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ABSTRACT

Measurements of the electrical resistivity p as a function of the mag-

netic field H (up to ~15 Tesla) have been carried out on well-characterized

(single stage) encapsulated potassium and rubidium graphite intercalation

compounds. From the periodic oscillatory behavior of p vs HL (the Shubni-

kov—-de Haas (SdH) effect), the extremal cross-sectional areas of the Fermi

surface (FS) perpendicular to H have been determined for these materials.

Possible shapes of the FS are inferred from the dependence of the FS

cross sections (SdH frequencies) on the angle between the c-axis of the sam-

ple and H. The temperature dependence (1.4%T&lt;25°K)oftheamplitudesof

the SdH oscillations has been studied to find cyclotron effective masses for

specific FS cross sections.

The stage~ and intercalant-dependent experimental results are inter-

preted in terms of two simple phenomenological energy band models based on

the m-bands of pristine graphite and the c-axis zone folding technique. The

good agreement between the experimental and predicted effective masses and

the FS cross sections is an indication of the validity of the models.

Thesis Supervisor: Professor Mildred S. Dresselhaus

Title: Abby Rockefeller Mauzé Professor of Electrical Engineering and

Director of the Center for Material Science and Engineering
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[. INTRODUCTION

Graphite intercalation compounds (GIC) have been the subject of much

current research and interest. These compounds are formed by the insertion

of atomic or molecular layers of certain chemical species (the intercalant)

between the layers of the host graphite and forming an ordered structure.

The staging phenomenon which refers to the periodicity in the stacking of

the graphite and the intercalate layers is the most important and interest-

ing structural feature of the GIC. The stage index n denotes the number

of contiguous graphitic layers between two nearest intercalant layers.

Among the very interesting and curious properties of the GIC, in addition to

their highly ordered structure, are: (1) the large number ( &gt;100 ) and

variety of the reagents that react with graphite and form the intercalation

compounds, and (2) the high degree of anisotropy in their structural and

electronic properties [1,2] (also see Chapter II).

A great deal of work has been done on the structural and electronic

properties of GIC [1,2]. Among the many techniques used to study these

compounds are: (1) X-ray, electron-,and neutron-diffraction techniques

for the staging and in-plane ordering, (2) Raman and infrared spectroscopy

in addition to inelastic neutron scattering experiments for the lattice mode

properties, and (3) a vast number of experiments such as conductivity, Hall

effect, magnetoresistance, electron spectroscopy, magnetooptical and

quantum oscillatory measurements to investigate their electronic properties.

The aim of this thesis project was to obtain accurate and reliable

information about the electronic structure of these materials using the

Shubnikov-de Haas technique, and to use the available energy band models to
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interpret the experimental data. Needless to say, once reliable exper-

imental data are available, they can be used to evaluate, contrast and

improve the theoretical energy-band models.

A very important piece of information about a solid, and one which

relates directly to its energy-band structure, is its Fermi surface (FS).

The experimental techniques which provide information about the FS most

directly are those which are based on the quantum oscillatory (QO) pheno-

mena and on the oscillatory behavior in reciprocal magnetic field of

several properties of the solid. These oscillatory phenomena are normally

observed at high magnetic fields and low temperatures, and are closely

related to the FS. The QO effects can be observed in the magnetic suscep-

tibility (de Haas-van Alphen or dHvA effect), the electrical conductivity

(Shubnikov-de Haas or SdH effect), the temperature of an isolated sample

under adiabatic conditions (magnetothermal effect), and several other prop-

erties of a solid (with metallic properties).

The frequency(ies) of the periodic oscillations (as a function of

inverse magnetic field) in the above properties is/are directly related to

the extremal cross-sectional area(s) of the FS (perpendicular to the

direction of the applied field; see Section 2.5 for a discussion of the

SdH effect.) These frequencies will be referred to as the "SdH frequencies"

in this thesis report. The SdH effect was chosen in this project as the

means to study the FS of GIC, since it requires the simplest experimental

setup. The high field facilities available at the Francis Bitter National

Magnet Laboratory, however, were essential for the performance of our

experiments and our measurements were carried out to ~15T.

At the time this project was started, there were very few materials
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on which the FS experiments had been performed. The first report on the

observation of Q0 effects on GIC was made by Bender and Young in 1971 [3,4].

They performed the SdH experiment on dilute graphite-Br, samples that

were not carefully characterized. Not much work was done in this field

until 1978. From that date until now, experiments based on QO phenomena

have been performed on a great number of graphite compounds of different

intercalants and stages. Some of this work has been done on well charac-

terized samples. Among the intercalants on which the Q0 measurements have

been performed are: K [5-8], Rb [8], FeCl3 and PdCT, [9], SbClg [10],

AsFg [11,11], HNO 5 [13], and Bro [3-5, 14]. In most of these reports the

number of observed SdH frequencies (FS cross sections) and also their mag-

nitudes are considerably greater than for pristine graphite. The large

increase in the FS cross sections is generally attributed to the transfer

of charge (electrons/holes for donor/acceptor compounds) from the inter-

calant to the graphite layers , thus swelling the FS (electron/hole

pockets). The number of the SdH (or dHvA) frequencies and their stage

dependence has been a matter of controversy, and still is.

The reports that indicate a stage dependence of the FS [5-8,11-13]

also report that there are a small number of SdH frequencies for low-stage

compounds (Nn = 1,2) and that this number increases as the stage index is

increased. On the other hand, there have been reports indicating stage-

independent SdH frequencies. Such reports have been made especially for

the acceptor compounds [3,9,14]. A large number of SdH frequencies have

also been found by these authors, although in this case, many of the

observed frequencies are identified as harmonics, or are associated with

magentic breakdown phenomena
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In this thesis project, the SdH experiment was performed on alkali

metal GIC. Despite their instability in the presence of air and moisture,

these materials were chosen because they are structurally among the simplest

and best known of GIC, and because it is possible to grow well character-

ized and single-stage samples of K and Rb-graphite over a large range of

stage index [15]. The K-GIC (of low stage) are also the compounds for

which first principles band calculations have been performed [16-18].

Our experiments were carried out on single-stage samples of K-GIC (stages

4,5,8) and Rb-GIC (stages?,3,5,8)and some other nearly single-stage K and

Rb samples. These compounds were chosen so that our experiment complements

the work of other authors [5-7] who have done the SdH experiment on K-GIC

of stages 1,3,4. Our results for the K-stage-4 compound are in fair

agreement with results reported by Tanuma et al [5] (Chapter V, Table 5.4).

Both our results and those of References 5-7 support a stage-dependent

FS. These results will be interpreted in Chapter VI by using two phenom-

enological energy-band models (explained in Chapter II) which do predict

stage-dependent Fermi surfaces.

The actual procedure in carrying out this study followed closely

the order in which the chapters (III-VI) are presented. The work done

included sample preparation and characterization (Chapter III), sample

handling and the SdH experiments (Chapter IV), data analysis (Chapters

IV and V) and finally the interpretation of the FS results (Chapter VI).

The emphasis in this work was not on performing the SdH experiment on a

large number of samples (although to ensure reliability and consistency,

a fair number of samples was studied), but rather on studying one compound

thoroughly (K-stage-5). Much attention was paid to the quality of the
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samples studied and their stage fidelity (using X-ray techniques) before

and after the SdH experiment. Encapsulation was used to protect the

samples from air and moisture. In subsequent chapters, different stages

of the project will be discussed in detail. Here in Fig. 1.1, a flow

chart illustrating the highlights of each step of the project is pre-

sented.
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II. BACKGROUND

In section 2.1 of this chapter, the crystal structure of graphite

and graphite intercalation compounds (GIC) as well as some of their int-

eresting properties will be presented. Section 2.2 reviews the graphite

energy-band structure as described by the Slonczewski-Weiss-McClure

(SWMcC) model [19-21]. A brief discussion of the effect of intercala-

tion on the energy-band structure of graphite and the Fermi Surface is

given in section 2.3.

Section 2.4 deals with the two models used for the interpretation

of the experimental results. The first model is based on the k_-axis

zone-folding of pristine graphite bands, while the other is a phenomen-

ological model developed by Dresselhaus and Leung [22] based on the k,-

axis zone-folded Hamiltonian of pristine graphite with an empty inter-

calate layer. Finally, the last section (2.5) deals with some theoreti-

cal background about the Shubnikov-de Haas (SdH) effect. In this thesis,

SdH measurements were used as the experimental tool to study the Fermi

Surface of the compounds.

II-1. Graphite, GIC, and Some of Their Properties

Graphite intercalation compounds (GIC) have been known for many years.

Schafhautl was the first to observe a directional "swelling" of graphite

when immersed in a mixture of sulfuric and nitric acids in 1841 [23]. The

nature of this swelling was not known until diffraction techniques became

a common tool for studying the structure of solids. Since then a great

deal of work has been done on GIC to understand their very interesting

structural and electronic properties. We now know that this swelling is
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due to the insertion of the layers of some parent material between the

graphitic layers; this process is called "intercalation".

Ths structure of pristine graphite plays a key role in the formation

and properties of these lamellar compounds. The graphite structure

belongs to a hexagonal system. The carbon atoms are arranged in a hexag-

onal layer network with strong in-plane covalent sp? bonds (see Fig. 2.1).

The interatomic distance is small, the nearest-neighbor atoms being sep-

arated by only 1.42A. Along the c-direction,thedirectionnormal to the

plane of this honeycomb network, the layers are stacked such that the

open center of each hexagon is sandwiched between two carbon atomes from

neighboring layers. This stacking sequence, called the ... ABAB... stack-

ing, results in a c-axis parameter of twice the interlayer spacing

(2 x 3.35 = 6.70A) . The interaction between atoms in the c-direction is

of the weak van der Waals (dipole-dipole interaction) nature. The weakness

of this bonding has interesting consequences. It causes graphite to be a

highly anisotropic material. The most direct evidence for this fact is

the very ease with which the graphite layers are cleaved. The electronic

properties of graphite are also affected by this anisotropy; while a poor

conductor in a-plane, graphite is practically an insulator along the c-axis

(04/0, oe 10° at room temperature).

This anisotropy enables us to neglect the interaction between the

layers and hence theories and calculations for a quasi-two-dimensional

system of atoms can be applied and tested. Hence, graphite and its inter-

calation compounds are also interesting from a theoretical point of view.

Graphite becomes the host to many materials such as alkali-metals,

halogens and metal-halides, and it forms lamellar compounds. The term
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"lamellar" is generally used to denote compounds which are formed by

stacking layers of species on top of each other. In our case, several

graphitic layers sandwich one intercalate layer repeatedly and form the

GIC, with stage index n denoting the number of contiguous graphitic

layers between two nearest intercalate layers. These compounds show

interesting properties similar to those of graphite. The degree of ani-

sotropy usually changes, depending on the intercalate species, while the

in-plane properties change from those of pure graphite, too.

The interlayer and intralayer interactions between graphite and

intercalate have dramatic effects: in some acceptor GIC, the 6,/9¢ ratio

is enhanced by two orders of magnitude (0,70, ~ 10°) and some compounds

(C AsF Jexhibit a conductance along the a-plane diretions comparable to

that of copper [24]. Some alkali-metal-GIC become superconducting at low

temperatures, while neither the alkali-metal nor the host graphite is a

superconductor [25]. Also, some GIC are used as catalysts for organic

chemical reactions [1].

The above characteristics, together with the aforementioned interest

in two-dimensional physics, make the graphite lamellar compounds the focus

of much recent attention.

II-2. Features of the Graphite and GIC Structures

For future reference, a summary of the graphite structure follows

26]. The material is:

Hexagonal (see Fig. 2.1) with lattice constants:

a = 2.46A

 ” = 6.70A

A



-23—

0 Oo

The interplanar distance is usually denoted by Cs (= TI = 3.35A)

There are four atoms in the basis and these are located at:

ol ay. 2 2 1, 1
(0,0,0); (3.350); (3 3? 2 )s (0,0, &gt;)

The primitive lattice vectors are:

&gt;

A ~ A X

ro 33)b = a(x +537 {4 1)

&gt; .

c= 2c z
0

and the reciprocal lattice vectors are:

g*=2n( 0 V30)
a 3 VY

&gt;% 27 2/3 ©

b = a —3 J

x
C

on, 7

se (2)

(7.2)

Note that the reciprocal lattice represents a hexagonal system, too.

(See Fig. 2.3.)

The type of graphite used in these experiments was highly oriented

pyrolytic graphic (HOPG) [27] . The c-axis in HOPG is aligned to better

than 1°. The a-axes are aligned within domains that are ~1micron in

diameter in the a-plane.

There are some aspects which are crucial in understanding the struc-

ture of the GIC. These are presented briefly below.
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Stage Ordering. This is the most important feature of the GIC.

Along the c-direction, the layers of the intercalate are sep-

arated by n layers of graphite, where n denotes the "stage" of

the compound and assumes integer values (see Fig. 2.2).

Stage zero (n = 0) refers to the pure parent (intercalate)

material and stage infinity (n = =) is for pure graphite.

Graphitic Intraplanar Ordering. The in-plane ordering in graph-

ite planes (open hexagons with carbon atoms at the corners) is

retained in the lamellar compounds. The a-lattice constant of

3

y

graphite shows Tittle or no change relative to that of pristine

oO

graphite (a = 2.46A).

Ogy
Graphite Interplanar Ordering. There exists a stacking order

for graphitic layers (not necessarily that of pure graphite)

in the compounds. For instance, the ... AXAXAXA... or

... ABXBAXABX... structures are commonly observed for stages 1

and 2 compounds. Or, we can have ABXBCXCA..., etc. Here, A,B

denote graphite layers and X denotes the intercalate layer (see

Fig. 2.2).

4

5

Intercalate Intraplanar Ordering. The intercalate species in a

layer exhibit an ordered arrangement. This arrangement is usu-

ally similar to the network which intercalate species have in

a cross section of the intercalate material. This site ordering

may or may not be commensurate with the graphite site ordering.

Intercalate Interplanar Ordering. The intercalate layers may

have a stacking order. For example, in stage 1 C.K alternate

intercalate layers are seen to have the ... AcABAVASA ...
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ordering [28], where a, 8B, v,§ sites are assumed by the inter-

calate atoms on sequential layers.

a Correlated Intercalate-Graphite Site Ordering. For commensurate

structures, the site orderings in the graphitic layer and

adjacent intercalate layers are correlated.

ITI-3. Electronic Energy Band Structure of Graphite.

It was mentioned in previous sections that the interlayer inter-

action is very weak in graphite. Because of this large anisotropy of the

crystal structure, the simplest models for the graphite energy bands

are the two-dimensional models [29-31]. In these models the 2s ,2py

and 2p, atomic wave functions interact to form the strongly coupled bond-

ing and antibonding trigonal orbitals (o-bands). The p, atomic wave

functions give rise to the two valence and conduction w-bands, which are

degenerate by symmetry at the six corners of the two-dimensional hexag-

onal Brillouin zone (BZ). The Fermi energy lies between the two w-bands

and thus the two-dimensional graphite is essentially a zero-gap semicon-

ductor. Graphite, however, is a three-dimensional solid; and the inter-

layer interaction, although small, has profound effects on the energy

band structure of graphite, especially near the six vertical zone edges

where the bandwidth is small.

As shown in Fig. 2.1, the AB stacking of the graphite layers gives

rise to four carbon atoms per unit cell. Thus, there are four w-bands

near the Brillouin zone edges and it is the overlap between these u-

bands that is responsible for the semimetallic properties of graphite

(Fig. 2.3). A number of first principles band calculations have been
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carried out, some based on a two-dimensional model and others includ-

ing three-dimensional interactions [29-32]. These models are especially

useful in discussing the electronic structure away from the Fermi

level (Ep) but are generally not sufficiently accurate to interpret

experimental data providing detailed information within a few hundred

millivolts of Ef.

The most successful and widely used three-dimensional model for

the dispersion relations for the four w-bands near the Fermi level was

developed by Slonczewski and Weiss [19] and by McClure [21, 21]. The

STonczewski-Weiss-McClure (SWMcC) model is especially successful for

describing the behavior of the w-bands near the zone edge and has been

used extensively to explain the various observed transport, optical,

quantum oscillatory and magneto-optical properties which depend on

electronic structure near the Fermi level. This phenomenological model

is based on developing a Hamiltonian of the most general form consistent

with the crystal symmetry of graphite. Perturbation theory is used to

obtain E(k) in the vicinity of the HKH axis of the BZ. Along the k,

direction, a Fourier expansion with rapid convergence (because of the

weak interlayer binding) is made. Since the extent of the Fermi surface

from the zone edge is small compared with the BZ dimensions ( &lt;0.01), a

K-p expansion is made to obtain the form of the Hamiltonian perpendic-

ular to the HKH axis. In this model, the Hamiltonian for the w-bands

is a 4 x 4 matrix of the form:

—

— 1 H
 3 Hyg

0 Hog - Hoya

Hyg Hoge E3

13 - Hoya Hoax E 4

Hag

\0 3)
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where the energies at the band edge are given by:

and

A

A

A
5 YY

the interaction terms are:
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~
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TI 4
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2 CoS Té&amp;
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B

“= Y3a «
0

(2.10)

(2.11)

(2.12)

In the above, o is the dimensionless distance from the zone edge («x

is the in-plane wavevector measured from the zone edge), a is the polar

angle about the zone edge, as shown in Fig. 2.3(a), a, = 2.464 , and

Cy = 3.35A. The values of the seven expansion parameters Yor vo oY 4

and their physical significance are listed in Table 2.1 [2] . The eig-

envalues of the SWMcC Hamiltonian [Eq. 2.3] give the energy disper-

sion relations. These energy bands are schematically illustrated in

Fig. 2.4. Note the previously mentioned band overlap in the E4 band,

which is responsible for the semimetallic properties of graphite. Using
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Table 2.1 Slonczewski-Weiss-McClure Band Parameters for Graphite

Their Magnitudes and Physical Significance [21

Band Order of Magni-
Parameter tude (eV)

3.16 + 0.05

J 39 + 0.01

0.020 + 0.002

1.315 + 0.015

~ J.044 0.024

J.038 + 0.005

- 0.008 + 0.002

 rr - 0.024 + 0.002

Phy 3 git

Overlap of neighboring atoms in a single

layer plane.

Overlap of orbitals associated with carbon
atoms located one above the other in

adjacent layer planes. Width of w-bands at
point K is 4y .

Interactions between atoms in next-nearest

layers and from coupling between =m and ¢ bands.

Band overlap is 2y, . Majority de Haas-van

Alphen frequencies determined by vy _.

Coupling of the two E_ bands by a momentum
matrix element. Trigonal warping of Fermi

surface is determined by «+.

Coupling of E, bands to E;, and E, bands by
a momentum matrix element. Determines inequal-

ity of K-point effective masses in valence
and conduction bands.

Interactions between second nearest layer

planes. Introduced in E_ and E, to be
consistent with E, in the order of the

Fourier expansion.

Difference in crystalline fields experienced

by inequivalent carbon sites in layer planes.
Volume of minority hole-carrier pocket
sensitive to A.

