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ABSTRACT

With climate change and population growth exacerbating global food insecurity, it has
become urgent to establish more water- and energy-efficient means to raise agricultural
production. Available techniques to bolster crop productivity, such as solar-powered drip
irrigation (SPDI) and precision irrigation, are currently cost-prohibitive for farmers in low-
and middle-income countries (LMICs), where food insecurity will be most severe. This
thesis demonstrates one method to reduce the barrier to these systems, by pairing them
with a Predictive Optimal Water and Energy Irrigation (POWEIr) controller that optimizes
irrigation schedules to make efficient use of solar and water resources for maximum crop
yield. In doing so, POWEIr also decreases SPDI system costs.

First, this work confirms the hypothesis that scheduling irrigation activity to match
the availability of variable solar power enables SPDI cost savings. For a fixed irrigation
system, a SPDI full-season operation simulation study was conducted and the impact of
adjusting the pumping load dynamically to match solar power availability was assessed.
When evaluated against conventional operation, this process of profile matching enabled a
power system lifetime cost decrease of >18% while delivering 100% of the required irrigation
for a simulated two-hectare Kenyan tomato farm with over 50 m well depth.

To exploit these cost and reliability benefits, this work proposes the POWEIr controller.
The POWEIr controller leverages machine learning and utilizes a small set of inexpensive
sensors to optimize irrigation schedules based on solar energy and crop water demand pre-
dictions. The performance of the POWEIr controller was evaluated with an experimental
SPDI prototype and compared to simulated typical farming practices. For the same irriga-
tion delivered, a six-fold decrease in the required battery capacity was observed. With no
batteries, the POWEIr controller still satisfied a greater fraction of the irrigation demand.
Overall, compared to typical practice, the controller provided more reliable irrigation using
solar power, with minimal battery usage.

High reliability at low cost necessitates that the POWEIr controller’s irrigation schedules
are robust to errors in agronomy inputs and weather data. Sensitivity to these errors was
assessed by evaluating the impact on simulated irrigation amounts and crop yield. It was
found possible to rely on weather data from an economical station, costing $190, 83% less
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than a better-equipped research-quality alternative, with negligible consequences to crop
yields. This conclusion held steadfast across diverse crop and soil types. The crop coefficient
was the most significant factor affecting irrigation performance, thereby pointing to the need
for calibration of this factor alone. This underscores the POWEIr controller’s capability
to accurately optimize irrigation schedules for only essential water use while relying on
affordable sensors and minimal calibration.

Finally, the POWEIr controller was piloted on farms in Jordan and Morocco and per-
formance was benchmarked against measured local, conventional drip irrigation practices on
similar farms. It provided up to 44% and 43% savings in water use and pumping energy con-
sumption, respectively, for similar crop yields. This result demonstrates theory to practice
of accessible precision agriculture technology and offers tangible evidence of the POWEIr
controller’s potential to raise agricultural sustainability.

Thesis Supervisor: Amos G. Winter V
Title: Associate Professor of Mechanical Engineering
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𝑘𝑐 Cost weight for the crop

𝑘𝑅𝑂 Runoff coefficient

𝐾𝑠𝑡 Water stress coefficient

𝑘𝑤 Cost weight for water

𝐾𝑦 Crop yield response factor

𝐿 Function to minimize battery and
water use

𝑀 Function to track battery reference
state of charge

𝑚 Mass

𝑚𝑖𝑛𝑣 Inverter linear coefficient

𝑚𝑀𝑃𝑃𝑇 MPPT linear coefficient

𝑚𝑉 𝐹𝐷 VFD linear coefficient

𝑛 Day index

𝑁𝑐𝑟𝑜𝑝 Total days in the crop growing sea-
son

𝑁ℎ𝑜𝑟 Prediction horizon length in hours

𝑁𝑠 Total number of field sections

𝑝 Lag order

𝑃𝑎𝑣𝑎𝑖𝑙 Available solar power

𝑃𝑝𝑢𝑚𝑝 Pump power

𝑃𝑟 Precipitation

𝑞𝑠 Section flow rate

𝑅 Function to maximize crop revenue

𝑠 Section index

𝑆𝑂𝐶 Battery state of charge

𝑆𝑂𝐶𝑟𝑒𝑓 Reference battery state of charge

𝑆𝑂𝐼 State of irrigation

𝑡 Amount of time

𝑇𝐴𝑊 Total available water

𝑢1 Battery charging rate control vari-
able

𝑢2 Battery discharging rate control
variable

𝑉 Function to maximize battery
stored energy

𝑊 Weight matrix

𝑊𝑈𝐸 Water use efficiency

𝑥 Soil water depletion state variable

𝑦 Vector of prediction variables

𝑌𝑎 Adjusted crop yield

𝑌𝑚𝑎𝑥 Maximum yield without water
stress

𝑍𝑟 Crop root depth
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Chapter 1

Introduction

This thesis aims to reduce the costs of renewable-powered irrigation systems and improve

the energy and water efficiency of agricultural irrigation practices. Specifically, this the-

sis presents the Predictive Optimal Water and Energy Irrigation (POWEIr) controller, an

affordable, precise irrigation controller that reduces water and pumping energy use for com-

parable crop yield to existing solar-powered drip irrigation (SPDI) systems. The POWEIr

controller uses low-cost weather sensors, physics-based models, and machine learning to pre-

dict crop water demands and available solar energy and then optimize irrigation schedules

for SPDI systems based on these predicted variables.

1.1 The Need for Affordable, Precise Irrigation Control

Global efforts to achieve the second sustainable food development goal of ending hunger by

2030 are falling short, with 2.4 billion people facing food insecurity in 2022, especially in

low- and middle-income countries (LMICs) [1]. To address this, sustainable crop production

must increase while conserving water and reducing energy consumption [2], [3]. Agriculture

currently uses a significant portion of global freshwater resources and energy, contributing
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to water scarcity and greenhouse gas emissions [4]–[7].

Technological solutions like SPDI and precision agriculture can help to achieve food se-

curity sustainably [8]–[10]. SPDI systems, powered by solar panels, have significantly lower

greenhouse gas emissions compared to more common diesel and electric pumps [11]. Drip

irrigation efficiently delivers water directly to crop roots, reducing water consumption and

increasing yields compared to traditional methods which involve flooding fields with water

[12]. Precision agriculture utilizes various sensing technologies to optimize farm operations

for sustainable productivity. Despite their benefits, SPDI and precision agriculture tech-

nologies are not widely adopted in LMICs due to high costs and complexity [13]–[15]. Even

when these technologies are adopted, farmers may choose to over-irrigate to mitigate per-

ceived risks to crop yield [16]–[18].

Current solutions for precise, irrigation control require many sensors and technical exper-

tise, which are impractical in resource-constrained settings [19]. For example, sophisticated

precision agriculture systems in greenhouses (e.g., PRIVA, Hotraco Horti, Agrowtek, and

Munters) allow for complete control of the environment but call for automation, numer-

ous integrating sensor suites, and remote data monitoring. These complex systems require

significant capital investment and technical training that is out of reach for a majority of

farmers. Lower-cost precision irrigation systems exist (e.g., Netafim GrowSphere, Toro Tem-

pus series, Rainbird ESP series, Hunter Pro-C), but they still rely on costly sensors and

automatic valves to deliver irrigation based on a user-defined schedule. Additionally, many

of these solutions do not address the issue of over-irrigation. Thus, there is a pressing need

for affordable irrigation control that encourages sustainable practices for SPDI systems in

LMICs.
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1.2 SPDI System Description

Figure 1.1 gives some background on what a SPDI system is described as in this thesis. The

SPDI system consists of a pump, depicted as a surface pump but could also be subsurface,

that pumps water through a network of pipes onto a field. The network of pipes is divided into

sections that are irrigated by opening and closing a valve to deliver water to different portions

of the field. Each section has several pipe laterals that have evenly spaced drip emitters in

them which deliver water directly to the root zone of the crop. The pump is powered by a

solar panel array and can also be powered by a battery. A solar pump controller converts

the electricity generated by the panels to what is needed for the battery and the pump. The

solar pump controller can have an inverter, maximum power point tracking, battery energy

management, and a Variable Frequency Drive. The POWEIr controller interfaces with these

solar pump control components and a weather station in order to deliver optimal irrigation

schedules. The optimal irrigation schedules depend on inputs from the weather, crop type,

and soil texture.

1.3 User Analysis

The development of the POWEIr controller was informed by extensive user analysis, which

was instrumental in its design. The user analysis is not the focus of my thesis as I did not lead

this work. However, I actively participated in the user testing, discovering valuable insights

that influenced my design process for the controller. These findings will be emphasized in

this section.

Over 200 interviews were conducted with SPDI stakeholders in Kenya, Jordan, and Mo-

rocco [20]–[24]. The findings from user testing in these areas can be summarized into the

following categories; farmers face challenges of

High costs and could not afford or did not have access to all SPDI and precision
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Figure 1.1: An example of a solar-powered drip irrigation (SPDI) system and its components.
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agriculture technologies;

Lack of support, with no free, recurring support to manage their irrigation systems

farmers will pay for agronomists’ advice; and

Over-irrigation, farmers have a range of experience in irrigation but the majority

will over-irrigate to reduce perceived risks to their crops.

When shown the concept of the POWEIr controller farmers wanted

Lower energy costs, farmers would like to reduce their energy bill but some did not

like the uncertainty in varying solar power;

Advanced notice, farmers would like advance notice of irrigation schedules to facili-

tate planning other activities;

Varying degrees of automation, farmers interviewed in different countries had

varying degrees of desire for automation; and

No harm to crops, farmers wanted accurate schedules so that their yields would not

be negatively impacted.

These findings have been incorporated into the design of the POWEIr controller’s optimal

irrigation schedules. Particularly, the controller was designed to predict available solar power

and exact crop water requirements and communicate energy- and water-efficient irrigation

schedules to farmers through a phone application a day in advance. Automatic valves could

be incorporated to carry out the schedules automatically or farmers could manually irrigate

based on the schedule they were sent. The controller was designed with a feedback loop from

the farmer so that changes to a schedule could be made in real time; these changes would

impact future schedules.
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1.4 Thesis Outline and Contributions

This thesis aims to address the need for affordable, precise irrigation control with the de-

velopment of the POWEIr controller, a predictive irrigation controller that reduces the cost

of SPDI systems and uses inexpensive weather sensors to reduce the barrier to sustainable

agriculture technology. The following summarizes the research contributions contained in

this thesis:

Section 2.2: A cost analysis is conducted and is shown to achieve over 18% less

SPDI pump and power system lifetime cost while delivering irrigation 31-66% more re-

liably than an existing commercial sizing tool by modeling various irrigation operation

schemes.

Section 2.3 and Section 2.4: The POWEIr controller theory is outlined and an

initial prototype used six times less battery storage to deliver the required irrigation

compared to a simulation of typical operation. If no batteries were used the proto-

type could have delivered up to 46% more of the required irrigation compared to the

reference operation.

Chapter 3: The sensitivity of the POWEIr controller’s optimized irrigation schedules

to errors in agronomy inputs and weather data is explored and it is found that weather

sensor cost could be reduced by 83% with negligible simulated effect on crop yield.

Chapter 4: The performance of the POWEIr controller is validated on farms in Jordan

and Morocco with reductions in pumping energy up to 43% and water use by 44% for

similar crop yields compared to measured local farmer drip irrigation practices.
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Chapter 2

Designing a Predictive Optimal Water
and Energy Irrigation (POWEIr)
Controller for Solar-powered Drip
Irrigation Systems in
Resource-constrained Contexts

The content of this chapter was derived from work with contributors besides the author of

this thesis including Fiona Grant, Simone Gelmini, Shane Pratt, and Amos G. Winter, V.

A publication of the same title of this chapter is in preparation as Sheline, Grant, Gelmini,

et al. [25].

2.1 Introduction

The increasing global population necessitates a boost in food production [14], [26]. To meet

this demand sustainably, agriculture must intensify its operations using existing farmland,

water, and other natural resources [14], [26], [27]. Currently, agriculture consumes 70% of

global freshwater withdrawals annually [26], [28], and climate change is exacerbating global
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water scarcity [29], posing challenges to agricultural intensification.

Solar-powered drip irrigation (SPDI) is a potential solution to sustainably enhance agri-

cultural productivity [8]. Solar power is a renewable-energy solution that needs solar irradi-

ance and is particularly feasible in arid, water-stressed regions with abundant sun [4], [30],

[31]. However, the high upfront costs of solar power systems act as a barrier to adoption for

many farmers [13]–[15]. Farmers may also be hesitant to adopt an intermittent power source

that is not operable in all weather conditions [22]. Drip irrigation holds the potential to in-

crease crop yields while conserving water and agricultural inputs [12], [32]. Nevertheless, the

effectiveness of drip irrigation in water conservation relies on correct on-farm system opera-

tion [21], [33]. Additionally, traditional farming practices may not align with ideal irrigation

volumes [33]. Farmers often rely on personal observations and experience to make irrigation

decisions [22], [33], which can be unreliable in a changing climate, potentially leading to

unsustainable overuse of water and fertilizer [34], [35].

Sustainable agriculture hinges on improving irrigation practices, a goal achievable through

precision irrigation control [34]. Precision irrigation controllers utilize integrated sensors

to monitor crop, soil, weather conditions, and hydraulic and power system performance to

inform irrigation scheduling decisions [34]. Previous studies have revealed that the operation

scheme of a SPDI system significantly influences its energy consumption, water use, and cost

[36]–[38]. Pairing SPDI with precision irrigation control could optimize resource use while

enhancing crop production [39].

The 2022 FAO State of Food and Agriculture report emphasizes the increasing prevalence

of precision agriculture technologies and their potential to enhance the resilience of food

systems to climate change [39]. However, these technologies remain inaccessible to many

farmers due to their high costs and technical complexities [22], [39], posing a significant

barrier to realizing the sustainability benefits of precision agriculture on a large scale. The

report outlines key criteria for widespread adoption of precision agriculture devices, namely

that they should be
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Scale-neutral, meaning devices should function effectively across a variety of farm

sizes;

Adaptable to local contexts, recognizing that sustainability gains depend on farm-

level operations;

Accessible, including to individuals with limited access to training and a diverse range

of technical knowledge; and

Low-cost.

Cutting-edge commercial precision irrigation control systems (e.g., PRIVA, Hotraco Horti,

Agrowtek, and Munters) are predominantly tailored for users engaged in large-scale, high-

quality crop production, such as precision agriculture in greenhouses. These sophisticated

control systems come with a high price tag and technical intricacies, integrating sensor suites,

automation features, and online data monitoring. They often require complex inputs and can

pose challenges in adapting to existing irrigation setups [40]. Implementation of such prod-

ucts necessitates end users to possess the capacity for significant investments in equipment,

technical know-how, and network connectivity. Consequently, these technologies remain out

of reach for numerous medium-to-small scale farmers in LMICs [22].

While more economical irrigation controllers (e.g., Netafim GrowSphere, Toro Tempus

series, Rainbird ESP series, Hunter Pro-C) are available, they either rely on costly sensors to

recommend irrigation schedules or require users to manually determine and input schedules

that automatic valves then execute. A reliance on sensors and automatic valves drives

up costs while a dependence on user expertise and decision-making compromises system

performance [41]. Unfortunately, such devices fail to cater to the needs of cost-sensitive

farmers with limited access to technical training who struggle to make informed irrigation

decisions [22].

Crafting a widely adoptable precision irrigation controller that aligns with all the criteria

outlined in the 2022 FAO report [39] is non-trivial. The diversity of farm-level contexts,
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especially in smaller farms [14], [42], introduces variations in crop choices, soil compositions,

local weather patterns, micro-climates across the farmland, and the quality of hydraulic

equipment. The controller must enhance both energy and water use efficiency to realize the

sustainability advantages of precision irrigation with SPDI systems [10], [43]. To achieve

scale-neutrality, adaptability, and accessibility for a diverse user base, the chosen control al-

gorithm needs to be easily calibrated and robust in diverse environmental conditions. More-

over, while ensuring the affordability of the controller itself, it is also crucial to evaluate

the economic implications of the selected control algorithm on the overall cost of the SPDI

system.

Classical control methods, such as linear feedback control, and rule-based controllers,

known for their simplicity in design and implementation, often prove unsuitable for agricul-

tural processes without extensive calibration [44]. These methods necessitate on-site tech-

nical expertise for sensor installation and calibration, potentially inaccessible to end users.

Similarly, fuzzy-logic controllers, although finely tuned to specific systems, struggle with

adaptation to diverse contexts [45]. Recent literature reviews indicate that model predictive

control (MPC), a process control technique, is better suited for irrigation systems [34], [44],

[46]. The MPC algorithm utilizes a dynamic model to predict system behavior over a moving

time window, optimizing performance based on an objective function, constraints, and feed-

back measurements of the system state [44]. Because the dynamic model is system-specific,

the MPC approach inherently accommodates various scales and adapts to different contexts,

making it well-suited for handling variability in weather conditions and crop behavior during

SPDI operation.

Studies have implemented MPC-based irrigation controllers, showcasing reduced water

use compared to other control techniques. For instance, Delgoda, Malano, Saleem, et al.

[45] demonstrates an MPC-based irrigation controller capable of reducing water use while

preventing crop water stress. Similarly, Lozoya, Mendoza, Aguilar, et al. [41] illustrates

that MPC lowers water consumption compared to manual operation, timer-based opera-
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tion, open-loop control with soil moisture sensors, and closed-loop feedback control with

soil moisture sensors. In a study by Abioye, Abidin, Aman, et al. [46], their MPC-based

controller for soil moisture levels, which ran on an embedded device in the field, resulted in

a 30% reduction in water use compared to a benchmark model-based control optimization

technique. While these studies enhance water use efficiency, they fall short in optimizing

irrigation system energy use, limiting the potential sustainability and cost benefits at the

system level. Additionally, these controller designs rely on feedback measurements from soil

moisture sensors, which may not be available or affordable for certain users.

A proposed optimization strategy by Roje, Sáez, Muñoz, et al. [47] minimizes the cost

of energy transfer and excess water in rural irrigation systems, ensuring sustainable use of a

communal aquifer. However, this strategy is tailored for a communal-scale system with a mi-

crogrid power source and does not address the execution of the optimal irrigation schedule.

Hence, its effectiveness for individual farmers or scalability to diverse farm contexts, en-

compassing different power system configurations, water sources, and access to automation,

remains uncertain.

Prior studies indicate that irrigating multiple sections of a field simultaneously to harness

solar power when available can save energy and reduce the cost of solar-powered systems [43].

Studies have demonstrated up to 30% energy savings through optimized irrigation sectioning

and operation strategies, with some estimating a 13% increase in profits compared to tra-

ditional farming methods [48]. Further advancements, such as synchronizing the irrigation

load schedule with the variable solar power source [10], herein termed solar profile match-

ing (SPM) (Figure 2.1), present an efficient shift from the typical single section operation

(SSO) approach. This transition enhances the utilization of variable power, enabling reliable

operation with smaller, more cost-effective solar power systems [38], potentially fostering

increased adoption of SPDI among farmers.

A predictive irrigation controller that simultaneously optimizes water use and energy ef-

ficiency has the potential to capitalize on the interplay between system operation, reliability,
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and power sizing, thereby enabling more cost-effective SPDI systems. Such a controller could

contribute to sustainable resource utilization and assist smaller-scale farmers in making well-

informed agricultural decisions [22]. This research introduces a SPDI controller architecture

designed to optimize both system energy and water use. By considering farm-level weather

conditions and crop water demand, the proposed controller aims to render sustainable irri-

gation practices technically and economically viable for farmers in LMICs. The controller

introduced in this chapter is the Predictive Optimal Water and Energy Irrigation (POWEIr)

controller.

This chapter assesses the economic advantages of adopting SPM in SPDI scheduling. It

achieves this by conducting simulations of a cost-optimized system utilizing SPM operation

throughout an entire crop season and comparing it with a commercially sized system applying

SSO. Additionally, the chapter outlines the theory of the POWEIr controller and verifies the

efficacy of the proposed controller with an initial prototype that showcases its capabilities in

weather prediction, irrigation scheduling, and energy management. The aims of this chapter

are to:

1. Quantify the economic benefits derived from SPM operation, encompassing reductions

in life cycle costs and heightened irrigation reliability.

2. Propose an irrigation controller architecture for SPDI that integrates SPM, optimizing

both system energy and water use. This design accounts for case-specific weather

conditions and crop water demand.

3. Validate the performance of the proposed controller through an initial prototype, high-

lighting its capabilities in energy management, irrigation scheduling, and weather pre-

diction.

Achieving these aims would provide an initial assessment of the POWEIr controller’s poten-

tial to enhance accessibility to sustainable and precise irrigation practices in LMICs.
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2.2 SPDI Scheduling and Economic Analysis

2.2.1 SPDI Scheduling Methods

A SPDI system is comprised of solar panels, an electrical converter (DC/DC) or inverter

(DC/AC), and a pump that transports water through a network of pipes. The pipes deliver

water directly to the crop root zone through drip emitters. A SPDI system can include

energy storage, such as a battery or water tank, as well as a variable frequency drive (VFD)

to control the pump speed. The solar array may also be paired with a maximum power point

tracking (MPPT) charge controller, which maximizes the current and voltage output of the

panels as the available solar power varies. These additional components—energy storage,

charge controllers, and VFDs—can increase the reliability and efficiency of SPDI systems,

but also add cost. A field with a SPDI system is often irrigated in sections. Each section of

the field, denoted as 𝑠 hereafter, requires a certain pumping power (𝑃𝑝𝑢𝑚𝑝,𝑠) to pressurize the

pipe network and deliver uniform flow across the section. The farmer determines the time to

irrigate each section (𝑡𝑠) to provide enough water for the crops each day. This combination

of pump operating power and irrigation time for each section makes up the SPDI irrigation

schedule.

As previous work has shown, the irrigation scheduling method directly influences the

SPDI component capacities and system cost [36]. Figure 2.1 illustrates three SPDI scheduling

methods. Figure 2.1a shows an SSO schedule for a SPDI system without energy storage.

Although there is a large amount of solar energy available throughout the day, without

energy storage irrigation can only be delivered when the available solar power is greater

than or equal to the pump power. This leads to a shorter irrigation time for each section

and the SSO schedule does not meet the irrigation demand for the day. Figure 2.1b shows

that the same irrigation demand can be met with an SSO schedule for a system with a

smaller solar array, meaning less available solar power, if it includes energy storage. The

energy storage can be discharged at times of low solar power to extend the irrigation time
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(a) (b) (c)

Figure 2.1: Examples of SPDI irrigation scheduling methods. The pump power (𝑃𝑝𝑢𝑚𝑝,𝑠),
irrigation time (𝑡𝑠), and flow rate (𝑞) for each of the three sections determine the pump power
curve and the amount of water delivered. a shows single section operation (SSO) for a SPDI
system without energy storage; b shows SSO for a system with a smaller solar array than a
and energy storage; c shows solar profile matching (SPM) for the same solar array as b, but
no energy storage. The system in a has the largest solar array, but the irrigation demand
cannot be met with SSO without energy storage. The irrigation demand can be met with
SSO and energy storage or an SPM schedule.

and meet the demand. However, this energy storage adds expense to the system design.

Figure 2.1c depicts an SPM schedule that meets the same irrigation demand for a system

with the same solar array size as in Figure 2.1b but with no energy storage. The SPM

schedule has multiple sections opened at times of high solar power, allowing for a higher

flow rate and more irrigation to be delivered in less time. The SPM schedule enables fewer

solar panels compared to Figure 2.1a and less energy storage compared to Figure 2.1b. This

comparison elucidates how changing the irrigation schedule can reduce the SPDI system cost

while maintaining operational reliability.
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2.2.2 Benefits of Pairing SPDI and SPM

An analysis was conducted to quantify the economic benefits of pairing SPDI with SPM. The

cost and full-season reliability of cost-optimized SPDI designs were compared for SSO and

SPM schedules. The Solar-powered Drip Irrigation Optimal Performance (SDrOP) model

[36] was chosen to produce the cost-optimized designs with SSO and SPM schedules. SDrOP

is a SPDI system design tool that optimizes the size of the pump, solar panels, and energy

storage for the system. SDrOP simulates the system operation over a growing season with

a logic loop that calculates energy and water use (Appendix A.2) and irrigation reliability

[36]. However, SDrOP does not optimize the system operation scheme and does not function

as an irrigation control algorithm. SDrOP minimizes the SPDI system life cycle cost using

particle swarm optimization. The optimization is constrained to meet a threshold irrigation

reliability (𝐼𝑅),

𝐼𝑅 =

∑︀𝑁𝑐𝑟𝑜𝑝

𝑛=1 𝐼𝑑𝑒𝑙∑︀𝑁𝑐𝑟𝑜𝑝

𝑛=1 𝐼𝑑𝑒𝑚
× 100, (2.1)

where 𝐼𝑅 is the percent of the total irrigation demand (𝐼𝑑𝑒𝑚) that the SPDI system can

deliver (𝐼𝑑𝑒𝑙) summed over each day (𝑛) of the total days in the crop growing season (𝑁𝑐𝑟𝑜𝑝).

The results were benchmarked against a system that was sized using commercially available

design software and simulated operation with an SSO schedule. The Grundfos solar pump

sizing tool [49] was chosen as the commercial software because it takes similar inputs and,

although it does not perform optimization, it conducts similar calculations to the SDrOP

model. The Grundfos sizing tool selects a Grundfos pump and sizes a solar array based

on inputs of the average monthly solar profile and a single, averaged water demand value.

Grundfos assumes that the pump flow rate will vary to match the solar curve and deliver the

required water demand. Unlike SDrOP, the Grundfos tool does not simulate a full season of

SPDI operation and does not size energy storage options in the form of batteries or water

tanks.
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Table 2.1: Simulated baseline case for economic analysis.

Location Nyeri, Kenya
Field area 2 ha
Section size 0.2 ha
Water
source depth

2, 50, 100 m

Crop Tomato
Emitter flow rate 1 Lph
Section pump
power (for each
well depth)

0.33, 2.6, 4.9
kW

Section
irrigation time
(daily average)

36 min.

For the analysis to simulate SPM, a farm case was split into equal sections that had a

pump operating power, 𝑃𝑝𝑢𝑚𝑝,𝑠, and flow rate, 𝑞𝑠. At each time step, SDrOP calculated the

number of field sections (𝑁𝑠) that could be irrigated with the available solar power (𝑃𝑎𝑣𝑎𝑖𝑙),

𝑁𝑠,𝑖 =

⌊︃
𝑃𝑎𝑣𝑎𝑖𝑙,𝑖

𝑃𝑝𝑢𝑚𝑝,𝑠

⌋︃
. (2.2)

This assumed a constant pump efficiency for all section combinations. The total number of

sections that could be operated at once was constrained to a maximum number of sections,

𝑁𝑠,𝑚𝑎𝑥. The state of irrigation (𝑆𝑂𝐼) was calculated to determine the cumulative water

delivered at each time step 𝑖 over the time interval ∆𝑡:

𝑆𝑂𝐼𝑖 = 𝑆𝑂𝐼𝑖−1 +𝑁𝑠,𝑖𝑞𝑠∆𝑡. (2.3)

For the economic analysis, a baseline farm case was defined using a typical medium-scale

farm in Kenya (Table 2.1) [21]. A SPDI system design was produced for three different water

source depths to show a broader range of section pump powers. The system’s 20-year life

cycle cost and season reliability were compared for the SDrOP-optimized designs using SSO

and SPM and the Grundfos design using SSO. The component costs for both the SDrOP-
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optimized designs and the Grundfos-sized systems were based on the market price of the

SPDI system components at the time the analysis was run.

The SDrOP model was used to optimally size the pump, solar array, and energy storage

for each farm case by minimizing life cycle cost and maintaining 100% 𝐼𝑅. SSO was simulated

by setting 𝑁𝑠,𝑚𝑎𝑥 to one. SPM was simulated by cutting the section flow rate in half and

setting 𝑁𝑠,𝑚𝑎𝑥 to two. Cutting the section flow rate in half for SPM also cut 𝑃𝑝𝑢𝑚𝑝,𝑠 in

half and doubled 𝑡𝑠. The cost parameters used in the SDrOP model for this analysis were

based on the retail price of off-the-shelf components; these component prices are defined in

Appendix A.1. The SDrOP model’s pump unit cost was estimated based on the listed price

of the Grundfos SP series pumps [50]. The SDrOP model’s controller cost was based on the

sum of the inverter, MPPT, and VFD costs. The cost of the inverter (𝐶𝑖𝑛𝑣) [$] and MPPT

charge controller (𝐶𝑀𝑃𝑃𝑇 ) [$] were estimated based on the peak output power of the solar

array (𝑃𝑝𝑒𝑎𝑘) [W], as

𝐶𝑖𝑛𝑣 = 𝑚𝑖𝑛𝑣𝑃𝑝𝑒𝑎𝑘 + 𝑏𝑖𝑛𝑣, (2.4)

𝐶𝑀𝑃𝑃𝑇 = 𝑚𝑀𝑃𝑃𝑇𝑃𝑝𝑒𝑎𝑘 + 𝑏𝑀𝑃𝑃𝑇 , (2.5)

where 𝑚𝑖𝑛𝑣 is the inverter linear coefficient [$/W], 𝑏𝑖𝑛𝑣 is the inverter linear constant [$],

𝑚𝑀𝑃𝑃𝑇 is the MPPT linear coefficient [$/W], and 𝑏𝑀𝑃𝑃𝑇 is the MPPT linear constant [$].

The VFD cost (𝐶𝑉 𝐹𝐷) [$] was estimated based on the maximum pump power (𝑃𝑝𝑢𝑚𝑝,𝑚𝑎𝑥)

[W], as

𝐶𝑉 𝐹𝐷 = 𝑚𝑉 𝐹𝐷𝑃𝑝𝑢𝑚𝑝,𝑚𝑎𝑥 + 𝑏𝑉 𝐹𝐷, (2.6)

where 𝑚𝑉 𝐹𝐷 is the VFD linear coefficient [$/W] and 𝑏𝑉 𝐹𝐷 is the VFD linear constant [$].

The linear coefficients and constants, listed in Appendix A.1, were determined based on

listed prices for inverters, MPPT charge controllers, and VFDs [51]–[53].

The Grundfos tool produced a Grundfos system made up of a pump, controller, and

solar array for each farm case. Each Grundfos design was paired with an elevated tank

35



because the Grundfos tool assumes the pump flow rate will modulate with the solar curve.

SPDI sections must operate at a constant pressure to ensure uniform flow, which produces

a relatively constant section flow rate. The tank allowed the Grundfos pump to operate

at higher flow rates than the section flow rate, storing excess water in the tank to avoid

over-pressurizing the hydraulic network. The Grundfos tool selects inverters for its systems

that include MPPT and allow for pumping to a storage tank at varying maximum power,

but does not include VFDs. The Grundfos pump and panel design, and the associated tank,

were input to the SDrOP operation simulation to obtain the 𝐼𝑅 over a growing season and

life cycle cost for the Grundfos design.

Figure 2.2 shows the comparison of life cycle cost and 𝐼𝑅 of the Grundfos commercial

tool’s designs using SSO (Com. SSO), the SDrOP optimized designs using SSO (Opt. SSO),

and the SDrOP optimized designs using SPM (Opt. SPM). The life cycle cost was split

up by component costs—pump, solar array, controllers (inverter, MPPT, VFD), and energy

storage—and by cost elements—initial, maintenance, and replacement. The SDrOP designs,

which were constrained to 100% 𝐼𝑅, had 31–66% higher 𝐼𝑅 than the Grundfos designs. For

the SSO schedule, the SDrOP systems had a life cycle cost that was 75% lower, 9% higher,

and 1% higher than that of the Grundfos systems for the 2, 50, and 100 m well depths,

respectively. The Grundfos system was much more expensive for the 2 m case because

the Grundfos sizing tool selected one of its pumps with an integrated solar inverter, which

was significantly more expensive than their separate pump and inverter options. For the

remaining cases, the SDrOP design was more expensive than the Grundfos design, but it

was also more reliable. The SDrOP optimized systems that used SPM cost 18–74% less

than Grundfos SSO systems and were 31–66% more reliable. For each well depth case, the

SDrOP design using SSO had the same size pump as the SDrOP design using SPM. SDrOP

designs using SPM had power systems that were 3% higher, 25% lower, and 18% lower in

life cycle cost than the SDrOP designs using SSO for the 2, 50, and 100 m well depth cases,

respectively. The cost comparison demonstrates that incorporating SPDI operation into the
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Figure 2.2: The solar pump system life cycle cost and irrigation reliability (𝐼𝑅) of sys-
tems designed with different software and scheduling methods for various well depths. The
software and scheduling methods used are the commercially available Grundfos sizing tool
operated by irrigating one section at a time (Com. SSO), the SDrOP model operated by
SSO (Opt. SSO), and SDrOP operated by solar profile matching (Opt. SPM). The SDrOP
optimal designs with SPM cost 18–74% less and are 31–66% more reliable at delivering the
required irrigation than the Grundfos-sized systems with SSO over the 2, 50, and 100 m well
depth cases.
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design optimization allows for a reduction in cost without sacrificing irrigation reliability.

