yes | decay chains,

(1983b) spherical or
rectilinear
diffusion

dsteady (S) or transient (T)?
blongitudinal dispersivity in fracture?
‘matrix boundary condition

ddecay?
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solution

Author(s) a| b c d | comments
technique

Kanki et. al., 1980 || analytical | T | no | 1.22 | yes | decay chains

Neretnieks, 1980 analytical | T | no | 1.22 | yes | decay chains

Neretnieks, 1983 analytical | T - 1.22 | no | advection-
dispersion
comparison

Neretnieks et. al., iaboratory | T - 1.21 | yes | channeling

1982

Noorishad and numerical | 1' | yes | 1.21 | no -

Mehran, 1982

Rasmuson and analytical | T | yes - yes | spherical diffusion

Neretnieks, 1981

Rasmuson et. al., numerical | T | yes - yes | spherical diffusion

1982

Sudicky and analytical | S, | yes | 1.22 | no -

Frind, 1982 T

steady (S) or transient (T)?
blongitudinal dispersivity in fracture?
‘matrix boundary condition

ddecay?

15




Author(s) solution al b c d | comments
technique

Sudicky and analytical | T | no | 1.22 | yes | two-member

Frind, 1984 decay chain

Tang et. al., 1981 analytical | S, | yes | 1.21 | no -

Uffink, 1983 analytical | T | no | 1.22,| no | heat flow
1.21

3steady (S) or transient (T)?
*longitudinal dispersivity in fracture?
°‘matrix boundary condition

ddecay?

Table 1.1: Matrix diffusion papers

Grisak et. al. (1980) ran a tracer experiment in the lab using
both reactive and non-reactive solutes and a step input. Their break-
through curve is shown in Figure 1.6. They concluded that simple
advection-dispersion solutions could not fit the breakthrough curves
with realistic parameters, whereas matrix diffusion solutions could,
albeit roughly. They used condition (1.22) with B = 3 cm. and
a step input of concentration co. However, the maximum distance
of diffusion into the matrix was only 0.36 cm., indicating that the
boundary was not reached. This is further borne out by the fact
that the breakthrough concentrations reached only about 80% of ¢y,
indicating that some mass has not yet left the matrix. They were
unaware then of the results of chapter 3 of this report, which predicts
a retardation due to aperture variability. In chapter 4, it is shown
that the parameters used to fit the advection-dispersion model may
be more realistic than seems at first glance.

In fitting their matrix diffusion models, Grisak et. al. (1980)
used a longitudinal dispersivity of 76 cm., the length of their column.
In fact, they had little idea what value to use, their choice being

16
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Figure 1.5: Radionuclide decay chain breakthroughs for advec-
tion-dispersion (dashed line) and matrix diffusion (solid line) models.
Kanki et. al. (1980).
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Figure 1.6: Breakthrough curve in fractured till and attempts to fit
advection-dispersion model to it. Grisak et. al. (1980).

based mostly on heuristical reasoning (Grisak, 1984). This points
out the need for good estimates of dispersivities to be used as input
for these matrix diffusion models. Chapter 3 of this paper uses the
results of the two-dimensional stochastic flow analysis to calculate
such dispersivities.
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1.3. Objectives

The objective of this report is to formally evaluate the effect of
aperture variation on fracture flow and mass transport. This will be
done by modeling the logaperture as a two-dimensional stationary
stochastic process.

This method has met with some success in two-dimensional por-
ous medium models of aquifer heterogeneity (Mizell et. al. (1982),
Gelhar and Azness (1983)). Mizell et. al. (1982) looked at a two-
dimensional flow in a confined aquifer with variable transmissivity
and Gelhar and Azness (1983) studied flow and mass transport for a
multi-dimensional porous medium with variable hydraulic conductiv-
ity. In these papers, heterogeneous systems were modeled by effective
homogeneous systems in terms of fluid lux and mass transport. The
methods predict, for example, an equivalent hydraulic conductivity
for calculating specific discharge and macrodispersion coefficients for
large-scale natural systems. As will be seen, however, application
of the method to a variable-aperture fracture yields a couple of new
twists.

19



Chapter 2.

Fluid Flow

In this chapter, fluid flow in a variable-aperture fracture is an-
alyzed stochastically, with the aim of finding effective homogeneous
apertures for deriving fluid velocities or fluxes. These are useful for
interpreting field data, as will be discussed in chapter 4.

The basic assumption of the model in this paper is that the aper-
ture, b(z,y), is a two-dimensional stochastic process. The process is
assumed to be second-order stationary in that its mean and variance
do not vary over the domain. For convenience, the underlying process
is assumed to lognormal, so that the natural logarithm of the aperture
function is a Gaussian process, which has only two nonzero moments.
The correlation structure of the process is in general anisotropic, and
can be represented by any of the four functions described in Ap-
pendix A. Usually, the exponential, which is the simplest, is used,
but this is not always possible.

The other important assumption 1s that the cubic law holds at
each point. This depends on whether or not the velocity distribution
at each point is a parabola. Langlots (1964) developed an analysis for
one-dimensional flow through a channel of varying width. By solving
the Navier-Stokes equations for slow viscous flow, he was able to write
the vertical distribution of horizontal velocity as a power series in the
assumed small parameter ‘

db

=l (2.1)

€ =

20



This series is

u = (%) (1 - 4b—z:) [1 +&? (; - Sb—f) + O(e")J . (2.2)

The absence of the linear (¢!) term means that the parabolic approx-
imation is good for € < 1. The logical extension to two dimensions
is

Vo2 < 1 (2.3)

and this will be assumed of the aperture process. Then, the cross-
sectionally averaged velocity at any point is proportional to the square
of the aperture at that point and is in the direction of the hydraulic
gradient:
b%g
u=-—2-V (2.4
120 ¥ (2:4)

where the del operator is in two dimensions and ¢ is the piezometric
head. The fluid flux vector Q is given by:

_ by .
Q=-Lvg. (2.5)

This is the single-fracture equivalent of the Darcy equation. The
adoption of the cubic law here is rather like the assumption of Repre-
sentative Elementary Volumes for porous media. The REV concept
is used in porous media so that a coentinuum model may be employed,
where the conductivity or porosity of the medium is a function only
of the point of interest, and not of the state of its neighborhoed.
The motivation here is identical, where we desire to neglect the ef-
fect of aperture convergence and divergence on the point value of the
aperture conductivity.

The equation of continuity for steady flow is
V.-Q=V.(bu) =0, (2.6)
which, using (2.4), can be rewritten
V¢ +3V¢-V(lnb) = 0. (2.7)
21



This is in the same form as equation (2) of Mizell et. al. (1982),
who analyzed a two-dimensional vertically-averaged heterogeneous
aquifer, with Inb taking the place of InT. The only difference is
the factor of 3 appearing in (2.7), which is due to the cubic law.
This factor, arising due to the non-linear (cubic) “Darcy” ecquation
accounts for almost all of the differences between this model and the
porous madium results.

