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ABSTRACT

Measurements of the electrical resistivity p as a function of the mag-
netic field 4 (up to n15 Tesla) have been carried out on well-characterized
(single stage) encapsulated potassium and rubidium graphite intercalation
compounds. From the periodic oscillatory behavior of p vs H_l (the Shubni-
kov-de Haas (SdH) effect), the extremal cross-sectional areas of the Fermi
surface (FS) perpendicular to ﬁ have been determined for these materials.

Possible shapes of the FS are inferred from the dependence of the FS
cross sections (SdH frequencies) on the angle between the c—axis of the sam-
ple and H. The temperature dependence (1.4 % T < 25°K) of the amplitudes of
the SdH oscillations has been studied to find cyclotron effective masses for
specific FS cross sections.

The stage- and intercalant-dependent experimental results are inter-
preted in terms of two simple phenomenological energy band models based on
the m-bands of pristine graphite and the c-axis zone folding technique. The
good agreement between the experimental and predicted effective masses and

the FS cross sections is an indication of the validity of the models.

Thesis Supervisor: Professor Mildred S. Dresselhaus
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I. INTRODUCTION

Graphite intercalation compounds (GIC) have been the subject of much
current research and interest. These compounds are formed by the insertion
of atomic or molecular layers of certain chemical species (the intercalant)
between the layers of the host graphite and forming an ordered structure.
The staging phenomenon which refers to the periodicity in the stacking of
the graphite and the intercalate layers is the most important and interest-
ing structural feature of the GIC. The stage index n denotes the number
of contiguous graphitic layers between two nearest intercalant layers.

Among the very interesting and curious properties of the GIC, in addition to
their highly ordered structure, are: (1) the large number (>100 ) and
variety of the reagents that react with graphite and form the intercalation
compounds, and (2) the high degree of anisotropy in their structural and
electronic properties [1,2] (also see Chapter II).

A great deal of work has been done on the structural and electronic
properties of GIC [1,2]. Among the many techniques used to study these
compounds are: (1) X-ray, electron-,and neutron-diffraction techniques
for the staging and in-plane ordering, (2) Raman and infrared spectroscopy
in addition to inelastic neutron scattering experiments for the lattice mode
properties, and (3) a vast number of experiments such as conductivity, Hall
effect, magnetoresistance, electron spectroscopy, magnetooptical and
quantum oscillatory measurements to investigate their electronic properties.

The aim of this thesis project was to obtain accurate and reliable
information about the electronic structure of these materials using the

Shubnikov-de Haas technique, and to use the available energy band models to
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interpret the experimental data. Needless to say, once reliable exper-
imental data are available, they can be used to evaluate, contrast and
improve the theoretical energy-band models.

A very important piece of information about a solid, and one which
relates directly to its energy-band structure, is its Fermi surface (FS).
The experimental techniques which provide information about the FS most
directly are those which are based on the quantum oscillatory (Q0) pheno-
mena and on the oscillatory behavior in reciprocal magnetic field of
several properties of the solid. These oscillatory phenomena are normally
observed at high magnetic fields and low temperatures, and are closely
related to the FS. The QO effects can be observed in the magnetic suscep-
tibility (de Haas-van Alphen or dHvA effect), the electrical conductivity
(Shubnikov-de Haas or SdH effect), the temperature of an isolated sample
under adiabatic conditions (magnetothermal effect), and several other prop-
erties of a solid (with metallic properties).

The frequency(ies) of the periodic oscillations (as a function of
inverse magnetic field) in the above properties is/are directly related to
the extremal cross-sectional area(s) of the FS (perpendicular to the
direction of the applied field; see Section 2.5 for a discussion of the
SdH effect.) These frequencies will be referred to as the "SdH frequencies"

in this thesis report. The SdH effect was chosen in this project as the
means to study the FS of GIC, since it requires the simplest experimental

setup. The high field facilities available at the Francis Bitter National
Magnet Laboratory, however, were essential for the performance of our
experiments and our measurements were carried out to ~15T.

