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Abstract

How to equitably distribute public transit service is a highly topical subject facing
transit agencies operating in North America. Recent social movements have reignited
the debate around Civil Rights on public transit and resulted in increased scrutiny
of transit planning practices. While many agencies are striving to incorporate more
progressive equity analyses, these equity assessment methods have several shortcom-
ings. For example, they have not addressed important questions such as how service
levels can be meaingfully compared between city areas differing in geospatial charac-
teristics (e.g. residential neighborhoods versus Central Business Districts), and what
a sufficient level of transit service should be for an area to be considered equitably
served.

The goal of this thesis is to develop a new method for assessing place-based eq-
uity on a city-wide level, using Chicago and its transit system, the Chicago Transit
Authority, as a case study. This method addresses several gaps in literature and
practice, using historical passenger trips closely reflective of true system conditions,
to measure the state of transit service. This thesis develops a method for determining
what an equitable level of transit service should be while accounting for where an
area is situated within the greater city geography.

This method is applied to two datasets from different time periods, September
2019 and October 2022. The two time periods are compared to understand if and
how service quality has changed. Two types of analyses are performed on the data,
one illustrating the service quality of all trips originating in an area, and the other to
specific destinations, highlighting the strengths and weaknesses of the transit system.
A quantitative equity score for each area in Chicago is presented, demonstrating a
full execution of the method. The method is also applied to a project under proposal,
the Red Line Extension, quantifying the projected equity benefits, and demonstrating
how the method can be applied in different contexts.

Thesis Supervisor: Anson F. Stewart
Title: Research Scientist, Department of Urban Studies and Planning
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Chapter 1

Introduction & Background

1.1 Transportation Equity in the United

States

Equity has become an increasingly pressing topic in recent years. Par-

ticular emphasis has been placed on ensuring equity within public in-

stitutions, with public transit receiving much attention in this regard.

Equitable mobility outcomes on public transit are paramount as they

critically contribute to equity across other dimensions, from employ-

ment to healthcare, and education (Palm and Farber, 2020; Smart and

Klein, 2020; Syed et al., 2013).

Despite recent enthusiasm for the subject of transit equity, the question

of how to ensure equity in transit is not new. Many school children in

the United States can recount the story of Rosa Parks, a Black woman,

who on a segregated bus refused to give up her seat for a white passen-

ger. Her act ignited a mass bus boycott which eventually resulted in

a Supreme Court ruling, and paved the way for the more far reaching

1964 Civil Rights Act. Title VI of the Civil Rights Act states that “[it]

prohibits discrimination on the basis of race, color, or national origin
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in any program or activity that receives federal funds or other federal

financial assistance” (noa, 1964). In 1970, the Department of Trans-

portation (USDOT) issued an effectuation to transit agencies stipulat-

ing that they must comply with Title VI of the Civil Rights Act for

them to continue receiving federal funds (Federal Transit Administra-

tion, 1970). In 1991, the Inter-modal Surface Transportation Efficiency

Act (ISTEA) was signed into law, and gave the power to States to

reallocate federal highway funds for public transportation and dou-

bled its funding over 6 years (Dilger, 1992). ISTEA also mandated the

creation of Metropolitan Planning Organizations (MPOs) in suburban

areas with populations over 50,000, granting them the power to allocate

these new funds, thus making them liable to the requisites of Title VI.

In 1994, President Clinton signed Executive Order 12898 titled “Federal

Actions to Address Environmental Justice in Minority Populations and

Low-Income Populations”, which included provisions to ensure MPOs’

compliance (Clinton, 1994). In 1998, the Transportation Equity Act for

the 21st Century (TEA-21) was signed after the expiration of ISTEA

funding in late 1997 (Federal Transit Administration, 1998). TEA-21

provided new funding for projects and stipulated new processes for

the nascent MPOs, further bolstering Executive Order 12898, which

obligated them to “[ seek ] out and [ consider ] the needs of those

traditionally underserved by existing transportation systems, such as

low-income and minority households, who may face challenges access-

ing employment and other services” (Federal Transit Administration,

1993).

Despite these important federal acts, discrimination on transit is still

of great concern. Equity analysis beyond the federally required Title

VI analysis has decades of history (Fox, 1983; Krumholz and Forester,

1990; Pucher, 1982), with academics and planners alike recognizing

since the 1980s that these federal requirements have not sufficiently
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addressed the issue of equity on transit. The murder of George Floyd

in summer of 2020 ignited public discourse on discrimination, particu-

larly as it pertained to anti-Black racism, driven largely by the Black

Lives Matter movement (BLM). Transit’s role in systemic, anti-Black,

racial discrimination was given significant attention in the media (But-

ler, 2020; Grisby, 2020). BLM succeeded in bringing the issue of tran-

sit to the attention of the highest federal levels of office. President

Biden issued an Executive Order in his first day of office that declared

that the Federal Government should consider equity holistically from a

racial perspective (Biden, 2021). The USDOT responded to this with

its Equity Action Plan which included plans such as “reinvigorating

Title VI analysis” and creating a national transportation cost burden

measure (US Department of Transportation, 2022a). The passing of

the Bipartisan Infrastructure Law presents a unique opportunity and

explicit commitment to enabling equity in public transit across the

United States (US Department of Transportation, 2022b) with $91.2

billion available in mandatory transit funding. On a transit agency

level, equity commitments are emerging from the ground-up. A recent

report by non-profit think-tank TransitCenter titled Equity in Tran-

sit: A Guidebook for Agencies highlights the different approaches that

several transportation agencies are taking to address equity issues, in-

cluding Los Angeles Metro, Sound Transit in the Seattle Region, and

The Massachusetts Bay Transportation Authority in Boston (Transit-

Center, 2021a). There is a clear will amongst agencies and society to

address these issues, but how exactly to measure equity is still up for de-

bate and intellectual discussion. This thesis aims to provide an antidote

to the current shortcomings in existing equity analyses by developing

a new method to measure equity addressing those concerns.
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1.2 Background

1.2.1 A Brief History of Chicago

Pre-European settlement, Chicago and the surrounding area was in-

habited by the Algonquin People, specifically the Mascouten and Mi-

ami tribes, and subsequently the Pottawatomi Peoples as of the 1720s.

There was limited permanent non-Indigenous settlement until after the

War of 1812. In the late 1800s, Chicago became a major trade center,

attracting major development and growth.

By the early 1900s Chicago attracted a large immigrant population

consisting mostly of Eastern Europeans. Starting in the 1910s, a pe-

riod known as the Great Migration saw large groups of Black and

African American people moving to northern cities, fleeing racism in the

Jim Crow era Southern states, an estimated 500,000 of whom settled

in Chicago from 1916-1970. While Black people came North looking

for a refuge from racial discrimination, they were not able to escape

it. Practices including redlining (Hillier, 2003), and racially restrictive

covenants (Plotkin, 2001) relegated African Americans to cycles of gen-

erational poverty still felt today (Brown et al., 2019). In more recent

years, Chicago demographics have continued to evolve. Migration from

Latin countries and Asia led to increases in those populations by 30%

and 36% respectively from 2000-2010 (Chicago Metropolitan Agency

for Planning, 2015). Although greater protections now exist against

racist policies, non-white newcomers have still faced discrimination.

For example, the Latin/Hispanic community in Chicago also faced seg-

regation on their arrival (Betancur, 1996). Figure 1-1 shows the ge-

ographic racial/ethnic composition of Chicago, and Figure 1-2 shows

the median income. It is immediately visible that the more white resi-

dents, the higher the median income tends to be. This demonstrates the
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deep racial and socio-economic divisions that still exist today. Because

Chicago has such concentrated areas of wealth and racialized poverty,

questions of equity become particularly important. This makes Chicago

well suited to transit equity analysis, as it is clear that inequity in the

city is an ongoing and serious issue.

Figure 1-1: Racial Demographic Distribution of Chicago (United States Census Bu-
reau, 2022)
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Figure 1-2: Median Household Income in Chicago (United States Census Bureau,
2022)
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Today, the geographic areas of Chicago are often characterized in one

of two ways. The first is by community area. Community areas in

Chicago, referred to henceforth as neighborhoods, are 77 areas of the

city that are formally recognized by Chicago’s city government with

boundaries that remain static over time (Figure 1-3). The second geo-

graphic characterization of Chicago is by “regions”, which are unofficial

but widely accepted aggregations of the 77 official community areas

to 9 larger areas Figure 1-4). Although not official, these are widely

recognized areas that official entities will acknowledge when speaking

about areas of the city, and helpful when discussing the city.

Figure 1-3: Official Chicago Community Areas (City of Chicago, 2018)
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Figure 1-4: The Regions of Chicago (Fitzgerald, 2007)
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1.2.2 The Chicago Transit Authority

The Chicago Transit Authority (CTA) is the second-largest transit

agency in North America. Serving Chicago proper and 10 surround-

ing suburbs, it has a fleet size of 1,864 buses and 1,492 trains (Chicago

Transit Authority, 2017), and as of 2021 it provided 774,800 passenger

trips per weekday (Chicago Transit Authority, 2022c). The CTA rail

system, known as the “L” consists of 145 stations serviced by 8 lines,

which can be seen in Figure 1-5.

Figure 1-5: Chicago “L” Map (Chicago Transit Authority, 2021)
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Prior to March 2020, with the declaration of the Covid-19 pandemic,

the CTA saw yearly ridership levels between 545.6-455.7 million be-

tween 2012 and 2019 (Table 1.1). After March 2020, the CTA has

struggled to recover ridership to pre-pandemic levels, with ridership

levels in September 2022 at 57% of what they were in September 2019

1.2.

Table 1.1: Annual CTA System Ridership, (Chicago Transit Authority, 2022c)
Year System Ridership (millions)
2012 545.6
2013 529.2
2014 514.2
2015 516.0
2016 497.7
2017 479.4
2018 468.1
2019 455.7
2020 197.5
2021 196.0

Emerging from the pandemic, the CTA has grappled with a number

of issues. A national transit operator shortage, which affected an esti-

mated with 84% of America’s transit agencies in their ability to provide

service, affected the CTA deeply (Foursquare ITP, 2023). For example,

in April of 2022, one analysis of the Blue Line (the CTA’s second busi-

est rail line) found that it was observing only 50% of scheduled arrivals

(Greenfield, 2022). In August 2022, the CTA unveiled their “Meeting

the Moment” plan, which outlined targeted campaigns to address these

issues, with operator hiring being one of the greatest priorities (Chicago

Transit Authority, 2022b). At the end of 2022, the CTA had made great

progress in some of their goals, such as hiring 420 operators, with a goal

of 450, and delivering 85% of bus service, up from 83.1% in September,

and 79.5% of rail service, up from 79.3% in September (Chicago Transit

Authority, 2022a).
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Table 1.2: Tri-Monthly CTA System Ridership (Chicago Transit Authority, 2022c)
System Adjusted Monthly Totals

System Rail Bus
Total % Change Sept ’19 Count % Change Sept ’19 Count % Change Sept ’19

Sep-19 40.5 N/A 19.4 N/A 21.1 N/A
Dec-19 34.8 -14% 16.1 -17% 18.7 -11%
Mar-20 23.2 -43% 9.8 -49% 13.4 -37%
20-Jun 10.2 -75% 2.9 -85% 7.3 -65%
Sep-20 13.1 -68% 4.5 -77% 8.5 -60%
Dec-20 11.0 -73% 3.6 -81% 7.4 -65%
Mar-21 13.5 -67% 4.7 -76% 8.8 -58%
Jun-21 16.5 -59% 6.7 -65% 9.8 -54%
Sep-21 20.9 -48% 8.9 -54% 11.9 -43%
Dec-21 17.3 -57% 7.1 -63% 10.2 -51%
Mar-22 20.2 -50% 8.3 -57% 11.9 -44%
Jun-22 21.3 -48% 9.4 -52% 11.9 -44%
Sep-22 23.3 -43% 10.1 -48% 13.1 -38%

1.2.3 The Red Line Extension

The Red Line Extension (RLE) is a proposed project that would extend

the existing Red Line. As proposed it is 5.6-miles long and would add

four new stations near 103rd Street, 111th Street, Michigan Avenue,

and 130th Street (Chicago Transit Authority). The locations of the

stops and track alignment can be seen in Figure1-6. This extension is

highly anticipated. When the Red Line originally opened in 1969, then

Mayor Richard Daley promised to extend the Red Line South of Dan

Ryan and 95th (its current southern terminus) (Evans, 2022b), but 54

years later it has still not been built. There are strong equity impli-

cations for the project. The South East of Chicago also has been the

victim of environmental racism (Evans, 2022a), and the area has ex-

perienced systemic infrastructure underdevelopment (Sheppard, 2022).

There is great hope that the RLE, if successfully funded and built, will

help improve not only transportation access, but spur job creation and

economic development, benefiting the community.
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Figure 1-6: Red Line Extension Alignment (Chicago Metropolitan Agency for Plan-
ning)
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1.3 Objectives

The objectives of this thesis are as follows:

• To develop a method to quantitatively assess transit equity between areas in

Chicago

• Use the developed method to determine which areas of Chicago should prioritized

for service improvements

• Identify if and how the equity landscape changed between 2019 and 2022

• Apply the developed equity methodology to assess the equity impacts of the

proposed Red Line Extension

1.4 Thesis Structure

The second chapter will review literature pertaining to transit equity

metrics, farecard data, and transit service performance evaluation. The

third chapter presents the methodology to quantitatively prioritize ge-

ographic areas in Chicago for transit service improvements. The fourth

chapter will provide details about the data preparation and selection

process. The fifth chapter will describe the travel time competitiveness

landscape of transit versus auto of Chicago for trips with a range of des-

tinations, characterizing service levels over two time periods. The sixth

chapter will present the results of the equity ranking methodology de-

veloped in chapter three to make judgments about which neighborhoods

should be prioritized for improvements, and provide a preliminary in-

vestigation into the possible service quality factors driving these. It will

also apply the developed equity methodology to the Red Line Exten-

sion, quantifying the estimated equity impacts of the project. The final

chapter will summarize findings, identify the key areas of contribution,

and discuss limitations and areas for future work.
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Chapter 2

Literature Review

2.1 Equity Analysis

2.1.1 Title VI Analysis

There are specific guidelines and stipulations in Title VI for fixed-route

transit providers (Federal Transit Administration, 2012). For example,

large transit providers (defined as transit providers who operate at least

50 vehicles in peak service, and serve an urban area of at least 200,000

inhabitants) are required to conduct on-board surveys every five years,

which must collect certain demographic information (race, gender, En-

glish proficiency etc. . . ). This demographic information enables addi-

tional stipulations aimed at preventing discrimination, including service

area maps highlighting where a disproportionate minority population

resides in relation to transit service and amenities, and demonstrating

that major network redesigns do not overly burden minorities.

As mentioned in the introduction, Title VI analyses are required by

federal law. However, they have not prevented the deep inequities that

exist in public transit. Title VI is sometimes referred to as the “sleep-

ing giant” of Civil Rights Legislation, as it is far reaching and poten-
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tially powerful, but its full potential is not reached (Johnson, 2014).

Most Title VI analyses rely on infrequently collected survey data, or

use data on populations that live in close proximity to transit service

(perpetuating the ecological fallacy, see: (Jargowsky, 2005)), result-

ing in oversimplified results (TransitCenter, 2021a). For large capital

projects, traditional four-step models are often used for planning pur-

poses to forecast future ridership for Title VI analyses, despite those

models being increasingly scrutinized for their ability to forecast future

passenger behavior (Karner and Niemeier, 2013; Voulgaris, 2019). For

these reasons other equity analyses have become favored in literature

and in practice.

