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ABSTRACT

As the world moves away from fossil fuels, there is growing recognition of the need for
policy to support a just transition of those working in carbon-intensive industries. However,
little work has thoroughly investigated which communities are most vulnerable to economic
disruption in the energy transition and therefore require policy support. This thesis ana-
lyzes the distribution of employment vulnerability in the United States by calculating the
average “employment carbon footprint” of close-to every job in the U.S. economy at high ge-
ographic and sectoral granularity. I find that existing efforts to identify at-risk communities
both in the literature and the Inflation Reduction Act exclude regions of high employment
vulnerability, and thereby risk leaving these communities behind in the energy transition.
I also identify significant within-sector heterogeneity in employment carbon footprints that
are unexplained by fuel mix or power grid carbon intensity, and find that carbon-intensive
regions tend to be more rural, less racially and ethnically diverse, less educated, and more
likely to vote Republican, and that these regions often lack institutional capacity to retrain
laid-off workers. This thesis also uses these new data to empirically test the salience of
employment impacts for political representatives. I find that legislators from districts with
carbon-intensive employment are less likely to vote in favor of climate policy, while house-
hold carbon footprints have no effect despite being correlated with public opinion on climate
action; I also note the significance of the partisan divide on climate voting. Altogether,
this thesis argues that just transition policy is crucial to progress action on climate change
by addressing politically salient employment impact concerns; underscores the importance
of proactive and continuous measures of employment vulnerability in targeting such policy;
provides policymakers with the much-needed data to do so; and makes the case that such
policies should be place-based and tailored to the communities they strive to serve.

Thesis supervisor: Christopher R. Knittel,
Professor of Applied Economics, Sloan
School of Management

Thesis reader: Priya Donti,
Assistant Professor of Electrical Engineering
and Computer Science

3



4



Acknowledgments

Firstly, a sincere thank you to my supervisors. Chris, thank you for your continued support
over the last 2.5 years, and for allowing me to explore such an interesting topic that I’m
so passionate about. I’ve found it thoroughly rewarding to develop from a clueless engineer
to a slightly-less clueless researcher, and I’m proud of the work we have produced. Priya,
thank you for taking a chance on me during your first year at MIT—I can’t wait to see the
exciting work that’s to come.

To my CEEPR colleagues, thank you for such a formative research environment. Lunchtime
on Wednesdays won’t be the same! Tony, thank you for your support for any and every prob-
lem I managed to find myself in.

Thank you to the Fulbright Commission of Australia for believing in and enabling this
journey I’ve undertaken, and to the Kinghorn Foundation for its financial support. Receiving
a Fulbright Scholarship has pushed me far beyond what I thought possible for myself, and I
look forward to applying what I’ve learnt back home.

To Frank, Barb and Elena—thank you for being the backbone of such a unique and
rewarding program. Your tireless work is what enables this life-changing opportunity for
myself and my classmates. A special shout out to Barb for calmly helping me through each
of my assorted short-term crises.

A special thank you to my loved ones. Thank you all for giving me the tools, support
and moral compass to find my path and succeed—everything I’ve achieved I owe to you. To
Mum, Dad, and Genevieve—thank you for supporting me on this adventure on the other
side of the world. It’s not always easy being so far from home, but I hope this work makes
you proud of what I’ve done while I’ve been gone. To Anke—I’m so glad you came on this
adventure these past 2.5 years and that they became some of the most memorable so far!

To my Brissie friends—let’s be honest, none of you are going to read this. Just know
that moving away makes you all the more appreciative of what you leave behind.

Lastly, to my TPP classmates and the friends that have made Cambridge feel like home—
I could never have anticipated the community I have found here. From p-set partners to
desert roadtrips, foliage hunting to Lampy Fridays, the memories I’ve made with you all will
last a lifetime. Here’s to a lifetime of more!

5



6



Contents

List of Figures 9

List of Tables 11

Introduction 13

I Employment carbon footprints: Calculation, distribution &
policy implications 17

1 Literature Review 18
1.1 Employment impacts of the energy transition . . . . . . . . . . . . . . . . . 18
1.2 Political economy of the just transition . . . . . . . . . . . . . . . . . . . . . 19
1.3 The Inflation Reduction Act, “energy communities” & previous estimates of

transition vulnerability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Methodology 23
2.1 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Deriving Employment Carbon Footprints (ECFs) . . . . . . . . . . . . . . . 27
2.3 Calculation of social costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Explained variance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Analyzing distributive effects . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Results 35
3.1 Employment vulnerability of communities . . . . . . . . . . . . . . . . . . . 35

3.1.1 Employment carbon footprints & social costs . . . . . . . . . . . . . . 35
3.1.2 Comparison with IRA energy communities . . . . . . . . . . . . . . . 43
3.1.3 Comparison with the literature . . . . . . . . . . . . . . . . . . . . . 48

3.2 Explained variance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Distributive effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Urbanity & population density . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 Income . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.3 Race & Ethnicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.4 Educational attainment . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.5 Political affiliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7



II The political salience of employment & household vulnerabil-
ity in climate politics 59

4 Literature review 60

5 Methodology 63
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Model design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Results 69
6.1 Constituency climate opinion . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Representative climate voting . . . . . . . . . . . . . . . . . . . . . . . . . . 71

III Discussion & conclusion 78

7 Discussion & policy implications 79

8 Conclusion 84

References 86

IV Appendices 103

A Detailed ECF calculation methodology & assumptions 104
A.1 Price elasticity calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.2 PES of electricity calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B Regression details from explained variance analysis 108
B.1 Subsectors considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
B.2 Explained variance analysis stepwise regression coefficients . . . . . . . . . . 111

C Supplementary figures & tables from Part I 115

D Supplementary figures & tables from Part II 118

8



List of Figures

2.1 Theoretical framework of energy consumption across U.S. industries used in
determining ECFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Distribution of Overall ECFs across U.S. counties. . . . . . . . . . . . . . . . 35
3.2 Distribution of Overall ECFs across U.S. states. . . . . . . . . . . . . . . . . 36
3.3 Overall employment carbon footprints for fossil fuel extraction sectors versus

all other sectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Overall ECFs across U.S. counties, normalized by county population. . . . . 38
3.5 Kernel density estimates of county-level ECF distributions for each covered

sector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Scope 1, Scope 2 and Scope 3 ECFs across counties. . . . . . . . . . . . . . . 40
3.7 Distributions of sectoral ECFs—agriculture, construction, coal mining, com-

mercial sectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8 Distributions of sectoral ECFs—manufacturing, non-fossil mining, oil & gas,

fossil-fuel power generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.9 Qualifying energy communities for 2023 (IWG 2023, Raimi & Pesek 2022). . 43
3.10 Overall ECFs of qualifying (left) and non-qualifying (right) counties that con-

tain IRA energy communities (left) and counties that do not (right). . . . . . 44
3.11 Overall ECF distributions for counties qualifying as energy communities under

the fossil fuel employment criterion in the IRA, and non-qualifying counties. 45
3.12 Comparison of qualifying energy communities between 2022 and 2023 . . . . 46
3.13 Dominant sectors of 100 most carbon-intensive counties that are not 2023 ECs. 47
3.14 Comparison of tax credits assigned by Raimi and Pesek (2022) and ECFs. . . 48
3.15 Comparison of ECFs and Raimi, Carley, and Konisky (2022) exposure scores. 49
3.16 Variation of ECF distributions across different levels of urbanity. . . . . . . . 52
3.17 Percentage of employment in carbon-intensive sectors for each urbanity category. 52
3.18 Variation in ECF distribution across county population density. . . . . . . . 53
3.19 Overall ECF distributions for different county median income levels. . . . . . 54
3.20 Distributions of Overall ECFs by median income level, broken out by urbanity

(left). Median income distributions for urban and rural counties (right). . . . 54
3.21 Distributions of county median salary for carbon-intensive and other sectors. 55
3.22 Distributions of Overall ECFs across counties with differing minority popula-

tion shares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.23 Distributions of Overall ECFs across counties with different levels of tertiary

education. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9



3.24 Two-year college enrollment per capita across 2010 ERS commuting zones. . 57
3.25 Overall ECFs of commuting zones with no two-year colleges (red borders). . 57
3.26 Overall ECF distributions by political party preference in 2020 presidential

election. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 District-level employment (top) and household (bottom) carbon footprints . 65

C.1 Distributions of ECFs across counties with differing shares of minority popu-
lation, for urban and rural counties. . . . . . . . . . . . . . . . . . . . . . . . 115

C.2 Overall ECF distributions at different levels of educational attainment, for
urban and rural counties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.3 Overall ECF distribution by state, colored according to political affiliation in
2020 presidential election. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

D.1 Distribution of household carbon footprints across U.S. counties. . . . . . . . 118

10



List of Tables

2.1 Summary of sectors and corresponding data sources used in deriving ECFs. . 27

3.1 Explained variance results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Summary statistics for variables in county-level OLS estimation of average
climate opinion scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Summary statistics for variables in OLS estimation of average LCV scores . . 68

6.1 OLS estimation results for average climate opinion score, county level . . . . 70
6.2 OLS estimation results for average LCV score . . . . . . . . . . . . . . . . . 71
6.3 Probit estimation results for votes on individual bills . . . . . . . . . . . . . 73
6.4 OLS estimation results for average legislator LCV score, by political party . 75
6.5 Probit estimation results for votes on individual bills, by political party . . . 76

A.1 Price elasticity values used in analysis . . . . . . . . . . . . . . . . . . . . . . 105

B.1 Subsectors considered for EFss during explained variance regressions, for each
high-level sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.2 Regression coefficients for independent variables in explained variance analysis.111

D.1 Standardized OLS results for average climate opinion score, county level . . . 119
D.2 OLS results for average climate opinion score, congressional-district level . . 120
D.3 Standardized OLS estimation results for average climate opinion score, congressional-

district level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
D.4 Standardized OLS estimation results for average LCV score . . . . . . . . . . 122
D.5 Marginal effects of probit estimation for votes on climate-related bills . . . . 123
D.6 Standardized probit estimation results for votes on individual bills . . . . . . 124
D.7 Standardized marginal effects of probit estimation for votes on climate-related

bills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

11



12



Introduction

As U.S. and international economies reduce their reliance on fossil fuels, there will be win-
ners and losers. While an extensive literature has shown that the energy transition will bring
aggregate improvements in macroeconomic indicators such as unemployment and GDP (Met-
calf 2023; Brown, Li, and Soni 2020; Barker et al. 2016), these benefits and associated costs
are not evenly distributed, with some communities potentially facing net losses from the
transition. Communities reliant on fossil fuels will be vulnerable to economic disruption;
indeed, many are already suffering from the decline of industries such as coal mining (An-
solabehere et al. 2022; Bergant, Mano, and Shibata 2022). Central to this disruption are the
employment impacts and job losses that will occur as the economy shifts away from fossil
fuel consumption. The highly localized nature of these effects presents serious distributive
justice concerns and a policy imperative to ensure no community is “left behind.”

There is therefore increasing interest in ensuring a “just transition” of vulnerable workers
as the economy decarbonizes, both in academic and policy spheres. Originally developed by
U.S. trade unions in 1970s and 80s in response to perceived threats of environmental regu-
lation on employment in the energy and chemicals industries (McCauley and Heffron 2018;
Newell and Mulvaney 2013), the contemporary just transition advocates for the protection
of those employed in industries vulnerable to the energy transition through compensation,
retraining, and the creation of new, “clean” jobs with good wages and working conditions
(Newell and Mulvaney 2013). Not only are such policy efforts important from a distributive
justice perspective, but evidence suggests they are also essential for winning the support of
coalitions that have previously blocked climate and energy policy due to employment con-
cerns (Gazmararian 2022a; Tvinnereim and Ivarsflaten 2016; Bergquist, Mildenberger, and
Stokes 2020).

Despite growing recognition of these facts, there is limited work that has thoroughly in-
vestigated the extent to which communities might be vulnerable to disruption and therefore
require transition policy support. Considerations of employment have largely focused on
fossil fuel extraction industries such as coal mining, and to a lesser extent fossil fuel power
plants (Snyder 2018; Raimi, Carley, and Konisky 2022). However, workforce impacts of
the energy transition will be felt beyond these production sectors and also affect industries
heavily reliant on fossil fuel consumption such as heavy manufacturing (Carley and Konisky
2020; Vona 2019). Similarly, previous efforts have tended not to consider relative differ-
ences in employment vulnerability between facilities in a given industry that might arise
due to differences in fossil fuel consumption or production rates. Furthermore, aside from
acknowledging skill barriers to re-employment for those displaced from polluting jobs (Vona
et al. 2018; Bergant, Mano, and Shibata 2022), there has been little work evaluating the
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distribution of employment impacts of the energy transition across demographics.
In the first part of this thesis, I address these gaps by calculating the carbon intensity of

U.S. jobs at high geographic and sectoral granularity, and using these “employment carbon
footprints” (ECFs) to identify communities vulnerable to employment impacts of the energy
transition. My analysis covers eight major sectors: agriculture, manufacturing, commercial
sectors, construction, coal mining, oil & gas extraction, other mining, and fossil-fuel power
generation; I also consider both direct and indirect emissions. These sectors account for 86%
of total U.S. employment and 94% of U.S. carbon emissions outside of the transportation
sector. I then analyze what drives differences in these employment carbon footprints (ECFs)
across counties, and analyze their distribution across demographics to shed light on the
equity implications of employment impacts.

For each sector, I calculate every county’s average exposure to fossil fuels per employee,
and aggregate across sectors to obtain an overall ECF for each county in metric tonnes
CO2e per employee. The resulting metric is holistic and continuous, and reflects the relative
vulnerability of the average job in a county to economic shocks from the energy transition.

Importantly, this measure not only captures fossil fuel extraction, but also how these
fuels’ downstream carbon emissions (and therefore the costs of abating them) permeate
throughout the economy. By considering both direct emissions from on-site fossil fuel con-
sumption and indirect and downstream emissions from electricity consumption and fossil
fuel extraction/refining, respectively, I measure how shifts in fossil fuel demand will affect
each point of the energy supply chain and allocate carbon emissions accordingly without
double-counting. This approach provides a more complete picture of which communities are
likely to be vulnerable to the energy transition as its impacts ripple through the economy.

The overall ECF serves as a holistic single summary measure of a community’s employ-
ment vulnerability to the energy transition; however, this approach has its drawbacks. While
impacts of the energy transition will be felt across the economy, policies to mitigate these
impacts and support communities will need to vary significantly by industry. Industries
such as manufacturing may be able to decarbonize their operations, but fossil fuel extraction
sectors will not be able to continue unabated in a low-carbon world—as such, communities
that appear similarly vulnerable through their overall ECFs may require very different policy
interventions depending on the industrial makeup of the local economy (Moniz and Kearney
2022; Carley and Konisky 2020; Ansolabehere et al. 2022). For this reason, I supplement the
overall ECF results with separate ECFs for fossil fuel extraction sectors and all other sectors
(as well as ECFs by sector), enabling policymakers to distinguish between the different types
of impacts communities may face in the energy transition and thereby design targeted policy
approaches that account for these specific circumstances.

This work is especially pertinent given the recent passing of the United States’ Inflation
Reduction Act (IRA). The IRA, passed in 2022, is the first major piece of U.S. climate
legislation to attempt to integrate just transition measures through its definition of “en-
ergy communities,” and has underlined the importance of understanding the distribution of
community employment vulnerability for future policymaking.

I find that existing efforts to identify vulnerable communities, both in the Inflation Re-
duction Act and the literature, exclude several regions of high employment carbon intensity.
These exclusions are significant—they represent the communities at risk of being left behind
if current measures of vulnerability are used to inform transition policy. Some of the regions
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left out of the IRA’s definition are the most carbon-intensive in the country, including coun-
ties with large fossil fuel power generation industries whose ECFs are orders of magnitude
greater than the national average. Other regions that are missed do not have large fossil fuel
industries, but are nonetheless vulnerable to transition shocks due to their high fossil fuel
consumption in industries such as manufacturing, particularly in the western Midwest.

These findings highlight the need for more continuous, economy-wide, and proactive
measures of employment vulnerability to inform just transition policy. While I find that
fossil fuel communities tend to be those with the greatest risk of employment impacts,
focusing exclusively on these industries neglects impacts on other sectors that will still face
economic pressure as the economy decarbonizes. Furthermore, using reactive metrics such
as the unemployment rate limits the delivery of assistance until after jobs have been lost,
instead of proactively supporting communities to transition before employment impacts are
felt. The results also highlight that, despite clear sectoral trends in carbon intensity, there is
significant heterogeneity in employment carbon footprints between firms in the same industry
even when controlling for fuel mix and power grid carbon intensity, and data-driven measures
such as the ECF are needed to capture these differences during policy decision-making.

Just transition policy should consider the cultural, social, and demographic context of
vulnerable communities (Carley, Evans, and Konisky 2018; Ansolabehere et al. 2022), and I
shed light on several intersectional trends to inform place-based approaches to just transition
planning. Rural counties tend to have higher employment vulnerability and rely on carbon-
intensive industries for high-income employment, while urban areas have lower vulnerability
that decreases as average income increases. Carbon-intensive communities tend to be less
educated, particularly in rural counties, and I find that many such regions have little to no
capacity to bridge the skills gaps between “polluting” and “clean” employment in two-year
associate degree-granting institutions such as community colleges.

The derivation of the ECF dataset also allows me to interrogate questions of political
economy in Part II of this thesis relating to the political salience of employment in climate
politics. The issue of jobs is omnipresent in the political discourse around climate and energy
policy, however opposition to such policies also often stems in part from the perception that
they will increase energy prices. To what extent do politicians take account of their con-
stituents’ employment vulnerability when deciding how to vote on climate policy, compared
to other potential economic costs to households? To investigate which factor is more salient
in climate politics, I use a dataset on household carbon footprints (HCFs) produced by Green
and Knittel (2020) as a measure a household’s carbon consumption; in a carbon-penalized
economy, high-HCF households will bear higher costs of the energy transition than low-HCF
households. By analyzing the effects a congressional district’s ECF and HCF have on the
climate voting record of its political representative, I test whether potential jobs impacts
are more of a driver for politicians to vote against climate policy than increased energy and
goods costs at the household level.

I find that the greater the average employment carbon footprint (ECF) of a district, the
lower the likelihood of its representative voting in favor of climate policy, while the house-
hold carbon footprint (HCF) of the district does not have an effect. The correlation of
anti-climate voting with constituency ECF is robust even when controlling for the district’s
support for further congressional action on climate change and political donations from fossil
fuel industries, indicating that legislators are willing to vote down climate policy to avoid
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potential employment impacts in carbon-intensive industries even when their constituents
would rather they vote in favor. Interestingly, this public support for congressional climate
action is correlated with both employment and household carbon footprints, suggesting that
while household consumption decisions are salient for the public, this salience is not trans-
ferred to political representatives.

Despite these correlations, by far the greatest determining factor of legislators’ voting
behavior is their political party. Representing identical districts and receiving the same
campaign contributions from fossil fuel industries, Republican legislators are significantly
more likely to oppose climate policy than Democratic legislators. This brings further empir-
ical evidence to an increasingly observable theory in U.S. political economy—that political
polarization over climate policy is increasingly a function of fights between partisan elites
rather than constituency preferences.

This work makes several contributions to the literature. While previous studies have
analyzed the carbon footprint of household consumption patterns (Green and Knittel 2020),
no study to the author’s knowledge has derived the carbon exposure of U.S. jobs as an
indicator for energy transition employment vulnerability. Similarly, this analysis is the first
to present a (close-to) economy-wide estimation of the distribution of employment risks
that covers sectors far beyond the fossil fuel extraction sectors targeted by the literature
to date. This approach captures geographic, between-sector and within-sector differences
in employment vulnerability in a way which considers both fossil fuel consumption and
production effects. Importantly, I identify vulnerable regions missed by the literature to date,
and demonstrate that the definition of energy communities under the IRA is inadequate in
exclusively identifying at-risk regions. This work also adds to the nascent literature that
seeks to understand employment vulnerability to the energy transition in the context of a
community’s sociodemographic characteristics.

This thesis also contributes to the political economy literature by bringing empirical
results to the topic of the political salience of employment in the context of climate policy.
The employment and household carbon footprint datasets allow me to interrogate the relative
effects of different forms of economic vulnerability to the energy transition on both public
climate opinion and congressional voting behavior with holistic, continuous measures that
have not been used by the literature to date.

The remainder of this thesis is structured as follows. Part I presents my calculation and
analysis of the distribution of employment carbon footprints as well as my assessment of
the energy communities in the Inflation Reduction Act. Part II presents my analysis of the
political salience of employment vulnerability. Each part contains a chapter on the relevant
literature for that analysis, the methodology used, and the relevant results. Finally, Part III
discusses the policy implications of this work and concludes.
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Part I

Employment carbon footprints:
Calculation, distribution & policy

implications
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Chapter 1

Literature Review

1.1 Employment impacts of the energy transition

Communities reliant on polluting industries are particularly vulnerable to economic shifts
arising from the energy transition, similar to those that have previously been disrupted by
automation, technology change, and trade policy (Bergant, Mano, and Shibata 2022). The
closure of polluting facilities has been shown to result in significant job losses and increased
unemployment in local communities, and these employment impacts are often sustained
long after the closure (Burke, Best, and Jotzo 2019). Such disruptions can extend beyond
directly impacted sectors, affecting local tax revenue and causing spillover effects in adjacent
industries (Jolley et al. 2019).

Environmental regulation has been found to contribute to these distributed employment
impacts. Using the U.S. Clean Air Act as a natural experiment, Walker (2011) shows that
stricter environmental regulation results in job destruction by firms, and Walker (2013) finds
that affected employees experience significant wage decreases either through nonemploy-
ment or lower wages following re-employment. Bergant, Mano, and Shibata (2022) found
that while overall employment in an area was not affected following the introduction of the
Clean Air Act, polluting industries in the area tended to shed jobs. Using industry-specific
employment data following the introduction of British Columbia’s carbon tax, Yamazaki
(2017) estimates that, while overall employment and employment in clean industries in-
creased, employment declined in carbon-intensive industries such as manufacturing. Yip
(2018) corroborates this finding, adding that this particularly affects less-educated parts of
the workforce who tend to work in such industries.

Predictions of the future employment impacts of the energy transition consistently show
positive aggregate effects, largely through the emergence of “green” jobs offsetting losses in
“dirty” jobs—however, these often mask the distribution of employment costs, which tend to
be highly concentrated. Computable general equilibrium (CGE) modelling has proven helpful
for predicting intersectoral and regional trends in employment following the introduction of
climate policy, generally finding that climate policy increases overall employment despite job
losses in polluting sectors such as coal mining, manufacturing, and oil and gas extraction
(Nystrom and Lucklow 2014; Brown, Li, and Soni 2020; Scrimgeour, Oxley, and Fatai 2005).
But the inherent limitations of CGE modelling mean that few are able to speak to highly
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localized impacts.
It is also not clear whether predicted growth in green jobs will translate into meaningful

transition pathways for workers displaced from polluting industries. Green jobs tend to be
high-paying, held by workers with more skills and more alternate employment options, less
subject to automation, and be located in urban areas; by contrast, while jobs in polluting
industries are often similarly high-paying, they tend to be low-skilled, located in rural areas,
and held by those with fewer employment alternatives (Carley and Konisky 2020; Bergant,
Mano, and Shibata 2022; Vona et al. 2018). For example, many workers in coal communities
began their careers before completing high school, limiting their adaptability in the face of
economic disruption (Carley, Evans, and Konisky 2018). Furthermore, Carley and Konisky
(2020) note that both green and polluting jobs tend not to be held by women or people of
color, and Ash and Boyce (2018) finds that while minority populations disproportionately
bear the environmental and health burdens of polluting industries, they do not see equivalent
employment benefits. These distributional justice concerns have given rise to increased
interest in the topic of a “just transition” in order to secure the futures of displaced workers.