This analysis quantifies the system cost reduction due to SPM scheduling and shows that,

for the cases of high well depth, and therefore higher pumping power, SPM is able to reduce

cost compared to SSO. Although the SDrOP model can simulate irrigation operation and

show the cost-saving potential of SPM, it does not model the operation in real-time and it

does not optimize the irrigation schedule. This means that the SDrOP model cannot be used

as an irrigation controller. There is a need for a precision irrigation controller, such as the

POWEIr controller, that optimizes irrigation schedules and implements SPM in real time

for a SPDI system. The POWEIr controller allows the cost and reliability benefits outlined

in this economic analysis to be realized in a variety of contexts.

2.3 POWEIr Controller Theory

2.3.1 POWEIr Controller Architecture

The POWEIr controller is designed to be a widely adoptable precision irrigation tool that

meets the needs of LMIC farmers in terms of scale, adaptability, accessibility, and cost [22],

[39]. The controller produces an optimal SPM irrigation schedule for a SPDI system, taking

into account the available solar power, the required pumping power, the irrigation demand,

and the battery capacity. The aims are to maximize crop yield, manage energy efficiently,

minimize water use, and reduce risk to farmers. The POWEIr controller uses a small number

of sensors and can operate with manual or automatic valves. It provides farmers with the

irrigation schedule one day in advance, which was found to be a preference among target

users [22].

The controller employs a three-tier architecture (Fig. 2.3). Level 3 uses MPC to produce

a daily optimal irrigation schedule based on its prediction of the crop water demand and

available solar power. Level 2 uses MPC to manage the energy use between the panels and
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Figure 2.3: The Predictive Optimal Water and Energy Irrigation (POWEIr) controller’s
three-tier architecture. Level 3 (green) predicts the weather, models solar power and soil
water levels, and optimizes the irrigation schedule at a daily frequency. Level 2 (yellow)
re-optimizes the battery energy management at a frequency of minutes to mitigate the pre-
diction error of Level 3 and preserve battery life. Level 1 (purple) maintains the minimum
operating power of each irrigation section at a frequency of seconds to ensure uniform flow
and avoid excess energy use due to over-pressurizing the system. A weather station, battery,
and pressure sensor are needed on the farm to provide measurement inputs. The top right
graph shows the Level 3 daily predictions, and the bottom right graph shows the sub-daily
Level 2 battery and Level 1 pump power management. On the bottom right graph, the
amount of irrigation delivered is fed back to Level 3.

battery on a sub-daily basis, while satisfying the Level 3 irrigation schedule, to reduce battery

aging. By adjusting the system energy use in real-time, Level 2 also mitigates prediction

error from Level 3. Level 1 uses proportional integral (PI) feedback control to maintain

uniform flow, automatically accommodating fluctuations in the hydraulic system pressure.

Level 1 facilitates the SPM schedule by adjusting the pump power based on the number of

open sections and enables the pump operating points to be well characterized for the Level

3 and Level 2 calculations.
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2.3.2 Level 3: Irrigation Schedule Optimization

Weather Prediction Model

Weather measurements are needed to predict the daily evapotranspiration, precipitation, and

radiation. These values are used in a soil moisture model and solar power model to calculate

the crop water demand and available solar power. The weather prediction methodology is a

machine learning algorithm. In many LMICs, local, accurate, and reliable weather stations

and forecasts are not readily available [54], [55]. Farmers in LMICs can no longer rely on

historical weather patterns due to climate change, and there is a growing need for a low-

cost, local method for predicting weather [56], [57]. This is especially true for rural farmers

in LMICs where the nearest weather station can be thousands of kilometers away, remote

sensing is not high enough resolution to discern a small farm’s micro-climate, and there is not

the infrastructure to support computationally expensive climate models [58], [59]. In these

cases, using low-cost weather sensors paired with a computationally inexpensive machine

learning algorithm to predict a farm’s local weather is a viable option [60].

The machine learning algorithm chosen is vector autoregression (VAR), similar to the

method chosen in [61]. VAR is a multivariate prediction algorithm that is well suited for

predicting weather data as it is formulated to predict multiple time series data at once that

influence each other. VAR is also an appropriate choice as it can be accurate with limited

training data, making VAR an applicable method for farms with little existing local weather

data. The VAR model is defined as [62]

𝑦𝑡 = 𝑐+𝑊1𝑦𝑡−1 +𝑊2𝑦𝑡−2 + · · ·+𝑊𝑝𝑦𝑡−𝑝 + 𝑒𝑡, (2.7)

where 𝑦 is a vector of variables being predicted, 𝑡 is the time, 𝑐 is a vector of constants, 𝑊 is

a weight matrix, 𝑝 is the lag order, and 𝑒 is an error vector. 𝑦 is comprised of local historical

and measured weather parameters. The weather parameters are daily average, minimum,

and maximum air temperature and relative humidity; daily average wind speed; total daily
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solar radiation (𝐺) [MJ/m2]; reference evapotranspiration (𝐸𝑇0) [mm] calculated from the

previous weather parameters using the Penman-Monteith equation [63]; sun hours calculated

as the number of hours the hourly radiation was greater than 0.1 MJ/m2; and precipitation

(𝑃𝑟) [mm].

An augmented Dickey-Fuller test is used to check the stationarity of each variable of the

weather data [62]. If the p-value of the augmented Dickey-Fuller test is less than 0.05 for

each variable, the null hypothesis can be rejected and it is inferred that the time series data

are stationary. If the p-value of the augmented Dickey-Fuller test is greater than 0.05 for

any variable of the weather data, the null hypothesis can not be rejected and up to two

differences in the data are taken to re-check stationarity. The augmented Dickey-Fuller test

is checked for each of the differenced data and the full data are considered stationary when

the null hypothesis can be rejected for each variable.

The stationary data are split into training and testing data sets based on the number of

prediction days chosen. The lag order of the VAR model is chosen by finding the optimal

VAR order selection. A VAR model is built using the time series analysis function in the

statsmodels package in Python [64] and fit using the selected lag order. The model is then

used to predict the 𝑦 vector, and the predicted weather parameters are used to calculate the

solar power and crop water demand for the upcoming day. Every time an irrigation schedule

is calculated the time series VAR model is re-trained and re-built using one year of historical

weather and the most recent measured weather data.

Solar Power Model

The solar power model calculates the available solar power, which is used in the irrigation

schedule optimization. A modified single diode model, proposed in Villalva, Gazoli, and

Filho [65], is used to calculate the maximum power point given the local historical solar

irradiance and temperature at each hour of the day. Then, the historic hourly solar power

is calculated for the year. This solar power is used for the daily prediction and is scaled by
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a factor, 𝑓𝑠𝑜𝑙𝑎𝑟, calculated as

𝑓𝑠𝑜𝑙𝑎𝑟 =
𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝐺ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐

, (2.8)

where 𝐺𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is the predicted total daily solar radiation [MJ/m2] and 𝐺ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐 is the historic

total daily solar radiation [MJ/m2] for the prediction day.

Soil Moisture Model

The soil moisture model calculates the irrigation demand parameters used to optimize the

irrigation schedule. A soil water balance calculates the depth of water depleted from the soil

root zone (𝐷𝑟). The 𝐷𝑟 is related to the water stress on the crop which affects crop yield.

The water stress coefficient, 𝐾𝑠𝑡, is defined as

𝐾𝑠𝑡 =
𝑇𝐴𝑊 −𝐷𝑟

𝑇𝐴𝑊 (1− 𝑓𝑑)
, (2.9)

where 𝑇𝐴𝑊 is the total available water that the crop can extract from the soil [mm] which

depends on crop and soil properties and 𝑓𝑑 is the depletion fraction.

𝐷𝑟 is calculated by substituting the equation for 𝐾𝑠𝑡 into the soil water balance defined

in Allen, Pereira, Raes, et al. [63] and solving for 𝐷𝑟. For each day 𝑛, 𝐷𝑟 is calculated as

𝐷𝑟,𝑛 =
𝐷𝑟,𝑛−1 − 𝑃𝑟𝑛 +𝑅𝑂𝑛 − 1000𝐼𝑑𝑒𝑙,𝑛

𝐴𝑠𝑓𝑤
+ 𝐸𝑇𝑐,𝑛

1−𝑓𝑑,𝑛

1 + 𝐸𝑇𝑐,𝑛

𝑇𝐴𝑊 (1−𝑓𝑑,𝑛)

, (2.10)

where 𝑅𝑂 is the runoff [mm], estimated as a fraction of 𝑃𝑟 based on the soil type, 𝐴𝑠, is

the section area that 𝐷𝑟 is being calculated for [m2], and 𝑓𝑤 is the soil wetted fraction. The

crop evapotranspiration (𝐸𝑇𝑐) [mm] is calculated on day 𝑛 as

𝐸𝑇𝑐,𝑛 = 𝐾𝑐,𝑛𝐸𝑇0,𝑛, (2.11)
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where 𝐾𝑐 is a crop coefficient. The 𝑓𝑑 is calculated on day 𝑛 as

𝑓𝑑,𝑛 = 𝑓𝑑,𝑐𝑜𝑛𝑠𝑡 + 0.04 (5− 𝐸𝑇𝑐,𝑛), (2.12)

where 𝑓𝑑,𝑐𝑜𝑛𝑠𝑡 is a crop dependant constant defined in [63]. 𝐷𝑟 is constrained every day to

be between zero and 𝑇𝐴𝑊 . The readily available water, 𝑅𝐴𝑊 , is defined as

𝑅𝐴𝑊𝑛 = 𝑓𝑑,𝑛𝑇𝐴𝑊. (2.13)

If 𝐷𝑟 is less than or equal to the 𝑅𝐴𝑊 then there is no water stress on the crop and 𝐾𝑠𝑡

is one. If the 𝐷𝑟 is greater than 𝑅𝐴𝑊 , then there is water stress and 𝐾𝑠𝑡 varies between

zero and one. The water stress affects the amount of crop evapotranspiration:

𝐸𝑇𝑐,𝑎𝑑𝑗 = 𝐾𝑠𝑡𝐸𝑇𝑐. (2.14)

If there is water stress on the crop, then the reduction in evapotranspiration relates to a

reduction in yield:

1− 𝑌𝑎

𝑌𝑚𝑎𝑥

= 𝐾𝑦

(︂
1− 𝐸𝑇𝑐,𝑎𝑑𝑗

𝐸𝑇𝑐

)︂
. (2.15)

The 𝑌𝑎 is the adjusted yield [kg/m2], 𝑌𝑚𝑎𝑥 is the maximum yield [kg/m2] calculated using

the agro-ecological zone method defined in [66], and 𝐾𝑦 is the crop yield response factor [67].

Irrigation Optimization

The irrigation optimization algorithm’s objective is structured to incorporate the trade-offs

identified using stakeholder feedback. The trade-offs are to achieve high crop productivity

and reduce SPDI costs without sacrificing irrigation reliability or introducing risk to the

crops. Based on the stakeholder analysis and design requirements defined in Van de Zande,

Sheline, Amrose, et al. [22] and Grant, Amrose, Talozi, et al. [24], the POWEIr controller
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architecture was designed to be

Predictive, so that it provides advance notice of the irrigation schedule to the user

to allow for planning,

Efficient by lowering water-use and energy storage capacity without introducing risk

to the crop yields, and

Low-cost by reducing the on-field hardware to decrease complexity and cost without

sacrificing irrigation accuracy.

To satisfy these design targets, Level 3 outputs a predicted daily optimal irrigation sched-

ule. Additionally, the optimization objective is formulated to minimize the operational cost

from battery use and water consumption (𝐿), maximize revenue through crop yield (𝑅), and

minimize future risk by fully charging the battery at the end of the prediction horizon (𝑉 ).

The objective function is defined over a prediction horizon as

min

[︂𝑁ℎ𝑜𝑟∑︁
𝑖=𝛿𝑡

𝐿(𝑑𝑠,𝑖, 𝑢1,𝑖, 𝑢2,𝑖)−
𝑁𝑑𝑎𝑦∑︁
𝑛=1

𝑅(𝑥𝑠,𝑛) + 𝑉 (𝑆𝑂𝐶𝑁ℎ𝑜𝑟
)

]︂
, (2.16)

where 𝑁ℎ𝑜𝑟 is the prediction horizon in hours and 𝑁𝑑𝑎𝑦 is the prediction horizon in days. The

prediction horizon is defined in two different time units because the system water and energy

use are calculated at every time step, but the agronomy factors—including the soil moisture

and yield—are calculated daily. The function 𝐿 is used to minimize the battery and water

use with an hourly time step, 𝛿𝑡, and the function 𝑅 is used to maximize the crop revenue

with a daily time step. The function 𝑉 is used to fill the battery by the end of the prediction

horizon. In function 𝐿, 𝑑𝑠 is the binary control variable for irrigating section 𝑠 of the field; 𝑢

is a dimensionless control variable for the rate that the battery is charged (𝑢1) and discharged

(𝑢2), normalized by 𝑢𝑚𝑎𝑥 [kW], the maximum dispatch rate of the battery specified by the

manufacturer. In function 𝑅, 𝑥𝑠 is the dimensionless state variable for the 𝐷𝑟 (Eq. 2.10) of

each section 𝑠 normalized by 𝑇𝐴𝑊 . In function 𝑉 , 𝑆𝑂𝐶𝑁ℎ𝑜𝑟
is the dimensionless battery
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state of charge, calculated as the energy stored in the battery normalized by the battery

capacity, 𝐶𝑏𝑎𝑡𝑡 [kWh], at the end of the prediction horizon. These functions are all defined

in terms of cost as

𝐿(𝑑𝑠,𝑖, 𝑢𝑖) =
1

𝑁ℎ𝑜𝑟

(︂
𝑘𝑏𝑢𝑚𝑎𝑥(𝑢1,𝑖 − 𝑢2,𝑖) +

𝑁𝑠,𝑡𝑜𝑡∑︁
𝑠=1

𝑘𝑤𝑞𝑠𝑑𝑠,𝑖

)︂
, (2.17)

𝑅(𝑥𝑠,𝑛) =

𝑁𝑠,𝑡𝑜𝑡∑︁
𝑠=1

1

𝑁𝑑𝑎𝑦

(︀
𝑘𝑐𝐴𝑠

𝑑𝑌𝑎,𝑠,𝑛

𝑑𝑡

)︀
, (2.18)

𝑉 (𝑆𝑂𝐶𝑁ℎ𝑜𝑟
) = 𝑘𝑑(1− 𝑆𝑂𝐶𝑁ℎ𝑜𝑟

), (2.19)

where 𝑘𝑏 [$/kWh] is the cost weight of the battery defined by the unit battery cost and its

lifetime storage; 𝑁𝑠,𝑡𝑜𝑡 is the total number of sections 𝑠 the field is split into; 𝑘𝑤 [$/m3] is

the cost weight for water; 𝑘𝑐 [$/kg] is the price weight on the crop; 𝑑𝑌𝑎,𝑠,𝑛

𝑑𝑡
is the daily yield

[kg/m2/day], which is estimated by dividing 𝑌𝑎 in Equation 2.15 by the number of days in

the crop growing season; and 𝑘𝑑 is the cost weight on the energy storage [$] based on the

total cost of the system over its lifetime divided by the number of prediction horizons in the

lifetime.

The optimization is subject to the following boundary constraints at each time step, 𝑖 or
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𝑛:

0 ≤ 𝑢1,𝑖 ≤ 1, (2.20)

− 1 ≤ 𝑢2,𝑖 ≤ 0, (2.21)

𝑑𝑠,𝑖 ∈ {1, 0}, (2.22)

0 ≤ 𝑥𝑠,𝑛 ≤ 1, (2.23)

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑖 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥, (2.24)

𝑥𝑠,0 = 𝑥𝑠,𝑖𝑛𝑖, (2.25)

𝑆𝑂𝐶0 = 𝑆𝑂𝐶𝑖𝑛𝑖, (2.26)

where 𝑆𝑂𝐶𝑚𝑖𝑛 is the minimum state of charge, set by the manufacturer recommended depth

of discharge, 𝑆𝑂𝐶𝑚𝑎𝑥 is the maximum state of charge, and 𝑥𝑠,𝑖𝑛𝑖 and 𝑆𝑂𝐶𝑖𝑛𝑖 are the initial

state of the soil water depletion and battery state of charge. These initial conditions can

be measured. 𝑆𝑂𝐶𝑖𝑛𝑖 is measured from the battery at the start of the day, and 𝑥𝑠,𝑖𝑛𝑖 is

calculated based on Equation 2.10 and the previous day’s agronomy parameters, measured

weather, and delivered irrigation. The 𝑥𝑠,𝑖𝑛𝑖 for the start of a crop season can be estimated

from measured soil moisture.

The optimization is also subject to constraints on the system dynamics. These dynamics

include changes in the amount of water stored in the soil and the amount of energy stored in

the battery. The model for the water stored in the soil is the daily soil water balance. The

soil water balance is calculated by solving for 𝑥 as the fraction of 𝐷𝑟 over 𝑇𝐴𝑊 in Equation

2.10:

𝑥𝑠,𝑛 =
𝑇𝐴𝑊𝑥𝑠,𝑛−1 − 𝑃𝑟𝑛 +𝑅𝑂𝑛 − 1000𝐼𝑑𝑒𝑙,𝑠,𝑛

𝐴𝑠𝑓𝑤
+ 𝐸𝑇𝑐,𝑠,𝑛

1−𝑓𝑑,𝑠,𝑛

𝑇𝐴𝑊 + 𝐸𝑇𝑐,𝑠,𝑛

1−𝑓𝑑,𝑠,𝑛

. (2.27)

The irrigation delivered in Equation is calculated as

𝐼𝑑𝑒𝑙,𝑠,𝑛 =

𝑖=𝑁ℎ𝑜𝑟∑︁
𝑖=𝛿𝑡

𝑑𝑠,𝑖𝑞𝑠𝛿𝑡. (2.28)
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The battery storage dynamic model is

𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖−1 +
𝑢𝑚𝑎𝑥

𝐶𝑏𝑎𝑡𝑡

(𝑢1,𝑖 + 𝑢2,𝑖)𝛿𝑡. (2.29)

The battery charging and discharging rates are functions of ∆𝑃𝑖, the difference between

available solar power and the pump power demand at time step 𝑖:

∆𝑃𝑖 = 𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 − 𝑃𝑝𝑢𝑚𝑝,𝑖, (2.30)

𝑢1,𝑖 ≤
𝜂𝑏𝑎𝑡𝑡
2𝑢𝑚𝑎𝑥

(︀
|∆𝑃𝑖|+∆𝑃𝑖

)︀
, (2.31)

𝑢2,𝑖 =
1

2𝑢𝑚𝑎𝑥𝜂𝑏𝑎𝑡𝑡

(︀
∆𝑃𝑖 − |∆𝑃𝑖|

)︀
. (2.32)

Equation 2.31 states that the battery can only charge if there is excess solar power

available (𝑃𝑎𝑣𝑎𝑖𝑙). Equation 2.32 states that the battery must discharge to meet the pump

power demand, 𝑃𝑝𝑢𝑚𝑝 [kW], if there is insufficient solar power available, 𝑃𝑎𝑣𝑎𝑖𝑙 [kW]. The

battery efficiency, 𝜂𝑏𝑎𝑡𝑡, is assumed to be the same for charging and discharging. 𝑃𝑝𝑢𝑚𝑝 is an

empirical linear equation fit as a function of the number of sections opened at a given time;

these values are calibrated when a system is installed.

There are also constraints on how the sections can be opened, which are

∑︁
𝑠

𝑑𝑠,𝑖 ≤ 𝑑𝑚𝑎𝑥, (2.33)

𝑁𝑑𝑎𝑦∑︁
𝑖

(𝑑𝑠,𝑖 − 𝑑𝑠,𝑖−1)
2 ≤ 2, (2.34)

where 𝑑𝑚𝑎𝑥 is the maximum number of sections that can be opened at one time. Equation

2.34 requires each section to be opened and closed only once per day at most.
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2.3.3 Level 2: Energy Storage Optimization

Level 2 takes in the Level 3 predictions for the upcoming day and optimizes the battery

use throughout the day. The primary aims of Level 2 are to ensure the system can reliably

irrigate according to the Level 3 schedule and reduce battery aging over time. Given that

farmers prefer daily schedule updates [22], Level 2 is constrained to meet the optimal irri-

gation schedule produced by Level 3 at the beginning of the day. It was also found through

stakeholder interviews that farmers would prefer smaller, less expensive energy storage com-

ponents and are wary of the maintenance and replacement costs associated with batteries

[24]. However, using a small battery relative to the solar panel capacity can lead to high

dispatch rates, which in turn can impact battery performance and aging [68]. The Level 2

objective function aims to balance system reliability and battery longevity by storing enough

energy in the battery over the day to ensure schedule adherence while also minimizing the

battery charging rate to reduce energy throughput of the battery (Eqs. 2.35 and 2.36). Level

2 takes in the predicted solar power, pump load schedule, and expected battery SOC from

Level 3 as shown in Fig. 2.3, and optimizes the battery charging rate at each time step.

Level 2 incorporates real-time measurements of the available solar power, which allows for

adjustments to the system energy use despite errors in the Level 3 solar power prediction.

The objective function is defined over the same prediction horizon as Level 3, 𝑁ℎ𝑜𝑟:

𝑚𝑖𝑛

𝑁ℎ𝑜𝑟∑︁
𝑖=𝛿𝑡

𝛼𝑀(𝑆𝑂𝐶𝑖)− (1− 𝛼)𝑢1,𝑖, (2.35)

𝑀(𝑆𝑂𝐶𝑖) =
1

2

[︀
(𝑆𝑂𝐶𝑟𝑒𝑓,𝑖 − 𝑆𝑂𝐶𝑖) + |𝑆𝑂𝐶𝑟𝑒𝑓,𝑖 − 𝑆𝑂𝐶𝑖|)

]︀
, (2.36)

where, at each time step, 𝑆𝑂𝐶𝑟𝑒𝑓,𝑖 is the reference SOC predicted by Level 3, 𝑆𝑂𝐶𝑖 is the

measured SOC, and 𝑢1,𝑖 is battery charging rate, which is the Level 2 control variable. The

weighting factor, 𝛼, can be used to set the relative priority of the two terms in the objective

function. The first term, 𝑀 , in the objective function is formulated to track the predicted
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SOC from Level 3, but does not penalize exceeding the reference to store more energy

in the battery. This term aims to store adequate energy in the battery to ensure reliable

irrigation despite prediction errors from Level 3 and disturbances in the available solar power

or pump load profile during operation. The second term in the objective function aims to

minimize the battery charging rate, which affects battery cyclic aging [68]. At each time step,

the optimization is subject to the constraints defined in Equations 2.31 and 2.32, and the

boundary conditions defined in Equations 2.20, 2.21, 2.24 and 2.26. The Level 2 optimization

is effectively constrained to meet the Level 3 irrigation schedule by Equation 2.32, which

requires the battery to discharge whenever the pump demand exceeds the available solar

power.

2.3.4 Level 1: Pump Operating Point Control

Level 1 maintains the pump operating point using proportional integral (PI) feedback con-

trol on the pump pressure. Drip emitters have a minimum pressure at which the emitter

uniformly produces its rated flow [69]. Pressure feedback control can be used to maintain

the minimum operating pressure necessary to provide uniform flow without wasting power

to over-pressurizing the pipe network. The pressure setpoint for a section can be determined

by increasing the pump power until the last emitter in the section is operating at its rated

flow. This is the calibration method to determine the section setpoints for the Level 1 con-

trol loop. The PI gains can then be tuned for the hydraulic network using standard system

identification and PID tuning techniques [70]–[72].

The Level 1 feedback pressure sensor is placed downstream of the filters and fertigation

unit in the mainline to enable static setpoints that only require one calibration for a given

hydraulic network configuration. The primary dynamic pressure losses in the hydraulic

network are the filters and fertigation unit, which are typically downstream of the pump. It

was observed in previous experimental work that the pump operating power varies over time

due to filters clogging and the use of the fertigation unit [36], [73]. The POWEIr controller
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is programmed with the calibrated pump operating power for single and multiple sections,

and these operating points are passed into the Level 3 and Level 2 optimizations. Although

the pump power will vary over time, Level 1 ensures that the pump operating points are

relatively consistent over time, barring any significant changes that would require hydraulic

maintenance. This means Level 1 enables the Level 3 and Level 2 predictive modeling to

remain accurate over the course of the irrigation season.

2.4 Experimental Prototype

2.4.1 Methods

A prototype of the POWEIr controller was built for a scaled-down SPDI system, which was

representative of a small field, and tested in Cambridge, Massachusetts, USA over seven days.

The experiment was designed to demonstrate the water and energy management capabilities

of the controller, specifically its ability to predict weather, schedule irrigation, and manage

battery storage. No crops were grown, but the daily crop water demand was simulated to

produce an optimal daily irrigation schedule with Level 3. The daily test conditions were

defined by the solar energy predicted by the POWEIr controller, the predicted irrigation

demand, and the actual solar energy measured over the day. The experimental case, defined

in Table 2.2, was used to generate the Level 3 irrigation schedule for each day by varying 𝑥𝑠,𝑖𝑛𝑖

to get a range of crop water demand test conditions. This case is a scaled-down version of the

case presented in Table 2.1. The controller prototype software was implemented in MATLAB

using a Gurobi solver on a laptop, interfacing with a programmable logic controller or PLC

(CLICK PLUS PLC) via Ethernet, and communicating with the hardware components via

MODBUS.

The SPDI prototype layout and instrumentation are shown in Figure 2.4. Two hydraulic

sections were operated with manual ball valves and were used to mimic the five-section field
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Table 2.2: Experiment case for POWEIr controller prototype.

Location Cambridge,
MA

Field area 0.25 ha
Section size 0.05 ha
Water source
depth

2 m

Simulated Crop Tomato
Emitter flow rate 0.5 Lph
Section pump
power (for one
and two sec-
tions)

0.24, 0.32 kW

Section irriga-
tion time (daily
average)

89 min.

defined in the experimental case (Table 2.2). The schedule was constrained to operate a

maximum of two sections at a time. A submersible pump (Goulds 8GSZ05R) was located in

the Charles River at a depth of about two meters. The hydraulic behavior of the system was

recorded with a flow meter (Omega FTB4607), located downstream of the filter, and pressure

sensors (ProSense SPT25-20-0060D) located at the outlet of the pump, before and after the

disk filter (Irritec T-Filter 155 mesh), at the entrance of each section, and at the end of

the last lateral of each section. These sensor measurements were used to compute hydraulic

power and calibrate the pump operating points. The PI feedback loop in Level 1 was tuned

by running the hydraulic system in open-loop and using the MATLAB system identification

toolbox to determine the system dynamic response, which was found to be first-order with

a response time on the order of one minute. The CLICK AutoTune feature [70] was used to

identify the proportional and integral gains, which were then adjusted manually to obtain the

desired system behavior. A VFD (Danfoss VACON0010-1L-0002-1) was used to modulate

the pump speed and record the input and output power of the motor.

The power system consisted of a 1.3 kW solar array (CS3W-445MS) and a 3.84 kWh

custom lithium iron phosphate (LFP) battery (Topbrand 16S-3P cell). Current and voltage
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Figure 2.4: Controller prototype system layout and instrumentation.

measurements were recorded at the panels, battery, and pump motor; these data were used

to compute system energy use. A pyranometer (Davis Solar Radiation Sensor #6450) and

temperature sensor were located next to the panel array, which were used to calculate the

available solar power using the single-diode model [65]. The on-site Davis Vantage Pro

weather station measured temperature, relative humidity, rainfall, and wind velocity. The

machine learning algorithm for the Level 3 daily weather predictions was built and trained

for each day tested using 30 days of weather data downloaded from the Davis Vantage Pro

weather station combined with one year of historical weather data [74]. The prediction

horizons for Level 3 and Level 2 were set to 24 hours.

The controller was compared to several simulated benchmarks to quantify its perfor-

mance. The optimal irrigation scheduling and energy use were compared to a simulated

SSO reference for the same field that represents typical farmer practice, hereafter referred to

as SSO reference. The SSO reference was simulated to open the first section as soon as the
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solar power available was greater than or equal to the pump power for one section. Once the

first section was opened it was assumed that the entire farm was irrigated, one section at

a time, until the irrigation demand was reached. The amount of simulated water that was

delivered by the SSO reference was constrained to be the same amount of water delivered

by the POWEIr controller during the experiment.

The Level 2 optimized battery use was compared to simulated battery operation with

no control to quantify the effectiveness of real-time control on cyclic battery aging. In the

no-control case, the battery was simulated to charge as soon as solar power was available,

at a charging rate equal to the available solar power, and discharge according to the pump

load. The pump energy use with Level 1 control was compared to the pump energy use

for a simulated constant operating point. The simulated constant operating point was set

to the maximum pump power, or the power required to operate two sections, which would

be necessary to ensure uniform flow for any section combination without Level 1 feedback

control.

2.4.2 Results

The POWEIr controller experimental prototype was evaluated for a range of test conditions—

predicted solar energy, measured solar energy, and predicted irrigation demand. A summary

of the daily test conditions compared to the seven-day average conditions is provided in

Table 2.3. Over the seven days, Level 3 over and under predicted the measured solar energy

and the irrigation demand spanned a range of 82% below to 64% above the observed average.

Table 2.3 shows that for the three conditions, six out of the eight possible above- and below-

average combinations are tested. This indicates that the experimental prototype was tested

over a comprehensive set of conditions.

Figure 2.5 shows the full power profiles of the POWEIr controller on two days where the

irrigation demand was above average. On October 20th, Level 3 underpredicted the available

solar energy, and on October 11th, Level 3 overpredicted the available solar energy. For both
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Figure 2.5: The power profiles over a day where there was higher measured solar power than
predicted, October 20, 2021, and a day when there was lower measured solar power than
predicted, October 11, 2021. For both of these days, the state of charge (SOC) of the battery
(blue) is plotted on top and the power used by other system components: solar (orange),
pump (grey), battery charge (green), battery discharge (red), are shown on the middle and
bottom plots. The middle plots show the Level 3 (L3) predictions (shaded), Level 2 (L2)
optimal points (asterisks), and measured data from the POWEIr controller (solid lines). The
bottom plots compare the measured POWEIr controller data to single section operation
(SSO) reference data (dashed line). The SSO reference data was simulated to represent
how a farm with SPDI but without the POWEIr controller would have traditionally been
operated, irrigating a single section at a time.
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Table 2.3: Summary of the solar and irrigation daily test conditions. The percent differences
are the predicted solar energy (Pred. Solar) and the measured solar energy (Meas. Solar)
compared to the seven-day average measured solar energy and the irrigation demand (Irri.
Demand) compared to the seven-day average irrigation demand. Above-average, at-average,
and below-average conditions are highlighted in green, yellow, and red, respectively.

Date Pred.
Solar

Meas.
Solar

Irri.
Demand

1st +11% 0% +58%
6th +19% +6% +64%
7th +36% +16% -30%
11th +27% -28% +12%
13th -25% +14% -50%
19th -38% -11% -82%
20th -17% +3% +28%

days, the Level 3 solar prediction (filled orange) did not match the measured solar power

(orange line) and the battery had to be discharged (red line), to meet the optimal irrigation

schedule. The POWEIr controller discharged the battery less and delivered irrigation (pump

power shown in black) in a shorter amount of time compared to the SSO reference (dotted

lines) for both days. The POWEIr controller was able to deliver the same amount of water

in a shorter amount of time by implementing SPM. The pump efficiency was 14% and 21%

when one and two sections were operated, respectively. The pump efficiencies were low due

to the miniature size of the prototype, which led to low pump operating points. Higher

pump efficiencies are expected in practice when a pump is used for a full-scale farm. The

power profile results for the remaining test days are provided in Appendix A.3.