2.1.2 Progressive Equity Analysis Landscape

Litman’s analysis of equity frameworks demonstrates the great varia-

tion in equity definitions and types of analysis. He characterizes them

along several distinctions (Litman, 2014). The first is in terms of the

type of equity they measure, the main categories of which are horizontal

and vertical. Horizontal equity refers to equal treatment, and vertical

equity refers to people being treated on the basis of their level of need.

Embedded into the horizontal and vertical equity measurements, Lit-

man identifies five other categories; fair share of resources and external

costs being horizontal measurements, and inclusivity, affordability, and

Social Justice belonging to vertical equity measures. A brief description

of each type of equity can be viewed in Table 2.1. The current branch

of equity that most agencies are taking interest in is the Social Justice

equity measure.
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Table 2.1: Litman’s Equity Types (Litman, 2014)
Equity Measure Equity Type Description

A fair share of resources Horizontal “Get what you pay for and
pay for what you get.”

External costs Horizontal Minimize costs imposed on
other people.

Inclusivity Vertical

Ensure that transport
systems serve everybody.
Multimodal planning and
Universal design.

Affordability Vertical

Ensure that everybody can
afford basic mobility.
Quality of low-price modes.
Targeted subsidies.

Social Justice Vertical Considers structural
injustices

Secondly, Litman divides equity analyses as falling into two categories,

mobility and accessibility. Mobility refers to measures such as the to-

tal vehicle miles traveled (VMT), journey times, vehicle speeds, etc.,

while accessibility refers to measuring the number of opportunities a

passenger can reach using non-motorized, motorized, and mobility sub-

stitute modes. Marten’s 2012 “Justice in transport as justice in acces-

sibility: applying Walzer’s ‘Spheres of Justice’ to the transport sec-

tor” (Martens, 2012) and book “Transportation Justice: Designing Fair

Transportation Systems” (Martens, 2016) have served as touchstones

for the transit equity school of thought. In their earlier work, Martens

relates the current transit equity discourse to the justice movement

in environmental planning and puts forth a distributive framework for

transportation policy, i.e. “how [transportation] benefits and burdens

are and should be distributed over members of society”. Transportation

Justice extends this justice-focused approach, stressing the importance

of accessibility analysis, discussed in detail in the forthcoming section.
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2.1.3 Mobility Analysis

In his analysis framework discussed in 2.1.2, Litman identified mobility

as a commonly calculated type of equity metric. Another commonly

calculated type of metrics is a measure of supply (MOS), which we

characterize as a mobility metric. MOS tend to look at some quan-

tity of transit (i.e. arrivals (Currie, 2010; Delbosc and Currie, 2011))

and their distribution across a spatial area. While some research has

sought to quantify the usefulness of the transit supply in terms of its

“connectedness” (Mortazavi and Akbarzadeh, 2017), they mostly show

intensity of service, and make no claims about outcomes. Under a MOS

definition, a bus that arrives every five minutes to pick up passengers

at a station and drives in circles in a parking lot could be hypotheti-

cally considered well serviced. In this aspect, they are limited in their

usefulness. Additionally, MOS do not account for the realities of spatial

distribution. Even with the needs of those residing outside the down-

town core, it is not feasible for a suburb to have the same level of transit

service as a central business district due to land use patterns.

2.1.4 Accessibility Analysis

Especially in the context of addressing the inadequacies of traditional

planning, recent research on transit equity has drawn attention to the

importance of service quality and accessibility. Accessibility is defined

by Hansen as the “potential of opportunities for interaction” (Hansen,

1959). Accessibility analysis is also sometimes referred to as “free-

dom” analysis (Walker, 2018). Transit accessibility analyses typically

use scheduled General Transit Feed Specification (GTFS) data, which

represents the scheduled trips of a transit network, to calculate travel

times to a set of destinations such as employment (Allen and Farber,

2019; El-Geneidy et al., 2016), grocery stores ((Farber et al., 2014),
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higher education institutions (Ermagun and Tilahun, 2020), and hos-

pitals (Ermagun and Tilahun, 2020).

Accessibility analyses are a powerful tool in assessing a region’s equity

landscape, but they have limitations. First is that they are suscep-

tible to inaccurately representing travel times due to real-world con-

ditions. GTFS is usually publicly available, and several high profile

accessibility projects have made use of it to calculate accessibility, such

as TransitCenter’s Equity dashboard (TransitCenter, 2021b).However,

scheduled travel time and realized travel time usually differ. Wessel and

Farber used Automatic Vehicle Location (AVL) data, which contains

the retrospective movements and actions of buses on a highly granular

level, to reconstruct journeys to compare with journey lengths calcu-

lated with GTFS (Wessel and Farber, 2019). They found that the AVL

calculated journeys, which more accurately reflect the realized transit

service, diverged from the GTFS calculated travel times, with areas

with lower service levels overall underestimating the experienced travel

times. However there is recognition in the literature of these inaccu-

racies, and methods have been developed to include unreliability in

accessibility analyses (Arbex and Cunha, 2020; Bills and Carrel, 2021).

Even when using AVL data or incorporating unreliability in measur-

ing travel times, these calculations are usually performed under the

assumption that users will always take the shortest path to reach that

opportunity. However, passengers do not always choose to take the

transit option that is shortest in time. Berggren et al. used automatic

fare collection (AFC) data to reveal that passengers’ route choice on

public transit is highly sensitive to service reliability (Berggren et al.,

2022). Li et al. compared three travel times for the same origin desti-

nation (OD) pairs, calculated using the shortest path with GTFS and

AVL data, and using the “real” path reflected in the AFC data (Li
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et al., 2021). They found that the respective options were respectively

progressively longer in duration, with the AFC-measured trips having

higher variability. These examples illustrate that assuming a passenger

takes the shortest available path on transit risks underestimating travel

times between ODs.

Another limitation with accessibility analysis is that choosing what

kind of opportunity to measure introduces a level of bias. Job accessi-

bility is possibly the most commonly calculated accessibility metric in

the literature and practice. In contrast, according to the 2017 American

Public Transit Association “Who Rides Public Transportation” report,

more than 50% of all trips made are for non-work purposes (CJI Re-

search Corporation and Clark, 2017). Through making employment

accessibility the de-facto equity standard, populations who use the sys-

tem for non-commuting purposes (or in addition to commuting) risk

being overlooked. Karner makes the similar critique that “accessibility

is an imprecise measure [of transit] because it is not linked to the trips

that people want or need to make” (Karner, 2022) Furthermore, there

is no true “bundle” or weighting of opportunities that represents perfect

accessibility for all. Presenting a unified final score to different desti-

nations is difficult for this reason, and when performed, the types of

destinations included and the thresholds to be deemed “sufficient” make

accessibility scores vary widely (Klumpenhouwer et al., 2021; van der

Veen et al., 2020). Moreover, there are some critical opportunities and

destinations that are almost impossible to measure. For example, access

to seeing family members and friends for socialization purposes is very

important for overall well-being (Lamanna et al., 2020), but performing

an accessibility analysis of this nature for the general population would

be difficult.
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One other issue with accessibility analysis is how it views improve-

ments. An increase in an accessibility score indicates better potential

opportunities for passengers. If systemic barriers prevent travelers from

benefiting from those opportunities (e.g. jobs requiring postsecondary

education that people do not have, supermarkets being too expensive

for people to shop at), the realized service for that population does not

improve, all while the accessibility metric suggests an improvement.

In this respect, activity-based analyses are useful, and discussed in

the forthcoming section. Finding a minimum acceptable accessibility

threshold for different destination types (i.e. how many hospitals

or grocery stores in a given travel time threshold is good), also

described by Martens as “sufficientarianism” (Martens, 2016), would

be a useful benchmark. The development of these standards, while

appearing in the literature, is still emerging. The current leading

method for determining a sufficient level of opportunities is based on

car accessibility alone (van der Veen et al., 2020). For example, one

hospital reachable by car in 45 minutes may not be truly sufficient

for a population, but under this definition as long as one hospital is

reachable for the population by transit it will be defined as “sufficient”.

The TransitCenter Accessibility Dashboard also incorporates some

degree of threshold setting for opportunities available (TransitCenter,

2021b). For grocery store accessibility, they show the accessibility of

the 3rd closest location, acknowledging that a minimum number of

opportunities should be considered in our judgements about transit

service quality. However, there appear to not be any appropriate

widely acknowledged accessibility benchmarks in literature or practice

that could be practically implemented.
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2.1.5 Activity Based Analysis

Activity-based, also referred to as behavior-based, analyses are equity

analyses that consider the realized travel behavior of passengers. Differ-

ing from the forecasts resulting from the traditional four-step model, ac-

tivity based models can examine the historical behavior, usually by uti-

lizing transit rider or onboard surveys, which transit agencies are legally

mandated to conduct every five years. Karner argues that activity-

based analysis can help agencies truly understand the benefits of tran-

sit investment in a way that accessibility cannot, by comparing the

results of surveys before and after changes are implemented (Karner,

2022). Bills et al. describe a method for applying activity-based analysis

to equity problems (Bills et al., 2012). Karner further suggests short-

range forecasts based on these surveys, calibrating a model based on

the before/after survey data, can better reflect true passenger behavior

compared to long-range models. However, there are severe limitations

to transit rider surveys. Firstly, they are costly to conduct and conse-

quently, tend to be small and infrequently performed. Therefore, the

sampling bias inherent in most transit rider surveys has the possibility

to significantly affect the results (Douglas, 2009). Secondly, passengers

tend to provide an inaccurate travel time when self-reporting the du-

ration of their journeys (Varela et al., 2018). Because of these biases,

the accuracy of results obtained with activity-based models are also

currently limited.

2.2 Automatic Fare Collection and Origin

Destination Inference

Since the 1990s, AFC systems have seen widespread adoption across

major transit systems (Pelletier et al., 2011). In addition to creating
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a more efficient fare collection system, they also collect useful data

to understand passenger behavior. AFC systems differ in their design,

and are on an “openness” spectrum (Dumas, 2015). Fully closed AFC

systems require users to validate their cards at the beginning and end

of their trip (and sometimes in the middle, if transferring), regardless

of mode. Such systems are often found in Asia. Semi-closed systems

require passengers to validate on entry and sometimes upon exit. Such

systems can be found in Washington DC and London England. On rail

in these cities, passengers are required to tap out of the system, but on

buses passengers must only validate upon entering the system.

Origin Destination Transfer (ODX) is an algorithm that infers desti-

nations and transfers of smartcards in open AFC systems. The foun-

dations of ODX were laid in 2002 when the Metropolitan Transit Au-

thority (MTA) in New York used the findings from travel diary surveys

that revealed two key rider tendencies and applied those assumptions to

get a system wide daily Origin Destination (OD) flows for rail (Barry

et al., 2002). The assumptions were that riders return to the desti-

nation station of their previous trip before their next trip, and that

riders end their final trip of the day at the station where they made

their first trip of the day. This approach was adopted by other agencies

with open-fare systems (Zhao et al., 2007), and eventually extended to

include bus journeys (Gordon et al., 2013). Most recently, ODX was

updated to more accurately reflect passenger behavior using a general

disutility mode for path and destination choice, including aspects such

as in-vehicle time, waiting time, and the number of legs in a passenger’s

journey (Sánchez-Martínez, 2017).

ODX provides highly granular trip information, including the origin

and destinations of a passenger, total number and location of transfers,

the route or line for each journey leg, and overall travel time duration.
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Knowing the individual characteristics of trips is helpful in measur-

ing equity, as discussed in Section 2.1.5 Historically, information about

individual characteristics of trips has been collected by conducting on-

board surveys, which have limitations such as being collected infre-

quently (also discussed Section 2.1.5). ODX addresses many of these

shortcomings as it can be generated for all trips taken across the entire

transit system of every day, all day, of the year, providing a high qual-

ity, detailed, representative data. These characteristics of ODX make

it ideal to perform a large-scale analysis for a transit system.

2.3 Transit Metrics

AVL data is a rich datasource for analysis as it provides highly granular

data about bus vehicle movements. AVL is an input to ODX itself, and

can be used to calculate a large range of metrics helpful to agency’s

performance management (Kittelson & Associates et al., 2003). ODX

and Automatic Passenger Count (APC) data enable even more metrics

to be calculated. However, these different data sources are often dis-

parate in their raw forms, and performing complex data calculations

from raw sources is challenging for most transit agencies. To make this

data readily available for transit agencies, a tool known as the Ridership

and Operations Visualization Engine (ROVE) was developed.

ROVE combines AVL, GTFS, ODX,and APC information to calculate

24 metrics, both on the operational and passenger level (Caros et al.,

2023). A full list of the metrics it generates can be found in Appendix A.

ROVE outputs these 24 metrics into a highly usable format, providing

metrics calculated for a month on five time-of-day periods, (correspond-

ing peak and off-peak periods for transit, e.g. AM Peak is 6-10AM) on

an interactive, highly visual platform. Figure 2-1 shows a screenshot
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Figure 2-1: Screenshot of ROVE Dashboard

of the ROVE dashboard displaying scheduled frequency metrics. It is

able to prepare and filter the results of most metrics on the route, stop,

or time-point level, making it a granular and rich datasource readily

available for analysis.

38



Chapter 3

Creating a New Transit Service

Equity Framework in Chicago

3.1 Defining Equity Goals

In March 2021 TransitCenter, a non-profit think tank dedicated to

transit issues, released their report, Equity in Practice: A Guidebook

for Transit Agencies. This report outlines five equity pillars that tran-

sit agencies should adopt to "optimize their service to help people who

have been marginalized thrive" (TransitCenter, 2021a). Their fourth

pillar is to “measure equitable outcomes for people and the neighbor-

hoods where they live and work. Track outcomes of the transportation

system for people who depend on transit and people facing marginal-

ization wherever they live in the region as well as for neighborhoods

with a high concentration of residents who depend on transit or who

face marginalization” This pillar is ultimately a call to develop transit-

service equity metrics.

Many definitions of equity exist. The TransitCenter report references

the Urban Sustainability Directors Network report, titled Equity in

Sustainability, where six types of equity are identified. The definition
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that TransitCenter adopted for their fourth pillar is "distributional eq-

uity". Distributional equity is defined as “programs and policies result

in fair distribution of benefits and burdens across all segments of a

community, prioritizing those with highest need” (Park, 2014). In this

context, transit service is the burden and benefit levied on populations

and geographic areas.

TransitCenter further advises that two sub-types of metrics be devel-

oped, the first is “place or neighborhood-focused" measures, which is

defined as “how the benefits and harms of transportation accrue to ar-

eas”. The second type is “person-focused” measures, defined as “how

benefits and harms of transportation accrue to people of certain identi-

ties, aggregating across residential locations”. The primary goal of this

thesis is to heed the call of Transit Center’s fourth pillar and develop

measurements that show the equity of the transit system.

3.2 Metric Formulation

As discussed in Chapter 2, the three major drawbacks to current equity

analyses are that 1) potential or anticipated trips are used to measure

transit service quality attributes, rather than actual trips, 2) current

equity methods do not provide an adequate framework to compare and

prioritize areas for increased service beyond socio-demographic indica-

tor, and 3) specific targets for metrics are not routinely set.