At the time this project was started, there were very few materials
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on which the FS experiments had been performed. The first report on the
observation of Q0 effects on GIC was made by Bender and Young in 1971 [3,4].
They performed the SdH experiment on dilute graphite—Br2 samples that
were not carefully characterized. Not much work was done in this field
until 1978. From that date until now, experiments based on Q0 phenomena
have been performed on a great number of graphite compounds of different
intercalants and stages. Some of this work has been done on well charac-
terized samples. Among the intercalants on which the Q0 measurements have
been performed are: K [5-8], Rb [8], FeCl3 and PdC1, [9], SbCls [10],
AsFg [11,11], HNO5 [13], and Br, [3-5, 14]. In most of these reports the
number of observed SdH frequencies (FS cross sections) and also their mag-
nitudes are considerably greater than for pristine graphite. The large
increase in the FS cross sections is generally attributed to the transfer
of charge (electrons/holes for donor/acceptor compounds) from the inter-
calant to the graphite layers , thus swelling the FS (electron/hole
pockets). The number of the SdH (or dHvA) frequencies and their stage
dependence has been a matter of controversy, and still is.

The reports that indicate a stage dependence of the FS [5-8,11-13]
also report that there are a small number of SdH frequencies for low-stage
compounds (N = 1,2) and that this number increases as the stage index is
increased. On the other hand, there have been reports indicating stage-
independent SdH frequencies. Such reports have been made especially for
the acceptor compounds [3,9,14]. A large number of SdH frequencies have
also been found by these authors, although in this case, many of the
observed frequencies are identified as harmonics, or are associated with

magentic breakdown phenomena.
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In this thesis project, the SdH experiment was performed on alkali
metal GIC. Despite their instability in the presence of air and moisture,
these materials were chosen because they are structurally among the simplest
and best known of GIC, and because it is possible to grow well character-
ized and single-stage samples of K and Rb-graphite over a large range of
stage index [15]. The K-GIC (of low stage) are also the compounds for
which first principles band calculations have been performed [16-18].

Our experiments were carried out on single-stage samples of K-GIC (stages
4,5,8) and Rb-GIC (stages2,3,5,8)and some other nearly single-stage K and
Rb samples. These compounds were chosen so that our experiment complements
the work of other authors [5-7] who have done the SdH experiment on K-GIC
of stages 1,3,4. Our results for the K-stage-4 compound are in fair
agreement with results reported by Tanuma et al [5] (Chapter V, Table 5.4).
Both our results and those of References 5-7 support a stage-dependent

FS. These results will be interpreted in Chapter VI by using two phenom-
enological energy-band models (explained in Chapter II) which do predict
stage-dependent Fermi surfaces.

The actual procedure in carrying out this study followed closely
the order in which the chapters (III-VI) are presented. The work done
included sample preparation and characterization (Chapter III), sample
handling and the SdH experiments (Chapter IV), data analysis (Chapters
IV and V) and finally the interpretation of the FS results (Chapter VI).
The emphasis in this work was not on performing the SdH experiment on a
large number of samples (although to ensure reliability and consistency,

a fair number of samples was studied), but rather on studying one compound

thoroughly (K-stage-5). Much attention was paid to the quality of the
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samples studied and their stage fidelity (using X-ray techniques) before
and after the SdH experiment. Encapsulation was used to protect the
samples from air and moisture. In subsequent chapters, different stages
of the project will be discussed in detail. Here in Fig. 1.1, a flow
chart illustrating the highlights of each step of the project is pre-

sented.



-17-

SAMPLE GROWTH

twa-3Me Vapor transport method.

CHARACTERI ZATION

(000) x-vay diffraction

SDH EXPERIMENT

G-I'\-%u.lah and tzmre.mt ‘t;:fe

DATA ANALYSIS

Sourier transforms, sdd .

; m
frequencies, -

INTERPRETAT ION

Mtran chmal ‘MOCLQQO

Figure 1.1
Flow chart summarizing the work done during this
thesis project
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IT. BACKGROUND

In section 2.1 of this chapter, the crystal structure of graphite
and graphite intercalation compounds (GIC) as well as some of their int-
eresting properties will be presented. Section 2.2 reviews the graphite
energy-band structure as described by the Slonczewski-Weiss-McClure
(SWMcC) model [19-21]. A brief discussion of the effect of intercala-
tion on the energy-band structure of graphite and the Fermi Surface is
given in section 2.3.