2.1. Head variance

To illustrate these differences, we take a detour to calculate the
variance in head in the fracture due to the variance in aperture. We
write the logaperture and head as the sums of their means and their
zero-mean perturbations:

Inb = B -+ fB(z1, z2), (2.8)
¢ = H(ZEI) + h(Il, :132), (29)

where B, the mean of Inb, is constant, and H(z,), the mean of ¢, is
linear. Define J, the mean gradient, as

_ 8H
=55 70 (2.10)

Note that the z;-coordinate has been aligned with the direction of J,
as in Figure 2.1. Substituting these into (2.7) , we get

2—
V*h 3J3

T

+3Vh-VA=0. (2.11)

Taking (2.11) and subtracting its mean
3Vh-Vp =0, (2.12)

(where the overbar signifies the expected value) from it, we obtain
the perturbation equation

Vih-31 20 L 3(Vh. VB~ VR VR =0 (213)
1

22
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Figure 2.1: Orientation of correlation structure with respect to mean
hydraulic gradient.

By assuming that the perturbations h and B are small, the term in
parentheses may be neglected. The first-order approximation of the
perturbation equation is then

VZh — 3J§§1 =0. (2.14)

The assumption of stationarity (statistical homogeneity) allows
us to write h and 3 in terms of their Fourier-Stieltjes representations
(Lumley and Panofsky, 1964):

h= /k e**dZ, (k) (2.15)

g = /k Q‘k'*dzﬁ(k). (2.16)

The vector k is the two-dimensional wave number, and dZ,(k) and
dZs(k) are the complex Fourier amplitudes of h and 3, respectively.
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The spectrum of a stochastic process, a, can be determined from its
complex Fourier amplitude by

Sua(k)dk = dZ,(k)dZ; (k), (2.17)

where the asterisk denotes the complex conjugate. Similarly, the
cross-spectrum of two processes, a and b, is

Sus(k)dk = dZ,(k)aZ; (k). (2.18)

Substituting (2.15) and (2.16) into (2.14) we arrive at
3iJky

42, (K) = ~ >3t dZ5(K), (2.19)
and thus,
Swalk) = > i Sﬁﬁ(k) (2.20)

gives the transfer function between the spectra of A and 3. Here,
k% = k% + k2.

Now, the variance of a process is equal to the integral of its spec-
trum over the entire wave number domain. Thus,

2
o? = / S k‘ Sps(k)dk (2.21)

Appendix A describes four autocovariances and their spectra. These
are the exponential, Whittle, Whittle A and Whittle B spectra. All
four covariances have approximately the same shape (Figure 2.2), ex-
cept that the Whittle A and B covariances go negative and approach
zero from below. Mizell et. al. (1982), found that using either of the
first two for f, the perturbation of the log-transmissivity, including
the conceptually simple exponential, led to infinite head variance.
Using the Whittle A or B, though, they obtained a finite variance.

As might be expected, the same results occur here. The head
variance resulting from the Whittle A spectrum for G is

9J2A1 )

ol = ——21?——0ﬂ, n=rmx/4, (2.22)
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§/A

Figure 2.2: Autocovariance functions for exponential (solid line),
Whittle (short-dashed line), Whittle A (medium-dashed line) and
Whittle B (long-dashed line) with respect to the dimensionless lag,
&/A, in a given direction.

and the Whittle B spectrum produces

ngAy\g
Tag, n = 3w/16. (2.23)

For the isotropic case (A; = Az = ) these results are exactly what
Mizell et. al. (1982) found, except for the factor of 9. That the head
variance is larger here is not surprising, since the system is steady
(V- Q = 0) and fluid flux depends on the aperture cubed, causing ¢
to vary widely with b.

ot =

2.2. Effective aperture for flux

The effective anerture for flux is that equivalent homogeneous
aperture which predicts the same fluid flux as the mean flux in our
heterogeneous aperture system.
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Now, the mean flux in the z; direction is

Or=bu = -1 2% (2.24)

by = €, (2.25)
we have . ( )
= — 8 . 2.26
Q1 12v ¢ 3:1:1 ( )
Expanding the exponential into its Taylor series, and noting that
B? =0} (2.27)

brings us eventually to the second-order approximation

— big 9 , oh
Ql = ‘1—2; [(1 + 2Uﬂ) J — 3ﬂazl . (228)

The last term is a cross-covariance, which is evaluated by integrating
its cross-spectrum. For y; = h/8zy,

| 3Jk2
d2,, (k) = ik1dZa(k) = Zo7rdZs(K), (2.29)
and 37k
St (1) = 212 555(1), (2.30)
and thus,
~oh 3Jk?
Bar = /k Seun(K)dk = [ =71 Spa(k)dk. (2.31)

In this case, all four spectra produce the same results:

oh 9 psin’a + cos? a
e 3Jop ( e , (2.32)
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where p = A; /)2, and a is the angle between the z; and z'; directions,
so that

—  bigJ 2 [9 psin’a + cos®
_ 9 4 . 2.33
T R b p+1 (2.33)

For the special case of an isotropic logaperture autocovariance,
p=1,and

O

3
7=,
v

so that the effective aperture is the geometric mean of the aperture
process. The same result is had, of course, when af, = 0, where now
the geometric mean is, trivially, the parallel-plate aperture. When
o = 0 and p — oo, we have the same model as Neuzil and Tracy
(1981), and

(2.34)

——  bigJ 9 ,\ . bigJ 9 ,

9= T (1 * 5%) ~ 1w P (50") (2.35)
- 9 —
b® = b} exp (50';“,) = bd. (2.36)

The right side of (2.36) is merely the arithmetic mean of b3, which is
what Neuzil and Tracy (1981) found. When a = 7/2 and p — oo, we
have the other quasi-two-dimensional model, and

B = texp (~503) = (59)°

which is the harmonic mean of 63. All of these results are also found
in the porous medium literature (Gelhar and Azness, 1983).

What is the expected value of @;? In general, it is non-zero:

' (2.37)

—~— —  bigJ Ok
QZ = bug = — 120 3 (79;; (2.38)
Again, for any of the four spectra in Appendix A,
ﬂ-a—zz =3Jo; [(m> sin o cos oz.I , (2.39)
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so that

12v p

The cube of the effective aperture is thus, in general, a tensor. While
we expect this in analogy with porous medium models, it has not
been recognized to date in the fracture flow literature.

To generalize the results to a system where the mean gradient has
arbitrary orientation:

3 —
Q.= begJ [90?, (p+ i) sin a cos a] . (2.40)

— b 9
Q= i—;% (1 + idg) 6,',' - QB,']'] Jj (2.41)

where 6;; is the Kronecker delta, and

ik

B,'j = K —k—2-Sp,3(k1, kg)dkldkz (2.42)

For the exponential spectrum,

- 92 2
sin‘ o+ cos“ o
By =0} (P ot ) , (2.43)
cos?a +sin’a
B =0} (P 2 , (2.44)
By = By = —ag (z; 1) sin o cos a, (2.45)

and thus the components of the effective aperture cubed tensor are

(), = {1 +} [g ~9 (”Sin2 o+ cos” a)] } , (2.46)

2 p+1

» 2|9 pcos? a +sin’
(b3)22_—_b2{1+a,, [——9( )J} (2.47)

2 p+1

(53) = (83)21 = 9bjo} (z ; i) sin o cos . (2.48)

28



The principal directions of this tensor are o and o + 7/2. The
principal values are

2 9 p—1 ) p—1
b, o — )| =8 Zoi | V—— 2.4
‘ [”2”" (p+ 1)] Lo [2"” (,,+ 1)] (249

9 ,(p—1 9 ,(p-1

3 2 ~ 13

The exponential generalization hypothesized in (2.49) and (2.50),
which was propesed by Gelhar and Azness (1983), is exact for p =0
and p — oo (see (2.36) and (2.37)). The anisotropy ratio, R, is (2.49)
divided by (2.50):

and

p—1
R =exp |93 | —=]]|. 2.51

? [ g (p + 1)] (251
Note that for an isotropic input covariance, R = 1, and the effective
aperture becomes a scalar.