To build an equity metric that addresses the three main drawbacks

of current equity analysis, three individual components are required.

The first is a "measure of need", which is the measure by which we

prioritize different areas and populations. The second is a method of

measurement, a measure or measures of transit quality that represent

the conditions passengers experience, and should be closely reflective
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of actual conditions. The final component is a method of comparison,

some way to prioritize areas or groups against one another. Combining

all three components of the metric, we are able to apply them to an

entire city to identify areas that should be prioritized for improvement.

3.2.1 Measure of Need

As discussed in Chapters 1 and 2, Chicago is a city where deep inequal-

ities exist. There are several other possible measures of need that could

be applied. However, the spatial distribution of high-need areas tends

to remain static despite the measure selected.

A measure of need that is favored by Chicago area organizations is

the Economic Hardship Index (EHI) (see: (City of Chicago, 2019,0)).

The EHI is an indicator that combines economic information including

housing, employment, education, income poverty and dependency to

indicate overall levels of need ((United Health Foundation)). Its possi-

ble values range from 0 to 100, with a higher score indicating higher

need.The median EHI value for a Chicago neighborhood is 46. A map

of EHI values for the city of Chicago can be seen in Figure 3-1.
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Figure 3-1: EHI map of Chicago
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Transit agencies have used many different need indices to identify areas

in need. LA Metro in Los Angeles and King County Metro in Wash-

ington State use internally developed need indices to measure areas in

need, which can be seen applied to Chicago in Figure 3-2. Other need

indices exist, such as the index used for federal equity analyses for Ti-

tle VI analysis. These incorporate demographic information including

race, disability, car ownership, etc. . . and weigh attributes differently,

differing from the EHI which weighs all 6 indicators equally. Each needs

metric’s composition and weightings can be found in Appendix B. Fig-

ure 3-2 shows a sample of these other metrics alongside EHI. Each

score, ranked from 1-5 were calculated based on Jenks natural breaks,

with a higher score indicating higher need.
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Figure 3-2: Sample Equity Need Indexes for Chicago
(Amanda Madrigal)

44



It is apparent in Figure 3-2 that there is very little variation in the

spatial distribution of need in these maps. The highest need is consis-

tently found in the South and West areas of Chicago. This consistent

spatial pattern reveals that the measure of need for Chicago we choose

will not meaningfully affect our results. To be consistent with other

Chicago agencies, we will use the EHI as our measure of need in our

analysis.

3.2.2 Method of Measurement

As discussed in the background, previous accessibility analyses are

prone to both underestimating journey times, and not capturing the

full range of trips that are made. This necessitates a new method to

measure equity that goes beyond the potential for opportunity, and

begins to look at realized opportunity. The proposed solution is to use

historical trip data to generate metrics, which we can obtain from ODX.

This achieves the desired effect of an activity-based analysis, but with

higher quality data than with travel surveys.

Transit service quality metrics fall into two broad categories as de-

scribed by Redman et al.; physical and perceived. Physical metrics

include those measurable without engaging public transit users and

include metrics such as reliability and frequency. Perceived metrics re-

quire passengers to be engaged and answer questions, and measure as-

pects such as safety and comfort (Redman et al., 2013). For the scope

of this project, we only consider physical metrics for our analysis.

But what physical metrics to use? A 2003 report sponsored by the Fed-

eral Transit Administration identified over 400 different performance

measures (Kittelson & Associates et al., 2003). One challenge with se-

lecting universal metrics for an entire transit system is the difference in

relative importance for service-level attributes between different groups.
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While different passenger groups (e.g. frequent versus infrequent riders,

women, older adults) value certain service attributes differently, there

are several service attributes that are highly relevant across groups

(Abenoza et al., 2017; dell’Olio et al., 2010). One of these attributes

is the relative journey of public transit versus automobile, also known

as the travel time ratio (TTR), which was found to have a greater

influence on modal share than transit frequency, with the number of

transfers required being an important secondary factor (Lunke et al.,

2021). Redman et. al’s review paper, which investigated which service

quality attributes were most important to passengers and encouraged

modal shift towards transit, found that speed was a critical factor in

increasing ridership transit modal share, along with frequency and re-

liability.

Not only is TTR important to the passenger, but it is the only metric

that is affected by all others, including them implicitly. Because we

include wait times in the transit portion of the TTR for frequently

served routes (≥ 5 scheduled arrivals/hour), we obtain a wait time

estimate based on historical frequency data, Equation 3.1. Although

transfers may not always cause longer travel times, they are strongly

associated with longer and less competitive transit journeys (Krygsman

et al., 2004; Lunke et al., 2021), making them similarly implicit in the

transit travel time.

𝑂(𝑤) =
𝜇𝐻

2
+

𝜎2
𝐻

2𝜇𝐻

(3.1)

Where 𝜇𝐻 is the observed headway mean and 𝜎𝐻 is is the observed

headway standard deviation.

For our method of measurement, we select TTR as the primary metric

for determining equity. Not only is TTR of great importance to pas-

sengers, but including a transit journey-time based metric continues
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the precedent of emphasizing transit travel times in equity analysis,

which accessibility analysis and recent activity-based equity analyses

currently use. While TTR will receive most emphasis, our analysis will

also include frequency, on-time performance, and average number of

transfers as secondary metrics. We include them because of their im-

portance to passengers and intrinsic relationship with TTR. By quanti-

fying the secondary metrics’ relationship with TTR, and viewing them

alongside the TTR, they can help us glean immediate insights into

what might be causing less competitive trips, lending themselves to

actionable recommendations for service changes to improve equity.

3.2.3 Method of Comparison

A measurement of service quality is not enough to address inequities.

To be actionable, there must be an understanding that different areas

should receive differing service levels on the basis of their geospatial

characteristics, in addition to level of need. For example, it is reasonable

to expect that the downtown core of any city should have a higher level

of transit service than a majority residential area, even if the residential

area is higher need than the downtown core. The crux of progressive

equity undertakings is providing differing levels of service depending on

need. To address this issue, we add a level of normalization, classifying

areas into “peer” neighborhoods that can be compared against each

other.

For this equity study, distance from the Central Business District

(CBD) was selected as the method of normalization. This was selected

because residential density, transit mode share, and car ownership rates

all tend to follow a radial pattern Figures 3-3 – 3-5, imitating the dis-

tance from CBD pattern. Although more nuanced peer groupings could

be identified by combining two or more of these factors (the residen-
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tial density and car ownership patterns are not perfectly radial) for

the scope of this project, we will examine distance from the CBD only.

In the future, it is recommended that other levels of normalization be

examined.

48



Figure 3-3: Population Density Map of Chicago (United States Census Bureau, 2022)

Figure 3-4: Public Transit Modal Share in Chicago (United States Census Bureau,
2022)

49



Figure 3-5: Car Ownership Rates in Chicago (Chicago Metropolitan Agency for Plan-
ning, 2014)

The final peer neighborhood groupings based on distance from the

CBD, also known henceforth as “neighborhood ring areas”, are created

by intersecting the 77 Chicago neighborhood areas shown in Figure 3-6

with 2 km wide concentric rings originating in the centroid of the Loop,

220 S Michigan Ave (which is located near the intersection of S Michi-

gan Ave and E Jackson Drive). A full description of how peer groupings

are generated and manually adjusted can be found in Appendix C. The

process results in 174 neighborhood ring areas, with an example of a

single ring shown in Figure 3-7.

50



Figure 3-6: Final Set of Rings After Manual Adjustment

Figure 3-7: Ring 4 Neighborhood Group
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3.2.4 Identifying Equitable Service Metrics

After spatial peer groupings are defined, then metrics for each ring-

neighborhood area within the same ring can be compared. However,

we have not yet defined what an equitable level of service should be for

ring-neighborhood areas, which we require in order to make judgements

about if they are equitably served. With our method of measurement,

we have focused our assessment of the CTA on its performance rela-

tive to the automobile due to its relationship with public transit modal

share. The goal of transportation is to overcome physical space in an ef-

ficient manner. With public transportation, our goal is to facilitate this

movement in an efficient manner given the resource constraints imposed

by serving a large constituency. But how should we define “sufficiently

efficient” to be considered equitably in the context of TTRs?

Echoing the discussion around accessibility benchmarking in Sec-

tion 2.1.4, developing judgments about ranges of acceptable TTR ad-

dresses the question of how efficient they should be. Revisiting the work

of Lunke et. al, transit modal shares between 20-30% require TTRs of

at most 1.5, and at most 1 transfer. Modal share at higher TTR values

was highly dependent on the number of transfers required alongside

other factors. TTRs of 2 were associated with modal shares between

15-20%, and around 4 scheduled arrivals per hour (Lunke et al., 2021)).

The vast majority of the CTA network serves stops with a frequency

of 4 or more scheduled arrivals per hour. With these pieces of infor-

mation, we make two qualitative judgments; for each ring, we define

a target TTR range. The lower bound of this range is the lowest ob-

served TTR of the neighborhood areas in the ring, but not less than

1.5. The upper bound of this range is the highest observed TTR of the

areas in the ring, but not more than 2.0. The added constraints reflect

our normative judgment that a TTR of 1.5 is sufficiently competitive,
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corresponding to transit mode shares of 20-30%, while TTRs above 2.0

reflect unacceptably long journeys.

After establishing acceptable ranges for TTRs for ring sections, the

question remains of how to determine what an equitable TTR is for an

individual ring-neighborhood area given their EHI. Our equity ethos

is that higher need neighborhoods should have higher levels of transit

service. Therefore, for an equitable outcome, in each ring, the highest

EHI neighborhood-ring should have the lowest TTR. Determining ex-

actly what TTR each neighborhood-ring should have to be considered

equitable could take a couple different approaches. The simplest way

would be to divide the TTR into equal intervals based on the number

of neighborhoods in the ring, and assign each neighborhood, starting

from highest EHI, and increasing TTR score incrementing by the in-

terval value. However, this does not take into account that rings may

have ring-neighborhood areas with similar EHIs.

A more appropriate method of determining equitable TTRs was to nor-

malize EHI scores between 0 and 1, and then assign TTRs based on

the normalized value, also normalized between 0 and 1 for the min-

imum/maximum TTR for the given ring. This can be seen in Equa-

tion 3.2. This is advantageous as it takes into account where there are

great or small differences in EHI.

𝑡𝑡𝑟𝑖,𝑖𝑑𝑒𝑎𝑙 = (1− 𝑧𝑖) * ((𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)) +𝑚𝑖𝑛(𝑥) (3.2)

Where 𝑧𝑖 is the normalized EHI value for a ring-neighborhood area 𝑖,

and 𝑥 is all the TTR values found in a given ring.

The end result of this process is an “ideal” TTR for each neighborhood-

ring area, that can be compared to the observed TTR. By calculating

the difference between the ideal TTR and actual TTR, we arrive at a
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final equity score, where the greater the negative difference in ideal and

observed TTR, the greater the priority should be for increasing service.

3.3 Analysis Types

3.3.1 Anywhere Trip Analysis

As discussed in the background, one of the drawbacks of accessibility

analysis is that they cannot fully capture the breadth of trip types

riders make. The consequence of this is the service qualities of trips

falling outside those narrow categories are excluded from our analysis.

By looking at all trips taken originating from a given neighborhood and

calculating the associated metrics, it allows us to understand the full

picture of service equity for all passenger trips originating in a given

area, fulfilling the goal of “place-based” analysis. We christen the anal-

ysis in which we look at all trips originating from a ring-neighborhood

area "Anywhere Trip Analysis" (ATA)

3.3.2 Critical Destination Analysis

While understanding the overall level of transit service, regardless of

destination, is important, understanding service quality to specific lo-

cations important to a wide range of travelers can still be valuable. For

example, Chicago Loop, the heart of the CBD is not only the location

of 339,441 private sector jobs (as of 2018 (Chicago Loop Alliance) but

also over 250 cultural assets, major parks, two universities, and the

city’s municipal government. Looking at trips to specific destinations,

such as the Loop, allows for targeted transit improvements to improve

access to populations who may benefit from the range of amenities and

opportunities it has to offer. A sample list of destinations similarly ben-
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Destination Name Location
Chicago Loop Central Chicago
River North North of Central Chicago
West Loop West of Loop
O’Hare Airport North West of Chicago
Midway Airport Mid-South-West of Chicago
Illinois Medical District West Side

Table 3.1: Critical Destination Analysis Locations

eficial to study can be found in Table 3.3.2. We refer to the analysis

in which we examine trips to a specific destination originating from a

ring-neighborhood area "Critical Destination Analysis" (CDA).

The Loop is the first destination we examine for the reasons stated

above. Additionally we will look at River North, located directly north

of the Loop, which is also a major employment and tourist center with

similar destinations to the Loop, but differs in the concentration of

transit services. Finally we will examine the Illinois Medical District

(IMD). The IMD is a major healthcare center for the entire city (as

well as state). Because of the high concentration of medical services, un-

derstanding access to this specific destination is helpful because many

Chicagoans will likely access it at some point. In addition to medical

care, it is also a major employment center covering a range of employ-

ment opportunities from high to low wage.
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Chapter 4

Data Selection and Preparation

4.1 ODX Selection and Preparation

The ODX algorithm, introduced in Chapter 2 Section 2.2, is an algo-

rithm that infers transit passenger origins, destinations and transfers

using farecard data. It is used within transit systems that collect fares

at gated stations and ungated stops. The ODX algorithm produces a

record of passenger journeys across the transit system. Each record

represents one passenger ID for a given service day. Passenger IDs are

assigned to Ventra cards (the CTA’s fare card system), allowing pas-

senger behavior to be examined longitudinally. The results of the CTA

implementation of the ODX algorithms are referred to simply as “ODX”

henceforth.

There are three payment methods for passengers on the CTA. The

first is with Ventra, the aforementioned electronic fare payment system

used in the city of Chicago and the surrounding suburbs. The second

is a paper ticket. Fare gates at rail stations do not accept cash. If a

customer does not have a Ventra card, they must either obtain one,

or purchase a single-use paper ticket to gain access to the system. The

final payment option is cash, which is only accepted on buses. The

56



ODX algorithm uses passenger journey information from Ventra cards

and paper tickets, and estimates journey infomration about cash trips

based on Ventra and paper ticket information.

The ODX algorithm implementation at CTA uses different algorithms

to infer information for bus and rail. For bus, ODX is well equipped to

handle the common case where bus journeys do not closely adhere to

published schedules. A complex but representative calculation is per-

formed within ODX that uses retrospective AVL feeds to find actual

times of departures and arrivals of vehicles to account for these sched-

ule deviations. This yields highly accurate travel times between OD

pairs that are reflective of the conditions of the system and surround-

ing environment on any given day. For rail, travel times are calculated

differently. Travel times are based on GTFS feeds, under the core as-

sumption that most trains arrive on time. To find travel times, the

shortest OD paths between stations in the system are calculated based

on published schedules. These are calculated on the hour and half hour

mark (i.e., as if a passenger had tapped their card at XX:00 or XX:30

at that station), and represent the entirety of the time spent behind

the fare gates, including both in-vehicle and on the boarding platform

waiting. These travel times are stored in a look-up table. The ODX al-

gorithm assigns all passenger journeys at rail fare gates to a 30 minute

time interval, and based on the inferred destination, assigns the travel

time for the given OD stored in the look-up table.

