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Prediction of Intermittent Fluctuations from Surface Pressure
Measurements on a Turbulent Airfoil

Samuel H. Rudy∗ and Themistoklis Sapsis
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

This work studies the effectiveness of several machine learning techniques for predict-
ing extreme events occurring in the flow around an airfoil at low Reynolds. For cer-
tain Reynolds numbers the aerodynamic forces exhibit intermittent fluctuations caused
by changes in the behavior of vortices in the airfoil wake. Such events are prototypical
of the unsteady behavior observed in airfoils at low Reynolds and their prediction is ex-
tremely challenging due to their intermittency and the chaotic nature of the flow. We seek
to forecast these fluctuations in advance of their occurrence by a specified length of time.
We assume knowledge only of the pressure at a discrete set of points on the surface of the
airfoil, as well as offline knowledge of the state of the flow. Methods include direct pre-
diction from historical pressure measurements, flow reconstruction followed by forward
integration using a full order solver, and data-driven dynamic models in various low di-
mensional quantities. Methods are compared using several criteria tailored for extreme
event prediction. We show that methods using data-driven models of low order dynamic
variables outperform those without dynamic models and that unlike previous works, low
dimensional initializations do not accurately predict observables with extreme events such
as drag.

Keywords– Extreme events, unsteady aerodynamics, machine learning

1 Nomenclature
u, p = Fluid velocity and pressure
P = Airfoil surface pressure time series
Cd, Cl = Drag and lift coefficients
q = Smoothed drag coefficient
ω = Extreme event rate
τ = Load time for prediction of q
m = Mass matrix from spectral element grid
w = Weights for proper orthogonal decomposition and flow reconstruction
C = chord-length
L• = Loss function used to train neural network •
dt = Time step
Re = Reynolds number
u∞ = inlet velocity
ΦΣΨT = components of proper orthogonal decomposition of flow field
ξ = Latent space representation of flow field in full-field neural network
r = Rank of low dimensional representations of flow
G = Network for estimating proper orthogonal decomposition time series
E = Encoder network for flow reconstruction

∗ Corresponding author (shrudy@mit.edu).
Software: https://github.com/snagcliffs/Airfoil_EE.
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D = Decoder network for flow reconstruction
Fp/ψ/ξ = Non-dynamic models for mapping P/ψ/ξ to q
Hp/ψ/ξ = Dynamic models for variables P , ψ, and ξ
S,R, F1, α = Precision, recall, F1 score, and area under S-R curve
F1,opt = Optimal test set F1 score
α∗ = Maximum adjusted area under precision-recall curve

2 Introduction

Extreme events are common features in engineering and scientific disciplines including cli-
mate, ocean engineering, and fluid structure interaction that are characterized by observ-
ables of a dynamical system exhibiting heavy tails [40]. The outlier events populating these
tails are of particular interest due to their effects on aerodynamics and fatigue, or other po-
tentially adverse consequences. However, the rarity and intermittency of such events also
makes their prediction challenging. There has been significant recent interest in sampling
strategies [33, 39, 2], optimization schemes [3], and tailored loss functions [18, 36] for the
prediction of extreme events. A common goal of many of the past works on extreme events
and of the present work is the prediction of extreme events in advance of their occurrence.

The focus of this work is on the two-dimensional incompressible flow around an air-
foil at low (O(104)) Reynolds number. Dynamics of the flow around the airfoil at this
Reynolds regime are highly nontrivial [26] and have been shown to be characteristically
different from those at higher Reynolds [22]. Previous works using both experimental and
computational tools have found that slow moving airfoils exhibit a large range of wake
behaviors, with qualitative changes in the nature of the flow occurring with small changes
in angle of attack and Reynolds number [30, 17, 47]. Similar unstable behavior has been ob-
served in the flow around a cylinder, in the so called transitional regime between ordered
and disordered behavior [49] as well as in vortex-induced-vibrations of flexible cylinders
[32]. Due to these instabilities, as well as an apparent lack of fidelity between computa-
tional and experimental results, it has been suggested that construction of rigid winged
slow flying vehicles may be challenging if not impossible [43].

Despite apparent challenges, there has long been considerable interest in the study of
low Reynolds airfoils [26]. In particular, recent works have explored the use of machine
learning to estimate flow field and aerodynamic data from sensors on the surface of the
airfoil. These include methods for flow reconstruction from limited sensors using neural
networks [29, 15], filtering based flow estimation [8, 6], as well as prediction of aerody-
namic coefficients [7]. Deep learning has also been used for estimating properties of the
flow used in low order vortex models. In [21, 24], authors use neural network based meth-
ods to estimate the leading edge suction parameter(LESP). The model studied in this work
has a Reynolds number of 17,500, substantially higher than other computational works
which focus on Reynolds number in the range of O(102) − O(103) [24, 8, 6, 29]. This is
closer to the lower end of the range considered by experimental work [7, 15]. Unlike some
other works [7, 15, 21, 24], this work does not study the effects of pitching motions or
disturbances in the incident velocity. We instead focus on prediction of intermittent fluctu-
ations in the aerodynamic coefficients of a stationary airfoil, which have not been the focus
of previous works.

This work applies several machine learning techniques to predict fluctuations in the
drag coefficient of an airfoil in the transitional regime where we observe chaotic and in-
termittent behavior. It follows a broader trend of the application of tools from machine
learning to problems in fluid dynamics. For a broader view, the interested reader may re-
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fer to a number of recent articles outlining and discussing the role of machine learning in
fluid dynamics; [5] provides an excellent overview of many of the applications machine
learning has seen in fluids, [13] provides an assessment of several common supervised
learning methods applied to flow reconstruction, super-resolution, and coefficient estima-
tion, and [4] provides a discussion of the role of machine learning in fluids, as well as some
pitfalls and concerns.

The paper is organized as follows: In section 3 we formulate the problem of predicting
aerodynamic fluctuations. Section 4 describes the methodology used in this work, includ-
ing flow reconstruction methods in section 4.1, forecasting methods for aerodynamic fluc-
tuations in section 4.2 and a discussion of performance metrics in section 4.3. Results are
shown in section 5 with comparisons between all methods. In section 6 we offer closing
thoughts, pitfalls, and potential future directions based on this paper.

3 Problem description

We consider a NACA 4412 airfoil at chord-length based Reynolds number of Re = 17500
and 5◦ angle of attack. Flow around the airfoil is simulated using the spectral element code
Nek5000 [35] according to the incompressible Navier-Stokes equations given by,

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u

∇ · u = 0.
(1)

The computational grid uses 4368 elements with spectral order 7. Statistics of observ-
ables relevant to this work were found to be in agreement with those from a shorter simula-
tion using a more resolved grid having 14144 elements. A convective boundary condition
is used for the outflow [9]. The spectral element grid without Gauss-Lobatto Legendre
interpolation points and a snapshot of the vorticity are shown in the top row of Figure 1.
Further details of the numerical simulation are provided in Appendix A and software for
reproducing data used in this work is available online.

Pressure recordings along the surface of the airfoil P (t) are taken at a discrete set of
50 points around the airfoil at intervals of dt = 0.01 throughout the simulation. These
locations are shown in the bottom panel of Fig. 1. Aerodynamic force is computed using
the pressure and skin friction. This decomposes into the streamwise (x) and cross-flow (y)
directions, defined by:

~F (t) =

∮
τ (t)− p(t)n ds = D(t)ex + L(t)ey (2)

where τ , p, and n are the skin shear stress, pressure, and wall normal vector, and the inte-
gral is taken over the airfoil surface. Forces are then used to compute the non-dimensional
drag-coefficient Cd and lift coefficient Cl, defined as:

Cd(t) =
2D(t)

ρu2
∞C

, Cl(t) =
2L(t)

ρu2
∞C

, (3)

where choord length C = 1, density ρ = 1, and free-stream velocity u∞ = 1.

The two dimensional simulation yields a quasi-stable behavior in which intermittent
fluctuations are observed in the aerodynamic coefficients, shown in the first two rows of
Figure 2 alongside the density functions of their absolute deviations. We note that the
density functions clearly exhibit the expected “heavy tails” associated with observables of
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Figure 1: Left: Domain of computational problems showing outlines of spectral elements
without internal interpolation points. Right: Snapshot of vorticity. Bottom: Sensor place-
ment showing indexing from 0-25 along top and 25-49 along bottom of airfoil. Axes on
bottom figure not drawn to scale.

dynamical systems with extreme events [41]. This regime of intermittent fluctuations is
persistent for the entirety of the simulation used in this work, but with altered conditions
may exhibit mode switching to a state with more regular oscillations. Further details of this
case are given in Appendix C. In this work we focus solely on the regime where intermittent
fluctuations are observed.

The goal of the present work is to predict these intermittent fluctuations in the aero-
dynamic coefficients using information regarding the surface pressure of the airfoil in ad-
vance of their occurrence by some lead time τ . To focus on non-periodic behavior, we
consider predictions on a smoothed time series derived from the drag coefficient. Specifi-
cally,

q(t) =

(
Cd(s) ∗ N

(
s

∣∣∣∣∣0, 1

(2fpeak)
2

))
(t), (4)

where fpeak ≈ 1.44 is the peak frequency of the drag coefficient. In practice, the convolu-
tion in Eq. (4) is computed using a compactly supported kernel having width 3/fpeak. The
time series q(t) is also normalized to be mean zero and unit variance. The quantity q(t)
captures the non-periodic behavior of the drag coefficient, in particular maintaining ex-
treme events and the heavy tailed deviation. The goal of this work is thus concisely stated
as learning data-driven models for the prediction problem,

P (s ≤ t)→ q(t+ τ), (5)

at various τ ≥ 0.

