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A Non‐Intrusive Machine Learning Framework for
Debiasing Long‐Time Coarse Resolution Climate
Simulations and Quantifying Rare Events Statistics
B. Barthel Sorensen1 , A. Charalampopoulos1, S. Zhang2 , B. E. Harrop2 , L. R. Leung2 , and
T. P. Sapsis1

1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 2Pacific
Northwest National Laboratory, Richland, WA, USA

Abstract Due to the rapidly changing climate, the frequency and severity of extreme weather is expected to
increase over the coming decades. As fully‐resolved climate simulations remain computationally intractable,
policy makers must rely on coarse‐models to quantify risk for extremes. However, coarse models suffer from
inherent bias due to the ignored “sub‐grid” scales. We propose a framework to non‐intrusively debias coarse‐
resolution climate predictions using neural‐network (NN) correction operators. Previous efforts have attempted
to train such operators using loss functions that match statistics. However, this approach falls short with events
that have longer return period than that of the training data, since the reference statistics have not converged.
Here, the scope is to formulate a learning method that allows for correction of dynamics and quantification of
extreme events with longer return period than the training data. The key obstacle is the chaotic nature of the
underlying dynamics. To overcome this challenge, we introduce a dynamical systems approach where the
correction operator is trained using reference data and a coarse model simulation nudged toward that reference.
The method is demonstrated on debiasing an under‐resolved quasi‐geostrophic model and the Energy Exascale
Earth System Model (E3SM). For the former, our method enables the quantification of events that have return
period two orders longer than the training data. For the latter, when trained on 8 years of ERA5 data, our
approach is able to correct the coarse E3SM output to closely reflect the 36‐year ERA5 statistics for all
prognostic variables and significantly reduce their spatial biases.

Plain Language Summary We present a general framework to design machine learned correction
operators to improve the predicted statistics of low‐resolution climate simulations. We illustrate the approach,
which acts on existing data in a post‐processing manner, on a simplified prototype climate model as well as a
realistic climate model, namely the Energy Exascale Earth System Model (E3SM) with 110 km resolution. For
the latter, we show that the developed approach is able to correct the low‐resolution E3SM output to closely
reflect the climate statistics of historical observations as quantified by the ERA5 data set. We also demonstrate
that our model significantly improves the prediction of atmospheric rivers, an example of extreme weather
events resolvable by the low resolution model.

1. Introduction
As climate changes, several studies have indicated that the frequency and severity of extreme weather events will
increase over the coming decades (Fischer et al., 2021; Raymond et al., 2020; Robinson et al., 2021). Accurately
quantifying the risk of such events is a critical step in developing strategies to prepare for and mitigate their
negative impacts on society—which can include billions of dollars in damages and thousands of lost lives (Allen
et al., 2012; Fiedler et al., 2021; Houser et al., 2015). However, predicting the risk, magnitude, and impacts of
such events is difficult and multifaceted. First, these events are seldom observed and arise due to a range of—
often not fully understood—physical mechanisms (Lucarini et al., 2016; Sapsis, 2021). Moreover, the most
devastating events are those which arise due to extreme excursions of multiple variables simultaneously, such as
concurrent drought and heatwaves, which have a combined effect greater than each would have had in isolation
(Bevacqua et al., 2023; Raymond et al., 2020; Robinson et al., 2021; Zscheischler et al., 2018). In addition, these
extremes, whether occurring in isolation or in concert, interact with the earth system—and society—in myriad
and often non‐trivial ways. For example, the aforementioned combination of excess heat and below‐average
precipitation can increase the frequency of wildfires, degrade soil quality, and intensify water shortages, all of
which then in turn have devastating socioeconomic impacts through, for example, reduced crop yields and even
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increased spread of disease (Barriopedro et al., 2011; Geirinhas et al., 2021; Hauser et al., 2016; Witte
et al., 2011). Fully quantifying this complicated and interconnected system of physical, ecological, and social
factors will surely require innovation and collaboration on a vast scale (Bauer et al., 2021; Slingo et al., 2022), yet
even the first step, the accurate modeling of the climate dynamics, remains a challenging and unsolved problem.

At their heart, climate models (Manabe et al., 1965; Mintz, 1968; Smagorinsky, 1963; Smagorinsky et al., 1965),
or their more modern counterpart, Earth System Models (ESM) (Dennis et al., 2012; Golaz et al., 2022; Taylor
et al., 2009) are discretized forms of the equations of motion governing the Earth atmosphere and oceans. These
known dynamical equations are then coupled to theoretical or empirical parameterizations of phenomena whose
governing equations are unknown, such as the exact relationship between the vertical distribution of water vapor
and precipitation rates (Holloway & Neelin, 2009; Stensrud, 2007) or the residence time of carbon in various
terrestrial reservoirs (Bloom et al., 2016; Friend et al., 2014). Statistical climate predictions are then made by
averaging over ensembles of realizations generated by such models. Unfortunately, a significant challenge in the
practical application of these models is the computational complexity incurred by the vast range of dynamically
active scales present in the oceans and atmosphere. This challenge is compounded when considering the need for
large ensembles of models to be run over time horizons stretching decades or even centuries. The current state‐of‐
the‐art for climate modeling corresponds to an atmospheric spatial resolution of approximately 1° (i.e.,
approximately 110 km), with some early progress seen in the development of <5 km resolution models (Stevens
et al., 2019; Tomita et al., 2005; Wedi et al., 2020). While there are some proponents of even finer (1 km) res-
olution simulations (Bauer et al., 2021; Slingo et al., 2022), even these fail to resolve critical phenomena such as
the dynamics of stratocumulus clouds, which evolve on length scales of around 10 m (Schneider, Teixeira,
et al., 2017;Wood, 2012), much less than the Kolmogorov dissipation scale which is on the order of 1 mm. In fact,
the degrees of freedom in an ESM with 1 km resolution, which is stretching today's computational capabilities,
fall short of what is needed to fully resolve atmospheric turbulence by a factor of 1017 (Schneider et al., 2023).
These realities imply that the brute‐force computation of the climate system will remain out of reach for the
foreseeable future and that meaningful progress will require new and innovative solutions.

One promising and growing area of research to sidestep the computational intractability of fully resolved sim-
ulations is the combination of existing climate models with modern machine learning (ML) and data‐assimilation
strategies which learn the “sub‐grid” dynamics from targeted high resolution simulations or observational data
(Schneider et al., 2023; Schneider, Lan, et al., 2017). For example, reservoir‐computing‐based hybrid models
have recently been demonstrated which learn online corrections to coarse climate models. These have been shown
to substantially reduce overall bias (Arcomano et al., 2022) and capture events, such as sudden stratospheric
warming, which are not resolved at all in free‐running coarse climate models (Arcomano et al., 2023). Another,
and perhaps more widely adopted approach is the data‐driven parametric closure model. Here “closure model”
refers to a state‐dependent forcing term which aims to mimic the dynamic effects of the un‐resolved scales on the
resolved ones. Initially, such strategies were demonstrated on idealized aqua planet configurations using random
forests (Yuval & O’Gorman, 2020) and neural network (NN) models (Brenowitz & Bretherton, 2019; Rasp
et al., 2018; Yuval et al., 2021). More recently they have been applied to realistic global climate models to learn
parametric forcing terms from reanalysis data using RFs (Watt‐Meyer et al., 2021) and Deep Operator Networks
(DeepONet) (Bora et al., 2023), as well as from higher resolution simulations with 3 km (Bretherton et al., 2022),
and 25 km (Clark et al., 2022) resolution—both utilizing NNs and RFs. Across these studies, the ML closure
models led to a robust improvement of 20%–30% in certain predicted integral quantities such as mean precipi-
tation. However, predictions of other quantities were less reliable. For example (Clark et al., 2022), found that
surface temperature predictions depended non‐trivially on the random seed used in training the ML model.
Furthermore, these approaches did not universally reduce the bias of the predicted climate over the uncorrected
baseline, even in some cases increasing the bias of the coarse model (Clark et al., 2022; Watt‐Meyer et al., 2021).