4.1.1 ODX Missing Information Inference

After the ODX algorithm is run, some boarding or alighting stops jour-

neys are unable to be inferred. Additionally, the ODX algorithm does

not directly infer information about journeys paid with cash. It also

does not have alighting information for journeys paid with paper tick-
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ets. A process known as ODX scaling aims to ensure that the total rider-

ship captured by ODX on a given route reflects the ridership estimates

given by Automatic Passenger Count (APC) systems, and adds miss-

ing information. Scaling accounts for trips made with cash by adding

“synthetic” records to the ODX data, creating entries based on the

distribution of boarding and alightings for complete trips made with

Ventra. Sometimes an ODX record may be missing information, such

as an alighting stop. The scaling algorithm once again relies on the

distribution of completely specified trips to infer a destination for that

trip that is consistent with APC records. More details on the scaling

procedure can be found in Appendix C.

4.1.2 Home Trip Identification

Identifying service quality in places where people live is a key com-

ponent of measuring place based equity according to TransitCenter

(TransitCenter, 2021a). It is therefore necessary to use trips are home-

based for analysis, in order to measure transit equity for where residents

live. To ascertain if a trip was home-based, a simple method is used;

a trip is classified as “home-based” if it was the first trip of the day

taken before 2 pm for a given passenger. The 2 pm cutoff is based on

passenger segmentation research done by CTA staff which found that

non-commuting passengers often take home-based trips later in the day

compared to their working peers.

4.1.3 Waiting Times

To rectify the issue with rail trips implicitly including wait time in

travel time durations, but not bus, we add the associated wait times

to bus trips, making trips consistent in their composition of in and
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out-of-vehicle time. For frequently served stops (defined as 5 or more

scheduled arrivals per hour), ROVE contains stop-level information

about the observed wait time. For frequently served stops we simply

add this wait time to the existing trip duration, resulting in a trip

record that includes wait time for frequently served bus routes. For

infrequently served stops, ROVE does not calculate an observed wait

time. However, literature exists that has examined how long passengers

arrive before scheduled service. Ingvardson et al. measured passenger

arrival times at rail stations with published time tables, and developed

an equation for the average wait time based on the headway. For in-

frequently served stops, we round the scheduled headway for the stop

served to the nearest 5 minute mark, and add the associated wait time

of that headway to the in vehicle duration for the bus trip.

Table 4.1: Scheduled Headway and Associated Passenger Wait Time, (Ingvardson
et al., 2018)

Headway (minutes) Wait Time (minutes)
10 3.9
15 4.9
20 5.9
25 6.3
30 6.7
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A summary flow chart of the steps described in Sections 4.1.1-4.1.3

can be seen in Figure 4-1.

Figure 4-1: ODX Preparation Flow

4.1.4 Data Set Period Selection

One of the main goals of this work is to describe the transit equity

landscape of Chicago and determine if and how it changed between

September 2019 and October 2022. The September 2019 represents a

pre-pandemic scenario and October 2022 represents a post-restriction

scenario. Ideally, the month of October should be used for both years

to capture the most consistent ridership levels. However, in October

2019 the Chicago Public Schools (CPS) went on a 14 day strike. This

made October 2019 an unideal dataset to use as the closure of schools

disrupted ridership, and why September 2019 was more appropriate to

use. October 2022 was a month in which the CTA experienced several

issues, as discussed in Chapter 1. The CTA faced an acute operator
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Table 4.2: September 2019 and October 2022 Data Summary, (Chicago Transit Au-
thority, 2022c)

Total Monthly
Valid Scaled
ODX Records
(Thousands)

Total Valid
ODX Journeys
(Thousands)

Total
Home-Based
Journeys
(Thousands)

CTA Reported
Monthly Unliked
Boardings
(Thousands)

Sep 2019 36,479 29,771 9,358 40,036
Oct 2022 21,636 16,781 6,785 23,576

shortage, and observed frequency not meeting scheduled frequency for

rail and bus. This makes it an interesting time period to examine from

an equity perspective, as we will assess the magnitude of these impacts

in our analysis. A summary of the 2019 and 2022 datasets can be seen

in Table 4.2.

4.2 Driving Time Calculations

In Chapter 3, we established that the ratio between auto and transit

travel times should be our primary metric for assessing transit service

equality. Representative driving times (i.e. those that reflect traffic con-

ditions, as opposed to simply using free flow speeds) between trip ODs

were required to obtain travel time ratios that reflected true condi-

tions. The Google Maps API is a software tool that allows users to

make queries to the Google Maps engine and obtain directions and

travel times between point coordinates. It uses historical data to give

users an estimate of future traffic conditions (Lau, 2020). However, use

of the Google Maps API comes with several constraints. The first is

that it is only able to calculate travel times for dates in the future. The

other is that it is costly and time consuming to run. To address these is-

sues, instead of calculating the driving times for each home-based trip

record (i.e. using the latitude and longitude of the origin and egress

stop IDs as the OD input, and the time of day of the journey as the
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departure time), auto travel times representing an aggregation of trips

were calculated.

This was achieved by aggregating journeys both temporally and spa-

tially. Because the home-based trip definition requires trips to be taken

before 2 pm on a given day, ODX trips were classified as falling into

one of two temporal periods. The first was the peak period, occur-

ring from 5:00:00 to 8:59:59 am, and off-peak, occurring from 9:00:00

am to 13:59:59 pm. The spatial aggregation was based on finding the

neighborhood-ring section in which a given stop fell. This was done

by spatially joining each stop in the network with the ring neighbor-

hoods with GIS software. A look-up table was constructed, associating

each stop id in the network with the ring neighborhood, and then as-

signing a ring-neighborhood area origin and destination for every ODX

record.The transit travel time to auto ratio for a given trip is given by

4.1

𝑅(𝑖, 𝑗, 𝑡,𝑚) =
𝑡𝑟(𝑖, 𝑗, 𝑡,𝑚)

𝐴(𝑥(𝑖), 𝑦(𝑖)))
(4.1)

Where 𝑖 is origin stop, 𝑗 is the destination stop, 𝑡𝑟 is the transit travel

time using path 𝑝 connecting 𝑖 and 𝑗 at time 𝑡 using mode 𝑚. 𝐴 is the

duration of the auto trip between 𝑥(𝑖) and 𝑦(𝑗), which are the centroids

of the ring-neighborhood areas where 𝑖 and 𝑗 lie.

Once each ODX record had been assigned a time period and

neighborhood-rings for their origin and destination, a list of the unique

time-period, origin neighborhood-ring, and destination neighborhood-

ring was found, a representative date and time for each period, and

representative coordinates for the origin and destination neighborhood-

rings was assigned. For both time periods, September 19th 2023 (a

Tuesday) was represented as the departure date, with a departure time

of 8am for peak trips, and 12pm for off-peak trips. For the origin and
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destination point coordinates, the centroid of each ring-neighborhood

area was used. The Google Maps API was then queried for the unique

combinations using the representative departure times, and origin and

destination locations specified above. For the case of intra-ring travel

times, four random points within each ring-neighborhood area were

generated using the QGIS random sample function. Driving times be-

tween the ring-neighborhood area centroid and the four random points

were found and averaged and used to represent the inter-neighborhood-

ring driving time for that ring-neighborhood area.

4.3 Metric Preparation

4.3.1 Bus Metrics

As discussed in Chapter 3, ROVE is a bus metric calculation engine

used by the CTA. It calculates a range of metrics, including on-time per-

formance and frequency, which we have identified as secondary metrics

for equity analysis. ROVE calculates metrics based on a representative

Tuesday for a given month. Metrics can be aggregated on the route,

timepoint, or stop level, and are provided at the time period level (e.g.

am peak), among others. To find the associated observed frequency and

on-time performance metrics for journeys that began on bus, a simple

lookup table was constructed, linking any given stop id and time period

with the median on-time performance and frequency observed at that

given stop.

4.3.2 Rail Metrics

For journeys that begin on rail, we do not have ROVE metrics readily

available. Calculating rail arrival on-time performance was considered
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a low priority and less important as on-time performance for bus, as

rail is typically a much more reliable mode. Calculating frequency was

straightforward to perform. AVL data for rail is stored separately from

the AVL for buses at the CTA, and referred to as SmartTrack data.

Observed frequencies are obtained for each period (5am-9am for peak,

9am-3pm for off-peak) by dividing the number of arrivals at a stop

obtained from the SmartTrack data divided by the span of service (i.e.

active service hours within the time period). These are then stored in

a similar fashion to ROVE metrics. A representative Tuesday is used

for each month to obtain the observed arrival data.

4.4 Combining and Aggregating Data

Sources

After each separate piece of information was gathered (ODX journey

records, driving times, bus metrics, and rail mails) they were combined

so that each ODX record contains a driving time and the appropriate

metrics. Driving times were joined based on period, origin and desti-

nation ring-neighbrohood area, and metric types were added based on

time period, mode, route, and stop id.

After all data was prepared, then the Anywhere Trip Analysis or Crit-

ical Destination Analysis was ready to be performed.
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Chapter 5

Description of Chicago’s

Transit Service Landscape

In Chapter 3, we established a method for measuring transit equity

using ODX, and in Chapter 4 identified the data periods we wished to

compare. While the ultimate goal of our method is to measure equity,

one of the other goals of this thesis is to describe the transit service

landscape of Chicago. While this is an intermediary step in the eq-

uity measurement process, it is a helpful undertaking on its own, as it

provides a baseline understanding of service levels in the city.

In addition to ATA and CDA analyses (developed in Chapter 3, Sec-

tion 3.3), to understand the nuances of transit service, we will disag-

gregate our trips further by time period and mode. One particularly

important reason for disaggregating by mode is that rail is tradition-

ally more competitive than any other mode, as it offers frequent service

at high operating speeds. By looking at results by mode we can begin

to understand the nuances of service quality and act accordingly when

beginning to address potential issues.
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5.1 Anywhere Trip Analysis

To begin our ATA analysis, we view the results of the TTR distribution

from September 2019 in the peak period (5am-9am). Table 5.1 summa-

rizes the geospatial patterns seen in Figures 5-1 – 5-4. The left map

for each mode shows all ratio values, the right shows areas with scores

equal 2 or above. This allows us to readily view where transit service

is uncompetitive, defined as having a median TTR of 2 or more.
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Table 5.1: September 2019 Anywhere Trip Analysis Peak Period Metrics and
Observations

Transit
Mode(s)

Number
of Obser-
vations

Median
TRR
by Ring-
Neighborhood
Area

Median
TRR by
Trip

Observations

All 3,945,893 1.93 1.67 Competitive travel times fea-
ture most prominently along the
Brown, and Red Lines, around the
Blue Line ring-neighborhood areas
on the O’Hare branch, and around
the terminus of the Orange line.
Higher TTRs are found across the
city, most prominently throughout
the South Side, North of the
Brown Line terminus, and in areas
along the northern portion of the
O’Hare Blue Line.

Bus Only 2,186,673 2.03 2.01 Competitive TTRs are not found
in any area. High TTRs are
found throughout the city, with
the exception of some areas be-
tween and around the Brown and
Blue (O’Hare and Forest Park)
lines,and the South-East area near
the terminus of the Orange Line.

Mixed Mode 466,080 1.84 1.79 Competitive travel times are few
but scattered across the city. High
TTRs are most prominent along
the Lakeshore South of the CBD,
and Far South Side.

Rail Only 1,293,140 1.24 1.15 Competitive travel times are found
practically everywhere rail is easily
accessible.
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Figure 5-1: September 2019 Peak Weekday Anywhere Trip Analysis of Chicago Tran-
sit to Auto Travel Time Ratio, All Modes
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Figure 5-2: September 2019 Peak Weekday Anywhere Trip Analysis of Chicago Tran-
sit to Auto Travel Time Ratio, Mixed Mode
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Figure 5-3: September 2019 Peak Weekday Anywhere Trip Analysis of Chicago Tran-
sit to Auto Travel Time Ratio, Bus Only
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Figure 5-4: September 2019 Peak Weekday Anywhere Trip Analysis of Chicago Tran-
sit to Auto Travel Time Ratio, Rail Only
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Several noteworthy city-wide geospatial trends emerge from the

September 2019 ATA analysis. The first is that several clusters of

ring-neighborhoods areas appear to have uncompetitive TTRs across

modes. The Far South-Side and South Side along the lakeshore

consistently have high TTRs. The ring-neighborhood areas along the

Orange line also emerge as a grouping that shows high TTR values

across modes. The second trend is that bus service is less competitive

than other modes city-wide, with most trips being uncompetitive with

car travel (i.e., TTR is over 2).

For our second ATA anallysis, we view the results for October

2022. Table 5.2 summarizes the observations from Figures 5-5 – 5-8
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Table 5.2: October 2022 Anywhere Trip Analysis Weekday Peak Period Metrics and
Observations
Transit
Mode(s)

Number
of Obser-
vations

Median
TRR
by Ring-
Neighborhood
Area

Median
TRR by
Trip

Observations

All 2,024,836 1.85 1.71 Competitive travel times along the
O’Hare branch of the Blue Line,
along the Brown/Red Lines, near
the terminus of the Orange line,
and scattered along the Far South
Side. Uncompetitive travel times
are seen on the South Side near
the Lakeshore and Green and Red
Lines, and in the Far South Side.

Bus 1,275,100 1.95 1.80 Competitive travel times are not
prevalent. Uncompetitive trips are
found throughout the city, and
are most prominent on the O’Hare
Branch, in the downtown core,
around and between the Pink and
Orange Lines, and throughout the
South Side.

Mixed Mode
(Bus and
Rail)

194,683 1.85 1.80 Competitive travel times are not
prevalent. Uncompetitive travel
times are seen scattered north of
the Brown Line, along the O’Hare
branch of the Blue Line, and near
the terminus of the Orange Line.
Uncompetitive travel times feature
prominently along the Southern
Lakeshore and the Far South Side.

Rail Only 555,053 1.23 1.16 Competitive travel times are found
almost everywhere rail is accessi-
ble.
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Figure 5-5: October 2022 Peak Weekday Anywhere Trip Analysis of Chicago Transit
to Auto Travel Time Ratio, All Modes
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Figure 5-6: October 2022 Peak Weekday Anywhere Trip Analysis of Chicago Transit
to Auto Travel Time Ratio, Mixed Mode
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Figure 5-7: October 2022 Peak Weekday Anywhere Trip Analysis of Chicago Transit
to Auto Travel Time Ratio, Bus Only
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Figure 5-8: October 2022 Peak Weekday Anywhere Trip Analysis of Chicago Transit
to Auto Travel Time Ratio, Rail Only
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The geospatial patterns that are most prevalent in the October 2022 set

are similar to the patterns seen in the September 2019 analysis. Near

the terminus of the Orange Line, the far South-Side, and the South

Side, particularly along the lakeshore, emerge as three major areas

that appear consistently and prominently throughout the different TTR

analyses.

Comparing the 2019 and 2022 time periods, it becomes apparent that

they do not vary greatly in their overall distributions and TTR. Calcu-

lating the percent change in TTR from 2019 and 2022, we can observe

that the vast majority (82.7%) of the ring-neighborhood areas see their

TTRs change by under 5%. There are some exceptions to this, such as

along the O’Hare branch of the Blue Line, which experiences a TTR

increase over 15%, Figure 5-9.
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Figure 5-9: Percent Change in Travel Time Ratio September 2019 to October 2022,
Anywhere Trip Analysis, Peak Weekday
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5.2 Discussion of ATA Results

5.2.1 Statistical Significance

One concern with the results depicted in 5-9 that is the difference in the

total number of samples between the two datasets. Reported ridership

fell sharply between 2019 and 2022, resulting in a smaller sample size of

trips in 2022 and therefore more susceptible to randomness. However,

when the confidence intervals for each time period are calculated, they

are relatively small for the TTRs across both data sets.