4 Methods

In this section we formulate several data-driven models for Eq. (5). We assume knowledge
of measurements of pressure at a discrete set of points along the surface of the airfoil up
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Figure 2: Left: Aerodynamic coefficients Cd and Cl, and smoothed drag coefficient q as
defined in Eq. (4). Red dashed lines indicate ±2 standard deviations away from the mean.
Right: Histograms of the deviation of each quantity showing typical heavy tails of systems
with extreme events.

to the current time t and seek to predict the value of the extreme event indicator at time
t + τ . We denote the time series for pressure measurements up to the current time t as
Pt = P (s ≤ t). The minimal problem is thus learning a function directly from historical
pressure measurements to the q(t + τ), which may be done using a variety of standard
machine learning tools.
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Fp

<latexit sha1_base64="VpizMgbN1ku/4OMh3WPvntJ9iDM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCIB4r2A9oQ9lsJ+3SzSbsbsQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCopeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1FipedvvPfF+ueJW3TnIKvFyUoEcjX75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NgpObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpias+RmXSWpQssWiMBXExGT2ORlwhcyIiSWUKW5vJWxEFWXG5lOyIXjLL6+S1kXVu6p695eVei2PowgncArn4ME11OEOGtAEBhye4RXeHOm8OO/Ox6K14OQzx/AHzucPoQWOig==</latexit>

F⇠

<latexit sha1_base64="nBLMyRn8LNAcbMUfzmDn3BFEVc8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kV0R4LgnisYD+gXUo2zbax2SQkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZepDgz1ve/vcLa+sbmVnG7tLO7t39QPjxqGZlqQptEcqk7ETaUM0GblllOO0pTnESctqPxzcxvP1FtmBQPdqJomOChYDEj2DqpddvvKcP65Ypf9edAqyTISQVyNPrlr95AkjShwhKOjekGvrJhhrVlhNNpqZcaqjAZ4yHtOipwQk2Yza+dojOnDFAstSth0Vz9PZHhxJhJErnOBNuRWfZm4n9eN7VxLcyYUKmlgiwWxSlHVqLZ62jANCWWTxzBRDN3KyIjrDGxLqCSCyFYfnmVtC6qwVU1uL+s1Gt5HEU4gVM4hwCuoQ530IAmEHiEZ3iFN096L96797FoLXj5zDH8gff5A2oIjv8=</latexit>

F 

<latexit sha1_base64="IgCymgV6K3Inpn79qt+gwYt5bbw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKezmoDkGIuIxonlAsoTZySQZMju7zPQKYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3BbEUBl3328ltbG5t7+R3C3v7B4dHxeOTlokSzXiTRTLSnYAaLoXiTRQoeSfWnIaB5O1gUp/77SeujYjUI05j7od0pMRQMIpWeqjf3vSLJbfsLkDWiZeREmRo9ItfvUHEkpArZJIa0/XcGP2UahRM8lmhlxgeUzahI961VNGQGz9dnDojF1YZkGGkbSkkC/X3REpDY6ZhYDtDimOz6s3F/7xugsOqnwoVJ8gVWy4aJpJgROZ/k4HQnKGcWkKZFvZWwsZUU4Y2nYINwVt9eZ20KmXvquzdV0q1ahZHHs7gHC7Bg2uowR00oAkMRvAMr/DmSOfFeXc+lq05J5s5hT9wPn8AsAiNXw==</latexit>

CFD

<latexit sha1_base64="IgCymgV6K3Inpn79qt+gwYt5bbw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKezmoDkGIuIxonlAsoTZySQZMju7zPQKYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3BbEUBl3328ltbG5t7+R3C3v7B4dHxeOTlokSzXiTRTLSnYAaLoXiTRQoeSfWnIaB5O1gUp/77SeujYjUI05j7od0pMRQMIpWeqjf3vSLJbfsLkDWiZeREmRo9ItfvUHEkpArZJIa0/XcGP2UahRM8lmhlxgeUzahI961VNGQGz9dnDojF1YZkGGkbSkkC/X3REpDY6ZhYDtDimOz6s3F/7xugsOqnwoVJ8gVWy4aJpJgROZ/k4HQnKGcWkKZFvZWwsZUU4Y2nYINwVt9eZ20KmXvquzdV0q1ahZHHs7gHC7Bg2uowR00oAkMRvAMr/DmSOfFeXc+lq05J5s5hT9wPn8AsAiNXw==</latexit>

CFD

<latexit sha1_base64="SjKhi0rqND5JkRwmVg0fp9gQvA4=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhCswl0KTRmw0DIB8wHJEfY2c8mavb1jd08IR36BjYUitv4kO/+Nm+QKTXww8Hhvhpl5QSK4Nq777Wxsbm3v7Bb2ivsHh0fHpZPTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mGmCfkRHkoecUWOl5t2gVHYr7gJknXg5KUOOxqD01R/GLI1QGiao1j3PTYyfUWU4Ezgr9lONCWUTOsKepZJGqP1sceiMXFplSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPW/IzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynaELzVl9dJu1rxrites1qu1/I4CnAOF3AFHtxAHe6hAS1ggPAMr/DmPDovzrvzsWzdcPKZM/gD5/MHmkuMxQ==</latexit>

G

<latexit sha1_base64="6phVqOYb3xq8fV//xkLY6MnS+zw=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkP2mNBBI8t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9djY2t7Z3dgt7xf2Dw6Pj0slpW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzDRBP6IjyUPOqLFS825QKrsVdwGyTryclCFHY1D66g9jlkYoDRNU657nJsbPqDKcCZwV+6nGhLIJHWHPUkkj1H62OHRGLq0yJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQlrfsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2RRtCN7qy+ukXa141xWvWS3Xa3kcBTiHC7gCD26gDvfQgBYwQHiGV3hzHp0X5935WLZuOPnMGfyB8/kDl0OMww==</latexit>

E

Full state forecast 

Full state forecast 
<latexit sha1_base64="o/ix+BeaHmAXSaA/TPGT7hNgKd0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomI9ljQg8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJYPZpKgH9Gh5CFn1Fipcdcvld2KOwdZJV5OypCj3i999QYxSyOUhgmqdddzE+NnVBnOBE6LvVRjQtmYDrFrqaQRaj+bHzol51YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRVP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbIo2BG/55VXSuqx41xWvcVWuVfM4CnAKZ3ABHtxADe6hDk1ggPAMr/DmPDovzrvzsWhdc/KZE/gD5/MHll+MxA==</latexit>

D

POD forecast 

Latent space forecast 

<latexit sha1_base64="5Gvi2lg52EP4tG2xoZ42A5GJMtU=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBahXkqior0IBS8eI9gPaEPYbLft0s0m7k4KJfSfePGgiFf/iTf/jds2B219MPB4b4aZeWEiuAbH+bYKa+sbm1vF7dLO7t7+gX141NRxqihr0FjEqh0SzQSXrAEcBGsnipEoFKwVju5mfmvMlOaxfIRJwvyIDCTvc0rASIFtewHgW+xVdFewJwzngV12qs4ceJW4OSmjHF5gf3V7MU0jJoEKonXHdRLwM6KAU8GmpW6qWULoiAxYx1BJIqb9bH75FJ8ZpYf7sTIlAc/V3xMZibSeRKHpjAgM9bI3E//zOin0a37GZZICk3SxqJ8KDDGexYB7XDEKYmIIoYqbWzEdEkUomLBKJgR3+eVV0ryoutfVy4ercr2Wx1FEJ+gUVZCLblAd3SMPNRBFY/SMXtGblVkv1rv1sWgtWPnMMfoD6/MHY1ySLw==</latexit>

Pt = P (s  t)
<latexit sha1_base64="lbrLxiJ+D8QeNYrRKABiazYAWmo=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BItQEcquivZY8OKxgv2QdinZNNuGJtk1mRXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBbHgBlz328mtrK6tb+Q3C1vbO7t7xf2DpokSTVmDRiLS7YAYJrhiDeAgWDvWjMhAsFYwupn6rSemDY/UPYxj5ksyUDzklICVHh7LcNYFkpz2iiW34s6Al4mXkRLKUO8Vv7r9iCaSKaCCGNPx3Bj8lGjgVLBJoZsYFhM6IgPWsVQRyYyfzg6e4BOr9HEYaVsK8Ez9PZESacxYBrZTEhiaRW8q/ud1EgirfspVnABTdL4oTASGCE+/x32uGQUxtoRQze2tmA6JJhRsRgUbgrf48jJpnle8q8rF3WWpVs3iyKMjdIzKyEPXqIZuUR01EEUSPaNX9OZo58V5dz7mrTknmzlEf+B8/gD6ZI/Z</latexit>

q(t + ⌧)