Section 2.4 deals with the two models used for the interpretation
of the experimental results. The first model is based on the kz-axis
zone-folding of pristine graphite bands, while the other is a phenomen-
ological model developed by Dresselhaus and Leung [22] based on the k-
axis zone-folded Hamiltonian of pristine graphite with an empty inter-
calate layer. Finally, the last section (2.5) deals with some theoreti-
cal background about the Shubnikov-de Haas (SdH) effect. In this thesis,
SdH measurements were used as the experimental tool to study the Fermi
Surface of the compounds.

II-1. Graphite, GIC, and Some of Their Properties

Graphite intercalation compounds (GIC) have been known for many years.
Schafhautl was the first to observe a directional "swelling" of graphite
when immersed in a mixture of sulfuric and nitric acids in 1841 [23]. The
nature of this swelling was not known until diffraction techniques became
a common tool for studying the structure of solids. Since then a great
deal of work has been done on GIC to understand their very interesting

structural and electronic properties. We now know that this swelling is
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due to the insertion of the layers of some parent material between the
graphitic layers; this process is called "intercalation".

Ths structure of pristinegraphite plays a key role in the formation
and properties of these lamellar compounds. The graphite structure
belongs to a hexagonal system. The carbon atoms are arranged in a hexag-
onal layer network with strong in-plane covalent sp2 bonds (see Fig. 2.1).
The interatomic distance is small, the nearest-neighbor atoms being sep-
arated by only 1.423. Along the c-direction,the direction normal to the
plane of this honeycomb network, the layers are stacked such that the
open center of each hexagon is sandwiched between two carbon atomes from
neighboring layers. This stacking sequence, called the ... ABAB... stack-
ing, results in a c-axis parameter of twice the interlayer spacing
(2 x 3.35 = 6.70&). The interaction between atoms in the c-direction is
of the weak van der Waals (dipole-dipole interaction) nature. The weakness
of this bonding has interesting consequences. It causes graphite to be a
highly anisotropic material. The most direct evidence for this fact is
the very ease with which the graphite layers are cleaved. The electronic
properties of graphite are also affected by this anisotropy; while a poor
conductor in a-plane, graphite is practically an insulator along the c-axis
(oa/oC = 10" at room temperature).

This anisotropy enables us to neglect the interaction between the
layers and hence theories and calculations for a quasi-two-dimensional
system of atoms can be applied and tested. Hence, graphite and its inter-
calation compounds are also interesting from a theoretical point of view.

Graphite becomes the host to many materials such as alkali-metals,

halogens and metal-halides, and it forms lamellar compounds. The term
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"lamellar" is generally used to denote compounds which are formed by
stacking layers of species on top of each other. In our case, several
graphitic layers sandwich one intercalate layer repeatedly and form the
GIC, with stage index n denoting the number of contiguous graphitic
layers between two nearest intercalate layers. These compounds show
interesting properties similar to those of graphite. The degree of ani-
sotropy usually changes, depending on the intercalate species, while the
in-plane properties change from those of pure graphite, too.

The interlayer and intralayer interactions between graphite and
intercalate have dramatic effects: in some acceptor GIC, the Ua/oc ratio
is enhanced by two orders of magnitude (oa/oC ~ 10%) and some compounds
(CiGAsFS)exhibit a conductance along the a-plane diretions comparable to
that of copper [24]. Some alkali-metal-GIC become superconducting at low
temperatures, while neither the alkali-metal nor the host graphite is a
superconductor [25]. Also, some GIC are used as catalysts for organic
chemical reactions [1].

The above characteristics, together with the aforementioned interest
in two-dimensional physics, make the graphite lamellar compounds the focus
of much recent attention.