Figure 5-10: Travel Time Ratio 95 Percent Confidence Intervals for Anywhere Trip
Analysis Travel Time Ratios AM Peak September 2019 and October 2022

Because of the similarity between the two periods, and their statistical

significance, it is reasonable to only perform full equity analysis on one

time period, the focus of Chapter 6. October 2022 is more appropriate

to include because it is the most recent and therefore relevant, despite

its relative number of observations compared to 2019.
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5.2.2 Discussion of Stationarity Between Periods

As discussed in Section 4.1, October 2022 was a challenging month for

the CTA as the agency was facing an operator shortage and unable

to run a significant portion of scheduled service. The stationarity be-

tween the 2019 and 2022 datasets may come as a surprise given our

understanding of the relationship between less frequent and more un-

predictable service and increased TTR (as discussed in Section 3.2.2)

and warrants further investigation into the causes of this lack of trend.

Investigating the wait time for bus-only trips (not all mixed-mode and

none of the rail-only trips have wait time included explicitly), we can

observe that October 2022 sees the upper range of wait times increase

significantly, Figure 5-11. However, the median wait-time value remains

the same at 5.9 minutes. While it may seem odd that the median re-

mains the same, a 5.9 minute wait time is the associated value for routes

serviced by 20-minute scheduled headways. For infrequent routes we

simply assign a waiting time value based on values found in literature

for scheduled service. For frequent routes, ROVE makes estimated wait

times based on historical data and realized headway readily available,

leading them to be higher due to the more infrequent service. Hard-

coded wait times for infrequently served routes is also the explanation

for why the 25th and 50th percentiles are almost identical for October

2022, as there are many trips that are accessing routes with close to 20-

minute headways. While the average wait time increases significantly

between 2019 and 2022, it remains static because of the use of the me-

dian value. In the future, recalculating the TTR using mean waiting

time, or modifying infrequent routes to better reflect deviations from

the schedule could help better reflect the experienced wait times for

passengers.

Another important aspect of the data that may contribute to the con-
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Figure 5-11: Waiting Time Distributions for Bus-Only Trips

sistency in TTR between periods is that trip legs made on rail are

calculated based on scheduled data. In October 2022 there were signif-

icant issues across rail lines in Chicago including an increase in “slow

zones" and the aforementioned operator shortage causing a decrease

in service. Figure 5-12 illustrates this problem, as the number of rail

stops that see fewer arrivals than scheduled increases greatly in October

2022.

Figure 5-12: Observed Minus Scheduled Frequency for the AM Peak, September 2019
and October 2022
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While we capture this discrepancy in frequency for bus trips in our

analysis, we do not do so for trips where the first leg is on rail. Therefore,

we are not capturing the longer wait times associated with unreliability.

In future work, calculating rail-based ODX journeys with AVL would

be a useful upgrade and effectively circumvent this issue.

A final aspect to consider is auto travel. When we calculate driving

times we use representative travel times from a Tuesday in 2022. This

means that our traffic conditions are based on historical averages, and

may not reflect the experienced conditions for a day. Additionally, a

finer level of analysis could be used when calculating driving times.

Currently, it is done on the ring-neighborhood area OD level, with the

departure time being the same across all trips. This may also contribute

to the stationarity we see, as our representative travel times may not

adequately represent true conditions, as they may not be sufficiently

granular.

5.3 Critical Destination Analysis

As discussed in Section 3.3, Critical Destination Analysis (CDA) is

helpful if we wish to assess the quality of service for a specific desti-

nation that has particular importance for equity outcomes. Three such

destinations are the Loop (the heart of the CBD in Chicago), the Illinois

Medical District (IMD), and River North. CDA stops for each location

are shown with a star in Figure 5-13. The results of the CDA analysis

for the Loop are shown in Figures 5-14 – 5-17, River North in Fig-

ures 5-18 – 5-21, and IMD in Figures 5-22 – 5-25 and are summarized

in Table 5.3.
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Figure 5-13: CDA Locations
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Figure 5-14: Loop CDA Analysis, AM Peak, October 2022, All Modes
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Figure 5-15: Loop CDA Analysis, AM Peak, October 2022, Mixed Mode
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Figure 5-16: Loop CDA Analysis, AM Peak, October 2022, Bus Only
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Figure 5-17: Loop CDA Analysis, AM Peak, October 2022, Rail Only
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Figure 5-18: River North CDA Analysis, AM Peak, October 2022, All Modes
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Figure 5-19: River North CDA Analysis, AM Peak, October 2022, Mixed Mode
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Figure 5-20: River North CDA Analysis, AM Peak, October 2022, Bus Only
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Figure 5-21: River North CDA Analysis, AM Peak, October 2022, Rail Only
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Figure 5-22: IMD CDA Analysis, AM Peak, October 2022, All Modes
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Figure 5-23: IMD CDA Analysis, AM Peak, October 2022, Mixed Mode
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Figure 5-24: IMD CDA Analysis, AM Peak, October 2022, Bus Only
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Figure 5-25: IMD CDA Analysis, AM Peak, October 2022, Rail Only
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Table 5.3: Critical Destination Analysis Results Summary By Mode and Location,
October 2022

Transit
Mode(s)

# Obser-
vations

Median
TRR:
Ring-
Neighborhood
Area

Median
TRR:
Trip

Observations

Loop
All 554,718 1.65 1.37 The majority of trips (59%) taken to

the Loop are taken using rail only,
leading to competitive travel times
(median of 1.37 for all trips). However,
bus only and mixed-mode trips,
comprising 39% of all trips to the
Loop, are less competitive, with
uncompetitive travel times for mixed
mode journeys prominently visible
along the lakeshore and Far South
Side, and throughout the city for bus
only journeys, with the exception of
areas along the North portion of the
Blue Line, along the Orange Line, and
a portion of the Far South Side.

Bus 173,777 2.2 1.96
Mixed Mode 52,654 1.70 1.65
Rail Only 328,287 1.21 1.12

Near North
Side
All 146,544 1.96 1.65 Competitive travel times are seen on

rail journeys along rail lines. Mixed
mode journeys tend to be
uncompetitive across the city. Bus
trips are mostly uncompetitive with
the exception of areas along the North
Lakeshore.

Bus 66,722 2.48 2.08
Mixed Mode 15,568 1.96 1.9
Rail Only 64,254 1.49 1.21

IMD
All 50,436 2.3 2.02 Uncompetitive travel times are highly

concentrated throughout the South
Side across modes, with the exception
of ring-neighborhood areas in close
proximity to the IMD. South-West
Side ring-neighborhood areas and
some along the Northern portion Blue,
Brown, and Red Lines see TTRs
either competitive or uncompetitive
(between 1.5 and 2). Rail trips not on
the Green, Pink, and Western portion
of the Blue lines are not competitive.

Bus 31,930 2.53 2.13
Mixed Mode 5,675 2.28 2.13
Rail Only 12,831 1.95 1.81
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It is clear from viewing the CDA results that despite each destination

evaluated in CDA being located relatively close to the CBD, their TTRs

vary widely. Service to the Loop is very good and highly competitive

in general. The CTA system is designed radially with the intention of

bringing passengers in and out of the core efficiently, and in our results

we can determine that the system is performing as it should in this re-

spect. However, for mixed-mode and bus-only trips, the system does not

perform competitively in most places. In direct contrast to the Loop,

River North, located just north of the Loop, has a very different level of

transit service despite their close proximity. Finally, the IMD, despite

being a roughly 10 minute drive from the Loop, also has a very different

level of transit service. With the exception of ring-neighborhood areas

on the West side that have transit service that brings them directly

to the IMD, transit service to the IMD is uncompetitive almost every-

where.

In conclusion, this information can be useful to the CTA as it highlights

its relative strengths and weaknesses in providing service to different

destinations. One major result from this analysis is that access to the

Loop is good for the majority of the city, River North service quality

is lower than Loop service despite its close physical proximity, and the

IMD is currently uncompetitive across most areas of the city.
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Chapter 6

Identifying Inequity and

Application of Method to the

Red Line Extension

6.1 Exploring Inequity

While viewing TTR results on a macro scale is helpful to understand

the overarching geospatial and longitudinal distribution of transit

service in Chicago, introducing a measure of comparison is critical if

we wish to make equity-driven decisions. To achieve this we compare

ring-neighborhood areas which are equidistant from the CBD which we

defined as “spatial peers” in Chapter 3. Also in Chapter 3, we defined

a method for assessing if a ring-neighborhood area was inequitably

served based on its observed and ideal TTR.

While Chapter we focused on exploring how TTR varied by mode, time

period, and analysis type, to produce an equity analysis to determine

which ring-neighborhood areas are in greatest need, we will focus on

a single dataset. We will use the “Anywhere Trip Analysis” for all

modes in the weekday peak dataset from October 2022 to perform our
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analysis. This period was chosen as it includes the greatest number of

trips, and therefore inclusive of the greatest portion of the population.

However, this equity analysis is easily replicable for the other analysis

types and periods explored in Chapter 5.

The result of the equity analysis for the ATA can be seen in Figure 6-1.

Figure 6-1: Equity Score, October 2022
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Viewing the results of our equity score above in Figure 6-1, the overar-

ching geospatial pattern observed in Chapter 5 of the South and West

Sides of Chicago being underserved, and the North Side being well

served, once again emerges.

On the North Side, the ring-neighborhood areas near the Brown, Red,

and Purple lines are well served. Their median TTRs surpass the min-

imum TTR we set based on their need level derived from the EHI

score. Some outer reaches of the North Side, such as West Ridge, are

underserved, but overall, the ring-neighborhood area is adequately ser-

viced. Examining the West Side of Chicago, between the two branches

of the Blue Line, ring-neighborhood areas including Hermosa, Belmont

Cragin, Dunning, Portage Park, Austin, West Garfield Park, and Hum-

boldt Park emerge as underserved. Ring neighborhoods areas around

the Pink Line such as North Lawndale, and South Lawndale, emerge as

underserved. Virtually the entirety of the South Side portion of Chicago

is underserved, with exceptions, which are either low EHI (i.e. Bev-

erly, Mouth Greenwood) or closely accessible by rail (Armour Square,

Fuller Park, Roseland). Figure 6-2 breaks down Figure 6-1 into under

(observed TTR is less than the ideal) and adequately served (observed

TTR greater or equal to the ideal TTR).

From this analysis, the result is a list of all ring-neighborhood areas in

Chicago ranked by the percent difference in their observed versus ideal

TTR. This result has two purposes. The first is that it gives a quantita-

tive ranking to which ring-neighborhood-areas are underserved, while

accounting for their distance from the core, and secondly, assigns a

value to how underserved the area is based on TTR. A full ranked list

of the 174 ring-neighborhood areas can be found in Appendix E. The

Top 20 highest need ring-neighborhood areas can be seen in Table 6.1

From Table 6.1, viewing the top 20 neediest neighborhoods as well
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Table 6.1: Equity Scores of the Top-20 Highest Need Ring-Neighborhood Areas,
October 2022

Need
Rank

Ring Neighborhood Area Number of
Observa-
tions

Actual
TTR

Ideal
TTR

% Diff in
TTRs

EHI

Median Across
Neighborhood Areas

5773 1.85 1.72 -7.71 43.9

1 9_Chatham 1999 3.09 1.62 -62.7 47.9
2 6_South Lawndale 186 2.30 1.50 -42.1 70.6
3 7_Englewood 5659 2.27 1.50 -40.8 70.5
4 10_South Deering 5495 2.25 1.50 -40 58.1
5 4_Oakland 3323 2.43 1.64 -38.5 53.2
6 7_Woodlawn 5032 2.45 1.71 -35.8 50.4
7 11_East Side 2539 2.14 1.52 -34.1 56.7
8 8_Greater Grand Crossing 7730 2.16 1.58 -31.3 54.3
9 4_New City 3260 2.12 1.57 -29.9 62.6
10 8_South Chicago 4962 2.1 1.57 -29.3 54.9
11 9_Ashburn Gresham 4496 2.09 1.56 -29.1 51.5
12 5_South Lawndale 15032 2.01 1.50 -29.1 70.6
13 6_Englewood 9089 2.01 1.50 -28.9 70.5
14 5_West Garfield Park 10601 2.03 1.52 -28.8 68.3
15 5_Brighton Park 13673 2.04 1.54 -28.2 66.1
16 3_Douglas 15404 2.24 1.70 -27.5 42.5
17 10_Roseland 5499 2.08 1.58 -27.3 52.6
18 9_South Chicago 8247 1.97 1.50 -27.2 54.9
19 7_Ashburn Gresham 877 2.22 1.69 -26.8 51.5
20 1_Near West Side 43784 2.22 1.70 -26.2 26.6
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Figure 6-2: Underserved and Adequately Served Neighborhoods

as the median “baseline” value across neighborhoods, we can identify

several patterns associated with the high need neighborhoods. Within

the top 20, almost all are located on the South Side of Chicago, with

a few West Side Neighborhoods (South Lawndale, West Garfield Park,

Austin, Near West Side) also included. Their TTRs are all well above

the median ring-neighborhood area median, and with a few exceptions

(Near West Side, Douglas) the EHI exceeds the city-wide median. While

the median percent difference between the observed and ideal TTR is

around 8%, all these neighborhoods are off by over -25%. This result

is reassuring, as our ranking system appears to be highlighting areas

with especially poor service, and high need overall.

While identifying inequitable disparities in TTR is our primary goal,

also important is the supporting metrics, frequency, average number

of transfers, and on-time performance, that we selected in Chapter 3.
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Not only are these three metrics important to passengers, but they

give intuition into what might be causing longer TTRs. Understanding

these three supporting metrics’ relationship with TTR is helpful if we

wish to work towards lowering TTRs. Figure 6-3 below presents these

metrics on the ring-neighborhood area level.

Figure 6-3: Supporting Metrics for ATA, All Modes, October 2022

By examining the supporting metric graphs, certain geospatial patterns

emerge. For the average number of transfers, the results appear radial,

with the fewest transfers being seen in the core, and increasing towards

the outer boundaries of the city. However, the North Side of Chicago

(along the Red, Brown, and Purple lines) does not follow these patterns.

For median frequency, the most remote edges of the city see the fewest

arrivals per hour by far. The rest of the city appears as a “mosaic”

of frequencies. As for median on-time performance, areas closer to the

core appear to have greater delay.

To best understand how each of these metrics affects the TTR score for

each ring-neighborhood area on a statistical level, a linear regression
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Table 6.2: Results of Linear Regression for 2022 AM Peak ATA Analysis
Variable Coefficient Estimate Standard Error t-Stat P-Value
(Intercept) 2.37 0.15 16.00 2.00E-16
Observed Frequency -0.07 0.01 -6.25 4.66E-09
Number of Transfers 0.58 0.19 3.14 0.00208
On-time Performance -0.06 0.02 -2.96 0.00364

Summary Statistics
Adjusted R-squared 0.358
Multiple R-squared 0.371
Standard Error 0.220
Number of Observations
(32 removed for complete-
ness)

139

performed. The results can be seen in Table (6.2). Each of the three

metrics shows statistical significance above the 99% level. The sign (i.e.

negative or positive) of each coefficient makes intuitive sense - having

an extra transfer increases the TTR whereas having access to more

frequent service and more on-time buses decreases the TTR. However,

the adjusted R-squared value shows that only 36% of all variance in

TTRs can be explained by these three secondary metrics.