The Fermi level is measured with respect to

the H-point extremum (see Fig. 2.4) and
is fixed by the condition that the electron

density = hole density.
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the above model, good agreement is obtained for the effective

masses, carrier concentration, magnetoreflection results, and the

Fermi surface topology. The Fermi surface for pristine graphite

is shown in Figs. 2.3(b) and 2.5. The location of hole and electron

pockets is emphasized in Fig. 2.3, while Fig. 2.5 shows the trigonal

warping present in the Fermi surface because Y, # 0. An extension

of the SWMcC model has been made by Dresselhaus and Dresselhaus to

include the spin-orbit effect [33] .

The Fermi surface of the GIC extends to a much larger volume

of the BZ than inPristine graphite (next section). Also, the optical

properties of graphite include contributions from the energy bands

throughout the BZ; therefore, of particular interest is the extension

of the SWMcC model developed by Johnson and Dresselhaus [34,35], which

yileds the dispersion relations for the n-bands throughout the BZ.

This extension is based on using the symmetry properties of the Hamil-

tonian and developing a three-dimensional Fourier expansion for the

basis functions. Appropriate band parameters are evaluated for this

model by considering the Fermi surface data near the zone edge, the

optical data below 6eV, and the requirement that the dispersion relations

reduce to the SWMcC form in the vicinity of the zone edge HKH. The

above extension has been further developed by Dresselhaus and Leung to

obtain dispersion relations for the graphite intercalation compounds.

This will be explained in more detail in section 2.4.2 as one of the

models used to interpret the experimental results.
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IT-4. Effect of Intercalation on the Energy Band Structure and

the Models for the Fermi Surface of GIC

In treating the properties of the graphite intercalation com-

pounds, a strong similarity between the structural and electronic

properties of the GIC and the parent materials (graphite and intercal-

ant) is recognized [2]. The physical basis for this relation is clear:

in both graphite and the intercalant, the intralayer bonding is strong,

while the interlayer bonding between graphite-graphite and intercalate-

graphite layers is much weaker. In the case of dilute (high-stage)

compounds, where there are several graphite layers for one layer of

intercalant, the electronic structure can be expected to be dominated

by that of pristine graphite. In fact, even for the most concentrated

(stage one) compounds of lithium and potassium, the first-principle

calculations indicate a structure closely related to the graphite

r-bands [16-18]. The experimental results on the electronic properties

of GIC also support the idea that the graphite w-bands play a dominant

role in the electronic structure of the intercalation compounds [5-7,36].

The above introduction illustrates the importance of the pristine

graphite electronic structure for an understanding of the electronic

properties of the intercalation compounds. In sections 2.4.1 and 2.4.2

two models which are closely based on the graphite energy bands, are

presented. These models are used in Chapter VI to interpret the exper-

imental data.

2.4.1 The Dilute-Limit Model

The diTute-1imit model, which is based on the SWMcC graphite

m-bands, was originally proposed by McClure [21] to account for the

electronic properties of the graphite-bromine compounds. In this model.
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the basic structure of the r-bands is preserved and the effect of

intercalation is treated mainly in terms of a shift in the Fermi level.

In the case of donor intercalants (such as alkali-metals), the Fermi

level is raised to accommodate the additional electrons, while for acceptor

compounds, such as halogens and metal-halides, the Fermi level is lowered

to accommodate extra holes. The basic assumption made in this model is

that the electronic interaction between the intercalate monolayers and

the two adjacent graphite bounding layers is limited to interactions within

this sandwich. In other words, the intercalate layer is effectively screened

by the two graphite bounding layers, and hence the electronic structure of

the interior layers is basically graphitic. This assumption implies that

the validity of the dilute-limit model is restricted to the intercalation

compounds with stage index &gt; 4 or 5, and applies to the graphite interior

layers. The SWMcC band parameters(Table 2.1) can be modified in this

model for the intercalation compounds. However, the magnetoreflection

experiments [367 have shown that very small modifications are needed

and that the band parameters remain basically graphitic.

In the dilute-1imit model, the simplification Y, = 0 can be made

in the SWMcC Hamiltonian to obtain simple analytic forms for the energy

bands. Setting Y, equal to zero changes the topology of the Fermi

surface and the trigonal warping vanishes. The cross-sectional areas

of the Fermi surface, however, are approximately unchanged [37] and

thus Eq. 2.15 (below) is a good approximation for the actual cross-

sectional area which includes trigonal warping. With Y, = 0, the eigen-

values for the Hamiltonian, Eq. 2.3, are the four solutions:
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J 1s

_ 1 2 vo 172

E = »(E, + E.) * [7(E,- E,) + (vg Yr )o? ]

i : 2 2 5 %

S(E + E) + [4(E - E.) + (v, + v T) 04]

(2.13)

(2. 14)

The cross-sectional area for the Fermi surface (area perpendicular

to ky -direction) for electrons can be obtained from Eq. 2.13 by setting

E = E-. The result is given by

an (Em ERIE, - Ep)
A (8) = — To

3a, Yq (1 v

(7. 5)

in which v = 2(v,/v,)cos mg. To obtain the electron carrier density

n. (Eg), the above A. (€) can be integrated along k,:

Yl

R
- 1

Eg) = —— | A_(g) dFr mC, |, e §
, 16)

A similar expression can be found for the cross-sectional area of the

hole surface for acceptor compounds using Eq. 2.14 under the substitu-

tion E, » Ee , (1+v§ 5 (1-v). Dresselhaus et al [38] have used the

above expressions to plot the dependence of the extremal cross-sectional

areas of the electron and hole surfaces at K and H points and the

carrier concentration as a function of the Fermi level (see Figs 2.6

and 2.7). Once the position of the Fermi level (relative to the K-

point band edge) is found experimentally, from magnetoreflection or

Shubnikov-de Haas (SdH) experiments, for instance, then the above

dependences can be applied to the electronic properties.

The first model used in this thesis to interpret the SdH results

is based on Fig. 2.7, and the zone-folding effect due to the superlattice



-36-

a

|

\ HOLES

5x|0)20-

7

0

F
&gt;=
Te
I)
c
Q,)

oh

5
d

cH

ELECTRONS

/
;

—

om

-

 1 Nm
.05 -04 -03 -02 -O00 ©O O. O02 03 04 05

C_-E2 (eV)

Fig. 2.6 [38]

Based on the SHWMcC graphite rigid-band model, the

carrier density is plotted as a function of the

“fermi Tevel shifts relative to the graphite Fermi

level Ep where the electron and nold carrier densities

are equal.



-37-

\
K

ok

\

\ ACCEPTORS

ro—-~

ay

K point

H point

€ max POINT

DONORS

/
J

J
J

300+

\
a

g
O
fe

&gt; 2004
2
3

jo3 |

o
2

O00 +
ho
-

 TEN Xe eT
05 -04 -03 -02 -O0 O 01 O02 03 04 05

,,

Fig. 2.7 [38]

Shubnikov-de Haas frequencies (in Tesla) obtained from
the SWMcC model as a function of the Fermi level shift.

These SdH frequencies correspond to the extremal cross

sections of the Fermi surface around the K and H-points.

For a small range of (Ep ~ EZ), extremal Fermi surface

cross sections (dotted Tine) exist between K- and H-points
(0 &lt; £ &lt; 0.5)



-38~-

structure of the intercalation compounds (Chpater VI). Zone-folding

is a common technique applicable to crystals with a superlattice period-

icity. In zone-folding the dispersion relation E(k) for the host

material is folded into a Brillouin zone compatible with the crystal sym-

metry of the superlattice solid, Perturbation theory can then be applied

to account for the effect of the periodic potential. In appjying the

zone-folding technique to the graphite intercalation compounds, the

symmetry of pristine graphite structure is used as the approximate sym-

metry for the intercalation compounds, while the additional superlattice

periodicity due to the intercalant is treated as a perturbation. In the

case of graphite compounds, both the in-plane superlattice and superlattice

structure along the k, direction can be present and should be considered.

In the dilute-1imit model, the zone-folding along the k_-direction

is used to treat the effect of staging (superlattice structure along the

c-direction due to the intercalant). An example of such zone-folding for

a stage-4 compound [5] is shown in Fig. 2.8. The cross section of the

Fermi surface resulting from the graphite bands is sketched in Fig. 2.8(a).

The distance ar=2t- 2 is the height of the Brillouin Zone (see

Fig. 2.3). Here 10 = ° 6.70A is the graphite lattice constant

along the z-direction (see Fig. 2.1). The new zone boundaries indicated

by H are the result of the larger lattice constant I. for a stage- 4

compound (HH = or). For simplicity, it is assumed in this figure

that there is no stacking periodicity and that le = n*c, = 4*3.35 =

13.40A. In actuality, I. is intercalant-dependent and is not equal

to nx c. (See Fig. 2.2 for potassium compounds.)’

In the analyses presented in Chap. VI the measured I. values are
used. (See Chap. III for determination of I_.)
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In Fig. 2.8(b), the folding of the Fermi surface on to the reduced-

zone scheme is shown. The effect of the periodic potential due to the

superlattice is shown in Figs. 2.8(c) and 2.8(d) for the reduced and

extended zone schemes. The gaps that open up at the superlattice zone

boundaries as a result of the periodic potential modify the Fermi sur-

face as shown in Figs. 2.8 (c) and (d). The resulting Fermi surface

indicates that there are five extremum cross-sectional areas perpendicu-

lar to the c-axis (denoted by S1 through Sg) which should be observable

in the SdH experiment. This model was used by Tanuma et al [5] to

interpret the SdH results for a K-stage-4 compound and in Chapter VI

Tanuma's results will be discussed together with our results when use of

the model is made.

2.4.2. A Phenomenological Band Model for GIC

Although there are several first-principles band calculations available

for the graphite intercalations compounds, they all focus on stage 1 com-

pounds [16-18]. These stage-1 models have been applied to predict the

Fermi surface for these compounds; good agreement is obtained for C KIS].

The calculations focus on stage 1 mainly, because of the complexity of

the calculations, due to the large unit cell and the large number of orbi-

tals that are involved in the high stage compounds. As a result, no first-

orinciples calculations for high stage (n&gt; 2) compounds have yet been

carried out. However, some phenomenological models have been developed

[17,19,39] that do treat high-stage compounds. The model, developed by

Dresselhaus and Leung, [22] has the advantage that it can be applied



4]-

to any stage and intercalant, and therefore is especially useful for the

interpretation of experimental results. This model will be used in

Chapter VI to discuss the experimental SdH data.

A detailed presentation of this model is given by Leung [40], and

here only a brief summary of the model is presented. As mentioned before,

this model is also directly based on the graphite w-bands. It uses the

previously discussed three-dimensional Fourier expansion of the graphite 7

bands [35] and is thus valid throughout the Brillouin zone. The matrix

elements of the Hamiltonian in the Fourier expansion representation are

chosen so that the Hamiltonian is consistent with the restrictions imposed

by the crystal symmetry, and also that it reduces to SWMcC at the zone edge.

This Hamiltonian for the w-bands has the form:

Hy (KD =

an

* H H H
1B BB BB AB’

3 Mp Hp Hag

50 Higr  HAp Han

(2.17)

where the matrix elements are given in references [34] and [40].

To incorporate the effect of staging (superlattice along the z-direction),

zone-folding is used. The repeat distance along the c-axis, assuming

for the moment that the intercalate layer is indistinguishable from

graphite, is given by I. = nxC, Where Cy = 3.354. The zone-folded

Hamiltonian is therefore [22]:



LD-

_

Hy (kK) 0

 =&gt;

Heorded (Ks)
Nn

0 Hy (kK + 2G ;) (2.18)

2-1 7 2

Holket = &lt;2)

where 2 = (n+1)/2 for odd stages and (n+l) for even stages (stage = n),

and each of the Ho, blocks is a 4x4 SWMcC Hamiltonian given in Eq. 2.17.

The zone-folded Hamiltonian (Eq. 2.18) is transformed to a layer representa-

tion by a unitary transformation:

&gt; &gt; -

ayer (Fs) = UHe1ded (k JU 2.19)

so that the effect of intercalation can be considered explicitly. The

resulting Hamiltonian in the layer representation is written as

H T —

1ayartel

H

Al A,

H

AB.

Rn

AB.

H

B.B,

H

BA,

 3 a
o 1

Hy a

(2.20)

H

B, 1B,_-

where the blocks "nA. "8. "8,8; A. are 2x2 matrices and A, ,Bi

are layer subscripts. Note that, since the unitary transformation does

not change the eigenvalues of the Hamiltonian, the energy bands

obtained from Eq. 2.20 are jdentical to the SWMcC bands. The advantage

of having a layer Hamiltonian such as Eq. 2.20 is that the effect of
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intercalation can easily be incorporated by substituting matrix

blocks specific to the intercalant species in place of every (n+1)5t

graphite layer. The resulting Hamiltonian for odd stage n is:

(n)
atc

“(x ys,
H. H

XB BB H
o 00 BA

! T
H H H

XA. BoA AAq

 gi
XB.

A‘R

H.
7

(2.21)

where A» = (n-1)/2 and X denotes an intercalate layer. For the even

stage compounds, the Hamiltonian is:

gor 1) =

Hyx Hyg
0

" H

XB, B,B,

Ha a Hp x

LX Hyy xa

x8,

(2.22)

j“

1!
XB,,

]

A Ha JA \ J

A

B.B.

where pn = n/2 and v= (n/2) +



nl—

30— - “

p(2x2)
=r = - a

Cd \ /
\

r

[&gt;

dT

A Lf | )p ~ :

160 Aid
AL M I K H A T

p (2x2){60—

| \
\\

\ Cs |

oh 1»
BO" Fr K HH A T

p(2x2)

J

*16.0—

IN

_

&gt;&lt;od | | IN
BO MM © K H A °C

Sl

[&lt;—K

+10}
H—L

/
\

Sog— CI

Zs

Stage
or © {

7706
No

tol

\ 7
O—+

O.

—pp:

Oi
 Ny

Silage
2

- LJ

1

7

. 0 Stage
3

~-10¢ \

Figure 2.9 [40]

Electronic energy levels derived by k,-axis zone-folding of
the three-dimensional Fourier expansion of the pristine graphite
r-band Hamiltonian for a primitive (2 x 2) superlattice. An

empty intercalate layer is assumed and the expansion parameters
are based on the SWMcC parameters along the HK axis. On the

right, an expanded scale is used to plot the levels on and
near the HK axis.



4 5-

Empty Empty
[«—K H-—A r«- ¥ H—A

 wo} + +10

| \- /
5° Bog or

\ VU. : N/a,

Nate /
 ML/ } 10 \ t-10 4 \

STAGE STAGE 2

SoroR | /

\
\

1 +10 4
1/

As + +10 4

\-
% _

Wy

Nm3 |

ny

- ———— Figure 2.10 [40]
4

My a0 N-

STAGE 3

\
a +i A 4

\

\,

/

T—

fis fgg oo

STAGE 4

\*
+10 -

of

=
 aq

PR nerrrr——

E(K) for graphite intercalation
compounds along and near the edge
of the Brillouin zone. Bands

are for the "empty" intercalate

layer model with no graphite-
intercalate interaction.

For donor compounds, Er &gt; 0
and there are up to n For odd

stage) or 2n (for even stage)

electron pockets.

4

I, ~ -10 { WWW

STAGE 5
«+10 '

\}

Uris 4 -1.0 l “Wl

STAGE ©
+10

}
%

a—

\

\

Heusen:

deme

———di

»
iy

}-10 1 Wa
STAGE 7

[ Situ } 1.0 } Ww

STAGE B



lfm

An explicit diagonalization of matrices (2.21) and (2.22) can

be made to obtain the k-dependence of the energies (eigenvalues). For

the simplest case, called the "empty intercalate layer model", the

intercalate layer is assumed to be "vacuum" -- i.e., Hy = xa, = "xe, 0.

To distinguish between donor and acceptor compounds, interaction terms

may be introduced so that the intercalate layer is allowed to interact

with the graphite bounding layers. Plots of E(k) for different stage

compounds based on the empty intercalate Tayer model are shown in Figs.

2.9 and 2.10 [40]. Figure 2.9 considers explicitly the effect of an

in-plane superlattice and calculations for several different in-plane

superlattices show that the effect of the in-plane superlattice on

E(k) within ¥ 1 eV is very small and can be neglected. Figure 2.10

considers E(k) for a larger number of stages, but assumes no in-plane

superlattice structure. Once such plots are available, the determina-

tion of the Fermi surface is dependent only on one additional parameter,

namely, the Fermi level Er. Tne Fermi level can be determined either

from an assumed charge distribution in the graphite layers or from

experiments such as magnetoreflection, or -- if we are to fit SdH data --

we can set Ep such that the resulting Fermi surface cross sections match

the experimentally observed frequencies. The Fermi level is determined

from SdH data in this study (chapter VI).

For the donor compounds, Ep is positive and there are electron

pockets. Note from Fig. 2.10, and also from Eas. 2.21 and 2.22, that

there are 2n bands for odd stage and 4n bands for even-stage compounds.”

* The larger number of bands for even stages stems from the fact that,

because of the AB stacking (Fig. 2.2) present in even stage compounds,

the unit cell is twice as large as the one without AB stacking. Note also,
nowever, that the bands for even stage compounds are nearly degenerate in

pairs (Fig. 2.10).
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For donor compounds, half of these bands are completely occupied and

the other half may or may not be partially occupied. Thus, depending

on the position of E-, we can have up to n (for odd stage) and 2n

(for even stage) electron pockets, assuming one pocket per band.

Since Landau level extrema may occur at both the H and K points,

additional carrier pockets or Fermi surface extrema may occur. As

will be further discussed in Chapter VI, these numerous carrier pockets

give rise to a great number of Fermi surface cross sections (for high-

stage compounds), which is consistent with the many frequencies that

are observed experimentally.

II-5. Shubnikov.de Haas (sdH) Effect

The Shubnikov.de Haas (SdH) effect refers to the periodic oscillatory

behavior of the electrical resistivity as a function of Ho! (H is the

magnetic field strength). The quantization of the electronic energy

levels in the presence of a magnetic field results in magnetic-field

dependent oscillations in the density of states at the Fermi level.

These oscillations are responsible for the oscillatory magnetoresistance

as well as other quantum oscillatory phenomena such as the de Haas-van

Alphen effect (oscillations of the magnetic susceptibility Xas a

function of H). The oscillations are periodic in inverse field Hot,

at least in the high quantum number limit. The experiments based on these

effects areamong the most useful tools for probing the energy band

structure at the Fermi level of solids. They especially provide infor-

mation about the Fermi surface of metals, doped semiconductors, and

semimetals
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The quantum oscilatory phenomena for most materials are fairly

complicated if all details of the band structure are taken into

account [41-47]. However, starting with the simplest case of a free-

electron gas in a magnetic field, much insight can be acquired into

the nature of the phenomena, especially the origin of the periodicity

of the oscillations in Hl. The energy eigenvalues (Landau levels) for

an electron exposed to a magnetic field H along the z-direction are

given by [41,46]:

] i

E, = (n + 7) fw + (h2kz/2m*) 3 2 guH, n=0,1,2,... (2.23)

where m* is the isotropic effective mass ,w = eH/m*c is the cyclotron

frequency, k, is the wave vector in the z-direction, g is the spectro-

scopic splitting factor, and i is the Bohr magneton. According to

Fg. (2.23), as a result of the magnetic field, the electronic energy

levels are split into magnetic subbands separated by the amount fw.