1.2 Political economy of the just transition

Highly concentrated employment costs of the energy transition present a collective action
problem in which those bearing the costs (in this case, workers in carbon-intensive indus-
tries) are able to effectively organize and block or hinder progress towards the “public good”
the energy transition provides both environmentally and economically (Vona 2019). Coal
communities may remain politically opposed to energy and just transition policies even after
industry closures threaten their livelihoods (Cha 2020). Such strong opposition has been
shown to override partisan politics, with communities switching political allegiances after
perceiving their previously preferred party to be hostile to polluting industries and the jobs
they represent (Gazmararian 2022b).

Support or opposition to decarbonization is often perceived to be immovably based on
a community’s ideology of being climate change “believers” or “skeptics,” however a growing
literature indicates that this is not the case. Rather, political support is highly sensitive to
the specific economic circumstances of a community, and perceived harms can vary signif-
icantly in their nature between different carbon-intensive communities (Graff, Carley, and
Konisky 2018). Tvinnereim and Ivarsflaten (2016) find that while fossil fuel employees op-
pose climate policies that are costly to their industries, they are equally likely to support
policies that provide compensation and/or alternate employment pathways. When assessing
how just transition policy design might affect individuals’ support for climate policy in coal
country, Gazmararian (2022a) finds that “a majority ... would move away from fossil fuels
in exchange for resources that smooth the cost of transition.” Including social and economic
programs in climate policy also expands their support amongst the broader public, partic-
ularly amongst people of color (Bergquist, Mildenberger, and Stokes 2020), and Diamond
and Zhou (2022) find that a “job creation” framing increases public support for clean energy
policies. Kono (2020) finds that these effects are salient with legislators, showing that con-
gressional representatives from districts with carbon-intensive employment were less likely
to vote against climate policy if their state offered generous unemployment benefits.
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In addition to economic disruption, just transition policies must also address the dis-
ruption by the energy transition to a community’s sense of place and identity. Polluting
industries are often intertwined into the social fabric of communities in a way that makes
them central to their culture and identity (Della Bosca and Gillespie 2018). Carley, Evans,
and Konisky (2018) note that many U.S. coal communities are in fact aware and accepting of
the energy transition but regard its disruption to their cultural fabric as a fundamental chal-
lenge. This presents a difficult problem for policymakers during the energy transition—as
put by Carley, Evans, and Konisky (2018), “arguably it is easier to implement a job train-
ing program through investment of financial resources than it is to change long-standing
mindsets of individuals with deep ties to a place and economic past.”

Evidence suggests that many existing just transition policy measures have failed to ade-
quately integrate both local economic and sociocultural factors into their design. Krawchenko
and Gordon’s (2021) international review on just transition policies found that those focused
on economic development were poorly integrated with workforce development and tended to
display an urban bias, while job-focused initiatives tended not to address societal concerns
such as identity and place. Carley, Engle, and Konisky (2021) find that the majority of U.S.
transition programs focus on infrastructure investment (particularly in renewable energy)
rather than investing in workforce development, and also highlight that there is little exist-
ing literature evaluating the success of these programs, or indeed how one even measures this
success. The United States’ Inflation Reduction Act is one such policy that targets transi-
tion assistance via infrastructure investment; its mechanisms are discussed in the following
section.

1.3 The Inflation Reduction Act, “energy communities”
& previous estimates of transition vulnerability

The Inflation Reduction Act (IRA) is the most significant piece of U.S. climate legislation in
history and is unique in its provisions to tie many of its incentives to labor, project location
and supply chain requirements. One such requirement is that projects receiving one of the
policy’s tax credits can see their credit increased by 10% if the project is located within
an “energy community,” broadly conceived as those that will be (or have been) impacted
by a shift away from fossil fuels.1 The IRA’s definition of an energy community comprises
brownfield sites, metropolitan statistical areas (MSAs) or non-MSAs with high employment
or tax revenue from fossil fuel industries along with unemployment higher than the national
average, and census tracts in which a coal mine has closed and/or a coal-fired power plant has
recently been downsized or closed, as well as the tracts directly adjacent to these tracts2 (In-

1. It should be noted that, as suggested in the previous section, tax credits for infrastructure and project
investments do not necessarily translate into improved outcomes for the communities in which they are
located. As such, it is yet unclear whether the energy community provisions in the IRA will be effective at
supporting a just transition for the communities it identifies.

2. Brownfield sites are properties with abandoned, often polluted land, as determined by the U.S. Envi-
ronmental Protection Agency. The U.S. Department of Treasury considers “fossil fuel employment” to be
any employment in the following NAICS codes: 211 (Oil & Gas Extraction), 2121 (Coal Mining), 213111
(Drilling Oil and Gas Wells), 213112 (Support Activities for Oil & Gas Operations), 213113 (Support Ac-
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teragency Working Group on Coal & Power Plant Communities & Economic Revitalization
2023). Academia, policy research organizations and the private sector alike have attempted
to identify areas that would classify as energy communities under the IRA (Raimi and Pesek
2022; Lococo et al. 2022; Isaac 2022), and as of mid-2023 the U.S. Treasury Department and
Internal Revenue Service have released formal guidance on the language in the IRA defining
energy communities as well as an early stage online mapping tool of qualifying energy com-
munities through the Interagency Working Group on Coal & Power Plant Communities &
Economic Revitalization (hereafter, “the IWG”).3

While the integration of just transition strategies into major climate policy should be
applauded, the specific definitions and binary classification of energy communities in the
IRA have raised questions over the act’s ability to target truly vulnerable parts of the
country. Raimi and Pesek (2022) map qualifying sites under various interpretations of the
language, finding that the provisions could cover between 42 and 50% of U.S. land area and
are “unlikely to specifically support the communities that are or will be most heavily affected
by a decline or cessation of fossil fuel activities.” They produce an alternate definition based
on modified thresholds on the percent of fossil fuel employment and local tax revenue and an
expanded definition of coal communities. Raimi and Pesek (2022) particularly critique the
use of metropolitan statistical areas as the unit of analysis for the fossil fuel employment and
tax revenue, finding this granularity to be too coarse and proposing county-level estimates
instead.

In a similar vein to Raimi and Pesek’s (2022) analysis, a small but emerging literature
has focused on estimating and mapping the vulnerability of communities to the energy
transition for the purpose of informing the design of targeted policy. Within this literature,
“vulnerability” has broadly been conceived as some combination of exposure to economic
shocks or policy changes and socioeconomic factors that may exacerbate or mitigate this
exposure. Carley et al. (2018) present a conceptual framework that defines a community’s
transition vulnerability as a function of its exposure, sensitivity, and adaptive capacity to
negative impacts of energy policies, and derive a “vulnerability score” combining measures
of each of these dimensions. In line with their analysis on IRA energy communities, Raimi
(2021) focuses on employment vulnerability by identifying vulnerable counties based on their
fossil fuel employment share. Similarly, Snyder (2018) derives a vulnerability index based
on the percent of fossil fuel employment in a county, along with its child poverty rate, rate
of educational attainment and degree of geographic isolation.

In an extension of Carley et al.’s (2018) work on vulnerability frameworks, Raimi, Carley,
and Konisky (2022) apply the framework to identify vulnerable U.S. fossil fuel communities.
They measure exposure as the level of fossil fuel extraction, refining, and power generation
in a county, neglecting levels of employment due to concerns over data suppression for rural
areas. In line with previous studies, they find that counties in Appalachia, Texas, the Gulf

tivities for Coal Mining), 32411 (Petroleum Refineries), 4861 (Pipeline Transportation of Crude Oil), and
4862 (Pipeline Transportation for Natural Gas). Treasury and IRS rules consider any census tract in which
a “coal-fired generating unit has been retired after December 31, 2009” to qualify as an energy community;
as such, it is possible for plants that are still operating to qualify if a part of the plant (e.g. one of four
generating units) was closed in that timeframe (U.S. Internal Revenue Service and U.S. Department of
Treasury 2023).

3. The tool is available at https://energycommunities.gov/energy-community-tax-credit-bonus/.
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Coast, and the Intermountain West are likely to experience the most significant impacts,
and also note that the inclusion of socioeconomic indicators adds a layer of insight into the
distribution of vulnerability that is missing from analyzing exposure alone.

The present paper focuses on estimating the distribution of employment carbon footprints
as a measure of employment vulnerability. It builds on work by Green and Knittel (2020) that
used household consumption data to determine granular household carbon footprints and
evaluate the distributed effects of climate policy across them. Few studies have attempted
a similar analysis with employment. One exception is Wagner et al.’s (2020) analysis of
European manufacturing jobs, which calculates the ratio of direct carbon dioxide emissions
to the number of employees in European firms, finding a large degree of variability between
firms and a long-tailed distribution. However, this paper did not use these footprints to assess
the vulnerability of employment to the energy transition, and excluded indirect emissions
from electricity consumption as well as other carbon-intensive sectors from its analysis.

While the studies above address similar goals to this paper, my approach is novel in
several ways. Firstly and most significantly, while the above papers have for the most
part narrowly focused on fossil fuel extraction industries, I present a close-to economy-wide
assessment of vulnerable employment in the United States. This is important given that
the effects of economic shifts away from fossil fuels will be felt not only by those producing
the fuels but those consuming them, such as industrial facilities—my analysis sheds light
on these between-sector differences. Secondly, computing a carbon footprint as a measure
of employment vulnerability better enables me to capture within-sector differences between
firms in both the absolute level of pollution and firm efficiency. Thirdly, by accounting for
direct emissions from fossil fuel consumption, indirect emissions from electricity consumption,
and future emissions from fossil fuel production, my measure of employment vulnerability
anticipates supply chain effects that might extend impacts of the energy transition beyond
those directly emitting carbon dioxide. And finally, my cross-sectoral analysis allows me
to dissect the socioeconomic distribution of employment vulnerability, an under-explored
area in the literature. These advantages make the estimates attractive for policymakers in
determining the distribution of employment vulnerability to the energy transition, as well
as a measure of exposure that could be complemented by sensitivity and adaptive capacity
metrics in future academic work.
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Chapter 2

Methodology

My aim is to estimate the carbon exposure of as much of the United States economy and
workforce as possible. For a given sector, this requires the availability of both energy con-
sumption and employment data at county level granularity. My analysis therefore considered
the following sectors, for which such data were publicly available: agriculture,1 construction,
manufacturing, mining, commercial sectors,2 and fossil-fuel power generation. These sectors
were chosen on the basis of their relative contributions to overall U.S. carbon emissions, their
contributions to overall U.S. employment, and the availability of energy consumption/pro-
duction and employment data at high sectoral and geographic granularity. The sectors
covered in the analysis account for 86% of average total U.S. employment between 2016–
2020, corresponding to 60% of U.S. carbon emissions from fossil fuel combustion across that
timeframe and 94% of such emissions outside of the transportation sector3 (U.S. Bureau of

1. My analysis of agricultural emissions consisted only of emissions from stationary energy consumption
(i.e. fuel combustion in machinery, generators etc.) and did not consider livestock, land-clearing or soil
management emissions. It should be noted that these emissions categories not covered in the analysis
comprise more than 90% of U.S. agricultural emissions (U.S. Environmental Protection Agency 2023b)—
however, I also note that, given the significance of agriculture in U.S. politics, it is less than certain whether
such emissions categories would be subject to future U.S. emissions reductions policies or exempted, as is
the case in the European Union’s Emissions Trading Scheme.

2. Commercial sector emissions were limited to those for which public commercial building energy con-
sumption data were available. The covered building types were: offices, retail, warehousing & storage,
restaurants, accommodation, schools, hospitals, and outpatient facilities. These are the building types cov-
ered by NREL’s ComStock model, and comprise roughly 65% of U.S. commercial building floor area.

3. While on-site transportation emissions are captured within the agriculture, manufacturing, mining and
construction sectors (i.e. those calculated using the NREL Industrial Energy data Book dataset), a more
holistic analysis may have included transportation for work activities (e.g. flights for business) in jobs’ carbon
footprints. However, doing so would require a significant expansion of the “Scope 3” emissions I consider
in my analysis, not to mention considerable additional data on such emissions, and it is not clear how such
transportation emissions could be attributed to specific counties in my analysis, nor how this would translate
into an increase in employment vulnerability. Similarly, while auto manufacturing jobs will likely be affected
as consumers transition from internal combustion engine vehicles to electric vehicles, incorporating these
differences would compel a much broader incorporation of Scope 3 emissions across the entire economy into
the ECF than current data allow. Furthermore, it is not clear whether these transition costs will be borne
by firms, nor is it clear whether the employment impacts of such a transition will be broadly positive or
negative for the auto manufacturing industry (Curtis, O’Kane, and Park 2023). Given these challenges,
as well as the fact that emissions from personal transportation (including commuting for work) are more
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Labor Statistics 2023a, 2023b; U.S. Environmental Protection Agency 2023b). Figure 2.1
illustrates the scope of my analysis and theoretical framework of the value chain of energy
consumption in the U.S. economy used.

At a high level, my methodology consisted of the following steps. First, I assembled
datasets on energy consumption/production as well as employment for each of the afore-
mentioned sectors, and used these to determine the direct and indirect carbon emissions
from firms in each sector and each county. Next, I computed the “employment carbon foot-
print” of these firms across direct and indirect emission “scopes.” I then used the carbon
footprints to calculate the social cost per employee borne by firms, using the latest values for
the social cost of carbon (proposed by the Environmental Protection Agency in late 2022)
as a shadow price. I then assess the extent to which differences in carbon footprints are ex-
plainable by between-sector differences versus within-sector differences. Finally, I analyzed
how both employment carbon footprints and their social costs are distributed across geog-
raphy, demographic, and socioeconomic status using American Community Survey (ACS)
data. The following sections describe each of these steps in more detail.

suitable for measures of personal economic vulnerability rather than employment vulnerability, the exclusion
of the transportation sector seems reasonable.
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Notes: This figure depicts the model of the U.S. economy I use in this paper. Each arrow represents fuel use. Each colored box represents a sector or sectors that I consider in
the analysis. The rest of this paper assumes that all energy flows follow the schematic outlined here. Note that the residential and transport sectors are out of scope for this
work.

Figure 2.1: Theoretical framework of energy consumption across U.S. industries used in determining ECFs.
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2.1 Data sources

Employment data are often suppressed at high geographic and sectoral granularities to avoid
publishing individually identifiable information and preserving confidentiality. Therefore,
multiple datasets were needed on both the energy consumption/production side and the
employment side of my analysis to cover all the targeted sectors. Table 2.1 summarizes
the sectors covered in the analysis as well as the data used in calculating their employment
carbon footprints.

The primary dataset of employment figures used in my analysis was the Quarterly
Workforce Indicators (QWI) dataset (U.S. Census Bureau 2023b) from the Longitudinal
Employer-Household Dynamics (LEHD) program, a partnership between the Census Bu-
reau and U.S. states to fill gaps in public economic data with employment data at 2-, 3-
and 4-digit NAICS code granularities.4 This dataset was chosen due to its sectoral and geo-
graphic granularity (data are available at the county level), and its national coverage. While
the QWI occasionally exhibit data suppression at such high granularities, this suppression
is less extensive than in similar datasets such as the Bureau of Labor Statistics’ Quarterly
Census of Employment and Wages (QCEW). The effects of suppression in the QWI are
limited to the calculation of sectoral ECFs—overall ECFs are calculated using total employ-
ment figures which are not suppressed for any county (see Equation 2.7). For the fossil-fuel
power generation sector (NAICS 221112), data from the U.S. Energy & Employment Report
(USEER) were used NASEO, EFI, and BW Research 2020, as neither the QWI nor QCEW
provide county-level employment data at the 6-digit NAICS code level without significant
data suppression.

The National Renewable Energy Laboratory (NREL) Industrial Energy Data Book (McMil-
lan and Narwade 2018) dataset of county energy estimates was used to determine fuel and
electricity consumption in the manufacturing, construction, agriculture and mining sectors.
NREL’s End-Use Load Profiles for the U.S. Building Stock dataset (Wilson, Parker, and
Frick 2021), derived using the ComStock commercial building energy consumption model,
was used for the energy consumption of commercial buildings. The Energy Information
Administration (EIA) dataset on power plant emissions by plant and region (U.S. Energy
Information Administration 2021b), constructed using the annual Form EIA-860 and Form
EIA-923 surveys, was used to calculate the direct emissions of the electric power generation
sector. A private oil and gas database, WellDatabase, was used to compile annual oil and gas
production figures from all U.S. wells and used to calculate the indirect emissions of the oil
and gas sector (WellDatabase 2021). Finally, the EIA Detailed Data from Form EIA-7A and
the U.S. Mining Safety and Health Administration U.S. Energy Information Administration
2021a was used to determine annual coal production and therefore indirect emissions of the
coal mining sector, as well as provide employment figures for employment carbon footprint
calculations in this sector.

4. The North American Industry Classification System (NAICS) is the hierarchical standard for classifying
sectors, and uses codes ranging from 2 to 6 digits in length to do so, with the granularity of classification
increasing with the number of digits.
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Table 2.1: Summary of sectors and corresponding data sources used in deriving ECFs.

Sector Energy data
source Year Employment

data source NAICS granularity

Mining LEHD QWI +
EIA-7A

6-digit within NAICS 21, aggre-
gated to 2- and 3-digit.

Manufacturing NREL Industrial
Energy Data Book 2016 6-digit within NAICS 31-33, ag-

gregated to 2- and 3-digit.

Construction 3-digit within NAICS 23, aggre-
gated to 2- and 3-digit.

Agriculture LEHD QWI
4- to 6-digit agricultural5 within
NAICS 11, also aggregated to 2-
digit.

Commercial
buildings ComStock 2018 Varied6

Oil & gas
production7 WellDatabase 2020 NAICS 211

Fossil-fuel power
generation

EIA Emissions by
Plant and Region 2019 USEER NAICS 221112

Coal mining EIA-7A 2020 EIA-7A NAICS 2121

2.2 Deriving Employment Carbon Footprints (ECFs)

The key metric I target is the employment carbon footprint (ECF), which I define generally
as the average carbon emissions from a set of firms divided by the total number of employees
in those firms. Equation 2.1 shows the general formulation of the ECF:

ECF =

∑
f Qf · eff

E
, (2.1)

where f denotes fuel type, eff denote the CO2 emissions factor of a given fuel, Qf denotes
the total quantity of fuel f consumed by firms, and E denotes total employment.

5. The NREL Industrial Energy Data Book considered only crop and animal production sector, and
excluded hunting & fishing as well as forestry & logging.

6. ComStock gives commercial building emissions by building type rather than NAICS code. Each building
type was mapped onto a NAICS code to obtain the corresponding employment data. The building types and
corresponding allocated NAICS codes considered were: offices (NAICS 51-55, 92, 561, 425), retail (NAICS
44-45), warehousing & storage (NAICS 493, 423, 424), restaurants (NAICS 722), accommodation (NAICS
721), schools (NAICS 6111), hospitals (NAICS 622), and outpatient facilities (NAICS 621).

7. Note that oil & gas production (NAICS 211) and coal mining (NAICS 2121) both fall within the
“Mining” sector (NAICS 21) according to the NAICS standard. The separate energy data shown here refer
to the data used to calculate the Scope 3 emissions embedded in the produced fossil fuel products—on-site
emissions are covered in the analysis of the mining sector.
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While the direct production of carbon emissions by a firm will clearly be penalized by
climate policies such as a carbon price, actions taken by a firm that result in carbon emissions
elsewhere are likely also to be penalized indirectly. In greenhouse gas accounting, direct
carbon emissions are referred to as “Scope 1” emissions, while indirect emissions can be
categorized as either “Scope 2”—the emissions associated with the consumption of electricity
produced using fossil fuels—or “Scope 3”—the emissions that occur somewhere else in the
firm’s value chain (GHG Protocol 2011). In order to faithfully reflect the impact of climate
policy on jobs throughout the energy supply chain, I consider Scope 1, Scope 2 and Scope
3 emissions, with some caveats. I calculate Scope 1 emissions using data on the direct
consumption of fossil fuels by firms, and calculate Scope 2 emissions using the consumption
of electricity by firms in combination with the average carbon intensity of the power grid
region they operate within.8 Scope 3 emissions are notoriously difficult to measure, and the
degree to which climate policies affect firms based on their Scope 3 footprint is varied and
not well understood. I assume that the Scope 3 emissions that will have the most significant
impact on firms are the downstream emissions associated with the production of fossil fuels,
so I only consider the emissions embedded in fossil fuel products produced by the oil and gas
and coal mining sectors to be “Scope 3” in my analysis. It is important to note that while
for the purposes of this work I will refer to these embedded emissions as Scope 3 emissions,
this is actually an incomplete definition according to international greenhouse gas accounting
standards, which consider all indirect emissions in the entire value chain.

For completeness, my results include separate ECFs for each scope of emissions. However,
it is of interest to produce an aggregate measure (an “overall” ECF) that reflects a county’s
relative carbon exposure across all scopes. Simply aggregating carbon emissions in a firm’s
value chain to obtain an overall ECF would result in double-counting between scopes. For
example, if in a given county there is a facility that produces natural gas (Scope 3 emissions),
a power station that burns this natural gas to produce electricity (Scope 1 emissions), and
a commercial facility that consumes this electricity (Scope 2 emissions), summing these
emissions would be counting the same CO2 emissions three times. In reality, only the power
station’s operations are directly emitting carbon dioxide, but any measures to reduce the
emissions of the station would impact the entire supply chain.

To simulate how emission abatement costs will be spread across these scopes (and avoid
double-counting emissions), I conduct a pass-through analysis that simulates how fossil fuel
demand and supply will respond to shifts in fossil fuel prices. I weight the emissions at
each scope by an “effective pass-through rate,” a function of the price elasticities of the fuels
being produced/consumed. Using this, I calculate the “effective” carbon emissions of a firm
as the portion of the firm’s emissions that would “see” a full price on carbon. I use this
measure as a proxy for the exposure of the firm to the impacts of climate policies, using
a carbon tax as a representative policy. To calculate the effective emissions, I consider the
incidence rate that the firm would bear if a carbon tax was implemented, based on the
price elasticities of the energy products it consumes/produces and the sector within which
it operates. I then calculate the effective emissions as the firm’s absolute emissions (direct

8. The emissions factors used in the Scope 2 emissions calculation are from the Department of Energy’s
Emissions & Generation Resource Integrated Database (eGRID) (U.S. Environmental Protection Agency
2023a), which estimates the carbon intensity of the electricity grid in 27 eGRID subregions across the U.S.
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or indirect) from a given energy product multiplied by the incidence rate for that product.
Under this approach, the overall ECF technically becomes a measure of a job’s vulnerability
to emissions-penalizing policies specifically, as under these policies we would expect supply
and demand to shift according to the price elasticities used in my calculation. An employee’s
overall ECF is therefore wholly representative of the employee’s exposure to cap-and-trade
policies and carbon taxes as these policies result in direct losses in surplus to consumers
and producers of fossil fuels. It is also a good approximation of exposure to other indirect
carbon pricing mechanisms, such as emissions/clean energy standards. This method is less
representative of the potential impact on dirty jobs posed by subsidies to cleaner industries,
as such policies do not directly impact the surplus of carbon-intensive firms but rather
squeeze these firms from the market as cleaner firms enter. Acknowledging this limitation,
the use of incidence to divide carbon exposure across the supply chain is still an effective
proxy for policy exposure while avoiding double counting.