Despite the limited statistical significance of these metrics in explaining

the overall TTR values, to illustrate how supporting metrics can give us

intuition into how we might lower TTRs, the top 10 most underserved

neighborhoods under each equity definition and their associated metrics

are given in Table 6.3. Viewing Table 6.3 and seeing supporting metrics

together with the TTR yields immediate insight. For example, trips

originating in the area of South Lawndale in the 6th ring take many

transfers and there is a low observed frequency. These two metrics give

us the intuition that infrequent, indirect service may be causing the

high TTRs. However, for other areas, the cause of high TTRs is less

obvious. For example, South Chicago in the 8th ring experiences more

frequent and direct service than the median, but has a high TTR.
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Table 6.3: Supporting Metric Values for Top 10 Neediest Areas
Ring
Neighborhood
Area

Actual
TTR

Observed
Frequency

On-time
Performance

Number of
Transfers

Observation/Intuition

Median Across
Neighborhood
Areas

1.85 3.88 6.6 0.3 N/A

9_Chatham 3.09 4 5.9 0.36 Higher number of transfers,
lower on-time performance

6_South
Lawndale

2.3 3.25 N/A 0.56 High number of transfers,
low number of observed
hourly arrivals

7_Englewood 2.27 4.16 5.99 0.39 Lower on-time perfor-
mance, higher number of
transfers

10_South Deering 2.25 3.71 6.4 0.28 Slightly fewer arrivals per
hour than average

4_Oakland 2.43 3.8 7.01 0.44 High number of transfers,
slightly lower frequency

7_Woodlawn 2.45 3.78 6.07 0.39 Higher number of transfers,
slightly lower frequency

11_East Side 2.14 3.75 N/A 0.33 Slightly higher transfers,
slightly lower frequency

8_Greater Grand
Crossing

2.16 5.97 4.95 0.32 Number of transfers slightly
higher than city-wide me-
dian, on-time performance
worse than city-wide me-
dian

4_New City 2.12 3.65 6.63 0.34 Slightly lower frequency,
slightly higher transfers

8_South Chicago 2.1 4.08 6.14 0.25 On-time performance
slightly lower than city-
wide median
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Although the explanatory power of our three secondary metrics may

be limited, by ranking areas where TTR is high compared to need and

viewing the supporting metrics, we create the opportunity for further

research and investigation into what other factors may be at play in

causing these long TTRs.

6.2 Application to the Red Line Extension

As discussed in Chapter 1, the RLE (Red Line Extension), is a major

CTA infrastructure project currently under review. There is much ex-

citement around this project from an equity perspective because the

South Side of Chicago has been historically underserved.

The equity analysis in the previous section confirmed how the Far South

Side is currently underserved when compared its spaital peers. Under-

standing how TTRs and equity scores may change if the RLE goes

forward is a good case study for our equity method, and can demon-

strate how this can be used practically to advocate for equity-focused

transit service interventions and investments.

The particular aspect we are interested in understanding for this case

study is the mixed mode trips that originate south of the Red Line that

transfer onto the Red Line via bus. As we have explored, the number

of transfers required for a trip has a large, negative impact on TTRs.

Figure 6-4 below shows the travel times for the pre-Red Line bus leg(s)

for trips transfering to the Red line at Dan Ryan and 95th station in

October 2022.

To estimate how the TTR will change when the Red Line is intro-

duced, several assumptions were made. The first was that passengers

whose original boarding stop was in a 500 meter as-the-crow-flies radius

would not use a bus to access the station, and simply use the station
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Figure 6-4: South Side Trips Using Bus to Reach Dan Ryan and 95th
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in closest proximity to them. The 500 meter range was chosen from

a well-known threshold for how far passengers are willing to walk to

rapid transit stations, which is typically 400-800 meters (Federal Tran-

sit Administration, 2013). A conservative value was chosen to reflect a

lower bound of the benefits the RLE could bring.

The second assumption is that if the journey was over 500 meters in

distance, the passenger would still use a bus to transfer onto the Red

Line, but access the Red Line stop closest to them. To estimate travel

times on the new Red line, a representative value was found based on

the current Red Line travel conditions between Red Line stations. On

average, it takes about 3 minutes to travel between stations. This value

was assigned to trips based on how many stations they would travel

through on the RLE. For example, if a passenger gets on at the new

130th Subway station, it would take them 12 minutes to reach Dan

Ryan and 95th. In the case where the distance to the nearest stop was

over 500 meters, a bus leg was added to the closest proposed Red Line

stop (or Dan Ryan). The travel time to reach the new Red Line stations

was calculated by dividing the as-the-crow-flies distance by the mean

speed with dwell for the four highest ridership bus routes in the dataset

(34, 119, 111, and 112) which was equivalent to about 12.5 miles per

hour, and added to the estimated travel time they would spend on the

RLE.

The resulting analysis suggests that travel times to Dan Ryan for neigh-

borhoods along the RLE will improve greatly, especially around the

111th and 130th street stations, as seen in Figure 6-5. In terms of the

overall impact on the equity score, Riverdale sees a noticeable improve-

ment in its equity score. This analysis suggests that it will decrease the

overall ATA score for October 2022 by over 9%, bringing its current

equity score from around -12% to -2%, making it practically equitably
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Figure 6-5: Projected Post-RLE Equity Score and Travel Time Savings to Dan Ryan

served under our definition. Other neighborhoods also see noticeable

improvements, with the portion of Morgan Park in Ring 11, seeing over

a 4% decrease in the overall TTR, bringing the neighborhood from un-

derserved to adequately served. TTRs and the change in equity score

for each ring-neighborhood that benefits from the RLE can be seen in

Table 6.4.
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Table 6.4: RLE Estimated TTR and Equity Scores
Ring Neigh-
borhood Area

Pre-RLE
TTR

Estimated
RLE
TTR

Pre-RLE
Equity
Score

Post-RLE
Equity
Score

Change
in Equity
Score

13_Riverdale 1.82 1.65 -12.3 -2.46 9.84
11_Morgan Park 1.82 1.75 -1.56 2.66 4.22
12_West Pull-
man

1.79 1.73 0.25 1.19 0.94

11_Roseland 1.99 1.95 -23.1 -21.4 1.7
10_Roseland 2.08 2.06 -27.3 -26.1 1.20
11_West Pull-
man

1.98 1.97 -24.4 -24 0.4

10_Washington
Heights

1.82 1.82 -5.86 -5.5 0.36

12_Morgan Park 2.33 2.32 -19.1 -19.7 -0.6
9_Beverly 1.75 1.75 13.3 13.45 0.15
9_Washington
Heights

1.99 1.99 -16.34 -16.2 0.14

11_Mount
Greenwood

1.59 1.59 20.4 20.43 0.03
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6.3 Discussion

There are several limitations and aspects of our equity analysis worthy

of discussion. The first is connected to the finding in Chapter 5 that

the overall equity scores between September 2019 and October 2022 do

not change meaningfully. There is concern around this result, because,

as discussed in Chapters 1 and 4, in October 2022 the CTA was ex-

periencing major service delivery issues. Underlying shortcomings with

the data and method causing this will be discussed in Chapter 7, but

the ultimate consequence is that we may be underestimating TTRs,

resulting in equity scoring that may not highlight areas where transit

service is inequitable, and underestimating the overall difference be-

tween observed and ideal TTRs across the city.

Regarding Section 6.2, several assumptions were made in order to con-

duct the equity analysis that are noteworthy of discussion. First was the

assumption that if a passenger’s origin bus stop was within a 500 meter

buffer of a new RLE stop, the passengers would walk instead of taking a

bus. This was a conservative estimate, as research suggests that around

70% of passengers located within that radius will walk, rather than take

some form of transit (Federal Transit Administration, 2013). A radius

of 800 meters corresponds to around 40% of passengers accessing the

station by walking. However, selecting a conservative radius may be

beneficial. We used as-the-crow-flies distance as opposed to Manhat-

tan distance, which likely underestimates the distance of the journey,

as many passengers will have to walk over 500 meters in network dis-

tance to reach the station. The other reason a conservative estimate

is warranted is that we have not incorporated information about the

walkability of the area surrounding the RLE. There are serious con-

cerns amongst Chicago residents about safety. Lowe et al. conducted

interviews with 120 Chicagoians from October 2019 to February 2020
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about their lived experiences with public transit (Lowe et al., 2023).

Many reported being extremely concerned with the walk associated

with taking a public transit trip, expressing severe safety concerns,

which ranged from ranging from being caught in cross-gun fire to being

racially profiled by police. Additionally, the quality of sidewalks in an

area can greatly affect accessibility to transit stations (Woldeamanuel

and Kent, 2016). Without understanding the current conditions of the

area under study, we are unable to know exactly how far passengers

are willing to walk to the subway stop. For this reason, a conservative

estimate was appropriate.

In terms of other shortcomings, this particular assessment of the RLE

only looked at the effects of the RLE for trips currently using bus

to access the Red Line. However, more work to understand what the

impacts of trips that will substitute some portion of a bus trip for the

Red Line not currently accessing Dan Ryan will need to be conducted

to understand the overall scale of the impact. Another concern with

this case study is that the percent change in equity score for the RLE

case study tends to be small, despite it having a significant impact on

riders. This is because the percentage of equity improvement is partially

a function of the share of trips originating in the ring-neighborhood

area that use the Red Line. For example, a high proportion of all trips

originating in Riverdale transfer on to the Red Line (23.6%), and it

sees a major improvement in its overall equity score (+9.84%). A similar

overall number of trips originating in Roseland in Ring 10 transfer onto

the Red Line via bus, but are a smaller portion overall of all trips taken

from the neighborhood (12.5%). This makes its impact on the overall

equity score small (+1.2%), despite decreasing over TTRs by over 30%

for some riders in that area who make the bus-to-Red Line journey.
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Table 6.5: Number of Observations of Far South Side Origins Across Datasets in AM
Peak

ring_neigh_index All Trips Bus-to-Red Line Trips % of All Trips that are Bus-to-Red
10_Beverly 851 22 2.6%
10_Roseland 5499 685 12.5%
10_Washington Heights 1894 79 4.2%
11_Morgan Park 2667 452 16.9%
11_Mount Greenwood 1224 6 0.5%
11_Roseland 5498 811 14.8%
11_West Pullman 2841 183 6.4%
12_Morgan Park 98 4 4.1%
12_Mount Greenwood 579 2 0.3%
12_West Pullman 4449 747 16.8%
13_Riverdale 2705 638 23.6%
9_Beverly 149 11 7.4%
9_Roseland 17039 114 0.7%
9_Washington Heights 4737 567 12.0%
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Chapter 7

Conclusion

7.1 Summary of Findings

This work developed a method to assess place-based equity for public

transit systems, addressing several shortcomings and limitations in the

equity assessment practices currently used in literature and practice.

This equity assessment method has three components: a measure of

need, a method of measurement, and a method of comparison. The

measure of need makes use of existing social need metrics, in this case,

the EHI (Economic Hardship Index), to make judgements about which

geographic areas in Chicago should be prioritized for greater transit

service on the basis of their social need. The method of measurement

focuses on measuring a primary service quality metric, the TTR (travel

time ratio), to reflect the service attributes of observed passenger trips,

to determine where service quality is poor or adequate. Supporting met-

rics including frequency, on-time performance, and number of transfers

required, were also selected as part of the method of measurement to

provide intuition into what factors may be affecting the TTR. Finally,

the method of comparison introduced a level of normalization to our

process, and acknowledges that areas with different spatial character-
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istics should have different levels of transit service. The concept of

“spatial peers”, areas of the city equidistant from the core, was selected

as the method of comparison for equity analysis.

TTR results for two time periods, pre- and post-pandemic restrictions

(September 2019 and October 2022), were presented. Different meth-

ods for aggregating trips originating from ring-neighborhood areas were

used, one looking at all trips originating from a neighborhood regard-

less of destinations ATA (Anywhere Trip Analysis), which is helpful in

understanding the overall picture of service quality for a given area,

and trips to specific destinations, CDA (Critical Destination Analy-

sis), which is helpful for understanding service quality to key destina-

tions. Finally, a full equity analysis of October 2022 was conducted, and

the top 20 highest-need neighborhoods were identified. These neighbor-

hoods were concentrated in the South and West Sides of the city. The

equity methodology was then applied to the RLE (Red Line Extension)

Project, currently under proposal, as a case study. The results demon-

strated how the project will help advance equity in the Far South Side

of Chicago by lowering TTRs in high-need ring-neighborhood.

7.2 Discussion of Transit Service Quality

Landscape of Chicago Findings

Chapter 5 characterized the service quality landscape of Chicago. This

analysis examined different subsets of passenger trips, analyzing how

service quality changed by mode and destination between September

2019 and October 2022.

Looking at all trips regardless of destination (ATA), spatial and modal

patterns as well as overall TTR scores remained fairly consistent be-

tween September 2019 and October 2022. Examining results by mode,
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rail was the most competitive by far (median TTR of 1.15, 1.16 re-

spectively for 2019 and 2022 by passenger trip) with mixed-mode

(1.79,1.80), and bus-only (2.01,1.80) being far less competitive. Aggre-

gating across all home-based journeys taken in the AM Peak, median

TTRs of 1.71 and 1.67 were observed for 2019 and 2022, respectively.

Uncompetitive mixed mode trips were particularly prominent along the

lakeshore on the South Side, and in the West Side of the city. Uncom-

petitive bus only-trips were seen throughout the city. Because of the

similarity between the 2019 and 2022 datasets, it was determined that

the remaining analysis should focus on 2022 as it reflected current con-

ditions most closely.

As mentioned, Between September 2019 and October 2022, overall

TTRs remained fairly static. This result was unexpected, given the

well-publicized and prevalent degradation of service in late 2022. Sev-

eral reasons for the unexpectedly static results are worthy of discus-

sion. Firstly, the ODX algorithm for rail assumes perfect train schedule

adherence to calculate passenger travel times. In October 2022 there

were several issues with rail service, the CTA struggled to dispatch all

scheduled rail trips, and lines experienced several slow-zones due to

track work not reflected in schedules. If true conditions were reflected,

we might see TTRs varying much more. Secondly, driving times may

have not reflected the true travel time conditions for the time peri-

ods. Thirdly, concerns around long bus-time waits were raised by the

community during that period, and acknowledged by the CTA pub-

licly. While longer average wait times were observed in our results, the

median wait time remained the same across the two periods. The fi-

nal possibility is that passengers may have been self-selecting for trips.

Passengers may have been timing their trips to coincide with better

service times (e.g. avoiding rush hour), or simply opting out of trips

altogether, either not traveling (e.g. working remotely) or using an al-
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ternative mode (e.g. using a car) because the transit option was so

poor. Chapter 5 also explored the results of trips to three specific

destinations, The Loop, River North, and the IMD. It was found that

TTRs to the Loop are highly competitive (with a median passenger

TTR of 1.37 across modes), TTRs to River North less so (1.65), and

uncompetitive to the IMD (2.02). This result highlights how the CTA

system is highly effective at moving passengers to the Loop, but is less

adept at providing competitive travel times to other popular locations

outside the heart of the Central Business District. Interestingly, River

North is directly adjacent to the Loop, but even in the case of mere

meters of separation, transit service differs greatly between these areas.