In order to observe the discrete nature of the Landau levels, their

separation hw must be Targer than kgT (fiw &gt; kpT). Also, if the

electronis are to exhibit quantum effects, they must complete orbits in

k-space (in a plane perpendicular to the H field) before they are

scattered. This requirement can be fulfilled by the condition w_t &gt;&gt;1

where t is the relaxation time. The density of states per unit energy

and unit volume (neglecting spin) is found to be [41]:

&gt; 3flmax

je) = p(y (A) le2 I) r / | ~

TART =p LE - (n+5) fw ]7°

\ —
~~

4)
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where LI. is the quantum number for the highest occupied state.

Equation 2.24 implies that the density of states diverges whenever the

anergy is equal to that of a Landau level. This divergence, which is

due to neglecting the finite width of the Landau levels, vanishes if

the effects of collision broadening are included [41, 45, 46]. If wT

is large (1 &lt;&lt; wT &lt; ©»), then oscillations in the density of states as

a function of the magnetic field result. These oscillations have pro-

found effects on the scattering rate of electrons, and hence on the

transport properties. The physical origins of the oscillatory behavior

may also be grasped by the following considerations.

Suppose a solid with electronic energy levels filled up to the

Fermi level EF is placed in a varying magnetic field. As the magnetic

field is increased, the separation w, = e¢hH/m*c between the Landau

levels is also increased. In Fig. 2.11, the Landau levels corresponding

to two different magnetic field values H and H' are schematically repre-

sented by n and n' with H' &gt; H. We note that as the magnetic field

is changed from H to H', the Landau level n = 3 which was fully occupied

(because its energy is below Ec), is raised to n' = 3, which lies above

Er and thus cannot be occupied, Hence, the electrons occupying the

level n = 3 will have to redistribute themselves in the levels below

Ec. This emptying of electrons from high magnetic subbands into Tower

ones is not a linear function of H and is particularly rapid when a

Landau level passes through the Fermi level. As a result, there are

resonances in the electronic (and magnetic) properties, such as maxima

in resistivity, whenever the magnetic field values are such that Er
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Figure 2.11

Schematic representation of the Landau levels and the

Fermi level Ep. As the magnetic field H is increased, the

separation between Landau levels hog =  ehH/mxc

increases also. The passage of the Landau level n = 3

through Ep causes redistribution of the occupied states,
and hence resonances in the electronic properties.
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coincides with one of the Landau level extrema. If the field is swept

continuously then these extrema correspond to oscillations which are

periodic in Hot, with the period of oscillations given by:

7 1

Afr)
_ he 1 _ he 1 _ 2e 1 2me 1

mc E_ mC (h2k%/2m*) fic Kp hc A

(2.25)

In this expression, substitutions Ee = fike/ 2m* and A = rk are made

for the simplest model of a solid. A is the maximum cross-sectional

of the (spherical) Fermi surface. For a Fermi surface of general shape,

the above result has been generalized [47]. In fact, in the case of an

arbitrarily shaped Fermi surface, only the extremal cross sections con-

tribute to observable quantum oscillations and the effects of other

parts of the Fermi surface interfere destructively. Equation 2.25 can

therefore be written more generally as:

ly - 2Zre 1
A w) he Aaxtr. (2.726)

where Aaxtr is the extremal cross-sectional area of the Fermi surface

perpendicular to the magnetic field.

Relation 2.26 can also be obtained by quantitative and rigorous

calculations [41,45]. The result of such calculations for conductivity

in thd presence of a magnetic field can be summarized as [45.46]:

_ (1) (2)
I(H) = and. T oscil. t %oscil.

where ®band is the background magnetoconductivity which is proportional
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= (i)
to H i :

, and Ooscil. are given by:

(3) h %. r 2
J ~

oscil. -{ 2) y (-1) or rkgT/hw,) exp (22 ) cos(—g 7)
Sbgnd. EF Jv (2nr) Psinn(2n?rk T/he) oc fio,

2) (2.28)2 r 5

Joscil. [5] ) (-1) (2m rkgT/fw,) © (2 cos(prT 7)
Ibgnd. “FJ sinh(2n2rk T/ho) wote/ Me, 2,

(2.29)

The symbols in the above expressions are as referred to previously. The

collision time T. is in general different from the relaxation time [45].

We see that there are oscillations in conductivity as a function of H-

field ( w, = eH/m*c) due to the cosine terms, while their amplitudes

are exponentially damped by the sinh terms. The oscillations have har-

monics (r &gt; 1), but the amplitudes of the harmonics are also damped

exponentially. The period of oscillations (for the pth harmonic) can

be deduced from the argument of the cosine term as:

(eh/mc) ame 1 1
Period = TE fic r A

30)

which is in agreement with the result previously obtained from qualita-

tive arguments --- see Eq. 2.25.

In Eqs. 2.28 and 2.29 the effect of collision broadening at the finite

(non-zero) temperature T is taken into account by the exponential damping

factor. The collision time T, may also be written as (h/ kg T5) where

Th is called the "Dingle temperature". From the field dependence of

the amplitude of the oscillations, Tp (or 7.) can be measured experi-

mentally. Note that in order to observe the oscillatory terms in the
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conductivity, the damping terms must be reasonably small -- i.e.,

KpT &lt;&lt; ho and Ww Te &gt;&gt; 1, as mentioned previously. In order to

appreciate the magnitude of field intensity and temperature required

to satisfy these requirements, consider the following:

Ar

 ) H = 10 Tesla
=&gt;

‘T= 1°

heH
m*c

=

om /m 3x10" ey ~107° eV

Thus, we see that high magnetic field, low temperature are neces-

sary and small effective masses are advantageous for the observation

of oscillatory magnetoresistance.

To summarize, in the Shubnikov-de Haas experiment, the resistivity

of the material is measured at low temperature as a function of high

magnetic field, H. One can then relate the frequency(ies), or period(s)

of the oscillations (which are periodic in Ho to the extremal cross

sections of the Fermi surface perpendicular to H through:

(1) _ _2me (i) _ 12 (i)
Aextr. — fc Vsdh 0.9546x10 veg (2.31)

(1) 2 (iwhere Aaxtr. has units of cm ~ if Wi is expressed in Tesla.

Further information about the Fermi surface can be obtained by

studying the angular and temperature dependence of the SdH results. By

changing the direction of the field relative to the crystalline axes,

it is possible to map the shape of the Fermi surface. Figure 2.12 illus-

trates this point schematically. The temperature-dependent SdH measure-

ments are used to obtain the effective masses of the carriers at the
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Figure 2.12

A sketch of a hypothetical Fermi surface is shown, with

its extremal cross-sectional areas (shaded areas) perpen-
dicular to the direction of the magnetic field, H.

By performing the SdH experiment on the sample as the

angle 8 is varied, and relating the frequency(ies) of

oscillation to the cross-sectional areas all) (see

Eq. 2.31), one can study the topology of the Fermi surface.
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Fermi surface. To see this, consider the temperature-dependent terms

in Eqs. 2.28 and 2.29. Note that the amplitude of the oscillations

depends on temperature. For r = 1 (main frequency) the amplitude

goes as

bas « T exp(2m°kgT/fw_) = T exp(27
"

H)m*c/heKyTIT (2 2)

Based on Eq. 2.32, a common way to extract the effective mass m*

is to plot an Am as a function of temperature. Here, the amplitude

A must be measured at some fixed value of the field Hy for several

temperatures. According to Eq. 2.32, the resulting plot is a straight

line with the effective mass being inversely proportional to its slope:

nx on (H/T) he _ 12,

moc TT Zeke Ho = 7692 H, (2. -3)

where m, is the electron rest mass and S is the slope (Ais measured

in arbitrary units, while S is in ok! and Hy is in Tesla).

The above analysis leading to Eq. 2.33 assumes that the amplitude

A corresponds to oscillations of a certain single frequency. If oscil-

lations of more than one frequency are present, then the above analysis

should be done cautiously, since the measured amplitude is a result

of the interference of the oscillations of two or more frequencies.

These different frequencies correspond to different cross sections of

the Fermi surface and are likely to have different effective masses.
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This point will be discussed further in Chapter V, where the analysis

of data is presented.



-57~

IIT. SAMPLE PREPARATION

The starting point for these measurements was the growth and

characterization of the alkali-metal graphite intercalation compounds

(GIC). In section 3.1 of this chapter, details of the two-zone growth

process are discussed, while section 3.2 deals with the X-ray characteriza-

tion (0 - 20 diffractometer scans) of the intercalated samples.

[TII.1., Sample Growth

The samples used in this study were all grown using highly oriented

pyrolytic graphite (HOPG) as the host crystal. Blocks of HOPG were cut

(parallel to the c-axis) to the desired size [see Fig. 3.1(a)] using a

string saw. Once cut to the right a-plane dimensions, the blocks were

cleaved perpendicular to the c-axis to obtain thin (~ Tmm thick) samples.

They could then be made even thinner by peeling them using Scotch Tape

[Fig. 3.1(b)]. This peeling is essential when samples of high (a-palne)

resistance are needed. The thin and long samptes [type B in Fig. 3.1(b)]

were particularly grown to improve the SdH magnetoresistance signal-to-

noise ratio (Chap. IV) and are recommended for these measurements.

The two-zone vapor transport method [48-51] was used to grow the

samples. In this method, the intercalant and the graphite crystal are

heated in an evacuated ampoule to two different temperatures (Ty&gt; T:)

while they are separated in distance. In this study, one or more of the

nost HOPG crystals was placed at one end of a prepared reaction vessel

containing the alkali-metal in a sealed ampoule [Fig. 3.2(a)].

The vessel is then vacuum-pumped to ~ 10 millitorr and sealed at the

open end [Fig. 3.2(b)]. The break seal shown in Fig. 3.2(a) is then

broken, using a steel hammer. The reaction vessel thus prepared is put

in the furnace (Lindberg ). A coil (R~ 1009) powered by a variac
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Figure 3.1

HOPG blocks cut parallel to c-axis, using a string saw, are
shown in (a). These blocks were then cleaved perpendicular

to the c-axis and peeled to obtain very thin (~ 0.05mm thick)

samples (b). Type A and type B samples, which are referred
to in the text, are shown in (b).
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Schematic diagram of the system used for the preparation of alkali-metal
GIC.

a) The reaction vessel containing the alkali-metal at a sealed end.

b) The break seal is broken using the glass-encapsulated steel
hammer after the reaction vessel is evacuated.

c) Position of the reaction vessel in the furnace.
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is used as the hot zone ( ~ 500°C), while the main furnace js set for

~220-320°C depending on the stage of the sample. The position of the

ampoule in the furnace is shown in Fig. 3.2(c). Three thermocouples are

used: Cy adn TC, monitor the temperatures of the graphite host crystal

Ty and the intercalant metal, Tis respectively. The third thermocouple

TC, also reads the hot-zone temperature, and together with a temperature

controller (Omega) work as the feedback to the variac.

The samples were prepared by keeping Tq constant ( ~ 500°C) and varying T,

for different stages. Over 20 samples (K and Rb) were made (2 &lt;n £ 8)

using this method. The main parameter which determines the stage is the

temperature difference AT = Ty - Ts, with Targer AT resulting in higher

stage. Other important parameters are ampoule and sample shape and size,

while Tess important is the amount of alkali-metal in the ampoule (as long as

this amount is larger than the minimum amount needed for a desired stage.*)

The time needed for the intercalation process is only a few hours; however,

as a matter of convenience, samples were usually left in the furnace over-

night, hence the times used were 12-24 hours. In Table 3.1, the growth

parameters for some of the typical samples are given. It must be empha-

sized that these parameters should be used only as guidelines in growing

samples. During this study, in numerous cases when the right AT for a

given stage n was used, the sample turned out to be a stage n sample mixed

with either stage n-1 or n+l. In such cases, it is possible to put the

reaction vessel back in the furnace and raise (when mixed with n-1) or

lower (when mixed with n+l) AT, to obtain a single stage sample. A

 Since alkali-metals, especially potassium,attack glass when in the
vapor phase, it is necessary to start with more alkali-metal than

reeded. In this study ~.1 gram was used for each ampoule, which was

sufficient for intercalating up to 3 samples of mentioned sizes (n &gt; 2).
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Sample Type Intercalant To(%C) T;(°C) ATCC) Time (hrs.) Stage

K02.Y10 A 469 319 150 2

K02.Y13 A 510 339 171

K0O2.Wi4 B 488 323 165

K02.Y14 B 500 305 195

K02.Y15 B 486 300 186

K0O3.Y05 A

KO3.W15 B

K03.Y1l6 B

KO4.W04 A

KO4.W1l6 B

K05.Y03 A

KO5.W1l7 B

RO2.W08 A

RO4.W09 A

RO5.W09 A

RO8.Y01L A

rd

7

KK

Z

Rb

Rb

Rb

Rb

493 277

502 271

494 262

216

231

232

466 235 231

486 247 239

481 230 251

475 234 241

450 261

476 225

470 200

505 140

189

251

270

365

19

48

18

18

17

16

17

36

24

1

24

&gt;]
Ph

4

)

u*
of

*Same sample put back in the furnace.

Table 3.1

Reaction times and temperatures used for growing various

compounds. Types A and B refer to the dimensions shown

in Fig. 3.1(b).
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detailed example of such a process is shown in Fig. 3.8.

Figures 3.3 and 3.4 summarize the temperature differences used

to grow samples with different stages. Included in these figures are

the data of D. E. Nixon [48] and C. Underhill [51] who used a similar

method. The lines through the experimental points indicate that a

given stage (especially n € 5) can be prepared for a range of AT values.

Figure 3.3 also indicates that, for a given stage, AT is larger for

type B samples.

One general comment about sample growth is that, since growing

single-stage samples is a time-consuming process, it is useful to start

with two or three host crystals in the reaction vessel. This was done,

especially in the case of type B samples, and proved to be very effic-

ent

III-2. Sample Characterization

In order to characterize the graphite intercalation compounds, several

techniques, such as weight uptake, visual inspection, chemical analysis,

X-ray diffraction and electron microscopy are used. For qualitative

information, sample color (observed by visual inspection) and weight up-

take (change in the weight of graphite crystal upon intercalation)

can be used. In the case of alkali-metal GIC's, a yellow or gold color

is characteristic of stage 1, steel blue for stage 2, dark blue for

stage 3, and graphite metallic for higher stages [49, 52]. Visual

inspection, however, is not capable of identifying mixed-stage samples

and samples of stages higher than 3. The weight uptake measurement

orovides information about the sample stage if a chemical formula is
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Isobar diagram showing 1/stage versus temperature difference
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rubidium compounds.
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known for the compound. However, because of sample inhomogeneity and

the presence of intercalate vacancies/accumulations in preferred crystal

defect sites, this information is only qualitative. X-ray diffraction

measurements,ontheother hand, give quantitative information about the

stage as well as the in-plane structure of the compounds.

Since the reported results on the Fermi surface of Potassium-GIC

[5] indicated a significant stage-dependence for the Fermi surface, it

was necessary to grow and preserve single-stage samples for these

measurements. Hence, X-ray diffraction using (00%) reflections was

used for accurate determination of the stage of the samples.

Figure 3.5 shows the system used in this study for the X-ray measure-

ments. The position of the sample in the X-ray beam is shown more clearly

in Fig. 3.6. The incoming X-ray beam makes an angle (8) with the c-face

of the sample. The detector is rotated in such a way that it always

makes angle 20 with the incoming beam (6-28 diffractometer). The X-ray

diffractogram is obtained by scanning angle 8 (usually from 1° to 40°)

and recording the output of the detector. The stage index can be found

from Ic, the intercalate (c-axis) repeat distance (see Fig. 2.2), which

is itself determined from the diffraction angles 8, for the (002)

diffraction peaks. The angles o, are given by Bragg's law:

2A = 21 Sin 8, &gt;

where &amp; takes positive integer values and x is the wavelength of

the X-ray beam. Molybdenum-Ko radiation was used so that the X-ray

absorption by the glass encapsulating the samples is minimized. As

shown in Fig. 3.5(b), the Si(Li) detector is sensitive to the continuum
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X-ray system for (00%) diffractometer scans. Ky, radiation from

a Mo X-ray source is incident on the sample and the diffracted beam

is detected by a cooled Li-drifted detector. The detector permits

high resolution energy discrimination of the diffracted beam. The

energy windows of the single-channel analyzer are set so that only

signals corresponding to Kyi and Kyo radiation are processed.

The multichannel analyzer is used for data acquisition of (00%)

diffractograms [50].
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Geometry for measurement of X-ray (002) reflections

from intercalation compounds based on single-crystal

and highly oriented pyrolytic graphite host materials.
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of energy radiated by the Mo source. A single-channel analyzer works

as the energy window, and when properly set, singles out the Ka radia-

tion ( A =0.7107A)%. The multi-channel analyzer shown in Fig. 3.5(b)

is used to make several measurements such as © - 26 scans or the integrated

intensity measurements. Examples of 8 - 28 diffractograms are shown in

Fig. 3.7 for potassium compounds of stages 2, 3, and 4.

Previous work [50,52,54] as well as present work has shown that

graphite interlayer separation is essentially unaffected upon intercala-

tion. Thus, the stage index n is found from the relation:

I = nc, + d = (n-T)e, + de,

where &lt;, is the distance between adjacent graphite layers, and de =

Co + d, is the distance between two graphite bounding layers. Analysis

of (00%) diffractograms have shown also that dg and c, are essentially

independent of stage for a given intercalant [48,52,54].; Co remains

equal to 3.354 (as in pristine graphite) and de is 5.35A for potassium

[48] and 5.65A for rubidium [1,2,51]. With this information, the expected

positions of the X-ray diffraction peaks for different stage compounds

can be predicted. Using the above values for Co and d. and A» = 0.7107A,

we have listed the 2 8, angles for several &amp; values in Table

3.2 for graphite-potassium compounds of several stage indices.

he
oO oO

Molybdenum in fact has Ka, (A =0,70930A) and Ka, (A =0.71359A)
radiation. The value A 0.71074 is the weighted average of the two

wavelengths [53]. Diffraction peaks corresponding to these two wave-

lengths can sometimes be resolved at high 8, angles.
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P

K-Stage-3 K-Stage-4

2 0p (Degrees)
Obs. Calc. Obs. Calc. Obs. Calc.