Figure 2.6 compares the daily solar (orange), pump (grey), and battery charge (green)

and discharge (red) energy for the Level 3 predicted optimal (left), measured (middle), and

the simulated SSO reference (right) values. It was assumed that the SSO reference had the

same solar and battery charge energy as that measured during the experiment. The volume

of water delivered is the same between the POWEIr controller and the SSO reference, but

the pumping energy is different because it was energetically favorable to irrigate two sections

over one.
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Figure 2.6: The energy breakdown and solar prediction error of each day of the POWEIr
controller experiment.

Figure 2.6 shows that on days with below-average irrigation demand (October 7th, 13th,

and 19th), the energy consumption that was measured is similar to that of the SSO reference

because the controller implemented an irrigation schedule similar to SSO on these days. On

days with above-average irrigation demand (October 1st, 6th, 11th, and 20th), the controller

implemented SPM and used 78-98% less battery energy compared to the SSO reference. For

all of the days, Level 3 produced an optimal schedule that did not use the battery because

the predicted available solar power was sufficient for the pump load and to fill the battery

by the end of the day (Fig. 2.5, solid blue line). In reality, due to Level 3 prediction errors,

the battery was used as a buffer when unforeseen dips in the measured available solar power

occurred.

The normalized root mean square error (NRMSE) between the predicted and measured

solar power, normalized by the mean measured solar power, was 0.3–0.9, with a root mean

square error (RMSE) of 0.132–0.328 kW (Fig. 2.6). NRMSE penalizes large variations be-
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tween the predicted and measured values; reducing this variation improves system reliability.

The solar power prediction error is comparable to the pump operating points for one and

two sections, 0.24 kW and 0.32 kW, respectively. If the Level 3 prediction alone were used to

determine the power system operation, the system may fail to irrigate due to the mismatch

between the pump power demand and the actual available solar power. Despite the solar

prediction error, the controller was able to meet the irrigation demand over all tested days

because it had energy storage to draw from. The maximum amount that the battery was

discharged for the POWEIr controller was 0.3 kWh, representing the battery capacity needed

as a buffer during this experiment. By contrast, the SSO reference needed a battery capacity

of 1.8 kWh, six times that of the POWEIr controller.

Figure 2.7: The solar irrigation reliability (solar 𝐼𝑅) and irrigation demand of each day of
the POWEIr controller experiment.

Figure 2.7 shows the solar irrigation reliability (solar 𝐼𝑅) on each day comparing the

Level 3 prediction (light blue), the measured data (blue), and the simulated SSO reference

(dark blue) to demonstrate how much water could be delivered directly by solar (i.e., without

relying on the battery) in each case. The solar 𝐼𝑅 was computed as the ratio of the irrigation
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amount delivered using direct drive solar power to the total irrigation demand. The predicted

𝐼𝑅 was 100% for every test day. Due to Level 3 prediction errors, the measured solar 𝐼𝑅

varied from 63–100%. The daily irrigation demands (white circles) are shown along with

the average irrigation demand (dashed line) over all days. On days with above-average

irrigation demand, the measured solar 𝐼𝑅 was 19–46% higher than the SSO reference solar

𝐼𝑅, meaning that more battery energy had to be used to meet the irrigation demand for

the SSO reference. On low-demand days, the predicted, measured, and SSO reference solar

𝐼𝑅 were above 80%, indicating that the pump was primarily powered by the solar panels

for all three cases. The solar 𝐼𝑅 is an indicator of what the 𝐼𝑅 would be without any

battery buffer. Fig. 2.6 shows that the POWEIr controller needed a 0.3 kWh battery buffer

to deliver all of the irrigation demand (100% 𝐼𝑅). Therefore, a battery capacity of only

0.3 kWh enabled up to a 37% increase in the measured 𝐼𝑅, from 63% with direct drive to

100%. This demonstrates that it is possible to use a relatively small battery capacity to

mitigate weather prediction errors and ensure reliable irrigation.

2.5 Discussion

The economic analysis presented in this chapter demonstrates the benefit of using SPM

irrigation scheduling and optimizing the design of SPDI systems. Combining SPM with

SPDI component optimization can lead to 18–74% life cycle cost savings while increasing

irrigation reliability by 31–66% compared to a commercial system sizing tool using SSO. This

indicates that pairing SPDI with precision irrigation control could enable smaller, lower-

cost systems that are still able to meet crop water demand in a variety of contexts. This

economic analysis can be conducted for other cases to determine the benefits SPM could

provide in any context. It was found that SPM provides the most benefits for farms with

high pumping power and irrigation requirements. These farms require large solar power

systems, which are cost prohibitive in LMICs, when designed and operated using traditional
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methods. Implementing SPM in these contexts could increase the accessibility of solar-

powered irrigation.

The proposed POWEIr controller implements SPM and optimizes SPDI energy and water

use. The POWEIr controller software was developed to be scale-neutral and adaptable to a

variety of local contexts, which means it can provide case-specific irrigation scheduling. The

proposed architecture facilitates a low-cost device that would be accessible to the target user

groups. The controller uses minimal on-field sensors, including a low-cost weather station

and a single pressure sensor, and manual valves. In the proposed architecture, the complexity

is primarily in software, and the predictive modeling computations can be conducted in the

cloud rather than on-site specialized hardware. It does not require a fully instrumented

hydraulic system or an array of soil moisture sensors, which are costly and require technical

expertise to maintain. The integration of this controller with SPDI systems could make

precision irrigation technology easier to adopt and help farmers sustainably increase crop

productivity. The performance of the controller and its potential to be implemented at low

cost indicate that it could meet the needs of small- and medium-scale farmers in LMICs,

allowing farmers to realize the economic and sustainability benefits of SPDI.

The performance of the POWEIr controller was validated with an experimental proto-

type. The experimental results show that the Level 3 irrigation schedule optimization and

weather prediction was able to meet the simulated crop water demand without a priori

knowledge of the weather. The experiment demonstrated that the proposed three-tiered

architecture was able to reliably operate an irrigation system while being robust to errors

in the prediction. Although the daily solar power prediction error was on the same order

as the pump power requirement, the controller was able to reliably meet the simulated crop

water demand under varying weather conditions using a small battery buffer. This means

that the POWEIr controller would be able to provide a daily optimal irrigation schedule to

the end user while adapting to changes in real-time with an energy management strategy.

The machine learning algorithm that produced the weather prediction took the majority of
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the Level 3 run time. However, the results of the experiment indicate a daily prediction is

sufficient for the controller to reliably meet the irrigation demand, so it is not necessary to

run this computationally expensive algorithm more frequently.

The POWIEr controller had an advantage over typical farmer practices on high irrigation

demand days. On the tested above-average demand days, the controller was shown to have

up to 46% higher solar irrigation reliability. Even with solar prediction errors of up to 0.9

NRMSE, the controller was able to deliver irrigation more reliably while using less energy

storage buffer compared to the SSO reference. These high demand conditions ultimately

drive the SPDI system component capacities. The ability of the POWEIr controller to im-

prove the solar energy use efficiency enables a smaller, less expensive power system compared

to the reference case.

The presented controller prototype was not intended to validate the agronomy models.

Instead, the data collected in this study represents the expected operation range of the

POWEIr controller and serves as a validation of its energy management, irrigation schedul-

ing, and weather prediction capabilities. Further work should be conducted to determine the

accuracy of the irrigation scheduling calculations in terms of their effect on relevant agronomy

parameters. The controller should be tested on a farm over a full growing season to measure

the performance of the Level 3 soil moisture calculations. It was assumed that the SSO

reference would match the irrigation demand of the POWEIr controller in the experimental

prototype. In practice, farmers irrigate based on their experience and can over-irrigate, so

future experiments should explore the water-saving capabilities of the controller.

For this small-scale experiment, the hydraulic system operated outside of the preferred

pump operating range, leading to unrealistically low pump efficiencies. However, there are

cases in which the number of sections can lead to large pump operating ranges. This has

implications for the system energy use, power system capacity, and system efficiencies, which

should be explored further when testing the controller prototype on a full-size field.

The energy storage selected for this experiment was an LFP battery, which is well-suited
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to solar-battery systems. However, these batteries are expensive, especially compared to

more common battery chemistries, like lead acid. LFP batteries are becoming more available

but can be difficult to source in some countries. Furthermore, in some countries, farmers

may prefer water tanks as a way to store energy. Therefore, a more detailed economic and

technical analysis should be conducted on energy storage options in future iterations of the

controller theory.

2.6 Conclusions

Solar-powered drip irrigation could enable sustainable agricultural intensification in low- and

middle-income countries, but the investment cost and technical knowledge gaps make these

systems inaccessible to small and medium-scale farmers. This study proposes a precision

irrigation controller architecture for SPDI that optimizes energy and water use efficiency and

could be used in a wide variety of contexts in LMICs. The controller employs a process control

technique, model predictive control (MPC), which is a promising method for controlling

complex agricultural systems. The economic benefits of the controller are quantified, and its

performance is validated with an initial, small-scale prototype.

The three-tier controller can aid in the creation of low-cost, high-performance irrigation

controllers for precision agriculture applications in resource-constrained markets. Existing

precision irrigation systems are complex, expensive, and primarily designed for a market

segment focused on crop quality. The POWEIr controller incorporates predictive model and

process control techniques to expand some of the benefits of precision irrigation to a wider

range of users at a lower cost. Integrating system design with the controller capabilities could

reduce power component capacities while maintaining reliable operation and make renewable

power systems with energy storage more feasible in certain markets. In particular, pairing the

controller with SPDI could make SPDI more accessible to smaller-scale farmers in LMICs.

This controller theory could apply to other irrigation systems with variable power inputs or
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demands (e.g., wind power, cost-fluctuating grid electricity, sprinkler irrigation), especially

in arid climates.

By integrating precision agriculture control with a low-cost, easy-to-use hardware plat-

form, the POWEIr controller could make sustainable irrigation practices more accessible to

farmers in LMICs, mitigating over-watering, reducing wasted agricultural inputs (e.g., fertil-

izer in runoff), and efficiently using power from intermittent, renewable sources. Effectively

introducing precision agriculture and sustainable irrigation practices to resource-constrained

markets can impact sustainable agricultural intensification globally.
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Chapter 3

Sensitivity Study of the POWEIr
Controller’s Irrigation Schedules for
SPDI Systems in Resource-constrained
Contexts

The content of this chapter was derived from work with contributors besides the author of

this thesis including Samuel Ingersoll, Suat Irmak, and Amos G. Winter, V. A publication

of the same title of this chapter is in preparation as Sheline, Ingersoll, Irmak, et al. [75].

3.1 Introduction

There is a need to sustainably increase crop production to meet the growing global food and

fiber demand, especially in low- and middle-income countries (LMICs) [76]. The global food

demand is expected to increase by up to 62% by 2050 [77]–[79]. The growing food demand is

hardest felt in LMICs with food insecurity shown to be prevalent in countries in Africa [80],

[81]. Food insecurity and agricultural issues are expected to only get worse as the climate

becomes more unpredictable [56], [82]. Natural resources required to grow more food, such

as land and water, are now stressed to critical points [83].
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In addition to implementing advanced soil and crop management practices, adopting ad-

vanced irrigation technologies can aid in enhancing the sustainability of agricultural produc-

tivity. Technologies that aim to sustainably increase crop production include photovoltaic-

powered drip irrigation (SPDI) and precision agriculture [8]–[10]. SPDI has to potential to

reduce emissions, reduce water use, and increase crop yield compared to traditional irriga-

tion practices, such as surface (gravity) and sprinkler irrigation [12]. Precision agriculture

involves using sensors to measure agronomic factors and respond to crop needs to improve

production sustainably. SPDI and precision agriculture technologies are often not adopted

in LMICs due to their high cost and complexity to operate and maintain [13]–[15]. Even

when SPDI is adopted, many farmers continue to over-irrigate their crops to minimize risks,

negating some of the positive effects [16]–[18]. Existing precision agriculture technologies

tend to incorporate many expensive sensors and are cost-prohibitive for wide adoption in

LMICs [21].

The Predictive Optimal Water and Energy Irrigation (POWEIr) controller has been

proposed as one solution to increase access of SPDI and precision agriculture to low-income

farmers [22], [25]. Prior work has demonstrated the potential of the POWEIr controller to

reduce the cost of SPDI systems and promote sustainable, precise irrigation practices in an

easy-to-use package. The POWEIr controller reduces SPDI cost by changing the order and

timing of irrigation events to use available solar power more efficiently without sacrificing

irrigation reliability. The controller uses machine learning to make near-term predictions

of local weather, allowing for water and energy use to be predicted one day in advance.

The POWEIr controller calculates daily irrigation demands to minimize risk to the crop

without over-watering, thus allowing for a reduction in water use without sacrificing yield.

The POWEIr controller is also designed to use minimal, local data inputs from the farmer

and minimal sensors to predict tailored irrigation schedules.

The POWEIr controller leverages simple agronomy and solar power models to decrease

computational and calibration complexity while still providing value to farmers. However,
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the models’ simplicity introduces the potential for errors if important nuances are overlooked.

In the case that the errors are too large, they limit the ability of the POWEIr controller to

mitigate risk to the crop, which could lead to losses in yield and limited adoption. Previous

demonstrations of the POWEIr controller have not explored how changes to the inputs affect

the optimal irrigation schedule and the irrigation schedule’s impact on crop yield. Also, prior

prototypes of the POWEIr controller have relied on highly accurate weather variables using

expensive and high-resolution research-grade weather sensors. A low-cost and widespread

implementation of the POWEIr controller would have to use less accurate, lower-cost sensors.

The implications of moving from highly accurate weather sensors to lower accuracy sensors

have not been explored.

This chapter aims to assess the POWEIr controller through a simulated sensitivity study.

The objectives of this chapter are to:

1. Quantify the sensitivity of the POWEIr controller’s optimal irrigation output to changes

to and errors in farmer agronomy inputs related to crop types and soil textures preva-

lent in LMICs in Africa and similar regions.

2. Characterize the impact of the aforementioned input changes on the POWEIr con-

troller’s irrigation schedules using a simulation tool to calculate crop yield.

3. Evaluate the trade-off in cost to accuracy in generated irrigation schedules for changing

weather stations from a research quality station to a lower grade station.

If these objectives are met, they will provide further assessment of the POWEIr controller’s

ability to provide optimal irrigation schedules that maximize yield and minimize water use

with minimal sensors and hardware in the field, making it affordable. This means the

POWEIr controller could provide a cost-effective solution for precision irrigation which could

help to make sustainable agriculture more accessible in LMICs.
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3.2 POWEIr Controller Irrigation Schedule Theory and
Inputs

To understand how error can become introduced in the POWEIr controller optimization,

this section summarizes the POWEIr controller theory. A full description of the theory is

reported in Chapter 2. The inputs and the necessary sensors for the irrigation optimization

are also summarized.

Figure 3.1 depicts the POWEIr controller architecture that generates an optimal irri-

gation schedule. The POWEIr controller uses historical weather in addition to a weather

station to collect past weather data. The past weather data are used to calculate past solar

power, grass-reference evapotranspiration (𝐸𝑇0), and rain using solar and 𝐸𝑇0 models. Pre-

diction models are used to forecast future solar power profiles and weather data. Past and

future weather data as well as the previous day’s irrigation volumes are fed into a soil mois-

ture model to calculate crop water demand parameters. The POWEIr controller uses the

predicted solar power profiles and crop water demand parameters to optimize an irrigation

schedule. The predicted irrigation schedule is optimized to use energy efficiently and reduce

water use without impacting crop yield. The POWEIr controller was specifically designed to

use a small number of essential sensors and models that require minimal input from farmers,

irrigation engineers, and practitioners. For this chapter, only the portion of the controller

involved with creating optimal irrigation schedules is explored, as additional portions deal

with responses to system dynamics that were not considered in the simulated study.

3.2.1 Reference Evapotranspiration (𝐸𝑇0) Model

The soil moisture model and crop water demand prediction are based on an estimate of

crop evapotranspiration (𝐸𝑇𝑐). 𝐸𝑇𝑐 is calculated as 𝐸𝑇𝑐 = 𝐾𝑐𝐸𝑇0, where 𝐾𝑐 is a crop

coefficient and 𝐸𝑇0 is the reference evapotranspiration [mm]. 𝐸𝑇0 is calculated using the

Penman-Monteith equation as described in Allen, Pereira, Raes, et al. [63]:
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Figure 3.1: The Predictive Optimal Water and Energy Irrigation (POWEIr) controller archi-
tecture for generating an optimal irrigation schedule. Measured and historical weather data
is used to calculate past solar power available, reference evapotranspiration (𝐸𝑇0), and rain.
This past data is used to train the solar and weather prediction models and initialize the
soil moisture model. Measured delivered irrigation is also used to initialize the soil moisture
model. The prediction models forecast future 24-hour solar power profiles and future daily
weather parameters. The soil moisture model calculates initial and predicted daily crop wa-
ter parameters. The predicted irrigation schedule is optimized based on the predicted solar
power and crop water parameters.
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𝐸𝑇0 =
0.408𝛿(𝐺𝑛𝑒𝑡 −𝐻𝐹 𝑠) + 𝛾

900

𝑇 + 273
𝑢2(𝑒𝑠 − 𝑒𝑎)

𝛿 + 𝛾(1 + 0.34𝑢2)
, (3.1)

where 𝐺𝑛𝑒𝑡 is the net irradiance at the crop surface [MJ/m2day], 𝐻𝐹 𝑠 is the soil heat flux

density [MJ/m2day], 𝑇 is the daily or hourly average air temperature at 2 m height [∘C],

𝑢2 is the wind speed at 2 m height [m/s], 𝑒𝑠 is the saturation vapor pressure [kPa] at air

temperature 𝑇 , 𝑒𝑎 is the actual vapor pressure [kPa], 𝛿 is the slope of vapor pressure curve

[kPa/∘C] at air temperature 𝑇 , and 𝛾 = 0.665 × 10−3𝑝𝑎𝑡𝑚 is the psychrometric constant

[kPa/∘C]. The atmospheric pressure [kPa], 𝑝𝑎𝑡𝑚, can be determined from altitude using a

simplification of the ideal gas law and assuming an atmosphere at 20 ∘C. 𝐸𝑇0 is calculated

for a grass reference crop of 0.12 m height assuming complete shading of the ground and

sufficient water. The weather data needed to calculate 𝐸𝑇0, temperature, relative humidity,

solar irradiance, and wind speed, are available through weather station measurements and,

in some locations, from weather databases.

3.2.2 Solar Model

The solar power model calculates the solar power available needed to optimize the irrigation

schedule. Weather data averaged on an hourly basis are used to calculate the available solar

power assuming a single-diode model for the solar panels. A single diode model was chosen

as it has been demonstrated to simply and accurately represent maximum power output

for changing weather conditions [84]–[89]. The single diode model is implemented following

Bishop [90]. To calculate the maximum power output, the single-diode model requires solar

panel information commonly found on the manufacturer’s technical specifications in addition

to solar irradiance and temperature data. Additional parameters needed for the single diode

model are calculated using the method provided in De Soto, Klein, and Beckman [91].

68



3.2.3 Weather Prediction Model

Weather data are used to predict the daily 𝐸𝑇0 and rain that are inputs to the soil moisture

model and used to optimize the irrigation schedule. The POWEIr controller uses historical

data and weather sensors paired with machine learning to predict local weather in resource-

constrained settings where reliable weather forecasts are not readily available. As described

in Sheline and Grant (2023) et al., a vector autoregression algorithm (VAR) is used to predict

daily weather and solar power parameters [25]. In this study, VAR is the chosen algorithm

for predicting daily weather parameters.

The daily weather prediction model has requirements to be computationally inexpensive,

have the ability to predict multiple variables at once that are interrelated, and not require

substantial amounts of training data. VAR is well-suited for the daily weather prediction

model as it predicts averages of time-series data for multiple variables that affect each other.

VAR is not computationally expensive and does not require large amounts of training data

[61]. The input data for the VAR model are daily average, minimum, and maximum air

temperature and relative humidity, average wind speed, total solar radiation, total sun hours

(calculated as the number of hours the hourly radiation was greater than 0.1 MJ/m2), the

reference evapotranspiration, 𝐸𝑇0 (calculated using Penman-Monteith equation), and total

rain (𝑃𝑟). VAR takes in a specified time period of past input data and predicts a vector of

the same data over the next prediction horizon. For the POWEIr controller’s daily weather

predictions, a year of typical meteorological year (TMY) data from the closest weather station

and measured past data from the locally connected weather station were used to train the

VAR algorithm. The VAR algorithm is retrained and rebuilt with historical and incoming

weather data at the start of each prediction to ensure all current trends are captured in the

algorithm.
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3.2.4 Solar Prediction Model

Past solar power available data are used to predict the hourly solar power available, which

is used to optimize the irrigation schedule. In Sheline, Grant, Gelmini, et al. [25], VAR is

used to predict a daily solar radiation value, then historical hourly solar power available

curves are scaled based on the daily prediction [25]. However, with climate change, future

weather is expected to become less similar to historical trends. Therefore weather predictions

that depend on historical averages could become less accurate with time [54]–[56]. For this

chapter, the POWEIr controller theory was updated to use a Long Short-Term Memory

network (LSTM) for predicting the 24-hour solar power available curve. An LSTM network

is a recurrent neural network that is able to store past information, noise-resistant, and

designed to predict sequence data. An LSTM network was selected because it is well-suited

to do single variable time series prediction for a full day’s solar profile [92], [93].

The LSTM model takes in the past calculated hourly solar available data and outputs a

24-hour prediction of solar power available. The LSTM model’s algorithm used the Keras

deep learning package [94]. The LSTM model was comprised of a 100-cell LSTM layer with

ReLU activation, a 50-cell LSTM layer with ReLU activation, and a dense layer [95]. The loss

function was a mean square error and the optimizer was Adam [96]. The LSTM algorithm is

typically trained on a year of TMY data from the nearest weather station and measured past

data from the locally connected weather station. The LSTM is retrained and rebuilt with

historical and incoming weather data at the start of each prediction to ensure all current

trends are captured in the algorithm.

3.2.5 Soil Moisture Model

A soil moisture model is used to predict the daily crop water demand, which is used to

determine the optimal irrigation schedule. The model employs a soil water balance that

tracks the incoming, outgoing, and stored water in the soil. These calculations are done for

70



each day of the crop season, defined by the planting and harvest date of the crop. The soil

water balance, defined in Allen, Pereira, Raes, et al. [63], is

𝐷𝑟,𝑛 + (1− 𝑘𝑅𝑂)𝑃𝑟𝑛 +
1000𝐼𝑑𝑒𝑙,𝑛
𝐴𝑠𝑓𝑤

= 𝐷𝑟,𝑛−1 +𝐾𝑠𝑡𝐸𝑇𝑐,𝑛, (3.2)

where 𝐷𝑟,𝑛 and 𝐷𝑟,𝑛−1 are the root zone depletion [mm] on day 𝑛 and on the previous day,

respectively, 𝑘𝑅𝑂 is the runoff coefficient estimated based on the soil texture, 𝐼𝑑𝑒𝑙 is the

delivered irrigation [m3], 𝐴𝑠 is the field’s area [m2], 𝑓𝑤 is the soil wetted fraction, 𝐾𝑠𝑡 is the

water stress coefficient, and 𝐸𝑇𝑐 is the crop evapotranspiration [mm]. 𝐾𝑠𝑡 is calculated as

𝐾𝑠𝑡 =
𝑇𝐴𝑊−𝐷𝑟

𝑇𝐴𝑊 (1−𝑓𝑑)
where 𝑓𝑑 is depletion fraction calculated as 𝑓𝑑,𝑛 = 𝑓𝑑,𝑐𝑜𝑛𝑠𝑡+0.04 (5−𝐸𝑇𝑐,𝑛).

𝑓𝑑,𝑐𝑜𝑛𝑠𝑡 is a crop-dependent constant defined in [63] and 𝑇𝐴𝑊 is the total available water

that the crop can extract from the soil [mm] which depends on the depth of the crop roots

(𝑍𝑟) and soil texture.

𝐷𝑟 is constrained such that 0 ≤ 𝐷𝑟,𝑛 ≤ 𝑇𝐴𝑊 . If 𝐷𝑟 is less than or equal to the readily

available water (𝑅𝐴𝑊𝑛 = 𝑓𝑑,𝑛𝑇𝐴𝑊 ), then there is no water stress on the crop, 𝐾𝑠𝑡 = 1. If

the 𝐷𝑟 is greater than 𝑅𝐴𝑊 , then there is water stress and 0 < 𝐾𝑠𝑡 < 1. The water stress

affects the amount of crop evapotranspiration as 𝐸𝑇𝑎𝑑𝑗 = 𝐾𝑠𝑡𝐸𝑇𝑐. If there is water stress on

the crop, then the reduction in evapotranspiration relates to a reduction in yield,

1− 𝑌𝑎

𝑌𝑚𝑎𝑥

= 𝐾𝑦

(︂
1− 𝐸𝑇𝑐,𝑎𝑑𝑗

𝐸𝑇𝑐

)︂
, (3.3)

where 𝑌𝑚𝑎𝑥 is the maximum yield [kg/m2] calculated using the agro-ecological zone method

defined in Doorenbos and Kassam [66] and 𝐾𝑦 is the crop yield response factor [67].

3.2.6 Irrigation Optimization

The irrigation schedule is optimized with the aim of using energy and water resources ef-

ficiently without negatively impacting the crop yield. The irrigation schedule is optimized

using the predicted solar power available and crop water demand parameters. The objective
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of the optimization is to maximize revenue through crop yield, minimize the operational cost

from energy use and water consumption, and maximize irrigation reliability by fully charg-

ing any energy storage by the end of the prediction. The objective function is calculated in

terms of cost determined by the unit capital costs of the system components. The objective

function is defined over a single prediction horizon as

𝑚𝑖𝑛

[︃
𝑁ℎ𝑜𝑟∑︁
𝑖=𝛿𝑡

1

𝑁ℎ𝑜𝑟

(︂
𝑘𝑏𝑢𝑚𝑎𝑥(𝑢1,𝑖 − 𝑢2,𝑖) +

𝑁𝑠,𝑡𝑜𝑡∑︁
𝑠=1

𝑘𝑤𝑞𝑠𝑑𝑠,𝑖

)︂

−
𝑁𝑑𝑎𝑦∑︁
𝑛=1

𝑁𝑠,𝑡𝑜𝑡∑︁
𝑠=1

1

𝑁𝑑𝑎𝑦

(︀
𝑘𝑐𝐴𝑠

𝑑𝑌𝑎,𝑠,𝑛

𝑑𝑡

)︀
+ 𝑘𝑑(1− 𝑆𝑂𝐶𝑁ℎ𝑜𝑟

)

]︃
,

(3.4)

where 𝑁ℎ𝑜𝑟 and 𝑁𝑑𝑎𝑦 are the prediction horizon in hours and days; 𝑖 is the time step count;

𝛿𝑡 is the hourly time step; 𝑁𝑠,𝑡𝑜𝑡 is the total number of sections 𝑠 the field is split into;

𝑘𝑏 [$/kWh] is the unit cost of the battery defined by the unit battery cost and its lifetime

storage; 𝑢1 and 𝑢2 are the charging and discharging rate of the energy storage, normalized by

𝑢𝑚𝑎𝑥 [kW], the maximum charging or discharging rate; 𝑘𝑤 [$/m3] is the unit cost for water;

𝑞𝑠 is the flow rate for section 𝑠 [m3/hr]; 𝑑𝑠 is the binary variable for irrigating section 𝑠 of the

field; 𝑘𝑐 [$/kg] is the price weight on the crop; 𝑑𝑌𝑎,𝑠,𝑛

𝑑𝑡
is the daily yield [kg/m2/day], which is

estimated by dividing 𝑌𝑎 in Equation 3.3 by the number of days in the crop growing season;

𝑘𝑑 is the unit cost on the energy storage [$/day] based on the cost of the system over its

lifetime; and 𝑆𝑂𝐶 is the state of charge of the energy storage.

The optimization’s control variables are 𝑑𝑠, 𝑢1, and 𝑢2. These variables determine the

daily irrigation volume as well as how much the battery is charged and discharged at any

moment. The control variables affect the system components’ state variables, including 𝐷𝑟

and 𝑆𝑂𝐶. The state variables are subject to constraints on the system dynamics, including

the system energy and water flow dynamics. The state of the soil moisture is constrained
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Table 3.1: POWEIr controller inputs.

Input
Group Input Variables

Field Pump power, flow
rate, field area

Agronomy

Initial root zone deple-
tion condition, crop
with specific crop pa-
rameters (𝑓𝑑,𝑐𝑜𝑛𝑠𝑡, 𝐾𝑐,
𝐾𝑦, 𝑍𝑟), planting and
harvest dates, soil tex-
ture, soil wetted frac-
tion

Weather

Local historical and
current hourly data
for temperature, rel-
ative humidity, wind
speed, solar radiation,
and rain

by Equation 3.2. The state of the energy storage is constrained such that it is charged only

if there is unused solar power and drained if the pump power is more than the solar power

available. The pump power is a function of the flow rate of the system and is calibrated

when a system is installed. The optimization is also subject to boundary constraints on its

control and state variables, as described fully in [25].

3.2.7 Required Inputs

Table 3.1 enumerates the complete set of inputs required by the optimization. The inputs

are categorized into groups. All of the field inputs can be measured or specified when the

system is installed. The agronomy inputs are specified by the farmer. The initial root zone

depletion condition can normally be assumed to be zero as it is typical practice to bring

the soil moisture to field capacity for seed planting and germination. The crop is specified

by the farmer and the crop parameters (𝑓𝑑,𝑐𝑜𝑛𝑠𝑡, 𝐾𝑐, 𝐾𝑦, 𝑍𝑟) can either be specified by the

farmer or set to default values for the crop. The default crop parameters are based on
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FAO values that were calibrated for crops in specific climates and locations. Therefore, the

default crop parameters may have errors associated with them when used on different crop

cultivars or locations. The planting and harvest dates are specified by the farmer. The

soil texture is input by the farmer and a one-time measurement of the soil texture can be

taken if needed. The soil texture lab analysis typically costs on the order of $20. Large

farms with varying soil conditions may need multiple soil texture measurements. The soil

wetted fraction is the portion of the field area that is covered by irrigation, which can be

measured when the system is set up. The weather inputs can be obtained from weather

data infrastructure. Often, weather stations are sparse in LMICs, and therefore accurate

estimates of local weather may not be readily accessible. The POWEIr controller allows for

the use of a locally installed weather station, which is a collection of weather sensors, that

collects the needed weather data in locations where weather data are not readily available.

The local weather stations have a combination of weather sensors that allow for all

the measurements needed by the POWEIr controller. The required weather sensors for

the POWEIr controller are rain gauges (most commonly tipping bucket), radiation sensors

such as pyranometers, light sensors, or UV sensors, anemometers for measuring wind speed,

and hygrometers and temperature sensors for measuring relative humidity and temperature.

Many classes of weather stations exist with varying cost and sensor accuracy. This study

focuses on two types of weather stations, ones that are higher cost, use more accurate sensors,

and are typically used in research, and lower cost weather stations that use less accurate

sensors and are typically for home use.

3.3 POWEIr Controller Irrigation Schedule Sensitivity
Analysis

A simulation-based study of the POWEIr controller was conducted to understand the sensi-

tivity of the optimal irrigation schedules to discrepancies in the inputs and the impact on crop
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yield. One objective of the sensitivity study was to analyze how changes or errors in users’

agronomy inputs affect the POWEIr controller’s optimal irrigation amounts and the simu-

lated crop yield. The inputs chosen for the sensitivity study focused on those that are either

less easily measured or based on uncalibrated default values; these inputs are most likely to

be subject to miscalibration and error in practice. The other objective was to see the effects

of weather measurement error and weather prediction error on the POWEIr controller’s cu-

mulative irrigation amount. This information was used to evaluate whether low-cost sensors

have sufficient performance to be recommended to resource-constrained farmers with mini-

mal risk of crop loss. Two weather stations were examined in this study, a research-quality,

higher-cost weather station (HCWS) and a home-use, lower-cost weather station (LCWS).