<latexit sha1_base64="zTrlObRMKsDO5RHAaRzNbdghbms=">AAACDnicbZDLSgMxFIYz9VbrbdSlm2Ap1E2ZUdFuhIIblxV7g04tmTTThiaZIckIZegTuPFV3LhQxK1rd76NmXYW2vpD4OM/55Bzfj9iVGnH+bZyK6tr6xv5zcLW9s7unr1/0FJhLDFp4pCFsuMjRRgVpKmpZqQTSYK4z0jbH1+n9fYDkYqGoqEnEelxNBQ0oBhpY/XtkseRHvlBEk/L+gReQa8+otC7o0OODCtq3PtG3y46FWcmuAxuBkWQqd63v7xBiGNOhMYMKdV1nUj3EiQ1xYxMC16sSITwGA1J16BAnKheMjtnCkvGGcAglOYJDWfu74kEcaUm3Ded6fJqsZaa/9W6sQ6qvYSKKNZE4PlHQcygDmGaDRxQSbBmEwMIS2p2hXiEJMLaJFgwIbiLJy9D67TiXlTObs+LtWoWRx4cgWNQBi64BDVwA+qgCTB4BM/gFbxZT9aL9W59zFtzVjZzCP7I+vwBxdSaoQ==</latexit>

u(t) = �⌃ (t)T
<latexit sha1_base64="Y1LfTtgE08v08TPu8IKStH5wKHo=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL0G5KoqJdFlzoMoJ9QBPCZDpph04ezNyIJXTjr7hxoYhbP8Odf2PSZqGtBy4czrmXe+/xYsEVGMa3VlpZXVvfKG9WtrZ3dvf0/YOOihJJWZtGIpI9jygmeMjawEGwXiwZCTzBut74Ove7D0wqHoX3MImZE5BhyH1OCWSSqx/ZluI1qGObxLGMHvFNzXKhXnH1qtEwZsDLxCxIFRWwXP3LHkQ0CVgIVBCl+qYRg5MSCZwKNq3YiWIxoWMyZP2MhiRgyklnD0zxaaYMsB/JrELAM/X3REoCpSaBl3UGBEZq0cvF/7x+An7TSXkYJ8BCOl/kJwJDhPM08IBLRkFMMkKo5NmtmI6IJBSyzPIQzMWXl0nnrGFeNs7vLqqtZhFHGR2jE1RDJrpCLXSLLNRGFE3RM3pFb9qT9qK9ax/z1pJWzByiP9A+fwA1GpTX</latexit>

 (t) ⇡ G(Pt)

<latexit sha1_base64="WiRGo3HXEWJPEqUcXwJB40Llv5w=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0VpNyVR0S4LKrisYB/QhDCZTtqhkwczN2IJ/QM3/oobF4q4devOvzFps9DWAxcO59zLvfe4keAKDONbKywtr6yuFddLG5tb2zv67l5bhbGkrEVDEcquSxQTPGAt4CBYN5KM+K5gHXd0mfmdeyYVD4M7GEfM9skg4B6nBFLJ0Y8tn8DQ9ZJ4UoEqtkgUyfABX2GLcknxNa40HaiWHL1s1Iwp8CIxc1JGOZqO/mX1Qxr7LAAqiFI904jATogETgWblKxYsYjQERmwXkoD4jNlJ9N/JvgoVfrYC2VaAeCp+nsiIb5SY99NO7Pr1byXif95vRi8up3wIIqBBXS2yIsFhhBn4eA+l4yCGKeEUMnTWzEdEkkopBFmIZjzLy+S9knNPK+d3p6VG/U8jiI6QIeogkx0gRroBjVRC1H0iJ7RK3rTnrQX7V37mLUWtHxmH/2B9vkDH0mavw==</latexit>

u(t) ⇡ D � E(Pt)

<latexit sha1_base64="bY00KzHxcL+bDRuCe/zLuOMo/UQ=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0VoNyVR0W6EggguK9gHtCFMppN26OTBzE2xhP6JGxeKuPVP3Pk3TtostPXAhcM593LvPV4suALL+jYKa+sbm1vF7dLO7t7+gXl41FZRIilr0UhEsusRxQQPWQs4CNaNJSOBJ1jHG99mfmfCpOJR+AjTmDkBGYbc55SAllzT7D/xClTxDb6rNF2ollyzbNWsOfAqsXNSRjmarvnVH0Q0CVgIVBClerYVg5MSCZwKNiv1E8ViQsdkyHqahiRgyknnl8/wmVYG2I+krhDwXP09kZJAqWng6c6AwEgte5n4n9dLwK87KQ/jBFhIF4v8RGCIcBYDHnDJKIipJoRKrm/FdEQkoaDDykKwl19eJe3zmn1Vu3i4LDfqeRxFdIJOUQXZ6Bo10D1qohaiaIKe0St6M1LjxXg3PhatBSOfOUZ/YHz+AGn/kYs=</latexit>

⇠(t) = E(Pt)

<latexit sha1_base64="jywzLMuDAFUt3o9HSHM2cljTKFw=">AAACFHicbVDLSsNAFJ3UV62vqks3g0VoEUqiot0IBQXdGbEvaGqYTCft0MmDmRuhhH6EG3/FjQtF3Lpw59+YtF1o64GBwzn3cuccJxRcga5/a5mFxaXllexqbm19Y3Mrv73TUEEkKavTQASy5RDFBPdZHTgI1golI54jWNMZXKR+84FJxQO/BsOQdTzS87nLKYFEsvOHlkeg77hxNLJj8+ZyVIQSPseW2efYuuM9j+CromlD6b6Ws/MFvayPgeeJMSUFNIVp57+sbkAjj/lABVGqbeghdGIigVPBRjkrUiwkdEB6rJ1Qn3hMdeJxqBE+SJQudgOZPB/wWP29ERNPqaHnJJNpBDXrpeJ/XjsCt9KJuR9GwHw6OeRGAkOA04Zwl0tGQQwTQqjkyV8x7RNJKCQ9piUYs5HnSeOobJyWj29PCtXKtI4s2kP7qIgMdIaq6BqZqI4oekTP6BW9aU/ai/aufUxGM9p0Zxf9gfb5A5C8nI8=</latexit>

uPOD(t) = �⌃G(Pt)
T

<latexit sha1_base64="4616n53cPRCrKPIkBW6bgodXfYk=">AAACDnicbVDLSsNAFJ3UV62vqEs3g6XQbkqiot0IBRVclQr2AU0Jk+mkHTp5MHMjlNAvcOOvuHGhiFvX7vwbkzYLbT1w4XDOvdx7jxMKrsAwvrXcyura+kZ+s7C1vbO7p+8ftFUQScpaNBCB7DpEMcF91gIOgnVDyYjnCNZxxlep33lgUvHAv4dJyPoeGfrc5ZRAItl6yfIIjBw3jqZ23GhMy1DBl/gaW5RLim9wuWlDpWDrRaNqzICXiZmRIsrQtPUvaxDQyGM+UEGU6plGCP2YSOBUsGnBihQLCR2TIesl1CceU/149s4UlxJlgN1AJuUDnqm/J2LiKTXxnKQzPV4teqn4n9eLwK31Y+6HETCfzhe5kcAQ4DQbPOCSURCThBAqeXIrpiMiCYUkwTQEc/HlZdI+qZrn1dO7s2K9lsWRR0foGJWRiS5QHd2iJmohih7RM3pFb9qT9qK9ax/z1pyWzRyiP9A+fwC8L5nv</latexit>

uNN (t) = D � E(Pt)

<latexit sha1_base64="P9bqy4I2gmkltsHNxI8qVNgcl/s=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9lV0R4LXnqsYD+gXUo2zbax2WRJsmJZ+h+8eFDEq//Hm//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tEEdoikkvVDbCmnAnaMsxw2o0VxVHAaSeY3GZ+55EqzaS4N9OY+hEeCRYygo2V2o1B/4mVBuWKW3XnQKvEy0kFcjQH5a/+UJIkosIQjrXueW5s/BQrwwins1I/0TTGZIJHtGepwBHVfjq/dobOrDJEoVS2hEFz9fdEiiOtp1FgOyNsxnrZy8T/vF5iwpqfMhEnhgqyWBQmHBmJstfRkClKDJ9agoli9lZExlhhYmxAWQje8surpH1R9a6rl3dXlXotj6MIJ3AK5+DBDdShAU1oAYEHeIZXeHOk8+K8Ox+L1oKTzxzDHzifP9qxjqI=</latexit>

H⇠

<latexit sha1_base64="IzF0L6Qpuw7V+lVtIyqa+csmBLc=">AAAB7nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lUtMeClx4r2A9oQ9lsN+3SzWbZ3Qgl9Ed48aCIV3+PN/+NmzYHbX0w8Hhvhpl5oeRMG8/7dkobm1vbO+Xdyt7+weGRe3zS0UmqCG2ThCeqF2JNORO0bZjhtCcVxXHIaTec3ud+94kqzRLxaGaSBjEeCxYxgo2Vus3hQGpWGbpVr+YtgNaJX5AqFGgN3a/BKCFpTIUhHGvd9z1pggwrwwin88og1VRiMsVj2rdU4JjqIFucO0cXVhmhKFG2hEEL9fdEhmOtZ3FoO2NsJnrVy8X/vH5qonqQMSFTQwVZLopSjkyC8t/RiClKDJ9Zgoli9lZEJlhhYmxCeQj+6svrpHNV829r1w831Ua9iKMMZ3AOl+DDHTSgCS1oA4EpPMMrvDnSeXHenY9la8kpZk7hD5zPH6Qjjxc=</latexit>

H 

<latexit sha1_base64="n0L6L4SrTble5Mwse/6zBHzUdqA=">AAACEHicbVDLSsNAFJ3UV62vqEs3wSK2CCVR0S4LunBnBfuAJpTJdNIOnTyYuRFK7Ce48VfcuFDErUt3/o2TNqC2HrhwOOde7r3HjTiTYJpfWm5hcWl5Jb9aWFvf2NzSt3eaMowFoQ0S8lC0XSwpZwFtAANO25Gg2Hc5bbnDi9Rv3VEhWRjcwiiijo/7AfMYwaCkrn5o+xgGrpfE4xIc2YDj8v2P1E3q15fKKBe6etGsmBMY88TKSBFlqHf1T7sXktinARCOpexYZgROggUwwum4YMeSRpgMcZ92FA2wT6WTTB4aGwdK6RleKFQFYEzU3xMJ9qUc+a7qTG+Vs14q/ud1YvCqTsKCKAYakOkiL+YGhEaajtFjghLgI0UwEUzdapABFpiAyjANwZp9eZ40jyvWWeXk5rRYq2Zx5NEe2kclZKFzVENXqI4aiKAH9IRe0Kv2qD1rb9r7tDWnZTO76A+0j29hbJzA</latexit>

u(t + ⌧)|uPOD(t)