2.3. Effective aperture for velocity

The effective parallel-plate aperture which computes the same
fluid velocity as the mean for our random-aperture model is slightly
different from the one for fluid flux. This is essentially due to the fact
that

B # b b2 (2.52)

The method is the same, though. The mean velocity is given by

taking the expected value of (2.4):

b2
a; = 1—;% [(1 + 20“2,) bij — GB,']'] Jj, (2.53)
The components of the effective aperture squared tensor are thus:
.2 2
22\ g2 2 psin”a + cos” &
Ot fieafos(oree)]) s
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2 s 2
fo\ g2 2 pcos®a+ sm’ o
( )22_bl{1+a,, [2—6( P )]} (2.55)

b i p—1}) .
(bZ)12 = (bz)21 = b? [Gaz (p n 1) sin a cos a] . (2.56)
With the definitions

Yy =2-6 (” Sinz;": 1°°52 0‘) (2.57)
Yn=2-6 (pcoszpa++lsin2 a) (2.58)
Y12 = th2 =6 (z; 1) sin a cos v, (2.59)
this can be written simply as
(82>ij = b (8 + o5is)- (2.60)

This is also a tensor. It has the same principal directions as the
effective aperture for flux. The principal values are

pP—2\| o p—2
and
20—1\] _ 20 —1
b2 [1—2ag(p+l)} = b2 exp [—2a§(p+l)] (2.62)
and the anisotropy ratio is
-1
R= 6o [2——1]. 2.63
e@[aﬁ(/ﬁl)] (2.63)

All’ of the differences between the two effective apertures arise
from the linearization of a cubic (fiux) dependence on the aperture
as opposed to that of a square (velocity) dependence. Some of the
implications of these differences will be discussed in chapter 4.
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Chapter 3.

Solute Transport

In this chapter, the effect of aperture variation on mass transport
is investigated. In particular, the effect of the random variations in
velocity produced by the random aperture model is evaluated. We
expect, in analogy with Gelhar and Azness (1983), to find that the
mean concentration distribution will, after a sufficient time, and in
the limit of zero or negligible local dispersion, be describable by a
combination of effective advective and dispersive transport compo-
nents. This result is achieved, albeit by a circuitous and seemingly
unintuitive route.

The method is the same as in the previous chapter. First, an
equation governing local relationships is assumed. The parameters
and variables are written as stochastic processes, and the mean behav-
ior of the governing equation is investigated. This involves evaluating
certain cross-covariances, which turn out, as before, to be equivalent
to effective homogeneous-parameter components of the mean of the
governing equation.

In order to evaluate the effects of large-scale velocity variations
on mass transport, two models of local mass transport are used. The
first includes advection and a constant local Taylor dispersion due
to the cross-sectional averaging of the parabolic velocity distribution.
The local dispersion is eventually neglected, but its form has an ef-
fect on the results, producing physically unrealistic behavior. To get
around this, a second model is discussed, which includes .lvection
and a first-order decay, but no local dispersive component. The de-
cay is also eventually neglected, but in this case, with no deleterious
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mathematical artifacts. These two models are discussed in the next
two sections.

3.1. Dispersive Model

The most intuitive model of local transport is the two-dimensional
advection-dispersion model. The simplest version of this, and the one
analyzed here, has a constant local dispersion coefficient, with Taylor
dispersion plus molecular diffusion in the longitudinal direction and
only diffusion in the transverse direction:

En = DL =F+ Dm, (3.1)
Ezz = Dm, (32)
E12 = E21 = 0. (33)

For convenience, the z;-axis has been realigned with the direction of
the mean velocity so that @3 = 0 and w7 = u (Figure 3.1).

There may be visualised two immediate objections to the reality of
this model. First, since the Taylor dispersion coefficient for a parallel-
plate fracture depends heavily on the aperture, a variable dispersion
coefficient seems more realistic. The constant coefficient was selected
for three reasons. First, it is simpler. Second, it enables clearer
comparisons with the stochastic porous medium models. Third, Naff
(1978) and Gelhar et. al. (1979) found that for porous media, varia-
tions in dispersivity were not as important as velocity fluctuations in
controlling macrodispersion.

The second objection to a constant dispersion coefficient lies in
the fact that even for a constant-aperture fracture, the Taylor mecha-
nism does not take effect immediately, but requires a certain amount
of time for molecular diffusion to damp out any cross-sectional con-
centration gradients. Thus, if u changes before this time, the Taylor
mechanism cannot be said to have existed, and no constant, let alone
Fickian, model will realistically represent the local mixing process.

Fischer et. al. (1979) state that for a capillary tube, the longi-
tudinal mass transport will be approximately Fickian for times ¢ such
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Figure 3.1: Orientation of correlation structure with respect to mean
fluid velocity. Note that the z; direction is now with u, and not J.

that
t>

TR

&
o (3.4)

Assume that this is true for parallel plates as well, with b = d. For
a constant (cross-sectionally averaged) velocity u, a particle of water
will travel a piston flow distance

z=ut (3.5)

in this amount of time. Heuristically, the correlation scale, A, of a
process may be thought of as the distance over which that process
is approximately constant. Then the Taylor mechanism will develop
fully if the correlation scale, of a stochastic aperture is greater than
the piston flow distance z. In other words, if

‘< 30AUD,,,.
S T
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For the typical values:

D,, =10 m.?/s,, (3.7)
v =10"%m.?/s., (3.8)
A=1m, (3.9)

g = 10 m./s.%, (3.10)

J =102, (3.11)

b must be less than 750 um. This may be taken as an implicit as-
sumption of the analysis in this section. In light of all of these ob-
servations, the assumption of a constant local dispersion coefficient
seems acceptable.

Given this assumption, then the equation of conservation of mass
for this cross-sectionally averaged system is

(bcu,- Y ) =0. (3.12)

T 7 oz;

Using the product rule for differentiation and the equation of conti-
nuity (2.6), we get

E; ) 2
u,-——c—Eij( (nb) dc 3% ):0. (3.13)

ox; dz; Odz; OJz;0z;
Substituting

Inb = B + f(z1,z2) (3.14)
¢ = &(z1,22) + ¢'(z1, z2) (3.15)
u; = U + ui(z1,Z2) (3.16)
U =u#0 (3.17)
Uz =0, (3.18)

taking the expected value gives us the mean equation

_ —aT S AT 2

”753‘5; + ugg—;—_ — Ey (%%g% + azng) =0. (3.19)
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The second and third terms represent additional solute fluxes due
to the aperture variation. Each must be rewritten to avoid evaluat-
ing derivatives of ¢’, which would introduce unneeded mathematical
complexities:

B¢ 9 EIN
il (ule') - (—?Zc’ (3.20)

o "a"ﬂ"'), o
Es o Oz; 89:, oz, (E" 8:1:,-c + B azgazjc ) (3.21)

These can be rearranged as

9 (= aﬁ ] _—
a—x; (u;’c - E;Ja 3:1:,- ‘/l; (S‘u,-c(k) - Zk]EIJSﬂc(k)) dk (3.22)