Finally, access to the IMD was found to be particularly poor in many

areas, which is a potential cause for concern, as it is an important area

for both employment and medical care.

7.3 Discussion of Equity Analysis Findings

Chapter 6 focused on applying the equity methodology developed

in Chapter 3 to generate a final equity ranking and score for ring-

neighborhood areas. This was performed on the peak, weekday ATA

October 2022 dataset, and the process is easily replicable for all other

datasets. The median ring-neighborhood area was found to have a TTR

around 8% higher than it ideally should based on its level of need com-

pared to its spatial peers. The ring-neighborhood areas highlighted by

the method as highest-need were high-EHI neighborhoods located in

the South and West Sides with high median TTRs over 2. The rela-

tionship between TTR and supporting metrics was then explored. A

linear regression found that all three were strongly statistically signifi-

cant with the TTR, with the number of transfers required having the

largest negative impact. However, the three supporting metrics were

118



only able to explain around 35% of all variance in TTR. Viewing the

three secondary metrics alongside the TTR helped glean intuition for

potential remedies, but more detailed analysis should be done to better

understand the factors causing high TTRs in these areas.

The second portion of Chapter 6 focused on applying the equity

methodology to the RLE project. This was done by identifying trips in

the dataset that currently access the South Side terminal station, 95th

and Dan Ryan, via bus, and estimating how much time they are pro-

jected to save by using the extension, and recalculating the equity score

using the projected decreased TTRs. It was found that the extension

will decrease travel times significantly along the proposed alignment

route, and have a positive impact on the equity score of most neigh-

borhoods, with significant improvements being seen in Riverdale.

7.4 Contributions

This thesis contributes to work in two distinct sectors. The first is to

transit agencies and their staff. One shortcoming of the most commonly

used equity analyses employed in practice is that they do not create a

definitive ranking of which areas are in highest need of increased service

while acknowledging differences in neighborhood characteristics (e.g a

residential neighborhood versus CBD). Additionally, these equity anal-

ysis methods do not provide an “end goal” for transit agencies to strive

towards. For accessibility analysis, barring some recent work, bench-

marks or targets are not typically set. This makes measuring equity

progress difficult. The equity analysis we have developed in this thesis

addresses these issues, and creates a framework that transit agencies

can follow to improve equity.
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The second contribution of this thesis is to academia. Currently, there

are few “activity-based” analyses that can be found in literature. This

thesis not only contributes a new activity based analysis, but performs

it on a large, high-quality, and comprehensive set of trip data. Addition-

ally, it contributes a new framework for performing this activity-based

analysis that could be replicated in a number of different cities. The

method is also flexible, and would allow for different measures of need,

methods of measurement, and methods of comparison, to be substi-

tuted.

7.5 Limitations and Future Work

7.5.1 Data Limitations

One limitation that has appeared repeatedly in this work is the granu-

larity and historicality of the data sources used. While this implementa-

tion of ODX provides granular, highly accurate, travel time information

for bus, it does not do the same for rail. As discussed previously, service

disruptions on rail are an ongoing cause for concern at the CTA, due to

service fulfillment issues and “slow zones”. Modifying ODX to use train

AVL data in a similar fashion to how it currently uses bus data, or

obtaining train travel times in a different way (e.g. through data scrap-

ing), would yield a much more realistic picture of rail service. Because

rail travel times are idealized in this work, we may be overestimating

the quality of CTA rail service, which may have implications for our

equity analysis.

Another area that could use improvement is auto travel times. Due

to resource constraints, travel times were calculated between ring-

neighborhood areas - not origin to destination stop. Additionally, their

start time was fixed to a single date and time set in the future, and
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based on historical traffic data from the Google Maps API. Calculating

auto travel times more granularly (i.e. for the specific time and date

for departure, and directly to the origin and destination transit stops)

would help give a more accurate picture of true travel time conditions,

and provide a more accurate TTR. This could be achieved by making

use of historical traffic databases, such as HERE Traffic (HERE Traf-

fic), to calculate these travel times. Finally, in regards to granularity,

metrics and wait times could be calculated on a finer temporal resolu-

tion level. For the purposes of this work, we made use of the median

values for wait time, frequency, and on time performance aggregated on

a month-level for a time period. In the future, AVL data could be pro-

cessed on a shorter time frame, finding the exact wait time, frequency,

on-time performance etc... for each ODX record. Another limitation of

ODX is that we do not have the true origin and destination locations of

passengers. By not including access and egress time to transit stations,

we are inherently underestimating TTRs, as walking, the typical mode

of access/egress, is low speed. One way to address this would be to link

travel survey data to ODX trips. This would allow for the full duration

of their trips to be calculated against the associated auto trip, and the

true origin and destinations to be revealed. In a similar vein, linking

demographic information with ODX trips would address the second

portion of the TransitCenter’s Fourth Equity Pillar. Calculating how

transit service differs by demographics would constitute person-based

metrics, which would allow transit agencies and practitioners to under-

stand how transit service quality aggregates to demographics such as

gender and race, expanding understanding beyond geographic origin.
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7.5.2 Limitations Regarding Travel Time Ratios

One limitation discussed in Chapter 6 is that our understanding of the

factors surrounding the TTR is not complete. Our analysis only ex-

plained around 35% of all variance in TTR. Including more data points,

such as additional transit metrics, land use characteristics, etc. . . in our

analysis, as well as using more powerful model selection tools, such as

machine learning, could be methods employed in the future to improve

our understanding of the factors driving TTR. This would be partic-

ularly helpful to transit agencies and practitioners, as it would help

them better understand how they could practically decrease TTRs to

reach equitable levels in underserved neighborhoods.

An aspect of the method of measurement that has not been explored

thus far is the possibility of calculating TTR differently. TTR does not

necessarily have to be done with auto travel times, it could be per-

formed with different modes, such as biking or walking. Something else

worth considering is assessing service quality with the basic speed of

a transit journey. This would address the issue that a low TTR trip

does not always mean transit service is high quality - the associated

auto journey may just be very slow. Finding a target speed for transit

journeys could encourage transit agencies to prioritize making jour-

neys maximally efficient, rather than simply competitive compared to

the auotmobile, as our method suggests. This relates to another aspect

of future work, which is benchmarking acceptable TTRs more rigor-

ously. It would be an interesting endeavor to further understand which

TTR is “equitable” in itself, decoupled from modal share and results

from other cities, which were used to set acceptable TTR thresholds in

this work. Understanding how TTR benchmarks differ based on local

needs, attitudes, and system capabilities would be an interesting area

of further study.
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7.5.3 Limitations to Equity Scoring

One aspect of our analysis that we have purposefully ignored is the

number of trips originating from each ring-neighborhood area. One

reason we do this is the reality of self-selection. If transit service is

so poor that passengers find alternatives, we are not penalizing them

for this decision. Our equity method focuses on overall need and qual-

ity, not optimizing for where demand is greatest. However, we recognize

practically that demand is important, and could also have important

equity implications. Understanding how this research could be used for

utilitarian purposes would be a helpful extension for transit agencies

to practically implement these insights to make transit improvements

that would benefit the most number of people possible.

In regards to the Method of Comparison, in Chapter 3 various levels

of normalization for geographic areas were introduced. There was a

brief discussion in that chapter that while most spatial patterns (i.e.

density, car ownership) were radial, they were not perfectly so. It is

recommended that future work explore the creation of different, more

refined spatial peer groupings to understand how equity recommenda-

tions may change based on different peer classifications.

7.6 Closing Discussion

Now more than ever, our communities are asking us as academics and

professionals to address the deeply harmful, systemic discrimination

perpetuated through our public institutions. Public transit, one of those

key intuitions, is an engine for opportunity - it can be used to empower

or oppress. Transit agencies, including the CTA, are actively grappling

with their role in perpetuating and correcting injustices. This thesis

provides a framework for determining both the location and magni-
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tude of transit service inequity, so that potential remedies can be ap-

plied. It also lays the groundwork for transit agencies to practically

implement these analyses, and aid them in setting quantitative targets

for what constitutes equity in their systems, so that they can measure

their progress in achieving them. We hope that this thesis will be the

first of many activity-based equity analyses performed with large-scale

AFC data, and wish to see goals and measurements derived directly

from them routinely reported and utilized in decision-making at tran-

sit agencies.
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Appendix A

Metric Calculation Glossary

(Caros et al., 2023)

These metrics are the complete list of those available from the Rid-

ership and Operations Visualization Engine (ROVE), an open-source

bus service and journey visualization performance tool. ROVE com-

bines diverse datasources including GTFS, AVL, APC, and OD data

to generate these metrics. To read more about ROVE, or to download

it, visit: https://github.com/jtl-transit/rove

Operation metrics:

1. Stop spacing (feet)

(a) Segment-level: calculate from shapes file generated by map matching

(b) Route-level: Average of segments

2. Scheduled frequency (buses/hour)

(a) Segment-level: Number of trips per day divided by the span of service within

the time period

(b) Corridor-level: Number of trips per day divided by the span of service within

the time period
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(c) Route-level: Number of trips per day divided by the span of service within

the time period

3. Observed frequency (buses/hour): same as scheduled frequency

4. Running time (minutes)

(a) Segment-level: actual running time for segments

(b) Corridor-level: actual running time for corridors

(c) Route-level: actual running time from first stop to last stop of routes

(d) Timepoint-segment-level: actual running time for segments with timepoints

(e) Timepoint-corridor-level: actual running time for corridors with timepoints

and branch points

5. Scheduled speed (mph)

(a) Segment-level: stop spacing divided by running time

(b) Corridor-level: stop spacing divided by running time

(c) Route-level: Route length divided by running time

(d) Timepoint-segment-level: stop spacing divided by running time for segments

with timepoints

(e) Timepoint-corridor-level: stop spacing divided by running time for corridors

(f) Notice: Keep speed data within [0, 65] range

6. Observed speed with dwell (mph): same as scheduled speed

7. Observed speed without dwell (mph): same as scheduled speed

8. Loads at stop (pax)

(a) Number of passengers on buses for segment

9. Route-level flow at stops (pax/hour)

(a) Sum of all passengers on buses for segment per hour (during service time)

of a day

10. Corridor-level flow at stops (pax/hour)
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(a) Sum of all passengers on buses for all trips per hour (during service time)

of a day

11. Route-level peak load (pax)

(a) Maximum passenger loading along the trip

12. Boarding (pax/trip)

(a) Segment-level: Number of pax get on the bus at first stop of segment per

trip

(b) Corridor-level: Number of pax get on the bus at first stop of corridor per

trip

(c) Route-level: Total number of pax get on the bus

(d) Timepoint-segment-level: Total boardings for bus stops within segments

with timepoints per trip

(e) Timepoint-corridor-level: Sum of routes via the corridor defined by time-

points

13. Route-level Revenue hour (hour)

(a) Daily total vehicle hours

14. Route-level Productivity (pax/hour)

(a) Daily ridership / monthly revenue vehicles hours

15. Sample size (trip)

(a) Number of trips used to calculate the metrics monthly

(b) Segment-level

(c) Corridor-level

(d) Route-level

16. Congestion delay (pax-min/mile or min/mile)

(a) Passenger-weighted and vehicle-weighted congestion delay

(b) Congestion-delay: (travel time – minimum travel time) / distance *

weight(number of vehicles or passengers)
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(c) Congestion-delay metrics are calculated based on monthly full-day data

(d) Segment-level

(e) Corridor-level

17. Boarding Transfer

(a) Transfer percentage: percentage of passengers transfer from the previous

journey stage among all boarding passengers

(b) Transfer count: total number of passengers transfer from the previous jour-

ney stage

(c) Segment-level/Corridor-level: metric regarding the first stop of the seg-

ment/corridor

(d) Route-level: Total number of transfers from the previous stage and percent-

age of transfers

18. Boarding Transfer Alighting Transfer

(a) Transfer percentage: percentage of passengers transfer to the next journey

stage among all alighting passengers

(b) Transfer count: total number of passengers transfer to the next journey

stage

(c) Segment-level/Corridor-level: metric regarding the second stop of the seg-

ment/corridor

(d) Route-level: Total number of transfers to the next stage and percentage of

transfers

Metrics that do not change between 50th and 90th percentile: Stop

spacing, Segment and corridor-level flow, Route-level Revenue hour,

Route-level Productivity, scheduled frequency, observed frequency,

sample size, congestion delay, transfer.

Passenger service level metrics: Metrics for all types of routes:
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1. Crowding (%)

(a) Segment-level: Segment-level occupancy / vehicle capacity

(b) Corridor-level: Aggregate of segment-level crowding

(c) Route-level: Peak load / vehicle capacity

2. On-time performance (seconds /

(a) On-time: actual arrival time within [-1, +5] time window of scheduled arrival

time from GTFS data

(b) Segment-level: arrival delay at the first stop of the segment. Max (0, actual

arrival time – scheduled arrival time)

(c) Route-level: percentage of stops with arrival time within [-1, +5] time win-

dow regarding to GTFS arrival time

3. Journey-based delay (minutes)

(a) Route-level only

(b) Percentile of journey-based delay for a specific route and direction

(c) Journey-based delay: excess waiting time at boarding stop + excess running

time

Metrics for high-frequency routes only (Scheduled frequency ≥5

buses/hour):

1. Scheduled expected wait time (minutes)

(a) Segment-level: calculated based on scheduled headway distribution at the

first stop of the segment

(b) Route-level: calculated based on scheduled headway distribution at the first

stop of the route

2. Actual expected wait time (minutes)

(a) Segment-level: calculated based on scheduled headway distribution at the

first stop of the segment
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(b) Route-level: calculated based on scheduled headway distribution at the first

stop of the route

3. Excess wait time (minutes)

(a) Segment-level: Max (0, actual segment-level expected wait time – scheduled

segment-level expected wait time)

(b) Route-level: Max (0, actual route-level expected wait time – scheduled

route-level expected wait time)

Metrics that do not change between 50th and 90th percentile: Sched-

uled expected wait time, Actual expected wait time, excess wait time,

on-time performance
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Appendix B

Composition of Different Need

Indices

Table B.1: Demographic Weightings of Different Need Indices (Amanda Madrigal)
Demographics

Need Index Poverty Youth Senior Citizen Female-Led Household Disabled Minorities Zero Car
Equal Weights 13% 13% 13% 13% 13% 13% 13%
Federal Policies 20% 5% 5% 5% 20% 20% 5%
Income & Vehi-
cle Ownership

25% 8% 8% 8% 8% 8% 25%

Race & Income
50%

25% 8% 8% 8% 8% 25% 8%

King County
Metro

30% 5% 5% 5% 5% 40% 5%

Race / In-
come 60% -
LEP/Vehicles
Ownership 20%

30% 5% 5% 5% 5% 30% 10%

Less Emphasis
on age with high
preference on
race and income

25% 5% 5% 10% 10% 25% 10%

LA Metro 20% 8% 8% 8% 8% 20% 20%
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Appendix C

Neighborhood Ring Cleaning

Process

To practically implement distance from the core, Chicago’s 77 neigh-

borhoods are superimposed onto a series of concentric 2 kilometer rings

radiating from the Chicago Loop, the heart of the CBD, which is known

as “The Loop”. The 2 kilometer ring specification was arrived at qualita-

tively and could be changed in future analysis. Each neighborhood-ring

overlap will be treated as its own unit of analysis, increasing the number

from 77 to 239. By breaking neighborhood areas into smaller portions

it allows us to more easily compare neighborhoods and find spatial peer

groupings. Neighborhood groups are “peers” if they lie within the same

ring. Figure C-1 shows Chicago’s 77 neighborhoods superimposed with

these rings.