As is illustrated in Figure 2.1, my conception of the energy product value chain includes
several vertical supply chains (e.g., the supply chain of electricity, from fossil fuel production
to electric power generation to electricity consumption). I model the interactions between
firms and consumers at each segment of these supply chains using the standard double
marginalization problem framework, in which upstream and downstream firms price non-
cooperatively and downstream firms incorporate the margins of upstream firms into their
marginal costs (Spengler 1950). As has been done in the literature on vertical supply chain
tax incidence (Rozema 2018; Weyl and Fabinger 2013), I do not specify a particular model
of firm interactions.

Given the definition outlined above, the rate of incidence is equivalent to the effective
pass-through rate9 ρeff of a carbon tax onto consumers for a given energy product. I seek
to calculate the effective pass-through rate ρeff,i on firms at each step i of the vertical
supply chains I consider, such that the social cost of carbon (SCC) borne by these firms is
ρeff,i · SCC, where

∑
ρeff,i = 1. The effective pass-through rate onto end-use consumers is

calculated using the standard formula for pass-through rate, outlined in Equation 2.2.

ρeff,cons =
ϵS,cons

ϵS,cons + ϵD,cons

, (2.2)

where ϵS,cons is the price elasticity of supply to end-use consumers and ϵD,cons is the price
elasticity of demand for end-use consumers, for a given energy product in a given sector.10

The effective pass-through rate onto firms is therefore (1− ρeff,cons), and the effective pass-
through rate onto downstream firms is the portion of firm burden borne by the downstream
firms multiplied by the effective pass-through rate onto firms, as in Equation 2.3:

ρeff,d = Id(1− ρeff,cons), (2.3)

where Id is the portion of firm burden borne by downstream firms. I estimate Id as the
relative incidence between upstream firms (i.e. wholesale producers) and downstream firms

9. I define these pass-through rates such that they do not necessarily correspond to relative changes in
wholesale or retail prices, as is the definition elsewhere in the literature (Rozema 2018), but rather the
relative change in a firm’s margin. I use the term “effective pass-through rate” to highlight this distinction.

10. The elasticity figures and assumptions used in this analysis are given in Appendix A.1 and Table A.1.
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(i.e. wholesale consumers), calculated in Equation 2.4 the same way as the effective pass-
through rate for end-use consumers in Equation 2.2:

Id =
ϵS,u

ϵS,u + ϵD,d

, (2.4)

where ϵS,u is the price elasticity of supply from upstream producers to downstream firms and
ϵD,d is the price elasticity of demand for downstream firms. The effective pass-through rate
onto upstream firms (i.e. producers) is calculated as in Equation 2.5:

ρeff,u = 1− ρeff,d = 1− Id(1− ρeff,cons). (2.5)

I use the logic outlined above to calculate the effective pass-through rate at every stage of
the value chains outlined in Figure 2.1, for all covered fuel types and sectors. I then calculate
the elasticity-adjusted employment carbon footprint for a given sector s in a given county c
according to Equation 2.6:

ECFovrc,s =
1

Ec,s

(∑
f

ρeff f,s ·Qc,s,f · eff

)
Scope1

+
(
ρeff elec,s ·Qelec

c,s
· efelec

)
Scope2

+

(∑
fossil

ρeff fossil,s ·Qfossil,prod
c,s

· effossil

)
Scope3

 ,

(2.6)

where f is a fuel burnt to produce direct CO2 emissions, elec refers to electricity consumed
by a firm, fossil refers to the production of either coal, oil or natural gas, and ρeff s is the
pass-through rate of a carbon tax in sector s for a given energy product. Finally, I conceive
the final overall ECF for a county as the sum of the effective emissions across all covered
sectors divided by the total employment in the county11, as in Equation 2.7:

ECFovrc =

∑
sECFovrc,s · Ec,s

Ec

. (2.7)

Given that several measures are described here and presented in the results, it is useful
to establish the nomenclature used in the rest of this thesis. “Overall ECF” refers to the
aggregate, elasticity-adjusted measure presented in Equation 2.7, ECFovrc, representing the

11. Note that the denominator in Equation 2.7 is the overall employment of the county (as given by the
QWI), as opposed to the total employment in covered sectors. This decision was taken for two reasons.
Firstly, it may be the case (particularly in urban sectors) that a county has a large population working
in non-covered sectors with low carbon intensities, and a very small population working in covered sectors
with high carbon intensities. In this case, only counting employment in covered sectors would mark this
county as highly carbon intensive, while in reality the county’s overall carbon intensity would be quite
low. Secondly, there are several datapoints for which disaggregated employment data is suppressed for
confidentiality; counting covered employment only for these datapoints would result in overly high ECFs,
as a sector’s emissions would be counted but their corresponding employment figures would be missing.
Using total county employment instead of covered county employment had no material impact on the overall
distribution of ECFs across counties, and reduced the average county’s ECF by roughly 20%. Given that
most of the excluded sectors are low carbon intensity, this seems appropriate.
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total abatement costs across all sectors accrued in county c per employee in that county.
This is the central measure of this analysis. “Sectoral ECF” refers to the elasticity-adjusted
measure derived in Equation 2.6, ECFovrc,s, representing the aggregate abatement costs
per employee for a given sector s, accounting for all emission scopes. Finally, “Scope 1
ECF,” “Scope 2 ECF,” and “Scope 3 ECF” refer to the non-adjusted ECFs for each scope
of emissions, calculated according to Equation 2.1.12 These Scope ECFs are presented for
completeness, to add validity without relying on the results of the pass-through analysis.

2.3 Calculation of social costs

I use the ECFs derived above to assess how the social costs of carbon-intensive jobs are
distributed. To do so, I use the EPA’s updated social cost of carbon (SCC) figures introduced
in its recent proposal rule on regulating methane emissions. The EPA’s central estimate is
$190 per metric tonne (or around $172 per short ton) of carbon dioxide. I apply this SCC in
combination with the effective pass-through rates derived earlier to calculate the social cost
borne by firms in a given sector and county, as in Equation 2.8:

social costc,s =
∑
f

ρeff f,s · SCC ·Qf,s,c. (2.8)

The total social cost borne by each employee in a given county is given by Equation 2.9.

social cost per employeec =

∑
s

∑
f ρeff f,s · SCC ·Qf,s,c

Ec

. (2.9)

2.4 Explained variance analysis

There are several variables that may influence the degree of ECF variation between counties.
Clearly, some sectors are more carbon intensive than others, but there are also differences
across counties in the carbon intensity of the grid, and identical firms in the same industry
may emit at different rates due to operational or productivity differences. I perform an
explained variance analysis using regression techniques to understand the extent to which
each of these factors explains the observed variance in ECF across counties.

Understanding the extent to which different variables contribute to a county’s Overall
ECF is important for three reasons. Firstly, it may be helpful in developing policy approaches
to reduce employment vulnerability. For example, if the carbon intensity of the grid was
found to be highly correlated with counties’ Overall ECFs, one might conclude that policy
measures to promote electricity decarbonization are a pragmatic way to reduce employment
vulnerability. Secondly, it may better enable policymakers to target at-risk communities in
circumstances where the requisite data are not available or implementable. Measures like
the ECF are difficult to legislate; instead, targeted policy often singles out populations based
on their geographic, economic or sociodemographic characteristics. Therefore, if variables

12. Technically, Scope ECFs for county c are calculated as ECFc,scope =
(∑

s

∑
f Qc,scope,s,f · eff

)
/Ec.
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are highly correlated with Overall ECFs, one might be able to use them as proxies for
employment vulnerability. The analysis here allows me to further evaluate the efficacy of
the IRA’s energy communities definition, and determine whether the criteria it uses are the
right ones or whether others should be used in future policy efforts.

Finally, if a significant share of the variance in Overall ECFs remains unexplained, this
may indicate substantial differences in the emissions efficiency of firms. It is helpful to frame
this analysis in the context of production economics. Firms have different productivities when
they produce different levels of output with the same set of inputs, typically conceived as
capital and labor (Syverson 2010). Total-factor productivity (TFP) measures productivity
with respect to all inputs, with differences in TFP representing shifts in the production
function of a firm, conceptualized generally as:

Yt = At · f(Kt, Lt), (2.10)

where Yt, Kt and Lt are output, capital and labor, respectively, and At is the TFP. TFP
can therefore be estimated using regression analysis by controlling for capital and labor.
Assuming a Cobb-Douglas production function and taking the logarithm, we get:

log Yt = β0 + βk logKt + βl logLt + ε, (2.11)

in which case TFP = At = β0 + ε.
Researchers have extended these concepts to carbon emissions efficiency in attempts to

understand performance differences between firms in emissions intensity (Li et al. 2022).
This work estimates the “total-factor carbon emissions efficiency” (TFCEE), which measures
the extent to which a firm minimizes CO2 emissions while maximizing output, controlling
for capital, labor and energy inputs (Zhou, Ang, and Han 2010; Li et al. 2022).

According to this literature, ECFs could be categorized as a single-factor carbon emissions
efficiency measure, but there may also be TFCEE differences between counties and within
sectors that are not immediately obvious in the ECFs. While I do not seek (nor possess the
adequate data) to rigorously derive TFCEE values in this analysis, it is useful to understand
how much of the variance in ECFs is unexplained by the data and may be due to differences
in carbon emissions performance between otherwise identical firms.

Broadly, I split ECF differences into between-sector differences and within-sector differ-
ences. Between-sector differences arise from the innate carbon intensity of the industry—coal
mining clearly has a higher carbon footprint than retail, and one would expect a county with
a large coal mining industry to have a greater ECF than one that relies mostly on retail
activity. In the absence of within-sector differences, one would expect any variance in ECF
between counties to be wholly explained by between-sector differences.

Within-sector differences, on the other hand, comprise differences in carbon intensity
between firms in the same sector. These may be due to the technology and fuel mix used,
geographic factors such as the carbon intensity of the electricity grid, or differences in total-
factor carbon emissions performance. Note that differences in carbon emissions performance
are unobservable; therefore, if I control for both between-sector differences and all observable
within-sector differences, the unexplained variance should (in theory) be attributable to
carbon emissions performance differences.
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To conduct the explained variance analysis, I target six sets of independent variables,
each representing a different potential explanatory factor. First, I control for between-sector
differences by calculating workforce allocation across each of the eight high-level sectors as
the share of total county employment in each sector s (xc,s = Ec,s/Ec). I also control for
demographic differences between counties. While these fall outside of my production eco-
nomics framing of the variance in Overall ECFs, such characteristics are often used as proxy
variables in order to target policies (for example, unemployment rate is used as a criterion in
the IRA energy communities definition). The demographic variables I consider are: average
annual personal income; minority (i.e. non-white and/or Hispanic) population share; rate of
tertiary educational attainment; unemployment and poverty rates; and population density
per square mile. I also include an interaction term between population density and annual
personal income, as correlations between income and Overall ECF differ between urban and
rural counties (see Section 3.3.2). In addition to demographic variables, I separately control
for two political variables: percent of county that voted Democratic versus Republican in
the 2020 presidential election, and whether Republican was the preferred party of the state.
While these are likely highly correlated with demographics, it is useful to separate the two
to determine which sets of variables might be better proxies for employment vulnerability.

I break within-sector differences into three sets of variables: power grid carbon intensity
(efelec), 30-year annual average heating and cooling degree days13 (HDD and CDD, respec-
tively) to control for climatic differences between counties, and fuel mix. I control for fuel
mix by defining an aggregate variable EFss, which I define as the average carbon intensity
of fossil fuel consumption for subsector ss in tons CO2e per MMBtu, or the subsector’s total
Scope 1 emissions divided by its total energy consumption i.e. EFss =

∑
f (eff ·Qss,f )/Qss.

This aggregate variable is a summary measure of the fuel mix of the subsector in a given
county. I purposefully exclude emissions from electricity consumption from the numerator,
as this is captured by efelec.

I conduct a separate linear regression for each set of variables, with the logarithm of
Overall ECF, logECFovr, as the outcome variable, to determine the correlation between
ECFs and each factor individually. I then combine the sets of variables in a stepwise model,
first controlling for workforce allocation, then demographics, power grid carbon intensity,
heating and cooling degree days, and fuel mix. In this model, I include interaction terms
between efelec and xs, efelec and heating/cooling degree days, and xs and EFss values within
the same high-level sector (see Table B.1 in Appendix B for subsectors considered). Log
transformations were applied to the independent variables where appropriate.

For each regression I record the R2 values to see how much more of the variance is
explained with each additional set of controls. The residuals of each regression represent the
differences in carbon footprints that are not explained by sectoral allocation, demographics
and politics, grid carbon intensity, climatic differences, or fuel mix.

13. Obtained from the NOAA’s U.S. Climate Normals (1981-2010) dataset (Anthony Arguez et al. 2010).
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2.5 Analyzing distributive effects

The exposure to economic shocks arising from the energy transition is captured in the Overall
ECF measure. However, it is important to understand how this exposure is correlated with
socioeconomic and demographic characteristics that might affect a community’s sensitivity
and adaptive capacity and therefore exacerbate economic impacts (Carley et al. 2018). I
assess how Overall ECFs are distributed across urbanity, population density, income, race,
educational attainment, workforce development capacity and political affiliation.

Income, population, race, and educational attainment data for each county was obtained
from the U.S. Census Bureau’s American Community Survey (U.S. Census Bureau 2023a).
Measures of urbanity were assigned to each county using the nine Rural-Urban Continuum
Codes defined by U.S. Department of Agriculture Economic Research Service (ERS). Coun-
ties were assigned a Rural-Urban Continuum Code (RUCC) between one (most urban) and
nine (most rural), with counties with an RUCC greater than four considered “rural” as is
common practice. Political affiliation was assessed by share of total votes in the 2020 U.S.
presidential election using data from the MIT Election Lab (MIT Election Data and Science
Lab 2020).

I also explore the extent to which areas of high employment vulnerability might be colo-
cated with areas that have limited capacity for workforce development. It is anticipated that
two-year community college institutions will have a significant role to play in helping workers
transition from polluting industries to high-skilled employment (Ansolabehere et al. 2022),
so I take data from the National Center for Education Statistics’ Integrated Postsecondary
Education Data System (IPEDS) on the number of and enrollment in two-year postsecondary
institutions across counties (U.S. Department of Education 2023). In order to capture the
fact that in some regions commuting between adjacent counties may be reasonable and com-
monplace for both work and education, I aggregated these data by ERS Commuting Zone
(CZ), a slightly coarser geographical unit of analysis that aims to more faithfully reflect the
boundaries of the local economy which may span several counties.14

14. The ERS stopped updating their CZ definitions in 2000. In 2010, researchers at Pennsylvania State
University applied the ERS’ methodology to provide publicly available updates to the CZs (Fowler and
Jensen 2020) These represent the most current definition of CZs available and were used for this analysis.

34



Chapter 3

Results

3.1 Employment vulnerability of communities

3.1.1 Employment carbon footprints & social costs

Figure 3.1 displays Overall ECFs for each county. Figure 3.2 aggregates Overall ECFs to the
state level, with a clear disparity between coastal and inland states.

Notes: This figure maps Overall ECFs across U.S. counties on a logarithmic scale due to the highly skewed distribution.
Counties with higher Overall ECFs are more vulnerable to employment impacts of the energy transition. Counties in orange
have Overall ECFs above the national logarithmic average; those in blue have Overall ECFs below the average.

Figure 3.1: Distribution of Overall ECFs across U.S. counties.
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Notes: To derive state-level ECFs, county-level employment and effective CO2e emissions values were aggregating by state. It
should be noted that this approach inherently gives more weight to populous counties, which tend to have low ECFs.

Figure 3.2: Distribution of Overall ECFs across U.S. states.

Along with the Overall ECF of each county, these figures display the social cost of firms’
carbon emissions per employee. Strictly speaking, this cost represents the value to society
in eliminating emissions from the employee’s firm; however, in the context of just transition
policy, it is helpful to characterize it in terms of the economic risk facing employees and
the level of transition support required. If climate policy is implemented to address the
externality of CO2 emissions, this is the cost per employee that would be imposed on firms
to internalize the social cost of their pollution. A higher social cost therefore indicates greater
risk of job destruction or wage cuts in the face of climate policy. The most carbon-intensive
counties have an average social cost per employee of over $100,000 per year, far greater than
median salaries in the area—this suggests that a climate policy that values the social cost
of carbon at the EPA’s $190 per tonne will result in extensive job losses in these regions if
commensurate policy support is not provided.

As mentioned, it is useful to understand the extent to which Overall ECFs are driven
by fossil fuel extraction versus other activities given the inherently different pressures these
sectors will face in a decarbonized economy. I therefore present maps that split counties’
Overall ECFs into footprints from fossil fuel extraction and other sectors in Figure 3.3.

Consistent with previous studies measuring energy transition vulnerability across the
U.S., the results identify counties in Appalachia, west Texas, Oklahoma, Wyoming, Montana,
the Gulf Coast, western North Dakota and Alaska’s North Slope as having high employment
vulnerabilities—all areas with high levels of fossil fuel extraction.

However, I also find that there is a significant number of highly vulnerable counties that
do not have local fossil fuel extraction industries, particularly in Nevada and large portions
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Notes: These maps split the Overall ECFs presented in Figure 3.1 into the emissions from fossil fuel extraction sectors (i.e.
coal mining and oil and gas extraction) and the emissions from all other covered sectors. Specifically, the fossil fuel extraction
map considers Scope 1, 2 and 3 emissions from NAICS 2111 - Oil and Gas Extraction, and NAICS 2121 - Coal Mining. It
should be noted that both of these NAICS codes cover some activities that are not strictly extraction—for example, NAICS
2121 includes beneficiating (i.e. preparing) coal, and NAICS 2111 includes sulfur recovery from natural gas. As such, there are
some counties that appear in the fossil fuel extraction map that do not appear in the Scope 3 ECF map in Figure 3.6—these
are counties for which some activity was recorded in NAICS 2111 or NAICS 2121 that resulted in Scope 1 or 2 emissions, but
no extraction of coal or oil and gas actually occurred. These two maps are presented on the same color scale as Figure 3.1
to compare the relative weight of extractive vs non-extractive emissions in contributing to a county’s Overall ECF, with total
county employment as the denominator for both sets of ECFs.

Figure 3.3: Overall employment carbon footprints for fossil fuel extraction sectors versus all
other sectors.
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of the Great Plains states. These areas are overlooked by previous estimates, and Figure 3.3
shows that their vulnerability is driven by the presence of other polluting industries outside
of fossil fuel production, such as mining and carbon-intensive manufacturing. In many cases,
the Overall ECFs of these communities are just as high as, if not higher than, those of nearby
fossil fuel communities. The emergence of these vulnerable counties in the overall analysis
is significant—it indicates that, while communities reliant on fossil fuel extraction are often
the focus of just transition policy, areas that rely heavily on fossil fuel consumption may
also be exposed to employment impacts as the economy shifts. Importantly, it shows that
these counties may be left behind if just transition policy focuses exclusively on fossil fuel
extraction communities.

Figure 3.4 shows the same county-level map as Figure 3.1, however each county is repre-
sented by a dot whose size corresponds to the population of the county. High-ECF counties
have much lower populations on average, with only a few highly populous counties having
Overall ECFs above average. This illustrates the fact that while 43% of counties have above-
average employment carbon footprints, these counties only account for 17% of the total U.S.
population.

Notes: Each dot represents one county, with size reflecting the county’s population and color representing the county’s ECF.

Figure 3.4: Overall ECFs across U.S. counties, normalized by county population.
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The Scope 1, 2 and 3 ECFs1 used to create the Overall ECFs are shown in Figure 3.6.
I find that the distributions of ECFs across geography are more or less consistent in the
Overall, Scope 1, Scope 2, and Scope 3 cases. Notably, almost all of the counties on the
Scope 3 map (i.e. counties with fossil fuel extraction) feature as highly vulnerable in the
overall map, indicating that the presence of fossil fuel extraction industries has a particularly
significant impact on the Overall ECF of the county.

The carbon intensity of the high-level sectors covered in this analysis is presented in
Figure 3.5, which displays the kernel distribution estimates of each Sectoral ECF. There
are clear sectoral trends in carbon intensity, with variations between the cleanest sectors
(commercial sectors) and dirtiest sectors (coal mining, oil & gas extraction, and fossil-fuel
power generation) spanning several orders of magnitude. These differences give an indication
of the extent to which between-county differences in sectoral prominence and workforce
allocation may have on a county’s Overall ECF. However, it is also notable that there is
a significant degree of within-sector variation, even within relatively tightly defined sectors
such as coal mining and oil & gas extraction. This indicates that, while some sectors will
be harder hit by the energy transition than others, there will also be material distributed
impacts within sectors, further highlighting the need for continuous measures of employment
vulnerability when informing just transition policy. Figures 3.7 and 3.8 map these Sectoral
ECFs across geography.

Notes: The kernel density estimates in this figure represent the ECF distributions across counties for each sectoral ECF (i.e.
each county’s carbon footprint for only those working in a given sector, as opposed to the entire county). The KDEs of the
most carbon-intensive sectors sit at the right of the figure, including oil and gas, coal mining and fossil-fuel power generation.

Figure 3.5: Kernel density estimates of county-level ECF distributions for each covered
sector.

1. Note that the denominator of each of these footprints is the same—namely, the total employment for
the county. Also note that the Scope 3 plot has many missing counties—these are counties for which there
was no fossil fuel production.
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Notes: These maps display the Scope 1 (on-site emissions), Scope 2 (indirect emissions
from electricity generation) and Scope 3 (defined in this paper as indirect emissions
embedded in fossil fuel production) carbon footprints of each county. The denominator
of each of these footprints is the same—namely, the total employment for the county.
The white areas on the Scope 3 map represent those without fossil fuel production (i.e.
without a coal mining or oil and gas industry). The “mean” ECF values on the legend
of each map are the logarithmic mean of county ECF values for that Scope, as opposed
to the logarithmic mean of overall ECF values as in Figures 3.1 and 3.4.

Figure 3.6: Scope 1, Scope 2 and Scope 3 ECFs across counties.
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Notes: Each map represents counties’ ECFs for a given sector (i.e. each county’s carbon footprint for only those working in a given sector, as opposed to the entire county).
White areas represent those without any activity in a given sector, and dark grey counties represent those for which publicly available employment data was not available for a
given sector. The “mean” ECF values on the legend of each map are the logarithmic mean of county ECF values for that sector, and differ from average overall ECF values.

Figure 3.7: Distributions of sectoral ECFs—agriculture, construction, coal mining, commercial sectors.
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Notes: Each map represents counties’ ECFs for a given sector (i.e. each county’s carbon footprint for only those working in a given sector, as opposed to the entire county).
White areas represent those without any activity in a given sector, and dark grey counties represent those for which publicly available employment data was not available for a
given sector. The “mean” ECF values on the legend of each map are the logarithmic mean of county ECF values for that sector, and differ from average overall ECF values.

Figure 3.8: Distributions of sectoral ECFs—manufacturing, non-fossil mining, oil & gas, fossil-fuel power generation.

42



3.1.2 Comparison with IRA energy communities

Figure 3.9 displays areas designated as energy communities under the IRA for 2023 as im-
plemented by the U.S. Department of Treasury and Internal Revenue Service (Interagency
Working Group on Coal & Power Plant Communities & Economic Revitalization 2023). Fig-
ure 3.10 shows the differences in Overall ECFs for counties that contain at least one energy
community2 and counties that do not contain any qualifying energy communities. It is clear
that while many of the most vulnerable counties are deemed energy communities, there is
significant spread in Overall ECF within both qualifying and non-qualifying counties.