II-2. Features of the Graphite and GIC Structures

For future reference, a summary of the graphite structure follows
[26]. The material is:
Hexagonal (see Fig. 2.1) with Tattice constants:
a, = 2.46A
D= E
IC 6.70
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1

0 o
The interplanar distance is usually denoted by S, (= E—IC = 3.35A) .

There are four atoms in the basis and these are located at:

ol 1 gy, (22 1, 1
(03090): ("3"‘:330)3 ( 33 39 2 )s (Osos 2)

The primitive Tattice vectors are:

+_ -~
a= ax

g 1 ~ ﬁ ~

b = ao?“Ty) 2]
¢ = 2 2

and the reciprocal lattice vectors are:

E _?-_'!T( /3 5
ao L
e*x _ 2r 2V3
a3 Y 12.2)

Note that the reciprocal lattice represents a hexagonal system, too.
(See Fig. 2.3.)

The type of graphite used in these experiments was highly oriented
pyrolytic graphic (HOPG) [27] . The c-axis in HOPG is aligned to better
than 1°. The a-axes are aligned within domains that are ~ 1 micron in

diameter in the a-plane.

There are some aspects which are crucial in understanding the struc-

ture of the GIC. These are presented briefly below.
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(a)

Figure 2.3

Hexagonal Brillouin zone with those (b)
high symmetry points labeled that

are of particular interest for

graphite

HOLES

ELECTRONS

HOLES

(b)

The Fermi surface of graphite deter-
mined by SWMcC model (with Ty = 0).

Six of such surfaces are located at the
six zone edges.
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Stage Ordering. This is the most important feature of the GIC.

Along the c-direction, the layers of the intercalate are sep-
arated by n layers of graphite, where n denotes the "stage" of
the compound and assumes integer values (see Fig. 2.2).

Stage zero (n = 0) refers to the pure parent (intercalate)

material and stage infinity (n = «) is for pure graphite.

Graphitic Intraplanar Ordering. The in-plane ordering in graph-

ite planes (open hexagons with carbon atoms at the corners) is

retained in the Tamellar compounds. The a-lattice constant of

graphite shows 1ittle or no change relative to that of pristine
graphite (a0 = 2.463).

gr
Graphite Interplanar Ordering. There exists a stacking order

for graphitic layers (not necessarily that of pure graphite)
in the compounds. For instance, the ... AXAXAXA... or

. ABXBAXABX... structures are commonly observed for stages 1
and 2 compounds. Or, we can have ABXBCXCA..., etc. Here, A,B
denote graphite layers and X denotes the intercalate layer (see
Fig. 2.2).

Intercalate Intraplanar Ordering. The intercalate species in a

layer exhibit an ordered arrangement. This arrangement is usu-

ally similar to the network which intercalate species have in

a cross section of the intercalate material. This site ordering
may or may not be commensurate with the graphite site ordering.

Intercalate Interplanar Ordering. The intercalate layers may

have a stacking order. For example, in stage 1 CeK’ alternate

intercalate layers are seen to have the ... AcApAvASA ...
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ordering [28], where a, B8, v.8 sites are assumed by the inter-
calate atoms on sequential layers.

6. Correlated Intercalate-Graphite Site Ordering. For commensurate

structures, the site orderings in the graphitic layer and

adjacent intercalate layers are correlated.

I1-3. Electronic Energy Band Structure of Graphite.

It was mentioned in previous sections that the interlayer inter-
action is very weak in graphite. Because of this large anisotropy of the
crystal structure, the simplest models for the graphite energy bands
are the two-dimensional models [29-31]. In these models the 25,2px
and Zpy atomic wave functions interact to form the strongly coupled bond-
ing and antibonding trigonal orbitals (o-bands). The P, atomic wave
functions give rise to the two valence and conduction =-bands, which are
degenerate by symmetry at the six corners of the two-dimensional hexag-
onal Brillouin zone (BZ). The Fermi energy lies between the two w-bands
and thus the two-dimensional graphite is essentially a zero-gap semicon-
ductor. Graphite, however, is a three-dimensional solid; and the inter-
layer interaction, although small, has profound effects on the energy
band structure of graphite, especially near the six vertical zone edges
where the bandwidth is small.