! 02
- Z:: C'+Eij—3_zj9%:;c, = - ./l‘( (ik,-Su‘c(k) + kikjE,'ngc(k)) dk. (3.23)

We hope to (and do) find that

9 : 8 _ oe
(—9;:./1; (Su,c(k) - ’ijE;jSﬁc(k)) dk = _ED"'E—Q:_J-’ (3.24)
and
- ./;‘ ('ikisu,c(k) + k,‘k_,'EijSﬁc(k)) dk = -U; aa_c (3‘25)

where D;; is the coefficient of macrodispersion and U; is a correction
to u; for finding the advective component of the mean solute flux.
Thus, the mean equation will have the form

8%
(Eij + Dyj) =—5— = 0. (3.26)

. £
(“"_U"a, 9z:91;

To evaluate these integrals, we need S, (k) and Sg.(k) in terms
of Sgp(k). These transfer functions can be derived by looking at
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the perturbation equation, which is found by subtracting (3.19) from
(3.12) and neglecting terns like

a't — a'b'.
This results in

_oac , O (aﬂ 9¢ a% \
w%'f'uia—z—i—Ez; 5;;3—%4—61;{3%' =0. (3.27)

Putting . 9%
c
G,’ = —b?"’ (3.28)

and using the Fourier-Stieltjes representations (2.15) and (2.16) and
¢ = /k e**47,(k), (3.29)

we have
utky dZ.(k) — G; dZ, (k) +ig dZs(k) + e dZ.(k) =0. (3.30)

where
g = .DLIC1G1 + Dmk2G2 (3.31)

and
e = Dpk? + Dkl (3.32)

The relationship between dZs(k) and dZ,, (k) can be derived from
the perturbation form of the continuity equation:

vl 8f
a—zi + ‘ll:'a—; = 0, (3.33)
giving

ki dZ,, (k)

dZs(k) = ok,

(3.34)

36



Inserting (3.34) into (3.30) and solving for dZ_(k) yields

_ (ukiG; +igk;\ dZy, (k)
dzZ.(k) = ( . ot (3.35)
uk,G; —igk;\ dZ; (k)
dz;(k) = 2 1 o :
(k) ( e —iuk; ) uky, '’ (3.36)
so that 5iGo — igks\ Sun (K)
_ [ ur1Gy — 1Ry ) Ouuy
Su.c(k) = ( ™ ) uky (3.37)
and, in real and imaginary parts,
_ [(ukieGj + ukigk;) + i(u?k}G; — gek;)| Su,u, (k)
Su,c(k) = [ kT T e? o (3.38)

To find S,,., (k) in terms of Sgs(k), we investigate the perturba-
tion form of (2.4): "

dh
' — ] [ ——
up =« (2ﬁJ, 8:1:,-) (3.39)
dZui(k) = 2’7.],' dZﬂ(k) - "{’l:k,' th(k), (3.40)
where b2
=9
1= 19, (3.41)
The generalization of (2.19) for arbitrary direction of mean gradient
is .
dZy (k) = _3’:;'71' dZs(K), (3.42)
which means
k;k;
dZui (k) =1 26,‘}c -3 —I-C—2— Jk dZﬁ(k), (343)
and
k:k kik
Su‘u, (k) = 72 [2(5,‘1c -3 (—k&i)j' [25J~1 -3 (-—;%)] JkJISpﬂ(k).
(3.44)



This equation is very similar to equation (61) of Gelhar and Azness
(1983), the only difference being the existence of factors of 2 and 3
in our system, once again resulting from the cubic law. We now have
Su,c(k) in terms of Sgg(k). Also,

Spell)dk = T (VT (B, (3.45)
and using (3.34), we get

k;

u_qu“‘c (k), (3.46)

Spe(k) = —
which gives us Sp.(k) in terms of S, (k) and thus Sps(k).

The simplest input covariance is the isotropic exponential, which
has the spectrum used here to evaluate (3.24). The integration in-
volves extensive manipulations, with much use being made of the fact
that integrals from —oo to co of odd functions are zero (this removes
the imaginary terms). Also, since the covariance is isotropic, Jo = 0
simplifies matters. For

_ Dy
Tud

much less than unity, integrals of the form

/ Spp(k)P(k)dk
k u2k? + (Dpk? + Dpk3)®

(3.47)

where P(k) is a polynomial in k; and k;, may be approximated by
noting that the main contribution will come from the area around
k; = 0, rescaling the k;-axis as

ky = ez, (3.48)

and taking € — 0. This is equivalent to neglecting local dispersion.

For these approximations, and with the isotropic spectrum, we
find that (see Appendix B.1)

Dy = LB~ 3.
11 u ( 49)



and
Dlg = D21 = D22 = 0. (350)

Using (2.54), (3.49) may be rewritten
4uofA :
(1-03)

which is interesting in that it is proportional to u. Thus, the longitud-
inal macrodispersivity exists and is proportional to A and increases
rapidly with ag.

Dy, = = qulo exp(203), (3.51)

The evaluation of U; does not require any approximation for an
isotropic logaperture spectrum (see Appendix B.1). Here, U, = 0 and
U, is given by

'72.7202 o%u

1
U, = o
YT 2w 21— o)

2u0'; exp(2a§). (3.52)

IR

This means that the effective velocity of solute advection is equal to
. 1, 2

although it must be greater than zero.

When the input spectrum is anisotropic, as in Figure 3.1, how-
ever, problems arise. Previously, the term involving Sg(k) in (3.24)
did not contribute to (3.49). In this case, this term behaves strangely,
producing a non-symmetric D;; and a divergent value of Da;. (Sce
Appendix B.2 for these calculations.) An infinite cross-covariance is
non-stationary. It is unclear whether this is due to mathematical
artifact, is inherent in the assumption of constant Ej;, is due to the
attempt to fit a Fickian local dispersion to our system or derives from
the cross-sectional averaging. Fortunately, asymptotic macrodisper-
sion coefficients can be found for an anisotropic input spectrum if a
trick involving using decay in the local mass conservation equation is
employed.

39



3.2. Decay model

In this model, the mass conservation equation is

2
— . b =
B3, (busc) + bKc =0,

(3.54)

where K is the decay constant. Using the equation of continuity, this

becomes

Jdc
i— + Kc = 0.
U Bz c=0

Note that b does not enter into the equation.
The mean of this is
ac ac
m&z; +u:é— + Ke=0.

Z;

As before, we eliminate the derivative of ¢':

and look for

O o0 p O
dz; * ~  9z; 7oz,
and
ou! de
—_——tal —
52" = Uian,

Yy ,'_ ,=
u,a ‘+ '6x;+KC ,
which gives
G
dZ.(k) = 1 ”

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)



Su’c(k) = mcjsu‘uj (k) (3.62)
Thus,
—_— K + iuk1
fel = = —_— G .
c /k Su.o(k)dk /k e g2 O Sucn (€)dk, (3.63)

and since Sy, (k) is unchanged, and is even in k, the imaginary
term drops out. D,; is the part proportional to G;. Now, the small
parameter € is

K\
Tu
and after rescaling k; and taking € — 0, the results for D;; and U;
with an isotropic Spy(k) are the same as (3.49), (3.50) and (3.52) (see
Appendix B.3), but with an anisotropic Sgs(k), we get (see Appendix
B.4)

(3.64)

€

SN

Du - (365)
u(p? sin® w + cos? w)l/z’
2020121 J
Dlg = D21 = - ) f ! 12 172" (366)
u(p? sin® w + cos? w)
2. ~2]2
Dy = 75717 72 (3.67)

u(p?sin® w + cos? w)"/z’

Now, referring to Figure 3.2, with % the component of u in the
direction of J and %3 is the component perpendicular to J, we have,
using (2.60) forz =75 =1,

ucosf =u; =~J (1 + 0,2,1,[:11) (3.68)
and
usin .= @z = vJ (o3n2) , (3.69)
so that 2p
Jy=Jcosf = — (3.70)

2l (1 + 0;231/’11) ’
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4

Figure 3.2: Definition of u;.

d
an ucos?sinO

v (1 +&0;‘;'1/J11) .