(0.10°) 0.10) (0.10%)

K-Stage-2

4.64

9.35

14.08

18.85

24.60

28.39

4.68 3.38

9.37 6.77

14.08 10.16

18.81 13.55

23.57 17.02

28.37

2.66 2.64

6.76 5.31 5.29

10.15 7.99 7.94

13.55 10.60 10.59

16.96 13.28 13.25

20.38 15.92 15.92

23.83 18.61 18.59

27.29 21.27

23.97

23.86

27.24

Table 3.2

Comparison between observed and calculated 2 ©p

angles for K-GIC (stages 2,3,and 4). The very

good agreement indicates that the assumpitons

nade in the calculation of 26 (c, =3.35A and

14=5.35A, both stage-independent) are valid.
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For comparison, the peak positions (2 6,values) observed for some of

the samples are tabulated together with the calculated values (Table

3.2). The very good agreement between the observed and calculated

angles indicates that the assumption is indeed valid that the d. and

Cy values are stage-independent and are equal to the above-mentioned

values.

The structure factor analysis shows that the index ¢ of the

reflection with maximum peak intensity (002) for K and Rb compound of

stage n is given by 2 =n +] [54]. Also, the separation between con-

secutive peaks increases with decreasing stage.

To obtain accurate X-ray data, sample alignment is critical.

fast method for aligning the sample is as follows:

a) Initially, place the sample at the goniometer head (Fig. 3.5)

such that the c-axis is parallel to the horizontal plane and

A

is also perpendicular to the beam when 8 = 0°. Visual alignment

is sufficient at this step.

Set 28 to~13 ° (maximum intensity of the envelope function)

and maximize the reflected beam (detector output) by using the

D)

goniometer to rotate and translate the sample. Thus, the main

(00g) peak can be roughly found.

Once this peak is found, a fast scan for angles 20 &lt; 13° canc)

be taken and the stage of the sample can be determined by

either counting the number of peaks below the main (002) one,

or by measuring the separation between two neighboring peaks

(Table 3.2)
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d) Now 20 can be set exactly equal to the 20 angle for the

given stage (Table 3.2 &gt; £5 ) and the sample can be realigned

using the goniometer so that the main peak appears precisely

at this 20. A new and accurate diffractogram can now be

obtained.

a! Finally, the position and width of the peaks can be measured

and compared to the calculated/expected values; thereby it can

be judged whether the sample is single-stage or consists of

mixed stages.

Note that in Fig. 3.7, the full widths at half maximum (FWHM) intensity

for the intercalation compounds are roughly equivalent to those of pristine

graphite. Typical FWHM values for the most intense (002) peaks are ~ 0.2°

to 0.3°. In the case of samples of mixed stages, the X-ray diffractograms

show a superposition of the (00%) peaks for the two stages present in

the sample (Fig. 3.8), but these peaks are usually broadened relative to

those from a single-stage compound. The existence of such fairly well

defined patterns is compatible with the presence of macroscopic regions that

exhibit stage n and other macroscopic regions with different stages (n+l or

n-1).

The X-ray (002) diffraction measurements can provide more information

than just the stage of the sample. For example, the intensities of the

peaks, using structure factor analysis, provide detailed information about

the internal structure of the intercalate layer [54]. In this work however,

the X-ray technique was used mainly to determine the stage of the sample at

different steps of the experiments. No strong correlation was found between
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the quality of the X-ray traces, such as the width of the peaks, and

the SdH periods for single-stage compounds. However, the SdH oscilla-

tions were usually very hard to observe for samples of mixed stages, and

single-stage samples were needed to give good SdH results.
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IV. DETAILS OF THE SDH EXPERIMENT

In this chapter the details of the SdH experiment will be presented.

In section 4.1, we will explain how the leads were attached to the sample

for the electrical resistivity (P) measurements. Section 4.2 illustrates

the geometry of the experiment and the last section deals with data

acquisition and analysis.

[V-1T. Mounting the Sample

In order to do the resistivity measurements, the four-point probe

method was used. In this method, four leads are connected to the corners

of the sample and the voltage drop across two of these is measured, while

a current flows through the other two [Fig. 4.1(a)]. This method is not

the most suitable one for resistivity measurement of highly anisotropic

materials and corrections have to be made to obtain correct values of

the resistivity and Hall tensors [55,56]. In the case of the SdH exper-

iment, however, the anisotropy of the solid, or the non-uniformity of the

injected current, pose no problem - since we are interested only in the

change in conductivity as the magnetic field is varied; neither the

uniformity of the current nor the anisotropy of the material is a func-

tion of the magnetic field.

Because of the instability of the alkali-metal samples in the pre-

sence of the air and moisture, the samples had to be handled in a dry

box (Argon filled with &lt;1 pmm oxygen content). Since this handling in

the dry box was physically the hardest, as well as the most crucial

step of the experiment, a detailed description of this aspect of the
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experiment will be presented here.

Usually, on the day before the experiment, two or three reaction

vessels containing grown samples were transferred to the dry box.

Small boards [Fig. 4.1(a)] with contact posts and wires attached to

these posts were prepared in advance and transferred to the glove box.

(Contact posts were made by printed circuit techniques.) The magnet

wires (Belden Co., 32 AWG HVY Polythermalize, No. 8068) used were

tightly wound in pairs to minimize magnetic flux linkage, and thus

reduce the pickup noise during the SdH experiment.

The ampoules were broken inside the glove box and samples were

secured in their positions on the boards, using a very small amount

of vacuum grease. The leads were then brought in contact with the

corners of the sample and conducting epoxy (Eccoband Solder 56C with

Catalyst 9, purchased from Emerson and Cuming, Inc., Canton, MA) was

used to attach the leads [Fig. 4.1(a)]. The contacts made by this

apoxy proved to be ohmic and much stronger than those made at the

earlier runs of these experiments, when silver paint (DuPont, compo-

sition No. 4929) was used. Leads attached by silver paint tended to fail

and usually broke when the sample was cooled down to liquid Helium

temperature, and subsequently brought back to room temperature.

Recycling the temperature very rarely caused a problem when the

above conducting epoxy was used.

The mounted sample was then inserted inside a rectangular (3 x 9mm ID;

1 mm wall thickness) rectangular ampoule, sealed at one end, very care-

fully; then the ampoule was sealed off, using epoxy (Stycast 2850F, with

catalyst 9), while it was placed in a stream of He gas. This partial
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filling of the ampoule with He gas was used as a means of heat exchange,

since the ampoules were to be immersed in a liquid helium bath.

Stycast, although a very good sealant for glass at room temperature,

is not a perfect seal under temperature recycling. Cleaning the glass

ampoule with trico and acetone before using Stycast proved helpful in

retaining the seal.

The sealed ampoule was left inside the dry box for the conducting

epoxy and sycast to cure (about 12-18 hours). A sketch of the encapsulated

sample, with contacts attached and ready to be mounted on the sample holder,

is shown in Fig. 4.2.

Although simple in principle, the above procedure proved to be the most

crucial, as well as the most painstaking, step of the experiment. Working

in the dry box for four or five hours can be very tedious and frustrating.

Some brief hints which are results of the author's experience after

repeating the above stps over 10 times follow:

a) Use flexible holding jigs (Edmund Scientific Co., Barrington, NJ)

inside the dry box. As many as six hands are needed there -- and

you have only two!

Plan to work inside the dry box as little as possible. Prepare

the leads such that minimum changes in their position and

length are needed inside the box.

c) Since the pot-life for stycast is about two-three hours, either

orepare it in advance (mix it with catalyst) or use a hot-air

blower to heat it for a few minutes. (After mixing with catalyst

but prior to applying it to the ampoule.) Once heated, it will
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Sketch of the encapsulated sample with contact leads

attached and ready to be mounted on the sample holder

for the magnetoresistance measurements.



-80-

harden very fast ( ~ 30 minutes), and it takes only a few

hours to cure.

1) Leave the sealed ampoule in the He atmosphere overnight. Helium

diffuses through glass easily. The antechamber of the dry box

can be filled with He and used to store the ampoules while the

Stycast is being cured. At other times, use a He-filled dessicator

to store and transfer the samples.

In general, with good timing and calmness, the time spent working in

the glove (dry) box can be cut down to one and one-half hours (for mount-

ing two or three samples). This is important, because even though the dry

box contains less than 1 ppm oxygen, the samples, especially low-stage

compounds, are not stable in it for long periods of time such as 12 hours.

As for the sealant, stycast was the best material available with the

desired properties - i.e., endurance when recycling the temperature, and

curing at room temperature (the alkali-metal graphite compounds cannot be

heated to high temperatures). However, it was noted that Stycast reacts

with the samples, especially when near them. This reaction was particu-

larly notable for concentrated samples (stage £3) and resulted in dis-

coloration of the sample surface. However, the X-ray traces, even in the

case of discolored samples, showed no change, in most cases. Hence, it may

be concluded that Stycast has little effect on the bulk of the sample.

In order to ensure the stage fidelity of the samples (002) X-ray

diffractograms were taken at different steps of the experiment. Examples

of such traces are shown in Fig. 4.3. This figure shows X-ray profiles

For a K-stage-4 sample when it was still in its original reaction ampoule
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X-ray traces for a K-stage-4 sample before (a) and after (b) the SdH

experiment. The position of the peaks and their linewidths are indica-

tive of a K-stage-4 compound. The difference in relative intensities

of peaks is related to the geometry of the glass ampoules encapsulating
the sample.
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(a), and after the SdH experiment (b). The position of the peaks and

their linewidths are characteristic of (single-stage) potassium-stage-4

compound. The change in relative intensities of the peaks, especially

the attenuation of the (009) peak, can be related to the geometry of

the glass ampoules containing the sample: the ampoule used in trace (a)

was made of a thin cylindrical tube, while in (b), rectangular tubing

was used.

In numerous cases, when a sample of stage n, but containing a slight

amount of stage n+l was mounted, traces taken after the experiment showed

that the sample had entirely changed to a pure stage n+l. In general,

starting with a compound of single stage (n &gt; 1), this encapsulation tech-

nique is capable of preserving the stage of the sample. If a compound of

mixed stage is used, however, it is very likely that it will change toward

the higher stage. In this thesis, unless explicitly stated otherwise, the

reported results correspond to compounds whose stage identities were deter

mined to be the same both before and after the SdH experiment.

IV-2. The SdH Experiment

The resistivity measurements were made at the Francis Bitter National

Magnet Laboratory for the field range 0 &lt; H &lt; 15 Tesla and at Tiquid Helium

temperature (4.2°K). In most cases, pumping on liquid He was used to get

to Tower temperatures(1.4 to 4.2°K).

The position of the sample in the magnetic field is shown in

Fig. 4.4. Initially, with the c-axis of the sample parallel to the H-field

constant-current I (~ 20 to 80 mA) flows through the current contacts A
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For angular dependence measurements, the sample is rotated

around AD so that the c-axis of the sample makes an angle ©

with H. Since H 1 1, transverse magnetoresistance is

measured.
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and D while voltage Vaeo which is proportional to the electrical

resistivity, is measured across the other two contacts. By rotating

the sample around the AD axis, the angular dependence of the SdH oscil-

lations is measured. ©@ is the angle between the c-axis and the H-field.

Note that with this geometry, H is always perpendicular to AD, and hence

transverse magnetoresistance js measured. The sample holder used in

these studies was generously donated by Dr. L. Rubin of the Magnet Lab-

oratory, and was rewired and slightly modified by the author. The

modification made it possible to mount up to three samples at one time,

and hence much time and expense was saved.

At the beginning of the experiment (with zero field), the contacts

were checked to be ohmic. This check of contacts was done at both room

temperature and at 4.2°K. The I-V relation was in most cases linear for

currents of up to about 200 mA. The resistivities estimated from the

slops of the I-V lines were, in general, in agreement with published

values [ 1,2]. Resistivity dropped by a factor of 5 to 20 when the

sample was cooled from room temperature to 4.2°K.

It must be emphasized that measuring the absolute resistivity of

the material was not the aim of these experiments. As mentioned in

section 4.1, the above method is not suitable for such measurement and

the results should be considered only as an order-of-magnitude estimate

of resistivity.

The magnetoresistance measurements were made using both DC and AC

techniques. The emphasis was on the oscillatory part of the resistance,

rather than the background magnetoresistance. In both dc and ac methods,
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constant current I flows from A to D within the a-planes of the

sample (Fig. 4.4). Figure 4.5 shows the dc setup. The voltage Vpe is

measured directly and recorded after amplification (Keithley precision nano-

voltmeter No. 140) as the magnetic field is swept continuously from high

to Tow field (~ 15 to 0 Tesla). A typical trace corresponding to a K-

stage-5 compound is shown in Fig. 4.6. The magnitudes of the signal

and oscillations are very typical (20-100 u¥ for a current of ~ 40 mA)

of the results that were obtained. The setup for the AC magnetoresistance

technique is illustrated in Fig. 4.7.

The sample geometry and the constant current applied to the sample

remain the same. Superimposed on the sweeping field, however, is a small

sinusoidal magnetic field. The output signal Vgc which is proportional

to the derivative of the electrical resistivity with respect to magnetic

field (3p/3H), is detected by a lock-in amplifier (Ithaco Dynatrac 391A).

An oscillator (GenRad. 1310-B) and a frequency divider provide a stable

7.5Hz modulating signal to drive the oscillatory part of the sweeping

field as well as the reference to the lock-in amplifier. The frequency

divider, which divides the 60 Hz line frequency by 8, is essential in

procuding stable modulation. In choosing the magnitude of the modulat-

ing signal, care should be taken: the magnitude must be large enough to

produce a reasonable signal, yet it has to be sufficiently small not to

lose the fine structure of 3p/58H. A typical amplitude for the modulation

field was ~1000-2000 Gauss (0.1 - 0.2T). Figure 4.8 shows the signal

obtained using the AC technique. Note the absence of the large magneto-

resistance background present in Fig. 4.6. This is due to the fact that

the AC signal is effectively the derivative of the DC signal. When
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the power spectra* for the DC and AC signals are compared (Figs. 4.9

and 4.10), we note that some of the fine structure of the DC spectrum

is lost in the AC case, perhaps due to overmodulation (compare Figs.

4.9 and 4.10). In one case, modulation of the current I (Fig. 4.3) at

a frequency of 500 Hz was used instead of field modulation. This technique

did not improve the signal to any large extent.

The temperature-dependent measurements were made using another

sample holder available at the Magnet Laboratory. Using this fairly sophis-

ticated sample holder [57] one can attainany desired temperature (between

4.2 and ~40°K) with an accuracy of AT/T £ 0.1%. The position and

orientation of the sample cannot be changed, once it is mounted onto

this sample holder; nor can the sample be encapsulated easily.

The presentation in the previous paragraphs about making the magneto-

resistance measurements also applies when using this sample holder, with

the additional constraint that, in order to avoid heating the sample,

small current ( ~ few mA) should be used.

In general, one of the major sources of noise in these measurements

is the current induced in the four contact wires attached to the sample.

In the DC case, the large magnetic field varies only slowly, however,

the sample and the leads vibrate a great deal because of the vibrations

of the magnet due to the water-cooling hoses. In the AC case, some of

the noise due to vibrations is reduced; however, the modulating magnetic

field passing through the wire loops varies much faster. To deal partially

with this source of noise, which is common to both methods, the lead wires

were tightly twisted in pairs to minimize the Toop area, and hence the

Details concerning data processing and the taking of the
Fourier transforms will be discussed shortly, in the next section.



320.

324.

FOURIER TRANSFORM (POWER SPECTRUM)

Sample K05.Y03 Potassium-Stage-5

g= r°

788.
rN

 mn
So

&gt; 62d. -
3

1
X
L
a

58a.

400.ho

a

0
z

-
2.

z
mec]

3024. L

2083.

| AA.

 |

™

|

10101.

||

giz

SDH FREQUENCY (TESLAY

Sao 40.

F-A  AN

SAA

—

Figure 4.9

Power spectrum of the resistivity Posi]. Versus H™! corresponding to Fig. 4.6. The fine structure

(multitude of frequencies) present in Fig. 4.6 is made evident in this spectrum.



.

ad

 aA

pr

ra.

0

=
J

 1

4200.
]
}

T
L,
T 320.

ay

1 2000.

1

&lt;
bf 18483.

ey

|

uy 100.

IN

200, 30a. 433.

30H FREQUENCY C¢TESLAS&gt;

wo

SARA. HAD.

Fig. 4.10

Power spectrum of 3p/9H vs Ho? (see next section) corresponding to AC signal of Fig. 4.8. This should

oe compared to Fig. 4.10 which is the power spectrum of the DC signal (Fig. 4.6). Some fine

structure has been lost, especially at the higher frequencies ( ~ 450 T).



NT

induced currents.

The output signal Veo as mentioned before, was usually in the

range 20-100 pV. For a water-cooled magnet, and with the geometry of

the experiment, signals less than a few uV are comparable to the

noise level. It is thus desirable to have large signals. One way to

do this is to increase the resistance of the samples.

The recently grown samples which had dimensions ~3 x 15 x .05 mm

proved to be very suitable for this experiment: at zero field and

4.2°K, with a current of 40 mA, they produced signals as large as

% 50 uV. Hence, this sample shape is recommended for this experiment.

[V-3. Acquisition and Reduction of Data

It was stated in section 2.5 that the oscillatory behavior of the

magnetoresistance is periodic in 1/H. It is evident from Figs. 4.6 and

4.9 that these oscillations occur at many frequencies and that there is

also fine structure. Thus, in order to extract the details of these

profiles, it was necessary to use a computer for the acquisition and

processing of the data. Data processing, in brief, consisted of invert-

ing the H-field and taking a Fourier transform (power spectrum) of Poscil.

or 3p/3H) vs 1/H. Details of data acquisition and processing will now

be presented.

To take the data, the signal Vac and the voltage proportional to

the magnetic field were digitized and recorded in pairs on floppy disks

using a MINC 11/3 (Digital Equipment Corporation) computer. When equip-

ment was available, the experiment was performed on two samples simultan-

eously; in this case, triplets of numbers (Field, vil), v2) ) were

recorded. The programs used for recording data DVM] and DVM2 are
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modified versions of the program RMDVM written by D. Nelson of the

Magnet Laboratory. In most cases, 3000 pairs (or triplets) of data

were taken at the rate of 10 pairs per second (magnetic field was

usually swept in five minutes). If needed, the magnetic field could

have been swept more slowly, and also more data points could have been

recorded, but this was rarely necessary.

Once the data acquisition was complete, a FORTRAN program,

was used to analyze the data. SDH does the following:

a) Reads data pairs [Fig. 4.11(a)]

b) Subtracts the background magnetoresistance to find the oscilla-

tory part of the data, Poscil. This is done by least-square

fitting of a first-or second-degree polynomial (at a H + aH”)

through all data points, and subtracting this polynomial (point

by point) from the data.

Samples the resistivity values as a function of uniform

inverse magnetic field. The data thus obtained are (proportional

-)

to oscillatory) resistivity vs (uniform) 1/H. A plot of data

(Poscil. vs 1/H) at this stage of the analysis is shown in

Fig. 4.11(b); here the sinusoidal oscillations, as well as the

beat frequencies, can be clearly seen.

Pads the data obtained in part (c) with zeroes to make the number

of points equal to a power of two (usually 2" = 2048 points).