Notes: Colored areas represent those allocated energy community status for 2023 by the U.S. Department of Treasury and
Internal Revenue Service under the Inflation Reduction Act. Shaded areas represent those that qualify under the fossil fuel
employment criterion (grey) or the coal closure criterion (red)—the shapefiles for these areas were obtained from IWG (2023).
Data on MSA/non-MSA tax revenue sources are currently unavailable, so areas that might qualify under the tax revenue
criterion were not considered. The brown dots represent brownfield sites—note that these indicate points in space rather than
holistic areas (brownfield sites are often limited to small, isolated parcels of land). Since IWG (2023) have yet to release data
on eligible brownfield sites, these data were obtained from Raimi and Pesek (2022). Note that colored areas do not necessarily
follow county boundaries due to the different geographic granularities of the qualifying criteria—fossil fuel employment areas
are assessed at the MSA/non-MSA level, while the coal community criterion is assessed at the much smaller census tract level.

Figure 3.9: Qualifying energy communities for 2023 (IWG 2023, Raimi & Pesek 2022).

I focus the comparison on IRA energy communities that qualify under the fossil-fuel
employment (FFE) criterion, as one would expect this metric to be similarly forward-looking
to the Overall ECF measure (as opposed to coal closures, which are a retrospective measure).
Figure 3.11 compares the Overall ECF distributions of counties that contain at least one

2. Counties were identified using geospatial analysis. Due to their very small geography, brownfield sites
were excluded from this analysis. Since some energy communities are defined at the census tract level, I
count any counties that contain a census tract-level energy community as a “qualifying county.”
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Notes: Counties are deemed to contain an energy community if any area of the county overlaps with some area of an energy
community as designated by the U.S. Department of Treasury for 2023. Brownfield sites are not considered. Both maps measure
county-level Overall ECFs against the national logarithmic average on the same color scale.

Figure 3.10: Overall ECFs of qualifying (left) and non-qualifying (right) counties that contain
IRA energy communities (left) and counties that do not (right).

FFE energy community to that of counties that contain no FFE energy communities. If the
FFE energy communities identified by the IRA were those with the highest ECFs, I would
expect a negative skew in the ECF distribution for qualifying counties that would position
it significantly to the right of the distribution for non-qualifying counties. By contrast, I
observe that the two distributions are very similar, with the ECFs of qualifying counties
only marginally higher than those of non-qualifying counties on average. While the majority
of the most vulnerable counties qualify as FFE energy communities, there are still significant
omissions (“false negatives”)—124 counties with Overall ECFs in the 90th percentile do not
qualify for the extra tax credit. Furthermore, many “false positives” remain, with 79 counties
eligible for extra IRA funding having Overall ECFs in the bottom 20% and 26 having Overall
ECFs in the bottom 10%.

Some of the reasons behind these anomalies have been unpacked by Raimi and Pesek
(2022) and addressed in their proposed alternate methodology for identifying energy com-
munities. The FFE criterion requires areas with high fossil fuel employment to also have an
unemployment rate greater than the U.S. national unemployment rate in order to qualify.
Raimi and Pesek (2022) find that this requirement means that some of the regions most re-
liant on carbon-intensive fossil fuel industries do not qualify as energy communities as their
unemployment rate is not above the national average and could see areas float in and out of
eligibility as their unemployment rate fluctuates. Furthermore, they find that the fossil fuel
employment threshold of 0.17% is below the national average of 0.78%, meaning that some
areas with below-average fossil fuel employment but above-average unemployment qualify.
They also highlight that a binary classification of energy communities limits the ability to
target the most vulnerable communities, and instead propose a stepped tax credit scaled by
the extent of fossil fuel employment and coal industry presence in the area. Finally, they cri-
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Notes: The orange histogram represents counties that contain at least one IRA energy community qualifying under
the fossil-fuel employment criterion. The height of each bar represents the proportion of qualifying/non-qualifying counties
that have a given employment carbon footprint. If the IRA’s fossil-fuel employment criterion effectively targeted the most
vulnerable communities, we would expect a greater proportion of qualifying counties to have high carbon footprints; instead,
I find the two distributions are very similar, with the distribution for qualifying counties only slightly to the right of that for
non-qualifying counties.

Figure 3.11: Overall ECF distributions for counties qualifying as energy communities under
the fossil fuel employment criterion in the IRA, and non-qualifying counties.

tique the use of metropolitan and non-metropolitan statistical areas (MSAs and non-MSAs)
as the geographic unit of analysis for the fossil fuel employment criterion, finding them to
be too coarse to represent local employment dynamics and instead suggesting county-level
estimates.

My results support these critiques, particularly around the unemployment threshold. Ac-
cording to the U.S. Department of Treasury’s guidance, an MSA’ or non-MSA’s unemploy-
ment rate will be determined each calendar year by aggregating county-level unemployment
data from the BLS’ Local Area Unemployment Statistics (LAUS) for the previous year and
comparing them to the national unemployment rate for the same year. Therefore, both an
area’s unemployment rate and the qualifying unemployment threshold—and therefore its
energy qualification status—will be updated each calendar year with each set of new unem-
ployment figures (generally released in April). This means that an area whose unemployment
rate is close to the national rate could drop in and out of eligibility as its unemployment
rate fluctuates. Furthermore, an increase in the national unemployment rate could cause a
community to drop out of energy community status, even if the local economic circumstances
of the area are unchanged.3

These effects can be significant. To investigate year-on-year changes in energy community

3. According to the IRS’ and Treasury’s rules, if a project was located in a qualifying energy community
when construction began, the project continues to be eligible for its energy community tax credit bonus
regardless of any changes to the energy community status of the location (U.S. Internal Revenue Service and
U.S. Department of Treasury 2023). Therefore, this loss of eligibility would only apply to future projects in
the area.
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Notes: This figure shows how energy communities would have changed between 2022 and 2023 according to the lan-
guage of the IRA and guidance from the Department of Treasury. Pink areas represent those allocated energy community
status under the coal closure criterion, and are constant across 2022 and 2023. Grey areas represent those that qualify
under the fossil fuel employment criterion in both 2022 and 2023, while green areas represent those that did not qualify in
2022 but qualified in 2023, and blue areas represent those that qualified in 2022 but dropped out of qualification in 2023.
Results for 2023 were obtained from IWG (2023), while energy communities for 2022 were derived using the BLS Local Area
Unemployment Statistics for 2022 and the Department of Treasury’s methodology. Note that brownfield sites have been
excluded from this figure for simplicity. Data on MSA/non-MSA tax revenue sources are currently unavailable, so areas that
might qualify under the tax revenue criterion were not considered—however, one might expect similar volatility between years
for these communities as they are also subject to the unemployment rate criterion.

Figure 3.12: Comparison of qualifying energy communities between 2022 and 2023

eligibility under the FFE criterion, I determined whether each MSA/non-MSA would qualify
in 2022 (using 2021 LAUS data and the Treasury’s method) and compared these results to the
Treasury’s designations for 2023. Figure 3.12 compares the two sets of energy communities. I
find significant volatility in qualification status, with large areas (including over half of Texas,
nearly all of Nevada, and large parts of Kentucky, Arkansas and Illinois) not qualifying in
2022 but qualifying in 2023, and other areas (such as central Colorado) dropping out of
eligibility between 2022 and 2023 (see Figure S6). Some of the counties that would not have
qualified in 2022, particularly those in west Texas, have some of the most carbon-intensive
employment in the country, implying that the number of “false negatives” in Figure 3.11 could
be even greater in future years. On the other hand, some areas dropped out of eligibility
between 2022 and 2023, particularly in central Colorado. Such year-on-year volatility creates
serious uncertainty and is a major concern for communities and clean energy investors alike.

Aside from communities with high levels of fossil fuel employment that do not pass the
unemployment test, vulnerable communities are also left behind by the IRA’s exclusive focus
on fossil fuel extraction and processing sectors. Figure 3.13 depicts the most polluting sectors
in each of the 100 most carbon-intensive counties that were not granted energy community
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status in 2023. Of this 100, 39 have high levels of fossil fuel employment (specifically in
oil and gas extraction) but fail the unemployment rate test. But counties with high lev-
els of carbon-intensive manufacturing are also missed, despite their high reliance on fossil
fuels—such counties make up a third of the 100 most vulnerable counties overlooked by the
IRA. Furthermore, the Department of Treasury’s definition of fossil fuel employment does
not include fossil fuel power generation (NAICS code 221112). This means that in many
cases, no assistance is granted to counties with large power plants that are major sources of
both pollution and employment, despite the coal closure criteria providing support to such
communities after partial or complete closure of a coal-fired plant. 19 of the top 100 (and
half of the top 10) most vulnerable overlooked counties fall into this category, a considerable
oversight given that workers in coal-fired power plants are typically front-and-center of just
transition discussions.

Notes: This figure depicts the 100 counties with the greatest Overall ECFs that were not granted energy community
status by the Department of Treasury in 2023. Each bar represents one county. The relative share of each county’s
CO2e emissions was calculated for each sector, and the most polluting sector for each county was identified as that
which comprised over 50% of the county’s carbon emissions.

Figure 3.13: Dominant sectors of 100 most carbon-intensive counties that are not 2023 ECs.
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3.1.3 Comparison with the literature

My results also identify shortcomings with other methods of identifying vulnerable commu-
nities in the literature that focus exclusively on fossil fuel industries. Figure 3.14 compares
the level of tax credit assigned to counties under Raimi and Pesek’s (2022) proposed method-
ology with their corresponding Overall ECFs. Raimi and Pesek (2022) assigned tax credits
on the basis of percent of fossil fuel employment share, coal production, and coal-fired power
generation capacity, setting incremental thresholds for each level of the credit. To approx-
imate the ECF levels equivalent to these qualifying thresholds, each of the FFE thresholds
was converted to a Z-score based on the total distribution of fossil fuel employment shares
across counties, and ECF values corresponding to these Z-scores were computed. These are
the red and blue dashed lines on the figure, and indicate the bounds within which the Overall
ECFs and Raimi and Pesek’s (2022) tax credit levels are aligned. If a county sits above the
red line, its Overall ECF indicates greater employment vulnerability than is accounted for
by its proposed tax credit level; conversely, if it sits below the blue line, its tax credit level
overestimates its employment vulnerability.

Notes: Each dot represents one county. Counties are separated by the tax credit they would receive under Raimi and
Pesek’s (2022) proposal and plotted vertically against their Overall ECF. Counties in the grey portion of the figure have
ECFs below the national logarithmic average. The red and blue dotted lines represent the upper and lower bounds of
the Overall ECFs one would expect counties to have if the proposed fossil fuel employment thresholds for each tax credit
level were converted to equivalent points on the ECF distribution. If the level of support proposed by Raimi and Pesek
(2022) aligned with Overall ECFs, one would expect all dots to be contained between the red and blue lines.

Figure 3.14: Comparison of tax credits assigned by Raimi and Pesek (2022) and ECFs.

While both the proposed tax credit levels and the Overall ECFs trend in the same di-
rection, it is clear that there is significant variability in Overall ECF within each proposed
tax credit bracket. 672 counties that have Overall ECFs above the national average would
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receive no tax credit under Raimi and Pesek’s (2022) proposal, including 82 counties in
the 90th percentile of carbon intensity. At the same time, a non-trivial number of counties
that would receive some level of tax credit have below-average Overall ECFs. While this
approach better targets carbon-intensive communities through its use of more continuous
metrics, there remains significant heterogeneity that is not captured, again likely due to the
exclusive focus on fossil-fuel sectors.

I perform a similar analysis on Raimi, Carley, and Konisky’s (2022) calculation of county-
level employment vulnerability scores, defined as a function of “exposure” and “sensitivity.”
Here exposure is not measured on the basis of employment share but rather the level of fossil
fuel production and fossil fuel-fired power generation in the county. Because Overall ECFs
are a measure of exposure, not sensitivity, I use the authors’ methodology and data to derive
exposure scores, and compare these to the Overall ECFs in Figure 3.15. I again find that while
the measures trend in the same direction, the exposure scores miss a great deal of variability
in employment carbon intensity. While the authors’ exposure metrics cover natural gas and
oil production, not just coal, they still do not capture economy-wide consumption of fossil
fuels outside of the power generation sector. Additionally, these metrics are not normalized
by population or employment in any way, which may lead to over- or under-estimation of
the relative exposure of communities of different sizes. It should be noted that a significant
contribution of Raimi, Carley, and Konisky’s (2022) work is the incorporation of sensitivity
measures into their overall employment vulnerability metric. While I do not consider these
here, I observe a similar trend using the authors’ overall vulnerability scores.

Notes: Each dot represents one county. Counties in the grey portion of the figure have Overall ECFs below
the national logarithmic average. The red dotted line represents the point in the ECF distribution that corresponds
with each point in the log(1+Weighted exposure score) distribution based on its Z-score. If ECFs identified the same
counties as the exposure score, one would expect counties to follow the red line.

Figure 3.15: Comparison of ECFs and Raimi, Carley, and Konisky (2022) exposure scores.
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In summary, efforts to identify communities with high employment vulnerability in both
the IRA and the literature fail to capture the heterogeneity that observed in employment
carbon footprints. The IRA’s definition of energy communities excludes some high-ECF
counties while including some with limited employment vulnerability, and exhibits volatile
year-on-year changes in eligibility. While the literature has proposed several alternate, more
continuous measures of transition vulnerability, theses efforts fail to capture economy-wide
impacts and within-sector heterogeneity and thereby also exclude some at-risk areas.

3.2 Explained variance analysis

Table 3.1 presents the results of the explained variance analysis, displaying the R2 scores for
each regression. The first panel displays the results of separate regressions controlling for
workforce allocation, demographics, power grid carbon intensity, climatic differences (heating
and cooling degree days) and fuel mix. The second panel displays the results of a stepwise
model that incrementally integrated each of these sets of controls (the regression coefficients
of all variables in the stepwise model are provided in detail in Appendix B.2).

Table 3.1: Explained variance results

n = 1547 k (1) (2) (3) (4) (5) (6) (7)

Workforce allocation 8 0.539*

Demographics 7 0.287*

Politics 2 0.251*

Power grid carbon intensity 1 0.070*

Heating & cooling degree days 2 0.081*

Fuel mix 48 0.522*

Stepwise model 126 0.539* 0.603* 0.615* 0.659* 0.663* 0.723* 0.742*

Notes: * p < 0.01. This table presents the R2 scores of the regressions performed during the explained variance analysis. The
first panel shows the results of an individual regression analysis where each row controls for different sets of variables. The
second panel shows the results of a stepwise regression where these sets of controls are progressively added to the model. In
both panels, column (1) introduces each sector’s share of total county employment, column (2) adds demographic variables
(including an interaction term between population density and average personal income), column (3) adds political variables,
column (4) introduces the average carbon intensity of the electricity grid in the county, column (5) introduces the 30-year
average annual heating and cooling degree days for the county, and column (6) adds EFss values for each subsector within each
high-level sector to control for fuel mix (at 3- or 4-digit NAICS granularity, depending on data availability). For the stepwise
model, interaction terms were added in column (4) between power grid carbon intensity and sectoral employment share, column
(6) between heating/cooling degree days and power grid carbon intensity and column (7) between sectoral employment share
and EFss values within the same sector.

I find that more than half of the variance in counties’ Overall ECFs is explained by the
allocation of the workforce across the high-level sectors I consider. However, the other sets of
variables appear to provide little extra information with which one could predict changes in
ECF. Controlling for the carbon intensity of the grid or degree days explains comparatively
negligible shares of the variance. Demographics alone explain just over 25% of the variance,
however in the stepwise regression we see that this only translates to enough new information
to increase the R2 by 6 percentage points. Political variables, being highly correlated with
demographics, increase this by only 1 percentage point. Similarly, while subsector fuel mix
alone explains 52% of the variance, these data only increase the R2 of the stepwise regression
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by 6 percentage points after the other variables (which are arguably easier to measure and
obtain data for) are controlled for.

These results indicate that workforce allocation is, perhaps expectedly, the best single
indicator of a county’s Overall ECF. The shares of the workforce in the oil and gas and fossil
fuel power generation sectors have particularly large effects, with regression coefficients of
1.187∗∗∗ and 1.068∗∗∗, respectively, in regression 1 of the stepwise model (see Supporting
Information for detailed regression coefficients).

In terms of other potential proxy variables, two of the demographic variables in stepwise
regression 2 have statistically significant effects: tertiary educational attainment (−0.029∗∗∗)
and unemployment rate (−0.065∗∗∗). Interestingly, the regression coefficient for unemploy-
ment rate is negative, indicating that employment vulnerability tends to decrease as un-
employment rate increases (while the coefficient remains negative in subsequent stepwise
regressions, it loses its statistical significance, with political variables gaining it instead).
This runs directly counter to the definition of energy communities in the IRA, which re-
quires a region to have higher than average unemployment to obtain energy community
status.

The political variables of share of county voting Republican at the 2020 presidential
election and whether the county is in a Republican state have relatively large statistically
significant effects (0.487∗∗∗ and 0.252∗∗∗, respectively, in stepwise regression (3)), and grid
carbon intensity as well as many of the interaction terms between xs and efelec also have
significant (albeit small) effects. However, these variables are unlikely to be feasible measures
through which policymakers could target communities, not only because they add relatively
little information to that explained by workforce allocation. Using grid carbon intensity
as a qualifying variable could create a perverse incentive for regions to slow power sector
decarbonization effects in order to keep their power grid dirty enough to be eligible for
additional funding, and policy that explicitly targets a specific political party is politically
infeasible.

3.3 Distributive effects

3.3.1 Urbanity & population density

One might expect that carbon-intensive industries and therefore carbon intensive employ-
ment are more likely to be located in rural areas, and therefore that the employment carbon
footprints of rural counties would on average be higher than those of rural counties. Figure
3.16 supports this hypothesis, highlighting an increase in median employee carbon intensity
as counties get more rural.

However, it is notable that significant variance in Overall ECFs exist across all urbanity
classifications. As hypothesized, the share of employment in carbon-intensive sectors (defined
here as coal mining, oil & gas extraction, and fossil-fuel power generation) is much higher in
rural counties than in urban counties, as is demonstrated in Figure 3.17.

The shift in Overall ECF distribution for rural counties is more pronounced when compar-
ing across standard deviation groupings of population density, arguably a more continuous
measure of urbanity. Figure 3.18 shows that densely populated counties tend to have low
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Notes: The left plot shows the ECF distribution of counties across Rural-Urban Continuum Codes (RUCCs), which classify
counties by increasing rurality from 1 to 9. The right plot aggregates these RUCCs into “urban” and “rural” categories, where
rural counties are those with RUCCs from 4 to 9.

Figure 3.16: Variation of ECF distributions across different levels of urbanity.

ECFs, while sparsely populated counties are much more likely to have high ECFs. It is no-
table that low-ECF counties exist across all population densities, illustrated by the “sloping”
shape to the distributions in Figure 3.18. This stands to reason: while carbon-intensive jobs
may be more likely to be located in rural counties, they are often geography dependent. By
contrast, low-carbon intensity jobs such as retail are likely to exist in most counties.

Notes: The left plot shows the average share of county employment in carbon-intensive sectors—defined as coal
mining, oil and gas, and fossil-fuel power generation—for different Rural-Urban Continuum Codes (RUCCs),
which classify counties by increasing rurality from 1 to 9. The right plot aggregates RUCCs into “urban” and
“rural” categories, where rural counties are those with RUCCs from 4 to 9.

Figure 3.17: Percentage of employment in carbon-intensive sectors for each urbanity category.
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Notes: Both plots show the ECF distribution across counties for different levels of county population density. Lighter-hued
marks indicate high population density, while darker marks indicate low population density. Counties are binned by population
density, where the interval of each bin is equal to one standard deviation.

Figure 3.18: Variation in ECF distribution across county population density.

3.3.2 Income

It is important to understand whether low-income counties are particularly exposed to em-
ployment shocks from the energy transition. Figure 3.19 depicts the Overall ECF distri-
butions for counties across nine brackets of median income. It shows a significant trend in
which counties with high median incomes having substantially lower ECFs than those with
average or below-average median incomes. However, when these distributions are separated
by county urbanity as in Figure 3.20, it becomes clear that this trend is driven by urban
counties, and that an opposite trend is observed in rural counties. We can also see that, in
general, urban counties have higher median incomes than rural counties.

This trend is not overly surprising when considering the differences in sources of high-
income employment between urban and rural counties. We have seen previously that carbon-
intensive employment is more likely to be located in rural counties, and Figure 3.21 shows the
distribution of county median income by sector, with jobs in carbon-intensive sectors (coal
mining, oil & gas, and utilities) having higher salaries in most counties. The high-income,
high-ECF trend in rural counties therefore suggests that carbon-intensive sectors are the
primary source of well-paying jobs in rural counties. Conversely, in urban areas where there
is less carbon-intensive employment, it is likely that the high incomes in richer counties come
from employment in those low carbon intensity sectors that are still high-paying, such as
finance, management and professional services.

3.3.3 Race & Ethnicity

Environmental justice literature has consistently demonstrated racial disparities in pollution
exposure, however it is not clear the extent to which employment in marginalized and mi-
nority communities is vulnerable to the energy transition. Figure 3.22 shows Overall ECF
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Notes: Counties are binned by median annual income, where the interval of each bin is equal to
one standard deviation. Lighter-hued marks indicate high-income counties, while darker marks
indicate low-income counties. Counties are binned by population density according to their
standard deviation.

Figure 3.19: Overall ECF distributions for different county median income levels.

Notes: Orange boxes represent rural counties, while blue boxes represent urban counties. In the left plot, counties are binned
by median annual income, and each box-whisker plot represents the Overall ECF distribution of counties within that income
bin. In the right plot, counties are separated by urbanity, and the distributions of median annual income are plotted for urban
and rural counties.

Figure 3.20: Distributions of Overall ECFs by median income level, broken out by urbanity
(left). Median income distributions for urban and rural counties (right).
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Notes: Data from the American Community Survey on the median annual income per county
for employees in different sectors was used to calculate the average income for carbon-intensive
employment (utilities, oil and gas and mining sectors) and other employment for each county.
The KDEs of the distributions of median income for these two categories shows that employees
in carbon-intensive sectors have higher median incomes than those in other sectors on average.

Figure 3.21: Distributions of county median salary for carbon-intensive and other sectors.

distributions across different levels of minority population share (defined as the share that is
non-White or Hispanic), exhibiting a decrease in median ECF as racial and ethnic diversity
increases. This trend is mostly consistent across Census Divisions and both urban and rural
counties, although is particularly pronounced in urban counties (see Figure C.1 in Appendix
C).

Notes: Counties were binned by share of the population that is non-White or Hispanic, where
the interval of each bin is equal to one standard deviation. Lighter marks represent more
racially/ethnically diverse counties.

Figure 3.22: Distributions of Overall ECFs across counties with differing minority population
shares.

My results here show that the most polluting counties, which tend to have relatively
high shares of polluting industry, are predominantly White and non-Hispanic. However, this
overall trend is slight, and does not tell the full story. There are 58 counties where more than
half the population are non-White or Hispanic that have Overall ECFs in the 90th percentile;
some of the most carbon-intensive counties in the country, such as Reeves county in Texas,
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are over 75% non-White/Hispanic with significant migrant populations. At the same time,
similarly carbon-intensive counties such as Billings county in North Dakota have minority
populations shares of less than 1%. This highlights the need for just transition policies
to be place-based and account for the specific sociodemographic contexts of communities.
While similarly carbon-intensive, Billings county and Reeves county will clearly face distinct
challenges in transitioning away from fossil fuels, and policy efforts should allow for flexibility
that accounts for these differences.