However, this imposition of rings makes some units of analysis imprac-

tically small, making them useful for analysis. To remedy this, if a

neighborhood-ring section is less than 0.5 kilometers square in terms

of area, then it is adjoined to the larger portion of the neighborhood

that it is adjacent to, making the rings "clean" for analysis. The result

of this cleaning process can be seen in 3-6 in 4.
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Figure C-1: Chicago Neighborhoods Intersected with 2km Rings from the CBD with
No Manual Adjustment

133



Appendix D

The ODX Scaling Process

ODX scaling is divided into three stages. Stage zero is the most involved

as it serves two functions, and is different because it infers information

for bus transactions only. As outlined previously, rail journeys will al-

ways have an associated boarding location because of the fixed location

of the fare gate. Buses move, necessitating inference based on location

information. The first step of stage zero is to infer missing boarding

stops from bus journeys. Every journey transaction has a transaction

time and a vehicle identification number. The scaling script searches for

another transaction with a boarding stop on the same vehicle within

a 15 minute timeframe. If one is found, that boarding stop is used for

the missing journey record. Otherwise, the journey is not assigned a

boarding stop at all. The second function of stage zero is to create

“synthetic” records in the ODX dataset for journeys paid for in cash.

The number of cash boardings to be added is determined by a “cash

factors” table that gives the percent of total boardings on a given route

that are paid for in cash. This information is gathered by the bus oper-

ator, who pushes a button whenever a passenger boards and pays with

cash. Stage zero infers a boarding stop, trip id, and boarding time.

The final two stages infer an alighting stop and time. Stage one infers
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alighting for rail and bus journeys that share boarding information for

a complete transaction, in other words, there was at least one other

passenger who boarded at the same stop as the passenger with miss-

ing information, and that passenger had a recorded alighting stop. The

alighting stop for the missing transaction is sampled from the distribu-

tion of alightings for their boarding cohort. Stage two handles journeys

that do not share identical boarding information with journeys with

valid alighting stops. In these kinds of journeys, only one passenger

boarded at the given stop or station. Therefore, the alighting stop is

sampled from the overall alighting distribution of the system condition-

ally.
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Appendix E

Complete List of October 2022

Equity Scores

Table E.1: Equity Scores, All Ring-Neighborhood Areas,

October 2022

Need

Rank

Ring Neighborhood

Area

Number

of Obser-

vations

Actual

TTR

Ideal

TTR

%

Diff in

TTRs

EHI

1 9_Chatham 1999 3.09 1.62 -62.7 47.9

2 6_South Lawndale 186 2.30 1.50 -42.1 70.6

3 7_Englewood 5659 2.27 1.50 -40.8 70.5

4 10_South Deering 5495 2.25 1.50 -40 58.1

5 4_Oakland 3323 2.43 1.64 -38.5 53.2

6 7_Woodlawn 5032 2.45 1.71 -35.8 50.4

7 11_East Side 2539 2.14 1.52 -34.1 56.7

8 8_Greater Grand

Crossing

7730 2.16 1.58 -31.3 54.3

9 4_New City 3260 2.12 1.57 -29.9 62.6

10 8_South Chicago 4962 2.10 1.57 -29.3 54.9
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11 9_Ashburn Gresham 4496 2.09 1.56 -29.1 51.5

12 5_South Lawndale 15032 2.01 1.50 -29.1 70.6

13 6_Englewood 9089 2.01 1.50 -28.9 70.5

14 5_West Garfield Park 10601 2.03 1.52 -28.8 68.3

15 5_Brighton Park 13673 2.04 1.54 -28.2 66.1

16 3_Douglas 15404 2.24 1.70 -27.5 42.5

17 10_Roseland 5499 2.08 1.58 -27.3 52.6

18 9_South Chicago 8247 1.97 1.50 -27.2 54.9

19 7_Ashburn Gresham 877 2.22 1.69 -26.8 51.5

20 1_Near West Side 43784 2.22 1.70 -26.2 26.6

21 7_Archer Heights 2250 2.14 1.65 -26 56.1

22 9_West Ridge 3514 2.11 1.63 -26 47.3

23 10_East Side 841 1.97 1.52 -25.8 56.7

24 5_Washington Park 6516 2.05 1.59 -25.7 60.2

25 11_West Pullman 2841 1.98 1.55 -24.4 54.3

26 8_Avalon Park 4274 2.13 1.67 -23.9 47.9

27 9_Burnside 1216 1.98 1.56 -23.7 51.2

28 11_Roseland 5498 1.99 1.58 -23.2 52.6

29 2_Lower West Side 7409 2.05 1.62 -23.1 50.1

30 8_West Lawn 3555 1.99 1.58 -22.7 53.7

31 7_West Englewood 6402 1.98 1.57 -22.7 63.3

32 11_South Deering 409 1.88 1.50 -22.4 58.1

33 5_Englewood 2459 1.88 1.50 -22.4 70.5

34 7_West Lawn 2688 2.09 1.67 -22.4 53.7

35 4_Bridgeport 413 2.17 1.74 -22.2 41.9

36 4_Kenwood 2855 2.24 1.80 -22.1 34.6

37 5_Grand Boulevard 2736 2.07 1.67 -21.1 49.8

38 7_Greater

Grand Crossing

19230 2.05 1.67 -20.8 54.3

39 5_Austin 4931 2.02 1.64 -20.7 53.1
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40 6_Washington Park 3522 1.96 1.60 -20.6 60.2

41 6_Hermosa 6596 2.02 1.65 -20.3 54.3

42 4_Brighton Park 845 1.87 1.54 -19.8 66.1

43 8_South Shore 15832 1.97 1.62 -19.6 51.4

44 12_Morgan Park 98 2.33 1.92 -19.1 36.7

45 9_Portage Park 654 2.18 1.81 -18.5 36.2

46 6_Woodlawn 14279 2.03 1.69 -18.4 50.4

47 6_Belmont Cragin 12746 1.96 1.64 -18 55.9

48 5_Humboldt Park 24747 1.89 1.58 -17.8 60.3

49 8_Garfield Ridge 2573 2.15 1.82 -17 38.7

50 5_North Lawndale 10972 1.87 1.59 -16.5 59.8

51 9_Washington Heights 4737 1.99 1.69 -16.3 43.3

52 3_North Lawndale 384 1.81 1.53 -16.2 59.8

53 4_Humboldt Park 15510 1.86 1.58 -16.1 60.3

54 8_Austin 1246 1.87 1.59 -16.1 53.1

55 4_South Lawndale 13024 1.76 1.50 -16 70.6

56 6_Archer Heights 2085 1.92 1.64 -16 56.1

57 9_West Lawn 1057 1.78 1.52 -15.8 53.7

58 2_Lincoln Park 5773 2.32 1.98 -15.7 10.3

59 9_Jefferson Park 3682 2.21 1.89 -15.7 31.3

60 8_West Ridge 18214 1.96 1.68 -15.4 47.3

61 5_New City 18180 1.83 1.57 -15.4 62.6

62 9_Garfield Ridge 1405 2.06 1.77 -15.3 38.7

63 8_North Park 2837 2.03 1.75 -14.8 42.8

64 4_Grand Boulevard 11963 1.94 1.67 -14.7 49.8

65 8_Dunning 5227 2.19 1.90 -14.3 33.4

66 6_West Englewood 10013 1.81 1.57 -14.2 63.3

67 9_Calumet Heights 5896 2.04 1.77 -14 38.4

68 7_South Shore 21610 1.95 1.70 -13.8 51.4

69 6_Chicago Lawn 1400 1.84 1.61 -13.6 59.2
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70 8_Chatham 20963 1.90 1.67 -12.8 47.9

71 8_Belmont Cragin 6951 1.76 1.55 -12.4 55.9

72 13_Riverdale 2705 1.82 1.61 -12.3 84.2

73 7_West Ridge 7049 1.97 1.74 -12.3 47.3

74 5_Kenwood 7369 2.02 1.80 -11.8 34.6

75 4_Fuller Park 5660 1.74 1.55 -11.7 64.9

76 7_Belmont Cragin 28050 1.85 1.65 -11.5 55.9

77 8_Ashburn Gresham 17206 1.80 1.62 -10.4 51.5

78 10_Clearning 341 1.98 1.79 -10.2 38.8

79 7_North Park 5965 1.97 1.78 -9.9 42.8

80 4_East Garfield Park 12599 1.76 1.60 -9.9 58.9

81 7_Portage Park 15275 2.04 1.85 -9.9 36.2

82 7_Chicago Lawn 18745 1.78 1.62 -9.9 59.2

83 11_Pullman 517 1.88 1.70 -9.6 43.3

84 6_Hyde Park 2576 2.11 1.92 -9.1 25.3

85 8_Albany Park 780 1.86 1.71 -8.5 45.7

86 8_Chicago Lawn 1671 1.62 1.50 -7.9 59.2

87 4_McKinley Park 11378 1.79 1.66 -7.7 51.5

88 3_East Garfield Park 4206 1.67 1.54 -7.6 58.9

89 8_Portage Park 14460 2.00 1.85 -7.4 36.2

90 5_Hermosa 4613 1.76 1.63 -7.4 54.3

91 9_Dunning 7338 1.97 1.85 -6.2 33.4

92 6_Avondale 14196 1.91 1.80 -6.1 38.6

93 3_Bridgeport 14723 1.81 1.70 -6 41.9

94 10_Washington

Heights

1894 1.82 1.72 -5.9 43.3

95 4_North Lawndale 16435 1.68 1.59 -5.5 59.8

96 4_Lower West Side 1409 1.76 1.67 -5.4 50.1

97 8_Montclare 7212 1.83 1.74 -5.4 43.9

98 5_Uptown 36952 1.92 1.82 -5.1 31.5
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99 6_Austin 40934 1.74 1.66 -4.3 53.1

100 5_Hyde Park 9260 1.95 1.87 -3.9 25.3

101 9_Norwood Park 951 2.01 1.94 -3.8 28.2

102 13_West Pullman 319 1.90 1.84 -3.1 54.3

103 9_Ashburn 4472 1.78 1.73 -2.8 40.8

104 10_O’Hare 342 1.91 1.86 -2.8 33.8

105 3_Near West Side 17250 1.89 1.85 -2.2 26.6

106 10_Pullman 1437 1.76 1.72 -2.1 43.3

107 9_Forest Glen 520 2.00 1.96 -1.8 26.7

108 11_Morgan Park 2667 1.82 1.79 -1.6 36.7

109 12_East Side 226 1.81 1.78 -1.5 56.7

110 6_Greater Grand

Crossing

1555 1.66 1.65 -0.5 54.3

111 9_Clearning 2449 1.77 1.76 -0.1 38.8

112 12_West Pullman 4449 1.79 1.80 0.3 54.3

113 6_Uptown 25360 1.83 1.86 1.7 31.5

114 9_Pullman 50 1.66 1.69 1.8 43.3

115 11_Norwood Park 94 1.86 1.91 2.7 28.2

116 6_Gage Park 18736 1.50 1.55 3.2 65.3

117 3_Lower West Side 26577 1.57 1.63 3.3 50.1

118 7_Lincoln Square 8183 1.93 2.00 3.3 21.7

119 8_Clearning 2263 1.75 1.81 3.6 38.8

120 9_Roseland 17039 1.48 1.54 3.8 52.6

121 7_Edgewater 34716 1.85 1.93 3.8 28.9

122 7_Albany Park 25008 1.69 1.75 4 45.7

123 12_Hegewisch 72 1.84 1.92 4 37

124 7_Austin 16545 1.61 1.68 4.2 53.1

125 10_Dunning 1129 1.78 1.87 4.8 33.4

126 6_Edgewater 23224 1.80 1.89 5 28.9

127 3_Logan Square 1901 1.76 1.86 5.1 25.6
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128 2_Near South Side 13044 1.88 1.98 5.1 11.2

129 8_Ashburn 3794 1.69 1.78 5.2 40.8

130 1_Near North Side 29859 1.84 2.00 8.4 8.6

131 1_Near South Side 16066 1.79 1.96 9 11.2

132 10_Beverly 851 1.81 2.00 10.2 24.5

133 10_Forest Glen 265 1.78 1.97 10.3 26.7

134 5_Fuller Park 3064 1.39 1.55 10.4 64.9

135 12_Mount Greenwood 579 1.78 2.00 11.5 25.6

136 3_Armour Square 5751 1.32 1.50 12.4 63.5

137 5_Avondale 29256 1.55 1.76 13 38.6

138 9_Beverly 149 1.75 2.00 13.3 24.5

139 4_North Center 1979 1.69 1.94 13.7 16.9

140 2_Near West Side 34275 1.59 1.84 14.2 26.6

141 4_Lincoln Park 8952 1.72 2.00 14.6 10.3

142 8_Forest Glen 852 1.71 2.00 15.4 26.7

143 7_Rogers Park 9695 1.56 1.82 15.6 39.4

144 1_Loop 82567 1.70 1.99 15.8 9

145 13_Hegewisch 159 1.69 1.98 15.8 37

146 7_Garfield Ridge 19986 1.54 1.83 16.9 38.7

147 6_North Center 1202 1.69 2.00 17 16.9

148 11_Beverly 31 1.64 1.96 17.8 24.5

149 4_West Town 11850 1.60 1.93 18.4 18.7

150 2_West Town 20344 1.58 1.91 18.7 18.7

151 7_Irving Park 11104 1.55 1.89 19.5 32.3

152 6_Brighton Park 7822 1.26 1.54 19.9 66.1

153 11_Mount Greenwood 1224 1.59 1.95 20.4 25.6

154 8_Jefferson Park 27721 1.56 1.93 21.2 31.3

155 2_Armour Square 6966 1.21 1.50 21.4 63.5

156 13_O’Hare 4164 1.61 2.00 21.5 33.8

157 9_Rogers Park 9102 1.40 1.75 22.3 39.4
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158 6_Albany Park 13396 1.35 1.73 24.7 45.7

159 6_Irving Park 32328 1.45 1.86 24.9 32.3

160 8_Rogers Park 24955 1.39 1.80 26 39.4

161 11_Edison Park 553 1.51 2.00 28.1 21.8

162 7_West Elsdon 11041 1.28 1.72 29.2 49.2

163 5_Logan Square 38828 1.36 1.87 31.7 25.6

164 4_Lake View 138101 1.44 2.00 32.6 9.9

165 3_West Town 60910 1.36 1.92 34.1 18.7

166 10_Norwood Park 10125 1.37 1.94 34.9 28.2

167 5_Lake View 34928 1.40 2.00 35.5 9.9

168 6_Lincoln Square 31894 1.36 1.96 35.9 21.7

169 5_North Center 18606 1.34 1.94 36.6 16.9

170 3_Lincoln Park 61881 1.38 2.00 36.9 10.3

171 4_Logan Square 44662 1.21 1.87 42.7 25.6

172 2_Near North Side 68428 1.29 2.00 43.2 8.6

173 11_O’Hare 10262 0.99 1.83 59.4 33.8

174 10_Ashburn 1 1.76 40.8

175 14_Hegewisch 267 1.85 37
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