This is required by the Fast Four Transform (FFT) algorithm.

d)

Tha ELT cithiatidama tiamad 2a NEAL. ETRE MAA —~ 3 0 -

ine Fri suoroutine used is DEC's FFTM.MAC. Zero padding also

allows one to obtain a better resolution in the power spectrum.

More about zero-padding and the Discrete Fourier Transform (DFT)
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a)

will be presented in Appendix A.

Fourier transforms the data in (d), squares the real and the

imaginary parts of the DFT, adds the squares and records the

sums as the power spectrum points. A plot of such a power

spectrum is shown in Fig. 4.11(c).

The basic structure of the program SDH should be clear from the

above description. Most of its parts are straightforward. When invert-

ing H and obtaining p vs uniform 1/H, one should be careful, since

writing an efficient program that does this is somewhat tricky! To

obtain spectra with good resolution (1-2 Tesla), zero-padding (see

Appendix A) is usually necessary.

Note in the spectrum of Fig. 4.11(c) that, since the data in

Fig. 4.11(b) are periodic as a function of 1/H, then the frequencies of

oscillations have units of H; i.e., Tesla. Also note the structure of

this spectrum, and also that the low- and high-frequency oscillations

differ in several respects. The high-frequency oscillations, which cor-

respond to large cross sections of the Fermi surface, have larger

(cyclotron) effective mass associated with them. They are smaller in

amplitude, and they are also attenuated more rapidly at lower fields.

This is an expected feature of SdH experiments (section 2.5). The next

chapter deals with the general and specific features of these spectra.
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V. EXPERIMENTAL RESULTS

Chapters V and VI deal with the presentation and analysis of the

experimental data. In both of these chapters we first focus on a specific

sample (potassium-stage-5) and treat it in much detail. A summary of the

results for the other compounds then follows. In section 5.1 of this

chapter, the Shubnikov-de Haas (SdH) results and their angular and temper-

ature dependence will be presented for a K-stage-5 sample. Section 5.2

gives a summary of the SdH results for potassium and rubidium compounds.

In the last section, 5.3, some brief comments are made about the general

features of the results for the different compounds.

V-T. Results for a Potassium-Stage-5 Compound

In this section, the SdH results for a K-stage-5 sample (namely,

sample K05.Y03 in Table 3.1) are presented. This sample is chosen for a

detailed presentation because the SdH experiment was performed on it

twice (with new sets of leads and encapsulation for each run) and both

the po vs H data and the power spectra for the two runs were practically

identical. Also, when the SdH experiment was done on another K-stage-5

sample, there was again no notable difference between the results for the

two stage-5 samples. Moreover, because of the higher stability of the

K-stage-5 compound, compared to the compounds of lower stage, the SdH

oscillations for this compound were observed more reproducibly. Finally,

this is the compound for which the angular dependence data are most com-

plete and accurate.

|md Q T a += LA ~~ Ls var SN Mmm oY +FAavanc a ~+ Val Th! ~ £m + ar
Figure 5.1 shows the transverse magnetoresistance results for this

K-stage-5 sample at 1.42°K and 0 &lt; H &lt; 14 Tesla for 6 = 0°,10°,20°,30°,

10°, 45°, 55° and 65°. Recall from Chapter IV that 8 is the angle between
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Figure 5.1

The transverse magnetoresistance results at T = 1.42°K for a potassium-stage-5 sample.

(a) through (h) show the magnetoresistance data as a function of angle 8, where 8 is

the angle between the c-axis of the sample and the direction of the magnetic field.

Note that as 6 is increased, the amplitudes of the oscillations (especially those with

high frequencies) are attenuated.
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the magnetic field tand the c-axis of the sample (Fig. 4.4). The power

spectea of the p vs 1/H data corresponding to some of the traces in

Fig. 5.1 are shown in Fig. 5.2. Some features of these oscillatory mag-

netoresistance data, which are also common to other compounds studied in

this thesis, can be easily seen from Figs. 5.1 and 5.2. In general, in

the SdH experiment, the high-frequency oscillations are weaker in ampli-

tude than the ones with smaller frequencies. This is because the larger

frequencies correspond to larger cross-sectional areas of the Fermi

surface (section 2.5) and the (cyclotron) effective mass m* (in an orbit

containing the cross-sectional area A) defined by:

GE)
m* = 5 oF (5.1)

is heavier for the larger areas. Note from Egs. 2.28 and 2.29 that the

oscillations in resistivity are more heavily damped with increasing m*.

This effect can be seen in Figs. 5.1(a) and 5.2(a), which show, for

example, that the «450 Tesla frequency is small in amplitude and also

dies out at the lower field values much faster than the small-frequency

oscillations, such as the 24-Tesla frequency oscillation.

Another important feature is that as the angle 8 is increased, the

frequencies of the oscillations shift toward higher values, while their

amplitudes are decreased. One can see in these two figures that at

8 = 35°, for instance, the ~ 150 Tesla frequency has shifted to 180 Tesla

with decreased amplitude, while the 450 Tesla frequency can no longer be

seen because of its very small amplitude. In Table 5.1 the frequencies

observed for the K-stage-5 sample at different © values are tabulated.

Note that the higher the frequency, the smaller the extent of © over
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8 (degrees)

N

_ Shubnikov-de Haas Frequency (Tesla) B

18 24 48 71 135 152 172 191 213 224 243 267 290 302 430 439 453

18 24 48 71 137 153 175 192 215 225 243 267 290 304 431 441 455

18 24 50 72 138 153 175 192 216 226 243 268 292 304 432 442 457

18 25 50 73 139 155 176 195 219 230 246 270 296 305 439 449 463

18 26 52 76 144 161 - 201 226 237 254 280 303 - 454 463 479

18 26 53 77 147 163 - 206 230 242 260 287 315

19 28 56 84 157 177 220 - 276 307 329

20 29 59 86 160 180 227

22 31 63 96 175 197 247

24 33 67 - 188 212 263

37 72

40 80

L5

20

LO

25

35

40

310

45

50

35

50 "8

55

70

75 = 74 -

b/a - 5.04.6 4.9 2.8 4.9 - 5.3 2.5 1.3 3.0 7.3 2.9 - 2.6 2.3 2.5

3 107

1

fo

Cc
fe

Table 5.1

The SdH frequencies for a K-stage-5 sample at different

0 (angle between the c-axis of the sample and the direction of

the magnetic field). The anisotropy ratios (b/a) of least-squares

fitted ellipsoids are listed in the last row.
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which the frequency can be followed. The reason for the upshift of the

frequencies to larger values can be understood by considering an aniso-

tropic Fermi surface (FS) of general shape, such as is shown in Fig. 5.3,

such that the cross-sectional area perpendicular to the direction of the

field increases with 8. In fact, one can plot the ratio AR = AsPg

for the experimental SdH frequencies as a function of 8. Here, v and A

stand for the SdH frequency and the extremal cross section of the FS,

respectively, and the subscript gives the value (in degrees) of 9 at

which the frequency is measured. Such a plot is shown in Fig. 5.4, and

gives information about the topology of the FS.

In Fig. 5.4, the solid line is the plot of vo! Vg = cosd, which cor-

responds to a cylindrical FS [Fig. 5.3(a)]. The dashed line is related to

vo/Vg for an ellipsoidal FS with an anisotropy ratio of b/a = 5.0 (see

Fig. 5.3(b)]. Indeed, one can find the b/a ratio of ellipsoids that best

(least-squares) fit the experimental points (Appendix B). This was

actually done for the data of Table 5.1 and the resulting b/a are given

in the Tast row of this table. The accuracy of these b/a values is very

poor (+ 0.5 to +3, depending on the extent of 8 to which the frequency

could be followed). This is evident from Table 5.1 and Fig. 5.4 , and is

due to the fact that b/a is most sensitive to vo! Vg at large values of ©

( &gt; 50°) and most of the frequencies cannot be followed to such high 8.

The general comment about these angular dependent results is that they

are compatible with a highly anisotropic FS, a result which is itself com-

patible with the interpretation of results given in the next chapter,

using the theoretical models.
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Cylindrical (a) and ellipsoidal (b) Fermi surfaces.

Note the increase in the cross-sectional area perpendicular

to the H-field direction as the angle 9 between H and k,

of the sample is increased.

For case (a), A,/Ag = cos, while for

% az _. Y .

(b). AJA = [cos“B + tz Sin2e] (Appendix B).
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The angular dependence of some of the SdH frequencies observed for a K-stage-5 sample.

The normalized frequencies vo/ Vg are plotted as a function of 8 (angle between c-axis of

the sample and the H-field). The solid line is a cosine curve (cos 8) and corresponds to

a cylindrical Fermi surface, while the dashed Tine is for an ellipsoidal Fermi surface with

a b/a ratio of 5.0.
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As mentioned at the beginning of this section, the SdH experiment

was repeated on this K-stage-5 sample after putting on a new set of

leads and again encapsulating the sample. The Fourier transform for the

repeat experiment is shown in Fig. 5.5 (for © = 0). Also, the experiment

was performed on another K-stage-5 sample and the resulting Fourier trans-

form is given in Fig. 5.6. Note that these transforms are virtually the

same’, and that the frequencies contained in them are consistent with

those present in Fig. 5.2(a) within about 5%. (A discussion of the accu-

racy of the reported frequencies will be given in section 5.3.)

The temperature-dependent SdH measurements were performed on two

other K-stage-5 samples (KO5.W17). These two were grown in the same

ampoule under identical conditions. Unfortunately, since encapsulation

was not feasible with the temperature-controlled sample holder, these

samples were exposed to air for ~ 30 minutes while being mounted onto

the sample holder. The X-rays taken the day after the SdH experiment

showed that the (004) peaks of one of the samples, here referred to as

KTEMRA, were broadened relative to the other stage-5 samples to some

extent, while the other sample, KTEMP.B, exhibited an X-ray trace char-

acteristic of a single-stage-5 compound. Surprisingly, sample KTEMP.A was

the one which gave the more stable SdH signal. The broadening of the

X-ray peaks could be related to the fact that this sample was slightly

damaged, physically, after the experiment when the contact leads were

removed. The damage resulted because this sample was extremely thin and

fragile. The Fourier transforms ofpvs 1/H (at T = 4.4°K) for these

samples are shown in Figs. 5.7(a) and 5.7(b). These should be compared

*Exceptfortherelativeintensitiesofsomeofthe peaks; see
section 5.2 for an explanation.
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The power spectrum of p vs 1/H for sample K05.Y03 (K-stage-5) when a new set of leads was used (8 = 0°).

This spectrum should be compared to the spectrum shown in Fig. 5.2(a), which corresponds to the

same sample. An explanation for the change in relative intensities of the ~190 Tesla peak is

jJiven in section 5.2.
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The power spectrum of ¢ vs 1/H for another K-stage-5 sample (8 = 0°). Again, except for the

relative intensities of the peaks (see section 5.2), this spectrum is the same as that of

sample K05.Y03. [Figs. 5.2(a) and 5.4].
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The power spectrum of p vs 1/H for sample K05.W17 (KTEMP.A) at 8 = 0° and T = 4.40°K. This
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The power spectrum of p vs 1/H for the other sample (KTEMP.B) on which

the temperature-dependent SdH experiment was performed. The positions
of the peaks are tabulated in Table 5.4.
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to the other K-stage-5 results reported in this chapter [ see Figs.

5.2(a) and 5.5]. Most of the dominant K-stage-5 SdH frequencies are

also present in these FFT's. This is especially true for sample KTEMP.B

[Fig. 5.7(%)]. But the spectrum for sample KTEMP.A shows significant

differences, the major difference being the two new frequencies at

v 12007. In the next chapter, comments will be made about the possible

origin of these FS cross sections. In Fig. 5. , the p vs H data are

shown for sample KTEMP.A for several temperatures. The y-axis scale is

kept fixed in these traces to show the decrease in the amplitude of

the oscillations as the temperature is increased.

In order to find the effective masses of the carriers, the ampli-

tudes of the oscillations (sh were analyzed. As explained in section 2.5

the slope of the plot of an(ot/T) vs T (T = temperature) gives the effective

mass. It was also discussed in 2.5 that the presence of oscillations at

several frequencies complicates the matter. In our case, we do have

several frequencies present, and hence to get an approximate measure of

the effective masses, the following analysis was done. We note in Fig.

5.8(a) that the oscillations with the frequency ~ 1200T are clearly evi-

dent in the field range H 2 10 Tesla. Also, in the high field range

H &gt; 14.0T, oscillations with fower frequencies vary flowly. Thus, as an

approximation, we assume that the amplitudes shown by arrows on the traces

of Fig. 5.8 at H = 14.757 correspond to the cross section with v ~ 1200 T

The corresponding plot of on(A/T) vs T for this frequency is shown in

Fim R 9(a) Tha experi n+al nAadntFe ama = dicated ay be amd a Taac+rig. S.7\4/. ne experimentar points are inaicateda by @® s and a least-

squares fitted line is drawn through these points. From the slope of

this line, and using Eq. 2.33, the effective mass is calculated to be
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The magnetoresistance ( po vs H) for the sample KTEMP.A at various tempera-
tures (all at 8 = 0°). Note the attenuation of the amplitude of the oscilla-

tions as the temperature is increased. The arrows show where the amplitudes
for the v ~ 190T and v ~ 1200T frequencies were measured (see Fig. 5.9).



-112-

%
\

a

o 190T

eo 12007

oy

\
ad

dt,

AN
 OU

\
-

wk

~~ N\
—

Ie

}

po
—

&gt;
A

 ih

\
\

Som

#*% =0.12
H.=1135T

\

J) %m, °3
H. =

S35T

rrr1
} 10 5 20 25 30

Tem perature (K)

Figure 5.9
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a) the v ~ 1200T frequency, and (b) the v ~ 190T frequency.

The straight lines are least-squares fits to the data points.
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v0.36. The error bars shown are typical, and result from the noise in

the measured amplitudes. The same sort of analysis was also done for

the v ~ 190T frequency (shown by the set of arrows at H = 11.85T in

Fig. 5.8), and the resulting plot [Fig. 5.9(b)] indicates an effective

mass of ~ 0.12. To determine the effective masses associated with the

rest of the cross sections, the square roots of the intensity of the peak

in the power spectra, which are proportional to the amplitude of the mag-

netoresistance oscillations, were tabulated at different temperatures.

For each SdH frequency, the square root of the intensity (V1) was plotted

as in Fig. 5.9 -- i.e., env 1/7) vs T. Such plots are shown in Fig.

5.10 for the 22, 182, and 1180 Tesla frequencies. As expected, these plots

show linear behavior. For T &lt; 7°K, the experimental points all fall above

the straight lines going through the rest of the points. This is due to

the fact that at low temperatures (= 7°K) the large-frequency oscillations

have a substantial amplitide [see Fig. 5.8(a)] and hence contribute to

some extent to the amplitude of the lower frequency oscillations. Above

~ 7°K, the amplitude of these fast oscillations is diminished significantly

and thus the intensity of the peak seen in the power spectra at, say, 22T,

more closely corresponds to the magnetoresistance amplitude of this cross

section.

The straight lines in Fig. 5.10 are again least-squares fitted

through the data points (for the 22 and 182T cross sections, the points

below 7°K are not included in the least-squares fitting). To find the

effective masses, we also need the parameter Hy in Eq. 2.33. Recall that

is the value of the field at which we measure the amplitude of the4H
Iw|
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oscillations. Now we are using the square root of the intensity of

the power spectrum (V1), which is a measure of the amplitude of oscilla-

tions at all field values, rather than being sensitive to the amplitude

at a specific field value. Also, note that, since the amplitude of the

oscillations is smaller at lower field than at higher values, the power

spectrum intensity is more sensitive to the high field oscillations.

As an approximation, then, let us assume that the amplitude of the oscil-

lations is an exponential function of inverse field (see Eqs. 2.28, 2.29):

that is, A « eX whereX= H™! (see Fig. 5.11). In this figure, X, =

He and Xo = H,1 , where Hy and H, define the field range over which

the Fourier transform is taken. As an approximation for H, (Eq. 2.33),

we may use an effective field value Hors = A which satisfies:

X
Kags Ng,

oe" Xdx =
OLVY

(5 2)

Xaff

This equation can be solved for Xafs thus:

X ee = X, = | 1+ emeXy Xp) oo
eff=Ap mgMMTT| = Page {.

Sd

tn 3)

The exponential factor « can be estimated directly by measuring the decay-

ing behavior (as a function of inverse field) of the magnetoresistance

amplitude. From Fig. 5.8(a), a is estimated to be ~ 7, 20, and 55T for

the ~ 22, 182 and 11807 frequencies. Using these values of o , and with

Ho = 2.0T and H, = 15.3T, Eq. (5.2) gives Hope= 6-4, 9,9 and 12.8T.

Substituting these Hogs for Ho in Eq. 2.33, we obtain 0.045, 0.11, and

0.33 for the effective masses of the 22, 182, and 1180T cross sections.

Note that the effective masses obtained in this fashion are in reasonable
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Schematic representation of the behavior of the amplitude of

the SdH oscillations as a function of inverse field (X = H™!).

The definition and significanceofXofs is explained in the

text.
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agreement (within ~ 10%) with the values found earlier (Fig. 5.9).

It is not easy to estimate a for the other cross sections because

of the interference of the oscillations (see Fig. 5.8). But, Hogs can

be estimated if we plot an (vg gn) vs Hors for the above three cross

sections (Fig. 5.12). Heff can be approximately found from this plot

by drawing a straight line through the three points, and using this line

to find Horr at other cross sections (vg gu) - In Table 5.2, the results

of the above analysis for the two K-stage-5 samples are summarized. The

overall accuracy of the tabulated effective masses is about 20%. In

Chapter VI these values will be compared to the theoretically calculated

values.

It should be mentioned that, in the cases where the FS is fairly

simple and there are only two or three SdH frequencies present, one can

try to fit a curve to the experimental magnetoresistance signal. This

curve would be based on Eqs. 2.28 and 2.29 (it would be the sum of two

or three such terms), and one will have to choose and vary many parameters

such as amplitude, frequency, phase, damping factors, etc. for each cross

section. Such an analysis has actually been done for pristine graphite,

which has a fiarly simple FS [58]. In our case, not only would such an

analysis be Taborious and impractical, but it is not even clear that it

would be rewarding. After all, Eqs. 2.28 and 2.29 are based on many

assumptions and simplifications, and they probably do not apply directly

to the materials that we are studying because of their fairly complicated

Fermi surfaces.
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KTEMP.A

"SdH
(Tesla)

22

182

204

230

414,
130

1180
1220}

Slope
(1/°K)

0.104

0.164

0.216

0.181

0.215

0.3830

Hoff m°
(Tesla) Ty

6.4

9.9

10.0

10.2

11.1

0.045

0.11

0.15

0.13

0.16

12.3 0.33

22

KTEMP.B

142

180

230

272

126

0.169

0.148

 D0
-

)

9.4

9.9

1

0.11

0.10

uC - ou‘5

Table 5.2

SdH frequencies observed in KTEMP.A and KTEMP.B

samples and the effective masses associated with

them. The absolute values for the slope(|Slopel)

were found from plots such as Fig. 5.10, while

Fig. 5.12 was used to estimate Here. The overall

accuracy for these effective masses is about 20%.
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V-2. Results for Other Compounds

The SdH experiment was performed on potassium samples of stages 4,

5, and 8 and on rubidium samples of stages 2, 3, 5 and 8. To show that

there is signifcant sample- and stage-dependence for the SdH data, the

o vs H traces corresponding to some of the rubidium and potassium

samples are shown in Fig. 5.13. It is evident from this figure, and

also the following power spectra in Figs. 5.14 and 5.15, that there is

significant change as a function of stage and/or intercalant in the

oscillatory behavior of the magnetoresistance for the donor graphite

intercalation compounds. In Figs. 5.14 and 5.15, the power spectra for

K stages 4,5,8 and Rb stages 2,3,5, and 8 are shown (all for 8 = 0 and

T ~ 1.4° - 4.2°K). For stage 8 compounds of K and Rb, there are some

other frequencies ( &gt; 600T) with very small amplitudes which are not

shown in Figs. 5.14 and 5.15. (See Fig. 6.5 for Rb-stage-8 for example.)