<latexit sha1_base64="iHgjQGtoQ0nk80y359NjArXxcV0=">AAACD3icbZDLSsNAFIYn9VbrLerSTbAoLUJJVLTLghtXpYK9QBPKZDpph04uzJwIJfYN3Pgqblwo4tatO9/GSRtQW38Y+PnOOcw5vxtxJsE0v7Tc0vLK6lp+vbCxubW9o+/utWQYC0KbJOSh6LhYUs4C2gQGnHYiQbHvctp2R1dpvX1HhWRhcAvjiDo+HgTMYwSDQj392PYxDF0viSclOLEBx+X7H9RL6nXFy4WeXjQr5lTGorEyU0SZGj390+6HJPZpAIRjKbuWGYGTYAGMcDop2LGkESYjPKBdZQPsU+kk03smxpEifcMLhXoBGFP6eyLBvpRj31Wd6apyvpbC/2rdGLyqk7AgioEGZPaRF3MDQiMNx+gzQQnwsTKYCKZ2NcgQC0xARZiGYM2fvGhapxXronJ2c16sVbM48ugAHaISstAlqqFr1EBNRNADekIv6FV71J61N+191prTspl99EfaxzfCDpxv</latexit>

u(t + ⌧)|uNN (t)

<latexit sha1_base64="huwWRsYrX2/wKDRR/Tx6aazSiSs=">AAACDXicbZDLSgMxFIYz9VbrbdSlm2AVWpQyo6LdCAU3XVawF+iUIZNm2tDMheSMUIa+gBtfxY0LRdy6d+fbmGm70OoPgS//OYfk/F4suALL+jJyS8srq2v59cLG5tb2jrm711JRIilr0khEsuMRxQQPWRM4CNaJJSOBJ1jbG91k9fY9k4pH4R2MY9YLyCDkPqcEtOWaR06seAlOHCBJGV/juptmzml2n5QydKHsmkWrYk2F/4I9hyKaq+Gan04/oknAQqCCKNW1rRh6KZHAqWCTgpMoFhM6IgPW1RiSgKleOt1mgo+108d+JPUJAU/dnxMpCZQaB57uDAgM1WItM/+rdRPwq72Uh3ECLKSzh/xEYIhwFg3uc8koiLEGQiXXf8V0SCShoAMs6BDsxZX/QuusYl9Wzm8virXqPI48OkCHqIRsdIVqqI4aqIkoekBP6AW9Go/Gs/FmvM9ac8Z8Zh/9kvHxDbbFmrE=</latexit>

 (t + ⌧) = H ,⌧ ( t)
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⇠(t + ⌧) = H⇠,⌧ (⇠t)

Figure 3: Schematic of methods for EE prediction showing various flows of information
from assumed knowledge of historical pressure measurements Pt to future value of quan-
tity of interest q(t+ τ). Dynamic model for pressure measurements has been omitted.

A baseline predictor for Eq. (5) is found using a standard recurrent neural network,
such as a long-short-term-memory networks (LSTM) [19], to interpolate a function directly
from Pt to q(t + τ). Alternatively, we may try to improve forecasts of q(t) through the of-
fline use of flow field data. Previous works [3] have used modal representations of a flow
field combined with adjoint equations to learn precursor states to extreme events. In this
work we discuss two methods for compressing flow field data, sensing expansion coef-
ficients in the compressed basis, and exploiting this knowledge for potentially improved
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prediction of q(t+τ): the proper orthogonal decomposition and neural network based flow
reconstruction. In each case we study the predictive capability of initializing a flow solver
with the reduced order initial condition, predicting directly from historical representations
in the reduced space, and neural network based reduced order models. We also consider
data-driven dynamic models for the pressure measurements.

The methods considered in this work are summarized in Figure 3. Methods are sepa-
rated into an offline compression stage, a sensing stage where we infer the reduced order
state from point pressure measurements, reconstruction of the flow field from the reduced
order state, and finally forecast of the quantity of interest, q(t). Learned functions G, E,
and D are predictors of the POD mode time series, latent space encoder, and flow recon-
struction network, respectively. The letter F has been used to denote LSTM predictions
that do not use a dynamic model, with subscript indicating input. H is used to denote
neural network based reduced order models. In each case, we use time series for pressure
at discrete points on the surface of the airfoil as the starting point of the online prediction.

Details on each method are provided in the following sections. We assume familiarity
with common implementations of neural networks and stochastic optimization. In partic-
ular, the work in this manuscript makes frequent use of deep LSTMs [19] and the Adam
method for optimization [23]. The unfamiliar reader may find an excellent reference in the
free online textbook [16]. Further details on the structure and implementation of neural
networks is given in Appendix B.

4.1 Flow field compression and reconstruction

We begin with a discussion of the two offline methods for flow reconstruction: the proper
orthogonal decomposition (POD) and an LSTM based encoder-decoder pair. In this sub-
section we provide an overview of the methodology used to form the reduced rank rep-
resentation for each of these two cases as well as methods for approximating time series
associated with each POD mode.

4.1.1 Proper orthogonal decomposition and sensing

The proper orthogonal decomposition is a standard tool for decomposing a flow field into
spatial modes that are orthogonal with respect to a given inner-product and whose time
evolution are also orthogonal [20, 42]. We apply the POD to the velocity field around the
airfoil using a weighted inner product. Specifically, the POD finds matrices Φ, Σ, and Ψ
which are discretized solutions to,

u(x, t)− u(x) = Φ(x)ΣΨ(t)T , (6)

where,
Σ = diag(σ1, . . . , σr), σi ≥ σi+1 ≥ 0

〈φi, φj〉w =

∫
Ω

φi(x)Tφj(x)w(x) dx = δi,j

〈ψi, ψj〉w =

∫ T

0

ψi(t)ψj(t) dt = δi,j ,

(7)

and w(x) > 0 is a weight used to focus the inner product, and thus variation explained
by POD, on regions of interest near the surface of the airfoil. A similar weighted approach
was used in [3] where a wall focused POD was used as a basis for predicting extreme
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dissipation events in channel flow. We use the family of weights given by,

w(x) =
1− ε

1 + e(d(x)−l)/δ + ε (8)

where d(x) is the distance from x to the surface of the airfoil. Equation (8) describes a
smooth sigmoidal curve that decays from 1 (assuming l � δ) at the airfoil surface to ε
in the far field. For small δ, this transition is localized around d = l and the weights
are approximately 1 for d < l − δ and ε for d > l + δ. We use parameter values l = 1,
δ = 0.1, and ε = 0.1. The POD is therefore principally focused on describing variation in
the velocity field within one chord length of the airfoil surface, with approximately one
tenth the weighting for variation outside this region.

In the case where w(x) = 1 the POD is equivalent to the singular value decomposition
of the mean subtracted data, also knwon as principal component analysis. For non-identity
weights, Σ and Ψ(tj), j = 1, . . . ,m are given by the eigenvalue decomposition of UTWmU
where Ū ∈ Rn×m is the mean-subtracted velocity data and Wm is a diagonal matrix with
w(xi)m(xi) along the diagonal where m(xi) is the mass associated with that grid point for
the spectral element grid [20]. Modes Φ are subsequently computed using their definition
in Eq. (6). Alternative methods may compute Φ before Σ and Ψ, but these suffer from
numerical issues for ε� 1.

Figure 4: The mean velocity field and three POD modes. Axes not drawn to scale.

Applying POD to the airfoil data yields modes φi, shown in Fig. 4, singular values Σ,
and time series ψi(t) corresponding to each mode φi. In the online phase of any prediction
method, we will only have access to Pt, not ψi(t). The latter may be estimated from sparse
or gappy measurements [46]. We therefore train a deep LSTM model to estimate the current
POD representation of the flow from pressure measurements. Letting ψr(t) be the rank r
truncation of the time series of the POD expansion we have,

ψ̂r(t) = G(Pt). (9)

The exact form of and training procedure for G is described in greater detail in Appendix
B. True values of POD coefficients as well as there estimates from pressure via Eq. (9) are
shown in Fig. 5. Note that reconstructed time series are filled in on a much denser grid
than true values since they are computed from the finely sampled pressure time series.
Temporal resolution on ψ(t) is limited by the number of output files saved during numeri-
cal simulation as well as memory limitations in the computation of the POD.

It is worth noting that the time series ψ(t) are normalized to unit variance and Σ is not
considered in loss function. Hence, error in higher modes is treated the same as error in
lower modes. Higher modes did still have higher error, perhaps because they tended to
exhibit more chaotic behavior. The authors did not explore the loss function exhaustively
since doing so would be a significant research endeavor on its own.
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Figure 5: Flow field reconstruction using LSTM to predict time series for first 32 POD
modes using pressure measurements, Pt. Top [Operator G(Pt)]: LSTM prediction of POD
time series for 1st, 10th, 20th, and 30th modes (red) and sparser true values (blue). Bottom
[Operator ΦΣG]: POD reconstruction of streamwise velocity compared to two true fields
within test set data.