This thesis focused on LMICs in Africa, as countries in Africa have some of the largest food

insecurity issues.

3.3.1 Weather and Agronomy Context

To achieve the objectives of this chapter data were collected from a HCWS and LCWS at a

farm in Concord, Massachusetts, USA. The HCWS used for this study was the Davis Vantage

Pro2 weather station (Davis Instruments 6152C) with the solar radiation sensor (Davis

Instruments 6450) and the LCWS was the Ambient weather station (Ambient Weather WS-

2902C). The Davis Vantage Pro2 was chosen as the HCWS as it is a well-proven weather

station in irrigation and agricultural studies [97]–[100]. For the HCWS, the reported sensor

accuracy and resolution are 2-5% and 2.5-60 seconds. For the LCWS, the reported sensor

accuracy and resolution are 10% and 12-24 seconds. The cost of the HCWS and LCWS were

$1,125 and $190, respectively, at the time this thesis was written.

The farm where the data were collected was chosen as its location is close to the university

where the researchers who conducted the experiment worked. Additionally, this location was

found to have similar weather to agricultural areas in two LMICs in Africa with different

climates, Kenya and Morocco. The data collected are shown to be similar to TMY data in the
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(a) Reference Evapotranspiration (𝐸𝑇0)

(b) Rain

(c) Solar Energy

Figure 3.2: Daily weather parameters measured in Concord, MA, USA (USA Meas.) com-
pared to typical meteorological year (TMY) data in Kenya and Morocco. The weather
parameters totaled over each day are a, the reference evapotranspiration (𝐸𝑇0), b, the rain,
and c, the solar energy. The USA measured data taken from July to October 2022 aligns
well with the Kenya and Morocco TMY data from September to December.
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Table 3.2: Typical low-and-middle-income country (LMIC) farm case and baseline case for
sensitivity study.

LMIC Case:
Medium-scale Kenya,
Jordan, Morocco

Baseline Case:
Medium-scale
Massachusetts

Months Sept-Dec July-Oct
Crop Maize, Potato,

Tomato
Tomato

Soil Clay Loam, Sandy
Loam, Sandy Clay

Sandy Loam

dry season for Nakuru, Kenya and in the fall for Agadir, Morocco [74]. Figure 3.2 compares

the Kenya and Morocco TMY data for daily rain, 𝐸𝑇0, and total radiation to the same

values measured on the USA farm. The USA farm data measured from July to October,

2022 is comparable to the Kenya and Morocco TMY data from September to December.

Comparing the USA measured data to the Kenya and Morocco TMY data, respectively, the

total 𝐸𝑇0 during this period is 11% and 22% lower; the total rain is 0% and 37% higher; and

the total radiation is 3% lower and 2% higher. Given the similarity in key weather outcomes,

the results of this sensitivity study are expected to be comparable to results that would be

obtained using weather data collected in Morocco or Kenya.

Soil textures and crops used in the simulation study were selected to represent conditions

on typical farms in Morocco and Kenya. The most typical soil textures in the agricultural

areas of Kenya and Morocco are shown in Appendix B.1. Three soil textures were chosen that

are common in Kenya and Morocco and also have significantly different 𝑇𝐴𝑊 coefficients.

Three crops were chosen that have growth periods close to the length of collected weather

data, are water-stress intolerant, are commonly grown in Kenya and Morocco from September

to December, and have different crop parameters of interest (𝑓𝑑,𝑐𝑜𝑛𝑠𝑡, 𝐾𝑐, 𝐾𝑦, 𝑍𝑟) [63]. A

summary of these cases is shown in Table 3.2, along with the baseline case for the sensitivity

analysis. The baseline case was chosen to have the measured weather data from the HCWS

and LCWS, a crop with parameters in the middle of the other crops, and a soil texture with

high sand content as a worst case.
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3.3.2 Measured and Predicted Weather Data and Error in 𝐸𝑇0,
Rain, and Solar Power

The data collected from the HCWS and the LCWS were used to calculate and predict the

solar power available and crop water demand parameters needed to optimize the POWEIr

controller’s irrigation schedule. From these data the measurement and prediction error in the

𝐸𝑇0, rain, and solar power used in the POWEIr controller’s irrigation schedule optimization

was quantified. The weather data from the HCWS and the LCWS were used to calculate the

reference evapotranspiration, following Section 3.2.1, as well as the hourly solar power avail-

able, following Section 3.2.2. Philadelphia Solar PS-M144(HC)-550W panels were assumed

to predict the solar power available each day. The machine learning algorithms were trained

on TMY weather data close to where the weather data was collected [74]. The machine

learning models were updated with the past measured weather data from the weather sta-

tion every day of the simulation, meaning they were re-trained and rebuilt with the new data

each day. Once the daily rain, evapotranspiration, and solar power available were predicted,

the POWEIr controller optimized an irrigation schedule for the predicted day. Default FAO

56 crop parameters were used by the POWEIr controller for all the agronomy input variables

[63]. The default growth stages were all proportionally scaled from their default values to

values that would make the total crop season length 92 days. It was assumed that all of the

predicted irrigation demand was delivered each day. The daily 𝐸𝑇0 and rain calculated from

the previous day’s weather station data were used to calculate the 𝐷𝑟,𝑛−1 in the soil water

balance; this was hypothesized to stop the aggregation of prediction error in the cumulative

soil water balance calculation and is referred to as re-initializing the soil water balance. The

daily prediction and irrigation optimization process was repeated for the 92 days of mea-

sured weather data for both the HCWS and LCWS. The difference in the 𝐸𝑇0, rain, and

solar power calculated from the measured weather data from the LCWS and the HCWS, as

well as the difference from the predicted and measured parameters for both the LCWS and

the HCWS, were characterized as a root mean square error normalized by the mean over the
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simulation period (NRMSE).

3.3.3 Simulation of Cumulative Irrigation Volume

The theory of Section 3.2 was applied to optimize the irrigation schedule over the 92-day

simulation using the HCWS and LCWS data with two configurations – with predicted data

and with measured data – and the respective cumulative irrigation volumes were calculated.

First, the baseline case (Table 3.2) was simulated using both weather stations to predict

the weather and optimize the irrigation schedule, as would normally happen in the POWEIr

controller. These cases are referred to as the ‘HCWS with prediction error’ case and the

‘LCWS with prediction error’ case. Then, to understand how much prediction and measure-

ment error individually contributed to the accumulation of errors in the total irrigation over

time, cases were run that removed the weather prediction component. To simulate outcomes

without any prediction error, the measured weather data was used in the controller optimiza-

tion instead of the predicted weather. These cases are referred to as the ‘HCWS without

prediction error’ case and the ‘LCWS without prediction error’ case, and they represent the

best case of perfect prediction.

3.3.4 Simulation of Crop Yield

AquaCrop 7.1 was used to calculate the crop yield from the POWEIr controller’s optimal

irrigation schedule [67]. AquaCrop was developed by FAO and is an open-source crop growth

model that allows for assessments of the effect of weather, environment, and irrigation man-

agement on crop production. AquaCrop simulates crop yield response to water stress and

is equipped to address conditions where water is the limiting factor in crop production. For

the sensitivity study, the default inputs provided in the AquaCrop database were used for

the tomato, potato, and maize crop files and for the sandy loam, clay loam, and sandy clay

soil files. The growth stages in the default crop files were all proportionally scaled from their
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default values to values that would make the total crop season length 92 days, otherwise, the

simulation would stop short of capturing the total crop growth and yield. AquaCrop used

the HCWS data without prediction error to do the simulated yield calculations. The HCWS

measured data was chosen as the "true weather" to calculate yield as the HCWS is reported

to have the higher accuracy out of the two weather stations. The daily total irrigation per

hectare generated by the POWEIr controller was used in AquaCrop to estimate the yield.

AcraCrop calculates the actual crop yield based on the input irrigation schedule and also

calculates a maximum theoretical yield that assumes an irrigation schedule that causes no

crop water stress. A comparison between the maximum theoretical yield and actual crop

yield can be used to assess how much water stress an input irrigation schedule causes. Where

relevant, the revenue from the crop yield was calculated by multiplying the yield by the local

producer prices [$/103 kg] from FAOSTAT [101].

3.3.5 Sensitivity Study

The total irrigation generated by the POWEIr controller and the simulated AquaCrop yield

were evaluated for the HCWS and LCWS and each crop and soil texture in Table 3.2 to un-

derstand if the POWEIr controller’s irrigation schedules were robust to varying the weather,

crop, and soil inputs. The process outlined in Sections 3.3.2 and 3.3.3 were used to get the

POWERIr controller’s irrigation schedule, but only cases with prediction errors were run.

The process outlined in Section 3.3.4 was used to get the simulated yield.

The effect of errors in the agronomy variables that are inputs for the POWEIr controller’s

irrigation optimization on total irrigation volume and simulated yield was explored. A sensi-

tivity study was conducted to understand the sensitivity of the controller’s optimal irrigation

schedule to the agronomy parameters most susceptible to error. The crop parameters that

are hard to measure and are most likely to have errors if default values are used are 𝑓𝑑, 𝐾𝑐,

𝐾𝑦, and 𝑍𝑟. 𝑓𝑑 is a scalar while 𝐾𝑐, 𝐾𝑦, and 𝑍𝑟 are curves described by multiple linear or

constant segments. These curves represent the variation of a single number over the growing
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season. Figure B.10 illustrates the different crop coefficient curves. In each of these three

cases, the parameter varied is a curve with a standard characteristic shape found in [63],

[66], [67]. Forty variations of each parameter were created with the characteristic curve shape

uniformly scaled using a scale factor from the maximum value found in FAO 56 for common

vegetable crops down to nearly zero [63]. 𝑓𝑑 is a single number instead of a curve and was

varied linearly from the maximum value for common vegetables reported in FAO 56 down to

zero [63]. The scale factor for 𝐾𝑐 was varied between 0 and 1.75, the scale factor of 𝐾𝑦 was

varied between 0 and 1.2, and the scale factor of 𝑍𝑟 was varied between 0 and 1.5. For these

three values, the default value is one. Finally, 𝑓𝑑 was varied from 0 to 0.73. A total of 160

cases were run. For each case, the processes outlined in Sections 3.3.2 and 3.3.3 were used to

get the POWERIr controller’s optimal irrigation schedule using the LCWS data. The FAO

56 default crop parameters for the baseline case, defined in Table 3.2, were used and each of

the crop parameters was changed one at a time to generate an irrigation schedule for each

case. The process outlined in Section 3.3.4 was used to get the simulated yield for each case.

3.4 Results

Figures 3.3a–3.3c compare the measured and predicted 𝐸𝑇0, rain, and solar power avail-

able calculated using the HCWS and LCWS. The LCWS has consistently lower values for

evapotranspiration, rain, and solar power available calculated using measured data, ‘LCWS

Measured’, compared to ‘HCWS Measured’. This suggests that the LCWS has bias error

compared to the HCWS. The 𝐸𝑇0 and rain data generated using the machine learning model,

‘LCWS Predicted’ and ‘HCWS Predicted’, lags behind the corresponding data calculated

directly from the weather station data, ‘LCWS Measured’ and ‘HCWS Measured’. This

indicates that the 𝐸𝑇0 and rain predictions are highly influenced by the previous day’s mea-

sured value. The solar power available predictions have some days with predicted values that

track the measured values more closely than others. The predicted values for 𝐸𝑇0, rain, and
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(a) Daily Reference Evapotranspiration

(b) Daily Rain

(c) Hourly Solar Power Available

(d) Normalized Root Mean Square Error

Figure 3.3: Measured and predicted weather-based parameters used in the soil moisture and
solar models. The parameters are a, the total daily reference evapotranspiration (𝐸𝑇0), b,
the total daily rain, and c, the hourly solar power available. c is shown for a few days but
it was calculated for the entire 92 days. The ‘Measured’ parameters were calculated using
weather data from the high-cost weather station (HCWS) and low-cost weather station
(LCWS). The ‘Predicted’ parameters came from the machine learning models trained using
the HCWS or LCWS data. The normalized root mean square error (NRMSE) for the full
simulation for a, b, and c are shown in d. 82



solar power available are similar between the LCWS and HCWS. Figure 3.3d summarizes

the differences between the curves in Figures 3.3a–3.3c as NRMSE. The LCWS and HCWS

prediction error is the difference between the HWS or RWS predicted case and HWS or RWS

measured case, respectively. The NRMSE of the LCWS measured data to the HCWS mea-

sured data is lower than the prediction errors for both weather stations. Rain has the largest

measurement error and prediction error for each weather station. 𝐸𝑇0 and solar power are

calculated from weather parameters measured by the weather station besides rain. Rain has

been shown to be hard to predict due to its highly nonlinear fluctuations [102]. The VAR

algorithm used is good at predicting averages of the weather data vector over a multiple-

day prediction window and is highly influenced by previous days’ weather data. The VAR

method works well for most weather parameters but can result in large prediction errors for

rain, which tends to vary significantly between days.

Data for all of the measured and predicted weather parameters used in the weather pre-

diction model, similar to the data shown in Figures 3.3a–3.3c, are shown in the Appendix in

Figures B.3–B.5. These data include the average, minimum, and maximum air temperatures,

average wind speed, average, minimum, and maximum relative humidity, total rain, total

solar radiation, number of sunlight hours, and total reference evapotranspiration. Addition-

ally, the NRMSEs for all of the weather parameters are shown in the Appendix in Figure

B.6.

Figure 3.4 shows the cumulative irrigation volume based on the simulated POWEIr con-

troller irrigation schedule for the HCWS and LCWS, each with and without prediction error

cases. The total irrigation volume is the amount delivered at the end of the season. For

each weather station, the case with prediction error and without prediction error differ only

slightly in the total irrigation volume; the prediction error case has 1% and 0% higher total

irrigation volume for the LCWS and HCWS, respectively. This suggests that the prediction

error has minimal impact on the total irrigation volume. In contrast, there is a more sig-

nificant difference between the HCWS and LCWS cases without prediction error; the total
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Figure 3.4: Cumulative irrigation volume for a system following the schedule recommended
by the POWEIr controller fed with data from two distinct weather stations. The high-cost
weather station (HCWS) and the low-cost weather station (LCWS) were used to compute
optimal irrigation schedules with (w/) and without (w/o) weather prediction error (Pred.
Err.). The w/o weather prediction error cases use measured weather data.

irrigation volume without prediction error is 13% lower for the LCWS case compared to

the HCWS case. This suggests that the measurement error between weather stations has a

greater cumulative effect on the total irrigation than the prediction error. Yet, the predic-

tion error of each weather station is shown to have higher prediction NRMSE compared to

the weather station measurement comparison NRMSE seen in Figure 3.3d. The prediction

error is diminished by re-initializing the soil water balance with the previous day’s mea-

sured weather at the start of each day (Figure 3.1). There is no adjustment for the weather

measurement error, which is due to the inherent sensor accuracy. The increasing divergence

in irrigation volume over time is likely due to the accumulation of the LCWS’s bias errors

demonstrated in Figure 3.4.

Figure 3.5 demonstrates the variation of the POWEIr controller’s optimized total irriga-

tion volume and simulated crop yield to changes in farm conditions, namely the crop and

soil texture, for the two weather stations. Across all cases, the total irrigation volume is

10-15% lower with the LCWS data used compared to the HCWS data. The LCWS yield
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Figure 3.5: Sensitivity of total irrigation and yield to crop, soil texture, and weather stations.
Data from the low-cost weather station (LCWS) and high-cost weather station (HCWS),
both with prediction error (w/ Pred. Err.), were fed into the POWEIr controller to create
the optimal irrigation schedules for tomato, potato, and maize crops in sandy loam, clay
loam, and sandy clay soil textures.

is -0.05–0.06% (-5–15 $/ha) compared to the HCWS across all crop and soil texture cases.

This suggests that even though the accuracy of the LCWS leads to lower total irrigation

volume, there is minimal impact on crop yields. The difference in the tomato, potato, and

maize yields calculated from the irrigation schedules generated across all soil textures and

both weather stations’ data compared to the theoretical maximum yield (assuming no water

stress) is up to 0.5, 0.03, and 0.5% less for each crop, respectively; corresponding to a 39,

0.6, and 10.8 $/ha loss in revenue. This implies that the irrigation schedules generated by

the POWEIr controller will not negatively impact yield across the tested crops, soil textures,

and weather stations. The relatively low loss in revenue associated with the different total

irrigation volumes suggests that the additional errors introduced by the LCWS will have

minimal impact on key outcomes in spite of significant savings in cost. The weather station

cost savings can thus be directly applied to increase the farmer’s profit.

Figure 3.6 shows the sensitivity of the POWEIr controller irrigation amount and AquaCrop
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(a) (b)

(c) (d)

Figure 3.6: Change in yield and irrigation associated with miscalibration or error in each crop
parameter in the POWEIr controller’s internal model. The yield numbers were generated
from an AquaCrop simulation using ground truth weather data and system parameters.
The gray dashed vertical lines show the default values of each parameter according to the
literature [63], [66], [67]. The horizontal lines show the theoretical maximum yield from
AquaCrop.
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simulated yield to changes in the default crop parameters (𝑓𝑑, 𝐾𝑐, 𝐾𝑦, 𝑍𝑟). Across the range

tested, the 𝐾𝑐 parameter produced the most variation in yield and irrigation with yield in-

creasing by 15% tons/ha and irrigation increasing from 0 to 224 𝑚3. Varying 𝑍𝑟 resulted

in the second largest change in yield and irrigation with yield decreasing by 1.3% and ir-

rigation decreasing by 70% over the range tested. Over the range of parameters tested, 𝑓𝑑

produced very little change in yield (only 0.07%) but an appreciable change in irrigation

which decreased by 39%. Varying 𝐾𝑦 produced 0.06% change in yield from the maximum

to minimum values achieved and no change at all between the maximum and minimum 𝐾𝑦

values tested (farthest left and farthest right data points). Varying 𝐾𝑦 also resulted in very

little change in irrigation with a change of 6% between the maximum and minimum irriga-

tion values achieved and only 0.01 between the maximum and minimum 𝐾𝑦 values tested

(farthest left and farthest right data points).

If 𝐾𝑐 is calibrated too low compared to the "true value" for the crop, the yield is reduced

due to under-irrigation. If 𝐾𝑐 is calibrated too high compared to the "true value" for the

crop, irrigation increases approximately linearly, but yield does not increase because the crop

cannot use the extra water. In the over-irrigation regime, irrigation scales linearly with 𝐾𝑐,

so there is potential for significant wasted water following from an over-estimated 𝐾𝑐 value.

This result indicates that of the four parameters, the calibration of 𝐾𝑐 is most important

for preventing wasted water and lost yield in this controller. However, it also indicates that

water can effectively be "traded" to minimize the risk of yield loss if parameter error is

expected by purposefully increasing 𝐾𝑐. This may be a useful strategy if water is cheap. In

many cases, water is a resource that must be used sparingly and in these cases, agricultural

parameters must be calibrated to maximize yield while preventing waste.
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3.5 Discussion

This chapter aimed to assess the POWEIr controller’s irrigation outputs’ sensitivity to agron-

omy inputs, the impact on crop yield, and the cost-benefit of using different weather stations.

There were some limitations to the study that should be addressed in future work, yet the

findings should provide value to practitioners and the academic community.

3.5.1 Sensitivity of POWEIr Controller’s Irrigation Output to Changes
in Agronomy Inputs

Figures 3.5 and 3.6 quantify the net impact of different uncertainties in farmer agronomy

inputs on key performance outcomes of the POWEIr controller. Although the weather data

used for this study were collected in Massachusetts, USA, the data were shown to be similar

to typical conditions in Kenya and Morocco. Figure 3.4 confirms that the weather prediction

errors could be corrected over time by the controller’s method of re-initializing the soil water

balance using the previous day’s measured weather data. The design of the controller to

continually re-initialize the soil water balance with measured data could mitigate the risk

of high prediction errors. Of the four crop parameters, varying the crop coefficient was

shown to have the greatest effect on the total irrigation in the case of a tomato crop in

sandy loam soil. This means that when using the POWEIr controller to optimize irrigation

schedules, calibrating the crop coefficient, depletion fraction, and rooting depth is important

to avoid over- or under-irrigation. However, it is also potentially useful that 𝐾𝑦 had almost

no effect on irrigation, meaning that time and money need not be spent calibrating this

parameter if the controller is to be used under the simulated conditions. The controller

displayed an approximately linear sensitivity to its parameters with respect to irrigation in

the region around the default values. This approximate linearity means that miscalibration

of a given percent can be mapped reliably to corresponding changes in irrigation, allowing

for a relatively objective comparison between the cost of calibrating crop parameters and

88



the cost of the potential extra irrigation used. This comparison between water wasted and

calibration cost could be useful for making systematic recommendations about the types of

calibration methods that should be used when setting up the controller.

3.5.2 Yield Impact due to Changes in POWEIr Controller’s Irriga-
tion Output

This chapter validated the accuracy of optimal POWEIr controller’s irrigation schedules

using a detailed agronomy model, AquaCrop, to calculate yield. Figure 3.5 depicts that for

the nine different crop and soil texture cases, the POWEIr controller’s irrigation schedules

were shown to have minimal adverse effects on yield, with a maximum yield reduction of 2%

compared to the theoretical maximum yield. The yield is expected to be minimally impacted

by changes to the agronomy inputs within the tested range of crops and soil textures, as long

as there are not errors in the input crop parameters. Varying the crop parameters of the

POWEIr controller led to significant changes in the simulated yield and irrigation amount

for 𝐾𝑐, as depicted in Figure 3.6. This result indicates that calibration of 𝐾𝑐 is important

for preventing over-irrigation or yield loss while error in 𝑍𝑟 and 𝑓𝑑 is relevant for irrigation

but they have little effect on yield for the tested case in this controller. Varying 𝐾𝑦 did not

produce significant variation in the yield or irrigation. Calibrated crop coefficients for crops

grown in different locations exist in the literature [103]–[107]. Having a centralized database

of crop coefficients, especially 𝐾𝑐 values beyond the FAO defaults, would be worthwhile

for the POWEIr controller. If no prior study for the calibration of 𝐾𝑐 values exists for a

particular crop in a particular location, default 𝐾𝑐 values can be used. Unless the 𝐾𝑐 value

is significantly different from the true value, yield loss should be minimal as seen from the

yield curve flattening out in the region surrounding the default 𝐾𝑐 value in Figure 3.6a.

By artificially increasing 𝐾𝑐 and moving further into the region where yield asymptotically

approaches the theoretical maximum yield, the yield will not be increased, but the risk of

yield loss will be reduced. If desired, 𝐾𝑐 values can be increased in this way -– effectively
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overestimating the parameter — to reduce the risk of yield loss at the cost of additional

water use. The amount of water used for any given increase in 𝐾𝑐 can be easily understood

from 3.6a which shows an approximately linear relationship between water used and 𝐾𝑐 in

the region of the true value. Therefore, a farmer could have a good idea of how much a

given increase in the 𝐾𝑐 parameter will cost. The sensitivity results show that yield under

the POWEIr controller is robust to error in three out of the four crop parameters and yield

is only lost when 𝐾𝑐 is underestimated. Therefore, calibrating the controller should be

relatively cheap, requiring only an estimate of the 𝐾𝑐 value and default values for the other

parameters.

3.5.3 Cost-benefit of LCWS and HCWS

Results from Figure 3.5 found that using the LCWS weather station data over the HCWS

weather station data as inputs for the POWEIr controller had a negligible effect on projected

revenue. The measurement errors between the home-use, low-cost weather station (LCWS)

and research-quality, high-cost weather station (HCWS) had a cumulative effect on the soil

moisture calculation and led to 10–15% less total irrigation over the range of simulated crops

and soil textures. The minimal 0.5 $/ha reduction in yield for using the LCWS compared

to the HCWS demonstrated that there was a minimal loss in revenue risk for using a lower

accuracy weather station. Switching from the HCWS to the LCWS would save farmers

approximately $935 per weather station at the time the thesis was written. Quantifying

this change in irrigation and yield for the low-cost weather station allows farmers to make

educated decisions on whether they want to use the lower-cost and more accessible home-

use weather stations over research-quality ones. Currently, many farmers rely on experience

and observations to irrigate which can lead to over irrigation. Having an easy-to-use, low-

cost, custom option for calculating a farm’s exact water needs could facilitate sustainable

irrigation practices for resource-constrained farmers. The methodology used to analyze the

weather stations can be used to assess the performance of other low-cost weather stations

90



for use in agriculture.

3.5.4 Limitations

The sensitivity study conducted was based on simulation and 92 days of data, limiting the

data to a specific season. To understand how the POWEIr controller’s irrigation schedules

perform over a range of farm and seasonal weather conditions, it should be tested in settings

with real soil and crops over different seasons. All of the irrigation schedules in this chapter

were calculated under the assumption that the optimal schedule would be able to be fully

carried out each day, and there would be no operational or user error that caused a change

in the irrigation delivered. Future work should quantify the operational and user error of the

POWEIr controller to verify its usability in terms of how much of the predicted irrigation

schedule is able to be delivered and how this affects the crops.

3.5.5 Value to Practitioners and Academic Community

This chapter shows that the POWEIr controller’s use of agronomy models that are not

complex and rely on few inputs as well as a small amount of sensors for predicting irrigation

needs can calculate the minimal crop water needs without negatively impacting yields for

farmers. The POWEIr controller’s design does not rely on soil moisture sensors and instead

uses soil moisture calculations based on farm details and weather data. This could be

a viable option for resource-constrained farmers who tend to over-irrigate as a means to

reduce risk to their crops and do not have the disposable income to invest in existing high-

cost precision agriculture technologies that rely on many sensors to inform on crop water

needs. The POWEIr controller’s optimized predictive irrigation schedules combined with

a low-cost weather station is an economical, sustainable, precise irrigation solution with

minimal user inputs required. Applying these findings to future work can allow sustainable,

precise irrigation to be more affordable and easy to use, increasing its accessibility to cost-
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constrained farmers.

3.6 Conclusions

To meet the world’s growing food demand there is a need to sustainably increase crop

production, especially in LMICs. The findings presented herein suggest that the POWEIr

controller could help reduce the barriers to the adoption of SPDI and precision agriculture

technologies in LMICs. The POWEIr controller provides a solution to reduce the cost and

complexity of SPDI and water- and energy-optimized irrigation scheduling.

This chapter conducted a sensitivity study of the POWEIr controller’s irrigation sched-

ules and simulated analysis of the schedules’ and LCWS’ effect on yield to understand the

viability of low-cost hardware and how errors in agronomy inputs affect farmers’ bottom

line. The matching of the cumulative change in irrigation with and without prediction error

suggested that although the 𝐸𝑇0, rain, and solar prediction errors were large, these errors

were mitigated by incorporating measured data into the POWEIr controller to re-calibrate

the models with real data. Measurement error between the LCWS and the HCWS led to

a 10–15% reduction in total irrigation, but only up to 0.008% change in yield, or up to 0.5

$/ha loss in revenue. This low loss in revenue indicates that the LCWS is accurate enough

to produce optimal schedules in combination with the POWEIr controller. It was found that

the yield was significantly affected when there were errors in crop parameters, especially the

crop coefficients used to calculate crop evapotranspiration. Calibrated crop coefficients for

crops grown in specific regions exist in literature and can be incorporated into the POWEIr

controller to mitigate these errors.

The POWEIr controller irrigation schedules have been validated in simulation for a range

of crop and soil types. This validation, in addition to future work testing the controller on

farms, will legitimize the POWEIr controller’s predictive schedules. Disseminating the results

of the POWEIr controller could help increase adoption by farmers in LMICs. Increasing the
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accessibility of this low-cost, sustainable, precise irrigation technology could allow farmers

in LMICs to grow more food using less water and energy resources.
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Chapter 4

Technical Validation of the POWEIr
Controller for SPDI Systems in the
Middle East and North Africa

The content of this chapter was derived from work with contributors besides the author

of this thesis including Fiona Grant, Georgia Van de Zande, Shane Pratt, Anas Mansouri,

Ahmed Wifaya, Ammar Namarneh, Susan Amrose, Vinay Nangia, Samer Talozi, and Amos

G. Winter, V. A publication of the same title of this chapter is in preparation as Sheline,

Grant, Van de Zande, et al. [108].

4.1 Introduction

An estimated 2.4 billion people faced moderate to severe food insecurity in 2022, signifying a

substantial increase in comparison to 2015 when the Sustainable Development Goals (SDGs)

were first introduced [1]. This highlights a deviation from the trajectory required to attain

the second SDG, achieving zero hunger by 2030. In UN [1] a comprehensive overview of

the most recent data on the SDGs are reported along with the compelling call to action to

end hunger globally. Further, the reported severe food insecurity disproportionately affects
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low- and middle-income countries (LMICs), emphasizing the need for targeted interventions

in these regions. Addressing this challenge requires a concerted effort to augment crop

production, particularly in LMICs, in order to improve food security.

Another aim of the second SDG is to sustainably attain food security in LMICs to not

further diminish the world’s natural resources [2], [3]. Currently, agricultural practices use

70% of global freshwater resources, and agri-food systems account for 30% of the world’s total

greenhouse gas emissions [6], [7], [101], [109]. Most farms rely on fossil fuels and electricity

for energy sources, which contributed to over one billion tonnes of carbon dioxide equivalent

in 2019 [5]. Reducing water usage in agriculture is especially important in the Middle East

and North Africa (MENA), the most water-scarce region of the world, where the total water

productivity is half of the world’s average [4].

Solar-powered drip irrigation (SPDI) and precision agriculture technologies can help sus-

tainably achieve food security by increasing crop production, minimizing water use, and

reducing greenhouse gas emissions [8]–[10]. Solar-powered water pumps are estimated to

have 95–98% lower total lifetime greenhouse gas emissions than pumps powered by grid

electricity or diesel fuel [11]. Drip irrigation delivers water to the crop root zone through a

network of pipes and emitters. When properly used, drip irrigation is projected to decrease

water use by 40% and increase crop yields by 20% compared to the prevailing methods, flood

and furrow irrigation, where fields are flooded with water fully or through dug trenches [12],

[32]. Precision agriculture directly aims to increase productivity sustainably through the

management of farm operations to optimize returns while conserving resources.

However, due to the high system cost and complexity of operating and maintaining these

technologies, LMICs have been slow to adopt SPDI and precision agriculture [13]–[15]. Even

when drip irrigation and sustainable agriculture technologies are adopted, farmers can still

choose to use the technologies unsustainably and over-irrigate to mitigate perceived risks

to the crops [16]–[18]. One proposed means of reducing these negative impacts of human

decision-making in irrigation is to automate SPDI precision irrigation control; however, these
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solutions fall short both due to their technical difficulty – the need for many sensors and

detailed calibration – but also because the automation doesn’t account for local farming

contexts and preferences on part of the user [19]. There is a need for low-cost, precision

irrigation control of SPDI systems specifically designed for the LMIC context.

The Predictive Optimal Water and Energy Irrigation (POWEIr) controller is an afford-

able SPDI and precision agriculture solution for low-income farmers [22], [25]. The merits

of the POWEIr controller are its potential to increase the accessibility of SPDI in LMICs by

reducing system cost as well as its ability to enable predictive, precise, sustainable irrigation

practices with minimal sensors and reliable irrigation delivery. The POWEIr controller has

three levels of control that offer a multifaceted approach to optimizing water and energy

usage in SPDI systems [22], [25].

Our prior work has established the potential of this controller to enable affordable, pre-

cise irrigation. Sheline, Grant, Gelmini, et al. [25] simulated a full season of SPDI operation

and optimized designs that used solar profile matching (SPM), an irrigation technique that

aligns the irrigation pumping power with the fluctuating solar energy supply. The simulated

operation with SPM demonstrated significant reductions in life cycle costs (18-74%) and

substantial enhancements in irrigation reliability (31-66%) when compared to commercial

counterparts. The study also built a small-scale prototype of the POWEIr controller and

verified, particularly during periods of heightened irrigation demand, the ability to increase

the amount of irrigation delivered using direct-drive solar power by 19-46% and reduce bat-

tery capacity by 78-98% compared to traditional methods. Notably, the inclusion of battery

use optimization has succeeded in reducing cycling and charging rates by an average of 42%,

while upholding 100% irrigation reliability. The integration of feedback pressure control

within the POWEIr controller yields an additional 10% energy savings when compared to

constant, maximum power operation, which is typical drip irrigation practice. The study

found that incorporating operational control can enable cost-effective yet reliable SPDI sys-

tems, marked by reduced panel sizes and buffer battery capacity. However, a caveat of this
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finding is that smaller batteries can age more rapidly, necessitating power system manage-

ment encompassing factors such as battery cycle counts, C-rates, and ambient temperatures.