Jo=Jsinf =

Thus,
4uo§)\ Lcostd

(1 + a§¢11)2(p2 sin® w + cos? w)

1/2?

2ua§/\1 cos®fsin @
Dys = D21 = - P 1/2?
(1 + 0,2,¢11) (p2 sin?w + cos? w)
uoj A cos® § sin? @
2 172
(1 + crﬁzbn) (p2 sin® w + cos? w) /
The angles § and w are related to o by

~ 2
N o

0 = arctan :g = arctan {——-ﬁ—ﬂbzm——}
u; 1+o5¢%n

Dsp =
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(3.72)

(3.73)

(3.74)
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and
w=a-240. (3.76)

Note that D, and D,; are non-zero, which is not found for two-
dimensional porous medium stochastic models (see (73) of Gelhar
and Azness, 1983). This is due to the factors of 2 and 3 in Sy,4, (k)
noted earlier.

The advection correction from (3.57) is found using the same
method. The results are found in Appendix B.4 to be

Uy =

uolcos?d [p|(sin?w —2cos?w)cos?@ + 3cos?wsin®@
- B |
(1 +U§‘¢u)2 pt+1

[(cos2 w — 2sin? w) cos? 9 + 3 sin® w sin? 0] 377
p+1 (3.77)
2ua§ cos® @sin 8
Uz = - 2 3 X
(1+ 0'57»1’11)
p (2 cos?w — sin® w) -+ (2 sinw — cos? w) . (3.78)
p+1

The significant feature here is that, since U, # 0, the effective direc-
tion of solute advection is not the same direction as %;, unless the
logaperture process is isotropic, when the same results are obtained
as for the dispersive model.
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Chapter 4.

Summary and Discussion

A variable-aperture rock fracture is modeled as a two-dimensional
stationary lognormal stochastic process. All quantities are averaged
across this variable cross-section. This variation affects both flow and
mass transport in the fracture as a coefficient in the two respective
partial differential equations.

Equivalent homogeneous apertures are found which predict the
same fluid velocity or flux as the areal mean velecity or flux for the
random model. These effective apertures are dependent on the ge-
ometric mean, variance and correlation structure of the logaperture
process. The cube of the effective aperture for flux and the square
of the effective aperture for velocity are, in general, different ten-
sors. The principal directions of these tensors are aligned with the
directions of maximum and minimum correlation and thus when the
logaperture process is statistically isotropic the effective apertures
become scalars.

Mass transport is analyzed for the special case of zero local disper-
sion. Again, effective homogencous dispersion coefficients and advec-
tion velocities due to the two-dimensional velocity variation are cal-
culated for an advection-dispersion model of the transport of an areal
mean concentrasion. This mean concentration must in general be nei-
ther constant nor planar. Thus, the areal average must be something
like an areal moving average on a scale dependent on some Represen-
tative Elementray Area for concentration. A Fickian model for the
local dispersion of the total concentration (mean plus perturbation)
is assumed, with a constant dispersion coeflicient. Even though this
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dispersion is later neglected, its form and the cross-sectional averag-
ing have an effect on the form of the resulting equivalent dispersion
coefficients. When the logaperture process is isotropic, the longitud-
inal dispersion coefficient exists and is convectively controlled and the
transverse coefficient is zero. However, when the logaperture process
is anisotropic, the resulting dispersion matrix is asymmetric and di-
vergent in the transverse direction. The physical significance of this is
questionable. Since the resulting dispersion coefficient represents the
effect only of the large-scale variations in fluid velocity, a more phys-
ically realistic result may be obtained by considering a local model
of transport including advection and first-order decay but not disper-
sion, and then neglecting decay. In this case, the same results are
obtained for an isotropic logaperture process, and for an anisotropic
logaperture process, the effective dispersion coefficient is as, mptoti-
cally constant and tensorial. All components are proportional tc the
areal mean velocity, the maximum correlation scale and a function of
the logaperture variance. - ‘

Both local models predict that the effective velocity of solute ad-
vection is proportional to but does not coincide with the areal mean
velocity. For an isotropic logaperture process, the directions both
coincide with the direction of the mean hydraulic gradient, but *the
solute is retarded with respect to the fluid velocity. When the process
is anisotropic, the directions do not even coincide, but both compo-
nents of the effective velocity are still proportional to the magnitude
of the areal mean.

Note that (3.55) does not include b, since the decay term is a sink,
and thus lies outside the divergence. Then, no terms involving 33/3z;
will appear in the mean equation. This is what enabled the decay
model to produce stationary, physically realistic results. The same
results occur if the local conservation of mass equation is assumed to
be

2
a_ij (busc) — bEy; =2 — 0, (4.1)

I 3:1:,-62:,- B

which neglects the effect of the aperture variation on the dispersive
flux, but not on the advective flux. Then, using (2.8), this equation
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becomes

dc %
e Eyje———— = 0. 4.
u‘am,- ’69:;3:1:,- 0 ( 2)

This is very similar to equation (12) of Gelhar and Azness (1983).
In their three-dimensional porous medium system, no variations in
porosity or averaging distance occur. It appears that a requirement
for this stochastic method to “work” is that any averaging distance
be constant or non-apparent. Of course, this was never noticed for
the porous medium analyses, but it explains a bit of why the decay
trick was needed for the fracture system.

The fracture model differs from the two-dimensional porous med-
ium model in that the solute does not travel with the mean velocity
and that, due to the local cubic law, the off-diagonal terms in the
macrodispersion tensor are nonzero for an anisotropic logaperture
autocovariance.

The results of the dispersive model may reflect an inadequacy
of the matrix diffusion model for field applications. In the diffusive
model presented in this paper, the cross-sectional averaging produced
an asymptotically constant Taylor dispersion coefficient for large time
and constant aperture. When an “equivalent dispersion coefficient”
in calculated for a matrix diffusion system with a constant fracture
dispersivity, the same type of cross-sectional averaging is implied.
However, when the dispersive model in this paper was used with a
variable aperture, the cross-sectional averaging produced an asymp-
totically divergent dispersion coefficient. Thus, in the field, where
apertures are likely to be heterogeneous, the question of whether
the matrix diffusion effect controls or whether it has an equivalent
advection-dispersion model remains unanswered. On the other hand,
the solute retardation may enhance the matrix diffusion effect, since
it allows more time for mass to enter into the porous rock matrix
from the fracture.

