
The Cloud Outgrows Linux, and Sparks a
New Operating System
 Timothy Prickett Morgan | nextplatform.com

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Ultimately, every problem in the
constantly evolving IT software

stack becomes a database problem,
which is why there are 418 different
databases and datastores in the DB
Engines rankings and there are really
only a handful of commercially viable
operating systems. But what if the
operating system is the problem?

We are so used to thinking of the
operating system as the foundation
of the system that this kind of talk
seems more weird than it does heresy,
but make no mistake. When Michael
Stonebraker and Matei Zaharia and a
team of techies from the Massachusetts
Institute of Technology and Stanford
University are involved in creating a new
operating system, it is definitely going to
be heresy.

Stonebraker says that the spark for
the idea for DBOS, which is short for
database operating system, came when
he was listening to a talk by Zacharia,
who among other things was the creator
of the Spark in-memory database
while at the AMPLab at the University
of California Berkeley and the co-
founder and chief technology officer of
Databricks, which has commercialized
Spark.

“This talk was at Stanford three
and a half years ago,” Stonebraker tells
The Next Platform. “And Matei said that
Databricks was routinely orchestrating
a million Spark subtasks on sizeable
clouds and that Databricks had to keep
track of scheduling a million things.

He said that this can’t be done with
traditional operating system scheduling,
and so this was done out of a Postgres
database. And then he started to whine
that Postgres was too slow, and I told
him we can do better than that.”

Stonebraker, who is an adjunct
professor at MIT and a member of the
vaunted CSAIL research team that
has brought so many innovations to
information technology, would know.

Like all of the other database
pioneers from the late 1970s and
early 1980s, Stonebraker read the
early relational data model papers
by IBMer Edgar Codd, and in 1973
started work on the Ingres database
while at Berkeley, and created the
Postgres follow-on to it. Stonebraker
was chief technology officer at relational
database maker Informix, was one of
the researchers on the C-Store shared-
nothing columnar database for data
warehousing (which was eventually
commercialized as Vertica), and was

part of the team that created H-Store,
a distributed, in-memory OLTP system
(which was eventually commercialized
as VoltDB). More recently, Stonebraker
led an effort to create an array-
based database called SciDB that
was explicitly tuned for the needs of
technical applications, which think in
terms of arrays not tables as in the
relational model.

So Zaharia saying that Postgres
performance was poor was like calling
Stonebraker’s child a bit slow. . . .

And rather than fight about it,
Stonebraker and Zaharia teamed up to
create an operating system based on a
database rather than a database bolt on
for an operating system.

In an interview with The Next
Platform back in August 2017, we talked
to Stonebraker about how hardware
drives the shape of databases as the
storage hierarchy changes, but this
might be a case where a database
operating system kernel might start

LLSC News
March 12, 2024Lincoln Laboratory Supercomputing Center

underlying database would have to be,
too.

So the decision was made to use
the FoundationDB distributed key-value
store as the scheduling core of the first
iteration of DBOS. FoundationDB was
created Nick Lavezzo, Dave Rosenthal,
and Dave Scherer, which was released
in 2012, acquired by Apple in 2015,
and open sourced by Apple in 2018.
FoundationDB is a blazingly fast
NoSQL database, which means that it
does support the ACID properties of a
relational database but which does not
offer full SQL compliance. (Stonebraker
tells us that DBOS eventually will
do that, which seems to imply the
underlying database engine will change.)
Right now, DBOS has been tested
running across 1,000 cores running
applications coded in TypeScript, but
Stonebraker says there is no reason to
believe that DBOS can’t scale across 1
million cores or more and support Java,
Python, and other application languages
as they are needed by customers.

The first iteration of DBOS runs
on Amazon Web Services and uses
the Firecracker microVM service,
itself a stripped down KVM hypervisor
running on a stripped down Linux
microkernel, to create the user space
for FoundationDB to run within.
So technically, there is still Linux
underneath DBOS. But nothing like the
full blown Red Hat Enterprise Linux
or SUSE Linux Enterprise Server that
companies deploy or the homegrown,
full-blown Linuxes that the hyperscalers
and cloud builders have created for their
own use. Stonebraker and Zaharia are
working on ports to the Microsoft Azure
and Google Cloud infrastructure, and
it will be interesting to see how this is
done. . . .

driving the shape of the hardware. (We
will see how this DBOS idea takes off.)
After that Stanford talk, Stonebraker and
Zaharia played around with ideas, and
built a prototype operating system on
VoltDB to prove it would work; then they
founded a company to commercialize
the idea in April 2023 and secured
$8.5 million initial seed funding to start
building the real DBOS. Engine Ventures
and Construct Capital led the funding,
along with Sinewave and GutBrain
Ventures.

What is breaking the operating
system, and making companies
like Databricks do weird bolt-ons of
Postgres to maintain the state of Spark
clusters outside of an operating system,
is that the state of an operating system
has gone up by five or six orders
of magnitude in the more than five
decades that Stonebraker has been
programming. He gives a personal
example. Back when Stonebraker was
tooling around with Unix in 1973 on a
DEC PDP-1141, it had 48K of memory
and 20 MB of disk capacity. DBOS was
tested early on running on the MIT Super
Cloud, a cluster with 32,000 cores, a few
terabytes of main memory, and many
terabytes of secondary storage. There is
just so much more stuff to keep track of,
and so many more services running on
that stuff, too.