Despite these concerns, the most severe limitation of these approaches is numerical instability when integrating
over long time horizons. This means that the aforementioned studies have only been demonstrated over short,
1 year (Watt‐Meyer et al., 2021) and 5.25 year (Clark et al., 2022) time horizons—far shorter than what is required
for long‐term climate analysis. Such instabilities are inherent in this type of intrusive approach, except of special
classes of representations for the closure terms which can guarantee stability of one‐point and two‐point statistics
(H. Zhang et al., 2021). The ML correction term augmenting the coarse‐scale equations is designed to bring the
turbulent attractor of the corrected system in line with that of the reference. However, the ML approximation of
the sub‐grid scale dynamics will not be perfect, and due to the chaotic nature of the system, small excursions will
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eventually grow, causing the predicted system trajectory to diverge from the attractor of the reference data
(Wikner et al., 2022). We refer the interested reader to Yuval et al. (2021) for a detailed discussion of the stability
challenges inherent in data‐driven closure models.

Motivated by the intrinsic limitation of data‐driven closure‐models, we consider a different strategy. We seek to
learn a ML operator which does not alter the equations, but rather acts as a post‐processing operation to debias
coarse scaled climate models. Such a non‐intrusive approach has several theoretical advantages. First, it does not
require altering the code of the core climate model—a non‐trivial endeavor which often requires the harmoni-
zation of codes written in different languages (J. McGibbon et al., 2021). Second, unlike a closure model, it is
domain agnostic, it can be applied globally or only for specific regions or altitudes. Third, and most critically, it is
not susceptible to the same instabilities which plague schemes which apply ML corrections directly to the system
dynamics. This in turn means it can be used to generate ensembles of trajectories over century+ time horizons—a
necessary step for quantifying risk of rare climate events with very long return periods. However, ML such a non‐
intrusive correction presents several considerable challenges, the foremost of which is the chaotic character of the
climate systems under investigation. A mapping learned directly from some particular trajectory of a coarse
model to a reference is unlikely to generalize, as it will encode not only the differences inherent in the coarse‐
scaling but it will also be corrupted by the particular chaotic realization of the training data. To overcome this
challenge, Arbabi and Sapsis (2022) developed a generative framework which uses a system of linear stochastic
differential equations in conjunction with a nonlinear map modeled through optimal transport. The nonlinear map
and the stochastic linear system are optimized so that the statistics of the output match the statistics of the training
data. In a more recent work, Blanchard et al. (2022) used a more complex architecture consisting of a spatial
wavelet decomposition, a temporal‐convolutional‐network (TCN) and long‐short‐term‐memory (LSTM) archi-
tectures trained also on a purely statistical loss function involving single point probability densities and temporal
spectrum. Alternatively, strategies such as generative adversarial networks (J. J. McGibbon et al., 2023) and
unsupervised image‐to‐image networks (UNIT) (Fulton et al., 2023) have been used to correct biases in average
precipitation rates—an integral quantity which is less affected by stochastic variation. While ML correction
operators using a purely statistical loss function can indeed generate trajectories with plausible statistics, this
property alone does not guarantee the resulted spatio‐temporal dynamics are always physically realistic. Most
importantly the quality of the resulted models, by design, cannot exceed the quality of the statistics used for
training. Therefore, if the statistics for rare events of a given (large) return period have not converged (because of
low availability of such events in the training set) the model is essentially forced to reproduce inaccurate, that is,
non‐converged statistics, at least for rare events that have return periods comparable or longer than the training
data set. To this end, methods based on purely statistical loss functions cannot be used for statistical extrapolation.

In this work we describe a framework to overcome this challenge. Our aim it to design an algorithm that learns
essential dynamics and is able to extrapolate statistics with a non‐intrusive approach. The heart of the proposed
strategy is that we do not machine learn a map from any arbitrary coarse trajectory to the reference, but spe-
cifically from a coarse trajectory nudged towards that reference. Nudging the coarse model towards the target
reference trajectory results in an input trajectory which predominately obeys the dynamics of the coarse model yet
remains close to the reference trajectory. Training a ML operator on this specific pair of trajectories allows us to
learn a transformation which encodes only the differences caused by the coarse‐grid without being corrupted by
random stochastic effects. Once trained, this correction operator can then reliably map any free‐running coarse
trajectory into the attractor of the reference data. We first lay out the theoretical framework of the proposed
strategy in terms of a general chaotic dynamical system. We then illustrate our method on a simplified 2‐layer
quasi‐geostrophic (QG) model, and show that we are able to correct a severely under‐resolved solution to
accurately reflect the long time statistics of the fully resolved reference—even when the model is trained on much
shorter time histories than the reference. Finally, we apply our framework to a realistic climate model, the Energy
Exascale Earth SystemModel (E3SM) with ∼110 km grid resolution. We show that using only 8 years of training
data our correction operator is able to bring the global and regional 30‐year statistics of the primitive variables into
good agreement with ERA5 reanalysis data, and reduce the error in the 36‐year average integrated vapor transport
(IVT) by 51% relative to the free‐running E3SM solution. Our results show that our framework is able to
characterize statistics of events with a return period that is multiple times longer than the length of the training
data and therefore represent a promising step towards reliable long term climate predictions.

The remainder of the article is organized as follows. In Section 2 we introduce the mathematical framework and
general ML strategy. We then apply our method to a quasi‐geostrophic model in Section 3 and the E3SM climate
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model in Section 4. Finally we conclude with a discussion of the implications of our results and the potential
extensions and limitations of our method in Section 5.

2. Training Correction Operators for Imperfect Chaotic Systems
We consider a high‐resolution discretization of an ergodic chaotic dynamical system, and its solution (named
thereafter the reference solution),

u̇ = F(u), u∈RN (1)

as well as, a coarse discretization of the same dynamical system (referred as CR), described by the model

v̇ = f (v), v∈Rn, (2)

where n < N. The reference solution is projected to the coarse grid through the projection operator P, that is,

u = Pu, u∈Rn (3)

The objective of this work is to capture the long time statistics of u by solving the imperfect model (Equation 2)
and then applying a correction operator, G, to the computed solution. The correction operator is assumed to be
spatially non‐local, with memory, but causal, that is, the correction at time t may depend only on the past of the
input but not the future. To learn this correction operator we assume a reference data set (referred as RD)
generated by the high resolution model or reanalysis data in the form of a finite time trajectory: {u(t), t∈ [0,T]} .

This is a non‐trivial problem since any CR trajectory (Equation 2) and RD trajectory (reference data set U) will
not be comparable, that is, cannot be used to formulate the training of the correction operator as a supervised
learning problem. In fact, even if the initial condition of the imperfect model is chosen to be the same with u
(t = 0), the two trajectories will rapidly diverge due to the chaotic nature of the system.

In Blanchard et al. (2022) the authors aim to address this fundamental obstacle by developing a cost function that
penalizes directly the deviation between the generated statistics of G(v) and the statistics of the reference tra-
jectory, u. While the approach has shown some promise, it is a very hard optimization problem that often results in
non‐physical realizations, G(v). At a more fundamental level, the approach does not really utilize the
“sequencing” or dynamics encoded in the reference data, but rather its statistics, which for real world problems
cannot be guaranteed to be accurate especially for rare events (e.g., using 40 years of reanalysis data cannot
guarantee accurate statistics for rare events with a longer return period).

Here we follow a radically different method that aims to learn the correction operator G using the reference
trajectory and the dynamics of the coarse model, rather than their corresponding finite‐time statistics. One of the
key objectives of this work is the identification of a data set which will allow for the training of such a correction
operator. The primary challenge therein is the need to suppress the chaotic divergence of the coarse scale model
during the training phase.