After prediction of ψ̂(t) using G one may reconstruct an approximation of the full flow
field using Eq. (6). The lower two rows on Fig. 5 show the results of this in the stream-
wise direction as well as the true velocity and absolute error for two snapshots taken from
the testing dataset, i.e. snapshots not seen by the optimization algorithm used to learn
G. These reconstructions suffer from multiple sources of error. Expanding the difference
between true and reconstructed fields, we get,

u(t)− ûPOD(t) = ΦΣψ(t)T − ΦrΣrG(Pt)
T

= Φ−rΣ−rψ−r(t)
T︸ ︷︷ ︸

Unresolved

−ΦrΣr(ψr(t)−G(Pt)︸ ︷︷ ︸
NN Error

)T , (10)

where the subscript −r denotes those components not in the first r. Error in the neural
network increases for modes with high frequency and chaotic behavior, such as mode 30
shown in Fig. 5. However, significant error is also incurred from unresolved modes due
to the slow decay of singular values Σ. While spatially periodic translational behavior
may be represented with pairs of modes (see Eq. (34) in [42]) the system studied in the
present work tends to shed isolated pairs of vortices. Moreover, it also exhibits intermit-
tency, which may be difficult to capture in a POD basis. The authors are not aware of
efficient linear methods for representing translation of sparse structures such as the wake
vorticies observed in this data.
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4.1.2 Neural network flow reconstruction

In light of some of the deficiencies of the POD and motivated by the successful applications
of neural networks to problems in fluid dynamics [31, 27, 37, 5, 13] we also consider neural
network based approaches to flow reconstruction. The approach in this work is to use
an LSTM-based encoder coupled with a fully connected network predicting the velocity at
each grid point. The fully connected decoder resembles that used in [10] and [29] though do
to the large computational grid we have not used the probabilistic formulation considered
in the later. We note however, that neither of the aforementioned papers included the use
of history terms in their prediction of the fluid state, as we will show is done by the LSTM
encoder for the networks considered in this work. For brevity, we will call networks of this
type full field neural networks (FFNN), indicating that the output of the network is the
values of fluid velocity at each grid point used by a solver.

As in the POD case, we represent the fluid velocity around an airfoil at time t using
a low dimensional representation, ξ(t) ∈ Rr. The time history of the pressure sensors is
encoded to the state using an LSTM given by,

ξ(t) = E(Pt). (11)

Since the full state of the flow field is encoded in ξ(t), one may tune the dimension of ξ to
acquire a desired rank for the reduced order representation of u. We found improvements
in reconstruction accuracy up to approximately rank r = 32, with minimal improvement at
high values. We therefore use r = 32 for the remainder of this work unless noted otherwise.
The reconstructed velocity field is then given by,

û(xi, tm) = D(ξ)i, (12)

where D is a standard fully connected neural network with the final layer being linear.
Taken together, Eq. (11) and (12) form a recurrent network from pressure sensor time his-
tories to the fluid velocity given by,

û(xi, tj) = D ◦ E(P (tm))i, (13)

which are trained together using numerical simulation data. Further details on the network
structure may be found in Appendix B.

We train the networks using a weighted square-error loss function designed to favor
accurate reconstruction near the wall boundary;

LE,D =
∑
j

∫
Ω

‖u(x, tj)− û(x, ξ)‖2 w(x) dx, (14)

where Ω is the computational domain and w(x) is as defined in Sec. 4.1.1 using ε = δ = 0.1
and l = 1. It is also possible to weigh the loss function to more heavily penalize errors in
times immediately preceding an extreme event, but doing so was observed to have little
effect on prediction performance. In practice, the integral in Eq. (14) is approximated using
the mass matrix m obtained from the spectral element grid. The expression simplifies to a
simple weighted sum of squares error given by,

LE,D ≈
∑
j

∑
i

‖u(xi, tj)− û(xi, ξ)‖2 w(xi)m(xi). (15)

Snapshots of the true streamwise velocity, the FFNN predicted streamwise velocity,
and absolute error are shown in Fig. 6, which includes the same fields shown in Fig. 5 to il-
lustrate POD reconstruction. Note that the maximum absolute error using neural networks
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Figure 6: [Operator D ◦ E(Pt)] Reconstruction of streamwise velocity (u∞ = 1 subtracted)
using FFNN for flow compression with 32 dimensional latent space and LSTM to map the
pressure measurements, Pt, to the latent variables, ξ. Note maximum error is approxi-
mately half that of POD, and regions of high error are significantly more localized.

is considerably lower than that of POD and that regions of high error are more localized.
This clearly indicates the superior performance of FFNN to POD for flow reconstruction in
this particular case.

The choice to use a very large output layer of the neural network makes predictions
specific to the particular grid used in training, though interpolation schemes could be used
in other cases. The FFNN decoder’s size also makes it highly memory intensive, which lim-
its batch size in training. It is plausible that similar networks for three dimensional flows
would require coordinate descent like algorithms where fractions of the output weights are
updated on any given batch. This is in contrast to operator type networks, where spatial
coordinate x is given as input [27]. Methods based on the latter were implemented with-
out physical constraints for flow reconstruction from pressure measurements, but were
found to underperform the full-field neural networks discussed in this work. We note that
this could be in part due to using a neural encoder of pressure measurements rather than
sparse function evaluations, as used in [27]. It is also possible that the use of physics-
informed methods could improve prediction accuracy of the operator type networks and
this is noted as a potentially interested research question. However, we consider such an
approach to be outside of the scope of this work.

4.2 Forecasting aerodynamic fluctuations

We now consider online methods for Eq. (5). We separate these methods into two broad
categories; those that do not use dynamic models, and those that use dynamic models such
as the Navier Stokes equations or data-driven dynamic models.

4.2.1 Non-dynamic methods

We first consider methods that do not employ any sort of dynamic model. These are simply
interpolations a function from the time history of an input quantity to the future value of
q(t). The general form is given by,

q(t+ τ) = F•(•t), (16)
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where • ∈ [P,ψ, ξ] and F is a deep LSTM mapping some time series of historical measure-
ments to the future quantity of interest. In the case where the reduced representation of the
flow state is used we have:

q(t+ τ) = Fψ ◦G(Pt)

q(t+ τ) = Fξ ◦ E(Pt),
(17)

so the POD sensing networkG and neural network encoderE may be considered as feature
maps for the forecasting networks Fψ/ξ. Each of FP/ψ/ξ are trained using the mean square
error loss function. Other loss funcitons more specific to extreme events were considered
but found to make negligible difference to the resulting trained network.

Non-dynamic methods of the form given by Eq. (16) may be favorable for several rea-
sons. They are simple, easy to train, and based on the ubiquitous and highly effective LSTM
network structure. They may be of particular interest due to the computational savings of-
fered by avoiding dynamic models. Approximation of q(t + τ) may be rapidly computed
from the state of the LSTM, which is updated online from streaming data. However there
are also downsides to the non-dynamic approach. As τ becomes large, we are approxi-
mating larger steps of a chaotic time series. The problem thus becomes very sensitive to
inputs, and balancing sufficient model complexity with overfitting becomes challenging.
Moreover, prediction of q(t+τ) for any given lead time τ requires its own trained network.

4.2.2 Full order dynamical model based prediction methods

Previous work predicting extreme events for turbulent flows has used a low dimensional
representation of the flow as initial condition for a fluid simulation and employed the ad-
joint to evaluate the gradient of the future quantity of interest with respect to coefficients
in the low dimensional expansion [3]. This is possible in cases where the low order initial
condition is sufficiently close to the full order state to track its behavior. Here we evaluate
if this is the case for low dimensional initialization from both the POD basis and FFNN.
Numerical simulations are initialized using either the FFNN based reconstructed velocity
or the low dimensional reconstruction using the known POD modes and singular values,
along with the estimated temporal coefficients ψ̂(t) = G(Pt). Future values of q(t) are
computed using the same convolution as in Eq. (4);

q̂(t+ τ) =

(
Ĉd(s; û) ∗ N

(
s

∣∣∣∣∣0, 1

(2fpeak)
2

))
(t+ τ)

where, û(t) = D(ξ) or û(t) = ΦΣG(ξ),

(18)

where û(s), s ∈ [t, t+ τ ] is found via numerical integration of the Navier-Stokes equations.
Since the time series for Ĉd is much shorter than the full simulation used for training neural
networks, the common practice of zero padding distorts the values of q̂ near the endpoints.
We instead truncate and re-normalize the smoothing kernel. For valid comparison, the
same is done for the true drag coefficient truncated to the interval [t, t + τ ]. Following Eq.
(18), time series for q and q̂ are normalized using the mean and variance of the full length
time series defined in Eq. (4).

4.2.3 Data-driven dynamical model based prediction methods

We also consider forecasts of either i) the pressure signal, P (t), or ii) the reduced order state
of the fluid flow, using data-driven dynamic models. In the later case we formulate and
evaluate reduced order dynamical models for both the reduced POD state and the latent
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representation learned by the FFNN. For the POD ROM, we train the dynamic model on
the estimated POD coefficients (ψ̂ = G(Pt)), instead of the true coefficients ψ, since the
former may be found exactly from airfoil surface pressure. This eliminates error due to
imprecise initial conditions. Learning a data-driven model of the pressure signal along the
surface of the airfoil has, to the best of the authors knowledge, not been used in previous
works.