Several different velocity averagings are discussed in the analysis.
The first, u;(z1,%2), is the cross-sectional average of the parabolic
Poeusille distribution to obtain the quadratic relationship between
the mean velocity and the point value of the aperture. The second,
%, is the (constant) areal mean of u;, and the third, 4; = %; — U, is
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the effective velocity of solute advection. Therefore, effective parallel-
plate apertures calculated in the field from packer tests versus tracer
tests may not be equal. Even when the tensorial nature of the eltective
aperture is neglected, i.e., for an isotropic logaperture process, the
packer test, measuring fluid flux, will find (see (2.34))

baux = be, (4.3)

but the tracer test will measure 4; and thus find (see (2.54) for p =
and (3.52))

Beracer = be [(1 —af) (1 ~ WE?;—};)?)] 1/2, »

which is smaller than b,.

Gustafsson and Klockars (1981) found that their calculations of
effective apertures using these two methods in the field produced a
flux aperture which was larger than the tracer aperture by a factor
of twenty. This can be used to evaluate 0'5 for the fracture tested,
giving

IR

DO | =

o5 . (4.5)
They also found dispersivities on the order of 1 m. Using (3.51), and
0} = 3, we get

A=0.2m., (4.6)

which seems reasonable. Note, however, that this data may come
from a fracture zone of two or more discrete pathways, and thus
represent an equivalent single-fracture stochastic approximation of a
multi-fracture system.

Novakowsk: et. al. (1984) found little difference between flux and
velocity determinations of the effective aperture, which would indicate
a low variance, except that their dispersivity was very high, at 1.55 m.
for a 10.6 m. interwell distance. It is possible that the logaperture
variance is very large, which would explain the lack of agreement
between our model and their data.
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The result that, for an anisotropic logaperture process, Us # 0
may have some effect on the analysis of two-well tracer tests, where
the mean velocity field is not uniform. More work is necessary in order
to determine the magnitude of the effect. This may in turn yield a
method of calculating such parameters of the stochastic analysis as
ag or p from breakthrough curves.

Grisak et. al. (1980) found that in the lab, the effective aperture
for a fractured till calculated from flux measurements was 40um.,
whereas an effective aperture of 7um was required to fit an advection-
dispersion model to a breakthrough curve for the sample (Figure 1.6).
This also gives a a}, of about 0.5. They used a dispersivity of 0.15 m.,
which gives

A=0.03m., (4.7)

which is about an order of magnitude smaller than the field value
derived above from Gustafsson and Klockars (1981). However, the
fractures are quite different in terms of both material and scale so
that comparison is probably fruitless.

Neretnieks et. al. (1982) also ran laboratory column tests, finding
a dispersivity, fluid velocity and effective aperture from breakthrough
curves. The aperture is not calculated, however, from flux data. The
fluxes are given for each test, but the magnitude of the gradient is
not, so no estimate of o‘% can be made this way. However, they did
calculate a ag from a model considering the combined effect of several
independent channels of flow, each of constant aperture, within the
single fracture in their column, giving

02221072, (4.8)
which, for their dispersivity of 0.025 m., gives a correlation scale of
A =0.6 m. (4.9)

This seems too large for the size of the sample, which is probably
due to the assumption of constant aperture in the direction of flow.
This points out the need for careful laboratory and field tests in or-
der to determine just when the cifect of velocity variations plays an
important role in flow and mass transport in real fractures.
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The possible scale effect noted by Witherspoon et. al. (1979) for
the asymptotic value of K for large stress gives another indication
of the typical magnitude of the correlation scale. Their explanation
was that the larger samples exhibit a greater asymptotic hydraulic
conductivity because they sample more apertures from the tail of the
aperture distribution. If this is true, then the assumption of ergodicity
is probably not valid at that scale. The correlation scales must then
be a significant fraction of the scale of the largest test, which was
about 1 m.

The assumption of ergodicity is implicit in the use of a stochas-
tic model of the aperture. Lumley and Panofsky (1964) have shown
for a one-dimensional system that this is satisfied if the scale of the
problem is much larger than the correlation scale of the stochastic
variable. Then, a spatial average of one realization of the process
may approximate an ensemble average of many realizations. Station-
arity is also an important assumption, allowing the Fourier-Stieltjes
representations of the perturbations. For a single fracture, it seems
plausible that the mean, variance and correlation scale be constant,
although. of course, they may vary from fracture to fracture.

The assumption of steady state may seem unusual. However, Gel-
har and Azness (1983) have shown that for a three-dimensional porous
medium the steady-state dispersivities are the same as the asymptot-
ically long-time results for a transient analysis. The assumption of a
Fickian transport relationship requires a considerable “start-up” time
for the mean concentration gradients to become smooth, so that the
assumption of large time seems reasonable.

Another important assumption was that the perturbations be
small so their products may be neglected. In addition, several deriva-
tions required that af, be “small.” Just how robust the theory is with
regard to this assumption may not be quantified until careful Monte
Carlo simulations are done. Until then, caution must be exercised
when applying these results to situations with large variance must be
done with great care. '
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Appendix A.

Autocovariances and Spectra

Four autocovariance/spectrum pairs were chosen to represent the
statistical properties of the logaperture process. The first is based
on the exponential decline of correlation with lag. This exponential
autocovariance function, Rgg(§), is

Rpp(€) = of exp[—(€/A)], (4.1)
where cré is the variance of the logaperture process, and

s_(g,8\"
X_(E+Xg (A.2)

where )A; and A, are the correlation scales in the directions of maxi-
mum and minimum correlations, respectively, and &; is the component
of the lag vector in the direction of A;. The spectrum, Sgg(k), for this
covariance is

0§A1A2
2 (1 + A2k2 + AZk2)*/*’

where Sps(k) and k; are the components of the two-dimensional wave
number vector in the directions );. This pair of functions is attractive
because of the simplicity of the exponential function, and in particuiar
its monotonic decline in correlation with distance.

The Whittle spectrum, used by Whittle (1954) and Mizell et. al.
(1982), also has a monotonically declining autocovariance function.

Spp(k) = (A.3)
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The Whittle spectrum and autocovariance are

ain?idg T
Sga(k) = B , =— A4
and ¢ ¢
T T
Rpp(€) = 0'}23 (a) K, (ﬁ) (A.5)

where K is the first-order modified Bessel function. -

The Whittle A and Whittle B spectra were proposed by Mizell
et. al. (1982) in order to produce a finite potential head variance due
to variations in the transmissivity of a confined aquifer. As is shown
in chapter 2, these spectra are also necessary to get a finite head
variance in the fracture model. The Whittle A and B spectra are,
respectively,

S k)= = - A6

3

>

and
SopntAda(MkE £ MR s
m(n? + A2k? + A2k2)* 16 .

Spyss(k) =

and their autocovariances are

=3 () (35) - 3 (5) 0 ()] cam

R(p)ps(€) = o} { [1 + %(%)2] (%) = <%) -
(55 (59} “

Here, K is the zero-order modified Bessel function.
These four covariances are plotted in Figure 2.2 of the main text.

and
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Appendix B.

Details of Calculations

B.1. Dispersive model with isotropic

logaperture process
From (3.24), we see that

Di,G; = /k (Suse — ik, E:;Spe) dk. (B.1)

Using (3.46), (3.38) and (3.44), and for ¢ = 1,

L (ukieG; + ukygk;) + 1(u?k2G; — egk;)
DyG; = -/;( ( uky(uk? + €?) %

[(E‘iﬂ‘lﬂ) S (k) + (ikzD L) Sure, (k)] dk

u u

u? Jx k*k}(uk? + €?)