We consider the deviation of the two dynamical systems:

q ≡ v − u, q∈Rn. (4)

By computing the derivative we have an equation along the reference trajectory, u,

q̇ = f (v) − PF(u) = f (q + Pu) − PF(u). (5)

The right hand side expresses, for a given u, the way the two models diverge. Naturally, the above equation will
provide useful information between the two trajectories for as long these remain close to each other. Beyond that
point, that is, after chaotic divergence has occurred, it is not meaningful to compare the two trajectories. To
address this issue, we add a damping term in the right hand side of Equation 5 that will keep the deviation small:
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q̇τ = f (qτ + Pu) − PF(u) − 1
τ
qτ, (6)

where τ is a constant relaxation time scale that is chosen so that the added term is at least one order of magnitude
smaller compared with all the other terms in Equation 6. Moreover, we add the subscript τ to emphasize that this is
divergence computed with the artificial damping term. The added term is large enough to guarantee that over time
scales longer than τ the deviation does not grow exponentially due to chaotic effects, that is, the coarse scale
model remains in a relevant state to the reference state, but also small enough to allow for the coarse scale model
dynamics to evolve unimpeded. The last point is essential in order to obtain a data set with sufficient content
regarding the imperfection of the coarse scale model.

By transforming the equation for qτ into the v variable, we obtain the final equation for the generation of nudged
data sets to be used for training:

v̇τ = f (vτ) −
1
τ
(vτ − u), (7)

where the second term on the right hand side is known as the nudging tendency. The pair of trajectories (vτ, u) is
the basis for training the correction operator. We note that nudging has been widely used in the context of data‐
assimilation to improve the predictive capabilities of climate models (Huang et al., 2021; Miguez‐Macho
et al., 2005; Storch et al., 2000; Sun et al., 2019) as well as on developing hybrid approaches for climate
modeling (Bretherton et al., 2022). Here the use of nudging is only for the development of relevant training pairs
of trajectories.

2.1. Interpretation of training with data from the nudged model

To obtain a dynamical understanding of the mapping process between the nudged trajectory generated by the
above equation and the exact trajectory, we hypothesize the existence of a slow‐fast decomposition for vτ and u.
Our motivation is the observation that for many turbulent systems, spatially‐coarse modeling affects primarily the
fast time scales while it results in smaller errors in the slow time scales. However, fast time scales are important
for the characterization of extreme events, as the latter are typically short lived structures. We express the solution
vτ in the following slow‐fast decomposition based on the relaxation time scale τ:

vτ(t) = vs(T ) + v f (t), (8)

where T = ϵt is the slow time scale, and ϵ = 1/τ << 1, where τ is the relaxation time scale. Moreover, we also
decompose the reference solution in a slow‐fast form:

u(t) = us(T ) + uf (t), (9)

Based on the above, we have by direct calculation:

v̇τ(t) = ϵv′s(T ) + v̇ f (t,vs), where v′ =
dv
dT . (10)

Substituting into Equation 7 we obtain

ϵv′s + v̇ f = f ( vs + v f ) + ϵ(us + uf − vs − v f ). (11)

Separating the slowly evolving terms of order O(ϵ), that is, the small terms that depend only on T , we have:

v′s = us − vs ⇒ vs(T ) =∫ e− (T − s)us(s)ds. (12)

The fast terms on the other hand will give, to zero order:
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v̇ f = f ( vs(T ) + v f ) + O(ϵ). (13)

From the last two equations we can conclude that Equation 7 essentially drives the coarse scale model along the
slow dynamics of the reference attractor captured by the trajectory, u, Equation 12, but leaves the fast dynamics
free to evolve according to Equation 13. By driving the imperfect model in regions of the attractor where we have
reference data we are able to define a supervised learning problem, where the input is the solution with imperfect
fast dynamics defined by Equation 7 and the output is the reference solution, u. In this way, one can use this pair of
data to machine learn a map that corrects the fast features of the imperfect model, where the largest model errors
are concentrated due to coarse discretization.

It is important to emphasize that the method does not assume any scale separation in the dynamics. Instead the
parameter τ controls which temporal scales are corrected by the NN operator. On the other hand, it is important to
mention that the success of the scheme relies on a minimum data requirement, sufficient to guarantee proper
generalization of the correction operator.

2.2. Selection of the relaxation time scale τ

One of the key questions in the practical implementation of this framework is the choice of the relaxation
timescale τ. It quantifies the strength of the nudging tendency and represents a trade off between the suppression
of the chaotic divergence and the suppression of the inherent dynamics of the coarse model. If τ→∞, the nudging
tendency in Equation 7 will be too weak to suppress the chaotic divergence between vτ and u. This will mean that a
map between them will not generalize when applied to free‐running coarse solutions. Alternatively, if τ→ 0, the
nudging tendency will completely suppress the dynamics and vτ will be indistinguishable from u and a map
between them will be trivial. From numerical experiments we performed, we found that a value of τ that results in
a nudging term that is one order of magnitude smaller than the other terms of the model represents a good balance
between these extremes, that is, the performance of the algorithm remains the same as long as the choice of τ
remains within this range.

2.3. Spectrum‐matched nudging

Before we proceed to the ML of the correction operator we need to address an energetic inconsistency created by
the inclusion of the nudging term in the coarse scale model. This is associated with the artificial dissipation that is
introduced to the dynamics of the model due to the term 1

τvτ. While the term is generally smaller than all other
terms of the model, it still creates small discrepancies between the spectra of the nudged solution, vτ, and the
free coarse solution, v. This is an inconsistency that has been observed in different settings of data‐
assimilation and several solutions have been proposed, for example, 4DVar (Mons et al., 2016) or ensemble
variational method (Buchta & Zaki, 2021; Mons et al., 2016).

Here we employ the simplest approach to correct the spectral inconsistency: we rescale the spectrum of the
nudged trajectory, vτ to match the spectrum of the coarse model spectrum. Specifically, let ûk = F[u] be the
spatial Fourier transform of the field u. We define the spectral energy as

Ek,u =
1
T
∫

T

0
|ûk|2dt. (14)

Next, we consider the energy‐ratio per wavenumber, between the free‐running, v, and the nudged solution, vτ,
defined as

ak ≡

̅̅̅̅̅̅̅̅̅
Ek,v
Ek,vτ

√

(15)

We define as the spectrum‐matched nudged solution as the inverse Fourier transform of the spectrally rescaled
nudged solution:

v′τ = F− 1 [akv̂k,τ]. (16)
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The resulted pair of spectrally‐corrected nudged solution, v′τ referred in what follows as nudged coarse (NC) data
set, together with the reference data set (RD), u define a supervised learning problem with cost function being:

min
G
∫

T

0
‖G[v′τ(t)] − u(t)‖

2dt (17)

The training framework is graphically illustrated in Figure 1. In contrast to previous approaches that aim to match
the statistics of the transformed output with statistics of a reference trajectory, the above optimization problem
encodes directly the dynamics that is, the time sequencing of the data set. This property is crucial for better
generalization capabilities, that is, to train with a short data set and be able to capture statistics that correspond to
much longer simulations.

After we have machine learned the correction operator, G, we apply it to the free running coarse model trajectory
(CR), v(t). The result is then used to compute statistics and other properties of interest. The workflows for training
and testing are summarized in Figure 2. We emphasize that nudging and reference data are used only in the
training phase. At the testing phase, the model is using only free‐running coarse data and transform it to obtain the
correct statistics. The good generalization capabilities of the correction operator allow for its application on much
longer time series than those used for training, that is, the characterization of extreme events with return period
that is longer than the training data set.