3.3.4 Educational attainment

As discussed earlier, polluting jobs tend to be low-skilled, and Figure 3.23 shows that counties
with higher degrees of tertiary education are likely to have lower Overall ECFs on average.
Figure C.2 in Appendix C finds that this trend is particularly driven by urban counties.

Notes: Counties were binned by share of the population with some level of tertiary education, where the interval of each bin is
equal to one standard deviation. Lighter marks represent more educated counties.

Figure 3.23: Distributions of Overall ECFs across counties with different levels of tertiary
education.

As has been explored in the literature, this skills gap presents a barrier to transitioning
away from polluting industries that will require retraining and up-skilling to overcome. It
is anticipated that apprenticeship and two-year community college institutions will have a
significant role to play in this process (Ansolabehere et al. 2022), but such institutions may
not be located close to where workers in polluting industries live and/or work, adding an
additional barrier to their transition.

To investigate this further, I took data from the National Center for Education Statistics’
Integrated Postsecondary Education Data System (IPEDS) on the number of and enrollment
in two-year postsecondary institutions across counties. Since commuting between counties
is common for work and education, I aggregated these data by ERS Commuting Zone (CZ)
in order to cover areas within which it would be reasonable to commute to one of these
institutions. I then computed enrollment per capita as a measure of the existing workforce
development capacity in each CZ, and these results are displayed in Figure 3.24.
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Notes: Two-year college enrollment data per county was retrieved from the National Center for Education Statistics and
allocated to the nearest ERS commuting zone (CZ). This value was then normalized by the population of each ERS CZ. Lighter
areas indicate CZs with little to no two-year/community college enrolment.

Figure 3.24: Two-year college enrollment per capita across 2010 ERS commuting zones.

Notes: This figure shows the Overall ECFs of those ERS commuting zones (CZs) with zero two-year or community college
enrollment according to the National Center for Education Statistics. To calculate CZ-level ECFs, county-level ECFs were
aggregated to the CZ level as a population-weighted average.

Figure 3.25: Overall ECFs of commuting zones with no two-year colleges (red borders).
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Notably, a significant portion of the CZs have zero existing two-year college capacity.
Figure 3.25 shows how these CZs intersect with areas of high energy transition vulnerability
using OverallvECFs aggregated to the CZ level. I find that many of the CZs with high
employment vulnerability have no current workforce development capacity through two-year
institutions, especially in the heartland states; comparison with Figure 3.24 shows that many
of the CZs adjacent to these “education deserts” also have very limited enrollment capacity.

3.3.5 Political affiliation

In their analysis of household carbon footprints, Green and Knittel (2020) found that Re-
publicans tended to have a slightly higher carbon footprint than Democrats. Figure 3.26
displays a similar result, with counties that voted Republican at the 2020 presidential elec-
tion more likely to have high Overall ECFs than Democratic counties. Similarly, Figure C.3
in Appendix C shows that, when grouped by state, the states with most carbon-intensive
Overall ECF distributions are overwhelming those that voted Republican.

Notes: Counties were separated based on which major party received the most votes in that
county during the 2020 presidential election according to the MIT Election Lab.

Figure 3.26: Overall ECF distributions by political party preference in 2020 presidential
election.
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Part II

The political salience of employment &
household vulnerability in climate

politics
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Chapter 4

Literature review

There is a growing literature analyzing the relationship between the climate policy prefer-
ences of political representatives and the costs and/or benefits their respective constituencies
receive from climate and environmental policies. In the U.S. context, these preferences are
most commonly analysed through the voting behavior of federal or state legislators on bills
relating to climate or environmental issues. Holland et al. (2015) evaluated political sup-
port in the U.S. House of Representatives for the weakening of renewable fuel standards in
favor of introducing cap-and-trade carbon policy, and find that members from districts with
greater per-capita gains under cap-and-trade were more likely to vote in favor of the change,
while those from districts with large gains under the existing policy were more likely to vote
against. Cragg et al. (2013) argue that the “price” of voting in favor of carbon policy can
be proxied using a congressional district’s per-capita carbon emissions and find that, all else
equal, members from more carbon-intensive districts were less likely to vote in favor. This
was particularly true in districts where heavy industry made up a large share of emissions.
Numerous studies also highlight that legislators are more likely to vote in favor of climate
policy following exposure of their districts to climate-related natural disasters or unusual
weather, and that these districts are less likely to support anti-environment candidates after
these events (Elliott et al. 2023; Herrnstadt and Muehlegger 2014; Liao and Ruiz Junco
2022).

As discussed previously in Section 1.2, employment impacts of climate and environmental
policy are often perceived as the “price” of climate action/environmental goods (Kahn and
Matsusaka 1997) and influence public support for such policies accordingly. This “jobs versus
environment” divide has resulted in the public often viewing climate policies as negative
for employment (Vona 2019; Evans and Phelan 2016; Graff, Carley, and Konisky 2018;
Tvinnereim and Ivarsflaten 2016). This effect is especially prominent in areas where local
employment is more reliant on fossil fuels, and demonstrates that local employment impacts
are a salient issue for communities in determining their support for climate policy.

In addition to employment impacts, public support for climate policies is also driven
by the costs they impose on households, particularly in the form of increased energy costs.
In a large-scale survey spanning the U.S., U.K., Germany and France, Bechtel and Scheve
(2013) found that respondents’ support for global climate cooperation was highly sensitive
to resulting increases in average household costs. Similar studies have found that climate
policies with higher direct financial costs, such as those that increase electricity/gasoline
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prices or reduce purchasing power, tend to be less supported than similar but less directly
costly policies (Maestre-Andrés, Drews, and Bergh 2019; Lam 2015; Drews and Bergh 2016;
Brannlund and Persson 2012). This effect remains significant even when policies compensate
the public for these cost increases, such as through the recycling of revenue generated from
carbon pricing (Jenkins 2014). There is also evidence to suggest that the public’s general
aversion to taxation, well-documented in the fiscal policy literature, also extends to environ-
mental policy; studies have found that carbon pricing policies labelled taxes are less likely
to be supported than identical policies with different labels (Klenert et al. 2018; Brannlund
and Persson 2012).

If climate policy penalizes the use of fossil fuels, households with larger carbon footprints
are likely to incur greater costs than low-carbon footprint households and are therefore more
economically vulnerable, all else equal, to these policies. One might expect such vulnerability
to further drive communities’ support for climate policies. However, there is also evidence
to suggest that constituencies that support climate policy adjust their consumer choices to
reflect “green” beliefs, thereby reducing their carbon footprint (Costa and Kahn 2013). Both
Kahn (2007) and Kahn and Morris (2009) show that people with green beliefs are more
likely to engage in green transportation practices, even when controlling for demographics
and effects of the built environment. Similarly, Kahn and Vaughn (2009) find that, hold-
ing community demographics constant, communities in green zip codes (as determined by
their political choices) are more likely to purchase green products (namely, LEED-certified
buildings and the Toyota Prius).

The extent to which public opinion on climate policy is represented in the voting behavior
of political representatives is not clear. While some studies have found economic and social
policy to be responsive to the public’s views (Caughey and Warshaw 2018), analyses on
environmental issues are less conclusive. Kim and Urpelainen (2017) find that the increased
polarization of environmental policy in U.S. politics reflects differences between Republican
and Democratic political elites rather than the preferences on environmental policy of the
median voter they represent—this significant partisanship effect has been corroborated by
numerous other studies (Kono 2020; Cragg et al. 2013; Hogan 2021; Coley and Hess 2012).
McAlexander and Urpelainen (2020) show that legislators understand this disconnect, with
members of congress more likely to vote in favor of environmental legislation in the lead up
to a close election. However, while they do still identify a significant partisan effect, Vande-
weerdt, Kerremans, and Cohn (2016) show that, even when controlling for the presence of
interest groups, campaign finance, and political party and ideology, U.S. members of congress
are still more likely to vote in favor of cap-and-trade legislation if their constituents support
climate action (Wynes et al. (2022) present a similar result). Yet another set of literature has
found that campaign contributions from both polluting industries and environmental groups
have consistent and significant effects on legislator voting behavior (Goldberg et al. 2020;
Ard, Garcia, and Kelly 2017; Holland et al. 2015; Gao and Huang 2023; Hogan 2021; Kahane
2016).

Regardless of one’s view on the mechanism through which legislator policy preferences
are incentivized, the literature has consistently shown correlations between employment in
polluting industries and political representative votes against climate policy. Many studies
have used employment in fossil fuel industries as a measure interest group presence in a re-
gion, and have found significant and negative correlations between levels of employment and
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pro-environment legislator voting, even when controlling for party, ideology, constituency de-
mographics and campaign finance (Vandeweerdt, Kerremans, and Cohn 2016; Kahane 2016;
Coley and Hess 2012; Anderson 2011; Kono 2020). These findings suggest that community
concerns around the employment impacts of climate policy are shared by their elected offi-
cials. Such concerns can be observed qualitatively in the discourse of political actors around
the world, which often frames the impacts of climate policy in terms of the costs or benefits
to local employment (Vona 2019; Evans and Phelan 2016; Diamond and Zhou 2022; Kalt
2021; Räthzel and Uzzell 2011). This political salience of the issue of job losses is also promi-
nent in other policy areas such as trade and taxation (Margalit 2011; Zatoński et al. 2023;
Crosbie and Florence 2022).

If employment and household impacts are both salient issues for the public and politi-
cians, which have a larger effect on political support for climate policy? The employment
carbon footprint dataset derived in Part I of this thesis and the household carbon footprint
dataset from Green and Knittel (2020) (outlined in more detail in the following section)
allow me to address this question, and add to the literature in two ways. Firstly, as out-
lined in Part I, the Overall ECF represents a much more holistic measure of employment
vulnerability to the energy transition than was previously available—most studies that con-
trol for employment effects measure a congressional district’s share of employment in a set
of chosen industries (for example, mining, oil and gas, and manufacturing), which fails to
capture within-sector differences in vulnerability. Similarly, in contrast to other studies that
investigate correlations with specific consumption choices such as transportation, the HCF
represents a comprehensive measure of household carbon consumption encompassing trans-
portation practices, consumer choices and energy consumption. No study to the author’s
knowledge has used a continuous measure of household cost vulnerability to explain public
support for climate policy. Together, these two datasets allow for a more holistic repre-
sentation of potential employment and household impacts of climate policy than has been
incorporated into the literature to date.

The second, and most significant, contribution of this work is to understand the relative
effects of these two issues. While the literature outlined above has investigated the political
salience of these two issues in isolation, no study to the author’s knowledge has attempted
to compare the relative significance of these effects. This work therefore brings empirical
evidence to an open question in the political economy literature.
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Chapter 5

Methodology

5.1 Overview

This analysis aims to understand the relative effects of employment carbon footprint and
household carbon footprint on representative voting behavior on climate policy. I address
this question through a series of regressions of congressional pro-climate voting on carbon
footprints. I hypothesize that, all else equal, members of congress from high-ECF districts
will be more likely to vote against climate legislation. Given the apparent salience of jobs
as an issue for elected officials, I also hypothesize that this effect will be larger than any
correlation between household carbon footprints and voting behavior.

It is also useful to better understand how carbon footprints relate to public opinion on
climate action, so I also analyze regressions of public climate opinion on carbon footprints.
In line with the literature that finds household costs to be negatively correlated with cli-
mate policy support, I hypothesize that communities with high household carbon footprints
will be less likely to support climate policy, controlling for socioeconomic and demographic
conditions.

The following sections outline the data used in this analysis and specify the models used
in more detail.

5.2 Data

The carbon footprint data used in this analysis come from two pieces of work from the
MIT Center for Energy & Environmental Policy Research. Employment vulnerability was
represented by the Overall ECF data derived in Part I (for clarity, I will refer to Overall ECFs
as simply “ECFs” for the remainder of Part II). Household vulnerability was represented by
a similar measure, the household carbon footprint (HCF), derived by Green and Knittel
(2020). These census tract-level footprints were derived using data on energy consumption,
consumer behavior, and transportation from representative samples of U.S. households. For
each of these samples, a machine learning model was trained to predict consumption from
household demographics, geographic characteristics and weather data, and these models were
used to project out the carbon footprints of households across all census tracts. Given that
the congressional district is the unit of analysis for congressional voting behavior, district-
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level ECF and HCF data were generated by weighting the county- and tract-level figures,
respectively, by population share. Figure 5.1 displays the district-level ECFs and HCFs used
in my analysis. County-level HCF estimates are displayed in Appendix D.

Data on congressional voting behavior was taken from the League of Conservation Voters
(LCV) National Environmental Scorecard, which tracks the voting records on environmental
issues of members of congress. In consultation with experts from environmental organiza-
tions, the LCV identifies each vote on an environment-related issue that occurred in a given
year, determines the “pro-environment” and “anti-environment” positions for each vote, and
scores the votes of each member of congress (League of Conservation Voters 2023). Pro-
environment votes are scored 1 and anti-environment votes (as well as absentee votes) are
scored 0, and the average score for each member is transformed in an annual score (here-
after, “the LCV score”) on a scale of 0 (anti-environment) to 100 (pro-environment) (League
of Conservation Voters 2023). Each vote is also coded by its general environmental topic—for
example, “clean energy,” “water, oceans, and drilling,” and “transportation.”

I considered environmental votes that occurred in the House of Representatives from
the start of 2018 up until the 2022 mid-terms. The models described below used both
LCV scores and binary pro-/anti-climate vote scores as the outcome variable. When using
the LCV score as the outcome variable, I averaged the LCV scores from 2018 to 2022 for
each congressional district—if the representative for a given district changed in that period,
LCV scores were averaged between the representatives.1 When the outcome variable was
individual vote scores, I considered only bills that were coded as relating to “climate change,”
“clean energy” or “dirty energy.”

Data on public opinion on climate change was obtained from the Yale Climate Opinion
Maps, generated by the Yale Program on Climate Change Communication, which outlines
estimates of climate change beliefs at high geographic granularity across the U.S. based on
largescale survey data collected between 2008 and 2021 (Howe et al. 2015). The climate
opinion dataset reports a range of estimates—as has been done in the literature (Wynes
et al. 2022), the most relevant variable to use as a measure for climate change opinion in
this analysis was “Estimated percentage who think Congress should be doing more/much
more to address global warming.” I isolated estimates of this variable from 2018 to 2021 at
both the county and congressional district level, and as with the LCV scores computed the
average across that timeframe.

I controlled for demographic and geographical factors using 5-year and 1-year estimates
from the American Community Survey at the geographic granularity of interest (U.S. Census
Bureau 2023a). Specifically, the demographic variables considered were: Black population
share; Hispanic population share; rate of tertiary education attainment; median age; and
median household income. The geographic variable of interest was population density, as a
proxy for urbanity.

In addition the political party of a representative, I control for each representatives ideol-
ogy using the DW-Nominate scores developed by Lewis et al. (2021). This measure analyzes
all congressional roll call votes of each member of congress and scores them on a continuous

1. A key control in my models is whether a member of congress belongs to the Republican party. In cases
were the representative of a district changed from one party to another between 2018 and 2022, I coded the
political party of the district to be whichever party held the district for the longest.
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Notes: These maps show the average employment (top) and household (bottom) carbon footprints of each congressional district,
calculated as population-weighted estimates from county- and census tract-level data, respectively. Since employment carbon
footprints are highly skewed, the ECFs are displayed on a logarithmic scale. Note that Alaska and Hawaii are missing from the
HCF map, as this dataset does not cover these states.

Figure 5.1: District-level employment (top) and household (bottom) carbon footprints

65



scale from -1 to 1, where 1 is most conservative and -1 is most liberal. For data on politi-
cal party preference at the county level, I used voting data from the 2020 U.S. presidential
election from the MIT Election Lab (MIT Election Data and Science Lab 2020).

Finally, several studies have demonstrated a relationship between political donations to
congressional representatives and their voting record on environmental issues (Ard, Garcia,
and Kelly 2017; Goldberg et al. 2020). As has been done in the literature, I control for
campaign finance effects using data from OpenSecrets (OpenSecrets 2023) by computing the
share of a congressional representative’s total campaign contributions that came from fossil
fuel industries (coal mining and oil and gas extraction) in each cycle from 2018 to 2022, and
computing the average of these shares across those years.

5.3 Model design

I conduct three regression models: two ordinary least squares (OLS) estimations and one
probit estimation. For each set of regressions, both non-standardized and standardized
coefficients were computed.

I begin by investigating the effects of a community’s carbon footprints on its approval
of congressional action on climate policy (“climate opinion score”). I conduct a set of OLS
regressions (with robust standard errors) of average climate opinion score on employment and
household carbon footprints. Since more liberal districts are more likely to support climate
policy, I use a binary control variable for whether the county voted majority Republican in
the 2020 presidential election, and add a control for the percentage of the county that voted
Republican in later regressions. Since richer districts are more likely to support climate
legislation (Cragg et al. 2013; Kono 2020) I also control for the median household income of
the district for each regression. As demographic characteristics including race/ethnicity, age,
and particularly level of tertiary education attainment have been shown to correlate with
support for climate policy (Hogan 2021; Kono 2020), I add controls for these variables in
progressive regressions. Given the findings in Part I of this thesis that indicate that ECFs are
correlated with population density, I also control for population per square kilometer. I run
these models at both the congressional district level and at the county level, as the climate
opinion data are available at both and the ECF and HCF data are most representative at
the county level. Summary statistics for the county-level model are presented in Table 5.1.

I next conduct the more substantive portion of this analysis, investigating the effects of the
carbon footprints of a constituency on the environmental voting record of its representative
in the U.S. House of Representatives. Using OLS regression with robust standard errors, I
regress each representative’s average LCV score onto their constituency’s employment and
household carbon footprints. Table 5.2 displays the summary statistics for the variables used
in the average LCV score OLS estimations. I again control for income and political ideology,
this time using the representative’s political party and DW-Nominate score. I add the same
demographic characteristics as with the climate opinion regressions.

Importantly, in an attempt to gain insight into the mechanisms by which constituency
preferences or vulnerabilities might be translated into congressional voting behavior, I also
control for public opinion on climate action and political donations from fossil fuel industries.
There is evidence to suggest that district-level gains and losses from climate policy are
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translated into political incentives for legislators through campaign contributions (Holland
et al. 2015). Similarly, legislators have been shown to shift their voting behavior in response
to constituent opinion on climate change (Vandeweerdt, Kerremans, and Cohn 2016; Wynes
et al. 2022; McAlexander and Urpelainen 2020). Controlling for these variables allows me
not only to corroborate this literature, but also to understand whether legislators would take
heed of the potential costs of climate policy to their constituents without political pressure
from the public or campaign finance.

Finally, to validate the OLS results from the average LCV scores, I run a set of probit
regressions where the outcome variable is whether or not a given representative voted in
the pro-climate position on a given bill relating to “climate change,” “clean energy” or “dirty
energy.” I considered each vote on every bill relating to these topics between 2018 and the
2022 midterms as a datapoint, for a total of 18,391 votes.

Between 2018 and 2022, the League of Conservation Voters considered several votes
related to non-environmental issues around democracy and social justice, including voting
rights, abortion access and marriage equality, and coded these bills as relating to “justice and
democracy.” While views on these issues are clearly partisan and therefore likely correlated
the political party and/or ideology of each representative, they also provide a useful avenue to
check that carbon footprints are not simply correlated with various variables not captured in
my analysis. I repeat the probit estimation on 7,234 votes relating to “justice and democracy”
between 2018 and 2022, where the pro-justice position (as coded by the LCV) is the outcome
variable. If I find that carbon footprints are correlated with both pro-climate voting and
pro-justice voting, I will conclude that any effect of carbon footprints on climate voting is
the result of spurious correlation with other unobserved variables.
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Table 5.1: Summary statistics for variables in county-level OLS estimation of average climate
opinion scores

Variable (n = 3, 101) Mean Std. Min Max

Average climate opinion score 54.65 5.57 42.25 78.14
ECF (tonnes CO2e per employee) 46.40 125.62 1.56 1,755.15
HCF (tonnes CO2e per household) 19.46 3.55 10.73 32.01
Median household income ($) 54,849.50 14,566.24 22,292.00 147,111.00
Republican 0.83 0.38 0.00 1.00
Percent voting Republican 65.12 15.98 8.73 96.18
Black population share (%) 10.04 14.65 0.00 88.04
Hispanic population share (%) 9.62 13.99 0.00 98.90
Tertiary education attainment (%) 37.14 7.74 5.12 69.39
Median age 41.61 5.45 22.20 68.00
Population per km2 103.25 695.18 0.07 27,763.60

Table 5.2: Summary statistics for variables in OLS estimation of average LCV scores

Variable (n = 479) Mean Std. Min Max

Average LCV score 52.84 43.55 0.00 100.00
ECF (tonnes CO2e per employee) 14.35 16.94 1.56 124.69
HCF (tonnes CO2e per household) 21.10 3.16 12.71 29.47
Median household income ($) 68,723.68 18,957.18 32,582.00 146,441.00
Republican 0.50 0.50 0.00 1.00
Black population share (%) 13.81 13.70 1.19 67.76
Hispanic population share (%) 18.17 18.15 1.10 87.98
Tertiary education attainment (%) 42.39 7.25 19.06 67.02
Median age 38.66 3.60 28.40 55.70
Population per km2 919.29 2,585.87 3.43 28,851.83
Average climate opinion score 60.85 6.00 47.95 79.49
Fossil fuel donations (average % of total) 1.85 2.11 0.00 11.21
DW-Nominate 0.12 0.44 -0.68 0.87
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Chapter 6

Results

6.1 Constituency climate opinion

Table 6.1 displays the results of regressions of county-level public support for congressional
climate action. Standardized regression coefficients are available in Table D.1 in Appendix
D. In column (1), I find that ECF, HCF, whether the county voted majority Republican,
and median household income all have statistically significant effects on the average climate
opinion score of the county. Richer counties are more likely to support further congres-
sional action on climate change, while Republican counties and counties with higher carbon
footprints are more likely to oppose.

These effects remain significant in column (2), where demographic variables are added.
This column shows that counties that are younger, more urban, more educated, and more
diverse are more likely to support climate action, echoing findings in the literature (Lee et
al. 2015; Hogan 2021; Holian and Kahn 2015). However, age, education and Black population
share lose their statistical significance in column (3) when a continuous measure on political
ideology (the percent of the county that voted Republican in the 2020 election) is added,
and interestingly the effect of population density becomes negative, presumably due to the
correlation between conservatism and rurality.

Both the non-standardized and standardized results in column (3) show that, holding
all else constant, household carbon footprint has a greater effect on climate opinion than
employment carbon footprint. A doubling of a county’s HCF reduces its support for climate
action by nearly 2 percentage points, whereas doubling a county’s ECF reduces support by
only 0.28 percentage points. However, these effects are both smaller than that of political
ideology—a standard deviation increase in the logarithms of ECF and HCF only reduce a
county’s climate opinion by 0.48 and 0.50 percentage points, respectively, while a standard
deviation increase in the percent of a county’s population that voted Republican reduces
climate opinion by 4.6 percentage points. These findings are similar in the congressional
district-level analysis, the results of which are displayed in Tables D.2 and D.3.