Forecasting models in each case are LSTM networks mapping historical measurements
of a given quantity (P/ψ̂/ξ) to its value κ timesteps in the future. They are represented as,

P (tj+κ) = HP (P (tj), P (tj−κ), . . .)), (19)

with similar networks for ψ̂ and ξ. Here κ is taken to be three in order to alleviate some of
the numerical difficulties with training data-driven dynamic models in the small timestep
limit [25]. Thus, the LSTM maps historical measurements of the dynamic quantity P to
the value of that quantity three steps in the future: P (tj+3). Since P is measured every
dt = 0.01 time units, the LSTM is effectively a dynamic model for P with timestep equal
to κ dt = 0.03. Networks are trained using the mean square error loss over a prediction
window of 20 steps;

LHP =
∑
i

20∑
j=1

‖Hj
P (Pi)− P (ti+κj)‖2 (20)

where we define composition of HP with itself by,

H1
P (Pi) = HP (P (ti), P (ti−κ), P (ti−2κ), . . .),

H2
P (Pi) = HP (H1

P (Pi), P (ti), P (ti−κ), . . .),

H3
P (Pi) = HP (H2

P (Pi), H
1
P (Pi), P (ti), . . .) . . . .

(21)

The sum over index i in Eq. (20) is taken over all initial times in the training dataset. The
same network structure and loss function is used for the full set of 50 pressure measure-
ments as well as the 32 dimensional reduced order representations of the flow field. Layer
sizes are scaled to account for the difference in dimension between P and ψ/ξ.

For any τ ≥ 0, we obtain the estimated forecast,

P̂ (t+ τ) = Hmτ
P (Pt), (22)

where mτ = τ/(κdt). Following the LSTM based forcast of P/ψ̂/ξ we may use FP/ψ̂/ξ
trained for zero lead time to evaluate q̂(t+ τ) = FP ◦Hmτ

P (Pt) and likewise for ψ̂/ξ. Since
prediction of q with zero lead time is a much simpler problem, we use standard feed-
forward neural networks in place of the LSTMs used for non-dynamic predictions with
non-zero lead time.

4.3 Error metrics

Each of the neural networks in this work is trained using the mean square error (MSE). The
MSE is differentiable and may be evaluated on subsets of the training data, allowing for
the use of stochastic optimization schemes run on a graphics processing unit. However, the
MSE may not be a good indicator of success in predicting extreme events. We have there-
fore adapted several extreme-event-tailored error metrics to compare the various methods
considered in this work. Specifically, results are compared using the batch relative entropy
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loss, the maximum adjusted area under the precision-recall curve, and the extreme event
rate dependent area under the precision recall curve, and optimal F1 score.

The batch relative entropy loss (BRE) is inspired by the work in [36], where authors
use a relative entropy loss function to train convolutional neural networks that are capable
of making accurate prediction of a system governed by the truncated Korteweg-de Vries
(tKdV) equation in regimes with extreme events. Their work uses empirical partition func-
tions similar to the soft-max activation commonly used in neural networks to transform
high-dimensional predictions into probability distribution functions highlighting outlier
values. Loss is subsequently measured loss using the KL-divergence. This approach was
shown to significantly improve prediction accuracy over the MSE on the tKdV problem.
A similar approach was adapted for the present work using partition functions over mini-
batches rather than output dimensions. Specifically, we define the batch relative entropy
loss as,

BRE =
∑
i

zi log

(
zi
ẑi

)
(23)

where zi, ẑi are given by the empirical partition functions,

zi =
eq(ti)∑
j e
q(tj)

, ẑi =
eq̂(ti)∑
j e
q̂(tj)

, (24)

and where the sum is taken over a mini-batch. We note that this work considers partition
functions that weigh positive outliers, as opposed to the symmetric variant used in [36],
since all events of interest to this work skew positive. The BRE loss was tested as a means
of training the neural networks described in previous sections, but taken over mini-batches
was found to perform comparably with the mean square error. For evaluation, we use the
batch relative entropy loss taken over the full testing dataset.

The performance of a predictor of extreme events may also be measured by the ability
of that predictor to classify events based on a threshold value of the quantity of interest.
The maximum adjusted area under the precision-recall curve (α∗) was proposed in [18] as
a loss function for predicting extreme events and shown to perform well for predicting ex-
treme dissipation events in Kolmogorov flow and rouge waves in the Majda-McLaughlin-
Tabak model. To define α∗ we first introduce the quantity ω for the extreme event rate
and the corresponding threshold â(ω), such that p(q > â(ω)) = ω. Introducing a second
threshold b̂ for the prediction q̂ yields a classifier for which we can compute the precision
(S = true positives divided by predicted positives) and recall (R = true positives divided
by total positives). Noting that precision is uniquely determined by the extreme event rate
and recall, [18] computes the area under the precision recall curve,

α(ω) =

∫ 1

0

S(R,ω) dR =

∫
R
S(b̂, ω)

∣∣∣∣∣∂R(b̂, ω)

∂b̂

∣∣∣∣∣ db̂, (25)

and the maximum adjusted area under the precision-recall curve as

α∗ = max
ω

α(ω)− ω. (26)

We compute the integral in Eq. (25) using a finite grid of β̂ values spread evenly between
min(q̂) and max(q̂) with finite difference scheme to evaluate the derivative term. It’s value
is bounded between 0 and 1 but occasionally falls slightly outside this range due to nu-
merical issues and is subsequently clipped. The maximization in Eq. (26) is taken over a
discrete set of samples evenly spaced ω between 0.01 and 0.25.
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Finally, we consider the extreme event rate dependent optimal F1 score, defined as
the F1 score on the testing dataset using the threshold that optimizes the F1 score on the
training and validation datasets. That is,

F1,opt(q, q̂, ω) = F1

(
(qtest > â(ω)), (q̂test > b̂opt)

)
(27)

where,
b̂opt = argmax

b̂

F1

(
(qtrain/val > â(ω)), (q̂train/val > b̂)

)
. (28)

Taken together this yields five metrics of predictor performance. Mean square error,
batch relative entropy, and α∗ are independent of extreme event rate and yield simple
scalar metrics of performance, though do not indicate performance at a particular extreme
event rate. The extreme event rate dependent α(ω) and F1,opt(ω) each seek to measure
a balance between precision and recall at variable extreme event rates. The dependency
on extreme event rate allows for a more descriptive quantification of error, since we can
compare methods for a variety of extreme event rates.

5 Results

In this section we present results for each of the methods for Eq. (5). Results for prediction
using the full order model with reduced order initial condition are kept distinct from those
using neural networks. This is due to the weak performance by the former, as well as its
considerable computational expense, which limits the number of trials we use to evaluate
it. For predictions of q(t) using dynamic methods, we apply a smoother to remove higher
frequency oscillations. This smoother weights previous predictions with exponentially de-
sceasing weights and does not use any future prediction beyond τ . Examples of full test
set predictions for q̂(t) using each of the six nerual network based methods are shown in
Figure 11 for lead time τ = 7.0 and in Appendix D for other lead times.

5.1 Simulations with reduced order initial conditions

We first present results showing the failure of approaches taken by the authors to forecast
aerodynamic fluctuations using the Navier-Stokes solver and reduced order initial condi-
tion. For each of a variety of ranks, reduced order initial conditions were formed using
the estimated POD time series ψ̂(t) and FFNN flow reconstruction D ◦ E(Pt) at 50 evenly
spaced times throughout the portion on data reserved for testing. Examples of the result-
ing smoothed drag coefficient are shown in Figure 7, which compares predicted time series
for q̂(t) using several ranks of POD reconstructions (left column) as well as FFNN based
reconstructions (right column) to the true value q(t) (black curves). Each row represents a
different initial condition from within the testing dataset. We note that all the initializations
using different reduction methods/orders exhibit poor agreement with the true time series
in at least 1 of the three cases shown.

The mean absolute error in the drag coefficient and smoothed drag coefficient q for
each rank are shown in Figure 8. There are several noteworthy features; the approximated
values of Cd for both methods are initially fairly accurate, falling within 10% of the true
values, but very quickly diverge. By the end of the 10.5 time unit simulations, the error in
each quantity is roughly as large as the standard deviation of the true data. Initial error
in q(t) is higher, as is expected since this quantity includes some information from future
estimates ofCd. We also note the lack of noticable correlation between the rank of the latent
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Figure 7: Examples of forecasts of q(t + τ) using Eq. (18) with various ranks of POD (left
column) and FFNN (right column). Examples show prediction from initial conditions are
spaced evenly throughout the testing dataset. True value is shown as solid black line. Each
row represents a different realization of the flow.

Figure 8: Mean aboslute error, normalized by standard deviations of true time series for
the drag coefficient and q(t) using various ranks of reduced order initial conditions from
the estimated POD time series and FFNN.

space used for flow reconstruction and prediction accuracy. In the POD case, it appears
that the lowest rank (r = 8) performs poorly compared to higher ranks, but r = 64 is not
uniformly better than r = 16 or r = 32. A plausible explanation for this is that as the rank
is increased, so too is the difficulty of the sensing problem outlined at the end of Sec. 4.1.1.
Indeed, using the true (non-reconstructed) ψ(t) we see improved agreement with full order
results if r is let to become large. The connection between rank and accuracy for the FFNN
examples is more opaque. While higher rank initial conditions are slightly more accurate
at predicting the initial drag, the difference is small and decays quickly as the simulation
progresses.

While the results here are not sufficiently exhaustive to preclude the use of a full or-
der model for predicting extreme events in the flow around an airfoil they at least provide
strong evidence of its difficulty. We include them to show the sensitivity of the problem
to small changes in the initial condition (note that the FFNN was able to accurately recon-
struct the fluid velocity) and to contrast to other examples in fluids where a representation
in low rank basis was found to be an effective precursor to extreme events [3].
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5.2 Comparison of reduced order dynamic methods

We now consider the data-driven dynamic models for the pressure signals and reduced
order representations of the flow field. Figure 9 shows the time evolution of the mean
square error in the dynamic quantity and absolute error in prediction of q for each of the
three methods HP/ψ/ξ. The dynamic quantities in each case have been normalized to unit
variance so direct comparison of error magnitudes across methods and across indices are
meaningful. Error statistics have been binned for each timestep and normalized such that
vertical slices of any subplot are density functions across all examples from the testing
dataset. Apparent recurring features in the error plots for q are likely due to the methods
missing the same feature from multiple closely sampled initial conditions.