3. Quasi‐Geostrophic Model
3.1. Background

As a first example we apply the presented correction method to the two‐layer incompressible quasi‐geostrophic
(QG) flow (Qi & Majda, 2018). In a dimensionless form, its evolution equation is given by

∂qj
∂t
+ uj ⋅∇qj + (β + k2dUj)

∂ψj
∂x

= − δ2,jr∇2ψj − ν∇8qj (18)

where j = 1, 2 corresponds to the upper and lower layer respectively, r the bottom‐drag coefficient and β is the
beta‐plane approximation parameter, and k2d represents the deformation frequency which for this study we fix at 4
—a value consistent with the radius and rotation of the earth and the characteristic length and velocity scales of the
atmosphere (Qi & Majda, 2018). This model is intended to approximate mid to high latitude atmospheric flows
subject to an imposed shear current. A Taylor expansion of the Coriolis force reveals that for this assumption to
hold we require roughly that β ∈ [1, 2], which corresponds to an approximate latitude range of ϕ0 ∈ [29°, 64°].

Figure 1. Description of the method that learns a map between the attractor of the coarsely‐resolved equations and the
attractor of the reference trajectory. Left: the red dashed curve represents the reference trajectory. The black curve is a
coarsely‐resolved nudged trajectory toward the reference trajectory. The green curve is the free‐run coarsely‐resolved
trajectory that is not used for training (shown for reference). Right: the target attractor and the target trajectory (red), same as
the dashed curve shown at the left plot.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004122

BARTHEL SORENSEN ET AL. 7 of 29

 19422466, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004122, W
iley O

nline L
ibrary on [18/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The flow is defined in the horizontal domain (x, y)∈ [0, 2π] and is subject to doubly periodic boundary conditions.
The state variable is represented in three forms: velocity: uj, potential vorticity (PV): qj and the stream function:
ψj. The latter are related via the inversion formula

qj = ∇2ψj +
k2d
2
(ψ3− j − ψj) (19)

and the velocity is related to the stream function by uj = Uj + k̂ ×∇ψj where k̂ is the unit vector orthogonal to the
(x, y) plane and Uj= − 1

( j+1)U, with U= 0.2 represents the imposed mean shear flow. The corresponding nudged
system of equations is given by

∂qj
∂t
+ uj ⋅∇qj + (β + k2dUj)

∂ψj
∂x

= − δ2,jr∇2ψj − ν∇8qj −
1
τ
(qj − qRDj ) (20)

where qRDj is the reference solution projected to the grid of q. We fix the nudging parameter τ = 16—a value for
which we found the nudged solution tracks the reference, but generally retains the spectral properties of the free‐
running coarse solution. Furthermore, we note that while the nudging penalty is applied to the vorticity, it could

Figure 2. Workflow of the training process (top) and testing process (bottom) for the machine learning of correction operators and their application on the generation of
long time climate simulations, that is, longer than the reference data set.
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have equivalently been applied to the stream function or velocity. These possibilities are not explored in this work,
however, as these three variables are all directly related we would not expect significant differences in the results.

Equations 18 and 20 are solved using a spectral method, with a spectral resolution of 24 × 24 and 128 × 128 for
the coarse‐scale (CR) and reference (RD) data respectively. The time integration is evaluated using a fourth order
Runga‐Kutta scheme with the same temporal resolution used for both the under‐ and fully‐resolved simulations.
Throughout the following discussion all results will be presented in the form of the stream function—as this
uniquely defines the velocity and thus vorticity, this choice incurs no loss of generality. Additionally, we define
the zonally averaged stream function as the integral over the x dimension,

ψ̄j( y,t) =
1
2π
∫

2π

0
ψj(x,y,t)dx. (21)

In Figure 3 we show the zonally averaged stream function in layer 1 for β = 2.0 and r = 0.1 of the three data sets:
RD, CR, NC, as an illustrative example of both the fully‐ and under‐resolved solutions. The primary qualitative
difference between the coarse and fine grid solutions is in their amplitude. This is particularly clear when
comparing the tails of the distributions in 3b. Note that the spectrally corrected NC solution reflects the qualitative
spatio‐temporal behavior of the fully resolved (RD) solution but exhibits the lower magnitude of the coarse (CR)
solution.

3.2. NN Architecture and Training Strategy

The NNmodel we employ as a correction operator takes as an input the stream function field of both layers which
is of dimension 24 × 24 × 2. This vector is then compressed through a fully connected layer of dimension 60 and
then passed through a long‐short‐term‐memory (LSTM) layer of the same size before being expanded through a
second fully connected layer to restore the data to its original size. The fully connected layers utilize hyperbolic
tangent activation and the LSTM layer uses a hard‐sigmoid activation. The model is trained purely on stream
function data and thus the output of the model represents the statistically corrected stream function field.

Figure 3. Example zonally averaged stream function ψ̂1 of the QG system Equation 18 for β = 2.0 and r = 0.1. From top to bottom: fully resolved, reference solution
(RD), free‐running coarse simulation (CR), and spectrally corrected nudged simulation (NC).
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The model is trained on a semi‐physics informed loss function which consists of the L2 norm of the error
augmented with a second term which penalizes errors in the conservation of mass.

L =∑
2

j=1
∫

2π

0
∫

2π

0
|ψmlj − ψ

rd
j |

2dx dy +∑
2

j=1
∫

2π

0
∫

2π

0
ψmlj dx dy (22)

Here ψml and ψrd denote the machined learned prediction (i.e., the ML transformation of the nudged data set) and
the reference stream functions respectively. The mass conservation term is derived by noting that the two stream
functions are linearly related to the height disturbances of the two layers and that by conservation of volume the
integral of all height disturbances must vanish.

The correction operator is trained for 2,000 epochs on sequences of 100 data points spanning 10 time units taken
from a single realization of the flow with β= 2.0 and r= 0.1 of length 1,000 time units. We then apply the trained
correction operator to a separate (unseen) realization of the flow to generate the following results. .

3.3. Results

3.3.1. Prediction of Long Time Statistics

First, we apply our models, which are trained on data with β= 2.0 and r= 0.1, to a new realization of the flowwith
these same parameters. A key objective of this work is to compute extreme event statistics for events that have a
return period that is longer than the length of the training data. Therefore, the question is how accurately we can
capture the tails with a corrected long realization of the coarse model, when the correction operator has been
trained on data that does not accurately the tails, that is, data of limited length.

To this end, we first apply our ML correction operator, which is trained on Ttrain = 1,000 time units of data,
to a new realization of the flow spanning Ttest = 34,000 time units. Figure 4a shows the global power
spectra and probability density functions of the stream function in both layers. The power spectra are
computed by taking the spatial average of the point‐wise temporal power spectra, and the probability density
function is taken across all space and time. The fully‐resolved (RD) and under‐resolved (CR) solutions are
shown in solid and dashed black respectively and the ML correction of the under‐resolved solution,
henceforth denoted ML(CR), is shown in blue. As a reference, we also plot the statistics of the training data
(RDtrain) in red.

For both layers, the ML correction brings the coarse solution into good agreement with the fully‐resolved
reference. In terms of the spectra, the ML correction accurately captures the two peaks around f = 0.15, and
only deviates significantly at very high frequencies. In terms of the probability density functions, the model
slightly underpredicts the positive tail in layer 2, but captures the general shape well. Crucially, we note that the
statistics of the (1,000 time unit) training data are meaningfully different from the (34,000 time unit) test data used
to generate the results. Note especially the severe under‐resolution of the spectrum and the discrepancy of the far
tails of the probability density functions. This highlights the capability of our approach to capture tail events
which are not present in the training data, most notably in layer 1. This is an important feature, as any practical
long term (100+ year) climate prediction will necessarily be trained on far less training data. Furthermore, this
highlights the advantages of our approach to one such as (Blanchard et al., 2022) in which the ML correction
operator is trained to purely reproduce statistics, as such an approach is by construction restricted to the statistics
of the training data.