(G [(D2DmJ}i?) 3+
(((2D%Dm + D}) J} + D} D J}) ki+
(4DnuJ2k})) K3+
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(((D%Dm +2D3) J2 + (2D} Dy + D} ) J7) K2 +
 (9DmJ} +4(Dp — D) J}) u’k}) K3+

((D3J2 + (D3D +2D3) JF) K} +

(9DLJ2 + (D — 4D1) J2) u?k?) K2+
(D3 J2EL + DLIPu?k}) | +
G: [J1J: (2D D kikG+
((4D.D2, + 2D3D,,) ki — 4Du?k2) K+
((2DLD2 + 4D} D,y) kS + (16 Dy, — 6D1) u?k?) kj+

(2D3 Dk + (2D, + 12D1) w?k5) k)| } (B.2)

The part proportional to G, is D;; and the part proportional to G, is
D;,. For an isotropic Spg(k), Jo =0 and J; = J # 0. Thus Dy, =0
and

_ v J? Spp(k)dk 2 2 2] 1.6
Dy="13 /L T {[D2Dmk? + 4D u?] K$+

[(2D3Drm + DY) kf + 4Dy, — Do) u?k2] i+

[(D3Dyn + 2DY) K¢ + (Do — 4Dy) wlki] K2+

[D3k? + Dru?it]} . (B.3)
For L Dy (B.4)
T ud’ ‘
$i = Ak; (B.5)
and D,
K= D, (B.6)
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equation (B.3) becomes

72 J? Spp(s)ds
ud Je ¢4(¢? + e2(s? + xcf)?)

Dll =

(5] + der) 6§ + (€20 + )¢ +4e(1 — w)s]) 6 +

(€ +2)sf + (s — 4)c) 7 + %8 + ef] - (B.7)

Putting ¢; = ez and letting ¢ — 0 gives

2-7 2 4r¢l Sﬂﬁ (0, ¢2)dzdg»
D = /-/§2 ""25'

_ 29%J%03) /' / k¢2dzd¢s
$2 ( 3/2

Tu 22+ r?6) (1 + ¢f)
_ 4y J20}
u
which is (3.49) in the text.
For 7 = 2,

(B.8)

Dy,G; = /k (Suse(k) — 1k DnSo(k)) dk

/ Spﬁ k)dk
k4k2(u2k2 + 62)

{Gy[J1J2 ((2DLD2E}) K§ + (4DLDZ, + 2D} D,y ) kikS+
((2DLD?, + 4D3Dyn) kS + (12D + 2D1) u?ky) K3+
(2D} Dk} + (16Dy, — 6D,,) u?k$) k3 — 4Dru?k?)] +
G: [(D%JF) k3 + (((2D3%, + DLD%) J3 + D3.J3) kY) k§+
(((D5, +2D.DE) J; + (2D5, + DL.DL,) J7) ki+
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(DmJ3u?k?)) K+
((DeD%J3 + (D% +2D.DL) JP) kS +

(D1 — 4D,n) J2 + 9D, J}) u?k}) K3+
(DL D22k} + (4(Dm — D) J3 + 9DLJ?) uk$) ki+
(4DL2u?kS)]} - (B.9)

Now, D, is the part proportional to G; and D, is the part propor-
tional to Ga. For the isotropic logaperture spectrum, J; = 0 and
J; = J # 0 so that Dy; =0 and

2J2 Spa(k)dk

Do = k k4(u2k? + €2)

[(D3) & + ((2D3 + DLD2) k?) K§+

(D%, + 2D D) kf + 9Dk} K3+

(DLDZKS + 9D kt) k3] - (B.10)
Again, using
€= B;\;‘-, (B.11)
& = Ak (B.12)
and D
K= —l—)—'f (B.13)
gives
2 72
Dy = 711,:( c (S _fli:((:;g)f w<?)) [5 (9"““25‘125'24 + guzs'fszz) +

e (nsgzs + (2&3 + rcz) ¢Eed + (n3 + 2k ) ched + nzgfgzz)] (B.14)
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and when we substitute ¢, = ez the numerator becomes O(e*) and
the denominator becomes O(e?), so that when we take e — 0, D2
vanishes, as reported in the text.

To evaluate U;, we start with a form of (3.25):
U:G: = — /k (ikiSu,o(K) + kik; Ei;Spe(k)) dk. (B.15)
Using (3.46), (3.38) and (3.44), this becomes
U:Gi = — [k (ikiSuso(K) + kik; Ei; Spe(k)) dk, (B.16)
which becomes, after using (3.46), (3.38) and (3.44),

2
G = 2 [ Sen(k)dk
UiG: = 'u./k 7O

{G1 [(3.]22 - 2112) k2k2 + Jfkf] +

G [Tuda (K3KE — 2k1)]}- (£.77)

The part proportional to G; is U; and the part proportional to G2
is U,. For an isotropic Sgs(k), J2 = 0, and so Uz = 0 and for the
exponential spectrum, U, is given by

= ';'2J20[2,)\2 /' (2k2k? — k})dk (B.18)
27u k k2k2(1 + A2k2)3/2’
which is evaluated routinely in polar coordinates, yielding
2 722
_ 1o
U, = YR (B.19)

This is (3.52) in the text.
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B.2. Dispersive model with anisotropic

logaperture process

When the logaperture process is anisotropic, then J, # 0, and the
macrodispersion coefficient is more complicated. From (B. 2) we see
that

kizﬁ?kz 7 {[PEDAF] K+
[((2D2D. + Di) JE + D,{D,,,Jf) K} + 4D Pu?| K+
[((D}Dm +2D}) J2 + (2D2D, + D}) J?) ki+

(9DmJ3 +4(Dr, — D) J7) u?kZ] ki+
(D3I} + (D3Dm+ 2DY) J7) k$+

(9D2J2 + (Dm — 4D1) J7) u?k!] K3+
[D3 2k} + DyJiu?kf]}. (B.20)

where k' is the wave number vector in the directions parallel to and
perpendicular to the direction of maximum correlation.

Now, we use

ki = kycosw + kysinw (B.21)

ky = —k; sinw + ks cosw (B.22)

and substitute i D, (.33
udy’ '

& = ik, (B.24)

p= f\\-:-, (B.25)

$1 = €z, (B.26)



and let € — 0 to get
4y JEptkogM g
27u

2 dz dg
/2/;1( $p Az Agy

2% + ptrist) [1 + ¢ (p?sin’w + cos? w)]” 2

Dy, =

_ 4y J ol
- 1/2°

(B.27)
u(p2 sin® w + cos? w)

Similarly,

D = T2 / Spa(k')dk
12 k k*(u?k? + e?)