Figure 9: Test set empirical probability density functions of the mean square error of the
LSTM forecast (left) and absolute error in predicting q(t+τ) for 50 dimensional data-driven
forecast of pressure measurements (top), and 32 dimensional reduced order models using
POD modes (middle) and FFNN latent space (bottom). Mean error quantities are shown
by red curves.

In each of the three models, the bulk of the error remains low throughout the forecast
window, as is shown by the curves for mean error. Error statistics for the dynamic model
for P remain low for approximately three time units before some trajectories diverge. Out-
lier errors for the dynamic model for ψ grow more rapidly than others initially and by the
end of the 10.5 convective unit interval are noticeably larger, on average than then other
two. The dynamic model for ξ clearly has both the lowest error in the dynamic variable
and has error for q of a similar magnitude to the dynamic model in P .

For the models in P and ψ where indices in the dynamic variable carry meaning is also
instructive to see what variables accumulate error at what rates. Figure 10 shows the mean
square error for each index in each dynamic variable taken across test set examples. The
sharp discontinuity in the error for pressure sensors is a consequence of their position on
the airfoil, shown in the lower panel of Fig. 1. The first 26 pressure sensors are equally
placed on the top of the airfoil from front to tail including endpoints and the subsequent 24
on evenly spaced from front to tail on the lower side. We see that error towards the tail of
the airfoil on both the suction and pressure sides is initially lower than towards the front.
However, as time progresses, there is considerable error in pressure sensors towards the
rear of the suction edge of the airfoil.

As expected error in the low order POD modes is lower than in the high order, less
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Figure 10: Time evolution of mean (across test set samples) square error for each of 50 pres-
sure sensors (left), 32 POD modes (middle) and dimensions of FFNN latent space (right)
using LSTM based dynamic models.

energetic, modes. This may be explained by the fact that these low order modes tend to
track large scale features of the flow and have slower and less chaotic trajectories. It is
worth noting that, while the left hand column of Fig. 9 makes clear that error in ψ grows
much more rapidly in the initial forecast than P or ξ, the same is not as obvious for low
τ prediction of q(t + τ) using the dynamic model for ψ̂. This suggests that the value of q
may largely be a function of the low order energetic POD modes, which Fig. 10 shows are
accurately tracked for longer lead times. Indices for the FFNN latent space variable ξ do
not have meaning and there is no correlation between index and the rate at which error
increases.

5.3 Forecasting aerodynamic fluctuations

In this section we compare the six neural network based prediction strategies using the
metrics outlined in Sec. 4.3. Examples of predictions for lead time τ = 7.0 using all meth-
ods are shown in Fig. 11. Blue curves indicate true values q(t) and red dashed curves
show predictions with lead time τ = 7.0 using the three non-dynamic and three dynamics
methods. Plots for other lead times are shown in Appendix D.

Figure 11: True (blue) and predicted (red) time series for q(t) with lead time τ = 7.

Scalar values (MSE, α∗, BRE) of prediction accuracy for each method and lead times τ
ranging from 0 to 10.5 convective time units in intervals of 0.7 ≈ 1/fpeak are shown in Fig.
12. Metrics for prediction via non-dynamic methods are shown as solid lines and those for
dynamic models are shown as dashed lines.

Figure 12 clearly indicates some qualitative differences between dynamic and non-
dynamic methods. In particular, error statistics for the dynamic models at a particular
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Figure 12: Mean square error, maximum adjusted area under the precision-recall curve
(α∗), and test set relative entropy for each of the six neural network based prediction meth-
ods. Evaluation is performed on partition of data reserved for method comparrison (test
set).

value of τ are highly correlated with those for similar lead times. The curves indicating
their performance as a function of lead time are therefore smooth. The same is not true for
non-dynamic models, where predictions for each lead time are performed via their own
trained neural network. It is plausible that more care could be taken to yield consistency
across lead times for non-dynamic models but methods for doing so are not immediately
apparent.

The scalar error metrics also clearly show that the dynamic models in P and ξ, HP

and Hξ are the most accurate of the six models. Differences between the other four are
less pronounce, though Hψ does, on average, slightly outperform non-dynamic methods.
This difference is most notable in the MSE, though still apparent for the extreme event
specific metrics. This suggests that a non-negligible portion of the improvement Hψ has
over non-dynamic methods manifests in the non-extreme values of q, though the scalar
valued metrics do not resolve this feature.

Values for the remaining extreme event rate dependent evaluation metrics are shown
in Fig. 13 for values of ω between 0.01 and 0.25. The top row shows values for F1,opt and
bottom row shows the area under the precision-recall curve. Within each subplot, values
towards the bottom of the image indicate the prediction accuracy of the model for classify-
ing very rare events (1%) while those at the very top show more common events, with lead
time increasing across the horizontal axis. While differences in values of prediction accu-
racy using Fig. 13 may not be immediately clear, the same qualitative features seen in Fig.
12 are again apparent. In particular, errors for the dynamic methods are much smoother in
time than those of the non-dynamic methods.

Differences between methods become much more apparent when plotted directly. Fig-
ure 14 shows the differences in values between all methods for both F1,opt (left) and area
under the precision-recall curve, α (right). Values within each subfigure indicate the metric
evaluated with the method on the corresponding row minus the metric for the method on
the corresponding column. Hence, blue (negative) indicates the the method corresponding
to that column performed better while red (positive) indicates the method corresponding
to the row is better.

Figure 14 shows HP and Hξ outperforming other methods across all lead times τ and
extreme event rates ω except for a small number of datapoints clustered around τ = 4 and
low ω. Comparisons between other methods are less easily summarized. There does not
appear to be discernible trends in the comparison between non-dynamic methods using
P , ψ or ξ as input. From this it seems reasonable to surmise that the accuracy of non-
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Figure 13: Extreme event rate dependent area under the precision-recall curve (α(ω) and
F1,opt) for each method evaluated on test set.

dynamic methods is not improved in a meaningful manner by exploiting flow field data.
The dynamic model for ψ outperforms non-dynamic methods for mid-range lead times
and lower extreme event rates, but under perform in prediction of less rare events (higher
ω) at longer lead times. Differences between methods are largely consistent between F1,opt

and α.

6 Discussion

We have investigated the feasibility of a variety of methods for forecasting aerodynamic
fluctuations occurring in a simulation of two dimensional incompressible flow around a
NACA 4412 airfoil using only pressure recordings along the surface of the airfoil. Some of
these methods also exploited, in an offline manner, knowledge of the flow field to construct
low dimensional representations that were either used as inputs to machine learned pre-
dictors or variables in dynamic models. Comparison between the methods considered in
this work suggests that the complexity of the flow, though low Reynolds and only two di-
mensional, precludes the use of a full order computational fluid dynamic model with low
dimensional input. Other methods were largely comparable, except for the learned dy-
namic models of the pressure measurements and of the latent variable of the FFNN based
flow reconstruction, which performed notably better than others.

The authors highlight that neural networks allow for tremendous freedom with re-
gards to structure, hyper-parameters, regularization, and other factors that may affect per-
formance. We have tested several architectures and selected the best result for this pa-
per, but acknowledge that our work falls considerably short of testing across all sizes and
training procedures. Doing so would require an extensive computational resources and
results would have no guarantee of generality beyond the problem specifically discussed
in this work. Rather, we sought to investigate the use of various classes of models (non-
dynamic, ROM, full order simulation) and representations of data (POD modes, FFNN)
for the purpose of forecasting a quantity exhibiting extreme events. We also note that the
work contained in this manuscript has been done without the inclusion of artificial noise,
as is common in works applying machine learning to synthetic datasets. The authors sus-
pect that including noise would not change the results in a meaningful way, since flow
reconstruction methods have been shown to be robust to noise [29, 10] and quantities with
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Figure 14: Comparrison of α (left) and F1,opt (right) across various methods, lead times
τ , and extreme event rates ω. Each plot shows α/F1,opt for method corresponding to row
minus α/F1,opt for method corresponding to column. Blue (negative) indicates column-
method outperforms row-method. Hence lower left plot indicates Hξ has higher α (favor-
able performance) than Hψ in most cases.

dynamic models may be estimated with filtering. Nonetheless, further work studying the
effect of noise would be necessary to confirm this.

In Section 5 we suggested that low order initializations of the Navier Stokes solver
failed to accurately predict fluctuations, this motivated the use of data-driven dynamic
models. This is not surprising, given the complexity and non-periodic nature of the flow. It
is possible that a mixed strategy of projecting the governing Navier-Stokes equations onto
POD modes coupled with an LSTM closure model would outperform both approaches, as
suggested in [25]. This approach, however would be highly non-trivial when using the
latent space of the FFNN, since it is unclear how one might project the known governing
equations.

We also stress the nature of this work as a computational study, rather than one that
may be directly applied to engineering. Numerical simulation for the current work was
implemented with a blockage ratio of 3.18%. This falls within the range that might be ex-
pected for experiments on bluff bodies [50, 48] but in lower than some works studying the
aerodynamic properties of airfoils. Several works have noted dependence of aerodynamic
properties including the drag coefficient, Strouhal frequency certain critical Reynolds num-
bers on the blockage ratio [45]. This effect was observed in the case used for the present
work, but not explored in depth. We also note that the simulation is of two dimensional
flow over a smooth airfoil, which exhibits qualitative differences from three dimensional
simulations and experiments [43]. Thus, the present work should be considered as a study
of a computational model of prototypical flow phenomena, rather than experimental or
application conditions.