Beyond capturing the global statistics, it is crucial for our model to accurately capture the dynamics evolving at
specific spatial scales. Therefore, in Figure 5 we show the probability density function of a selection of the
individual Fourier modes, parameterized by the wavenumber vector k = [kx, ky]. In the interest of space we
show the probability density of the barotropic stream function, defined as the average of the two layers. In
general, the model captures the probability distributions of the Fourier modes very well, with some discrepancy
in the far tails. Interestingly, the ML correction tends to underestimate the tails of the largest modes for
example, k = [0, 1], and [1, 0], while then trending toward overestimating the tails of the smaller modes for
example, k = [2, 1], and [2, 2].
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Finally, we reiterate that the only claim we make upon the trajectories predicted by our model is that they reflect
the statistical properties of the fully resolved system. However, we expect our predictions to exhibit the qualitative
behavior of the exact solution. To this end we show in Figure 4b a 10,000 time unit interval of the zonal average of

Figure 4. Model prediction for β= 2.0 and r= 0.1. Power spectrum and probability density function of stream functions ψ1 (top row) and ψ2 (bottom row). Test data, RD
(solid black), CR (dash black), ML(CR) (blue) and training data RDtrain (red) (a). Zonally averaged stream function ψ̄1, RD (upper panel) andML(CR) (lower panel) (b).
Ttrain = 1, 000 and Ttest = 34, 000.
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the predicted solution.We do not show the full 34,000 time unit time horizon in order to improve the readability of
the figure and highlight the spatiotemporal structure of the flow. We do indeed find good qualitative agreement
with the fully‐resolved simulation across the full test trajectory.

Figure 5. Probability density function of individual Fourier modes for β = 2.0 and r = 0.1. RD (solid black), CR (dashed black), ML(CR) (blue). Ttrain = 1, 000 and
Ttest = 34, 000.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004122

BARTHEL SORENSEN ET AL. 12 of 29

 19422466, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004122, W
iley O

nline L
ibrary on [18/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3.3.2. Minimum Training Data Requirement

In the previous section we showed that our ML operator is capable of correcting the tails of a long time horizon
coarse solution even when trained on a far shorter span of data. Here we investigate the minimum amount of
training data needed to capture the long time (Ttest = 34,000 time unit) statistics. We compare the results of our
ML correction operator trained on data spanning Ttrain = 100, 200, 500, and 1,000 time units—the latter cor-
responding to the results described above. Both training and testing is carried out on data with β= 2.0 and r= 0.1.
The probability density function and power spectrum of |ψ1| for these four cases are shown in Figure 6. We focus
on the probability density function of the absolute value of the stream function in the interest of brevity. We see
that the ML operator requires a minimum Ttrain between 500 and 1,000. While, the ML operators trained on
Ttrain < 500 do improve the statistics of the coarse model, they do not capture the tails of the pdf and also
underpredict the two spectral peaks. This is consistent with a closer examination of Figure 3 which shows that the
characteristic time scale over which the large scale motions of the flow evolve is approximately 500–1,000 time
units. Thus, for the QG model considered here, the ML operator requires seeing atleast one full characteristic
period of the flow in training. However, once it as seen one or two it is capable of learning the general features of
the flow and can accurately reproduce statistics over much longer time horizons. This is a critical observation
since for climate models data is always limited in time and the existence of such critical threshold can indeed pave
the way for the computation of statistics for events that have return period much longer than the training data.

3.3.3. Evaluation for Different Flow Parameters Than the Training Data

Next, we apply the sameML operator to a realization of the QGmodel with flow parameters which differ from the
training data, namely β = 1.1 and r = 0.5. For these parameter choices the flow lacks the characteristic spectral
peaks of the β and rd used to train the model exhibiting much more uniform frequency content. The lack of a
dominant (slower) time scale means the flow evolves on faster characteristic time scale than the training data.
These features make this a challenging test case to evaluate the generalizability of our model. Due to the shorter
characteristic time scales, and the associated increased computational cost, for this experiment we consider a test
data set of length Ttest = 10,000 time units.

The results are summarized in Figures 7 and 8. In the former we plot the power spectra and probability density
function and in the latter we plot the scale‐by‐scale probability density functions. In terms of the global statistics,

Figure 6. Model prediction of power spectrum and probability density function of |ψ1| for Ttrain = 100, 200, 500, and 1,000. For all cases Ttest = 34, 000.
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the predicted spectrum is in good agreement with the reference across much of the frequency domain, but
underpredicts the spectral decay, and thus over‐predicts the strength of the highest frequencies. In terms of the
probability density function, there is excellent agreement in layer 1, while in layer 2 the model notably over‐
predicts the tails. The predictions of the scale‐by‐scale statistics are reasonably accurate and provide signifi-
cant improvement over the free‐running coarse model. However, the ML correction tends to over emphasize the
strength of the tails for the larger length scales, for example, k= [0, 1], [1, 0], [1, 1]. This is not surprising finding
given the drastic over‐correction of the tails in layer 2 seen in Figure 7.

4. Global Climate Model
4.1. Data Set

We now apply our framework to a realistic global climate model, the Energy Exascale Earth System Model
(E3SM). In particular, version 2 of the E3SM Atmosphere Model (EAMv2) (Dennis et al., 2012; Golaz
et al., 2022; Taylor et al., 2009). The progress variable isX(θ,ϕ,k, t) = (U,V,T,Q) . The progress variables (U, V)
correspond to the zonal and meridional components of wind velocity, T is air temperature and Q is specific
humidity. The spatial coordinates (θ, ϕ, k) are the polar, θ ∈ [− 90, 90], azimuthal angles, ϕ ∈ [0, 360], and the
sigma level respectively. The latter of which can be understood as a measure of altitude. We use a hybrid sigma‐
pressure coordinate system—near the surface, the levels are terrain following, while at higher altitudes they are
defined as levels of constant pressure (Taylor et al., 2020). The EAMv2 model pairs the resolved atmospheric
dynamical equations with a variety of the sub‐grid parameterizations such as cumulus convection (G. J. Zhang &
McFarlane, 1995), boundary layer cloud dynamics (Golaz et al., 2002), cloud micro‐physics (Morrison & Get-
telman, 2008), aerosol micro‐physics and chemistry (Liu et al., 2016), and radiative transfer (Mlawer et al., 1997).
The coarse‐scaled simulations are run on an unstructured spherical element grid of approximately 1°(∼110[km])
resolution per sigma‐level and 72 levels along the vertical direction, from 64[km], corresponding to ∼0.1[hPa]
(level 1) down to the earth's surface (level 72). The vertical grid spacing is uneven, with the layer height ranging
from 20 to 100 m near the surface up to 600 m in the upper atmosphere. We enforce appropriate boundary
conditions over the Earth's surface in accordance with version 4.5 of the community land model (Oleson

Figure 7. Model prediction for β = 1.1 and r = 0.5. Power spectrum and probability density function of stream functions ψ1 (left) and ψ2 (right), RD (solid black), CR
(dash black), ML(CR) (blue). Training data: β = 2.0 and r = 0.1.
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et al., 2013). The (SST) and sea ice concentration boundary conditions are set according to the input4mip data sets
(Reynolds et al., 2002).

In this case, the reference data used to generate the nudged training data and the validation reference is not a fully‐
resolved simulation but instead ERA5 reanalysis data (Hersbach et al., 2020) projected onto the coarse un-
structured grid of EAMv2. The ERA5 data set combines observations with physics models to provide high‐quality

Figure 8. Probability density function of individual Fourier modes for β = 1.1 and r = 0.5. RD (black), ML(CR) (blue). Training data: β = 2.0 and r = 0.1.
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reanalysis data on an hourly basis with a spatial resolution of 0.25°(∼31[km]). An outline of the practical
implementation of the nudging is summarized in Appendix A1.