As shown in Fig. 2.1, the AB stacking of the graphite layers gives
rise to four carbon atoms per unit cell. Thus, there are four w-bands
near the Brillouin zone edges and it is the overlap between these =-
bands that is responsible for the semimetallic properties of graphite

(Fig. 2.3). A number of first principles band calculations have been
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carried out, some based on a two-dimensional model and others includ-
ing three-dimensional interactions [29-32]. These models are especially
useful in discussing the electronic structure away from the Fermi
Tevel (EF) but are generally not sufficiently accurate to interpret
experimental data providing detailed information within a few hundred
millivolts of Ep.

The most successful and widely used three-dimensional model for
the dispersion relations for the four w-bands near the Fermi level was
developed by Slonczewski and Weiss [19] and by McClure [21, 21]. The
Slonczewski-Weiss-McClure (SNMCC) model is especially successful for
describing the behavior of the w-bands near the zone edge and has been
used extensively to explain the various observed transport, optical,
quantum oscillatory and magneto-optical properties which depend on
electronic structure near the Fermi level. This phenomenological model
is based on developing a Hamiltonian of the most general form consistent
with the crystal symmetry of graphite. Perturbation theory is used to
obtain E(K) 1in the vicinity of the HKH axis of the BZ. Along the k.,
direction, a Fourier expansion with rapid convergence (because of the
weak interlayer binding) is made. Since the extent of the Fermi surface
from the zone edge is small compared with the BZ dimensions ( <0.01), a
ﬁkﬁ'expansion is made to obtain the form of the Hamiltonian perpendic-
ular to the HKH axis. In this model, the Hamiltonian for the w-bands

is a 4 x 4 matrix of the form:

Eq 0 Hy3 Hy3x

= 0 Eo Ho3 - H)zse (2.3)
Hizx  Hoge B3 Has
M3 - Hyg H33% E3
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where the energies at the band edge are given by:

1 2
= A++yT + .
El 'Yl 'ZYSI' (2 4)
o= +] ? 2.5}
L, = A - er ?'YSP (2.
2
E_ = 12"-}'21" (2.6)

and the interaction terms are:

Hys = 2°% (-v, *+v,Io exp (ia) (2.7)
i, = 2_1/2 (v * v,T)o exp(ia) (2.8)
v ™ ygroexp(ia) (2.9)
with
r = 2 cos ng (2.10)
£ = kzco/n (2.11)
o =5 /I« (2.12)

In the above, o is the dimensionless distance from the zone edge («

is the in-plane wavevector measured from the zone edge), o is the polar
angle about the zone edge, as shown in Fig. 2.3(a), By S 2.46A , and
Cy = 3.355. The values of the seven expansion parameters yo,yl ...YS,A
and their physical significance are listed in Table 2.1 [2] . The eig-
envalues of the SWMcC Hamiltonian [Eq. 2.3] give the energy disper-
sion relations. These energy bands are schematically illustrated in
Fig. 2.4. Note the previously mentioned band overlap in the E3 band,

which is responsible for the semimetallic properties of graphite. Using
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Band
Parameter

Order of Magni-
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Slonczewski-Weiss-McClure Band Parameters for Graphite -

Their Magnitudes and Physical Significance [2]

tude

(eV)

Physical Origin

3.16

0.39

- 0.020

0.315

~ 0.044

0.038

-0.008

-0.024

b

I+

I+

e

+

+

0.05

0.01

0.002

0.015

0.024

0.005

0.002

0.002

Overlap of neighboring atoms in a single
layer plane.

Overlap of orbitals associated with carbon
atoms located one above the other in
adjacent layer planes. Width of w-bands at
point K is 4y1 1

Interactions between atoms in next-nearest
layers and from coupling between = and ¢ bands.
Band overlap is 2y, . Majority de Haas-van
Alphen frequencies determined by Y,-

Coupling of the two E, bands by a momentum
matrix element. Trigonal warping of Fermi
surface is determined by Y,

Coupling of E, bands to E, and E, bands by

a momentum matrix element. Determines inequal-
ity of K-point effective masses in valence

and conduction bands.