The oscillations at these large frequencies can clearly be seen

from the op vs H data at high fields. (For instance, note the oscilla-

tions at ~ 12-14T in the p vs H data of K-stage-8 compound shown in

Fig. 5.13(c). In Table 5.3, the frequencies (peaks) present in the

spectra of Figs. 5.14 and 5.15 are tabulated. The spectra shown in Figs.

5.14 and 5.15 correspond to samples of single stage (as determined by

X-ray diffraction before and after the SdH experiment; see Fig. 4.3, for

instance.) In addition to these spectra, experiments were performed on

some other sampies whose stage either changed or was not determined after

the experiment. The po vs H and power spectpa for some of these samples

are shown in Figs. 5.16-18.
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Graphite-Potassium

Stage Stage
4 _ 5

 i 18

24
48

20
24

4

60

10571

132

150

135

152
172

191
213

224

243

267

290
302

430

439

453

190
210

~
LR
lL

264

276

354

50

380

400

660

700

825

865

015

AO

Graphite-Rubidium

Stage Stage Stage Stage
 A _o._ _8__

’
©3 35 24 30

36

60
20

95

115

130

16523

| 775 175

200

220213

255

90 276 265

294 285

320

344

420

325

355
380

450

860

900

1190

1220

vLo
= A

 Ah

Table 5.3

Observed SdH frequencies (in Tesla) for potassium and rubidium

Graphite Intercalation Compounds (all for 8 = 0°). The dominant

{high Fourier transform peak intensity) frequencies are underlined.



~125-

J

J

x
1}
at

"

oF
2

 orgEag RET

EEEAN -

pEEER a Arf

lH ELE OT LPT TAA I Nf

I Hee lla fT sob

TTT NEW EE EAT .

Lo ap gE

+

”n

—_—
Y-Field (Tesla) 12.0 14.0

 St

ee

7808.

2
We

: am
&gt;
i
—
E
 _—

4 ’ iSOO

{ACL

h Mo
culSmm—

Sn

STH FREQUENCY (TESLA)

Figure 5.16

The magnetoresistance (p vs H) and the power spectrum of ( o vs 1/H) for a

graphite-potassium compound. The X-ray diffractograms indicated a stage-2
sample before the SdH experiment. However, no X-ray traces were taken

after the experiment, hence the stage of the sample during the experi-
ment is not known with certainty.
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The magnetoresistance (po vs H) and the power spectrum of (p vs 1/H) for

a graphite-potassium compound. The X-ray diffractograms indicated

a stage-4 compound before the SdH experiment, but a stage-5 (mixed
with some stage-4) after the experiment.
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The magnetoresistance (p vs H) and the power spectrumof (po vs 1/H)

for another graphite-potassium compound. Again, the X-ray diffracto-
grams showed that the sample had changed from a stage-4 to a mixed

stage-5 and -4. The amount of stage-4 contained in this sample after
the experiment was more than that present in the sample of Fig. 5.17.
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The X-ray diffractogram (taken before the SdH experiment) for the

sample in Fig. 5.16 indicated a K-stage-2 compound, but there is no X-ray

trace available for this sample after the SdH run. The samples shown in

Figs. 5.17 and 18 both X-rayed as nearly single-stage K-stage-4 compounds

before they were taken to the dry box to put the leads on, but the X-ray

diffractograms after the SdH run indicated a dominantly stage-5 compound,

mixed with stage-4. For comparison, in Table 5.4 the observed SdH fre-

quencies for these samples are listed together with the K-stages 4 and

5 compounds from Table 5.3, &amp;also, the two samples KTEMBA and KTEMP.B on

which the temperature-dependent measurements were made (see last section).

Note that the frequencies present in the power spectra of Figs. 5.16

to 5.18 are among the dominant frequencies (peaks of greatest amplitude)

that also exist in the spectrum for K-stage-5 compound shown in Fig. 5.2(a).

In a sample of mixed stage, the fine splitting of the energy levels, which

is characteristic of single-stage compounds (see next chapter) is absent

and this may explain the absence of spectra with fine structure for the

mixed-stage samples.

Another interesting point about these spectra is the behavior of the

~ 190T frequency as one goes from a single-stage 5 to a single-stage 4

compound. Note in Fig. 5.2(a) that, for the K-stage-5 sample, the intensi-

ties of the ~ 190T and ~ 1507 frequencies are roughly equal. In the

spectrum shown in Fig. 5.17 (which corresponds to a K-stage-5 mixed with

stage-4), the relative intensity of ~ 190T to ~ 150T frequency is small.

This ratio is even smaller in Fig. 5.18,and in Figs. 5.16 and 5.14(a)

(for K-stage-4), the ~ 190T peak is completely absent. This observation,

and a careful examination of the X-ray diffractograms taken after the SdH

experiment, indicate the the ~190T frequency can be associated with a K-
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126

a

Stage

5 He

5.6 | 5.2(a)

18

o |

135

147

172

185

23 24
48

135

152
172

191

213

224

243

267

290

302

220

239

270

285

423

438

450

430

439

453

1180

1220

k Data of Ref. [5].

TABLE 5.4

Observed SdH frequencies (in Tesla) for several potassium compounds

at @ = 0°. The first column represents results reported by Tanuma

et a1lsl; the other samples have all been discussed in this chapter.
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stage-5 compound and that the intensity of this frequency becomes weaker

as the sample is mixed with Tower stages. This conclusion is also veri-

fied by looking at Fig. 5.6 which corresponds to a nearly single-stage 5

sample mixed with a very small amount of stage 4 ( X 2-3% according to

X-rays). Also, note that in the spectrum shown in Fig. 5.5, which is for

the same stage-5 sample that had the spectrum of Fig. 5.2(a), the above

ratio is ~ 5/3 &gt; 1. This is expected, in view of the fact that the second

experiment (which resulted in Fig. 5.5) was done 10 days after the first

[Fig. 5.2(a)] and that no matter how carefully the sample handling was done,

the sample was apt to change to higher stage (more dilute).

Finally, note that in the K-stage-8 compound [Fig. 5.14(c)], the ~190T

frequency is certainly present as one of the higher intensity peaks in the

power spectrum. The same comment applies to the KTEMP.A and KTEMP.B

samples, which were exposed to air. In a sense, this frequency can be

associated with the graphite interior layer(s)(those which have two graphite

layers as the nearest neighboring layers). Note that such layers exist only

in compounds of stage &gt; 5.

V-3. General Comments about the SdH Results

The first point to be made about the above results concerns the accu-

racy of the reported results. Since our main interest is the shape of the

Fermi surface, or more specifically, the frequencies of the SdH oscilla-

tions, then the geometry of the experiment is the most important factor.

The two important issues which should be dealt with carefully when doing

those SdH measurements are: (1) the calibration of the magnetic field,

and (2) the angle between H and the c-axis of the sample. The calibration

constants given at the Magnet Laboratory are correct to better than 1% for



-131-

the center of the magnet. However, at a distance of one or two centi-

meters away from the magnet center, the field is reduced by approximately

3 - 7%. Now in the cases when our measurements were done on two or three

samples, the stacking of the ampoules containing the samples on top of

one another resulted in not having all of them exactly at the center of

the magnet. Also, the presence of Stycas on the ampoule (see Fig. 4.2)

sometimes made it difficult to have all the c-axes of the samples aligned

and hance corrections for the angular dependence measurements had to be

made. In general, a very practical way to determine the position 8 = 0°

(H Il 2) is to do the SdH measurements for both positive and negative 8.

Unless the Fermi surface is spherical, there will usually be an extrema

in the observed frequencies at 8 = 0°. Thus, either by eye or by fitting

a parabola through the frequencies observed near 8 = 0°, the position at 8 =

can be determined. This was, in fact, done for sample K05.Y03, and the

frequencies given in Table 5.1 are the corrected values.

Another factor that determines the accuracy of the results is the

resolution (in frequency) in the power spectra. This resolution is usually

a few Teslas (see Appendix A) and for most frequencies, is less than 1-2%

of the value of the frequency. The overall accuracy for the results, then,

is dependent on the experimental conditions and the amount of data available

(for angular dependence). However, a general accuracy of about 5-10% is

estimated for most of these results. The same remarks apply to the accu-

0°

racy of the reported SdH frequencies in the temperature-dependent measure-

ments. The accuracy for measuring the temperature was AT/T § 0.5% [57].

Another general comment about these results is that very often, because



-132-

of the weakness of the signal, it was not possible to do complete angular

dependence measurements. In the few cases that the angular dependence was

measured (such as samples of Figs. 5.5 and 5.16-5.18), the frequencies

showed a behavior very similar to that shown in Fig. 5.4 (K-stage-5 com-

pound). This similarity is compatible with the models for the Fermi

surface, as will be discussed in the next chapter in more detail.
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VI. INTERPRETATION OF THE SdH RESULTS USING

ENERGY BANDS, MODELS AND CONCLUSIONS

In the first section (6.1) of this chapter, a brief review of some

of the results reported by other workers about the Fermi surface (FS) of

the graphite intercalation compounds is presented. Section 6.2 deals

with the detailed application of the two energy-band models (discussed in

section 2.4) to the K-Stage-5 sample. This is followed in 6.3 by present-

ing the results of similar analyses for the other compounds studied in

this project. A summary of conclusions based on this work is given in

the final section (6.4) and topics of interest for future study are

suggested.

VI-1. Brief Overview of Some Previous Results on the Fermi Surface

of GIC and Their Interpretations

The aim of this section is to give a general perspective of the exper-

imental results and their interpretations reported by other authors with

regard to the Fermi surface (FS) of the graphite intercalation compounds

(GIC). As briefly discussed in Chapter I, the FS of many donor and acceptor

GIC has been studied, mostly by the measurements of the quantum oscilla-

tory effects in these compounds. These results have generally emphasized

either the stage-dependence or the stage-independence of the observed

Shubnikov-de Haas (SdH) frequencies.* The dependence or independence of

the SdH frequencies on stage has significant implications on the FS models

used to interpret the experimental data, as will be briefly discussed.

* Here the author is using "SdH frequency" as a general term for

the frequency of oscillations in the quantum oscillatory phenomenon
(see Chap. II). Also, "SdH frequency" and "FS cross section" will be
dsed as equivalent terms. Indeed, from Eq. 2.31 it may be noted that

they are related by a universal constant.
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The stage-independent SdH frequencies have been reported only

for acceptor GIC, such as Br, [3-5,14], SbC1 [10], and FeC1,[9]. The

measurements on Br, were carried out on dilute samples which were not

well characterized. For FeCl, and SbCl, compounds, however, the

experiments were done on samples which were characterized for stage

index. The numerous frequencies (up to 11 for Br, -GIC [14]) reported

are in the range 10T gv &lt; 600T for the above compounds.

A basic approach to interpret these stage-independent results has

been suggested by Batallan et al [10] and by Bok [59]. In their pro-

posed model, it is assumed that all the charge released by the intercal-

ate resides in the graphite bounding layers and that these layers

effectively screen the charge from the interior layers. Thus, a metallic

sandwich is present about the intercalate layer, which plays a dominant

role in the elecrronic properties of the compound - including the

quantum oscillations. To account for the observed stage-independent

frequencies, these authors [10,14,59] use a nearly free electron model

together with in-plane zone-folding. Such a model, in general, predicts

few frequencies and thus, in their interprepation, many of the observed

frequencies are identified as harmonics or combination modes (associated

with magnetic breakdown phenomena).

The SdH frequencies observed in donor compounds*[5,8] and some

acceptor compounds such as Ask. -GIC [11,16] are reported to be stage-

dependent. These frequencies are also numerous and the number of

Also note that not all authors agree on results for a given inter-

calant; for example, the recent work by Iye and Tanuma [60] on SbC15-
GIC shows stage-dependent frequencies, while authors of Ref. 10 report

stage-independent results.

ke
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observed frequencies increases with increasing the stage index. The

simplest model used to interpret the stage-dependent SdH frequencies is

one based on the Dilute-Limit Model and zone-folding, as discussed in

section 2.4.7. This model, which will be denoted by model I in this thesis

and will be discussed in the next section in more detail, was first pre-

sented by McClure [21] and later used by Tanuma et al [5] to interpret

the SdH frequencies observed in graphite-potassium compounds. The results

of their analysis for the K-stage-4 compound and a similar analysis for

a AsFg-Stage-3 compound [11] are shown in Table 6.1. The details of such

analysis will be discussed fully in the next section, when we apply this

model to our experimental data. Said briefly, the m-bands of graphite

are used (Fig. 2.4) and the Fermi level Er is raised for the donor compound

(K-GIC) and is lowered for the acceptor compound (AsFg-GIC) relative to Er

for pristine graphite (-0.024 eV). The Fermi levels are determined by the

requirement that the largest predicted SdH frequency coincides with the

largest observed frequency. The smaller calculated frequencies are then

identified with c-axis zone-folding (see Fig. 2.8). Using Eq. 2.16, the

carrier density for each compound is calculated. Assuming chemical formulae

C.K and C, Ask, (the carbon in-plane density is assumed to be Cc, and C

for these compounds, respectively), the charge-transfer rate from the

intercalate layer to the graphite layers (f) is found (f =1 corresponds

to complete ionization). The reader is reminded again that full details

of the above analysis are given in the next section.

In the following sections, comments will be made about the agreement

between the number and the values of the predicted frequencies (by this

model) when analyzing our data. Most of these comments also apply to the
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Table 6.1

The observed and calculated SdH frequencies reported by Tanuma
et al [5] for a K-stage-4 compound and by Iye et al [11] for

AsFp -stage-3. The calculated frequencies are the results of
the™ application of the Dilute-Limit Model by these authors.
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results in Table 6.1. It is evident from this table that the agree-

ment between the observed and calculated frequencies is quite good,

giving qualitative support for the use of this model.

An important point to be made about the results in Table 6.1, however

is the small value of the fractional charge transfer ratio f found by

these authors (f = 0.20). Their similar analysis of their data for com-

pounds of other stage also indicates a small f. For instance, they report

f values of 0.22 and 0.26 for C Ask, (stage 3) and C AsF, (stage 4)

compounds. As we will see in the following sections, the analyses of our

data also indicates small values of f ( ~ 0.07 to 0.4). It is important

to note, however, that such small f values are the result of assuming

that all the carrier pockets present are those observed in the SdH exper-

iments. There may be other carrier pockets, possibly elsewhere in the

BZ and away from the KH axes, which are not seen in the SdH experiments.

(See section 6.4 ) If such pockets exist, f will be higher than what is

calculated here.

VI-2. Analysis of SdH Results for a Potassium-Stage-5 Compound

The material presented in the last section was intended to serve as

a background and to set the perspective for the interpretation of our

experimental data, which will now be presented. In this section we use

the two models of section 2.4 to interpret the FS parameters of sample

K05.Y03 (Table 5.1) at 8 = 0°. The experimental results for this

sample are used because they are the most reliable of those reported in

this thesis.
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We first use the "Dilute-Limit Model " (Model I) of section 2.4.1

to interpret the observed SdH frequencies. As explained in that section,

we start the analysis by raising the Fermi level Ep to the point where

the largest cross-sectional area of the FS isequal to the largest cross

section that is experimentally observed. This Anax is at the K-point

[area S; in Fig. 2.8(c)] and thus Ep is the solution to Eq. 2.15:

© 23 (Fp) EE) . Zme V max (6.1)g= 0) = iii, ASA

max { 3al v2 (1+2y /v )* fic

where Vmax is the maximum SdH frequency observed. The values for band

parameters used are those of Table 2.1 with Y, = 0. Note that Fig. 2.7

is based on Eq. 6.1, taking Er and Vmax to be the coordinate variables.

The next step is to introduce zone folding along the k_-direction and to

find the cross sections of the FS at the new zone boundaries (see Fig. 2.8

for a stage-4 compound). These cross sections are given below in Eq. 2.15:

42 (E-Ep)(E,-Ep)
op) = Ar Fel

3a; Yo (1 + v)
(2.15)

where here £ takes values:

1°
i . .

z - “7 T 1 (4 = 1,2, ss M) (.2)

where I” and I. are the lattice parameters of pristine graphite (6.70A)

and the intercalation compound along the z-direction. The largest value of

i in Eq. 6.2, M, gives the smallest non-negative cross section. In Table 6.2

the result of the above analysis for sample K05.Y03 (Table 5.1) is summarized.
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Table 6.2

The observed SdH frequencies for the K-stage-5 compound
and their comparison with the calculated frequencies

resulting from the application of the Dilute-Limit Model

(model I).
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Er is determined to be 0.505eV. With Er at this level, the model predicts

four extremal cross sections: Ss S,» S, and S,- In this table, the domi-

nant observed frequencies for sample K05Y03 are also written. The fairly

good agreement between the observed and calculated frequencies is an

indication of the validity of the Dilute-Limit Model for the stage 5 sample

which isevidently a dilute compound. Note that the model as used corres-

ponds to a FS similar to Fig. 2.8(b), where no splittings at the new zone

boundaries due to the periodic potential of the superlattice are made. If

these aplittings are considered, then the cross sections S,&gt; S, and S.

will each be replaced by a pair of cross sections of nearly equal areas

[Fig. 2.8(c)]. This could explain the presence of some of the numerous

observed frequencies that are grouped in Table 6.2.

With Ep = 0.505eV, we can use Eq. 2.16 or Fig. 2.6 to find the

carrier density, which is found to be n = 5.85 x 102? ecm™®. To get an

estimate of the rate of charge transfer from the intercalate (potassium)

layer to the graphite layers, we also calculate the total charge (1 elec-

tron/K atom) that is available for donation to the graphite layers,

assuming a chemical composition Cyn where n is stage and x is the in-plane

density. +.has been found to be ~ 10.5 for potassium compounds (with

n&gt;2) [61] and thus, for a K-stage-5 compound, we find:

| ~! .