We do not perform any E3SM simulations at this fine resolution due to the prohibitive computational cost, and so
in the following discussion any reference to E3SM data should be understood to represent the coarse model.
Moving forward, the free‐running data set will again be labeled as CR, the ML correction thereof as ML(CR), and
the ERA5 reference data as RD. The data sets discussed herein contain information from 1979 to 2014, over
which the climate system can be assumed to be in an approximately statistical steady state.

4.2. NN Architecture and Training Strategy

For the E3SM model we have developed a custom convolutional‐LSTM hybrid network architecture. The ar-
chitecture acts on a single sigma level, such that training is conducted for each level sequentially. The network
receives as its input snapshots of the predictive variables X = X(θ, ϕ, t, k) for fixed sigma level k. Afterward, a
custom “split” layer separates the input into 25 non‐overlapping subregions. These subregions are periodically
padded via a custom padding process, tasked with respecting the spherical periodicity of the domain. Then, each
subregion is independently passed through a series of four convolutional layers. The purpose of this process is to
extract anisotropic local features in each subregion such as vapor transport.

Afterward, the local information extracted from each subregion is concatenated in a single vector via a custom
“merge” layer. The global information is now passed through a linear fully‐connected layer, that acts as a basis
projection of the spatial data onto a reduced‐order 20‐dimensional latent space. The latent space data are then
corrected by a LSTM layer (Hochreiter & Schmidhuber, 1997). Subsequently they are projected back to
physical space via another linear fully‐connected layer. Next, global information is split into the same sub-
regions of the input, and distributed to another series of four independent deconvolution layers that upscale the
data to the original resolution. Finally, a custom “merge” layer gathers the information from each subregion and
produces the final corrected snapshot. A schematic of the configuration for training on a particular layer is
shown in Figure 9.

The motivation behind using LSTM neural networks lies in their ability to incorporate (non‐Markovian) memory
effects into the reduced‐order model. This ability stems from Takens embedding theorem (Takens, 1981). This
theorem states that given delayed embeddings of a limited number of state variables, one can still obtain the
attractor of the full system for the observed variables. In addition to temporal nonlocality, the model is nonlocal in
space. Note, that in terms of the LSTM layer, this information comes in the form of the latent space coefficients,
which in general correspond to global modes that correspond to rows of the fully connected layer's matrix. Under
the assumption that both fully‐connected layers have linear activation functions, the model can be mathematically
depicted as a basis projection. Hence, the fully connected layers act as projection schemes to (a) compress input
data to a latent space of low dimensionality and (b) project the LSTM prediction to physical space. Such LSTM
based models have been shown to be capable of improving predictions of reduced‐order models in a variety of
settings (Charalampopoulos & Sapsis, 2022; Harlim et al., 2021; Vlachas et al., 2018;Wan et al., 2018). However,

Figure 9. LSTM based neural network architecture used for the E3SM climate model.
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we note that other network architectures are possible, such as the recently proposed Fourier‐Neural operators
(Bonev et al., 2023; Guibas et al., 2022; Li et al., 2021, 2022) which have shown remarkable skill in data‐driven
weather prediction (Pathak et al., 2022).

The network is trained using a standard mean square error loss function

L = α∑
t
∑
ϕ
∑
θ
cos(2π

θ
360

)‖Xml − Xrd‖2, (23)

where α is a normalization coefficient. As previously, training is performed using the nudged data set as input to
theML transformation. Each term in the sum is multiplied by a cosine that is a function of the latitude to showcase
that the integration takes place over a sphere. If that term is absent, the model would over‐emphasize on learning
the corrections at the poles. Training was conducted over 1,000 epochs using data from the years 2007–2011, with
the year 2012 used for validation during training.

4.3. Results

We apply our model to an unseen free‐running coarse‐scale simulations of the E3SM model (CR) over a 36 years
horizon. These results are denoted asML(CR). The reference statistics used to evaluate our model predictions are
computed from ERA5 reanalysis data over the years 1979–2014 and are denoted as RD. We also show the
predictions of a free running E3SM simulation denoted CR, this serves as the baseline which our model is seeking
to improve.

4.3.1. Global Statistics

First, we analyze the global 36‐year statistics as a function of altitude, that is, for all sigma levels. In Figure 10, we
show the time‐ and zonally‐averaged biases for sigma‐levels 10–72 of the simulations for (a–c) U, (e–g) T, (i–k)
Q. We omit the highest sigma levels 1–10, as here the reference data is less reliable and thus obscures the analysis.
The left column shows the biases of the free‐running E3SM while the right column shows those of the ML
corrected. The biases are normalized with the standard deviation of the quantity of interest for each sigma‐level
individually (sub‐figures c, f, and i). For the case of Q for sigma‐levels below z = 35, the standard deviation of
level 35 was used for normalization. This is due to the fact that the values of Q in the upper atmosphere are
extremely low and normalizing such errors by the standard deviation of their own sigma‐level yielded very high
biases for both predictions, making the metric misleading. The dotted regions indicate where the biases are
statistically significant up to a 95% confidence level as quantified by a Student‐t test. The ML correction notably
corrects the strong overestimation of the specific humidity (bottom row) for sigma levels z > 40. The biases in
temperature (middle row) in the upper atmosphere are also notably improved, however the improvement is less
pronounced. In the case of the wind speed (top row), the ML correction does reduce the bias throughout the
atmosphere, however, both the free running E3SM and the ML correction thereof retain significant biases in the
upper atmosphere.

We now focus on the sigma level nearest the surface—level 72. Figure 11 shows the annual mean ERA5 reference
data, as well as the biases of the free‐running andML corrected predictions. TheML correction reduces the global
RMSE by 18%, 19%, and 36% for U, T, and Q respectively. Regionally, the benefits of our model correction are
best seen in the equatorial and south polar regions. In the former, the free‐running solution significantly over-
estimates the specific humidity, while the ML correction is relatively free of any such systematic bias. Then in the
latter, the uncorrected simulation significantly underestimates the temperature, a deficit which is remedied with
the ML correction. To illustrate the temporal evolution of the near surface biases we also show in Figure 12 the
time versus latitude Hovmoller diagrams of the monthly mean zonal mean bias inU, T, andQ over the time period
1979–2014. We note that the period 2007–2014 is part of our training data. Consistent with the results in
Figure 11, our ML correction consistently reduces the zonal mean biases of all three quantities. The most sig-
nificant improvements are observed in T and Q, for which the performance of the ML correction is greatest in the
tropical and subtropical regions. Furthermore, in those regions where we observe significant bias reduction, the
corrections persist robustly across the years outside the training period. However, there is an over‐correction of
the positive biases inQ in the tropical regions during the period 1979–2002 (Figure 12c). This is possibly because
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the training data is too short to capture the multi‐decade trend of the E3SMmodel increasingly overestimating the
humidity in the tropics.

Figure 13 shows the aggregate probability density function at sigma level 72 across the globe for the same 36 year
period. The probability density functions are computed using the 36 × 12 monthly mean values at each grid point.
The ML correction significantly improves the predicted distributions in wind speed U, V (a, b) and specific
humidityQ (d). Critically, the improvements are most pronounced in the tails of the distribution, which are critical
for quantifying the risks of extreme weather events. There is very little improvement in the temperature (T ),
however, in this case the E3SM prediction alone is already quite accurate.