While the direction of the effect of HCF on climate opinion cannot be ascertained from
these results, I offer two potential causal mechanisms, each implying opposite directions of
the effect. First, it is possible that communities with high carbon footprints are less likely
to support climate policy because of the perceived costs it could impose on them such as
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Table 6.1: OLS estimation results for average climate opinion score, county level

Dependent variable: Avg. climate opinion score
Variable (1) (2) (3)

log(ECF) -0.894∗∗∗ -0.730∗∗∗ -0.402∗∗∗
(0.057) (0.053) (0.037)

log(HCF) -5.823∗∗∗ -5.844∗∗∗ -2.787∗∗∗
(0.515) (0.534) (0.370)

Republican -9.381∗∗∗ -6.638∗∗∗ -0.778∗∗∗
(0.180) (0.203) (0.183)

Median household income (’000) 0.077∗∗∗ 0.039∗∗∗ 0.027∗∗∗
(0.007) (0.007) (0.006)

Median age -0.062∗∗∗ 0.010
(0.016) (0.010)

Percent tertiary educated 0.144∗∗∗ -0.014
(0.011) (0.009)

Percent Black 0.077∗∗∗ 0.003
(0.005) (0.004)

Percent Hispanic 0.082∗∗∗ 0.048∗∗∗
(0.005) (0.004)

log(Population density) 0.396∗∗∗ -0.146∗∗∗
(0.046) (0.036)

Percent voting Republican -0.288∗∗∗
(0.005)

Intercept 78.003∗∗∗ 71.899∗∗∗ 81.971∗∗∗
(1.253) (1.855) (1.170)

Observations 3,101 3,101 3,100
R2 0.605 0.682 0.852
Adjusted R2 0.604 0.681 0.851
Residual Std. Error 3.504 3.147 2.143
F Statistic 1080.453∗∗∗ 706.479∗∗∗ 1303.320∗∗∗

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

increased energy costs. There is evidence to suggest that living a carbon-intensive lifestyle
increases the short-run marginal price of supporting climate policy (Holian and Kahn 2015),
implying that one’s views on climate policy are, in part, driven by one’s consumption choices.

However, a second possible explanation is that those who hold “green” beliefs
and are more likely to support climate policy are also more likely to change their
lifestyle and consumption to reduce their personal carbon footprint. Several studies
have identified this effect in California (Kahn 2007; Kahn and Morris 2009; Kahn
and Vaughn 2009)—in contrast to the explanation above, this would imply that one’s
beliefs on climate change drive their carbon footprint, not the other way around.

70



6.2 Representative climate voting

Having established an effect between both household and employment carbon footprints
and constituency opinion on congressional climate action, I now turn to their effects on
congressional voting behavior. Table 6.2 shows the results of the regression of the average
LCV scores of members of the House of Representatives (standardized results in Table D.4
in Appendix D).

Table 6.2: OLS estimation results for average LCV score

Dependent variable: Average LCV score
Variable (1) (2) (3) (4)

log(ECF) -3.069∗∗∗ -1.757∗ -2.194∗∗∗ -1.568∗
(0.616) (0.696) (0.648) (0.735)

log(HCF) -6.301 -0.357 -3.143 3.119
(4.013) (4.996) (4.086) (4.149)

Republican -81.828∗∗∗ -79.842∗∗∗ -76.423∗∗∗ -76.616∗∗∗
(1.349) (1.754) (2.329) (2.235)

Median household income (’000) 0.047 0.034 0.053 0.016
(0.031) (0.042) (0.032) (0.039)

Median age 0.382∗∗ 0.413∗∗
(0.137) (0.139)

Percent tertiary educated -0.106 -0.094
(0.093) (0.084)

Percent Black -0.026 -0.043
(0.040) (0.031)

Percent Hispanic 0.009 0.009
(0.035) (0.031)

log(Population density) -0.140 -0.217
(0.324) (0.288)

Climate opinion score 0.563∗ 0.563∗∗∗
(0.254) (0.145)

log(1+ Fossil fuel donation share) -0.946 -0.158
(0.880) (0.990)

Conservative ideology score -8.042∗∗∗ -5.454∗
(2.263) (2.154)

Intercept 116.839∗∗∗ 52.208∗ 103.850∗∗∗ 40.445∗
(10.845) (25.827) (11.218) (17.588)

Observations 487 487 479 479
R2 0.957 0.960 0.959 0.961
Adjusted R2 0.957 0.959 0.959 0.960
Residual Std. Error 9.023 8.793 8.824 8.683
F Statistic 6032.489∗∗∗ 2967.992∗∗∗ 5027.261∗∗∗ 2891.764∗∗∗

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Column (1) uses the same variables as column (1) of Table 6.1 on climate opinion. The
effects of employment carbon footprint and of a given legislator being Republican are sta-
tistically significant. Notably, even just this model specification with no additional controls
yields an R2 value of 0.957. Also notable is the size of the effect of being a Republican on
pro-climate voting—the average LCV scores of Republican legislators is 81.8 points lower
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than those of Democrats, all else equal. Given the scores range from 0 to 100, this cor-
roborates findings in the literature of a significant partisan divide on climate policy that is
reflected is legislator voting behavior.

Column (2) adds demographic variables as well as the district’s climate opinion score,
given the strong correlations between the two identified in the previous analysis. Both
median age and climate opinion have statistically significant effects on pro-climate voting.
Interestingly, age is positively correlated with pro-climate voting in this regression. This
could be due to the fact that older constituents typically have greater voter turnout and po-
litical participation than other age groups, controlling for other demographic factors (Verba
and Nie 1987; Campbell 2011)—therefore, when controlling for climate opinion, one might
expect legislators to be more responsive to older constituents given they are more likely to
express their preferences through voting.

Column (3) aims to assess an alternate mechanism of legislator position formation on
climate issues: campaign finance. It replaces the demographic and climate opinion controls
with the share of campaign contributions from fossil fuel industries, as well as the DW-
Nominate conservative ideology score to ensure that any effect of fossil fuel donations is not
just correlated with the conservatism of a particular legislator. While ideology is statisti-
cally significant, fossil fuel donation share is not, despite the discussion of this effect in the
literature. This could be due to the significance of the effect of employment carbon foot-
print on pro-climate voting. Previous work has found that fossil fuel companies “reward”
legislators who take anti-environment positions (Goldberg et al. 2020), and ECFs and fossil
fuel donations are quite highly correlated in the data (r = 0.62)—therefore, if legislators’
anti-climate voting positions are responsive to their constituents’ employment carbon foot-
prints, we might expect ECF to explain much of the same variance as fossil fuel donations. I
find some evidence to support this theory: when rerunning regression (3) without log(ECF),
fossil fuel donations have a statistically significant effect of -2.082∗∗∗.

Column (4) combines these controls, with the same variables having significant effects.
Altogether, these results yield two notable findings. Firstly, I find that, all else equal,
legislators from districts with higher employment carbon footprints are less likely to vote
in favor of climate policy, while increasing a district’s average household carbon footprint
does not have this effect. This supports my hypothesis that jobs are a more salient issue for
elected officials than household energy costs. Importantly, the results indicate that legislators
are more likely to vote against climate policy as employment vulnerability in their district
increases even if their constituents’ desires for more or less congressional action on climate
change, and their political donations from the fossil fuel industry, remain unchanged.

Secondly, the results show that partisanship and political ideology are the most influential
factors on the climate-related voting behavior of legislators. While I do find evidence that
legislators take their constituents’ beliefs on climate action into account, with legislators
from districts that support climate action statistically more likely to vote in favor of climate
legislation, this effect is marginal compared to the divide between “partisan elites.” The
pro-climate voting score of a Republican legislator will be 76 points lower than that of an
equally-conservative Democrat, even if they both represent constituencies with the same
carbon footprints, beliefs on climate change, and demographics. This partisan effect is so
significant that if the Republican variable in column (4) is removed, the R2 drops from 0.961
to 0.679. The implication is concerning, but perhaps unsurprising: legislators’ positions on
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climate policy are more a function of partisan politics than of constituency representation.
I replicate the regressions of LCV scores with probit regressions on each climate-related

vote between 2018 and the 2022 midterms, where each vote a representatives casts in that
time period on a climate-related issue is considered a datapoint. Table 6.3 displays the results
from these regressions. Columns (1) to (4) show the base regression coefficients for climate-
related votes, and column (5) displays the coefficients for justice-related votes as a check
for the effects of carbon footprints on voting on other issues. The corresponding average
marginal effects of each variable are displayed in Table D.5 in Appendix D. Standardized
regression coefficients and standardized marginal effects are also presented in Appendix D
in Tables D.6 and D.7, respectively.

Table 6.3: Probit estimation results for votes on individual bills

Dependent variable: Pro-climate vote Justice vote
Variable (1) (2) (3) (4) (5)

log(ECF) -0.217∗∗∗ -0.109∗∗∗ -0.107∗∗∗ -0.094∗∗ 0.084
(0.025) (0.029) (0.027) (0.032) (0.056)

log(HCF) -0.712∗∗∗ -0.181 -0.281∗ -0.072 -0.305
(0.137) (0.152) (0.142) (0.159) (0.365)

Republican -2.930∗∗∗ -2.782∗∗∗ -1.220∗∗∗ -1.224∗∗∗ -1.861∗∗∗
(0.034) (0.041) (0.105) (0.110) (0.197)

Median household income (’000) 0.007∗∗∗ 0.004∗ 0.007∗∗∗ 0.003∗ 0.011∗∗
(0.001) (0.002) (0.001) (0.002) (0.004)

Median age 0.029∗∗∗ 0.022∗∗∗ -0.023∗
(0.005) (0.005) (0.010)

Percent tertiary educated 0.002 0.009∗ 0.017∗
(0.004) (0.004) (0.008)

Percent Black 0.002∗∗∗ 0.002∗∗∗ -0.007∗∗∗
(0.000) (0.000) (0.001)

Percent Hispanic 0.003∗∗ 0.005∗∗∗ -0.006∗
(0.001) (0.001) (0.003)

log(Population density) 0.002 -0.004 -0.038
(0.013) (0.014) (0.030)

Climate opinion score 0.036∗∗∗ 0.004 0.031∗∗
(0.005) (0.006) (0.012)

log(1+ Fossil fuel donation share) -0.144∗∗∗ -0.127∗∗∗ -0.066
(0.030) (0.032) (0.054)

Conservative ideology score -2.131∗∗∗ -2.124∗∗∗ -2.416∗∗∗
(0.131) (0.147) (0.221)

Intercept 3.530∗∗∗ -1.729∗∗ 1.339∗∗∗ -0.710 0.704
(0.361) (0.626) (0.378) (0.660) (1.396)

Observations 18,969 18,969 18,391 18,391 7,234
Pseudo R2 0.690 0.695 0.709 0.710 0.775
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

As with the average LCV score regressions, employment carbon footprint, legislator party
and ideology, and median constituency age all have statistically significant effects in columns
(1)–(4). According to the marginal effects presented in Table D.5, an increase in a district’s
ECF from the 25th to the 75th percentile (4.88 to 17.1 metric tonnes CO2e per employee)
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decreases the probability its legislator votes in favor of climate legislation by 1.6 percent-
age points, holding all else constant. The significant partisan divide remains: Democratic
legislators are 13 percentage points more likely to support climate policy than Republican
legislators from the same district. Similarly, a standard deviation increase in a legislator’s
conservative ideology score sees a 10 percentage point decrease in the likelihood they support
climate policy (see standardized marginal effects in Table D.7).

The probit model finds several additional demographic and socioeconomic variable
effects—median household income, tertiary educational attainment, Black population share
and Hispanic population share all have positive and statistically significant effects on the
likelihood that the legislator from a given district votes in favor of climate policy. While the
probit model finds a statistically significant effect of HCF on pro-climate voting in columns
(1) and (3), this effect loses its significance when controlling for demographic variables.

In contrast to the LCV regressions, the effect of fossil fuel donations on pro-climate
is significant in the probit estimation. Comparing the 25th and 75th percentile of fossil
fuel donation shares, a legislator that takes 0.2% of their campaign finance from fossil fuel
industries is 3.4 percentage points more likely to vote for climate legislation than one who
takes 2.5% from fossil fuel industries. While public climate opinion is statistically significant
in column (2), it loses its significance when fossil fuel donations and conservative ideology
score are included.

In the estimation of pro-justice voting in column (5), neither ECF or HCF have a sta-
tistically significant effect on pro-justice voting, and nor is an effect observed for fossil fuel
donations. This suggests that the effects of employment carbon footprints and fossil fuel
donations on legislator voting behavior is specific to climate legislation and not merely cor-
related with unobserved variables.

Given the degree to which political party explains the climate voting record of legislators,
I repeat both the OLS and probit estimations described above with separate models for
Democratic and Republican legislators in order to understand how the identified effects
differ between parties. Table 6.4 and Table 6.5 display these results for LCV scores and
votes on climate-related bills, respectively.

These models have relatively low R2 values compared to the original OLS and probit
models, again highlighting the significance of partisanship in explaining voting behavior.
For the OLS models, ECF has a statistically significant effect for Democrats in columns
(1)–(3), but loses its significance in column (4). For Republicans, both ECF and HCF
have significant negative effects without controls, however these lose their significance once
controls are added. For the probit models, I observe an effect of ECF in columns (5)–(7)
but the effect loses its significance when all controls are combined. Interestingly, ECF is not
significant for Democrats, but HCF is, with a significant effect observed for Democrats in
columns (1)–(4) and in columns (5)–(6) for Republicans. The contradiction of these results
(both with each other and the earlier models) combined with the low R2 values makes it
difficult to ascertain the validity of these results on carbon footprint effects, however the
observed partisan difference might be a question for future research.
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Table 6.4: OLS estimation results for average legislator LCV score, by political party

Dependent variable: Avg. LCV score Democrat Republican

Variable (1) (2) (3) (4) (5) (6) (7) (8)

log(ECF) -2.517∗∗ -1.431∗ -1.502∗ -0.422 -2.698∗∗ -0.752 -2.051 -1.499
(0.781) (0.628) (0.719) (0.601) (0.944) (1.070) (1.070) (1.200)

log(HCF) -3.224 -0.390 -3.851 -1.131 -17.257∗ -6.336 -7.632 -0.137
(3.763) (3.200) (3.626) (3.280) (8.614) (8.511) (7.475) (7.948)

Median household income (’000) 0.003 -0.013 0.007 0.004 0.198∗ 0.167 0.112 0.076
(0.022) (0.026) (0.024) (0.027) (0.100) (0.122) (0.092) (0.115)

Median age 0.232 0.188 0.345 0.378
(0.141) (0.135) (0.229) (0.223)

Percent tertiary educated 0.106 0.045 -0.364 -0.170
(0.060) (0.063) (0.190) (0.184)

Percent Black 0.049 0.046 -0.230∗∗ -0.095
(0.038) (0.039) (0.076) (0.071)

Percent Hispanic 0.058 0.056 -0.088 -0.017
(0.042) (0.043) (0.061) (0.049)

log(Population density) 0.444 0.415 -0.789 -0.512
(0.258) (0.263) (0.593) (0.570)

Climate opinion score 0.090 0.144 1.354∗∗∗ 0.837∗∗∗
(0.093) (0.084) (0.297) (0.244)

log(1+ Fossil fuel donation share) -3.203∗∗∗ -3.415∗∗∗ -0.472 0.983
(0.823) (0.845) (1.221) (1.320)

Conservative ideology score 0.529 2.178 -27.336∗∗∗ -21.639∗∗∗
(1.282) (1.194) (6.447) (6.252)

Intercept 109.689∗∗∗ 76.178∗∗∗ 111.134∗∗∗ 78.651∗∗∗ 57.759∗ -47.203 45.304∗ -33.081
(10.146) (12.238) (9.342) (10.868) (23.337) (32.849) (20.128) (28.668)

Observations 241 241 238 238 246 246 241 241
R2 0.076 0.117 0.112 0.154 0.117 0.254 0.321 0.364
Adjusted R2 0.064 0.082 0.093 0.113 0.106 0.226 0.307 0.333
Residual Std. Error 6.564 6.499 6.494 6.422 10.804 10.053 9.599 9.415
F Statistic 3.848∗ 1.811 4.830∗∗∗ 3.177∗∗∗ 6.457∗∗∗ 5.319∗∗∗ 7.363∗∗∗ 6.123∗∗∗

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table 6.5: Probit estimation results for votes on individual bills, by political party

Dependent variable: Pro-climate vote Democrat Republican

Variable (1) (2) (3) (4) (5) (6) (7) (8)

log(ECF) -0.056 -0.034 0.023 -0.013 -0.414∗∗∗ -0.130∗ -0.305∗∗∗ -0.073
(0.034) (0.041) (0.037) (0.043) (0.048) (0.054) (0.047) (0.055)

log(HCF) -0.745∗∗∗ -0.418∗ -0.499∗∗ -0.426∗ -0.929∗∗∗ -0.619∗ 0.073 -0.228
(0.161) (0.187) (0.170) (0.202) (0.253) (0.294) (0.256) (0.289)

Median household income (’000) 0.009∗∗∗ 0.005∗∗ 0.009∗∗∗ 0.006∗∗ 0.006∗ 0.005 -0.002 -0.004
(0.001) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003)

Median age 0.020∗ 0.016 0.016∗ 0.001
(0.008) (0.008) (0.008) (0.008)

Percent tertiary educated 0.013∗∗ 0.012∗ 0.001 0.024∗∗∗
(0.005) (0.005) (0.006) (0.007)

Percent Black 0.009∗∗∗ 0.009∗∗∗ -0.007∗∗∗ -0.006∗∗∗
(0.001) (0.001) (0.001) (0.001)

Percent Hispanic 0.008∗∗∗ 0.009∗∗∗ -0.004 -0.002
(0.002) (0.002) (0.002) (0.002)

log(Population density) 0.057∗∗∗ 0.044∗ -0.028 0.008
(0.016) (0.017) (0.025) (0.025)

Climate opinion score -0.014∗ -0.032∗∗∗ 0.103∗∗∗ 0.060∗∗∗
(0.006) (0.008) (0.009) (0.009)

log(1+ Fossil fuel donation share) -0.232∗∗∗ -0.281∗∗∗ 0.004 -0.016
(0.036) (0.041) (0.052) (0.056)

Conservative ideology score -1.181∗∗∗ -1.170∗∗∗ -2.904∗∗∗ -2.585∗∗∗
(0.188) (0.224) (0.193) (0.212)

Intercept 3.174∗∗∗ 1.244 1.964∗∗∗ 2.278∗ 1.837∗∗ -6.063∗∗∗ 0.280 -3.786∗∗∗
(0.416) (0.817) (0.463) (0.910) (0.665) (1.037) (0.648) (1.009)

Observations 9,900 9,900 9,391 9,391 9,069 9,069 9,000 9,000
Pseudo R2 0.017 0.049 0.036 0.066 0.063 0.131 0.152 0.185
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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However, both the OLS ad probit models observe an interesting effect of fossil fuel dona-
tions. In both sets of regressions, fossil fuel donations have no observable effect on Republican
voting behavior but do have a statistically significant negative effect on the pro-climate voting
of Democrats. This result is intriguing, and calls for further research into whether Demo-
cratic legislators’ voting on climate issues is more “up for sale” (i.e. responsive to campaign
contributions) than Republican legislators, or if fossil fuel industries are more discerning for
Democrats than Republicans when targeting anti-environment legislators to donate to.
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Part III

Discussion & conclusion
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Chapter 7

Discussion & policy implications

The energy transition is necessary to address climate change and will benefit the U.S. on the
whole, but will impose costs on a concentrated few whose employment is reliant on fossil fuels.
Just transition policy is needed to support these groups, however my results demonstrate that
current efforts to target policies to the communities that need them most are inadequate. I
find that several communities with high employment carbon footprints are at risk of being left
behind if policymakers do not quickly adopt holistic measures of employment vulnerability to
the energy transition that span the entire economy, are continuous, and consider both fossil
fuel production and consumption. The need for such measures is all the more urgent given
my findings on the political salience of employment vulnerability for legislators—without
adequate measures to identify and provide support to areas where jobs are at-risk, we can
expect political resistance to climate policy on the basis of job impacts to continue.

Employment vulnerability is not distributed evenly. I find that job impacts of the energy
transition will be born by the inland states, particularly in fossil fuel-producing counties in
west Texas, Appalachia, Wyoming, Oklahoma, the Gulf Coast and western North Dakota, as
well as Alaska’s North Slope. However, counties in Nevada and the Great Plains states that
do not produce fossil fuels but rely greatly on their consumption will also heavily impacted,
and these communities are largely missed by analyses in both the literature and policy sphere.

Most consequentially, many of these communities are missed by the United States’ most
significant piece of climate legislation, the Inflation Reduction Act. My analysis finds that
the IRA’s definition of “energy communities” is insufficient in identifying the most vulnerable,
carbon-intensive communities. Not only are some of the country’s most vulnerable regions
excluded, but areas that I find are not particularly vulnerable are included. This is potentially
a billion-dollar oversight, with the IRA at risk of funneling clean investment away from the
regions that desperately need to move away from fossil fuels.

I echo some of the recommendations from the literature on how to improve measures
to identify vulnerable communities, and put forward several of my own. Firstly, measures
should be proactive, not reactive. The IRA’s definition requires a region to have above-
average unemployment to qualify under the fossil fuel employment criterion, however this
excludes communities that are highly reliant on fossil fuels but where unemployment impacts
may not yet have been felt. In fact, my explained variance analysis suggests that counties
with high unemployment tend to have less carbon-intensive jobs. I demonstrate that it also
introduces significant year-on-year volatility and thereby uncertainty into a community’s en-
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ergy community status, as changes in both national and local unemployment cause areas to
swing in and out of qualification. Similar critiques can be made of the coal closure crite-
rion. Previous studies have shown that just transition efforts need to begin before closures
have impacted a region (Harrahill and Douglas 2019), not solely afterwards, and I note that
employment in coal-fired power plants is not counted towards the fossil-fuel employment
criterion in the IRA—meaning these communities can only qualify once jobs have been lost.
Secondly, measures should be continuous and proportional to the level of employment vul-
nerability a community faces. As recommended by Raimi and Pesek (2022), policies (such as
the IRA’s tax credits) could be scaled according to a community’s employment vulnerability,
but only if the employment vulnerability measure is also continuous. Finally, in contrast to
the literature, I highlight the importance of considering employment vulnerability across the
entire economy and capturing fossil fuel consumption as well as fossil fuel production. Failing
to do so overlooks regions where energy-intensive sectors that consume a lot of fossil fuels,
such as heavy manufacturing or non-fossil mining, are significant contributors to the local
economy; indeed, I find that nearly half of the most carbon intensive counties that are not
granted energy community status are heavily reliant on carbon-intensive manufacturing.

It is worth pausing here to note that the Inflation Reduction Act is, first and foremost, an
investment incentive package for clean energy. While I have interpreted the energy commu-
nities provision as a just transition policy and thereby identified its shortcomings, this is not
the overall objective of the IRA, and it could be argued that the energy communities provi-
sion is equally focused on replacing aging fossil fuel infrastructure with clean energy projects
as it is supporting the communities they reside in. However, the fact remains that the IRA
is the only major piece of U.S. federal policy that integrates some just energy transition
policy measures, and until additional policy efforts are introduced these measures will be
insufficient. Future just transition policy that not only incentivizes investment but supports
workforce development and social and cultural transition is required, and to identify which
communities need this assistance policymakers must use metrics of transition vulnerability
that are continuous, proactive, and economy-wide.

My target measure, the employment carbon footprint (ECF), satisfies these criteria,
and could be used by policymakers to inform future decision-making on where to provide
targeted policy support for the just transition. It is particularly important for policymakers
to consult the supplemental maps that draw out the differences in vulnerability between fossil
fuel-extracting and fossil fuel-consuming communities, as the impacts of decarbonization on
these industries will take very different forms and require unique policy approaches to address
(Sovacool et al. 2021; Moniz and Kearney 2022).