Interactions between second nearest layer
planes. Introduced in E, and E  to be
consistent with E, in the order of the
Fourier expansion.

Difference in crystalline fields experienced
by inequivalent carbon sites in layer planes.
Volume of minority hole-carrier pocket
sensitive to A.

The Fermi Tevel is measured with respect to
the H-point extremum (see Fig.2.4) and

is fixed by the condition that the electron
density = hole density.
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Figure 2.4

Electronic energy bands near the Brillouin zone edge (HKH axis)
for three-dimensional graphite obtained from the SHMcC model.
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the above model, good agreement is obtained for the effective
masses, carrier concentration, magnetoreflection results, and the
Fermi surface topology. The Fermi surface for pristine graphite
is shown in Figs. 2.3(b) and 2.5. The location of hole and electron
pockets is emphasized in Fig. 2.3, while Fig. 2.5 shows the trigonal
warping present in the Fermi surface because ¥, # 0. An extension
of the SWMcC model has been made by Dresselhaus and Dresselhaus to
include the spin-orbit effect [33] .

The Fermi surface of the GIC extends to a much Targer volume
of the BZ than inPristine graphite (next section). Also, the optical
properties of graphite include contributions from the energy bands
throughout the BZ; therefore, of particular interest is the extension
of the SWMcC model developed by Johnson and Dresselhaus [34,35], which
yileds the dispersion relations for the n-bands throughout the BZ.
This extension is based on using the symmetry properties of the Hamil-
tonian and developing a three-dimensional Fourier expansion for the
basis functions. Appropriate band parameters are evaluated for this
model by considering the Fermi surface data near the zone edge, the
optical data below 6eV, and the requirement that the dispersion relations
reduce to the SWMcC form in the vicinity of the zone edge HKH. The
above extension has been further developed by Dresselhaus and Leung to
obtain dispersion relations for the graphite intercalation compounds.
This will be explained in more detail in section 2.4.2 as one of the

models used to interpret the experimental results.
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H, ZONE CORNER

HOLES

EXTREMAL
HOLE

CROSS SECTION

k,= 0
EXTREMAL

_ELECTRON
CROSS SECTION

: a=120°
GRAPHITE FERM| SURFACE MODEL

53

Figure 2.5

Fermi surface of graphite showing the trigonally warped feature
of the electron and hole surfaces. The extremal cross sections
(1k,) observable by the SdH experiment are illustrated. The
"cap" at the H-point ( k, = n/co) is also indicated.
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II-4. Effect of Intercalation on the Energy Band Structure and

the Models for the Fermi Surface of GIC

In treating the properties of the graphite intercalation com-
pounds, a strong similarity between the structural and electronic
properties of the GIC and the parent materials (graphite and intercal-
ant) is recognized [2]. The physical basis for this relation is clear:
in both graphite and the intercalant, the intralayer bonding is strong,
while the interlayer bonding between graphite-graphite and intercalate-
graphite layers is much weaker. In the case of dilute (high-stage)
compounds, where there are several graphite layers for one layer of
intercalant, the electronic structure can be expected to be dominated
by that of pristine graphite. In fact, even for the most concentrated
(stage one) compounds of lithium and potassium, the first-principle
calculations indicate a structure closely related to the graphite
n-bands [16-18]. The experimental results on the electronic properties
of GIC also support the idea that the graphite w-bands play a dominant
role in the electronic structure of the intercalation compounds [5-7,36].

The above introduction illustrates the importance of the pristine
graphite electronic structure for an understanding of the electronic
properties of the intercalation compounds. In sections 2.4.1 and 2.4.2
two models which are closely based on the graphite energy bands, are
presented. These models are used in Chapter VI to interpret the exper-
imental data.