Sheline, Ingersoll, Irmak, et al. [75] evaluated the impact of varying inputs on optimal

irrigation schedules and simulated crop yields. It was found that changing to a low-cost

weather station caused up to a 15% reduction in total irrigation for the simulated cases,

but this change in irrigation had negligible effect on crop yield. In addition, it was shown

that errors in crop parameter inputs to the POWEIr controller, especially errors in the crop

coefficients, significantly affected the irrigation volume and crop yield. Therefore, it was

suggested that calibrated crop coefficients should be used with the POWEIr controller for

the best results.

Although the studies on the POWEIr controller show promising initial results on its

ability to reliably and precisely irrigate at a low cost, the performance validation has thus

far remained confined to the realm of simulation and small-scale research prototypes, over

relatively brief timeframes, and not in LMIC contexts. Real-world validation of the POWEIr

controller is necessary, especially given farmers’ reservations regarding adoption unless prac-

tical efficacy is demonstrated. Additionally, for a precision agriculture technology to achieve

widespread adoption it must be adaptable to the local context [83]. To this end, the val-

idation of the POWEIr controller must encompass complete crop seasons within pertinent

LMIC contexts.

This chapter explores the modification and deployment of the POWEIr controller in two

distinct countries: Jordan and Morocco. Both countries are well positioned for the adoption

of the POWEIr controller as both governments have plans to invest in more efficient use of

water in agriculture and the use of renewable energy [110], [111]. Van de Zande, Sheline,

Amrose, et al. [22] noted that more farmers in Morocco desired automated irrigation com-

pared to Jordan. This finding led to the need for context-dependant customization of the

POWEIr controller. The chapter’s approach involves a combination of comprehensive exper-

imental validation and simulation to assess the practical implementation and effectiveness
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of the POWEIr controller in these diverse contexts. The aims of this chapter are to:

1. Describe customization and implementation strategies for the POWEIr controller in

multiple usage contexts;

2. Validate the POWEIr controller software and hardware in relevant environments show-

ing that Level 3 performed as expected;

3. Quantify the controller’s performance in terms of water and energy savings without

adversely affecting crop yields compared to typical farmer drip irrigation practice.

These aims uncover the full potential of the POWEIr controller in conserving water and

energy while maintaining crop production. The POWEIr controller is proven herein to be

a technology capable of sustainably increasing food production by demonstrating that it

can substantially save resources without compromising agricultural output across multiple

contexts. Upon implementation, the POWEIr controller holds the potential to counteract

food insecurity by prompting a departure from current unsustainable agricultural practices.

4.2 POWEIr Controller Theory and Design

This section is a summary of the POWEIr controller theory and it provides a fundamental

understanding of the levels of control and models within the POWEIr controller. A full

description of the theory is reported in Chapter 2, with updates to the solar prediction

model reported in Chapter 3.

4.2.1 POWEIr Controller Architecture

Figure 4.1 depicts the POWEIr controller architecture, the models and optimization algo-

rithms for each of the levels, and the interactions between the system components, models,

and levels. The three levels of the POWEIr controller are:
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Level 3: Predicts, optimizes, and communicates the irrigation schedule a day in advance,

tailored to farmers’ preferences.

Level 2: Adjusts energy management throughout the day to accommodate prediction

uncertainties and ensure schedule adherence.

Level 1: Maintains ideal pump operating pressure, thereby minimizing power wastage.

The POWEIr controller has been purposefully crafted to rely on a limited set of essential

sensors and models, meaning minimal input and calibration are needed from farmers and

irrigation engineers. This means the controller is scale-neutral and easily adapted to a variety

of contexts.

Level 3

Level 3 uses physics-based models, machine learning, and Model Predictive Control (MPC)

to produce daily predicted, water- and energy-optimal irrigation schedules. MPC, a process

control technique that uses a dynamic model of the controlled system to predict its behavior

over a moving time horizon and produce an optimal control action, is useful in precise

agricultural practices [34], [44], [46]. Level 3 combines measured data from a weather station

with historical weather to create a local past weather data set. Past solar power, reference

evapotranspiration (𝐸𝑇0), and rain are calculated using the past weather data and solar and

𝐸𝑇0 models. Prediction models use machine learning to forecast future solar power profiles

and weather data. The soil moisture model uses past weather data, future weather data, and

the previous day’s irrigation volumes to calculate the parameters needed to estimate the crop

water demand. The predicted solar power profiles and crop water demand parameters are fed

into the irrigation optimization algorithm. The predicted irrigation schedule is optimized to

enhance energy efficiency and minimize water consumption while preserving crop yield. The

objective of the optimization algorithm is to maximize crop revenue, minimize operational

energy and water costs, and minimize future risks by ensuring adequate energy is stored.
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Figure 4.1: The updated, full Predictive Optimal Water and Energy Irrigation (POWEIr)
controller architecture. At the start of the day Level 3 (green) predicts and optimizes an
irrigation schedule based on measured and historical weather data. These data train solar and
weather prediction models and initializes the soil moisture model. Prediction models forecast
future solar power profiles and weather parameters, including reference evapotranspiration
(𝐸𝑇0) and rain. Rain and 𝐸𝑇0 inform the soil moisture model’s calculations of crop water
demand. The Level 3 optimized irrigation schedule is communicated to farmers through a
smartphone app, and actual irrigation amounts are fed back to Level 3, keeping the farmer in
the control loop. Throughout the day Level 2 (orange) optimizes battery charging based on
Level 3 predictions and real-time measurements, while Level 1 (purple) maintains ideal pump
operating powers using pressure feedback control. The ideal pump powers are calibrated once
and used in the Level 3 irrigation optimization algorithm. The bottom right plots illustrate
how Levels 2 and 1 adjust over the first day to meet Level 3 predictions despite uncertain
solar power conditions.
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Level 2

Level 2 implements MPC to govern the distribution of energy between the solar panels and

the battery system on a sub-daily basis. Level 2 takes in measured inputs from the battery,

solar power available, and pump power to make battery charging rate adjustments in real

time. This strategy ensures adherence to the Level 3 irrigation schedule despite prediction

error while simultaneously mitigating battery wear and extending its lifespan.

Level 1

Level 1 employs a pressure feedback control loop to ensure uniform flow, adapting to vari-

ations in hydraulic system pressure. This level supports the SPM schedule execution by

dynamically modulating pump power in response to the number of open sections. Addition-

ally, it aids in precisely characterizing pump operating powers for use in Level 3 and Level

2 calculations.

4.2.2 Daily Weather Model

The soil moisture model relies on an estimation of daily weather parameters, namely precip-

itation (𝑃𝑟) and crop evapotranspiration [mm] (𝐸𝑇𝑐). The 𝐸𝑇𝑐 is approximated as

𝐸𝑇𝑐 = 𝐾𝑐𝐸𝑇0, (4.1)

where 𝐸𝑇0 is the reference evapotranspiration [mm] and 𝐾𝑐 is the crop coefficient. The

POWEIr controller uses the Penman-Monteith equation, as described in Allen, Pereira, Raes,

et al. [63], to calculate 𝐸𝑇0. The Penman-Monteith equation derives 𝐸𝑇0 under the assump-

tion of a grass reference crop of 0.12 m height with complete shading of the ground and

sufficient soil moisture. These assumptions mean that 𝐸𝑇0 depends solely on weather data

inputs, specifically temperature, relative humidity, solar irradiance, and wind speed. These
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weather inputs, along with 𝑃𝑟, can be measured with a local weather station and tabulated

to get daily averages and totals.

4.2.3 Solar Power Model

The solar power model estimates the available solar power for the irrigation schedule op-

timization algorithm. The model utilizes hourly weather data to calculate the solar power

available by approximating the solar panels using a single-diode model. The choice of a

single-diode model was made due to its proven simplicity and accuracy in representing max-

imum power output under varying weather conditions, as demonstrated in Bishop [90]. To

derive the maximum power output, the single-diode model relies on solar panel specifications

typically found in the manufacturer’s technical documentation, along with solar irradiance

and temperature data. The additional parameters required for the single diode model are

computed using the methodology outlined in De Soto, Klein, and Beckman [91].

4.2.4 Weather Prediction Model

Past daily 𝑃𝑟 and 𝐸𝑇0 are fed into a weather prediction model to forecast future daily 𝑃𝑟

and 𝐸𝑇0 used in the soil moisture model to calculate the crop water demand needed for the

irrigation optimization algorithm. The POWEIr controller implements a locally installed

low-cost weather station, described further in Section C.1, and machine learning methods

to predict the necessary daily weather data. This implementation is particularly useful in

resource-constrained settings where free, reliable weather forecasts are not readily available.

The chosen forecasting algorithm for the weather prediction model is vector autoregression

(VAR) [62]. The VAR algorithm makes multiple variable time-series predictions from related

variables. This algorithm is well-suited for resource-constrained settings as it is not compu-

tationally expensive and does not require large amounts of training data [61]. Daily average,

minimum, and maximum air temperature and relative humidity, average wind speed, total
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solar radiation, total sun hours (calculated as the number of hours the hourly radiation was

greater than 0.1 MJ/m2), the reference evapotranspiration, 𝐸𝑇0 (calculated using Penman-

Monteith equation), and total rain (𝑃𝑟) are the weather data variables used in the VAR

algorithm. The VAR model receives a defined time window of input data and forecasts a

vector of the same data for the upcoming prediction period. The VAR algorithm is trained

using a combination of one year of typical meteorological year (TMY) data obtained from

the nearest weather station and historical observations from the locally connected weather

station. To maintain accuracy, the VAR algorithm undergoes periodic retraining and recon-

struction using both historical and incoming weather data at the beginning of each prediction

cycle. This feedback and update process ensures that the algorithm captures and adapts to

current trends in the data.

4.2.5 Solar Prediction Model

Past data of available solar power is needed for forecasting hourly solar power, which, in

turn, is used to optimize the irrigation schedule. To predict the solar power available curve,

the POWEIr controller employs a Long Short-Term Memory (LSTM) network [95]. An

LSTM network is a type of recurrent neural network notable for its ability to retain past

information, resistance to noise, and suitability for sequence data prediction. The choice of

an LSTM network is informed by its aptitude for single-variable time series prediction over

a full day’s solar profile [92], [93].

The LSTM model takes as input the historical hourly solar power data and generates a 24-

hour projection of the solar power available. The LSTM networks algorithm was developed

using the Keras deep learning package [94]. The architecture of the LSTM model comprises a

100-cell LSTM layer with ReLU activation, a 50-cell LSTM layer with ReLU activation, and

a dense layer [95]. The loss function employed is a mean square error, and the optimization

algorithm used is Adam [96]. The LSTM algorithm is trained using one year of TMY data

obtained from the nearest weather station, combined with measured historical data from
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the locally connected weather station. Periodic retraining and reconstruction of the LSTM

model occur at the start of each prediction cycle, ensuring that the algorithm incorporates

all current data trends.

4.2.6 Soil Moisture Model

A soil moisture model is used to estimate the daily crop water requirement, which is subse-

quently fed into the irrigation schedule optimization algorithm. This model leverages a soil

water balance framework, which tracks the inflow, outflow, and retention of water within

the soil. These computations are conducted every day throughout the crop season, defined

by the crop’s planting and harvesting dates. The soil water balance, as delineated in Allen,

Pereira, Raes, et al. [63], is defined as

𝐷𝑟,𝑛 + (1− 𝑘𝑅𝑂)𝑃𝑟𝑛 +
1000𝐼𝑑𝑒𝑙,𝑛
𝐴𝑠𝑓𝑤

= 𝐷𝑟,𝑛−1 +𝐾𝑠𝑡𝐸𝑇𝑐,𝑛, (4.2)

where 𝐷𝑟,𝑛 and 𝐷𝑟,𝑛−1 are the root zone depletion [mm] on day 𝑛 and on the previous day,

respectively, 𝑘𝑅𝑂 is the runoff coefficient estimated based on the soil texture, 𝐼𝑑𝑒𝑙 is the

delivered irrigation [m3], 𝐴𝑠 is the field’s area [m2], 𝑓𝑤 is the soil wetted fraction, 𝐾𝑠𝑡 is the

water stress coefficient, and 𝐸𝑇𝑐 is the crop evapotranspiration [mm]. 𝐾𝑠𝑡 is calculated as

𝐾𝑠𝑡 =
𝑇𝐴𝑊 −𝐷𝑟

𝑇𝐴𝑊 (1− 𝑓𝑑)
, (4.3)

where 𝑓𝑑 is depletion fraction calculated as

𝑓𝑑,𝑛 = 𝑓𝑑,𝑐𝑜𝑛𝑠𝑡 + 0.04 (5− 𝐸𝑇𝑐,𝑛). (4.4)

The 𝑓𝑑,𝑐𝑜𝑛𝑠𝑡 is a crop-dependant constant defined in [63]. 𝑇𝐴𝑊 is the total available water

that the crop can extract from the soil [mm] which depends on the depth of the crop roots

(𝑍𝑟) [m] and soil texture.
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The soil moisture is equated to the volumetric soil water content (𝜃𝑣), which is defined

as

𝜃𝑣 =
–𝑉𝑤𝑎𝑡𝑒𝑟

–𝑉𝑠𝑜𝑖𝑙

(4.5)

where –𝑉𝑤𝑎𝑡𝑒𝑟 is the volume of water in the soil [m3] and –𝑉𝑠𝑜𝑖𝑙 is the volume of soil [m3]. The

𝜃𝑣 in the root zone can be related to 𝐷𝑟 as

𝜃𝑣,𝑛 = 𝜃𝑣,𝑓𝑐 −
𝐷𝑟,𝑛

1000𝑍𝑟

, (4.6)

where 𝜃𝑣,𝑓𝑐 is the volumetric soil water content at field capacity, dependent on the soil texture.

𝐷𝑟 is constrained to be less than 𝑇𝐴𝑊 and greater than zero. If the 𝐷𝑟 is greater than the

readily available water (𝑅𝐴𝑊 ), defined as

𝑅𝐴𝑊𝑛 = 𝑓𝑑,𝑛𝑇𝐴𝑊 (4.7)

then there is water stress and 𝐾𝑠𝑡 is between zero and one. If 𝐷𝑟 is less than or equal to the

𝑅𝐴𝑊 then there is no water stress on the crop and 𝐾𝑠𝑡 equals one.

The water stress affects the amount that crop evapotranspiration is adjusted (𝐸𝑇𝑐,𝑎𝑑𝑗) as

𝐸𝑇𝑐,𝑎𝑑𝑗 = 𝐾𝑠𝑡𝐸𝑇𝑐. (4.8)

If there is water stress on the crop, and 𝐾𝑠𝑡 is between zero and one, then the reduction

in evapotranspiration relates to a reduction in yield. The adjustment to the yield (𝑌𝑎) is

accounted for as

1− 𝑌𝑎

𝑌𝑚𝑎𝑥

= 𝐾𝑦

(︂
1− 𝐸𝑇𝑐,𝑎𝑑𝑗

𝐸𝑇𝑐

)︂
, (4.9)

where 𝑌𝑚𝑎𝑥 is the maximum yield [kg/m2] calculated using the agro-ecological zone method

defined in [66] and 𝐾𝑦 is the crop yield response factor [67].
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4.2.7 Irrigation Optimization

The primary goal of optimizing the irrigation schedule is to efficiently manage energy and

water resources while ensuring crop yield remains unaffected. This optimization algorithm

relies on forecasted available solar power and crop water demand parameters. The objective

is to maximize revenue through enhanced crop yield, minimize operational costs associated

with energy consumption and water usage, and maximize the reliability of irrigation by fully

charging any battery capacity by the end of the prediction horizon. The objective function

quantifies these goals in terms of cost, taking into account the unit capital costs associated

with various components of the system. The objective is expressed as

𝑚𝑖𝑛

[︃
𝑁ℎ𝑜𝑟∑︁
𝑖=𝛿𝑡

1

𝑁ℎ𝑜𝑟

(︂
𝑘𝑏𝑢𝑚𝑎𝑥(𝑢1,𝑖 − 𝑢2,𝑖) +

𝑁𝑠,𝑡𝑜𝑡∑︁
𝑠=1

𝑘𝑤𝑞𝑠𝑑𝑠,𝑖

)︂

−
𝑁𝑑𝑎𝑦∑︁
𝑛=1

𝑁𝑠,𝑡𝑜𝑡∑︁
𝑠=1

1

𝑁𝑑𝑎𝑦

(︀
𝑘𝑐𝐴𝑠

𝑑𝑌𝑎,𝑠,𝑛

𝑑𝑡

)︀
+ 𝑘𝑑(1− 𝑆𝑂𝐶𝑁ℎ𝑜𝑟

)

]︃
,

(4.10)

where 𝑁ℎ𝑜𝑟 and 𝑁𝑑𝑎𝑦 are the prediction horizon in hours and days; 𝑖 is the time step count;

𝛿𝑡 is the hourly time step; 𝑁𝑠,𝑡𝑜𝑡 is the total number of sections 𝑠 the field is split into;

𝑘𝑏 [$/kWh] is the unit cost of the battery defined by the unit battery cost and its lifetime

storage; 𝑢1 and 𝑢2 are the charging and discharging rate of the battery, normalized by 𝑢𝑚𝑎𝑥

[kW], the maximum charging or discharging rate; 𝑘𝑤 [$/m3] is the unit cost for water; 𝑞𝑠 is

the flow rate for section 𝑠 [m3/hr]; 𝑑𝑠 is the binary variable for irrigating section 𝑠 of the

field; 𝑘𝑐 [$/kg] is the price weight on the crop; 𝑑𝑌𝑎,𝑠,𝑛

𝑑𝑡
is the daily yield [kg/m2/day], which is

estimated by dividing 𝑌𝑎 in Equation 4.9 by the number of days in the crop growing season;

𝑘𝑑 is the unit cost on the battery [$/day] based on the cost of the system over its lifetime;

and 𝑆𝑂𝐶 is the state of charge of the battery.

This optimization problem operates within a single prediction horizon and involves con-
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trol variables denoted as 𝑑𝑠 and 𝑢1. The control variables determine the daily predicted,

optimal irrigation volume, battery power profile, and pump power profile. The control vari-

ables also have a direct impact on the state variables of the system, which include 𝐷𝑟 and

𝑆𝑂𝐶.

The state variables are subject to specific constraints that govern the dynamics of the

system. These constraints encompass energy and water flow dynamics, ensuring that the

system operates within physical limits. Additionally, the moisture content of the soil is

constrained according to Equation 4.2. The state of the battery is also controlled, allowing

it to charge only when surplus solar power is available and discharge when the pump power

exceeds the available solar power. The pump power is a function of the system’s flow rate

and is calibrated during the system installation. The optimization process is bound by

constraints on its control and state variables, and these constraints are detailed in [25].

4.3 Methods for POWEIr Controller Technical Valida-
tion

An experiment was designed to validate the technical performance of the POWEIr controller

in a variety of contexts. The objectives of the experiment were to:

1. check the performance of each level (only Level 3 is presented herein) of the POWEIr

controller in multiple farm and agricultural contexts;

2. compare the performance of the POWEIr controller in terms of energy use, water use,

and crop yield to similar reference farms’ measured irrigation practices in multiple

contexts;
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4.3.1 POWEIr Controller Customization and Implementation in
Multiple Contexts

According to Dongyu et al. [83], for a precision agriculture technology to achieve widespread

adoption it must be adaptable to the local given context. In the MENA region, where water

scarcity is severe and agriculture relies heavily on irrigation rather than rain-fed methods [4],

[109], precision agriculture is crucial. Despite the scarcity of water, farmers in MENA tend to

over-irrigate [16], [18], emphasizing the need for adaptable precision agriculture technologies

in MENA, such as the POWEIr controller.

Van de Zande, Sheline, Amrose, et al. [22] investigated the market potential for a tool

such as the POWEIr controller in Jordan and Morocco and specified modifications that

could prove beneficial in these various contexts. Specifically, it was found that farmers had

different levels of experience with irrigation systems and scheduling as well as the amount of

automation they preferred in their systems. Therefore it was identified that customization

of the POWEIr controller was needed to integrate water and energy management along with

different levels of automation in MENA. Notably, there was a preference for automation and

the inclusion of automatic valves among the farmers interviewed in Morocco. Whereas the

farmers interviewed in Jordan had a preference for manual valves that were inexpensive and

familiar [22].

The POWEIr controller, as described in this chapter, was intentionally designed to be

adaptable to the local context of MENA. Customized versions of the POWEIr controller were

implemented in Jordan and Morocco, addressing the specific needs and challenges faced by

farmers in each location. Both versions calculated the irrigation schedules automatically

using the theory presented in Section 4.2. The version implemented in Jordan relied on

manual valves and farm labor to open the sections at specified times. The version tested in

Morocco used automatic valves to open the sections according to the calculated schedule.

The two versions of the POWEIr controller were designed, built, and tested to achieve

the objectives of the experiment. Figure 4.2 and Table C.1 show the experimental setup and
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details, including the sensors used, hydraulic layout, valve operation, irrigation scheduling

method, electricity type, crop type, and soil texture. The implementation and testing strate-

gies for both versions of the controller were customized to meet the needs of the farmers in

Jordan and Morocco. This adaptability makes the POWEIr controller a promising technol-

ogy for promoting sustainable and efficient agricultural practices in the water-scarce MENA

region.

Jordan

In Jordan, the POWEIr controller was installed on a research farm that grew intercropped

young grape vines and okra from May to December 2023. Half of the research farm used

the POWEIr controller to irrigate and the other half irrigated based on a local farmer’s

recommendations as a reference. The farmer had over 20 years of experience growing okra

and grapes in Jordan. The POWEIr controller side had a SPDI system with six sections

where the grapes and okra could be irrigated separately with manual valves and the controller

communicated the irrigation schedule over a phone application [23]. The reference side used

grid power and drip irrigation with six sections where the grapes and okra could be irrigated

separately with manual valves.

Morocco

In Morocco, the POWEIr controller was installed on a research farm that grew potatoes

from January to June 2023 and carrots from July to November 2023. The research farm

with the POWEIr controller was split into six sections and had automated valves (Netafim

Aquative Plus Actuator Valve) that routinely carried out the optimal irrigation schedule.

A small farm that sells to the local market was chosen as a reference for measuring typical

irrigation practices. The reference farmer had over 20 years of experience growing potatoes

and carrots in Morocco. The reference farmer’s field had a SPDI system and four sections

with manual valves and grew the same crops at the same time as the research farm with the
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(a) Irbid, Jordan (b) Agadir, Morocco

Figure 4.2: The experimental setups in Irbid, Jordan, and Agadir, Morocco. In Jordan, a,
a one ha research farm irrigated inter-cropped grapes and okra, with half of the farm using
the POWEIr controller and solar power on six sections, and the other half irrigating based
on local farmer’s recommendations with grid power as a reference. In Morocco, b, 0.6 ha
research farm irrigated potatoes in the first season and carrots in the second season using the
POWEIr controller and automatic valves on six sections compared to a neighboring farmer’s
0.6 ha field with manual valves that irrigated the same crops in the same seasons based on the
farmer’s experience. Both of the experiments used drip irrigation and had weather stations,
pressure sensors at the start of each section, a flow meter in the main pipe, pump power
measurements and pressure sensors after the pump, and the filters and fertilizer injectors.
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POWEIr controller.

Experimental Systems’ Setup and Procedure

In Figure 4.2, both experimental setups used the same wired pressure sensors (ProSense

SPT25-20-0060A), flow meter (ProSense FMM200-1002), and weather station (Ambient

Weather WS-2902C). Also, the same type of soil sensor was used (Sentek Drill & Drop

Probe). Each soil sensor took soil moisture measurements at one point in the field at multi-

ple depths. In Jordan, the soil sensor in section two measured at 10 cm increments from 0

to 41 cm. The soil sensor in section six measured at 10 cm increments from 0 to 33 cm. In

Morocco, both soil sensors took measurements at 10 cm increments from 0 to 60 cm. These

are capacitance-based sensors and estimate 𝜃𝑣 directly. Bulk soil measurements were also

taken on the fields with the controller in both Jordan and Morocco.

The bulk soil measurement conducted in Jordan used the gravimetric method where the

soil water content (𝜃𝑔), was calculated as

𝜃𝑔 =
𝑚𝑤𝑎𝑡𝑒𝑟

𝑚𝑠𝑜𝑖𝑙

, (4.11)

with 𝑚𝑤𝑎𝑡𝑒𝑟 as the mass of water in the soil [kg] and 𝑚𝑠𝑜𝑖𝑙 as the dry mass of the soil [kg].

The 𝑚𝑤𝑎𝑡𝑒𝑟 was measured by taking the difference between the weight of wet soil sampled

from multiple locations in the field and the weight of the same sample once it was dried in an

oven (𝑚𝑠𝑜𝑖𝑙). The soil samples in Jordan were collected at a depth of 10 cm over the entire

season, and additional 30 cm depth samples were collected towards the end of the season.

The bulk soil measurement taken in Morocco was from ten lysimeters spread evenly across

the field with the controller. The soil water content from the lysimeter was calculated using

Equation 4.11. The measurements taken were the weight of wet soil in the lysimeter buckets

and the weight of the same lysimeter buckets from the start of the experiment when the soil

was dry (𝑚𝑠𝑜𝑖𝑙). The difference of these measurements was 𝑚𝑤𝑎𝑡𝑒𝑟. For the potato crop, the
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lysimeters were 60 cm deep and for the carrot crop the lysimeters were 20 cm deep.

Both the soil sample and lysimeter methods are common agronomic research methods for

measuring bulk 𝜃𝑔. The bulk soil measurements were used as a baseline to compare to the

soil sensor measurements and POWEIr controller estimations of 𝜃𝑣. To compare the bulk

measurements, 𝜃𝑔 was converted to 𝜃𝑣 defined as

𝜃𝑣 = 𝜃𝑔
𝜌𝑠𝑜𝑖𝑙
𝜌𝑤𝑎𝑡𝑒𝑟

, (4.12)

where 𝜌𝑠𝑜𝑖𝑙 is the dry bulk density of the soil [g/cm3] and 𝜌𝑤𝑎𝑡𝑒𝑟 is the density of water

[g/cm3]. The 𝜌𝑤𝑎𝑡𝑒𝑟 is assumed to be 1 g/cm3. The 𝜌𝑠𝑜𝑖𝑙 values are reported in Table C.2.

The 𝜌𝑠𝑜𝑖𝑙 for Morocco was measured and the 𝜌𝑠𝑜𝑖𝑙 for Jordan used default values based on

the soil texture [112].

The pump and power systems used in Jordan were sized to be appropriate for the farm

with additional battery capacity to allow for irrigation during non-sunlight hours and miti-

gate risk to the crops in the experiment. The batteries were oversized as there was uncertainty

about how much additional irrigation would be needed during non-sunlight hours.

In Jordan, both the controller and reference side of the research farm used a 2.2 kW

pump (Pedrollo pump F32/160B) and a locally sourced disk filter, sand filter, and fertilizer

injector. The controller side was powered by six 540 Wp panels (Tiger Pro JKM535M-

72HL4-V). The controller side also had a 10.2 kWh lithium iron phosphate (LFP) battery

(DGRID DG-B-WM-48200). The reference side’s pump was powered by the grid, measured

using a grid meter (Carlo Gavazzi EM24); the reference side’s data acquisition (DAQ) unit

was powered by two 300 Wp solar panels (Jain Irrigation JJ-M672) and two 1200 Wh GEL

batteries (NPP NPG12-100Ah–12V, 100Ah).

In Morocco, both the controller and reference side of the research farm used a 2.2 kW

pump (Sealand CN 32-160B) and had a disk filter. The research farm and farmer’s field were

powered by eight 330 Wp panels (Eagle JKM330PP-72-V) each. The research farm also had
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two 3.6 kWh lithium iron phosphate (LFP) batteries (Maribat MLFP 48V 3600Wh) to power

the irrigation system at times of low solar irradiance and the DAQ unit at the farmer’s field

had two 1200 Wh GEL batteries (EcoGreen 6-GFJ-100–12V, 100Ah) to transmit data at

times of low solar irradiance.

The POWEIr controller hardware in each country consisted of a solar and system mon-

itoring controller (Victron Cerbo GX), a maximum power point tracker (Victron Smart

Solar MPPT 250V 60A), an inverter (Victron Multiplus 48/5000/70), a battery moni-

tor (Victron Smart Shunt 500A/50mV), a DC-DC Converter (Victron Energy Orion-Tr

48/24-12), a variable frequency drive or VFD (DURApulse G S11N-23P0), a programmable

logic controller or PLC (CLICK PLUS PLC), and an LTE router, modem, and antenna

(MikroTik RBSXTR&R11e-LTE and RBD52G-5HacD2HnD-TC). The DAQ unit hardware

in each country consisted of a solar and system monitoring controller (Victron Cerbo GX),

a maximum power point tracker (Victron Smart Solar MPPT 150V 35A), a battery mon-

itor (Victron Smart Shunt 500A/50mV), a programmable logic controller or PLC (CLICK

PLUS PLC), and an LTE router, modem, and antenna (MikroTik RBSXTR&R11e-LTE and

RBD52G-5HacD2HnD-TC). The DAQ unit in Morocco also included a VFD (Delta VFD

MS300 2.2kW) to power the pump directly using solar.

The POWEIr controller was programmed in Python. The Level 3 code ran once per

day in each country starting March 28th, 2023. On-site researchers used the FAO 56 soil

water balance method to calculate the crop water needs, similar to the method described

in Section 4.2.6, during times when Level 3 wasn’t active. A phone application (app) was

used to communicate the Level 3 optimal irrigation schedule at the start of each day. In

Jordan, users would look at the schedule on the app at the start of the day and use the app

to communicate back to the controller when they opened and closed sections. The users

of the app in Jordan were farmhands and on-site researchers. In Morocco, the automatic

valves would record when they were opened and closed. Node-RED was used to program the

sensors and hardware. An MQTT protocol was used to communicate the necessary input
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and output data between the different POWEIr controller levels, hardware, sensors, and the

app. Data were stored in an Influx database and could be monitored remotely.

Table C.2 shows the inputs used for the POWEIr controller calculations. Default agron-

omy parameters defined in Allen, Pereira, Raes, et al. [63] were used where applicable. The

default parameters were adjusted with different calibration techniques in the various seasons

that were tested. For the Morocco potato season, conducted from January to June 2023,

local 𝑍𝑟 and 𝐾𝑐 values were used. The 𝑍𝑟 and 𝐾𝑐 values were obtained from the Ministry of

Agriculture near Agadir, the Souss-Massa Regional Authority for Agricultural Development

(Office Regional de Mise en Valeur Agricole du Souss-Massa or ORMVA-SM) [113]. The

Level 3 calculated 𝐷𝑟 value was updated at times when the on-site researchers detected that

the potato crop was undergoing stress. For the Jordan okra and grape season, conducted

from May to December 2023, the 𝑓𝑑, 𝐾𝑦, 𝑍𝑟, and 𝐾𝑐 values were sourced from literature

[114]–[117]. The 𝑍𝑟, and 𝐾𝑐 values were updated periodically based on on-site researchers’

measurements and observations. On July 21, 2023, the POWEIr controller’s 𝐷𝑟 and 𝐾𝑐 val-

ues were updated when it was noted that the okra crop coefficient had been 30% too high.

The 𝑓𝑤 was calculated based on field measurements of the hydraulic layout and crops. For

the Morocco carrot season, conducted from July to November 2023, local 𝑍𝑟 and 𝐾𝑐 values

were obtained from ORMVA-SM. The 𝑓𝑤 was calculated based on field measurements of the

hydraulic layout and crops. On-site research experts in both Jordan and Morocco added

additional irrigation beyond what the controller calculated if they perceived the crops to be

undergoing stress.

4.3.2 POWEIr Controller Performance Hypotheses and Methods

Hypotheses, metrics, and experimental methods were developed for Level 3 of the POWEIr

controller to validate its performance.