 _— {341 = (F3% 21
Vol. of Prom. cell :

= 1.94 x 10%lem-3 (6.3)

Here, n' is the carrier density that we would have if there were a

complete transfer of charge from the intercalate to the graphite layers.
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The ratio n/n' = f = 0.30 gjves an estimate for the fractional charge

transfer from the potassium layer into the graphite layers. Note that

such an f value is in general agreement with Tanuma's value for a K-stage-

4 compound (see Table 6.1). More will be said about the f value later on

in this chapter.

In order to see explicitly how the cross sections S; in Table 6.2

vary as a function of Er, in Fig. 6.1, S; are plotted vs Er. To draw

these curves, Er is successively increased, from 0.30eV to 1.0eV, and for

each value of Ep, Eq. 2.15 is used to find S; at Zi values given by

Eq. 6.2. Horizontal lines correspond to the (dominant) experimentally

observed SdH frequencies, while the vertical solid 1ine is drawn at the

determined Fermi level Ep = 0.505eV. Once such a diagram is available,

we can easily see how the different SdH frequencies (FS cross sections)

behave as Er is changed. We note, for example, that if we increase Er

to approximately 0.56eV, the model will predict an SdH frequency of ~20T

(from the Se branch) in accordance with the observed frequencies (24T).

However, the other frequencies, from branches 54 - Sg will all be

shifted to larger values, and also a larger f value will result.

A curious situation would be to raise Ep to a value which results

in a carrier concentration of 1.94 x 1021 cm™® , ji.e., an f value equal

to unity. The vertical dahsed 1ine in Fig. 6.1 at Ep = 0.970eV corres-

ponds to this case. We see that, except for S, and S. , all other pre-

dicted cross sections fall above the observed values. With Ep = 0.970eV,

the largest cross section, St» is predicted to be ~ 1165T! No such

frequency was observed in the several encapsulated single-stage-5

potassium compounds that were studied. It is interesting, however, to



-142-

Tesla

Tg ves____ Qu—— magi
1_.s,

nN

pe

d
wd

I

FV
—

=

-

453 .

 —_—
290

262 J Co

243 77 -

391

i152

-

“3

i

SO..N—

| Ss

—

a

{ Sc

 3

AN

ul

-

o

24

-

Le

i

4 i«otori1a
0.30 8.40 0.5¢C 0.60 c30 030 0.30 1.00

Ec (e Vv)

Figure 6.1

Plot of anv vs Er ( v is the FS cross section in T) for different cross
sections (cuts) ° of the Fermi surface for a stage-5 compound. Different
cuts are labeled by S;. Horizontal lines denote the observed SdH frequencies
for a K-stage-5 compound. The vertical line at Er = 0.505eV is the Fermi

level of this K-stage-5 compound determined by matching the largest observed

frequency (453T) to the largest predicted frequency (from the cut at S,).
The dashed Tine at Er = 0.970eV corresponds to an f-value of unity (see text).
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note that the two largest frequencies (~ 1200T) seen in the dubious

stage-5 sample (KTEMP.A) agree very well with the predicted 1165T frequency.

This puzzling feature needs clarification and some comments aimed at

resolving this point will be made later in this chapter. One final point

to note is that the (cyclotron) effective mass at Eg defined by

m*_h*BA
m 2mm oF

0 0 E.

(5.4)

can be easily found from the slopes of the S; curves in Fig. 6.1. The

effective masses predicted by this model are calculated using Kg. 6.4 and

are tabulated in Table 6.4.Their discussion and comparison to observed

values will be presented at the end of this section.

Next we use the general phenomenological E(k) model [22] as discussed

in section 2.4.2 to interpret the observed SdH frequencies. This model

will be referred to as model II. A computer program written by G. Dressel-

haus and S. Leung [40] was used to set up and diagonalize the Hamiltonian

(Eqs. 2.21 and 2.22) at many K-vector values near the edge of the BZ.

Plots of the eigenvalues as a function of K (such as Fig. 2.9) were made.

The Fourier expansion parameters used in this model were derived from the

band parameters of Table 2.1 and trigonal warping of the Fermi surface was

included (v, = 0.315eV [40]). Because of including the trigonal warp-

ing of the constnat energy surfaces (see Fig. 6.2), E(k) was

different as we go from K to r as compared with K to M. A plot of E(K)

for a stage-5 compound with a "vacuum" intercalate layer (see section

2.4.2.) is shown in Fig. 6.3. The position of Ep is determined empivric-

ally so that the FS cross sections of the four partially occupied

* Here Ec is senyirad relative to the point of high degeneracy at the
K-poink 5s Fig. 6.3).
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conduction bands give the best fit to the experimental data. Er is chosen

here to be equal to 0.475eV and the calculated cross-sectional areas (or,

equivalently, the SdH frequencies) at the K and H points are given in

Table 6.3 for the four electron pockets. The area of the FS cross

sections is approximated by

5 = qk¥ (6.5)

where k, and k, are shown in Fig. 6.2. It has been shown that the area

given by Eq. 6.5 approximates the actual area of the warped surface of

graphite very well [37]. Note that in Table 6.3 the ratio k 7k indi-

cates that trigonal warping is more significant for the larger cross-

sectional areas than for the samaller ones.

We can also find the electron density for each pocket by assuming

that the FS has the shape of a trigonally warped cone with the head cut

off [Fig. 6.2(b)]. The volume of the carrier pocket j is then given by:

[ K H H 2m a 1 K H\ 2x
VV. = — . . SS. = 2 = . . = 6.6

3 + (5; +S, +/5,fs. ) I 7 (35 +S; JE (6.6)

where the approximation is valid for the cases in which 5," = 5) (nearly

cylindrical FS). Since each hexagonal zone contains two full carrier

pockets, then ns, the carrier density for band j, is given by:

K HY 1 (6.7)
n= (2)(2) [V;/(27)°] = £ (5; 3; ) (2m)21j

where a factor of 2 has been included for spin degeneracy. The total

number of carriers is obtainedbysummingns for the four occupied

pockets, yielding n = 4.60 x 102°cm™® and thus a fractional charge

transfer of f = 0.24 is obtained, which is in fair agreement with the

value predicted by model I (0.30).
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Table 6.3

Fermi surface parameters associated with K-stage-5 graphite-potassium

as calculated by Model II.



-148-

As in Table 6.1, the observed SdH frequencies are grouped to show

their relevance to the calculated values. We note the very good agreement

between the experimental and theoretical data. Because of the small dis-

persion of the bands along the KH axis, the K and H point cross sections

have nearly equal areas. In order to make a better fit to the observed

data modifications to the bands, such as the introduction of intercalate-

graphite and intercalate-intercalate interactions , is necessary to

yield such dispersion along the KH axis.

Once again we can draw curves analogous to Fig. 6.1 showing the de-

pendence of the SdH frequencies on Er. In Fig. 6.4, such curves are shown

for the bands1-5 (Fig. 6.3) for the K-point cross sections. We immediately

note the striking, but indeed expected, similarity between the cross

section curves S, - S, in Fig. 6.1 and 1-5 in Fig. 6.4. This similarity

is expected because, as discussed in section 2.4, both models I and II are

based on graphite m-bands and c-axis zone-folding. In fact, it is true that

model I is a special case of model II, the correspondence here being that,

instead of replacing every sixth layer (for stage 5) of graphite with an

intercalate layer (here in Figs. 6.3 and 6.4 actually with "vacuum"), we

have replaced it back with a graphite layer! There is, however, the

additional S7 curve in Fig. 6.1 This is a amanifestation of the fact

that in model II, when we replace the intercalate layer by "vacuum", we

effectively make the intercalate level disappear from the E(K) picture by

taking its energy to be - « . Doing this prevents this level from inter-

acting with the other levels.
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frequencies; the dashed line at Er = 0.975eV corresponds to f = 1.0.
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In Fig. 6.4, Ee = 0.475eV is shown by a vertical solid line, and

again as in Fig. 6.1, the Fermi level resulting in f = 1 is shown by a

dashed line at Er = 0.975eV. Once again we see that, with Ep = 0.975eV

and f = 1, the largest predicted cross section is ~1224T, a value which is

in unexpectedly good agreement with the frequency observed in KTEMP.A!

Before commenting on this agreement, let us tabulate the effective masses

calculated at the Fermi level predicted by models I and II (using Eq. 6.4)

and compare them with the observed values. This is done in Table 6.4. The

observed and calculated frequencies (v) for the K-stage-5 sample (Tables

6.2 and 6.3) and the calculated m*/m, are given in Table 6.4. The observed

m*/m are those measured for samples KTEMP.A and KTEMP.B, as reported in

Table 5.2. The m*/m observed values are written here for the "like" fre-

quencies, i.e., those which are roughly the same as the ones for which

was measured (see Table 5.2). The values of m*/m =.079 calculated for the

~n 24T frequency for model I is written in parentheses for the following

reason. Figure 6.1 shows that, with Ep = 0.505eV, there is no predicted

frequency of ~ 24T. But, if we just raise Ep to ~ 0.560eV, then Sg will give

a frequency of ~24T and from the slope of Sg at the point of interception,

we find m*/m. = 0.079 as an estimate for the effective mass.

The agreement between the calculated (especially for model II) and the

observed m*/m is remarkably good, and clearly shows that the measured

effective masses, and thus the bands whose curvature they depend on, are

graphitic.* It should also be mentioned that these effective masses are in

good agreement with those reported for K [62] and FeCl, [9] GIC by other

authors.

fo

For pristine graphite, Ep =-0.024eV and the electron effective mass at

Er is m*/m_ = 0.057.
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Table 6.4

Comparison of the calculated and observed SdH

frequencies and effective masses for the K-stage-5

compound.



-152-

Now let us see what happens if we insist that f = 1 and increase

Er to 0.970eV in Fig. 6.1, and to 0.975eV in Fig. 6.4. In Table 6.5, the

resulting SdH frequencies and effective masses are tabulated. Here, the

observed values are those seen in sample KTEMP.A. The reader is reminded

that, although Table 6.5 is based on the application of models I and II

to a stage-5 compound, the nature of KTEMP.A is dubious (see previous

remarks about this sample in Chapter V). There is some reasonable agree-

ment between the observed and the calculated frequencies, especially for

model II, although the observed ~22T frequency is not predicted. Note

in both Figs. 6.1 and 6.4 that there is not even a band (cross section

curve) that would give a small cross section (~ 22T) if we change Ec by a

small amount. Also, both models predict frequencies of approximately

600 to 900T which are not observed experimentally.

In comparing the effective masses, we note an excellent agreement

between the observed and calculated (again for model II) m*/m, for the

~ 1200T freauency. Such an agreement is an indication that this cross

section and the m*/m, associated with it (0.36) are graphitic. This

agreement is very curious and one may be tempted to regard the ~1200T

frequency as the correct largest frequency observed in a K-stage-5

compound. Although such a possibility cannot be entirely eliminated, we

will see in the following discussion that this is highly unlikely.

As a first, but not most convincing argument, note that the agree-

ment between the calculated and the observed m*/m, is better in Table

6.4 than in Table 6.5 (excluding the 0.36 effective mass). In Table 6.5

the calculated masses are too large, compared with the observed values.

Both Figs. 6.1 and 6.4 show that lower Er values result in Tower effect-

ive masses, and thus it can be concluded, although not conclusively,
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Comparison of the calculated and observed

SdH frequencies and effective masses for KTEMP.A.

In using the models it is assumed that the compound

is stage-5 and that f = 1.0.
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that an Er value of approximately 0.975eV is rather too large (the pre-

dicted effective masses are too large).

Secondly, if we do take the ~ 1200T frequency as the largest cross

section, then f21 and since the value of f is not expected to change by

much as we go from stage n to stage n+l, then the largest cross section for

a K-stage-4 compound must also be fairly large (&gt; 1200T, as we shall see

shortly). But such a frequency has been observed neither by Tanuma et

al [5] nor by us (Table 5.3). In fact, as the analysis of the next sect-

ion will show if we assume an f value of about unity for the other compounds

then we should expect much larger frequencies than those observed in the

samples (except the stage-8 samples). Now it is true that in the SdH

experiment it is generally difficult to observe high-frequency (large

cross section) oscillations because of their small To /M* (see sections

2.5 and 4.2). However, if we can see a 1220T frequency in a maltreated (no

encapsulation) sample, there is no reason why we should not see frequencies

of this magnitude in other samples which were handled better.

The large frequencies observed in K and Rb stage-8 compounds (see

Table 5.3) also support the view that these large frequencies cannot

correspond to the largest FS cross sections of a single-stage-8 compound:

This point will be made clear in the next section, where all the studied

samples will be analyzed.

VI-3. Results of Analysis of SdH Data for Potassium and Rubidium Compounds

The analyses of the last section can be applied to the other com-

pounds (K-stages 4,8, and Rb-stages 2,3,5,8) in a similar way.In analyzing

the rubidium compounds, we use the experimentally determined in-plane

density X = 14.0 [61]. The chemical formula for a stage n compound is thus

”~

ad ll
pot

Ipi;
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We first consider Rb-stage-8 compound (Table 5.3). In applying model

I if we use the ~1220T as the largest FS cross section, we find that

n =2.06 x 102* cm™. Using Eq. 6.3 with I_ = 29.104 (see ChapterIII and

X = 14.0, we also find n' = 9.37 x 10°°cm™®, meaning that f = 2.20% --

a very unpleasant situation! An f value of larger than unity is not

physically possible: we cannot have more electrons in the sample than

those available (from the intercalate layer). We have the same situation

for the K-stage-8 sample. Application of model I to this sample, with

Yan = 1060T as the largest FS cross section, results in an f value equal

to 1.43%, again too large a value to be acceptable.

An important observation can be made if we consider the close rela-

tion between the large frequency (~ 1200T) peaks in sample KTEMP.A (Fig.

5.6) and Rb-stage-8 (Fig. 6.5). The fact that we have doublets at almost

exactly the same positions for two K and Rb samples of different stages

is very likely the evidence that these peaks come from certain graphitic

regions of the sample - whieh evidently have alarge electron concentration.

These regions are graphitic because we see them in both potassium and

rubidium compounds, and also because the effective mass associated with

their FS cross section (Table 6.5) is graphtic, as opposed to metallic,

i.e., m*/m = 1. One can imagine islands of graphite surrounded by a

high concentration of the alkali-metal. As a matter of fact, the electron

microscope studies have shown that such islands (or clusters) of both

graphite graphite or alkali metal do exist in the graphite intercalation

* Application of model II to a stage-8 compound (X=14.0) with
max = 1220T results in f = 1.91.

Application of model II to a stage-8 compound (X=10.5) with Vmax
1122T results in f = 1.35.

x %
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Table 6.6

The observed and calculated SdH frequencies v for the Rb-stage-8

compound for two cases:

a) Considering v = 450T to be the largest FS cross section
obs.

(see text)

b) Assuming f = 1.0.

The frequencies with the largest Fourier intensity are underlined.
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compounds [63,64]. We may even estimate the minimum size of such graphite

islands from the field-dependence of the SdH oscillations. The critical

(minimum) radius Re for such domains should be at least as large as the

radius of classical circular motion (ro) of an electron with Fermi energy,

so that the electron can cover complete orbits. Thus, we must have:

7, L

 I (2 di (Be) (2) = me (0)Cw, meg \eH_JTF "lelJ\ x eH \ fic
1

(2kMe e
(6 8)

where VE is the Fermi velocity, Wy = eH/mc is the cyclotron frequency,

Ap is the FS cross section, vg is the SdH frequency (see Eq. 2.31 for the

relation between Ar and VE ), and He is the lowest (critical) field value

at which quantum oscillations can be observed.

Using ve = 1200T and H_ = 8T [ ~ the lowest field in Fig. 5.8(c) at

which the oscillations at 1200T can be observed], we find re 0.15 pm,

a value which is of the right order of magnitude when compared to the

island sizes observed in the electron microscopy studies [64,64,65].

Now, let us return to the Rb-stage-8 sample. Excluding the 12007

frequencies, we do not know what to use as the largest FS cross section.

We may, however, work backward and arbitrarily choose f = 1.0 and calcu-

late the predicted frequencies. The results are shown in Fig. 6.5 and

Table 6.6 for model I and model II. The arrows in Fig. 6.5 show the

positions of the predicted frequencies. For model II, only the K-point

cross sections are shown, while the H-point cross sections are very close

to those at the K point. Thick arrows in Fig. 6.5 indicate that actually
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two nearly equal cross sections are predicted (this is because of the

near-degeneracy of bands for even-stage compounds; see section 2.4.2).

The numbers in parentheses in Table 6.5 also indicate the degeneracy of

the predicted K-point cross sections.

Well, from Fig. 6.5 we note that there is not much of an agreement

between the calculated and observed frequencies when f = 1.0. Besides,

in view of the results for K-stage-5 sample (f = 0.3), and also the small

f values for the other compounds, as we shall see later, the f value

is likely to be smaller than unity. Thus, let us choose the largest

(dominant) frequency of ~450T in Fig. 6.5 and apply our models. Results

are shown in Fig. 6.5, again by arrows, and Table 6.6. We note that, al-

though there is nota one-to-one correspondence between the observed and

predicted cross sections, the numerous and closely spaced frequencies

observed are compatible with the many frequencies predicted. This is

especially the case for mode II, if we recall that by introducing proper

interaction, we can 1ift some of the degeneracies and have up to a total

of 24 (for K- and H-point) cross sections.

In a similar fashion we may try to analyze the K-stage-8 compound in

two ways: with f = 1 and with Vinax ~ 400T. The latter results in an f

value of ~ 0.40 (model I) or ~ 0.35 (model II), in reasonable agreement

with the results for K-stage-5; the results are summarized in Table 6.7.

It is worthwhile mentioning here that compounds of high stage index

are complicated, both structurally and electronically. Besides, it is

hard to grow single-stage samples with n larger than 5. The high-stage

samples usually containmixtures of stage n + 1 with them. The energy

band structure as well as the FS for these compounds, is also complicated.
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The observed and calculated SdH frequencies v for the K-stage-8

compound for two cases:

a) Considering Vobs. 400T to be the largest FS cross section,
and :

b) Assuming f = 1.0.

The frequencies with the largest Fourier intensity are underlined.
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This is evident from the energy bands shown in Fig. 2.10 for a stage-8

compound, the validity of which is supported by the quite complicated

SdH spectrum of Fig. 6.5. The conclusion to make from the analyses of

stage-8 compounds (Tables 6.6, 6.7), thus, is to note the good "quali-

tative" correlation between the experimental and theoretical results.

No "quantitative" conclusions should be drawn at thispoint. The situ-

ation is not so desperate for lower-stage compounds. In what follows,

we will see that, since both the experimental spectra and the models are

simpler for lower-stage compounds, we can draw some quantitative con-

clusions, as we did for K-stage-5 sample.

In Tables 6.8 - 6.11, we have Tisted the results for the rest of the

samples that were studied. Although here the largest observed frequency

(v 25%) is well defined, we have also included the calculated frequencies

assuming f = 1 for each compound (Tables 6.8-6.10). This has been done,

firstly for completeness, and secondly to show that, with f = 1 the pre-

dicted frequencies are quite large and that almost none of the observed

frequencies can be explained.