Figure 10. Zonally‐averaged 36‐year annual mean biases for all sigma‐level of the simulations, for normalized zonal velocity U (a–c), temperature T (e–g), and specific
humidity Q (i–k). Free running coarse E3SM simulation (CR) (left) and ML‐correction (ML(CR)) (right). Standard deviation σ of each quantity at the specific sigma‐
level shown (d, h, and i).
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4.3.2. IVT

We now move to predict statistics for a derived integral quantity, the mean IVT. The IVT quantifies the vertically
integrated mass transport of water vapor and is defined as

IVT(t,θ,ϕ) ≡
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

IVT2U + IVT
2
V

√

(24)

where IVTU and IVTV are the east‐west and north‐south components defined as

IVTU(t,θ,ϕ) ≡
1
g
∫Q(t, θ, ϕ, p)U(t,θ,ϕ,p)dp (25)

and similarly for TVQ, and where the vertical coordinate has been re‐parameterized in terms of pressure. Regions
of concentrated IVT are known as atmospheric rivers (AR) and are associated with heavy precipitation and a
variety of extreme weather events—both beneficial and detrimental. For example, on the open ocean, ARs are
generally associated with extratropical cyclones, and upon landfall ARs have the potential to alleviate drought
conditions or lead to significant storm damage (Payne et al., 2020). Therefore, the ability to correctly predict the
statistics of the IVT—and thus ARs—is a crucial metric by which to evaluate our ML correction operator.
Although it is beyond the scope of this work, the interested reader is referred to S. Zhang et al. (2023) for a

Figure 11. Global 36‐year time‐averaged biases at the lower‐most sigma‐level with respect to ERA5 for time‐averaged zonal velocity U, temperature T and specific
humidity Q. Top row corresponds to the reference data (RD), second row corresponds to a free‐running simulation (CR) and bottom row corresponds to ML‐correction
(ML(CR)).
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detailed discussion of our method applied to the statistics of other extreme
climate events such as tropical cyclones.

From aML point of view, accurately predicting the spatial features of extreme
events, which are quantified by highly anisotropic quantities such as IVT,
requires accurately mapping local flow features between the under‐ and fully‐
resolved trajectories. It is for this reason, that we have implemented the
domain‐splitting and local convolution layers in the network architecture
described in Section 4.2.

In Figure 14, we show the 36‐year annual mean of the IVT across the globe.
The top figure corresponds to the ERA5 reanalysis data, and below that are
the biases of the free‐running E3SM simulation, as well as the machine
learned correction. Overall, the ML correction decreases the global root‐
mean‐square error (RMSE) by 51% compared to the free‐running E3SM
solution. Furthermore, the ML correction significantly decreases several
systematic regional biases throughout the domain. Note for example, that the
ML significantly reduces the strong positive bias of the free‐running E3SM
simulation over Southeast Asia and in the southern oceans around 45° of
latitude.

4.3.3. Regional Statistics

In addition to global statistics, policy makers preparing for the increased risks
of climate change require accurate risk analysis over a range of spatial scales.
Therefore we also analyze the statistics of the predicted climate over several
regions of varying size: the tropics, mid‐latitude, continental US, northeast
US, northern Europe, and the northwest Pacific. The size and location used in
the following results are summarized in Table 1. As in Section 4.3.1 we focus
on sigma level 72, the level closest to the surface. Figures 15–17 show the
probability density functions of the four progress variables U, V, T, and Q in
the tropics, mid‐latitude, and the northwest Pacific regions. Result for the
remaining regions are included in Appendix A2. The reanalysis reference is
shown in solid black, the free‐running E3SM and ML correction thereof are
shown in dashed black and blue respectively. Again, we see that the ML
correction is most pronounced in regions where the E3SM model alone is
most biased. Most notably the specific humidity Q (subplot d in Figures 15–
17) and meridional wind speed (V) (subplot b in Figures 15–17) where for all
regions the ML correction brings the tails of the predicted distribution into
good agreement with ERA5 data. See also Figure 15a, where the ML
correction does significantly improves the prediction of the zonal wind speed
(U). As with the global statistics, the ML correction has only minor impacts
on the distributions of temperature (T ). However, with the exception of the
tropics region (Figure 15c) this is generally well predicted by the E3SM
model alone and notably in no region does our ML correction significantly
increase bias. The fact that our correction operator is able to improve pre-
dictions across all variables and over a range of spatial scales is a promising
result, as it shows that the predicted flow field could in principle be further
used for targeted super‐resolution to predict local features on scales smaller
than the grid of the coarse model.

5. Discussion
We have introduced a method to machine learn correction operators to improve the statistics of under‐resolved
simulations of turbulent dynamical systems. The premise of the proposed strategy is to generate training data pairs
which are minimally affected by chaotic divergence. Instead of using an arbitrary coarse trajectory as the training

Figure 12. Hovmoller Diagrams of biases at the lower‐most sigma‐level with
respect to ERA5 for time‐averaged zonal (a) velocity U, (b) temperature T,
and (c) specific humidity Q. Free running coarse E3SM simulation (CR)
(left) and ML‐correction (ML(CR)) (right).
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input, we used a coarse trajectory nudged toward the training target trajectory. This nudged trajectory predom-
inately obeys the dynamics of the coarse model, yet is constrained from randomly wandering too far from the
reference. In essence, it is an approximation of the one (of infinitely many) trajectory of the coarse model which is
closest to the reference data. Once trained on this specific pair of trajectories, anML operator can reliably map any
free‐running coarse trajectory into the attractor of the reference data. The critical benefit of such an operator is that
it acts on data in a post‐processing manner, and is thus unaffected by the stability issues, and practical imple-
mentation challenges, which plague machine learned corrections of the system dynamics.

A key aspect of the proposed approach is the ability to incorporate, directly into the learning process, dynamical
information that goes beyond statistics of the training data. This is achieved through an objective function that is
matching trajectories rather than their statistics. This is critical especially for extreme events, where the key
information “lives” in the very structure of the trajectory over the short duration of such events. Cost functions
formulated to match statistics, either need to incorporate high order statistical information (something that is
practically impossible because of both inadequate data but also vast computational cost) or they are doomed to
have poor generalization properties since low order statistics (e.g., spectrum) cannot “see” the dynamics of
extreme events. On the other hand, the formulated approach eliminates the divergence due to chaotic behavior and
uses the maximum information from the reference data by training in the time domain, that is, directly fixing the
structure of the trajectory near an extreme event. This allows for unprecedented improvement especially for
extreme event statistics.

The proposed strategy was first illustrated on a prototypical two layer quasi‐geostrophic climate model using a
simple LSTM network architecture. In this reduced order system our ML correction operator was able to bring the
global, and scale‐by‐scale statistics of a severely under‐resolved simulation, simulated on a 24 × 24 grid, into
good agreement with the fully‐resolved reference solved on a 128 × 128 grid. Additionally, we demonstrated the
ability to accurately predict statistics for time horizons much longer than the training data, and for parameter
regimes outside of that training data. We then applied our framework to a realistic climate model—the Energy
Exascale Earth System Model (E3SM) solved on a grid with approximately 110 km horizontal resolution. In this
case, the reference data used as the training target and the evaluation metric was not a fully resolved simulation,
but ERA5 reanalysis data. To address this far more complex system, we designed a network architecture which
combined the LSTM base we used for the simpler QG system with overlapping convolutional layers used to

Figure 13. Global 36‐year probability density function for surface sigma‐level 72. (a) U, (b) V, (c) T, (d) Q. Results are shown for ERA5 reanalysis data (RD) (solid
black), free‐running data (CR) (dashed black), and machine learning corrections (ML(CR)) (blue).
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extract local anisotropic features from the input data. We found that our ML
correction significantly reduced the bias of the E3SM solution, bringing the
statistics of the wind speeds and specific humidity into good agreement with
reanalysis data on both a global and regional level. The debiasing capabilities
of our ML correction were less pronounced in the case of temperature, for
which the improvements, especially in the tails of the distributions were more
modest, and more region dependent. The improvement in the wind speed and
humidity statistics however are especially notable as these variables were not
well approximated by the free‐running E3SM solution. In particular, the
correction operator significantly improved the predictions of the tails of these

Figure 14. 36‐year annual mean integrated vapor transport predictions. From top to bottom, ERA5 reference, free‐running
E3SM bias, machine learning correction bias.