The main hypothesis for the Level 3 optimal irrigation schedule is that it reduces water

use and energy use compared to typical farmer practices without harming or putting the crops
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at risk as a result. The method used for testing this hypothesis was to measure the water

and pump energy use on fields with the POWEIr controller and compare this to similar

fields irrigated based on local farmers’ practices or recommendations as a reference. The

total cumulative pump energy and irrigation amount (𝐼𝑡𝑜𝑡𝑎𝑙) [m3/ha] used by the POWEIr

controller as well as the total crop yield (𝑌𝑡𝑜𝑡𝑎𝑙) [tonne/ha] were compared to the reference as

indicators of performance. A further performance metric used was the water use efficiency

(𝑊𝑈𝐸) [kg/ha], defined herein as

𝑊𝑈𝐸 =
𝑌𝑡𝑜𝑡𝑎𝑙

𝐼𝑡𝑜𝑡𝑎𝑙
1000. (4.13)

Another hypothesis for Level 3 is that its soil moisture model, described in Section 4.2.6, can

track the actual soil moisture with sufficient accuracy to ensure crop health. The method

used for testing this hypothesis was to compare the Level 3 soil moisture estimates to soil

moisture sensors and in-field bulk soil moisture measurements. A final hypothesis for Level

3 is that the error associated with the solar power predictions would not significantly affect

the irrigation schedule or crops. The method for testing this hypothesis was to compare the

solar power predictions to calculated values from the measured weather.

4.4 Technical Validation of the POWEIr Controller Re-
sults

The experimental results show the performance of each level of the POWEIr controller and

the benefit of the POWEIr controller compared to reference farms in each country in terms

of energy use, water use, crop yield, and 𝑊𝑈𝐸.
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4.4.1 Level 3 Validation

The Level 3 performance was evaluated based on the error in its predictions, namely the

solar energy prediction error and the error associated with its soil moisture, or 𝜃𝑣, estimates.

The daily solar energy was calculated as the solar power multiplied by its time duration

summed over the day. The predicted solar power curve consisted of 24-hour predictions

linearly interpolated into 10-minute increments. The measured solar curve consisted of solar

power calculated using the theory in Section 4.2.3 and 5-minute aggregated weather data.

To get the solar error, the daily predicted solar energy was compared to the solar energy

calculated from the measured weather data. The daily percent error between the predicted

solar energy and the calculated solar energy from the weather data is shown in Figure 4.3.

The solar prediction error was calculated for the duration of the experiment. For Morocco

(Figure 4.3a) the mean solar energy prediction error was 32%, with a standard deviation of

93% (SD = 93%). For Jordan (Figure 4.3b) the mean solar energy prediction error was 31%

(SD = 68%). The mean solar prediction error was around 30% for both countries; although

there was a large SD, meaning there were many days when the solar prediction error was

much higher. The histograms are shown to be skewed positive, signifying the POWEIr

controller often over-predicted the daily solar energy it had available. Additionally, because

the POWEIr controller’s solar predictions were based on a linear interpolation of hourly data

they did not capture fluctuations, such as those due to clouds, which added to the error.

The average 𝜃𝑣 in the root zone was calculated by the POWEIr controller using Equation

4.6 and the soil moisture model described in Section 4.2.6. Also, soil moisture sensors with

measurements at multiple depths and bulk 𝜃𝑣 measurements based on soil weight were taken

at the Morocco and Jordan research farms. Figures 4.4–4.6 show the 𝜃𝑣 that the POWEIr

controller estimated compared to the soil sensors and bulk soil measurements for the various

Morocco and Jordan crop seasons at the sections where the soil sensors were located.

Figure 4.4 shows the 𝜃𝑣 results for the Morocco potato season. Only one soil moisture

sensor was used in this season and it was placed in the middle of the last section of the re-
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(a) Morocco

(b) Jordan

Figure 4.3: Daily solar energy prediction error for Morocco and Jordan. The error is the
difference between the energy under the predicted solar power curve and the energy under
the solar power curve calculated from the measured weather data. The energy error was
calculated daily and made into a histogram for a, both potato and carrot seasons in Morocco,
and for b, the okra and grape season in Jordan.
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Figure 4.4: Volumetric soil water content (𝜃𝑣) comparison for the Morocco farm during
the potato season for section 6. Estimates from the POWEIr controller (blue dashed line)
compared to the full range and average soil sensor readings (purple area and line) and in-field
bulk measurements (green dot). The legend summarizes the depth(s) that each measurement
was taken at. Lysimeters were used to take the bulk 𝜃𝑣 measurements up to 60 cm. The
grey boxes show times that the controller wasn’t running during crop germination, harvest,
or when the controller wasn’t fully set up and researchers implemented a soil water balance
to irrigate.

search farm, section six. The bulk soil measurements taken in the field were from lysimeters

that calculated the average 𝜃𝑣 from 0–60 cm. The POWEIr controller bulk 𝜃𝑣 calculations

were on average 2% (SD = 5%) higher than the lysimeter bulk measurements. The POWEIr

controller calculated 𝐷𝑟 was reset based on the lysimeter measurements when on-site re-

searchers detected crop stress. The 𝐷𝑟 values were reset on March 30, April 10, and April

27, 2023. This could have helped the POWEIr controller estimations of 𝜃𝑣 more closely

match the bulk soil measurements. The soil moisture sensor reported 13% (SD = 5%) lower

𝜃𝑣 averaged over all depths compared to the bulk soil measurements. The inaccuracy in the

soil sensor was most likely due to a placement issue, either it was not placed close enough to

where the water from the emitter was or it was placed in a patch of soil that was dry due to

emitter malfunction or variability in the soil. Soil moisture sensors are prone to placement

issues and, to get an understanding of what is happening in the bulk of the soil, multiple

sensors are necessary [118], [119].

Figure 4.5 shows the 𝜃𝑣 results for the Jordan okra and grape season. Soil moisture

sensors were placed in the middle of section two and section six of the controller side of the
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(a) Jordan okra, section 2 (b) Jordan okra, section 6

Figure 4.5: Volumetric soil water content (𝜃𝑣) comparison for the Jordan farm on sections
2 and 6 growing the okra crop. Estimates from the POWEIr controller (blue dashed line)
compared to the full range and average soil sensor readings (purple area and line) and in-field
bulk measurements (green dot). The legend summarizes the depth(s) that each measurement
was taken at. The 𝜃𝑣 soil sensor measurements for section 2 (a) and section 6 (b) were taken
over different depths, 0–41 cm and 0–33 cm, respectively. The bulk 𝜃𝑣 was measured using
the gravimetric method with oven drying from soil samples taken at 10 cm. Four bulk soil
samples were also taken at 30 cm (light green dots) at the end of the season in both sections.
The grey boxes show when the crop coefficient and the controller’s irrigation amounts were
high and the end of the season when the controller was off.
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farm near an emitter and the okra crop. Section two had loam soil of a consistent texture and

low salt content while section six had sandy clay soil with an inconsistent texture and higher

salt content. Even with the difference in soil texture, the POWEIr controller calculations

are shown to match well with the bulk measurements. The controller 𝜃𝑣 calculations are

on average 2% (SD = 6%) and 11% (SD = 6%) higher than the bulk soil measurements

for sections two and six, respectively. It should be noted that the bulk soil measurement

𝜃𝑣 values were calculated based on default 𝜌𝑠𝑜𝑖𝑙 values in Jordan, which could have added

error to these measurements. Future publications on this work will incorporate measured

𝜌𝑠𝑜𝑖𝑙 values to mitigate this error. Additionally, the bulk measurements were taken at 10 cm

depth whereas the controller calculated the 𝜃𝑣 up to the root zone depth, which went up to

75 cm for the okra. The large difference in depths implies using the bulk soil measurements

may not be a direct comparison. However, a small amount of bulk soil measurements were

taken at 30 cm and shown to be 0.2% (SD = 1%) and 0.7% (SD = 3%) lower compared to

the 10 cm measurements for sections two and six, respectively. The small difference in 𝜃𝑣

between depths demonstrates that the 10 cm measurements may have been a good indicator

of the 𝜃𝑣 at higher depths. The soil moisture sensors reported 19% (SD = 8%) and 32% (SD

= 7%) higher 𝜃𝑣 averaged over all depths compared to the bulk 𝜃𝑣 measurements for sections

two and six, respectively. The larger difference in the 𝜃𝑣 of the soil sensor suggests that it

under-performed compared to the POWEIr controller estimates.

Figure 4.6 shows the 𝜃𝑣 results for the Morocco carrot season. Similar measurements

were taken in this season as in the previous Morocco potato season, except there were two

soil moisture sensors, one in section one and one in section six. Additionally, the lysimeters

measured the bulk 𝜃𝑣 at a shallower depth, from 0–20 cm. The shallower depth made

the lysimeters smaller which facilitated the measurement process and allowed data to be

collected more frequently. The controller-calculated 𝐷𝑟 was not re-calibrated at all during

this season; this more closely represents the desired design of the POWEIr controller to

have minimal calibration. The POWEIr controller 𝜃𝑣 calculations were on average 2% (SD
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(a) Morocco carrot, section 1 (b) Morocco carrot, section 6

Figure 4.6: Volumetric soil water content (𝜃𝑣) comparison for the Morocco farm during the
carrot season for sections 1 and 6. Estimates from the POWEIr controller (blue dashed line)
compared to the full range and average soil sensor readings (purple area and line) and in-field
bulk measurements (green dot). The legend summarizes the depth(s) that each measurement
was taken at. All the 𝜃𝑣 measurements for section 1 (a) and section 6 (b) were taken over the
same depths, 0–60 cm. Lysimeters were used to take the bulk 𝜃𝑣 measurements up to 20 cm.
The grey boxes show times that the controller wasn’t running during crop germination or
harvest.
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= 5%) and 2% (SD = 4%) higher than the lysimeter bulk measurements for sections one

and six, respectively. This small difference indicates good agreement between the POWEIr

controller calculations and lysimeter measurements, although it should be noted that they

were taken at different depths. The 𝜃𝑣 for depths up to 20 cm may differ compared to depths

up to 62 cm due to climate conditions and soil stratification. Yet, the soil moisture sensor

reported 8% (SD = 4%) and 6% (SD = 4%) lower 𝜃𝑣 averaged over all depths compared

to the bulk soil measurements for sections one and six, respectively. The closely matching

data for the 𝜃𝑣 between the 60 cm soil sensors and the 20 cm lysimeters indicate that the

shallower measurements may have been close to the 𝜃𝑣 at higher depths. Therefore the

POWEIr controller calculations may have been accurate even to higher depths.

4.4.2 POWEIr Controller Energy, Water, and Crop Yield

The cumulative irrigation volume applied and the pump energy consumed at the research

farms equipped with the POWEIr controller were compared to the corresponding resources

used at the reference fields over each season. The cumulative irrigation water applied was

calculated by summing the measured water from the flow meter over each season. The

cumulative pump energy used was calculated by summing the measured pump power from

either the inverter, VFD, or grid meter on each farm over each season. Also, the crops

were harvested and their yields were weighed for both the farms with the controller and the

reference farms.

Morocco Potato Season – January to June 2023

Figure 4.7 shows the cumulative volume of irrigation water applied to and pump energy used

by both the research farm with the POWEIr controller and the reference farmer’s field during

the Morocco potato season from January to June 2023. The controller pump power was

measured from the output of the inverter, going into the VFD, and the reference pump power
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Figure 4.7: Cumulative irrigation volume and pump energy comparison between the farm
with the POWEIr controller and the reference farm for the Morocco potato season. The
POWEIr controller optimal irrigation scheduling did not start until March 28, 2023. Prior
to this (grey box), the farm with the POWEIr controller was irrigated based on the soil
water balance, similar to the theory is Section 4.2.6. The POWEIr controller also did not
run during the potato harvest (grey box).
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was measured from the output of the VFD. This means the pump power measurement for the

farm with the POWEIr controller included the VFD inefficiency while the reference pump

power did not include the VFD inefficiency. The reference farm’s pump power measurement

stopped recording on May 3, 2023, so results for the pump energy were compared on this

date. The results show the POWEIr controller saved 38% in total pumping energy compared

to the reference farm. Additionally, the POWEIr controller saved 44% in water compared

to the reference of a local farmer irrigating according to their typical practice.

The controller and reference potato yields were 23.7 tonne/ha and 26.2 tonne/ha, respec-

tively, with a 9% difference. This difference could be attributed to the respective quality of

the water used on each farm. Electrical conductivity (EC) of the water on the research farm

was measured to be 2.4 mS/m during this season, which represents a level of salts in the

water that could have contributed to up to a 25% reduction in potato yield [120, Chapter 2].

The EC of the water on the reference field was measured to be 1.4 mS/m have contributed

to minimal reduction in potato yield [120, Chapter 2]. Therefore the 9% reduction in yield

on the farm with the controller could be accounted for due to the lower water quality. The

WUE was 15.1 kg/m3 for the farm with the controller and 9.3 kg/m3 for the reference farm.

This means the controller saved a considerable amount of pumping energy and irrigation

water compared to measured typical SPDI practice for similar crop yield and made a 62%

improvement to the WUE.

Jordan Okra and Grape Season – May to December 2023

Figure 4.8a shows the cumulative volume of irrigation water applied to and pump energy

used by both the research field with the POWEIr controller and the reference field which

was irrigated based on well-practiced farmer’s recommendations during the Jordan okra and

grape season from May to December 2023. The controller pump power was measured from

the output of the inverter and the reference pump power was measured from the output of

the grid meter. From May 28 to July 21, 2023, the crop coefficient for the okra was set 30%
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(a) Cumulative irrigation volume and pump energy for okra and grape

(b) Cumulative yield for okra

Figure 4.8: Cumulative irrigation volume, pump energy, and okra yield comparison between
the farm with the POWEIr controller and the reference field for the Jordan season. The
crop coefficients for the okra crop were set 30% too high and later adjusted on July 21st,
2023 (grey box). Harvesting of the okra began on July 18th, 2023, and continued until the
end of the season. The end of the okra season (grey box) could have happened anytime from
November 1 to December 15, 2023.
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higher than required; during this time the irrigation amounts and pumping energy between

the fields were similar. The controller assumed the okra and grape irrigation seasons ended

on November 15, 2023. Additionally, the rainy season started on November 15, 2023, after

which little irrigation was required. November 1 to December 15, 2023 was a window of time

when okra farmers in the region would end harvesting okra. The end of the okra season could

have happened at any point during this window depending on the farm. The results vary

depending on when it is assumed that the okra season ended. Therefore, instead of assuming

a single end-of-season date, results are presented for two end-of-season dates. The first date

is November 15, 2023, when the controller stopped calculating an irrigation schedule. The

second date is December 3, 2023, the last date that okra was harvested on both sides of the

farm. The results show that if the end of the okra season is assumed to be November 15,

2023, the controller saved 42% in energy and 40% in water compared to the reference field.

If the end of the season is assumed to be December 3, 2023, the controller’s energy saving

increased to 43% with no change in the water saving.

The grapes were young grape vines and did not produce any yield on both fields. Figure

4.8b shows the okra started producing yield on July 18, 2023 until December 3, 2023. The

field with the POWEIr controller and the reference field had okra yields on November 15,

2023 of 11.0 tonne/ha and 10.8 tonne/ha, respectively. At this assumed end of the season, the

okra yield for the controller field was 2% greater than the reference field’s yield. Assuming the

end of the okra season was December 3, 2023, the yields for the controller and reference fields

were 11.0 tonne/ha and 11.8 tonne/ha, respectively, or 7% less for the controller field. The

field with the controller stopped producing okra by November 17, 2023 whereas the reference

field produced an extra tonne of okra through December 3, 2023. The extension of the okra

season for the reference field could be because more irrigation was applied during the season.

Even though the reference field had a slightly higher okra yield its WUE ranged from 0.65 to

0.71 kg/m3 over the end of the okra season, whereas the WUE stayed at 1.11 kg/m3 for the

controller field. The 55–72% higher WUE means the POWEIr controller saved significantly
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Figure 4.9: Cumulative irrigation volume and pump energy comparison between the farm
with the POWEIr controller and the reference farm for the Morocco carrot season. Morocco
experienced an extreme heat wave during this season and additional irrigation was added to
the farm with the POWEIr controller by on-site researchers on August 12th, August 14th,
and August 19th, 2023. The controller did not determine irrigation amounts during carrot
germination or harvest (grey boxes).

in pumping energy and water compared to measured typical drip irrigation practice for

comparable okra yields.

Morocco Carrot Season – July to November 2023

Figure 4.9 shows the cumulative volume of irrigation water applied to and pump energy

used by both the research farm with the POWEIr controller and the reference farmer’s field

during the Morocco carrot season from July to November 2023. At the start of the carrot

harvest, on October 26, 2023, the controller had a 10% increase in energy and 25% decrease

in irrigation amounts compared to the reference of a farmer irrigating according to their

typical practice. The increase in energy is because of the difference in the operating flow
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rate, and the related difference in pump efficiency, for the farm with the POWEIr controller

and the reference farm. The pump at the controller farm was operated at lower flow rates

and had an average pump efficiency of 49% (SD = 8%) compared to the pump at the

reference farm, which had a pump efficiency of 57% (SD = 5%). Furthermore, the pump

power measurement on the reference farm comes from the output of the VFD and the pump

power measurement for the farm with the POWEIr controller comes from the input to the

VFD. This means VFD efficiency losses are included in the controller energy calculation,

but not in the reference energy calculation. Figures C.1 and C.2 in Appendix C show the

cumulative pump energy broken down into hydraulic pump output energy, calculated input

pump power, and measured input power to the pump as well as a histogram of the pump

efficiency for the farm with the controller and the reference farm.

The spikes in the POWEIr controller’s cumulative irrigation amounts shown in Figure

4.9 are due to additional irrigation applications. The crops were temperature stressed due

to extreme temperatures (over 50∘C) starting on August 11th; because of this additional

irrigation was applied on August 12th, August 14th, and August 19th, 2023. Also, on-

site researchers applied additional irrigation on October 9th and October 18th, 2023. The

POWEIr controller stopped calculating the daily irrigation schedules on October 26th, 2023,

after which on-site researchers irrigated the carrots to facilitate harvesting and keep the

carrots fresh to sell in the local market. The water savings increased to 29% by the end of

the carrot harvest but the controller stopped recording pump data on October 26th, 2023 so

no additional change in energy was recorded.

The reference and controller yields were 24.4 tonne/ha and 13.8 tonne/ha, respectively,

which was a 44% decrease in the controller yield. The deficit in yield on the controller farm

was due to a root-knot nematode infestation. At the end of the season, a soil sample was

taken which indicated a severe parasitic nematode infestation of 253 Meloidogyne species per

100 g of soil at the controller field. It has been shown that root-knot nematode infestations

can cause between 25–45% reduction in carrot yield, with a potential for total yield loss
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[121]–[125]. Additional yield reduction could have been caused by a difference in water

quality between the farm with the controller and the reference farm. EC of the water at the

controller field could have contributed to a 15% greater reduction in carrot yield compared

to the EC of the water at the reference field [120, Chapter 2]. Due to the decrease in yield,

the controller WUE was less than the reference WUE, which were 4.89 and 6.12 kg/m3,

respectively. Although a large loss in yield occurred on the controller field, a sample of the

best carrots from each farm showed that similar yields were possible. A sample of 50 carrots

per section was taken from each field and the best samples from the controller field and

reference farm both had weights of 0.2 kg. The similarities in the best carrot sample weight

indicate that without the pest and water quality issues, the total yield of the field with the

controller and the reference field could have been similar. If the yield of the field with the

controller was the same as the reference farm’s yield, the controller field’s WUE would have

been 8.68 kg/m3.

Water, Energy, and Yield Comparison in Multiple Contexts

The POWEIr controller exhibited significant savings of 29–44% in total irrigation water use

and up to 43% in pumping energy compared to typical drip irrigation practices across diverse

settings. Notably, consistent savings were observed across multiple contexts, crop types, soil

textures, and levels of automation. The incorporation of an irrigation amount feedback loop

enabled the controller to achieve water savings when additional irrigation was applied due

to user error, extreme temperatures, or to address observed crop stress.

Water savings were achieved even with manual irrigation in Jordan where the irrigation

schedule was not perfectly executed. In fact, Van de Zande [23] showed that the schedule was

only followed correctly 49% of the time in Jordan, mostly due to users not being on-site on

weekends and holidays. This means that the users in Jordan did not open and close the valves

according to the POWEIr controller’s schedule over 50% of the time. Yet, the users reported

when they opened and closed the valves with 97% accuracy. This indicates that there was a
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large amount of user scheduling error in Jordan, but also users reliably reported the irrigation

delivered that was fed back into the POWEIr controller. This accurate data feedback allowed

the controller to update its calculations and deliver precise irrigation amounts to the crops

over the season. Even with the large user scheduling error the POWEIr controller was able

to save water and energy compared to typical practice without compromising crop yield.

The POWEIr controller exhibited comparable water and energy savings in Morocco,

where automated valves eliminated user scheduling errors. Furthermore, the controller

demonstrated robustness in the face of user scheduling errors in Jordan, reinforcing its relia-

bility and versatility across different irrigation management scenarios. The controller’s con-

sistent results over various contexts and users with different levels of expertise underscore

its adaptability and scalability, proving it to be effective with a potential for widespread

adoption.

4.5 Discussion

This chapter met its aims of implementing the POWEIr controller in multiple contexts,

validating each level, and assessing overall performance in terms of water usage, energy con-

sumption, and crop yields. The findings demonstrate that the POWEIr controller enhances

the benefits of smart and sustainable agriculture technology in resource-constrained settings.

With further enhancements, the POWEIr controller holds the potential to broaden access

to water- and energy-efficient irrigation technology.

4.5.1 Design for Multiple Contexts

The first aim of the chapter was to describe modifications, customization, and implemen-

tation strategies for the POWEIr controller in multiple contexts. Section 4.3.1 identifies

necessary design changes for different contexts, which were then implemented on SPDI sys-

tems in Morocco and Jordan. Each design was tailored to meet the specific requirements
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of the country; for instance, manual valves were used in Jordan, while Morocco utilized

automatic valves. Users in Jordan were shown to follow the irrigation schedule correctly

only 49% of the time, yet they had 97% accuracy in reporting irrigation delivered [23]. The

controller’s design to feedback the reported irrigation delivered allowed it to be robust to the

high amount of user scheduling error. The POWEIr controller was designed to be adaptable

to these various contexts to enable widespread adoption in LMICs. The POWEIr controller

provided benefits in terms of water and energy savings for comparable yields in all of these

contexts. This means that the POWEIr controller is not only adaptable, but its performance

is also repeatable across variations in design and context.

4.5.2 POWEIr Controller’s Level 3 Validation

The second aim of the chapter was to validate the POWEIr controller in relevant envi-

ronments, showing that Level 3 performed as expected. The study verified the Level 3

hypotheses that the solar power prediction error and soil moisture model accuracy would

not adversely affect the crops. The mean daily solar energy prediction error was between

31–32%, which did not impact irrigation delivery due to sufficient battery capacity. The

soil moisture model was shown to be effective as the controller’s 𝜃𝑣 calculations had similar

accuracy compared to soil moisture sensors when both were compared to bulk in-field mea-

surements. The controller calculated 𝜃𝑣 had much better accuracy than the soil moisture

sensors when the sensors were improperly placed. This indicates that the POWEIr con-

troller’s method of calculating soil moisture without sensors could be as good or better than

placing a few soil moisture sensors in a field. Adjustments to important crop parameters

during experiments, based on field observations, contributed to the POWEIr controller’s 𝜃𝑣

accuracy. Additionally, in-field researchers could apply extra irrigation if crop stress was

detected. Future work should take into consideration that this level of adjustment may not

be intuitive to all farmers who would use the POWEIr controller. Additionally, the study

validated the main hypothesis that the POWEIr controller would reduce water and energy
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use for comparable yields to typical drip irrigation practice. The subsequent subsection

expands on the validation of this performance metric.

4.5.3 POWEIr Controller Performance

The third aim quantified controller performance in terms of water and energy savings with-

out compromising crop yields compared to typical drip irrigation. The POWEIr controller

demonstrated savings of 29–44% in total irrigation water volume and up to 43% in pump

energy use while maintaining comparable yields. This highlights the controller’s potential

to enable farmers to achieve adequate crop yields with significantly fewer resources across

different crops, climates, and soil textures.

4.5.4 Limitations and Future Work

The experiment presented in this chapter used hardware and techniques that are potentially

inaccessible in LMICs. Higher-cost, research-quality controller hardware, including the power

and battery monitoring and control, inverter, and MPPT, was implemented to allow for

the collection of validation data. Future work will aim to reduce the cost of the POWEIr

controller hardware and confirm that similar results to those presented herein can be achieved

with affordable hardware. Additionally, the crop parameter inputs used in the experiment

were tuned based on local irrigation engineers’ and agronomists’ advice. Farmers will not

have access to expert advice so future iterations of the POWEIr controller must not rely on

on-site crop parameter tuning by agronomists. Future work could explore the incorporation

of crop image-based feedback with the phone application for easier parameter tuning.

Additional future design considerations were noted during the experiment. Irrigation

amounts and fertilizer requirements are closely tied, but fertilizer calculations have not yet

been included in the POWEIr controller. Future work should look into the best way to

incorporate fertilizer scheduling with the POWEIr controller. This study tested the POWEIr

132



controller in the MENA region. It has been shown that a tool such as the POWEIr controller

could be beneficial not only in MENA but also in East Africa [22]. Future work should explore

the implementation of the POWEIr controller in East Africa and if the POWEIr controller

would be valuable in any additional markets.

4.5.5 Impact of Results

This chapter demonstrates that the POWEIr controller, with its physics-based models, min-

imal sensor reliance, and machine learning algorithms, can accurately calculate crop water

needs and manage variable energy without compromising crop yields. This presents a promis-

ing option for resource-constrained farmers who often over-irrigate due to risk aversion. The

POWEIr controller is an affordable and user-friendly solution, increasing accessibility for

cost-constrained farmers in the realm of sustainable irrigation. Implementing these findings

in addition to progressing the POWEIr controller with planned future work can contribute

to making precise irrigation technology even more accessible and beneficial for farmers facing

financial constraints.

4.6 Conclusions

To meet the second SDG by 2030, particularly in LMICs, it is imperative to enhance crop

production sustainably. Existing sustainable agriculture technologies are cost-prohibitive to

farmers in LMICs. Even when these technologies are adopted, they can still be operated un-

sustainably – unknowingly on the part of the user – to mitigate perceived risks to crop yield.

The insights presented in this chapter propose that the POWEIr controller holds promise in

assisting farmers in LMICs to curtail their water and energy consumption, fostering sustain-

able irrigation practices without compromising crop health. The POWEIr controller aims

to bolster sustainable operation and increase the adoption of SPDI and precision agriculture

technologies in LMICs.
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This chapter describes an experimental validation of the POWEIr controller’s perfor-

mance and unveils this controller’s potential for water and energy conservation as well as

its impact on crop yield on farms in Jordan and Morocco. The results underscore that the

POWEIr controller’s energy predictions and soil moisture estimates – derived from physics-

based models, machine learning algorithms, and measurements by a cost-effective weather

station – maintained a level of accuracy that did not adversely affect crop yields while re-

ducing water and energy use. The implementations of the POWEIr controller demonstrated

reductions in water usage by up to 44% and up to 43% decline in pump energy consumption

compared to conventional drip irrigation practices on similar farms.

The POWEIr controller was validated on small-scale farms over four crop seasons in var-

ious LMIC contexts, encompassing diverse crop and soil types, to ensure its performance is

generalizable and repeatable. This validation, coupled with ongoing efforts to test econom-

ical iterations of the controller, is poised to establish the POWEIr controller’s consistent

performance. Disseminating news of the controller’s benefits holds the potential to catalyze

increased adoption among farmers in LMICs. By enhancing the accessibility of this econom-

ical, sustainable, and precise irrigation technology, the POWEIr controller could empower

farmers in LMICs to grow more food while utilizing fewer water and energy resources. Ulti-

mately, the POWEIr controller’s aims align with meeting the second SDG, to end hunger.
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Chapter 5

Conclusions

5.1 Concluding Insights and Impact of the Current Re-
search

This thesis introduces and evaluates the Predictive Optimal Water and Energy Irrigation

(POWEIr) controller, a cost-effective and precise irrigation controller that effectively lowers

the barrier to sustainable water and energy technology. The key research contributions can

be summarized as follows:

• In Section 2.2, a comprehensive cost analysis revealed a potential 18–74% reduction

in the lifetime cost of SPDI pump and power systems. This resulted in irrigation

delivery improvements ranging from 31–66%, surpassing the performance of existing

commercial sizing tools through innovative modeling and operational adjustments.

• Sections 2.3 and 2.4 outlined the theoretical foundation of the POWEIr controller

and presented an initial prototype. The prototype demonstrated a 46% increase in

solar irrigation reliability compared to simulated typical operations. Furthermore, it

delivered the required irrigation while using six times less battery capacity.

• Chapter 3 explored the sensitivity of POWEIr’s optimized irrigation schedules to errors
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in agronomy inputs and weather data. The findings suggested an 83% reduction in

weather sensor costs with negligible simulated effects on multiple crop yields, under-

scoring the system’s adaptability and cost efficiency.

• Chapter 4 validated the POWEIr controller’s performance in real-world settings in

Jordan and Morocco. The results showcased notable resource reductions—up to 43%

in pumping energy and 44% in water usage—for comparable crop yields when compared

to local farmer practices.

Publications based on these contributions are in preparation [25], [75], [108]. The POWEIr

controller emerges as a promising solution, not only in terms of economic viability but also

in delivering enhanced efficiency and sustainability in irrigation practices.

5.2 Recommended Future Work

The next steps for the POWEIr controller are instrumental in paving the path for commer-

cialization. In order for the POWEIr controller to be a commercial product some design

changes are necessary, informed by lessons learned from prototypes and implementation on

real farms. Specifically:

1. The experimental prototype of the POWEIr controller used high-cost hardware and

relied on some expert advice that would be inaccessible to more farmers in LMICs.

Future iterations of the POWEIr controller should use lower-cost controller hardware,

including the power and battery monitoring and control, inverter, and MPPT. Future

work should aim to reduce the cost of the POWEIr controller hardware and confirm

that similar results to those presented herein can be achieved.

2. The current POWEIr controller objective for optimizing irrigation schedules does not

include farm labor costs. Future versions of the POWEIr controller should include
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farm labor costs to minimize the total time that the user spends each day enacting the

irrigation schedules.

3. Irrigation scheduling and application of fertilizers are closely linked. Future versions of

the POWEIr controller should include fertilizer recommendations as part of the irriga-

tion scheduling, meaning a fertilizer model should be incorporated into the POWEIr

controller. This could also help inexperienced farmers and help reduce fertilizer pollu-

tion due to mismanagement.

4. Currently the POWEIr controller’s reference evapotranspiration is calculated on a daily

basis, based on daily average, minimum, and maximum weather conditions. A single

crop coefficient is used for calculating crop evapotranspiration. This is then used in

the soil water balance, which is also calculated daily. There are models to calculate

reference evapotranspiration on a sub-daily basis. Also, the use of a dual crop co-

efficient is stated to be more accurate than the single crop coefficient, especially for

micro-irrigation. It could be worthwhile to explore using the hourly reference evap-

otranspiration calculations and dual crop coefficient to explore the trade-off between

the added input complexity and the benefit to model accuracy.

5. Methods to reduce the prediction errors should be considered. This could mean incor-

porating other machine learning algorithms to make the predictions. Additionally, for

versions of the controller that use automated valves, it could be possible to do profile

matching in real-time instead of sending a schedule in advance.

6. This work showed that local calibration of the crop coefficient could be needed for some

farms using the POWEIr controller. Future work should explore creating an easy-to-

use tool that will allow farmers to do these calibrations themselves. One direction that

could be explored is tracking crop growth and any crop stress with image processing

techniques. Then farmers could take images of their crops periodically and the agron-

omy inputs, including the crop coefficient, could be updated based on the information

137



in these images.

7. The POWEIr controller has been designed for use in farming practices in arid, LMICs,

but affordable, precise irrigation could be used in other markets. For example, there

could be a need for the POWEIr controller in smart building water and energy man-

agement, landscaping, and home gardens. The use of the POWEIr controller in these

additional markets should be explored.
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Appendix A

Chapter 2 Supplemental Information

A.1 SDrOP Cost Data

Table A.1 shows the SDrOP model’s cost inputs that were used in the cost analysis in

Section 2.2. These numbers were obtained while working with the local research partners

and contractors.
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Table A.1: SDrOP Local Economic Parameters.