On the other hand, using v, 208 to match v S21 we have very good

agreement between observed and predicted frequencies. The agreement for

Rb-stage-5, especially model II with Er = 0.475eV, is excellent (Table 6.9).

We also note the very good correlation between experimental and theoret-

ical results in K-stage-4 (Table 6.8). This table should be compared to

Table 6.1(a), which shows Tanuma's analysis, mode I, for the same

compound (K-stage-4).

For sample Rb-stage-2 (Table 6.11), once again the agreement between

J he and Veale is remarkable for model II with Er = 0.420eV. However,
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Table 6.8

The observed and calculated SdH frequencies v for the K-stage-4

compound for two cases:

a) Considering Vobs. 354T to be the largest FS cross section, and

5) Assuming f = 1.0.
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Table 6.9

The observed and calculated SdH frequencies v for the

Rb-stage-5 compound for two cases:

a) Considering obs 420T to be the largest FS cross section, and

b) Assuming f = 1.0.
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Table 6.10

The observed and calculated SdH frequencies for the Rb-stage-3
compound for two cases:

a) Considering Vobs. 405T as the largest FS cross section, and

b) Assuming f = 1.0.
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Table 6.11

The observed and calculated SdH frequencies v for the Rb-stage-2

compound for three cases:

a) Considering Vobs. 255T to be the largest FS cross section,

b) Assuming Yous, 255T to be the second largest cross section, and

c) Assuming f = 1.0.
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as a result of the small value of vos: = 255T, and thus the small value

of Er, the f value is very small (0.07). So, despite the fine agreement

for the frequencies, we may wish to raise Er and attempt to match the

second largest predicted frequency, with wobs- = 255T and see what f

value results. The outcome of such an attempt is given in Table 6.17

for model IT, with Ep = 0.460eV, f = 0.17, and for model II (Eg = 0.800eV

and f = 0.33 ). Note that in this case, model II fails to predict the

very dominant 19T frequency -- see Fig. 5.15(a). The same is true for

model I, with Ep = 0.460eV, Table 6.17. The conclusion, then, is that

although f = 0.07 is very small, it does correspond to the best fit of

the experimental data with the theoretical models. Once again, it must

be emphasized that small values of f result from the assumption that all

the carrier pockets present in the zone are probed by the SdH experi-

ments. In reality, there may exist other carrier pockets, possibly

elsewhere in the zone (away from the KHaxis) whose cross sections are

not observed in our experiment {because of their large m*/m or small

scattering time T, )- Such carrier pockets would contribute to increase

the above f values.

In closing this section, it must be mentioned that, when we consider

the observed frequencies for all the compounds (Table 5.3), we note that

there are certain frequencies which are common to two different -- but

asually close -- stages of a given intercalate (e.g., the 150T frequency

for potassium compounds with n = 4,5). It must be admitted that models

I and II. which are based on the stage-dependence of the electronic

structure, do not explain this observation explicitly. However, with

adjusting Er and even assuming some functional dependence of f on stage
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(see next section), similar frequencies for compounds of two different

stages can be obtained. This has been done, in an implicit way, in the

above analyses.

[V-4. Summary and Conclusions

Most of the conclusions and comments stated here in this section

concern the experimental results and the application of the theoretical

models for their interpretation. However, there is one other very im-

portant conclusion about the experimental work (physical measurements)

that must be emphasized -- and that is the absolute necessity of encapsu-

lation, i.e., protection from exposure to air and moisture, when working

with the alkali-metal GIC. Samples which are not encapsulated (especially

for n &lt; 4) rarely give stable SdH signals, and even when they do, their

results should be interpreted very carefully.

We will enumerate several general conclusions about the analyses

of the previous sections:

Our analyses of the experimental data have verified that the

electronic structure of these (alkali-metal) intercalation

compounds is closely related to that of the host graphite.

The overall good agreement between the experimental FS cross

sections and those calculated by the models (which are closely

based on graphite s-bands) provides evidence for this rela-

tion. Also, the effective masses observed in these compounds

are in excellent agreement with the calculated values. The

graphitic nature of these masses also strongly supports the

above views.
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2. The observed SdH frequencies are stage-dependent. Although there are

certain frequencies which are common between two compounds of dif-

ferent stage (with their stage usually differing by one), our

results show that the frequencies are stage-dependent and that they

can be interpreted by stage-dependent models. This stage-dependence

is compatible with the reported results for other potassium com-

pounds [5-7]. There is also good agreement between our results for

the K-stage-4 compound and Tanuma's results for the same compound

(5-71.

3 In comparing the observed and calculated FS cross sections, we note

that for the high stage compounds (n = 8), there is fairly good

qualitative agreement. Because of the complicated shape of the

Fermi surfaces due to the multitude of the energy levels for these

high-stage compounds, it is difficult to get good quantitative agree-

ment between the experimental and calculated cross sections. In the

4

case of the Tower-stage compounds (n &lt; 5), good quantitative agree-

ment is obtained.

The f values are small for all the compounds that were studied (the

stage dependence of f will be discussed shortly). As mentioned before.

such small values of f result from making the assumption that our SdH

measurements probed all the carrier pockets present in the zone; how-

ever, there may well exist other pockets, possibly away from the KH

axis, which were not observed in our experiments (which require large

w, Tg ). If such pockets are taken into account, then f may have a

larger value . The band models, as used, do not predict any other car-

rier pockets except those near the KH axis: however, with proper
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modification, model II can predict such pockets.

When we consider the f values for different stage compounds (except

stage 8) of each system, K or Rb, we note that f tends to be larger

for compounds of higher stage. This may sound unreasonable at first

sight. However, recall that f is a measure of the fractional charge

transfer from the intercalate to the graphite Tayers. In other words, f

is an indication of how fully the (donor) intercalant, K or Rb, is ionized

(f = 1.0 corresponds to complete ionization). Taking this view, it is not

surprising that the more dilue (higher stage) the compound, the more comp-

lete is the ionization (larger f). The intercalant, here a donor "donates"

more electrons when immersed in a sea of "takers" -- graphite layers! The

fact that f is larger for the higher stage compounds has also been report-

ed, although not emphasized, by Iye et al [11] for the graphite-Askg

system. They report f values of 0.22, 0.26, and 0.28 for graphite-Askg

compounds of stages 3, 4 and a dilute compound [11].

In studying the GIC to see the general dependence of some physical

parameter onstage (for a given intercalant), it is customary to plot the

parameter as a function of reciprocal stage (1/n). In our case, we have

plotted in Fig. 6.6 the f values calculated by model II as a function of

1/n for K (n = 4,5) and Rb (n = 2,3,5) compounds. The straight lines

drawn through the points for each system show the decreasing trend of f

with decreasing stage index n. For both the K and Rb systems, we note

that the stage-8 f values fall above these lines, although for the K-stage-

8 compound, f = 0.35 (Table 6.7), lies failrly close to the value expected

from the straight line for K. This discrepancy can hardly be dishearten-

ing in view of the fact that the results of the analyses for stage-8
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Plot of the fractional charge transfer f (as calculated by
model II) vs 1/n (n = stage) for K(n = 3,4,5) and

b(n = 2,3 5) - GIC. The straight lines are drawn through

the points for each intercalate system.
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compounds should be considered to be only qualitative (see previous sect-

ions).

In Fig. 6.6, there is one extra point (A) for a K-stage-3 compound

which lies right on the line for the K-system. Tanuma et al [5] have

reported two SdH frequencies (262T and 194T) for a K-stage-3 compound.

Table 6.12 lists the results of the application of model I and model II

to thi: compound. Once again, the agreement between the calculated

frequencies, model II, and Vins, is very good. We also find that f = 0.11

(model II) is very consistent with the value expected from the line in

Fig. 6.6.

It must be emphasized that the lines in Fig. 6.6 should be viewed

only as an indication of a qualitative trend (increasing f as n increases).

For example, the fact that f = 0.11 for K-stage-3 falls right on the line

through n = 4,5 points, the author believes, is only accidental. The best

evidence for this argument is that, if we takesuch lines too seriously and

believe in a linear behavior of f vs 1/n for all stages, we will reach

the absurd conclusion that f &lt; 0 for a K-stage-2 compound. Also, stage-1

compounds cannot be expected to follow thetrends of Fig. 6.6 (because our

above models apply only to dilute compounds), and indeed experimental [5]

and theoretical work [16] have verified that they do behave differently and

that there are pieces of Fermi surface other than those along the HK axis.

* We must mention that, in their analysis for this compound, Tanuma

et al [5,6] used a higher value for Ep so that the 262T frequency matches
the second largest predicted frequency. They did this in order to get
better agreement between their calculated and observed frequencies, and

also so that the f value (0.17 in their case) be closer to their f-value

for K-stage-4 (f = 0.21, see Table 6.1) compound.
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Table 6.12

The observed (Tanuma et al [5]1) and calculated

SdH frequencies for a K-stage-3 compound.
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5. Our final comment concerns the quantitative

explanation of the observed frequencies. It has been mentioned before

that model II was used here in its simplest form. No parameters besides

those of pristine graphite were used (except for the choice of Ep for the

SdH data). By introducing proper intercalate-intercalate and intercalate-

graphite interactions, model II can be modified to explain the experi-

mental data more quantitatively. As the simplest example of such a mod-

ification, consider the introduction of an intercalate-graphite

bounding layer interaction via a single parameter u [40,22]. In Fig. 6.7

the "cross section vs Eg" curves (similar to Fig. 6.4) for a stage-5

compound are shown if My = -0.30eV is used. A comparison of Fig. 6.4

and 6.7 shows that the main effect of this new parameter is to shift the

positions of the energy bands relative to each other, without changing

their curvatures. Also, the bands still remain mainly flat along the

HKH axis, so that we do not yet have the needed dispersion (along the

k,-direction) to explain the numerous observed frequencies. This example

shows that using model II, a detailed explanation of the FS cross sections

may be possible, but that more k-dependent terms are needed. Further-

more, considerable time will be needed to develop such a fit.

VI-5 Suggestions for Future Study

It is evident from the analyses of the previous sections that to get

a more definitive evaluation of the models, one should concentrate on

lTow-stage compounds (n = 2,3). The energy bands for these compounds are

fairly simple; see Fig. 2.10. This is in agreement with the simple power

spectra we have observed for the rubidium compounds (Fig. 5.15). To obtain

more quantitative agreement between the models and experimental results,

it is necessary to introduce k,-dispersion into the band structure via
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Plot of anv vs Er for the K-point FS cross sections v of a

stage-5 compound. An interaction term u = -0.30eV is used to

modify the bands. This figure should “e compared to Fig. 6.4,

which is a plot for the case p= 0.
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intercalate-graphite and intercalate-intercalate interactions.

Since the dominant contribution to the k_-dispersion would come

from the intercalate-graphite interactions, and since such interactions are

relatively stage-independent, then an evaluation of model II can be done as

follows. For a given intercalant, say Rb, one would apply model II to a

stage 3 compound, and introduce interaction parameters to match the exper-

imental results as accurately as possible. Then, without changing these

parameters significantly the model should be applicable to a Rb-stage-4

compound and it should predict the experimental SdH results.

From an experimental viewpoint, it is harder to work with Tow-stage

alkali-metal compounds than with those with higher stages. This is

because the low-stage compounds are more unstable in the presence of oxy-

gen and moisture. So better techniques for sample-handling and preserva-

tion will be useful in future studies. The conclusion is that more

careful work, both experimental and theoretical, needs to be done on these

materials, especially on the low-stage compounds, in order to obtain

quantitative models for their Fermi surfaces and electronic dispersion

relations.
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Appendix A: THE DISCRETE FOURIER TRANSFORM (DFT) AND ZERO-PADDING

form

Consider a real continuous-time function f(t) and its Fourier trans-

[1,2]:
0

“(59) = | F(t)e30gt

as shown in Fig. A.1(a,b). Assume that f(t) is time-limited to (te - t,)

and band-Timited to 2.- Although no continuous-time signal can be exactly

time-limited and band-limited, many are approximately so. In fact, this

is what we count on when we represent a signal by a finite number of its

samples. Now, suppose that f(t) is sampled with a sampling period of

T, [Fig. A.1(c)]:

The

+ [n] = f(t, + nT (A.2)

Fourier transform of x. [nds defined by

+ wo

ev’) = J x [n]e~3%n 1 . 2nr) |
Lx [nle = T y Fg +g 2) (A.3)

r=- 1.

lo w/T

7 \

is shown in Fig. A.1(d). Note that X, (3%) is a continuous periodic

function of ww. As can be seen from Fig. A.1(c) aliasing occurs if we are

"undersampling". The largest value of T which avoids aliasing is m/c ,

the Nyquist rate.

Now when we use a digital computer to obtain the Fourier transform

of a (discrete-time) signal such as x, In], it is necessary to define the

notation of the Discrete Fourier Transform (DFT). DFT is a Fourier rep-

resentation for a finite-duration sequence, and is formally defined by

the Fourier transform pair:

N-1 _ s+ 2mnk

Y  x[nle J N

n=0

0

(ri

{
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(a)

(b)

(c)

"d)

A real continuous-time function f(t) of finite duration; f(t) is
assumed to be approximately bandlimited.

Fourier transform of f(t) in (a).

Sequence x [n] whose values are samples of f(t) with a sampling
Aravind T
Wiel 1 UN 1

“ourier transform of x_[n] as defined by Eq. A.3.
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x[n] =

vl Ek,

hi Kile” =k=0

(0

0 &lt;n&lt;N-1T

Otherwise

(A. 4b)

where both x[n] and X[k] are sequences of finite duration N. Equation

A.4a is the analysis transform, while A.4b gives the synthesis transform.

Let us assume that we have sampled f(t) at N points [Fig. A.2(a)], with

a sampling period of L to obtain the sequence x [n]. Then, the DFT of

this sequence X[k] is also an N-point sequence. Comparison of Eqs. A.4a

and A.3 shows that X[k] actually represents N equally spaced samples of

X (9%) over one period (-m &lt; w &lt; wn). This is shown in Fig. A.2(b,c).

More rigorously, we have:

X kl =X (eI¥) kK = 0,21,+2, ...#(N-1), +N
2 2

_ 2k

a

Bros] L.e.2T° &amp;
-

. 2m )(4 8 k = 0,#1, +2, ... £(N-1),N
9?

(A.5)

According to Eq. A.5, the resolution in the DFT X [k] is:

SO
_ 21 = 2m

CNT, tet
(A.6)

Figures A.2(b,c) show that we have made inefficient use of our DFT

channels (points). We have an artificially large resolution because we

have left many of the DFT channels(|k] % 9./ 89 ) for zero values of X [k]!

Zero-padding is a method commonly used in digital signal processing to
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(a) Sequence x,[n] representing N equally spaced samples of f(t).

(b) Fourier transform of x Ln]. T Qc &lt; wm and we are actually 'oversampling'-

(c) DFT of x, [n]. We have N equally spaced samples of X. (ed?) over one
period ("=m &lt; w &lt; 7).
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overcome this inefficiency [3]. Basically, what we would like to do is

this. Given a fixed value of N, say 2048, we want to choose sQ so that

NeQ = 29» i.e., we want the non-zero values of the DFT to be spread over

the entire available chanels (without aliasing). To do this, consider

Fig. A.3(a). Here we have chosen a new sampling period Ts equal to the

Nyquist rate, i.e.,

wk

$e
oh 0)

Obviously, T, &gt; T, and hence ii» Tess than N samples we can cover the non-

zero values of f(t) (t, &lt;t«&lt; te). In zero-padding, we set the rest of

the points in the N-point sequence equal to zero before doing the DFT, i.e...

sequence x _[n] is defined as:

{ f(t, + nT)
ry

0

An evaluation of the N-point DFT of x_[n]

“K|  = LEG 2)

C, + nT EL,

b
1

% af3)

E + nT &gt; t,

shows that:

{ ).x1,+#2, ... +(N-1) +N
z 7 7Z

(A.9)

meaning that we have more closely spaced samples of F(jn) and hence a

better resolution is achieved [see Figs. A.3(b,c)].

As an explicity example, let t 8x Lym (Chapter V) and Q = 2mv

where v is the Shubnikov-de Haas (SdH) frequency. Consider a typical case

where Vax = 10007, tg = Xp = Ht TY, and te =X = HY! 3

Then, ©&amp;v = Tox C 1.1 T. This is a reasonably good resolution.
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Figure A.3

(a)

(b)

(c)

Sequence x,[n] representing N samples of zero-padded signal.

Fourier transform of x,[n]. Since we are sampling at the Nyquist rate,
then TQ = =.

2c

DFT of x, [n]. Again we have N equally spaced samples of X,(e’) over one

period (-m&lt;w&lt;w), but here, nonzero values of X&gt;[k] range over the

entire N channels (points) of DFT. A better resolution is obtained.
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Note that, if we are taking a 2048-point DFT, no aliasing occurs, since

max 10007 &lt; LEN = 1097T. Now, suppose that for some reason we would

like to do a high field analysis, i.e., we want to choose our (inverse)

field range as 3 to 7&amp; Th, and take a 2048-point DFT. Then, accord-

ing to Eq. A.6, 8v = he = 7.5T, which is not a good resolution.

5 15

But, if we zero-pad our signal from L7 to 1717 and take 2048 uni-

formly spaced samples of the zero-padded signal (15 T° to TT )

we have a resolution of 1.1 T as before. Note that there is no aliasing

introduced and that we have simply improved our resolution by the use of

the zero-padding technique.

REFERENCES FOR APPENDIX A

J

3

A. V. Oppenheim and R.W. Schafer, Digital Signal Processing, Prentice-
Hall Inc., New Jersey (1975), chapters 1, 3, 5.

The notation used follows exactly that of Ref. [1]. Time and frequency
are used as these are more familiar. Later in this Appendix, examples

will be given using H-field and inverse H-field.

The zero-padding technique presented here follows Prof. A. V. Oppenheim's
lectures and problem sets in the MIT course "Digital Signal Process-

ing" (6.341) offered by the Department of Electrical Engineering and
Computer Science.
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Appendix B: ELLIPSOIDAL FERMI SURFACE

Consider the ellipsoidal Fermi surface (FS) of Fig. 5.3(b). For

such a FS, calculation based on simple geometry shows that:

2
Yo = (cos2 8 +2 sin? g
Aq b

(B.1)

To determine the anisotropy ratio b/a by least-square fitting of the

axperimental data, we minimize:

“)

2 a’ : 2 "y |. cos 8, TZ Sin 0, TR (&amp;.2)

with respect to a?/b2, i.e., we set 5F/5(a?/b2) = 0. This minimization

results in:

Ro. 2 L
we sin 0,) - cos 6;

a
Io)

(2.3)

sin @.

23a

D
3

1,

sin 8,

=A 0
0 . A. 2

g (= sin 0.) cos 81;

treet

(24)

Equation B.4 is used to obtain the anisotropy ratios listed at the bottom

of Table 5.1 (Chapter J)
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