“The state that the operating
system has to keep track of – memory,
files, messages, and so on – is
approximately linear to the resources
you have got,” says Stonebraker.
“So without me saying another word,
keeping track of operating system state
is a database problem not addressed
by current operating system schedulers.
Moreover, OLTP database performance
has gone up dramatically, and that is
why we thought instead of running the
database system in user space on top
of the operating system, why don’t we
invert our thinking 180 degrees and
run the operating system on top of
the database, with all of the operating
services are coded in SQL?”

All of the investors in DBOS said
that using VoltDB at the heart of this
thing was not possible because it was
not open source (there would seem to
be an easy fix for that) and that because
DBOS had to be open source, the

The Cloud Outgrows Linux, and Sparks a New Operating System (continued)

The point is, there is a minimal
kernel underneath FoundationDB,
which has device drivers, memory
management, interrupt handlers,
and some basic data movement
functions, and the database services
are written in TypeScript and their
state tables can be queries in SQL.
(Again, we would have preferred a
relational database where DBOS
services are written themselves in
SQL, because that is a cleaner and
funnier story.)

Stonebraker says that what he
and Zaharia have really created is
a transactional serverless platform
that can run stateful applications. For
now, DBOS can give the same kind of
performance as that full blown Linux
operating system, and thanks to the
distributed database underpinnings
of its kernel, it can do things that a
Linux kernel just cannot do. And it
can do all of these things without a
full Linux OS and without Kubernetes
containing things, and without having
to bolt Postgres onto the side of the
database middleware.

One is provide reliable
execution, which means that is a
program running atop DBOS is ever
interrupted, it starts where it left off
and does not have to redo its work
from some arbitrary earlier point and
does not crash and have to start
from the beginning. And because
every little bit of the state of the
operating system – and therefore
the applications that run atop it – is
preserved, you can go backwards
in time in the system and restart the
operating system if it experiences
some sort of anomaly, such as a bad
piece of application software running
or a hack attack. You can use this
“time travel” feature, as Stonebraker

The Cloud Outgrows Linux, and Sparks a New Operating System (continued)

calls it, to reproduce what are called
heisenbugs – ones that are very hard
to reproduce precisely because there
is no shared state in the distributed
Linux and Kubernetes environment

and that are increasingly prevalent in
a world of microservices.

Here is what the time travel
screen looks like:

This time travel feature also lets
you run new code against historical
system state.

The other benefit of the DBOS
is that it presents a smaller attack
surface for hackers, which boosts
security, and that you analyze the
metrics of the operating system in
place since they are already in a
NoSQL database that can be queried
rather than aggregating a bunch
of log files from up and down the
software stack to try to figure out
what is going on.

By the way, if you look on GitHub
to take a gander at the DBOS code,
you will find code, but we do not
believe it is for this particular instance
of DBOS. It is for a DBOS project
that was started by Peter Kraft and
Qian Li, who were PhD students at
Stanford and who we are guessing
now work on the formal DBOS
project.

DBOS Cloud, as the formal
product is called, comes in two
versions at the moment. There is a
free version that can use the RDS
Postgres service at AWS as an
application datastore running on the
db.ts.micro instance size only, and it
is scaled to handle 1 million service
calls per month. (We assume that
means API service calls). This free tier

holds operating system log data for
three days and is allowed to have one
developer on the account. Support
is through Discord and the SDK only
works with TypeScript and Postgres.

There is also a custom tier for
DBOS, which we presume costs
money, that can use other databases
and datastores for user application
data, stores more than three days
of log data, can have multiple users
per account, that adds email and
Slack support with DBOS techies,
and that is available on other clouds
as well as AWS. Being a startup, new
clouds, new languages, and human
tech support will happen as enough
people ask for them. No startup, not
even one started by Stonebraker and
Zaharia, can boil the ocean.

In a way, you really need to think
of DBOS as a competitor to Linux,
Windows Server, or Unix but to the
AWS Lambda serverless function
as a service stack. Stonebraker and
Zaharia do:

One last thing. We know of
operating systems that had an
intimate relationship with a database,
but this twist is actually a new one
in that the operating system kernel/
schedular is itself largely a database
and services are created in database
languages.

For example. IBM’s System/38
and AS/400 minicomputers had a
relational database at the heart of
the operating system and in fact the
database was the only file system
allowed on these machines from
1978 through 1996, at which time

IBM pulled the database out of
the operating system and added
in the OS/2 Parallel File System
to give a POSIX-compliant, ASCII
formatted file system for the AS/400.
(Which is known today as the IBM i
proprietary operating system.) The
Pick operating system similarly had
an integrated database, too. And of
course, the “Longhorn” version of
Windows Server 2008 was supposed
to have the WinFS file system, which
was based on a relational database,
embedded in it, but that effort was
spiked a decade and a half ago.

Which brings us to that one last
thing: There is no reason why DBOS
cannot complete the circle and not
only have a database as an operating
system kernel, but also have a
relational database as the file system
for applications.

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported by the United States Air Force under Air Force Contract No. FA8702-
15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Air Force.