Parameter Definition Unit Value

𝑘𝑐𝑝 Crop price coefficient - 0.605

𝑘𝑖 Installation coefficient - 0.11

𝐼𝑅 Interest rate - 0.035 [126]

𝐹𝑅 Inflation rate - 0.02 [126]

𝑘𝑚 Maintenance coefficient - 0.009

𝑈𝐶𝑝𝑢𝑚𝑝 Pump unit cost
[︀USD

kW

]︀
450

𝑈𝐶𝑝𝑣 Panel unit cost
[︁

USD
m2

]︁
152

𝑈𝐶𝑏𝑎𝑡𝑡 Battery unit cost
[︀USD

kWh

]︀
350

𝑈𝐶𝑡𝑎𝑛𝑘 Tank unit cost
[︁

USD
m3

]︁
170

𝑚𝑖𝑛𝑣 Inverter Linear Coefficient
[︀ $

W

]︀
0.28 [51]

𝑏𝑖𝑛𝑣 Inverter Linear Constant [$] 0 [51]

𝑚𝑀𝑃𝑃𝑇 MPPT Linear Coefficient
[︀ $

W

]︀
0.0632 [52]

𝑏𝑀𝑃𝑃𝑇 MPPT Linear Constant [$] 10 [52]

𝑚𝑉 𝐹𝐷 VFD Linear Coefficient
[︀ $

W

]︀
43.1 [53]

𝑏𝑉 𝐹𝐷 VFD Linear Constant [$] 142 [53]
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A.2 Solar-Powered Drip Irrigation Optimal Performance
Model (SDrOP) Operation Simulation

This section is copied from Grant, Sheline, Sokol, et al. [36] to provide context on how the

SDrOP model’s operation simulation works.

The operation simulation is a logic loop that calculates where energy and water will flow

for each time step of the irrigation season. Every time step is simulated with historical

weather. This allows for the performance of a design to be evaluated in terms of how much

of the crop water demand it can deliver. There are four different energy paths that can

be taken to deliver water to the crops and two paths to store energy. These six paths are

illustrated in Fig. A.1a.

Within the logic loop the irrigation demand, or the amount of water the irrigation system

must deliver to meet the crop water demand, is calculated at the start of each day in 𝑚3 by

rearranging the soil water balance defined in the FAO Irrigation and Drainage Paper No. 56

[63] as

𝐼𝑑𝑒𝑚,𝑛 = 𝑓𝑤 𝐴𝑓𝑖𝑒𝑙𝑑(𝐷𝑟,𝑛−1 − 𝑃𝑟𝑛 +𝑅𝑂𝑛 −𝑅𝐴𝑊𝑛 + 𝐸𝑇𝑐,𝑛)/1000. (A.1)

Here, the soil water level is set to the minimum needed to not stress the crop (𝐷𝑟,𝑛 = 𝑅𝐴𝑊𝑛),

𝑛 is the day of the irrigation season, 𝐷𝑟 is the water lost to the root zone of the crop, or the

root zone depletion [mm], 𝑃𝑟 is precipitation [mm], 𝑅𝑂 is runoff [mm], 𝑓𝑤 is the soil wetted

fraction (which is set to 0.3 for drip irrigation [63]), and 𝐴𝑓𝑖𝑒𝑙𝑑 is the field area [m2]. 𝑅𝐴𝑊

is the readily available water [mm], or the amount of water in the root zone that the plant

can uptake most efficiently. This soil water balance assumes a deep groundwater table, so

there is no capillary rise, it neglects deep percolation, and 𝐼𝑑𝑒𝑚,𝑛 is calculated such that the

𝐷𝑟,𝑛 is at 𝑅𝐴𝑊𝑛 and 𝐷𝑟,𝑛−1 is at the 𝐷𝑟,𝑛 of the previous day. 𝑅𝐴𝑊𝑛 is defined as

𝑅𝐴𝑊𝑛 = 𝑑𝑛 𝑇𝐴𝑊, (A.2)
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(a) Energy and water flow diagram

(b) Power and state variables for two days of operation

Figure A.1: An illustration of the logic flow loop and representation of the simulated system
operation. In a the energy and water flow diagram is shown. There are six flow paths of
energy connecting the photovoltaic (PV) system (power, 𝑃𝑃𝑉 ), controller (power, 𝑃𝑎𝑣𝑎𝑖𝑙),
battery, pump (power, 𝑃𝑝𝑢𝑚𝑝), water storage tank, and field. The arrowed connections
corresponding to each of the energy paths are designated by numbers 1 - 6 (e.g., the first
path is made up of all the connections labeled with a 1 and path 1 is bolded as an example).
As described in the boxed conditional statement, flow paths are checked in numbered order
at each time step and activated based on the weather-dependent available power (𝑃𝑎𝑣𝑎𝑖𝑙)
and the state of the battery, tank, and irrigation of the field, designated as the state of
charge (SOC), state of fill (SOF), state of irrigation (SOI), and irrigation demand (𝐼𝑑𝑒𝑚).
In b the power values and normalized SOC, SOF, and SOI for two days of operation on
a representative small field illustrate the conditions under which each flow path might be
activated.
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where 𝑇𝐴𝑊 is the total available water that the crop can extract from the soil [mm], a

constant that depends on the depth of the crop roots and soil properties defined in the Case

Definition. The depletion fraction on day 𝑛, 𝑑𝑛, is calculated as

𝑑𝑛 = 𝑑𝑐𝑜𝑛𝑠𝑡 + 0.04 (5− 𝐸𝑇𝑐,𝑛), (A.3)

where 𝑑𝑐𝑜𝑛𝑠𝑡 is the constant crop dependant depletion fraction assuming 𝐸𝑇𝑐 = 5𝑚𝑚/𝑑𝑎𝑦.

The available power is calculated throughout the day as

𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 = 𝑃𝑃𝑉,𝑖 𝜂𝑀𝑃𝑃𝑇 𝜂𝑐𝑜𝑛𝑣 𝐴𝑃𝑉 , (A.4)

where 𝑖 is the sub-daily time interval indices (dependent on the resolution of the input

weather data), 𝜂𝑀𝑃𝑃𝑇 = 98% and 𝜂𝑐𝑜𝑛𝑣 = 95% are the assumed efficiencies for the MPPT

unit and the electrical converter, and 𝐴𝑃𝑉 is the solar panel area for the system design [𝑚2].

𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 can go towards charging the battery or powering the pump (𝑃𝑝𝑢𝑚𝑝), and water

from the pump can go towards filling the tank or irrigating the crops on the field. State

vectors, namely the state of charge (𝑆𝑂𝐶) of the battery [𝑊ℎ], state of fill (𝑆𝑂𝐹 ) of the

tank [𝑚3], and state of irrigation (𝑆𝑂𝐼) of the field [𝑚3], are calculated in the operation

logic loop to keep track of where energy and water are used or stored at each time interval.

Before the irrigation demand is met, the time remaining to irrigate [s], 𝑡𝑟𝑖, is calculated

as

𝑡𝑟𝑖,𝑖 = 𝑚𝑖𝑛

(︂
𝐼𝑑𝑒𝑚,𝑛 − 𝑆𝑂𝐼𝑖−1

𝑄𝑠𝑦𝑠

,∆𝑡

)︂
, (A.5)

where ∆𝑡 is the time interval. The calculation of 𝑡𝑟𝑖, and other time variables, allows for

other paths to be used during the same time step once a state vector is filled. Note that

𝑆𝑂𝐼 is initialized at zero and is set to zero at the start of each day.

The conditions required to select each flow path are checked in order, following a fixed

operation priority as depicted in the boxed conditional statement in Fig. A.1a. If the
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irrigation demand has not been met, the first check is if there is enough 𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 to deliver

water through path 1 . Path 1 fills the tank and irrigates at the same time. During this

path, the time to fill the tank, 𝑡𝑡𝑓 [s], is calculated as

𝑡𝑡𝑓,𝑖 = min

(︂
𝐶𝑡𝑎𝑛𝑘 − 𝑆𝑂𝐹𝑖−1

𝑄𝑡𝑎𝑛𝑘,𝑖 −𝑄𝑠𝑦𝑠

, 𝑡𝑟𝑖,𝑖

)︂
, (A.6)

where 𝐶𝑡𝑎𝑛𝑘 is the tank capacity [m3] and 𝑄𝑡𝑎𝑛𝑘 is the flow rate from the pump going into

the tank [m3/s] (details of the tank flow rate calculation are provided in the SI section 3).

The state equations for path 1 are

𝑆𝑂𝐼𝑖 = 𝑆𝑂𝐼𝑖−1 +𝑄𝑠𝑦𝑠 𝑡𝑟𝑖,𝑖, (A.7)

𝑆𝑂𝐹𝑖 = 𝑆𝑂𝐹𝑖−1 + (𝑄𝑡𝑎𝑛𝑘,𝑖 −𝑄𝑠𝑦𝑠) 𝑡𝑡𝑓,𝑖, (A.8)

and

𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖−1 + (𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 − 𝑃𝑝𝑢𝑚𝑝,𝑖) 𝑡𝑡𝑓,𝑖. (A.9)

Figure A.1b illustrates the relative state of 𝑃𝑎𝑣𝑎𝑖𝑙,𝑖, 𝑆𝑂𝐶, 𝑆𝑂𝐹 , and 𝑆𝑂𝐼 corresponding

to each of the flow paths over a period of two days. For example, path 1 is selected mid-way

through day one when there is sufficient 𝑃𝑎𝑣𝑎𝑖𝑙,𝑖, 𝑆𝑂𝐹 < 1, and 𝑆𝑂𝐼 < 1.

If there is not enough 𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 to complete path 1 , the next check is if there is enough

𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 to irrigate the field directly through path 2 . The state equations for path 2 are

Eq.A.7, as well as

𝑆𝑂𝐹𝑖 = 𝑆𝑂𝐹𝑡−1 (A.10)

and

𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖−1 + (𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 − 𝑃𝑝𝑢𝑚𝑝) 𝑡𝑟𝑖,𝑖. (A.11)

If there is not enough 𝑃𝑎𝑣𝑎𝑖𝑙 for path 1 or 2 , there is not enough power from the panels
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to directly deliver water to the field. If the irrigation demand is still not met, the tank and

the battery storage are checked. The time to drain the tank, 𝑡𝑡𝑑𝑡 [s], and the time to drain

battery, 𝑡𝑡𝑑𝑏 [s], are calculated as

𝑡𝑡𝑑𝑡,𝑖 = 𝑚𝑖𝑛

(︂
0− 𝑆𝑂𝐹𝑖−1

𝑄𝑡𝑎𝑛𝑘,𝑖 −𝑄𝑠𝑦𝑠

, 𝑡𝑟𝑖,𝑖

)︂
(A.12)

and

𝑡𝑡𝑑𝑏,𝑖 = 𝑚𝑖𝑛

(︂
0.5𝐶𝑏𝑎𝑡𝑡 − 𝑆𝑂𝐶𝑖−1

𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 − 𝑃𝑝𝑢𝑚𝑝,𝑖/𝜂𝑏𝑎𝑡𝑡
, 𝑡𝑟𝑖,𝑖

)︂
, (A.13)

where 𝐶𝑏𝑎𝑡𝑡 is the battery capacity [J], 𝜂𝑏𝑎𝑡𝑡 = 85% is the assumed battery efficiency, and

the maximum depth of discharge for the battery is set to 50%. If the tank or battery are

already at their minimum capacities then 𝑡𝑡𝑑𝑡 and 𝑡𝑡𝑑𝑏 are zero and pathways 3 and 4 are

not used.

If there is enough water stored in the tank, path 3 is used with the state equations

𝑆𝑂𝐼𝑖 = 𝑆𝑂𝐼𝑖−1 +𝑄𝑠𝑦𝑠 𝑡𝑡𝑑𝑡,𝑖, (A.14)

𝑆𝑂𝐹𝑖 = 𝑆𝑂𝐹𝑖−1 −𝑄𝑠𝑦𝑠 𝑡𝑡𝑑𝑡,𝑖, (A.15)

and

𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖−1 + 𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 𝑡𝑡𝑑𝑡,𝑖. (A.16)

If there is enough energy stored in the battery, path 4 is used with state equations

including Eq. A.10, as well as

𝑆𝑂𝐼𝑖 = 𝑆𝑂𝐼𝑖−1 +𝑄𝑠𝑦𝑠 𝑡𝑡𝑑𝑏 (A.17)

and

𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖−1 + (𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 − 𝑃𝑝𝑢𝑚𝑝/𝜂𝑏𝑎𝑡𝑡) 𝑡𝑡𝑑𝑏. (A.18)

If there is not enough power or energy storage to run the other paths, or the irrigation
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demand for the day has already been met, the 𝑆𝑂𝐼𝑖 is set to 𝑆𝑂𝐼𝑖−1. The loop checks if the

tank and battery are full, and if not, it tries to fill them using paths 5 and 6 , respectively.

For path 5 , the 𝑡𝑡𝑓 is updated as

𝑡𝑡𝑓 = 𝑚𝑖𝑛

(︂
𝐶𝑡𝑎𝑛𝑘 − 𝑆𝑂𝐹𝑖−1

𝑄𝑡𝑎𝑛𝑘,𝑖

,∆𝑡

)︂
. (A.19)

The state equations to fill the tank for path 5 are

𝑆𝑂𝐹𝑖 = 𝑆𝑂𝐹𝑖−1 +𝑄𝑡𝑎𝑛𝑘,𝑖 𝑡𝑡𝑓 (A.20)

and

𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖−1 + (𝑃𝑎𝑣𝑎𝑖𝑙,𝑖 − 𝑃𝑡𝑎𝑛𝑘,𝑖) 𝑡𝑡𝑓 . (A.21)

The system uses any remaining power to charge the battery through path 6 . The state

equations are Eq. A.10 and

𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑖−1 + 𝑃𝑎𝑣𝑎𝑖𝑙,𝑖∆𝑡. (A.22)

For all the paths, any extra power is used to charge the battery until the battery is fully

charged. If there is any extra power after path 6 and the battery is fully charged, the power

is unused.

The operation is defined such that any energy storage is drained to irrigate at the start

of each day and later filled when there is enough solar energy available. For example, in Fig.

A.1b at the start of both days the irrigation demand has not been met but there is no solar

power available yet, so paths 3 and 4 are used to irrigate, draining the energy storage.

Towards the middle of each day, once there is enough 𝑃𝑎𝑣𝑎𝑖𝑙, the simulation uses paths 1

and 2 to irrigate and fill the energy storage if the irrigation demand has not yet been met

(day one) or it uses paths 5 and 6 to fill the energy storage if the irrigation demand has

already been met (day two).
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At the end of each day, the daily amount of irrigation that has been delivered [m3] by

the system, 𝐼𝑑𝑒𝑙, is determined as

𝐼𝑑𝑒𝑙,𝑛 = 𝑆𝑂𝐼𝑖,𝑒𝑛𝑑, (A.23)

where 𝑖, 𝑒𝑛𝑑 is the last time interval of the day. The adjusted crop evapotranspiration, 𝐸𝑇𝑎,

in mm and 𝐷𝑟 are calculated at the end of the day as

𝐸𝑇𝑎,𝑛 = 𝐾𝑠,𝑛 𝐸𝑇𝑐,𝑛 (A.24)

and

𝐷𝑟,𝑛 = 𝐷𝑟,𝑛−1 − 𝑃𝑟𝑛 +𝑅𝑂𝑛 − 𝐼𝑑𝑒𝑙,𝑛 + 𝐸𝑇𝑎,𝑛, (A.25)

where 𝐷𝑟 is constrained such that 0 ≤ 𝐷𝑟,𝑛 ≤ 𝑇𝐴𝑊 and 𝐾𝑠 is the water stress coefficient

which accounts for the water stress felt by the crop. If 𝐷𝑟 is less than or equal to 𝑅𝐴𝑊 ,

then 𝐾𝑠 = 1. If the 𝐷𝑟 is greater than 𝑅𝐴𝑊 , then 𝐾𝑠 is calculated as

𝐾𝑠,𝑛 =
𝑇𝐴𝑊 −𝐷𝑟,𝑛

(1− 𝑑𝑛)𝑇𝐴𝑊
. (A.26)

The operation simulation defines the relationship between the crop irrigation demand and

the irrigation that can be delivered by the specified system design. The system performance

affects crop water stress through 𝐸𝑇𝑎, and in turn the crop growth and yield, as well as the

system reliability.
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A.3 Additional Experimental Prototype Results

Figures A.2 to A.6 show the power profiles for the five test days not shown in Section

2.4.2. The figures show the state of charge (SOC) of the battery (blue) as well as the power

used by other system components: solar (orange), pump (grey), battery charge (green),

battery discharge (red). The figure also shows the Level 3 (L3) predictions (solid), Level

2 (L2) optimal points (asterisks), measured data from the POWEIr controller (lines), and

single section operation (SSO) reference data (dashed line). The SSO reference data was

simulated to represent how a farm with PVDI but without the POWEIr controller would

have traditionally been operated, irrigating a single section at a time.

Figure A.2: The power profiles for October 1, 2021.
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Figure A.3: The power profiles for October 6, 2021.

Figure A.4: The power profiles for October 7, 2021.
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Figure A.5: The power profiles for October 13, 2021.

Figure A.6: The power profiles for October 19, 2021.
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Appendix B

Chapter 3 Supplemental Information

B.1 Kenya and Morocco Soil Texture

The soil texture for Kenya and Morocco was determined using Python and ArcGIS. First,

raster maps were created for Kenya and Morocco of the percentage of sand, silt, and clay in

the subsoil (30 to 100 cm depth) for land area that was at least 50% cropland [127]. Then,

code was developed to translate the percent sand, silt, and clay rasters to soil textures based

on the commonly used USDA soil texture classification triangle equations [128]. Histograms

of the soil texture were plotted for Kenya, Figure B.1, and Morocco, Figure B.2.
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Figure B.1: Kenya soil texture histogram.
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Figure B.2: Morocco soil texture histogram.
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B.2 Measured Weather Data and Predictions

The measured and predicted weather parameters used in the weather prediction model are

shown in Figures B.3 to B.5. The daily parameters are the average, minimum, and maximum

air temperatures, average wind speed, average, minimum, and maximum relative humidity,

total rain, total solar radiation, number of sunlight hours, and total reference evapotranspi-

ration. The ‘Measured’ parameters were calculated using weather data from the high-cost

weather station (HCWS) and low-cost weather station (LCWS). The ‘Predicted’ parameters

came from the machine learning models trained using the HCWS or LCWS data. The nor-

malized root mean square error (NRMSE) for all of the weather parameters are shown in

Figure B.6.
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(a) Average Air Temperature

(b) Minimum Air Temperature

(c) Maximum Air Temperature

(d) Average Wind Speed

Figure B.3: Measured and predicted weather parameters used in the daily weather prediction
model.
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(a) Average Relative Humidity

(b) Minimum Relative Humidity

(c) Maximum Relative Humidity

(d) Total Rain

Figure B.4: Measured and predicted weather parameters used in the daily weather prediction
model.
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(a) Total Solar Radiation

(b) Total Sunlight Hours

(c) Total Reference Evapotranspiration

Figure B.5: Measured and predicted weather parameters used in the daily weather prediction
model.
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Figure B.6: Normalized root mean square error (NRMSE) in measured and predicted weather
parameters.
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B.3 Histograms of Weather Error

Histograms of the RMSE for the daily reference evapotranspiration and rain and the hourly

solar power are shown in Figures B.7, B.8, and B.7, respectively. The RMSE histograms are

shown comparing the LCWS to the HCWS measurements (dark aqua), the LCWS predicted

to the LCWS measured (light aqua), and the HCWS predicted to the HCWS measured

(purple).

Figure B.7: Reference evapotranspiration error histogram.

159



Figure B.8: Rain error histogram.

Figure B.9: Solar power error histogram.
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B.4 Input Curves of Crop Parameter Sensitivity Study

The scaled input curves used to create Figure 3.6 are shown in Figure B.10. The scaled input

curves are based on the tomato crop default curves. Default curves for tomato, potato, and

maize that were used to create Figure 3.5 are also shown.
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Figure B.10: Input curves for testing sensitivity to irrigation and yield to crop parameters.
The black line shows the default (un-scaled) curve for tomato, potato, and maize. The scaled
curves (rainbow lines) are based on the tomato default.
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Appendix C

Chapter 4 Supplemental Information

C.1 Experimental Setup and Inputs

The experimental setup details are shown in Table C.1. The inputs to the POWEIr controller

used in the experiment are shown in Table C.2. The methods for how these values were

obtained are described in Section .
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Table C.1: Experimental Setup Details.

Irbid, Jordan Agadir, Morocco
Controller Reference Controller Reference

Valve
Operation

Manual Manual Automatic Manual

Irrigation
Schedule

POWEIr
optimization

Local farmer
rec.

POWEIr
optimization

Farmer
observation/
experience

Elec.
Input

Solar Grid Solar Solar

Farm
Type

Half of re-
search station

Half of re-
search station

Research sta-
tion

Medium-to-
small farm,
sell at local
market

Crops Okra
+ grape

Okra
+ grape

Potato;
carrot

Potato;
carrot

Time
Frame

May-Dec
2023

May-Dec
2023

Jan-June
2023;
July-Nov
2023

Jan-June
2023;
July-Nov
2023

Soil
Texture

Loam,
Sandy Clay

Loam,
Sandy Clay

Sandy Loam Sandy Loam

Field Size 0.5 ha 0.5 ha 0.6 ha 0.6 ha
Number
Sections

6 6 6 4
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C.2 Pump Energy and Efficiency

The cumulative pump energy broken down into hydraulic pump output energy, calculated

input pump power, and measured input power to the pump for the farm with the controller

and the reference farm are shown in Figure C.1 for the Morocco carrot season. Figure C.2

shows the pump efficiency at the farm with the controller and the reference farm for the

Morocco carrot season.

Figure C.1: Cumulative pumping energy breakdown comparison between the farm with the
POWEIr controller and the reference farm for the Morocco carrot season. The ‘Hydraulic
Pump’ energy was calculated from the flow and pressure at the pump. The ‘Pump Datasheet’
energy was calculated by dividing the ‘Hydraulic Pump’ by the pump efficiency, with pump
efficiency calculated from the measured flow rate according to the pump’s efficiency curve
reported by the manufacturer.
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Figure C.2: Histogram of the pump efficiency for the farm with the POWEIr controller
and reference farm for the Morocco carrot season. The pump efficiency was calculated at
all irrigation times from the measured flow rate according to the pump’s efficiency curve
reported by the manufacturer.

167



References

[1] UN, The Sustainable Development Goals Report 2023: Special Edition. United
Nations Department of Economic and Social Affairs, 2023.

[2] U. Khanal, C. Wilson, S. Rahman, B. L. Lee, and V.-N. Hoang, “Smallholder
farmers’ adaptation to climate change and its potential contribution to un’s
sustainable development goals of zero hunger and no poverty,” Journal of Cleaner
Production, vol. 281, p. 124 999, 2021.

[3] J. D. Sachs, G. Schmidt-Traub, M. Mazzucato, D. Messner, N. Nakicenovic, and
J. Rockström, “Six transformations to achieve the sustainable development goals,”
Nature sustainability, vol. 2, no. 9, pp. 805–814, 2019.

[4] W. Bank, Beyond Scarcity: Water Security in the Middle East and North Africa.
The World Bank, 2017.

[5] A. Flammini, X. Pan, F. N. Tubiello, S. Y. Qiu, L. Rocha Souza, R. Quadrelli,
S. Bracco, P. Benoit, and R. Sims, “Emissions of greenhouse gases from energy use
in agriculture, forestry and fisheries: 1970–2019,” Earth System Science Data,
vol. 14, no. 2, pp. 811–821, 2022.

[6] M. Crippa, E. Solazzo, D. Guizzardi, F. Monforti-Ferrario, F. N. Tubiello, and
A. Leip, “Food systems are responsible for a third of global anthropogenic ghg
emissions,” Nature Food, vol. 2, no. 3, pp. 198–209, 2021.

[7] B. Paris, F. Vandorou, A. T. Balafoutis, K. Vaiopoulos, G. Kyriakarakos,
D. Manolakos, and G. Papadakis, “Energy use in open-field agriculture in the eu: A
critical review recommending energy efficiency measures and renewable energy
sources adoption,” Renewable and Sustainable Energy Reviews, vol. 158, p. 112 098,
2022.

[8] G. Todde, M. Caria, A. Pazzona, L. Ledda, and L. Narvarte, “Does Precision
Photovoltaic Irrigation Represent a Sustainable Alternative to Traditional
Systems?” en, in Innovative Biosystems Engineering for Sustainable Agriculture,
Forestry and Food Production, A. Coppola, G. C. Di Renzo, G. Altieri, and
P. D’Antonio, Eds., vol. 67, Series Title: Lecture Notes in Civil Engineering, Cham:
Springer International Publishing, 2020, pp. 585–593, isbn: 978-3-030-39298-7
978-3-030-39299-4. doi: 10.1007/978-3-030-39299-4_64. [Online]. Available:
http://link.springer.com/10.1007/978-3-030-39299-4_64 (visited on 08/04/2023).

168

https://doi.org/10.1007/978-3-030-39299-4_64
http://link.springer.com/10.1007/978-3-030-39299-4_64


[9] O. Adeyemi, I. Grove, S. Peets, and T. Norton, “Advanced Monitoring and
Management Systems for Improving Sustainability in Precision Irrigation,” en,
Sustainability, vol. 9, no. 3, p. 353, Feb. 2017, issn: 2071-1050. doi:
10.3390/su9030353. [Online]. Available: http://www.mdpi.com/2071-1050/9/3/353
(visited on 03/01/2023).

[10] A. Mérida García, I. Fernández García, E. Camacho Poyato, P. Montesinos Barrios,
and J. Rodríguez Díaz, “Coupling irrigation scheduling with solar energy production
in a smart irrigation management system,” en, Journal of Cleaner Production,
vol. 175, pp. 670–682, Feb. 2018, issn: 09596526. doi: 10.1016/j.jclepro.2017.12.093.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0959652617330433
(visited on 08/04/2023).

[11] F. IRENA, “Renewable energy and agri-food systems: Advancing energy and food
security towards sustainable development goals,” 2021.

[12] J. Jägermeyr, D. Gerten, J. Heinke, S. Schaphoff, M. Kummu, and W. Lucht,
“Water savings potentials of irrigation systems: Global simulation of processes and
linkages,” Hydrology and Earth System Sciences, vol. 19, no. 7, pp. 3073–3091, 2015.

[13] L. Friedlander, A. Tal, and N. Lazarovitch, “Technical considerations affecting
adoption of drip irrigation in Sub-Saharan Africa,” Agricultural Water Management,
vol. 126, pp. 125–132, Aug. 2013. doi: 10.1016/j.agwat.2013.04.014.

[14] U. IFAD, “Smallholders, food security and the environment,” Rome: International
Fund for Agricultural Development, vol. 29, 2013.

[15] V. Nangia, R. Moussadek, and G. Montanaro, “Ultra-low energy drip irrigation for
MENA countries: Drip Irrigation in Morocco,” International Center for Agricultural
Research in the Dry Areas (ICARDA), 2017.

[16] G. Jobbins, J. Kalpakian, A. Chriyaa, A. Legrouri, and E. H. El Mzouri, “To what
end? Drip irrigation and the water-energy-food nexus in Morocco,” en, International
Journal of Water Resources Development, vol. 31, no. 3, pp. 393–406, Jul. 2015,
issn: 0790-0627, 1360-0648. doi: 10.1080/07900627.2015.1020146. [Online].
Available: https://www.tandfonline.com/doi/full/10.1080/07900627.2015.1020146
(visited on 02/02/2019).

[17] F. A. Ward and M. Pulido-Velazquez, “Water conservation in irrigation can increase
water use,” en, Proceedings of the National Academy of Sciences, vol. 105, no. 47,
pp. 18 215–18 220, Nov. 2008, issn: 0027-8424, 1091-6490. doi:
10.1073/pnas.0805554105. [Online]. Available:
http://www.pnas.org/cgi/doi/10.1073/pnas.0805554105 (visited on 03/20/2019).

[18] M. Benouniche, M. Kuper, A. Hammani, and H. Boesveld, “Making the user visible:
Analysing irrigation practices and farmers’ logic to explain actual drip irrigation
performance,” Irrigation Science, vol. 32, pp. 405–420, 2014.

[19] Food and A. O. of the United Nations (FAO), The state of food and agriculture
2022. leveraging automation in agriculture for transforming agrifood systems, 2022.

169

https://doi.org/10.3390/su9030353
http://www.mdpi.com/2071-1050/9/3/353
https://doi.org/10.1016/j.jclepro.2017.12.093
https://linkinghub.elsevier.com/retrieve/pii/S0959652617330433
https://doi.org/10.1016/j.agwat.2013.04.014
https://doi.org/10.1080/07900627.2015.1020146
https://www.tandfonline.com/doi/full/10.1080/07900627.2015.1020146
https://doi.org/10.1073/pnas.0805554105
http://www.pnas.org/cgi/doi/10.1073/pnas.0805554105


[20] G. D. Van de Zande, C. Sheline, and A. G. Winter, “Evaluating the Potential for a
Novel Irrigation System Controller to Be Adopted by Medium-Scale Contract
Farmers in East Africa,” en, in Volume 6: 34th International Conference on Design
Theory and Methodology (DTM), St. Louis, Missouri, USA: American Society of
Mechanical Engineers, Aug. 2022, V006T06A037, isbn: 978-0-7918-8626-7. doi:
10.1115/DETC2022-88328. [Online]. Available:
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings/IDETC-
CIE2022/86267/V006T06A037/1150535 (visited on 12/21/2022).

[21] G. D. Van de Zande, S. Amrose, E. Donlon, P. Shamshery, and A. G. Winter V,
“Identifying opportunities for irrigation systems to meet the specific needs of
farmers in east africa,” Water, vol. 16, no. 1, p. 75, 2023.

[22] G. D. Van de Zande, C. Sheline, S. Amrose, J. Costello, A. Ghodgaonkar, F. Grant,
and A. G. Winter V., “Design and evaluation of an automatic scheduling-manual
operation (as-mo) tool to bring precision irrigation to resource-constrained farmers,”
In Preparation, 2024.

[23] G. D. Van de Zande, “Bringing the water-efficiency benefits of precision irrigation to
resource-constrained farms through an automatic scheduling-manual operation
irrigation tool,” Ph.D. dissertation, Massachusetts Institute of Technology, 2023.

[24] F. Grant, S. Amrose, S. Talozi, and A. G. Winter V, “Evaluating the potential for
the sustainable, user-centered implementation of PV-powered drip irrigation (PVDI)
in the Middle East and North Africa,” In Preparation, 2024.

[25] C. Sheline, F. Grant, S. Gelmini, and A. G. Winter, “Designing a predictive optimal
water and energy irrigation (poweir) controller for pv-powered drip irrigation
systems in resource-constrained contexts,” In Preparation, 2024.

[26] The State of Food and Agriculture 2020, en. FAO, 2020, isbn: 978-92-5-133441-6.
doi: 10.4060/cb1447en. [Online]. Available:
http://www.fao.org/documents/card/en/c/cb1447en (visited on 08/04/2023).

[27] T. Searchinger, C. Hanson, J. Ranganathan, B. Lipinski, R. Waite,
R. Winterbottom, A. Dinshaw, and R. Heimlich, “The great balancing act,” 2013.

[28] T. Khokhar, “Chart: Globally, 70% of freshwater is used for agriculture,” World
Bank Data Blog, 2017.

[29] C. Klobucista and K. Robinson, “Water stress: A global problem that’s getting
worse,” Council on Foreign Relations, August, vol. 2, 2022.

[30] World Resources Institute, Aqueduct: Using cutting-edge data to identify and
evaluate water risks around the world, https://www.wri.org/aqueduct, 2023.

[31] Energy Sector Management Assistance Program administered by the World Bank,
Global Solar Atlas, https://globalsolaratlas.info/map, 2023.

[32] P. Yang, L. Wu, M. Cheng, J. Fan, S. Li, H. Wang, and L. Qian, “Review on drip
irrigation: Impact on crop yield, quality, and water productivity in china,” Water,
vol. 15, no. 9, p. 1733, 2023.