{[2DLD12n] k3 + [(4DLD,2,, + 2D,2Dm) k2 — 4Dmu2] kSt

[(2D1D2 + 4D2D,,) k} + (16D, — 6Dy) u?k?] k§+

[2D3D,k$ + (2D + 12Dy) u?kf] 3} . (B.28)
Using the same substitutions as for Dy, and also letting € — 0, gives
4y J Jap? ko
Dy = — Y J1J2p"K0Og 1
2w

/z / s3dzdgs (B.29)

2 (22 + k2p*ed) [1 +¢7 (P2 sin? w + cos? w)]a/2 ’

or,
—4y2J, Jo03 M

Dip = (B.30)

u(;ﬂ’2 sin® w + cos? w)1/2 -

From (B.9) we see that

2 !
_ v J1J2 Sﬁﬂ(k )dk
D = u? /k k4 (u?k} + e?) %
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{[2D.D2) 8 + [(4DLD2 + 2D%D,,) k2] K+
[(2DuD2 + 4D} D,n) Kt + (12D + 2D1) w?k?] ki+
[2D3 Dk + 16Dy, — 6D,y) u?kf] kZ — 4D u?k$} . (B.31)

Inserting (B.21), (B.22), (B.23), (B.24), (B.25), (B.6) and (B.26), we
get
. 2.]1.]2 Spg €z, g‘g dzdgg

Yy //c Pl (2% + k2pi¢3)
{62 [2n2p8§28 + (126 + 2) p4u2z2§24j + 0(64)} , (B.32)

so that when we take ¢ — 0, we get D»; = 0. Note that D,y # Dy,
so that in this case, the dispersion coefficient is asymmetric.

Similarly, D, is evaluated by using the same substitutions in
(B.9) and letting ¢ — G, finding that

2.]-, // Sﬂﬁ ,¢2) IC3pm§2 + Kkpz gz)dzdgz (B.33)
T kg Ll pies 22(2% + k2 pies) ’ ’

which integral in z diverges! This is nonstationary behavior.
U, and U, are evaluated using (B.17) for nonzero J,. Thus,

Sps(k')dk
/ ”’;0(2 e (373 — 2J7) K3k} + J2kY| . (B.34)
After using
ky = k} cosw — kj sinw (B.35)
ke = Kk sinw + kj cosw (B.36)

to transform to the primed coordinate system, (B.34) can be inte-
grated in polar coordinates to yield

y¥o} { P [(sin2 w — 2 cos? w) J? + 3 cos? wa] N

Uy =-
! % p+1
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[(cos2 w — 2sin® w) J} + 3sin® wa]
p+1 ’

(B.37)

Of course, v2J? and 72JZ can be written in terms of u, cos§ and sin @

using (3.70) and (3.71).
Similarly,

= / S ﬁ/;czljc:’dk J1J2 (k3K — 241)]

which is evaluated the same way as U,, giving

U, = Yo} {p [(2 sin? w — cos? w) J1J2] 4

u p+1

[(2cos?w — sin® w) J1.Ja } |

p+1

B.3. Decay model with isotropic

logaperture process
From (3.58) and (3.63), we see that

D’JG.'I = A‘ WGJ'S,,‘“J (k)dk

and using (3.44), we have

Dij = k*(u?k? + K?)

Thus,

Dy = / [2k%J; — 3k1(k,Jz)12K5'5ﬂ(k)dk,
k4 (u?k? + K?)
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k

(B.38)

(B.39)

(B.40)

. (B.41)

(B.42)



2k% — 14k2k2 + 2k K Spa(k)dk
D12 = D21 = —’72J1J2-/1; ( 2 IC:('l;zICf +1I){2) ﬁﬁ( ) ’ (B'43)

and

e / (4J2K2k2 — J2kE — OJ2k2k2 — 4J2k%) K Spp(k)dk
i .

D = ki(u2k? + K?)

(B.44)

For an isotropic logaperture spectrum, J; =0 and J; = J # 0, so
that

Dm = D21 = 0, (345)
and
Dui = '72J2,\2a§/ (4k3 — 4k2k2 + k) K dk (B.46)
- 2w k k*(u2k? + K2)(1 + ,\2Ic2)3/2' )
Putting cu
= T, (.B.47)
€z
ki = — .
1= (B.48)
and "
ky = Xz (B.49)
and letting € — 0 gives
20272J% )2 dzd
Dy =" " // E \3/2
o Jeda (14 2%)(1+¢3)
— .

which is seen to be the same as for the dispersive model.

Note that Ds, in (B.44) has-a term proportional te JZ, so that it
does not automatically vanish for an isotropic logaperture spectrum.
The remaining term is

k?k2 K Spa(k)dk
—a~272 1 BB
Dz =977 /k i (u?k? + K2)
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However, when using the substitutions (B.47), (B.48) and (B.49), we

find that Dys ~ O(€?), and thus goes to zero.
From (3.59) and (3.62),

!
g:'_c' =~ /k ik; S0 (k) dk
%

] k1k:G3Su., (K)dk
¥ u?k? + K2

UjGj = —

Thus, using (3.44)

_ 2, [ (BJ3KkIKE — 2JPkIKT + JTk1)Spp(k)dk
Uy = —vy°u 5
k?(u?k? + K?)

and
4kfk§),5'pﬁ(k)dk

4
U=~ J1Jz /k (2k1k—2(u2k% + K?)
For J; =0, Uz = 0 and
Y2 J20%ul? / (ki — 2k2k2)dk
2 k k2(u2k? + K2)(1 +/\2k2)3/2’
and with ¢ = Ak; and (B.47),

U1=

_ 1%} (2¢2 — ¢2)deidg v %0}

2y Jolo 2(14¢2)¥ 0 2w

B.4. Decay model with anisotropic

logaperture process

(B.52)

(B.53)

(B.54)

(B.55)

(B.56)

When the logaperture process is anisotropic, J; is in general
nonzero in (B.42), (B.43), (B.44), (B.53) and (B.54). Using (B.21)

and (B.22) in (B.42), substituting

€u

K=A_1’
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kl - —A—l (B.58)

and ¢
ky = 22 (B.59)

A1

and letting € — 0 gives

D 4’7”12 2 / / dzdg,
n=
2 (14 22) 1 + ¢#(p?sin® w + cos? c.u))s/2

4’72J120§A1
= T3 (B.60)
u{p?sin®w + cos? w)
which is (3.65) in the text.
The same method applied to (B.43) shows that
2J1Ja0%
D3 = Dy, = S il a3
U
/ / ' dzd¢y
276 (14 22%) (1 + ¢2(p*sin® w + cos? w))w2
2’72J1J20'ﬁ2;A1
=- — 77 (B.61)
u(p? sin® w + cos? w)
which is (3.66) in the text.
Similarly, from (B.44), we see that
Dy, = ,23)‘1 / / dzdgp
2 (1 +z2) 1 + ¢2(p? sin w+coszw))
2 JZodA
= : , (B.62)

u(p?sin? w + cos? w)l/2
which is (3.67) in the text.
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To find U;, start with (B.53) and transforin to the primed coor-
dinate system using (B.35) and (B.36) to get

g — 1o / dk' y
1= 9
2mu S (1 4+ A3k + 23K5)™

[J12 (lc'f(cos2 w — 2sin®w) + k'2(sin? w — 2 cos? w)) +
J? (3k’f sin? w + 3k'3 cos® w)] , (B.63)

which is routinely integrated to obtain

U, = =+

p+1

Yo} {p [(sin2 w — 2 cos? w) J2 + 3cos? szz]
u

(B.64)

[(coszw — 2sin? w) J2 + 3sin? szz]‘
p+1 }

This is equivalent to (3.77).

To find U, use (B.35) and (B.36) in (B.54) to get

U = v2J1J205 2120 / dk’ y
2 —
u ke k2(1+ ATk'T + A3k'E) ™

[(2 sin® w — cos? w) K2+ (2 cos?w — sin® w) k'g]

]

B 272J1J20-[2, {p (2 cos? w — sin® w) + (2 sin? w — cos? w)
(B.65)

U p+1

which is equivalent to (3.78) in the text.
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