Table 1
Summary of Regions Analyzed in Section 4.3.3

Region Latitude Longitude

Mid‐latitude 30°–60°S and 30°–60°N 0°–360°

Tropics 20°S–20°N 0°–360°

Continental US 25°–55°N 90°–120°W

Northeastern US 25°–55°N 60°–90°W

Northern Europe 40°–70°N 10°–40°E

Northwest Pacific 30°–60°N 150°–180°E
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distributions which are critical for quantifying the risks of extreme weather events. In addition to the primitive
variables, we also analyzed the mean IVT, a highly anisotropic integral quantity of particular practical interest as
it drives AR and thus precipitation. Here the improved predictions in the wind speed and humidity of our ML
correction combined to reduce the overall RMSE in IVT by 51%, and successfully removed several systematic

Figure 15. 36‐year probability density function for surface sigma‐level 72 in the tropics. (a)U, (b) V, (c) T, (d)Q. Results are shown for ERA5 reanalysis data (RD), free‐
running data (CR), and machine learning corrections.

Figure 16. 36‐year probability density function for surface sigma‐level 72 in the mid‐latitude region. (a) U, (b) V, (c) T, (d) Q. Results are shown for ERA5 reanalysis
data (RD) (solid black), free‐running data (CR) (dashed black), and machine learning corrections (blue).
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regional biases of the coarse model, such as its tendency to underpredict the vapor transport in the southern
hemisphere.

While the proposed methodology was demonstrated to be effective for the prediction of a multitude of climate
metrics, some limitations of the current setup should be stated. First, the approach works well under the
assumption that the climate is in a statistically steady state, for which a mapping can be learned through the
proposed training scheme. Hence, applying the learned model in situations where the climate undergoes a
transitory phase may hinder its performance, unless similar transitory intervals are included in the training data.
This is particularly true if the transition is not captured at all by the coarse‐scale model. Furthermore, when
applied to future climate scenarios with drastically different forcing, the requirement for reference data—which
may not be available at high resolution for long times—makes it difficult to assess the predictive powers of our
approach a priori. For such runs to be included in training, high‐fidelity simulations would have to be used as
reference and the coarse models nudged toward them. This limitation however is true for online data‐driven
correction schemes as well since most such models lack concrete error bounds for out‐of‐sample predictions.
Furthermore, for the application of the scheme to dynamical systems broadly, there is no guarantee that a nudged
simulation exists that follows the reference data closely while satisfying the dynamics of the coarse simulation.
Essentially, if the coarse model is too far from the reference data, that is, too under‐resolved or neglecting too
much important physics there is no guarantee the process will work.

One of the main advantages of the proposed framework is its generality and non‐intrusive nature. Theoretically,
intrusive online approaches act on the dynamics of the system, but practically, this means they act on software,
that is, they must be integrated with existing code stacks. For modern ESMs, this code stack can be complex or
proprietary, making the implementation of such strategies difficult or even impossible if the source code is
unavailable. On the other hand, non‐intrusive approaches, such as the one proposed here, act on data—meaning
the model is agnostic to the specific software implementation of the model generating the data. Generating the
training data does require implementing a nudging tendency in the climate model code, however, this is
generally a much less invasive task than integrating an ML operator, which may be implemented in a different
software language than the climate model itself (J. McGibbon et al., 2021). Then once trained the model can be
used without further intrusion into the core ESM. Another strength, is that the proposed framework provides
predictions of all progress variables, (U, V, T, Q), at all grid points and all sigma levels—a feature not shared by

Figure 17. 36‐year probability density function for surface sigma‐level 72 in northwest Pacific. (a) U, (b) V, (c) T, (d) Q. Results are shown for ERA5 reanalysis data
(RD) (solid black), free‐running data (CR) (dashed black), and machine learning corrections (blue).
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all debiasing schemes. This in turn means that the flow fields predicted by our correction operator could then be
used for local super‐resolution (down‐scaling) to investigate local climate forecasting and impact assessment.
However, further work is required to investigate the ability of our approach to improve the statistics of other
climate metrics such as precipitation and to ensure that the corrected fields obey basic physical constraints such
as geostrophic balance or conservation of mass and energy over the spatio‐temporal scales relevant to such
local analysis. We believe that by lowering these barriers to adoption, our approach has the potential to
significantly accelerate and democratize the implementation of data‐driven climate modeling. To this end,
extensions of our approach such as built in uncertainty quantification, physics informed constraints, and grid‐
agnostic network architectures—which could allow for applications across different ESMs—are the topic of
ongoing research.

Appendix A

A1. Nudging Implementation in E3SM

Here we briefly outline the practical implementation of the nudging strategy in the E3SM model used to train the
ML correction operator used to generate the results in Section 4. We follow the formulation of Sun et al. (2019)
and Zhang et al. (2022), for which the nudged governing equations of the E3SM model takes the form

∂X
∂t
= D(X)
⏟⏞⏞⏟
dynamics

+ P(X)
⏟⏞⏞⏟
physics

− N (X,XRD)
⏟̅̅⏞⏞̅̅⏟

nudging

(A1)

where D represents the resolved dynamics, P represents the parameterized physics and N is the nudging ten-
dency. The nudging tendency is applied at each grid point and is specifically implemented as

N (X,XRD) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if P≤ 1 Pa

−
X − XRD

τ
×
Pm
P0

, if 1 Pa<P≤P0

−
X − XRD

τ
×
1
2
[1 + tanh(

Z − Zb
0.1Zb

)], if Z≤ Zp

−
X − XRD

τ
, otherwise

(A2)

where X = (U, V, T, Q) is the state variable, XRD is the ERA5 reference, Pm and Zm represent the atmospheric
pressure and geopotential height at a given sigma level, and τ denotes the relaxation time scale. Following Sun
et al. (2019) and Zhang et al. (2022) we fix τ = 6 hr. The simulation uses a time step of 0.5 hr and the ERA5
reference data is defined at 3‐hourly increments and interpolated at each time step using the linear temporal
interpolation described in Sun et al. (2019). The quantities P0 and Zb are user defined threshold parameters which
govern how the nudging tendency is modulated in the upper and lower ends of the atmosphere. Zb is set at the
planetary boundary layer height, which is diagnosed and dynamically set at each time step. P0 is set to 30, 30, 10,
and 100 Pa for the variablesU, V, T, Q respectively and held constant throughout the simulation. This modulation
in the upper and lower sigma levels differs from the default formulation proposed by Sun et al. (2019) and Zhang
et al. (2022), however, it is implemented here to account for uncertainties in our specific reference data. We de‐
emphasize the nudging tendency in the upper atmosphere due to the deteriorating quality of the ERA5 reanalysis
data at those altitudes, while near‐surface the concern is the significant errors which arise over the high‐terrain
regions when ERA5 data is mapped onto the E3SM model grid.
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A2. Additional E3SM Results

Here we show some additional results for Section 4. Figure A1 shows the regional probability density functions
for the regions not shown in Section 4: Continental US (left column), northeastern US (center column) and
northern Europe (right column) at the surface sigma level 72.

Data Availability Statement
The source code for the E3SM (E3SM Project, 2021) climate model used to generate the simulations discussed in
Section 4 was obtained from the Energy Exascale Earth SystemModel project, sponsored by the U.S.Department
of Energy, Office of Science, Office of Biological and Environmental Research. The ERA5 reanalysis data used
as a reference for training the ML model and generating the reference data in Section 4 is available at the
Copernicus Climate Change Service (C3S) Climate Data Store via https://doi.org/10.24381/cds.bd0915c6 (?, ?).
The software and data needed to generate the results described here can be found on Zenodo at https://zenodo.org/
doi/10.5281/zenodo.10657047 (Barthel et al., 2023).
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Figure A1. 36‐year probability density function for surface sigma‐level 72 for Continental US (left column), northeastern US (center column) and northern Europe (right
column). (a–c) U, (d–f) V, (g–i) T, and (j–l) Q. Results are shown for ERA5 reanalysis data (RD) (solid black), free‐running data (CR) (dashed black), and machine
learning corrections (blue).
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