To this point, while the Overall ECF effectively highlights where policy support may be
needed to mitigate employment impacts from the energy transition, it does not prescribe
the form that this support should take. Communities with similar carbon intensities will
invariably face unique challenges—these could be a function of the local industrial make-
up (Sovacool et al. 2021; Moniz and Kearney 2022), cultural identities inextricably tied to
certain industries (Carley, Evans, and Konisky 2018; Evans and Phelan 2016; Cha 2020)
or the compounding effects of other vulnerabilities such as local pollution exposure, edu-
cational disadvantage or energy insecurity (Graff, Carley, and Konisky 2018; Carley and
Konisky 2020; Carley et al. 2018). To begin to understand the intersection of these vulner-
abilities, my metric could be incorporated into more holistic frameworks of vulnerability in
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the literature (Turner et al. 2003; Carley et al. 2018) that capture not only economic but
also environmental, health and physical risks associated with climate change and the energy
transition and include assessments of sensitivity and adaptability to these risks. Within such
frameworks, supplementing ECFs with retrospective measures of fossil fuel reliance (such as
the IRA’s coal closures measure) could capture historical harms and ensure that restorative
justice concerns are also accounted for during policymaking. However, it may be unwise for
policymakers to rely on such metrics alone during policy design—studies have consistently
demonstrated that local, bottom-up initiatives that facilitate active community involvement
in decision-making are more successful, more effective at building trust with stakeholders,
and more positively perceived by the public (Graff, Carley, and Konisky 2018; Carley and
Konisky 2020; Harrahill and Douglas 2019).

In terms of what drives differences in Overall ECFs between communities, I find that
the largest contributing factor is the allocation of the workforce across sectors. Oil and
gas, coal mining and fossil-fuel power generation have the highest sectoral ECFs on average,
and naturally counties with high shares of employment in these sectors tend to have higher
Overall ECFs. Policy efforts to reduce energy transition vulnerability should therefore focus
on helping diversify local economies away from these polluting sectors.

However, there is also substantial within-sector variation in Overall ECFs, even when
controlling for subsector employment share, fuel mix and grid carbon intensity. Future work
should seek to understand this more thoroughly, but these results suggest that a non-trivial
amount of an employee’s vulnerability to the energy transition is driven by the total factor
carbon emissions efficiency of their firm. In hard-to-abate sectors, this could signal that
policy incentives to increase emissions efficiency while maintaining productivity may be an
effective way to reduce employee vulnerability.

The degree of unexplained variance in Overall ECFs indicates that it may be unwise for
policymakers to rely solely on proxy variables such as workforce allocation when attempting
to target the communities whose employment is most vulnerable to the energy transition.
Workforce allocation alone accounts for only 50% of the variance in employment vulnerabil-
ity between counties, meaning that policies that use fossil fuel employment rates as a key
measure may still miss at-risk communities—even without other inhibiting criteria like the
unemployment threshold I critique in the IRA. This presents a challenge for policymakers in
situations where data-driven measures such as ECFs can’t be legislated—how do we proxy
for employment vulnerability to replicate the results we see in the data? My analysis sug-
gests that data on workforce allocation should be part, but not all, of the solution, and that
demographics, climatic conditions and power grid carbon intensity are largely ineffective as
proxies. Future work might consider whether explainability is increased with more granular
workforce allocation data, however this was unavailable for my analysis and may well also be
unavailable to policymakers given the strict disclosure requirements for U.S. Census Bureau
employment data.

The distributional analysis of employment carbon footprints finds that areas with high
Overall ECFs tend to be more rural, less racially and ethnically diverse, less educated,
and more likely to vote Republican. However, there is significant variability across all of
these demographics—for example, while on average high-ECF counties tend to have less
racial and ethnic diversity, there are many counties that are both highly diverse and highly
vulnerable. There are also significant differences between urban and rural areas in these
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trends—for example, I find that while high-ECF counties in urban areas tend to be lower-
income, the opposite is true for rural counties, supporting the literature that finds carbon-
intensive employment to be the best (if not only) source of high-income employment in
regional areas.

In addition to low levels of tertiary education, I find that many vulnerable regions have
little to no capacity for local retraining and re-skilling through two-year and community
colleges. This is concerning—even if new, “green” jobs were to emerge in these regions,
research has shown that there are significant skill gaps between these and more polluting
jobs that will require workforce development (Vona et al. 2018). Without local retraining
capacity, vulnerable employees looking to transition to cleaner industries may be forced to
relocate; given what we know about the importance of social fabric and cultural identity in
the just transition, such an imposition presents a significant barrier to workforce development
and may be untenable for many communities. Expanding retraining capacity in regions where
it is constrained must be a priority for just transition policy if it is to ensure that new clean
jobs are filled by those whose industries made way for them during the energy transition.

An outstanding question is whether there are disparities in employment carbon footprints
along racial or ethnic lines within a given county. Ash and Boyce (2018) find that minority
populations tend not to hold polluting (and often high-paying) jobs despite bearing the
majority of the pollution impacts, and with more granular data on sectoral employment share
by race/ethnicity future work could determine whether this translates into lower employment
vulnerability to the energy transition. If this were to be the case, then just transition policy
efforts would need to be careful to focus not only on transitioning workers in polluting
industries but also on ensuring that racial and ethnic disparities in access to high-paying
employment are eliminated in new opportunities the energy transition might generate.

Altogether, the distributional analysis makes the case for just transition policy that is
place-based and tailored to the unique circumstances and needs of the community it strives to
serve. Broad brush approaches, such as investment incentives like the IRA’s tax credits, only
address part of the transition challenge—new clean energy projects in a community do not
necessarily mean new clean jobs for those living in the community, and do nothing on their
own to address the loss of cultural identity that may result in a transition away from a history
of carbon-intensive industry. While my results are primarily aimed at helping policymakers
identify communities that need assistance, they also demonstrate the diversity of contexts
these communities exist within, and I recommend that policymakers adopt differentiated
transition policy approaches, based on the demographic characteristics of the area (across
the dimension of urbanity, for example) but also in consultation with the community itself.

With Part I of this thesis analyzing how employment vulnerability is distributed across
the U.S., Part II allowed me to interrogate a separate question: how does employment
vulnerability affect the politics of climate policy? I find that both the beliefs of the public
and the actions of political representatives are affected by the carbon intensity of jobs in
a community. Importantly, I find that while the public’s support for further action on
climate change is more correlated with household carbon consumption than employment
carbon footprints, members of the U.S. House of Representatives do not take these household
consumption patterns into account when voting on climate policy. Instead, they prioritize
the preservation of carbon-intensive jobs for their constituents, with representatives from
high-ECF districts more likely to vote against climate legislation.
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While I do find that representatives are partially responsive to their constituents’ views
on climate policy, this effect of employment vulnerability remains even when this public
opinion (as well as donations from fossil fuel industries) is controlled for. This presents
an interesting implication: that legislators view carbon-intensive employment and climate
policy as in tension, and that they tend to prioritize the protection of these jobs above climate
action even if this does not reflect the views of the majority of citizens they represent. It also
suggests that this prioritization of employment is not (at least solely) driven by donations
from the fossil fuel industry, although I am unable to completely control for industrial interest
group pressure of other forms such as informal lobbying.

However, despite identifying effects of employment vulnerability, public climate opinion,
and constituency demographics on voting behavior, I find that whether a legislator votes in
favor of climate policy is overwhelmingly explained by a simple binary: their political party.
The employment and household carbon footprint data I use in this analysis provides deeper
insight into the economic implications of climate policy for congressional districts than has
previously been accounted for in most of the literature—even still, the effects of these and
other variables are marginal compared to the effect of a legislator being Republican. This
disturbing (but perhaps not overly surprising) finding supports a growing theory in the
literature: that the positions of political representatives on climate policy are increasingly
being driven by divides between partisan elites instead of the economic interests and political
beliefs of the citizens they represent.

Nevertheless, this work brings further evidence to the claim that jobs are a particularly
salient issue for politicians, and this finding has important implications for the just transi-
tion. In a political environment where climate politics is partisan, every vote counts, and
mitigating legislator concerns about job impacts will likely be crucial in securing support
for any future climate policy. The history of the Inflation Reduction Act is the perfect case
study of this phenomenon. Originally part of the Biden administration’s “Build Back Better”
plan, the legislation was whittled away and eventually defeated by Democratic senator Joe
Manchin of West Virginia, whose vote held the balance of power in the Senate and who
represented some of the communities with the most carbon-intensive employment in the
country. Manchin’s concerns centered around the economic implications of the legislation
(Manchin 2021), and while he eventually supported the passing of the IRA, its scope had
been drastically reduced due to his interventions.

Could more targeted, efficacious just transition policy have won Manchin’s support for
the original Build Back Better climate agenda? While it’s impossible to say, previous work
has shown that generous welfare benefits for carbon-intensive workers increases the likelihood
that legislators from carbon-intensive districts vote in favor of climate policy (Kono 2020;
Gazmararian 2022a). This, along with our findings on the political salience of the employ-
ment impacts of the energy transition, suggests that just transition policy might not only
do right by carbon-intensive communities, but also partially nullify the political incentive
to vote down climate legislation in the name of protecting workers. But for such policy to
be effective, it will have to be sufficiently targeted, and measures such as the ECF will be
essential in ensuring this.
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Chapter 8

Conclusion

While the just transition is increasingly becoming a policy priority in the fight against
climate change, work to identify which communities need assistance is nascent. This thesis
fills this gap by deriving a continuous, economy-wide metric of employment vulnerability to
the energy transition—the employment carbon footprint (ECF). Using mostly public data,
I derive ECFs for every county in the United States. Communities with high employment
carbon footprints are heavily reliant on fossil fuel in their local economies, either through
high levels of fuel consumption or the presence of fossil fuel extraction industries, and are
those in most dire need of policy support as the energy transition progresses.

I find that both the literature and the Inflation Reduction Act exclude several high-ECF
regions with significant employment vulnerability due to insufficiently proactive metrics, a
sole focus on fossil-fuel sectors, a lack of continuity, and a lack of consideration for fossil fuel
consumption in addition to fossil fuel production. Policy efforts need to ensure that data-
driven measures of employment vulnerability are used in order to target the communities
most at-risk and ensure that they are not left behind during the energy transition.

I find that while the prevalence of carbon-intensive sectors is the greatest driver of a
county’s ECF, there are significant within-sector differences in ECF that are unexplained by
sectoral employment allocation, demographics and politics, grid carbon intensity and sub-
sector fuel mix. This suggests that non-trivial differences in total factor carbon emissions
efficiency between firms may contribute to differences in communities’ employment vulner-
ability, and that using a region’s level of fossil fuel employment as a proxy variable presents
an incomplete picture of the region’s employment vulnerability to the energy transition.

This thesis finds that highly vulnerable areas tend to be more rural, less racially and
ethnically diverse, more likely to vote Republican and less educated, however also highlights
the significant variability in all of these trends and the need for just transition policy to
consider the specific economic, demographic and sociocultural characteristics of vulnerable
communities. I draw particular attention to the need to rapidly expand retraining capacity
in two-year and community colleges in high-ECF areas where it is constrained.

Furthermore, I demonstrate that the voting behavior of members of the U.S. Congress
on climate issues is correlated with the employment carbon footprints of their districts, and
argue that this provides empirical evidence of the political salience of the issue of employ-
ment for climate policy. While both household-level reliance on fossil fuels and ECFs are
negatively correlated with public opinion on climate policy, the household carbon footprints
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of their constituents do not factor into legislators’ calculus when voting on climate legisla-
tion. Importantly, I also identify a significant partisan divide on climate voting, even when
this does not represent the views of the public.

I recommend that policymakers use the ECF results, particularly the distributions of
Overall ECFs across the United States, in future attempts to identify communities with high
employment vulnerability to the energy transition. I argue that, given the aforementioned
salience of jobs as an issue for politicians, mitigating employment impacts and supporting
communities is crucial in securing political support for climate policy at large, and such
efforts need to effectively target the right communities to be effective. More generally, this
work demonstrates the need for policymakers to take sufficient care (and possess the requisite
data) when determining who should benefit from policy support. The criteria that determine
a community’s eligibility to assistance during the energy transition should be informed by
data and reflective of the goals of the policy, not considered as an afterthought. After all,
the perfectly designed policy is useless if it neglects the very communities it was designed to
serve.
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Appendix A

Detailed ECF calculation methodology
& assumptions

A.1 Price elasticity calculations

Pass-through rates (ρ) used to distribute effective carbon emissions across the energy supply
chain were calculated using the price elasticities of the fuel in question for a given sector, as
per Equation 2.3. Price elasticities for a given fuel and sector were taken from the literature—
where a range of values where provided by the literature, maximum and minimum values
were taken and used to calculate maximum and minimum values for ρ. Average values for ρ
were then calculated as the average of the maximum and minimum values, and these average
values were the ones used in the analysis. Table A.1 displays the elasticity figures taken from
the literature. In some cases, price elasticity data were not available and values were assumed
based on the price elasticities of similar fuels.
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Table A.1: Price elasticity values used in analysis

Source Fuel Sector NERC Region PED min PED max PES min PES max

Burke and Liao (2015) Coal Industry -0.7 -0.3
Erickson and Lazarus (2018) Coal All 2.6 2.6
U.S. Energy Information Administration (2012) Coal Power FRCC -0.53 -0.53

MRO -0.11 -0.11
NPCC -0.23 -0.23
RFC -0.18 -0.18
SERC -0.22 -0.22
SPP -0.02 -0.02
TRE -0.02 -0.02
WECC -0.14 -0.14
ASCC -0.11 -0.11
HICC -0.11 -0.11

Natural gas Power FRCC -0.16 -0.16
MRO -0.31 -0.31
NPCC -0.21 -0.21
RFC -0.60 -0.60
SERC -0.41 -0.41
SPP -0.02 -0.02
TRE -0.02 -0.02
WECC -0.05 -0.05
ASCC -0.29 -0.29
HICC -0.29 -0.29

Residual fuel oil Power FRCC -2.16 -2.16
MRO -0.70 -0.70
NPCC -1.26 -1.26
RFC -1.13 -1.13
SERC -1.53 -1.53
SPP -1.28 -1.28
TRE -0.05 -0.05
WECC -0.64 -0.64
ASCC -1.26 -1.26
HICC -1.26 -1.26

Ponce and Neumann (2014) Natural gas All 0.76 0.76
LPG All 0.76a 0.76a

Labandeira, Labeaga, and López-Otero (2017) Natural gas Industry -0.053 -0.053
Natural gas Commercial -0.292
Natural gas Residential -0.042 -0.042
Diesel Industry -0.741 -0.741
Residual fuel oil Industry -0.741b

Heating oil Commercial -0.185
LPG Commercial -0.185c

Electricity Industry -0.145

a Assumed same as natural gas.
b Assumed same as diesel.
c Assumed same as heating oil.
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Source Fuel Sector NERC Region PED min PED max PES min PES max

Antón (2020) Crude oil Industry -0.6 -0.03
Residual fuel oil Industry -0.6d

Smith (2009) Crude oil All 0.10
Gately (2004) Crude oil All 0.58
Brons et al. (2008) Gasoline Transport -0.84 -0.84

Diesel Transport -0.84e -0.84e

Coyle, DeBacker, and Prisinzano (2012) Gasoline All 0.29 2.0
Diesel All 0.29e 2.0e

Heating oil All 0.29e 2.0e

Residual fuel oil All 0.29e 2.0e

Jet fuel All 0.29e 2.0e

Sobieralski (2012) Jet fuel Transport -0.15 -0.10
Residual fuel oil Transport -0.15f -0.10f

U.S. Energy Information Administration (2021c) Natural gas Commercial -0.28
Heating oil Commercial -0.30
Heating oil Residential -0.24 -0.24
LPG Commercial -0.30c

Electricity Residential -0.50 -0.50
Electricity Commercial -0.18

Burke and Abayasekara (2018) Electricity Commercial -0.60
Ros (2017) Electricity Industry -0.60
Calculated using data from Deetjen and Azevedo (2019), see Appendix A.2 Electricity All FRCC 1.180 1.180

MRO 0.985 0.985
NPCC 2.673 2.673
RFC 1.651 1.651
SERC 1.550 1.550
SPP 0.985 0.985
TRE 4.022 4.022
WECC 1.597 1.597
ASCC 1.830 1.830
HICC 1.830 1.830

c Assumed same as heating oil.
d Assumed as the same as the lower bound of global crude oil PED.
e Assumed same as gasoline.
f Assumed same as jet fuel.
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A.2 PES of electricity calculation

We calculate an estimate of the price elasticity of supply of electricity for each NERC region
by estimating the supply curve of power for each fuel type (coal, natural gas or oil) and then
estimating the number of hours each power generation technology is on the margin each
year. We use EIA Form EIA-860 and Form EIA-923 data on annual power plant electricity
generation and fuel consumption to calculate the heat rate of every power plant in the U.S.,
and estimate the marginal costs of these plants as the product of the heat rate and the
price per MMBtu of the plant’s fuel (price data was also obtained from the EIA). In each
NERC region, we used these marginal cost estimates and each plant’s nameplate capacity
to construct a supply curve for each fossil-fuel fired electricity generation technology (i.e.
coal-, gas-, and oil-fired generation). We use linear regression to estimate the gradient of the
supply curves, and then calculate the PES at each “step" of the supply curves according to
the below:

PES =
dQ

dMC

MC

Q
=

1

gradient
× MC

Q
. (A.1)

Finally, we use results from the power sector hourly dispatch model developed by Deetjen
and Azevedo (2019) to identify, for each NERC region, the total demand and the fuel type
of the marginal generator for each hour of the year, and match these data to the previously
calculated PES values according to where the demand intersects with our derived supply
curves. We then average these hourly PES estimates over the entire year to derive the
average PES of electricity for each NERC region.
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Appendix B

Regression details from explained
variance analysis

B.1 Subsectors considered

The extent to which we can control for subsector emissions factor variables is constrained
by the availability of county-level data on subsector fuel mix. The availability of these data
varies between sectors. Table B.1 outlines all of the subsectors used as independent variables
EFss and the high-level sectors they belong too. Emissions data for the commercial sector
are available on the basis of building types rather than industry codes, the emissions factors
for the commercial sector were by building type. Therefore, for the commercial sector the
building types considered are outlined in the “subsector NAICS code" column, with the
NAICS codes corresponding to each building type detailed in the “subsector name" column
for reference (this NAICS-building type crosswalk is displayed for reference, however note
that the emissions data used to derive EFss was available by building type only, not NAICS
codes).
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Table B.1: Subsectors considered for EFss during explained variance regressions, for each high-level sector

Sector Subsector granularity Subsector NAICS code Subsector name
Agriculture 4-digit 1111 Oilseed and grain farming

1112 Vegetable and melon farming
1113 Fruit and tree nut farming
1114 Greenhouse, nursery, and floriculture production
1119 Other crop farming
1121 Cattle ranching and farming
1122 Hog and pig farming
1123 Poultry and egg production
1124 Sheep and goal farming
1125 Aquaculture
1129 Other animal production

Construction 3-digit 236 Construction of buildings
237 Heavy and civil engineering construction
238 Specialty trade contractors

Manufacturing 3-digit 311 Food manufacturing
312 Beverage and tobacco product manufacturing
313 Textile mills
314 Textile product mills
315 Apparel manufacturing
316 Leather and allied product manufacturing
321 Wood product manufacturing
322 Paper manufacturing
323 Printing and related support activities
324 Petroleum and coal products manufacturing
325 Chemical manufacturing
326 Plastics and rubber products manufacturing
327 Nonmetallic mineral product manufacturing
331 Primary metal manufacturing
332 Fabricated metal product manufacturing
333 Machinery manufacturing
334 Computer and electronic product manufacturing
335 Electrical equipment, appliance, and component manufacturing
336 Transportation equipment manufacturing
337 Furniture and related product manufacturing
339 Miscellaneous manufacturing

Mining (excl. fossil) 4-digit 2122 Metal ore mining
2123 Nonmetallic mineral mining and quarrying
2131 Support activities for mining

Coal mining 4-digit 2121 Coal mining
Oil & gas 3-digit 211 Oil and gas extraction
Fossil-fuel power generation 6-digit 221112 Fossil fuel electric power generation
Commercial Varied office Information (NAICS 51)

Finance and insurance (NAICS 52)
Real estate and rental and leasing (NAICS 53)
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Sector Subsector granularity Subsector NAICS code Subsector name
Professional, scientific, and technical services (NAICS 54)
Management of companies and enterprises (NAICS 55)
Administrative and support services (NAICS 561)
Wholesale electronic markets and agents and brokers (NAICS 425)
Public administration (NAICS 92)

retail Retail trade (NAICS 44-45)
warehousing & storage Merchant wholesalers, durable goods (NAICS 423)

Merchant wholesalers, nondurable goods (NAICS 424)
Wholesale electronic markets and agents and brokers (NAICS 425)

restaurants Food services and drinking places (NAICS 722)
accommodation Accommodation (NAICS 721)
schools Elementary and secondary schools (NAICS 6111)
hospitals Hospitals (NAICS 622)
outpatient Ambulatory health care services (NAICS 621)
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B.2 Explained variance analysis stepwise regression co-
efficients

Table B.2 below contains the linear regression coefficients for each of the independent vari-
ables in the six runs of the stepwise model conducted during the explained variance analysis.
Numbers in subscript indicate NAICS codes of subsectors—where words are in subscript
(e.g. “accommodation") this indicates a subclass of commercial building (in the absence of
subsectoral data for commercial buildings).

Table B.2: Regression coefficients for independent variables in explained variance analysis.