170

https://doi.org/10.1115/DETC2022-88328
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings/IDETC-CIE2022/86267/V006T06A037/1150535
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings/IDETC-CIE2022/86267/V006T06A037/1150535
https://doi.org/10.4060/cb1447en
http://www.fao.org/documents/card/en/c/cb1447en
https://www.wri.org/aqueduct
https://globalsolaratlas.info/map


[33] M. Benouniche, M. Kuper, A. Hammani, and H. Boesveld, “Making the user visible:
Analysing irrigation practices and farmers’ logic to explain actual drip irrigation
performance,” en, Irrigation Science, vol. 32, no. 6, pp. 405–420, Nov. 2014, issn:
0342-7188, 1432-1319. doi: 10.1007/s00271-014-0438-0. [Online]. Available:
http://link.springer.com/10.1007/s00271-014-0438-0 (visited on 08/04/2023).

[34] E. Bwambale, F. K. Abagale, and G. K. Anornu, “Smart irrigation monitoring and
control strategies for improving water use efficiency in precision agriculture: A
review,” en, Agricultural Water Management, vol. 260, p. 107 324, Feb. 2022, issn:
03783774. doi: 10.1016/j.agwat.2021.107324. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0378377421006016 (visited on
08/04/2023).

[35] L. García, L. Parra, J. M. Jimenez, J. Lloret, and P. Lorenz, “IoT-Based Smart
Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems
for Irrigation in Precision Agriculture,” en, Sensors, vol. 20, no. 4, p. 1042, Feb.
2020, issn: 1424-8220. doi: 10.3390/s20041042. [Online]. Available:
https://www.mdpi.com/1424-8220/20/4/1042 (visited on 08/04/2023).

[36] F. Grant, C. Sheline, J. Sokol, S. Amrose, E. Brownell, V. Nangia, and
A. G. Winter, “Creating a solar-powered drip irrigation optimal performance model
(sdrop) to lower the cost of drip irrigation systems for smallholder farmers,” Applied
Energy, vol. 323, p. 119 563, 2022, issn: 0306-2619. doi:
https://doi.org/10.1016/j.apenergy.2022.119563. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306261922008741.

[37] M. Carrillo Cobo, E. Camacho Poyato, P. Montesinos, and J. Rodríguez Díaz, “New
model for sustainable management of pressurized irrigation networks. Application to
Bembézar MD irrigation district (Spain),” en, Science of The Total Environment,
vol. 473-474, pp. 1–8, Mar. 2014, issn: 00489697. doi:
10.1016/j.scitotenv.2013.11.093. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0048969713013764 (visited on
08/04/2023).

[38] V. Zavala, “Optimal management of a multisector standalone direct pumping
photovoltaic irrigation system,” en, Applied Energy, 2020.

[39] The State of Food and Agriculture 2022, en. FAO, Nov. 2022, isbn:
978-92-5-136043-9. doi: 10.4060/cb9479en. [Online]. Available:
http://www.fao.org/documents/card/en/c/cb9479en (visited on 08/04/2023).

[40] E. A. Abioye, M. S. Z. Abidin, M. S. A. Mahmud, S. Buyamin, M. H. I. Ishak,
M. K. I. A. Rahman, A. O. Otuoze, P. Onotu, and M. S. A. Ramli, “A review on
monitoring and advanced control strategies for precision irrigation,” en, Computers
and Electronics in Agriculture, vol. 173, p. 105 441, Jun. 2020, issn: 01681699. doi:
10.1016/j.compag.2020.105441. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0168169919314826 (visited on
08/04/2023).

171

https://doi.org/10.1007/s00271-014-0438-0
http://link.springer.com/10.1007/s00271-014-0438-0
https://doi.org/10.1016/j.agwat.2021.107324
https://linkinghub.elsevier.com/retrieve/pii/S0378377421006016
https://doi.org/10.3390/s20041042
https://www.mdpi.com/1424-8220/20/4/1042
https://doi.org/https://doi.org/10.1016/j.apenergy.2022.119563
https://www.sciencedirect.com/science/article/pii/S0306261922008741
https://doi.org/10.1016/j.scitotenv.2013.11.093
https://linkinghub.elsevier.com/retrieve/pii/S0048969713013764
https://doi.org/10.4060/cb9479en
http://www.fao.org/documents/card/en/c/cb9479en
https://doi.org/10.1016/j.compag.2020.105441
https://linkinghub.elsevier.com/retrieve/pii/S0168169919314826


[41] C. Lozoya, C. Mendoza, A. Aguilar, A. Román, and R. Castelló, “Sensor-Based
Model Driven Control Strategy for Precision Irrigation,” en, Journal of Sensors,
vol. 2016, pp. 1–12, 2016, issn: 1687-725X, 1687-7268. doi: 10.1155/2016/9784071.
[Online]. Available: https://www.hindawi.com/journals/js/2016/9784071/ (visited
on 08/04/2023).

[42] S. K. Lowder, J. Skoet, and T. Raney, “The Number, Size, and Distribution of
Farms, Smallholder Farms, and Family Farms Worldwide,” en, World Development,
vol. 87, pp. 16–29, Nov. 2016, issn: 0305750X. doi: 10.1016/j.worlddev.2015.10.041.
[Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0305750X15002703 (visited on
08/04/2023).

[43] I. Fernández García, J. A. Rodríguez Díaz, E. Camacho Poyato, and P. Montesinos,
“Optimal Operation of Pressurized Irrigation Networks with Several Supply
Sources,” en, Water Resources Management, vol. 27, no. 8, pp. 2855–2869, Jun. 2013,
issn: 0920-4741, 1573-1650. doi: 10.1007/s11269-013-0319-y. [Online]. Available:
http://link.springer.com/10.1007/s11269-013-0319-y (visited on 08/04/2023).

[44] Y. Ding, L. Wang, Y. Li, and D. Li, “Model predictive control and its application in
agriculture: A review,” en, Computers and Electronics in Agriculture, vol. 151,
pp. 104–117, Aug. 2018, issn: 01681699. doi: 10.1016/j.compag.2018.06.004.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0168169917315296
(visited on 08/04/2023).

[45] D. Delgoda, H. Malano, S. K. Saleem, and M. N. Halgamuge, “Irrigation control
based on model predictive control (MPC): Formulation of theory and validation
using weather forecast data and AQUACROP model,” en, Environmental Modelling
& Software, vol. 78, pp. 40–53, Apr. 2016, issn: 13648152. doi:
10.1016/j.envsoft.2015.12.012. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1364815215301262 (visited on
08/04/2023).

[46] E. A. Abioye, M. S. Z. Abidin, M. N. Aman, M. S. A. Mahmud, and S. Buyamin,
“A model predictive controller for precision irrigation using discrete lagurre
networks,” en, Computers and Electronics in Agriculture, vol. 181, p. 105 953, Feb.
2021, issn: 01681699. doi: 10.1016/j.compag.2020.105953. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0168169920331586 (visited on
08/04/2023).

[47] T. Roje, D. Sáez, C. Muñoz, and L. Daniele, “Energy–water management system
based on predictive control applied to the water–food–energy nexus in rural
communities,” Applied Sciences, vol. 10, no. 21, p. 7723, Oct. 31, 2020, issn:
2076-3417. doi: 10.3390/app10217723. [Online]. Available:
https://www.mdpi.com/2076-3417/10/21/7723 (visited on 09/04/2023).

[48] J. Navarro Navajas, P. Montesinos, E. C. Poyato, and J. Rodríguez Díaz, “Impacts
of irrigation network sectoring as an energy saving measure on olive grove
production,” en, Journal of Environmental Management, vol. 111, pp. 1–9, Nov.

172

https://doi.org/10.1155/2016/9784071
https://www.hindawi.com/journals/js/2016/9784071/
https://doi.org/10.1016/j.worlddev.2015.10.041
https://linkinghub.elsevier.com/retrieve/pii/S0305750X15002703
https://doi.org/10.1007/s11269-013-0319-y
http://link.springer.com/10.1007/s11269-013-0319-y
https://doi.org/10.1016/j.compag.2018.06.004
https://linkinghub.elsevier.com/retrieve/pii/S0168169917315296
https://doi.org/10.1016/j.envsoft.2015.12.012
https://linkinghub.elsevier.com/retrieve/pii/S1364815215301262
https://doi.org/10.1016/j.compag.2020.105953
https://linkinghub.elsevier.com/retrieve/pii/S0168169920331586
https://doi.org/10.3390/app10217723
https://www.mdpi.com/2076-3417/10/21/7723


2012, issn: 03014797. doi: 10.1016/j.jenvman.2012.06.034. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0301479712003490 (visited on
08/04/2023).

[49] Grundfos size page for drip, micro spray soaker hose irrigation,
https://product-selection.grundfos.com/us/size-page?qcid=2153423512, Accessed:
2021-01-14.

[50] Grundfos sp submersible borehole pumps,
https://product-selection.grundfos.com/us/products/sp-sp-g?tab=products,
Accessed: 2021-01-14.

[51] How much do solar inverters cost,
https://luxpowertek.com/blog/solar-inverters-cost, Accessed: 2023-7-18.

[52] Mppt solar charge controllers explained,
https://www.cleanenergyreviews.info/blog/mppt-solar-charge-controllers, Accessed:
2023-7-18.

[53] Variable frequency drives price list, http://www.vfds.org/price-list.html, Accessed:
2023-7-18.

[54] R. Alley, K. Emanuel, and F. Zhang, “Advances in weather prediction,” Science,
vol. 363, 2019.

[55] E. Nkiaka, A. Taylor, and A. Dougill, “Identifying user needs for weather and
climate services to enhance resilience to climate shocks in sub-Saharan Africa,”
Environmental Research Letters, 2019.

[56] J. Woetzel, D. Pinner, H. Samandari, H. Engel, M. Krishnan, R. McCullough,
T. Melzer, and S. Boettiger, How will African farmers adjust to changing patterns of
precipitation? https://www.mckinsey.com/capabilities/sustainability/our-
insights/how-will-african-farmers-adjust-to-changing-patterns-of-precipitation,
Accessed: 2023-01-10, 2020.

[57] H. Feleke, “Assessing weather forecasting needs of smallholder farmers for climate
change adaptation in the central rift valley of ethiopia,” Journal of Earth Science
and Climate Change, 2015.

[58] G. Brunet, D. B. Parsons, D. Ivanov, B. Lee, P. Bauer, N. B. Bernier, V. Bouchet,
A. Brown, A. Busalacchi, G. C. Flatter, et al., “Advancing weather and climate
forecasting for our changing world,” Bulletin of the American Meteorological Society,
vol. 104, no. 4, E909–E927, 2023.

[59] D. P. Rogers, V. V. Tsirkunov, H. Kootval, A. Soares, D. Kull, A.-M. Bogdanova,
and M. Suwa, Weathering the change: how to improve hydromet services in
developing countries? World Bank, 2019.

[60] J. Lofstead, “Weather forecasting limitations in the developing world,” in
International Conference on Human-Computer Interaction, Springer, 2023,
pp. 86–96.

173

https://doi.org/10.1016/j.jenvman.2012.06.034
https://linkinghub.elsevier.com/retrieve/pii/S0301479712003490
https://product-selection.grundfos.com/us/size-page?qcid=2153423512
https://product-selection.grundfos.com/us/products/sp-sp-g?tab=products
https://luxpowertek.com/blog/solar-inverters-cost
https://www.cleanenergyreviews.info/blog/mppt-solar-charge-controllers
http://www.vfds.org/price-list.html
https://www.mckinsey.com/capabilities/sustainability/our-insights/how-will-african-farmers-adjust-to-changing-patterns-of-precipitation
https://www.mckinsey.com/capabilities/sustainability/our-insights/how-will-african-farmers-adjust-to-changing-patterns-of-precipitation


[61] C. Sheline and V. Winter Amos, “Machine learning method for forecasting weather
needed for crop water demand estimations in low-resource settings using a case
study in morocco,” vol. 3B: 47th Design Automation Conference (DAC), American
Society of Mechanical Engineers, 2021. doi: 10.1115/DETC2021-70571. [Online].
Available: https://doi.org/10.1115/DETC2021-70571.

[62] Vector autoregression (var) comprehensive guide with examples in python,
https://www.machinelearningplus.com/time-series/vector-autoregression-examples-
python/, Accessed: 2020-11-30.

[63] R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, “Crop evapotranspiration:
Guidlines for computing crop water requirements,” FAO Irrigation and Drainage
Paper No. 56, 1998.

[64] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical modeling
with python,” in Proceedings of the 9th Python in Science Conference, Austin, TX,
vol. 57, 2010, pp. 10–25 080.

[65] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling
and simulation of photovoltaic arrays,” IEEE Transactions on Power Electronics,
vol. 24, no. 5, pp. 1198–1208, 2009.

[66] J. Doorenbos and A. H. Kassam, “Yield response to water,” FAO Irrigation and
Drainage Paper No. 33, 1979.

[67] P. Steduto, T. C. Hsiao, E. Fereres, and D. Raes, “Crop yield response to water,”
FAO Irrigation and Drainage Paper No. 66, 2012.

[68] H. Hesse, M. Schimpe, D. Kucevic, and A. Jossen, “Lithium-Ion Battery Storage for
the Grid—A Review of Stationary Battery Storage System Design Tailored for
Applications in Modern Power Grids,” en, Energies, vol. 10, no. 12, p. 2107, Dec.
2017, issn: 1996-1073. doi: 10.3390/en10122107. [Online]. Available:
https://www.mdpi.com/1996-1073/10/12/2107 (visited on 08/08/2023).

[69] J. Sokol, J. Narain, J. Costello, T. McLaurin, D. Kumar, and A. G. Winter,
“Analytical model for predicting activation pressure and flow rate of
pressure-compensating inline drip emitters and its use in low-pressure emitter
design,” Irrigation Science, vol. 40, no. 2, pp. 217–237, Feb. 2022. doi:
10.1007/s00271-022-00771-5. [Online]. Available:
https://doi.org/10.1007/s00271-022-00771-5.

[70] R. Folea, Click PLC: Temperature Pid Tuning Resource Page, Jan. 2021. [Online].
Available: https://library.automationdirect.com/click-plc-temperature-pid-tuning-
resource-page/.

[71] System Identification: Identify models of dynamic systems from measured data -
MATLAB. [Online]. Available:
https://www.mathworks.com/help/ident/ref/systemidentification-
app.html?s_tid=srchtitle_site_search_1_systemidentification.

[72] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback control of dynamic
systems, 7th ed. Upper Saddle River, NJ: Pearson, Apr. 2014.

174

https://doi.org/10.1115/DETC2021-70571
https://doi.org/10.1115/DETC2021-70571
https://www.machinelearningplus.com/time-series/vector-autoregression-examples-python/
https://www.machinelearningplus.com/time-series/vector-autoregression-examples-python/
https://doi.org/10.3390/en10122107
https://www.mdpi.com/1996-1073/10/12/2107
https://doi.org/10.1007/s00271-022-00771-5
https://doi.org/10.1007/s00271-022-00771-5
https://library.automationdirect.com/click-plc-temperature-pid-tuning-resource-page/
https://library.automationdirect.com/click-plc-temperature-pid-tuning-resource-page/
https://www.mathworks.com/help/ident/ref/systemidentification-app.html?s_tid=srchtitle_site_search_1_systemidentification
https://www.mathworks.com/help/ident/ref/systemidentification-app.html?s_tid=srchtitle_site_search_1_systemidentification


[73] F. Grant, C. Sheline, S. Amrose, E. Brownell, V. Nangia, S. Talozi, and A. Winter,
“Validation of an analytical model to lower the cost of solar-powered drip irrigation
systems for smallholder farmers in the MENA region,” in Volume 11B: 46th Design
Automation Conference (DAC), American Society of Mechanical Engineers, Aug.
2020. doi: 10.1115/detc2020-22610.

[74] ASHRAE, International Weather Files for Energy Calculations 2.0 (IWEC2),
https://www.ashrae.org/technical-resources/bookstore/ashrae-international-
weather-files-for-energy-calculations-2-0-iwec2.

[75] C. Sheline, S. Ingersoll, S. Irmak, and A. G. Winter, “Sensitivity study of the
predictive optimal water and energy irrigation (poweir) controller’s irrigation
schedules for pv-powered drip irrigation systems in resource-constrained contexts,”
In Preparation, 2024.

[76] T. Searchinger, R. Waite, C. Hanson, J. Ranganathan, P. Dumas, E. Matthews, et
al., “World resources report: Creating a sustainable food future,” World Resources
Institute, 2019.

[77] M. Van Dijk, T. Morley, M. L. Rau, and Y. Saghai, “A meta-analysis of projected
global food demand and population at risk of hunger for the period 2010–2050,”
Nature Food, vol. 2, no. 7, pp. 494–501, 2021.

[78] N. Alexandratos and J. Bruinsma, “World agriculture towards 2030/2050: The 2012
revision,” 2012.

[79] J. Bruinsma, World agriculture: towards 2015/2030: an FAO study. Routledge, 2017.

[80] WFP and FAO, Hunger hotspots. fao-wfp early warnings on acute food insecurity:
June to september 2022 outlook, 2022.

[81] M. M. Maja and S. F. Ayano, “The impact of population growth on natural
resources and farmers’ capacity to adapt to climate change in low-income countries,”
Earth Systems and Environment, vol. 5, pp. 271–283, 2021.

[82] A. del Pozo, N. Brunel-Saldias, A. Engler, S. Ortega-Farias, C. Acevedo-Opazo,
G. A. Lobos, R. Jara-Rojas, and M. A. Molina-Montenegro, “Climate change
impacts and adaptation strategies of agriculture in mediterranean-climate regions
(mcrs),” Sustainability, vol. 11, no. 10, p. 2769, 2019.

[83] Q. Dongyu et al., The state of the world’s land and water resources for food and
agriculture: systems at breaking point. FAO, 2022.

[84] M. A. Hasan and S. K. Parida, “An overview of solar photovoltaic panel modeling
based on analytical and experimental viewpoint,” Renewable and Sustainable Energy
Reviews, vol. 60, pp. 75–83, 2016.

[85] R. Kumar, S. Singh, et al., “Solar photovoltaic modeling and simulation: As a
renewable energy solution,” Energy Reports, vol. 4, pp. 701–712, 2018.

[86] A. R. Jordehi, “Parameter estimation of solar photovoltaic (pv) cells: A review,”
Renewable and Sustainable Energy Reviews, vol. 61, pp. 354–371, 2016.

175

https://doi.org/10.1115/detc2020-22610
https://www.ashrae.org/technical-resources/bookstore/ashrae-international-weather-files-for-energy-calculations-2-0-iwec2
https://www.ashrae.org/technical-resources/bookstore/ashrae-international-weather-files-for-energy-calculations-2-0-iwec2


[87] A. M. Humada, S. Y. Darweesh, K. G. Mohammed, M. Kamil, S. F. Mohammed,
N. K. Kasim, T. A. Tahseen, O. I. Awad, and S. Mekhilef, “Modeling of pv system
and parameter extraction based on experimental data: Review and investigation,”
Solar Energy, vol. 199, pp. 742–760, 2020.

[88] S. Shongwe and M. Hanif, “Comparative analysis of different single-diode pv
modeling methods,” IEEE Journal of photovoltaics, vol. 5, no. 3, pp. 938–946, 2015.

[89] V. J. Chin, Z. Salam, and K. Ishaque, “Cell modelling and model parameters
estimation techniques for photovoltaic simulator application: A review,” Applied
Energy, vol. 154, pp. 500–519, 2015.

[90] J. Bishop, “Computer simulation of the effects of electrical mismatches in
photovoltaic cell interconnection circuits,” Solar Cells, vol. 25, 1988. doi:
https://doi.org/10.1016/0379-6787(88)90059-2. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0379678788900592.

[91] W. De Soto, S. A. Klein, and W. A. Beckman, “Improvement and validation of a
model for photovoltaic array performance,” Solar energy, vol. 80, no. 1, pp. 78–88,
2006.

[92] M. Gao, J. Li, F. Hong, and D. Long, “Day-ahead power forecasting in a large-scale
photovoltaic plant based on weather classification using lstm,” Energy, vol. 187,
p. 115 838, 2019.

[93] X. Qing and Y. Niu, “Hourly day-ahead solar irradiance prediction using weather
forecasts by lstm,” Energy, vol. 148, pp. 461–468, 2018.

[94] Keras, https://keras.io/, Accessed: 2021-11-30.

[95] S. Gautam, Time series forecasting of solar radiation, https:
//towardsdatascience.com/time-series-forecasting-of-solar-radiation-294b2a0c94e5,
Accessed: 2021-12-01.

[96] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[97] S. Tenzin, S. Siyang, T. Pobkrut, and T. Kerdcharoen, “Low cost weather station
for climate-smart agriculture,” in 2017 9th international conference on knowledge
and smart technology (KST), IEEE, 2017, pp. 172–177.

[98] E. A. Abioye, M. S. Z. Abidin, M. S. A. Mahmud, S. Buyamin,
M. K. I. AbdRahman, A. O. Otuoze, M. S. A. Ramli, and O. D. Ijike, “Iot-based
monitoring and data-driven modelling of drip irrigation system for mustard leaf
cultivation experiment,” Information Processing in Agriculture, vol. 8, no. 2,
pp. 270–283, 2021.

[99] K. Keary, J. Stoochnoff, T. Graham, and M. Dixon, “Irrigation scheduling for
container grown spiraea japonica based on cumulative vapor pressure deficit,” in
International Symposium on Advanced Technologies and Management for Innovative
Greenhouses: GreenSys2019 1296, 2019, pp. 815–822.

176

https://doi.org/https://doi.org/10.1016/0379-6787(88)90059-2
https://www.sciencedirect.com/science/article/pii/0379678788900592
https://keras.io/
https://towardsdatascience.com/time-series-forecasting-of-solar-radiation-294b2a0c94e5
https://towardsdatascience.com/time-series-forecasting-of-solar-radiation-294b2a0c94e5


[100] I. Dunaieva, V. Vecherkov, Y. Filina, V. Popovych, E. Barbotkina, V. Pashtetsky,
V. Terleev, W. Mirschel, and L. Akimov, “Review of automatized meteorological
stations use for agricultural purposes,” in IOP Conference Series: Earth and
Environmental Science, IOP Publishing, vol. 937, 2021, p. 032 097.

[101] Food and agriculture organization of the united nations data platform,
https://www.fao.org/faostat, Accessed: 2010-09-30.

[102] A. Parmar, K. Mistree, and M. Sompura, “Machine learning techniques for rainfall
prediction: A review,” in International conference on innovations in information
embedded and communication systems, vol. 3, 2017.

[103] Z. Popova, S. Eneva, and L. S. Pereira, “Model validation, crop coefficients and
yield response factors for maize irrigation scheduling based on long-term
experiments,” Biosystems engineering, vol. 95, no. 1, pp. 139–149, 2006.

[104] H. Jayanthi, C. M. Neale, and J. L. Wright, “Development and validation of canopy
reflectance-based crop coefficient for potato,” Agricultural water management,
vol. 88, no. 1-3, pp. 235–246, 2007.

[105] N. Yarami, A. Kamgar-Haghighi, A. Sepaskhah, and S. Zand-Parsa, “Determination
of the potential evapotranspiration and crop coefficient for saffron using a
water-balance lysimeter,” Archives of Agronomy and Soil Science, vol. 57, no. 7,
pp. 727–740, 2011.

[106] S. S. Anapalli, L. R. Ahuja, P. H. Gowda, L. Ma, G. Marek, S. R. Evett, and
T. A. Howell, “Simulation of crop evapotranspiration and crop coefficients with data
in weighing lysimeters,” Agricultural Water Management, vol. 177, pp. 274–283,
2016.

[107] O. Raphael, K. Ogedengbe, J. Fasinmirin, D. Okunade, I. Akande, and
A. Gbadamosi, “Growth-stage-specific crop coefficient and consumptive use of
capsicum chinense using hydraulic weighing lysimeter,” Agricultural water
management, vol. 203, pp. 179–185, 2018.

[108] C. Sheline, F. Grant, G. D. Van de Zande, et al., “Technical validation of the
predictive optimal water and energy irrigation (poweir) controller for solar-powered
drip irrigation systems in the middle east and north africa,” In Preparation, 2024.

[109] United nations global sustainable development goal (sdg) indicators data platform,
https://unstats.un.org/sdgs/dataportal, Accessed: 2023-09-30.

[110] National Water Strategy 2023-2040. The Ministry of Water and Irrigation, Jordan,
2023.

[111] Generation Green 2020-2030. Ministry of Agriculture, Fisheries, Rural
Development, Water, and Forests: Department of Agriculture, Morocco, 2020.

[112] G. Nilo and M. J. Tao, “Standard operating procedure for soil bulk density, cylinder
method,” FAO, Tech. Rep., 2023.

[113] The souss-massa regional authority for agricultural development (office regional de
mise en valeur agricole du souss-massa or ormva-sm), https://ormvasm.m.

177

https://www.fao.org/faostat
https://unstats.un.org/sdgs/dataportal
https://ormvasm.m


[114] Grape information, https://www.fao.org/land-water/databases-and-software/crop-
information/grape/en/, Accessed: 2023-04-09.

[115] C. S. Patil, “Crop coefficient and water requirement of okra (abelmoschus esculentus
l. moench),” MAUSAM, vol. 61, no. 1, pp. 121–124, 2010.

[116] S. Ayas, “Response of okra (abelmoschus esculentus l. yalova akköy-41) to different
irrigation and fertigation levels,” Turkish Journal of Agriculture-Food Science and
Technology, vol. 8, no. 10, pp. 2225–2235, 2020.

[117] A. UNLUKARA and B. Cemek, “Response of okra to water stress,” Mustafa Kemal
Üniversitesi Tarım Bilimleri Dergisi, vol. 24, pp. 313–319, 2019.

[118] K. X. Soulis, S. Elmaloglou, and N. Dercas, “Investigating the effects of soil
moisture sensors positioning and accuracy on soil moisture based drip irrigation
scheduling systems,” Agricultural Water Management, vol. 148, pp. 258–268, 2015.

[119] L. Zotarelli, M. D. Dukes, and M. Paranhos, “Minimum number of soil moisture
sensors for monitoring and irrigation purposes: Hs1222, 7/2013,” Edis, vol. 2013,
no. 7, 2013.

[120] R. S. Ayers, D. W. Westcot, et al., Water quality for agriculture. Food and
Agriculture Organization of the United Nations Rome, 1985, vol. 29.

[121] B. Anita and N. Selvaraj, “Biology, yield loss and integrated management of
root-knot nematode, meloidogyne hapla infecting carrot in nilgiris,” Indian Journal
of Nematology, vol. 41, no. 2, pp. 144–149, 2011.

[122] S. A. Anwar and M. McKenry, “Incidence and population density of plant-parasitic
nematodes infecting vegetable crops and associated yield losses in punjab,
pakistan,” Pakistan Journal of Zoology, vol. 44, no. 2, 2012.

[123] R. M. Davis and J. Nu ez, “Integrated approaches for carrot pests and diseases
management,” in General Concepts in Integrated Pest and Disease Management,
Springer, 2007, pp. 149–188.

[124] R. Singh and U. Kumar, “Assessment of nematode distribution and yield losses in
vegetable crops of western uttar pradesh in india,” Int. J. Sci. Res, vol. 4, no. 5,
pp. 2812–2816, 2015.

[125] T. Widmer, J. Ludwig, and G. Abawi, “The northern root-knot nematode on carrot,
lettuce, and onion in new york,” New York State Agricultural Experiment Station,
Tech. Rep., 1999.

[126] D. H. Muhsen, T. Khatib, and T. E. Abdulabbas, “Sizing of a standalone
photovoltaic water pumping system using hybrid multi-criteria decision making
methods,” Solar Energy, vol. 159, pp. 1003–1015, 2017.

[127] W. Wieder, J. Boehnert, G. Bonan, and M. Langseth, “Regridded harmonized world
soil database v1. 2,” ORNL DAAC, 2014.

[128] USDA, Soil texture calculator, https://www.nrcs.usda.gov/resources/education-and-
teaching-materials/soil-texture-calculator.

178

https://www.fao.org/land-water/databases-and-software/crop-information/grape/en/
https://www.fao.org/land-water/databases-and-software/crop-information/grape/en/
https://www.nrcs.usda.gov/resources/education-and-teaching-materials/soil-texture-calculator
https://www.nrcs.usda.gov/resources/education-and-teaching-materials/soil-texture-calculator

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 The Need for Affordable, Precise Irrigation Control
	1.2 SPDI System Description
	1.3 User Analysis
	1.4 Thesis Outline and Contributions

	2 Designing a Predictive Optimal Water and Energy Irrigation (POWEIr) Controller for Solar-powered Drip Irrigation Systems in Resource-constrained Contexts
	2.1 Introduction
	2.2 SPDI Scheduling and Economic Analysis
	2.2.1 SPDI Scheduling Methods
	2.2.2 Benefits of Pairing SPDI and SPM

	2.3 POWEIr Controller Theory
	2.3.1 POWEIr Controller Architecture
	2.3.2 Level 3: Irrigation Schedule Optimization
	2.3.3 Level 2: Energy Storage Optimization
	2.3.4 Level 1: Pump Operating Point Control

	2.4 Experimental Prototype
	2.4.1 Methods
	2.4.2 Results

	2.5 Discussion
	2.6 Conclusions

	3 Sensitivity Study of the POWEIr Controller's Irrigation Schedules for SPDI Systems in Resource-constrained Contexts
	3.1 Introduction
	3.2 POWEIr Controller Irrigation Schedule Theory and Inputs
	3.2.1 Reference Evapotranspiration (ET0) Model
	3.2.2 Solar Model
	3.2.3 Weather Prediction Model
	3.2.4 Solar Prediction Model
	3.2.5 Soil Moisture Model
	3.2.6 Irrigation Optimization
	3.2.7 Required Inputs

	3.3 POWEIr Controller Irrigation Schedule Sensitivity Analysis
	3.3.1 Weather and Agronomy Context
	3.3.2 Measured and Predicted Weather Data and Error in ET0, Rain, and Solar Power
	3.3.3 Simulation of Cumulative Irrigation Volume
	3.3.4 Simulation of Crop Yield
	3.3.5 Sensitivity Study

	3.4 Results
	3.5 Discussion
	3.5.1 Sensitivity of POWEIr Controller's Irrigation Output to Changes in Agronomy Inputs
	3.5.2 Yield Impact due to Changes in POWEIr Controller's Irrigation Output
	3.5.3 Cost-benefit of LCWS and HCWS
	3.5.4 Limitations
	3.5.5 Value to Practitioners and Academic Community

	3.6 Conclusions

	4 Technical Validation of the POWEIr Controller for SPDI Systems in the Middle East and North Africa
	4.1 Introduction
	4.2 POWEIr Controller Theory and Design
	4.2.1 POWEIr Controller Architecture
	4.2.2 Daily Weather Model
	4.2.3 Solar Power Model
	4.2.4 Weather Prediction Model
	4.2.5 Solar Prediction Model
	4.2.6 Soil Moisture Model
	4.2.7 Irrigation Optimization

	4.3 Methods for POWEIr Controller Technical Validation
	4.3.1 POWEIr Controller Customization and Implementation in Multiple Contexts
	4.3.2 POWEIr Controller Performance Hypotheses and Methods

	4.4 Technical Validation of the POWEIr Controller Results
	4.4.1 Level 3 Validation
	4.4.2 POWEIr Controller Energy, Water, and Crop Yield

	4.5 Discussion
	4.5.1 Design for Multiple Contexts
	4.5.2 POWEIr Controller's Level 3 Validation
	4.5.3 POWEIr Controller Performance
	4.5.4 Limitations and Future Work
	4.5.5 Impact of Results

	4.6 Conclusions

	5 Conclusions
	5.1 Concluding Insights and Impact of the Current Research
	5.2 Recommended Future Work

	A Chapter 2 Supplemental Information
	A.1 SDrOP Cost Data
	A.2 Solar-Powered Drip Irrigation Optimal Performance Model (SDrOP) Operation Simulation
	A.3 Additional Experimental Prototype Results

	B Chapter 3 Supplemental Information
	B.1 Kenya and Morocco Soil Texture
	B.2 Measured Weather Data and Predictions
	B.3 Histograms of Weather Error
	B.4 Input Curves of Crop Parameter Sensitivity Study

	C Chapter 4 Supplemental Information
	C.1 Experimental Setup and Inputs
	C.2 Pump Energy and Efficiency

	References