The present work considered the case where pressure measurements are taken at 50
positions around the perimeter of the airfoil. This is, of course, not practical and future
work could consider the use of various sensor placement techniques for determining opti-
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mal placement on the airfoil with respect to forecasting fluctuations [24, 8].

We believe this work establishes compelling comparisons and baselines for the predic-
tion of extreme events using measurements on the surface of an airfoil. Numerous tech-
niques, including several adapted from other works on extreme events were tested and
compared. The results suggest that the use of data-driven dynamic models for quantities
subsequently used to predict extreme events outperform those that ignore dynamics. This
work also provides numerous opportunities for future research. In particular, sensor place-
ment and uncertainty quantification are critical elements of practical engineering that may
be explored in the context developed in this work.
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Appendix A: Numerical simulation details

Numerical simulations of the airfoil used in this work were performed using the open-
source spectral element solver Nek5000 [35] and run on Expanse at the San Diego Su-
percomputing Center using a grant through the National science Foundation funded Ex-
treme Science and Engineering Discovery Environment (XSEDE) [44]. The spectral element
method, proposed in [34], parititions the computational domain into non-overlapping el-
ements and using polynomial interpolation within each element to represent the solution.
Mesh was generated using gmsh [14].

Time integration was performed using a second order semi-implicit scheme described
in [12]. The operator-integrating-factor splitting method proposed in [28] was used to al-
low for stable time integration with a fixed timestep of 0.001. The filtering method pro-
posed in [11] was also used to stabilize the simulation.

The simulation was initialized with a velocity of u = (1, 0). This lead to a short tran-
sient which was avoided when training neural networks and taking the proper orthogonal
decomposition. The inflow boundary condition was held at a fixed value of u = (1, 0)
throughout the simulation. Boundary conditions on the wall of the airfoil were no slip
(Dirichlet), along the top and bottom on the domain were symmetric . The outflow bound-
ary condition was of the convective type proposed in [9]. This allowed for the passage of
strong vortices out of the domain while avoiding numerical issues.

Simulation for 1020 convective units took approximately 3.5 hours running on 128
cores or approximately 5 days running on 16 cores on the author’s local computer. Aero-
dynamic quantities are saved every timestep and pressure at discrete points on the surface
of the airfoil is saved every 10 steps, or 0.01 time units. Velocity and pressure data on
the full domain are saved every 0.25 time units. Code for recreating datasets, as well
as files for time series of pressure and aerodynamic coefficients are available online at
https://github.com/snagcliffs/Airfoil_EE.

Appendix B: Neural network structures and implementation

All neural networks used in this work were implemented in Python using the Tensor-
Flow library [1]. The swish activation function [38] was used between fully connected
non-recurrent layers and the sigmoid function was used for in LSTM layers. In section
4.2.3 we note that prediction of q following LSTM dynamic models are performed using
non-recurrent networks. This step, which does not forecast any quantity, is a fairly trivial
problem and details of networks have been omitted here but are available in the online
code repository.

Structure:

Structures for neural networks used in this work are given in Eq. (29). We use the nota-
tion (input shape) → (layer type , layer sizes) with multiple integer layer sizes indicating
repeated layers. Hence, the first line tells us Fp uses 140 history points of dimension 50 as
input, then a 32 dimensional fully connected layer, two LSTM layers of size 32, and finally a
series of fully connected layers having sizes 32, 16, 8, 4, and 1. The final layer of size 1 is the
putput layer. For networks including a latent representation of the dynamics, the quantity
r has been used a stand in for rank. This work includes examples having r ∈ {8, 16, 32, 64}.
The output size of E is the number of interpolation points in the spectral element grid
n = 279, 552, multiplied by the dimension d = 2, for a total size of n · d = 559, 104. In
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all cases using history terms, a stride of 3 was used between inputs. This was found to
yield a slight performance advantage over using a stride of 1. Connections in the decoder
network, excluding those to the final large layer we modeled after residual type networks,
having a linear connection added to those feeding into nonlinear activation functions. A
larger number of history points were used for Fp to account for the history terms used to
compute ψ̂ and ξ, though this was not found to significantly affect results.

Fp : (50× 140)→ (FC, 32)→ (LSTM, 32, 32)→ (FC, 32, 16, 8, 4, 1)

Fψ : (r × 70)→ (FC, 32)→ (LSTM, 32, 32)→ (FC, 32, 16, 8, 4, 1)

Fξ : (r × 70)→ (FC, 32)→ (LSTM, 32, 32)→ (FC, 32, 16, 8, 4, 1)

G : (50× 70)→ (FC, 64)→ (LSTM, 128)→ (FC, 64, r)

E : (50× 70)→ (FC, 64)→ (LSTM, 64)→ (FC, 64, r)

D : (r × 1)→ (FC, 64, 128, 256, n · d)

Hp : (50× 70)→ (FC, 50)→ (LSTM, 100, 100)→ (FC, 100, 50, 50)

Hψ/ξ : (r × 70)→ (FC, 32)→ (LSTM, 64, 64)→ (FC, 64, 32, 32)

(29)

As noted in section 6, designing neural networks allows tremendous freedom on seem-
ingly arbitrary choices such as layer sizes and activation functions. When testing different
networks for this work we found significant differences between network architectures
(LSTM, fully connected, branch-trunk, etc.). Small changes such as slightly altering layer
sizes or activation functions did not, in general, significantly affect results.

Data partitions:

In many machine learning tasks and particularly those with a high dimensional parameter
space such as neural networks, a dataset is split into distinct sets for training, validation,
and testing. The training dataset is used to update model parameters according to the gra-
dient of the cost function. The validation set is used to prevent overfitting through the
use of early stopping when performance metrics on validation data have stalled. Finally,
the testing set is reserved for a comparrison between models. We use a (70/15/15%) split,
meaning 70 percent of the available data in each case in used for training, 15 for validation,
and 15 for testing. Training and validation datasets are mixed randomly from within an in-
terval of time spanning the initial 85% of the training data and testing data is the remaining
contiguous 15%. The length of data available for training models exhibits slight variability
due to input sequence lengths and lead times. Comparison between models in section 5 is
therefore performed on the final 15000 datapoints, or equivalently 150 convective units of
the simulation.

Training procedure:

Parameters for the training procedures used for each neural network are given in Table 1.
We used the Adam optimizer [23] with batch size as given in the last column. Restarts,
set to 3 for all networks except E/D, indicates the number of optimizations from random
initial weights that were performed. Each was run until validation error failed to decrease
for a specified number of epochs, called the patience. The encoder-decoder pair was only
trained once due to computational expense. The quantities `1/2-reg describe the `1 and `2

regularization weights applied to connections in non-recurrent layers. LSTM layers as well
as connections to the output layer in each network were left unregularized. We note that
considerably inflated values used for Fξ are due to significant overfitting observed at lower
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regularization. A pair (0.98,2) for decay indicates that learning rate was multiplied by 0.98
every two epochs. The initial learning rate in each case was set to 0.001.

Table 1: Training Parameters for Neural Networks
Network Restarts `1 reg. `1 reg. Decay Patience Batch
FP 3 0 1e-3 0.98, 2 10 1000
Fψ 3 0 1e-3 0.98, 2 3 1000
Fξ 3 1e-2 1e-2 0.98, 2 3 1000
HP 3 0 1e-3 0.95, 2 5 250
Hψ 3 0 1e-3 0.95, 2 5 250
Hξ 3 0 1e-3 0.95, 2 5 250
G 3 0 1e-5 none 20 100
E/D 1 0 1e-3 0.95,1 5 10

Parameters for training procedures were largely set based on empirical evidence and
considerations for computational resources. While we claim to have put forward due dili-
gence in tuning all networks for the sake of a valid comparison, we make no claim that
these values represent the optimal set for the problem at hand. The authors are not aware
of any convincing methods for optimizing such hyper-parameters.

Appendix C: Wake instability

In section 3 we noted that the intermittent behavior examined in this work is quasi-stable
and that in some cases a change in the wake pattern occurs, resulting in less chaotic behav-
ior. To illustrate this, we include here a trajectory similar to the one considered in this work
where this mode switching does occur. Figure 15 shows Cd(t) for a simulation exhibiting a
shift in wake behavior around t = 400. Plots of the voritcity that clearly illustrate the tran-
sition are shown in 16. Wake patterns before and after transition resemble the P and 2S
behaviors discussed in [17] and also shown in [30] at lower Reynolds numbers and higher
angle of attack.

Figure 15: Time series for the drag coefficient showing transition for intermittent to more
regular behavior. Lower row shows close up of time series from two shaded regions.

Appendix D: Time series of predicted quantity of interest using all methods

Time series prediction of q̂ compared to the true value for test set examples at various
values of lead time τ are shown in Fig. 17. Networks used to generate these time series are
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Figure 16: Vorticity snapshots of the simulation exhibiting mode switching at time t = 100
before switching, t = 400 soon before switching, and t = 700 after switching.

described in further detail in Appendix B. The reduced rank representation of u using both
POD and FFNN use r = 32. Figures showing time series result for τ sampled between 0
and 10.5 in increments of 0.7 may be found online in the code repository for this work.
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Figure 17: Time series for q(t) and ˆq(t) using each of the neural network based methods on
the test set for lead times τ = 1.4, 3.5, 7, 0, and 10.5.
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