Dependent variable: logECF (1) (2) (3) (4) (5) (6) (7)

Intercept 2.062∗∗∗ 5.462∗∗ 2.660 1.174 0.355 -3.389 -2.978
(0.286) (2.649) (2.660) (2.695) (2.845) (2.807) (2.970)

CDD 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗

(0.000) (0.000) (0.000)
CDD · efelec -0.000∗∗∗ -0.000∗∗ -0.000

(0.000) (0.000) (0.000)
PercentTertiaryEd -0.029∗∗∗ -0.020∗∗∗ -0.017∗∗∗ -0.016∗∗∗ -0.016∗∗∗ -0.016∗∗∗

(0.004) (0.005) (0.004) (0.004) (0.004) (0.004)
EF1111 -1.764∗ -3.608∗∗∗

(0.950) (1.154)
EF1112 -0.849 -0.437

(1.267) (1.723)
EF1113 -0.805 -0.954

(1.399) (1.887)
EF1114 -2.785∗∗ -2.183

(1.223) (1.671)
EF1119 2.164 3.300

(3.284) (3.928)
EF1121 -0.706 -1.578

(3.514) (4.319)
EF1122 -1.672∗ -1.601

(0.949) (1.218)
EF1123 1.894 3.719∗∗

(1.209) (1.584)
EF1124 0.383 2.071

(1.597) (2.285)
EF1125 -6.267∗ -8.725∗

(3.774) (4.536)
EF2122 -0.748 0.006

(1.954) (2.123)
EF2123 -2.132∗∗ -4.814∗∗∗

(1.018) (1.280)
EF2131 0.176 0.403

(0.790) (0.815)
EF236 -2.720 -5.863∗

(2.011) (3.463)
EF237 1.059 0.426

(1.207) (1.933)
EF238 -16.027∗ -11.554

(8.329) (9.747)
EF311 1.472 2.481

(1.117) (2.016)
EF312 -1.180 -2.007

(1.153) (2.328)
EF313 -0.677 -2.027

(1.576) (3.285)
EF314 -1.767∗ -2.580

(0.903) (1.735)
EF315 -2.624∗∗ -0.381

(1.328) (2.546)
EF316 -1.434 -4.866

(3.020) (5.611)
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Dependent variable: logECF (1) (2) (3) (4) (5) (6) (7)

EF321 0.589 -4.651
(1.656) (3.047)

EF322 10.019∗∗∗ 3.329
(1.120) (2.556)

EF323 -1.236 -3.089
(1.990) (3.559)

EF324 -0.415 2.626
(0.840) (1.675)

EF325 7.450∗∗∗ 3.549∗

(0.899) (1.846)
EF326 -3.048 1.071

(2.302) (4.437)
EF327 3.029∗∗∗ 4.306∗∗

(0.851) (1.839)
EF331 1.342 0.465

(1.181) (2.447)
EF332 -4.178∗∗ -0.722

(2.123) (3.276)
EF333 2.254 6.716∗∗

(1.832) (3.213)
EF334 -1.814 1.422

(4.141) (8.537)
EF335 -4.486∗∗ -4.136

(2.022) (3.881)
EF336 -1.989 -1.293

(1.622) (3.625)
EF337 -4.378∗∗ -7.767∗∗

(1.800) (3.636)
EF339 -1.672 -3.900

(1.292) (2.414)
EFaccommodation -3.121∗ -4.225

(1.826) (8.785)
EFhospital 2.612 24.406∗

(2.730) (14.532)
EFoffice 1.847 -5.729

(2.105) (8.124)
EFoutpatient 0.890 13.543

(4.212) (21.172)
EFrestaurant -3.468∗∗ 9.099

(1.596) (7.836)
EFretail -6.625∗∗∗ -33.733∗∗∗

(2.507) (9.588)
EFschool 1.000 -4.173

(1.470) (6.557)
EFwarehouse&storage -1.291 16.089

(3.213) (14.274)
EFcoal -1.616 -0.968

(3.588) (4.367)
EFog 5.566∗ 5.219

(2.888) (3.287)
EFpwr 1.535 1.895

(1.142) (1.247)
efelec 0.001∗∗∗ 0.002∗∗ 0.001∗ 0.001

(0.000) (0.001) (0.001) (0.001)
HDD 0.000 0.000∗∗ 0.000

(0.000) (0.000) (0.000)
HDD· efelec -0.000 -0.000 -0.000

(0.000) (0.000) (0.000)
PersonalIncome 0.000 0.000 0.000 0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
PovertyRate -0.006 -0.003 0.001 0.001 -0.003 -0.006

(0.007) (0.007) (0.006) (0.006) (0.006) (0.006)
UnemploymentRate -0.065∗∗ -0.032 -0.014 -0.013 -0.009 -0.008

(0.027) (0.027) (0.026) (0.026) (0.024) (0.024)
PercentRepublican 0.525∗∗ 0.470∗∗ 0.487∗∗ 0.394∗ 0.147

(0.211) (0.204) (0.222) (0.219) (0.226)
log(1+PercentMinority) 0.006 0.031 0.035 0.016 -0.045 -0.080∗

(0.036) (0.038) (0.037) (0.043) (0.044) (0.046)
log(1+PopulationDensity) -0.021 -0.171 -0.355 -0.334 -0.707∗∗ -0.721∗∗

(0.296) (0.293) (0.295) (0.296) (0.297) (0.317)
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Dependent variable: logECF (1) (2) (3) (4) (5) (6) (7)

log(1+PopulationDensity·PersonalIncome) -0.187 -0.016 0.109 0.090 0.510∗ 0.546∗

(0.285) (0.282) (0.282) (0.284) (0.283) (0.302)
log(1 + xag) 0.258∗∗∗ -0.048 -0.011 0.264∗∗∗ 0.272∗∗∗ 0.095 0.038

(0.030) (0.036) (0.036) (0.061) (0.061) (0.070) (0.164)
log(1 + xag · EF1111) 0.639∗∗

(0.309)
log(1 + xag · EF1112) -0.218

(0.329)
log(1 + xag · EF1113) 0.117

(0.365)
log(1 + xag · EF1114) -0.184

(0.345)
log(1 + xag · EF1119) -1.162

(1.055)
log(1 + xag · EF1121) 0.185

(0.995)
log(1 + xag · EF1122) -0.049

(0.286)
log(1 + xag · EF1123) -0.480

(0.329)
log(1 + xag · EF1124) -0.634

(0.464)
log(1 + xag · EF1125) 1.720∗

(1.002)
log(1 + xag · efelec) -0.140∗∗∗ -0.137∗∗∗ -0.034 -0.014

(0.030) (0.030) (0.036) (0.046)
log(1 + xcn) 0.276∗∗∗ 0.320∗∗∗ 0.268∗∗∗ 0.240∗∗ 0.274∗∗ 0.038 0.002

(0.054) (0.054) (0.054) (0.122) (0.121) (0.151) (0.333)
log(1 + xcn · EF236) 0.672

(0.749)
log(1 + xcn · EF237) 0.086

(0.370)
log(1 + xcn · EF238) -0.446

(0.977)
log(1 + xcn · efelec) 0.030 -0.008 0.149 0.126

(0.083) (0.083) (0.111) (0.134)
log(1 + xcoal) 0.503∗∗∗ 0.431∗∗∗ 0.431∗∗∗ 0.310∗ 0.318∗ 0.153 0.313

(0.108) (0.103) (0.101) (0.174) (0.173) (0.185) (0.356)
log(1 + xcoal · EFcoal) -0.414

(1.082)
log(1 + xcoal · efelec) 0.026 0.023 0.060 0.034

(0.031) (0.031) (0.050) (0.066)
log(1 + xcomm) -0.294∗∗∗ -0.095 -0.095 -0.241 -0.151 -0.101 -0.420

(0.061) (0.060) (0.059) (0.198) (0.201) (0.193) (0.287)
log(1 + xcomm · EFaccommodation) 0.026

(0.277)
log(1 + xcomm · EFhospital) -0.599

(0.401)
log(1 + xcomm · EFoffice) 0.257

(0.275)
log(1 + xcomm · EFoutpatient) -0.351

(0.539)
log(1 + xcomm · EFrestaurant) -0.466∗

(0.279)
log(1 + xcomm · EFretail) 1.038∗∗∗

(0.349)
log(1 + xcomm · EFschool) 0.186

(0.236)
log(1 + xcomm · EFwarehouse&storage) -0.554

(0.415)
log(1 + xcomm · efelec) 0.112 0.080 0.088 0.204∗

(0.078) (0.079) (0.076) (0.105)
log(1 + xmf ) 0.385∗∗∗ 0.349∗∗∗ 0.334∗∗∗ 0.485∗∗∗ 0.496∗∗∗ 0.422∗∗∗ 0.395∗∗∗

(0.028) (0.031) (0.031) (0.057) (0.057) (0.057) (0.089)
log(1 + xmf · EF311) -0.089

(0.178)
log(1 + xmf · EF312) 0.043

(0.199)
log(1 + xmf · EF313) 0.118

(0.266)
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Dependent variable: logECF (1) (2) (3) (4) (5) (6) (7)

log(1 + xmf · EF314) 0.094
(0.163)

log(1 + xmf · EF315) -0.226
(0.235)

log(1 + xmf · EF316) 0.421
(0.470)

log(1 + xmf · EF321) 0.596∗∗

(0.262)
log(1 + xmf · EF322) 0.664∗∗∗

(0.239)
log(1 + xmf · EF323) 0.193

(0.279)
log(1 + xmf · EF324) -0.349∗∗

(0.170)
log(1 + xmf · EF325) 0.391∗∗

(0.173)
log(1 + xmf · EF326) -0.336

(0.337)
log(1 + xmf · EF327) -0.149

(0.183)
log(1 + xmf · EF331) 0.097

(0.221)
log(1 + xmf · EF332) -0.408

(0.326)
log(1 + xmf · EF333) -0.427

(0.294)
log(1 + xmf · EF334) -0.254

(1.025)
log(1 + xmf · EF335) -0.040

(0.290)
log(1 + xmf · EF336) 0.024

(0.325)
log(1 + xmf · EF337) 0.284

(0.286)
log(1 + xmf · EF339) 0.201

(0.202)
log(1 + xmf · efelec) -0.094∗∗∗ -0.096∗∗∗ -0.073∗∗∗ -0.076∗∗∗

(0.025) (0.025) (0.025) (0.029)
log(1 + xmn) 0.494∗∗∗ 0.326∗∗∗ 0.314∗∗∗ 0.294∗∗∗ 0.302∗∗∗ 0.234∗∗∗ 0.173

(0.043) (0.042) (0.041) (0.059) (0.059) (0.062) (0.130)
log(1 + xmn · EF2122) -0.550

(0.397)
log(1 + xmn · EF2123) 1.104∗∗∗

(0.320)
log(1 + xmn · EF2131) -0.256

(0.322)
log(1 + xmn · efelec) -0.003 -0.002 0.025 0.046∗∗

(0.011) (0.011) (0.016) (0.021)
log(1 + xog) 1.187∗∗∗ 1.063∗∗∗ 1.010∗∗∗ 0.655∗∗∗ 0.681∗∗∗ 0.778∗∗∗ 0.602∗

(0.077) (0.073) (0.073) (0.096) (0.096) (0.114) (0.312)
log(1 + xog · EFog) 0.928

(1.370)
log(1 + xog · efelec) 0.060∗∗∗ 0.058∗∗∗ -0.004 0.003

(0.014) (0.015) (0.035) (0.045)
log(1 + xpwr) 1.068∗∗∗ 1.072∗∗∗ 1.064∗∗∗ 0.540∗∗∗ 0.558∗∗∗ 0.688∗∗∗ 0.645∗∗

(0.079) (0.074) (0.073) (0.098) (0.098) (0.099) (0.268)
log(1 + xpwr · EFpwr) 0.406

(0.990)
log(1 + xpwr · efelec) 0.089∗∗∗ 0.089∗∗∗ 0.046∗∗ 0.042∗

(0.012) (0.012) (0.021) (0.025)
RepublicanState 0.252∗∗∗ 0.210∗∗∗ 0.188∗∗∗ 0.176∗∗∗ 0.169∗∗∗

(0.050) (0.048) (0.050) (0.053) (0.053)

Observations 1,420 1,420 1,420 1,420 1,420 1,420 1,420
R2 0.539 0.603 0.615 0.659 0.663 0.723 0.742
Adjusted R2 0.536 0.599 0.610 0.652 0.656 0.707 0.717
Residual Std. Error 0.847 0.788 0.776 0.733 0.730 0.673 0.662
F Statistic 206.300∗∗∗ 142.076∗∗∗ 131.617∗∗∗ 103.403∗∗∗ 91.116∗∗∗ 44.831∗∗∗ 29.527∗∗∗
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Appendix C

Supplementary figures & tables from
Part I

Notes: Counties were binned by share of the population that is non-White or Hispanic, where the interval of each bin is equal
to one standard deviation. Lighter marks represent more racially/ethnically diverse counties.

Figure C.1: Distributions of ECFs across counties with differing shares of minority popula-
tion, for urban and rural counties.
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Notes: Counties were binned by share of the population with some level of tertiary education, where the interval of each bin
is equal to one standard deviation. Lighter marks represent more educated counties. The left figure represents urban counties,
while the right represents rural counties.

Figure C.2: Overall ECF distributions at different levels of educational attainment, for urban
and rural counties.
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Notes: Each box plot represents the distribution of Overall ECFs across counties
in a given state, and the color of each box reflects the party that received the
most votes in that state during the 2020 presidential election according to the
MIT Election Lab.

Figure C.3: Overall ECF distribution by state, colored according to political affiliation in
2020 presidential election.
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Appendix D

Supplementary figures & tables from
Part II

Notes: This figure displays the average household carbon footprint of each county, calculated as a population-weighted estimate
from the census tract-level data derived by Green and Knittel (2020).

Figure D.1: Distribution of household carbon footprints across U.S. counties.
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Table D.1: Standardized OLS results for average climate opinion score, county level

Dependent variable: Avg. climate opinion score

Variable (1) (2) (3)

log(ECF) -0.191∗∗∗ -0.156∗∗∗ -0.086∗∗∗
(0.012) (0.011) (0.008)

log(HCF) -0.187∗∗∗ -0.188∗∗∗ -0.090∗∗∗
(0.017) (0.017) (0.012)

Republican -1.670∗∗∗ -1.181∗∗∗ -0.139∗∗∗
(0.032) (0.036) (0.033)

Median household income (’000) 0.200∗∗∗ 0.103∗∗∗ 0.070∗∗∗
(0.018) (0.020) (0.015)

Median age -0.060∗∗∗ 0.010
(0.016) (0.010)

Percent tertiary educated 0.199∗∗∗ -0.019
(0.016) (0.013)

Percent Black 0.202∗∗∗ 0.007
(0.012) (0.010)

Percent Hispanic 0.203∗∗∗ 0.118∗∗∗
(0.013) (0.009)

log(Population density) 0.125∗∗∗ -0.046∗∗∗
(0.014) (0.011)

Percent voting Republican -0.824∗∗∗
(0.015)

Intercept 1.372∗∗∗ 0.965∗∗∗ 0.106∗∗∗
(0.029) (0.031) (0.028)

Observations 3,101 3,101 3,100
R2 0.605 0.682 0.852
Adjusted R2 0.604 0.681 0.851
Residual Std. Error 0.624 0.560 0.381
F Statistic 1080.453∗∗∗ 706.479∗∗∗ 1303.320∗∗∗

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.2: OLS results for average climate opinion score, congressional-district level

Dependent variable: Avg. climate opinion score

Variable (1) (2) (3)

log(ECF) -2.929∗∗∗ -1.496∗∗∗ -1.033∗∗∗
(0.312) (0.254) (0.219)

log(HCF) -8.191∗∗ -5.703∗ -6.303∗∗∗
(2.653) (2.715) (1.129)

Republican -5.098∗∗∗ -3.302∗∗∗ -0.173
(0.349) (0.321) (0.352)

Median household income (’000) 0.030 0.020 0.034∗∗
(0.022) (0.022) (0.013)

Median age 0.056 -0.003
(0.065) (0.037)

Percent tertiary educated 0.090∗ 0.148∗∗∗
(0.039) (0.027)

Percent Black 0.075∗∗∗ 0.080∗∗∗
(0.017) (0.010)

Percent Hispanic 0.080∗∗∗ 0.079∗∗∗
(0.011) (0.010)

log(Population density) 0.953∗∗∗ 0.816∗∗∗
(0.117) (0.094)

Conservative ideology score -5.096∗∗∗
(0.411)

Intercept 92.729∗∗∗ 68.342∗∗∗ 67.722∗∗∗
(6.718) (8.112) (3.755)

Observations 487 487 480
R2 0.619 0.733 0.843
Adjusted R2 0.616 0.728 0.840
Residual Std. Error 3.812 3.209 2.402
F Statistic 151.237∗∗∗ 147.850∗∗∗ 206.291∗∗∗

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.3: Standardized OLS estimation results for average climate opinion score,
congressional-district level

Dependent variable: Avg. climate opinion score

Variable (1) (2) (3)

log(ECF) -0.418∗∗∗ -0.214∗∗∗ -0.148∗∗∗
(0.045) (0.036) (0.031)

log(HCF) -0.204∗∗ -0.142∗ -0.157∗∗∗
(0.066) (0.068) (0.028)

Republican -0.830∗∗∗ -0.538∗∗∗ -0.028
(0.057) (0.052) (0.057)

Median household income (’000) 0.091 0.060 0.105∗∗
(0.068) (0.068) (0.040)

Median age 0.033 -0.002
(0.038) (0.022)

Percent tertiary educated 0.106∗ 0.173∗∗∗
(0.046) (0.031)

Percent Black 0.167∗∗∗ 0.179∗∗∗
(0.038) (0.023)

Percent Hispanic 0.236∗∗∗ 0.232∗∗∗
(0.033) (0.029)

log(Population density) 0.291∗∗∗ 0.249∗∗∗
(0.036) (0.029)

Conservative ideology score -0.366∗∗∗
(0.030)

Intercept 0.416∗∗∗ 0.266∗∗∗ 0.026
(0.043) (0.030) (0.032)

Observations 487 487 480
R2 0.619 0.733 0.843
Adjusted R2 0.616 0.728 0.840
Residual Std. Error 0.621 0.523 0.391
F Statistic 151.237∗∗∗ 147.850∗∗∗ 206.291∗∗∗

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.4: Standardized OLS estimation results for average LCV score

Dependent variable: Average LCV score

Variable (1) (2) (3) (4)

log(ECF) -0.062∗∗∗ -0.035∗ -0.044∗∗∗ -0.032∗

(0.012) (0.014) (0.013) (0.015)
log(HCF) -0.022 -0.001 -0.011 0.011

(0.014) (0.018) (0.014) (0.015)
Republican -1.882∗∗∗ -1.836∗∗∗ -1.757∗∗∗ -1.762∗∗∗

(0.031) (0.040) (0.054) (0.051)
Median household income (’000) 0.020 0.015 0.023 0.007

(0.013) (0.018) (0.014) (0.017)
Median age 0.032∗∗ 0.034∗∗

(0.011) (0.011)
Percent tertiary educated -0.018 -0.015

(0.015) (0.014)
Percent Black -0.008 -0.014

(0.013) (0.010)
Percent Hispanic 0.004 0.004

(0.014) (0.013)
log(Population density) -0.006 -0.009

(0.014) (0.012)
Climate opinion score 0.079∗ 0.079∗∗∗

(0.036) (0.021)
log(1+ Fossil fuel donation share) -0.013 -0.002

(0.012) (0.014)
Conservative ideology score -0.082∗∗∗ -0.055∗

(0.023) (0.022)
Intercept 0.948∗∗∗ 0.926∗∗∗ 0.886∗∗∗ 0.887∗∗∗

(0.015) (0.021) (0.026) (0.026)

Observations 487 487 479 479
R2 0.957 0.960 0.959 0.961
Adjusted R2 0.957 0.959 0.959 0.960
Residual Std. Error 0.207 0.202 0.203 0.200
F Statistic 6032.489∗∗∗ 2967.992∗∗∗ 5027.261∗∗∗ 2891.764∗∗∗

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

122



Table D.5: Marginal effects of probit estimation for votes on climate-related bills

Dependent variable: Pro-climate vote

Variable (1) (2) (3) (4)

log(ECF) -0.0245∗∗∗ -0.0122∗∗∗ -0.0114∗∗∗ -0.0100∗∗
(0.0028) (0.0033) (0.0029) (0.0034)

log(HCF) -0.0804∗∗∗ -0.0202 -0.0299∗ -0.0077
(0.0154) (0.0169) (0.0151) (0.0168)

Republican -0.3305∗∗∗ -0.3098∗∗∗ -0.1300∗∗∗ -0.1298∗∗∗
(0.0047) (0.0052) (0.0112) (0.0116)

Median household income (’000) 0.0008∗∗∗ 0.0004∗ 0.0007∗∗∗ 0.0003∗
(0.0001) (0.0002) (0.0001) (0.0002)

Median age 0.0032∗∗∗ 0.0023∗∗∗
(0.0006) (0.0006)

Percent tertiary educated 0.0003 0.0010∗
(0.0004) (0.0004)

Percent Black 0.0002∗∗∗ 0.0002∗∗∗
(0.0000) (0.0000)

Percent Hispanic 0.0004∗∗ 0.0005∗∗∗
(0.0001) (0.0001)

log(Population density) 0.0002 -0.0005
(0.0014) (0.0015)

Climate opinion score 0.0040∗∗∗ 0.0005
(0.0006) (0.0006)

log(1+ Fossil fuel donation share) -0.0153∗∗∗ -0.0134∗∗∗
(0.0032) (0.0034)

Conservative ideology score -0.2271∗∗∗ -0.2252∗∗∗
(0.0142) (0.0158)

Observations 18,969 18,969 18,391 18,391
Pseudo R2 0.690 0.695 0.709 0.710
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.6: Standardized probit estimation results for votes on individual bills

Dependent variable: Pro-climate vote Justice vote
Variable (1) (2) (3) (4) (5)

log(ECF) -0.217∗∗∗ -0.109∗∗∗ -0.107∗∗∗ -0.094∗∗ 0.084
(0.025) (0.029) (0.027) (0.032) (0.056)

log(HCF) -0.712∗∗∗ -0.181 -0.281∗ -0.072 -0.305
(0.137) (0.152) (0.142) (0.159) (0.365)

Republican -2.930∗∗∗ -2.782∗∗∗ -1.220∗∗∗ -1.224∗∗∗ -1.861∗∗∗
(0.034) (0.041) (0.105) (0.110) (0.197)

Median household income (’000) 0.007∗∗∗ 0.004∗ 0.007∗∗∗ 0.003∗ 0.011∗∗
(0.001) (0.002) (0.001) (0.002) (0.004)

Median age 0.029∗∗∗ 0.022∗∗∗ -0.023∗
(0.005) (0.005) (0.010)

Percent tertiary educated 0.002 0.009∗ 0.017∗
(0.004) (0.004) (0.008)

Percent Black 0.002∗∗∗ 0.002∗∗∗ -0.007∗∗∗
(0.000) (0.000) (0.001)

Percent Hispanic 0.003∗∗ 0.005∗∗∗ -0.006∗
(0.001) (0.001) (0.003)

log(Population density) 0.002 -0.004 -0.038
(0.013) (0.014) (0.030)

Climate opinion score 0.036∗∗∗ 0.004 0.031∗∗
(0.005) (0.006) (0.012)

log(1+ Fossil fuel donation share) -0.144∗∗∗ -0.127∗∗∗ -0.066
(0.030) (0.032) (0.054)

Conservative ideology score -2.131∗∗∗ -2.124∗∗∗ -2.416∗∗∗
(0.131) (0.147) (0.221)

Intercept 3.530∗∗∗ -1.729∗∗ 1.339∗∗∗ -0.710 0.704
(0.361) (0.626) (0.378) (0.660) (1.396)

Observations 18,969 18,969 18,391 18,391 7,234
Pseudo R2 0.690 0.695 0.709 0.710 0.775

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table D.7: Standardized marginal effects of probit estimation for votes on climate-related
bills

Dependent variable: Pro-climate vote

Variable (1) (2) (3) (4)

log(ECF) -0.0245∗∗∗ -0.0122∗∗∗ -0.0114∗∗∗ -0.0100∗∗
(0.0028) (0.0033) (0.0029) (0.0034)

log(HCF) -0.0804∗∗∗ -0.0202 -0.0299∗ -0.0077
(0.0154) (0.0169) (0.0151) (0.0168)

Republican -0.3305∗∗∗ -0.3098∗∗∗ -0.1300∗∗∗ -0.1298∗∗∗
(0.0047) (0.0052) (0.0112) (0.0116)

Median household income (’000) 0.0008∗∗∗ 0.0004∗ 0.0007∗∗∗ 0.0003∗
(0.0001) (0.0002) (0.0001) (0.0002)

Median age 0.0032∗∗∗ 0.0023∗∗∗
(0.0006) (0.0006)

Percent tertiary educated 0.0003 0.0010∗
(0.0004) (0.0004)

Percent Black 0.0002∗∗∗ 0.0002∗∗∗
(0.0000) (0.0000)

Percent Hispanic 0.0004∗∗ 0.0005∗∗∗
(0.0001) (0.0001)

log(Population density) 0.0002 -0.0005
(0.0014) (0.0015)

Climate opinion score 0.0040∗∗∗ 0.0005
(0.0006) (0.0006)

log(1+ Fossil fuel donation share) -0.0153∗∗∗ -0.0134∗∗∗
(0.0032) (0.0034)

Conservative ideology score -0.2271∗∗∗ -0.2252∗∗∗
(0.0142) (0.0158)

Observations 18,969 18,969 18,391 18,391
Pseudo R2 0.690 0.695 0.709 0.710
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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