2.4.7 The Dilute-Limit Model

The diTute-1imit model, which is based on the SWMcC graphite
m-bands, was originally proposed by McClure [21] to account for the

electronic properties of the graphite-bromine compounds. In this model,
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the basic structure of the n-bands is preserved and the effect of
intercalation is treated mainly in terms of a shift in the Fermi level.
In the case of donor intercalants (such as alkali-metals), the Fermi
level is raised to accommodate the additional electrons, while for acceptor
compounds, such as halogens and metal-halides, the Fermi level is Towered
to accommodate extra holes. The basic assumption made in this model is
that the electronic interaction between the intercalate monolayers and
the two adjacent graphite bounding layers is limited to interactions within
this sandwich. In other words, the intercalate layer is effectively screened
by the two graphite bounding layers, and hence the electronic structure of
the interior layers is basically graphitic. This assumption implies that
the validity of the dilute-limit model is restricted to the intercalation
compounds with stage index 2 4 or 5, and applies to the graphite interior
layers. The SWMcC band parameters(Table 2.1) can be modified in this
model for the intercalation compounds. However, the magnetoreflection
experiments [367 have shown that very small modifications are needed
and that the band parameters remain basically graphitic.

In the dilute-1imit model, the simplification Y, = 0 can be made
in the SWMcC Hamiltonian to obtain simple analytic forms for the energy
bands. Setting Y, equal to zero changes the topology of the Fermi
surface and the trigonal warping vanishes. The cross-sectional areas
of the Fermi surface, however, are approximately unchanged [37] and
thus Eq. 2.15 (below) is a good approximation for the actual cross-
sectional area which includes trigonal warping. With Y, = 0, the eigen-

values for the Hamiltonian, Eq. 2.3, are the four solutions:
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2 },.42
E=3(E, +E) = [E- E)® + (vg v, )o? ] (2.13)
Y,
2 2 2
E = (€, +E) & GE, - E)) + (yp + v,1) o?] (2.14)

The cross-sectional area for the Fermi surface (area perpendicular
to k; -direction) for electrons can be obtained from Eq. 2.13 by setting

E = EF‘ The result is given by

. (E,- Ep)(E, - Ep)

)
Bav,” (14 )

(2.15)

A.(E) =

in which v = 2(Yq/Yo)cos m£. To obtain the electron carrier density

ne(EF), the above Ae(E) can be integrated along k,:

+

%
Ll
ne(Ep) = | (o) de (2.16)
2

A similar expression can be found for the cross-sectional area of the
hole surface for acceptor compounds using Eq. 2.14 under the substitu-
tion E, = E1 , (1+vf > (1-vf . Dresselhaus et al [38] have used the
above expressions to plot the dependence of the extremal cross-sectional
areas of the electron and hole surfaces at K and H points and the
carrier concentration as a function of the Fermi level (see Figs 2.6
and 2.7). Once the position of the Fermi level (relative to the K-
point band edge) is found experimentally, from magnetoreflection or
Shubnikov-de Haas (SdH) experiments, for instance, then the above
dependences can be applied to the electronic properties.

The first model used in this thesis to interpret the SdH results

is based on Fig. 2.7, and the zone-folding effect due to the superiattice
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Based on the SWMcC graphite rigid-band model, the
carrier density is plotted as a function of the

Fermi Tevel shifts relative to the graphite Fermi
level E|3 where the electron and nold carrier densities

are equal.
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Shubnikov-de Haas frequencies (in Tesla) obtained from
the SWMcC model as a function of the Fermi level shift.
These SdH frequencies correspond to the extremal cross
sections of the Fermi surface around the K and H-points.

For a small range of (EF - E;), extremal Fermi surface
cross sections (dotted 1ine) exist between K- and H-points

(0 < g <0.5)
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structure of the intercalation compounds (Chpater VI). Zone-folding
is a common technique applicable to crystals with a superlattice period-
icity. In zone-folding the dispersion relation E(k) for the host
material is folded into a Brillouin zone compatible with the crystal sym-
metry of the superlattice solid, Perturbation theory can then be applied
to account for the effect of the periodic potential. In appjying the
zone-folding technique to the graphite intercalation compounds, the
symmetry of pristine graphite structure is used as the approximate sym-
metry for the intercalation compounds, while the additional superlattice
periodicity due to the intercalant is treated as a perturbation. In the
case of graphite compounds, both the in-plane superlattice and superlattice
structure along the kz direction can be present and should be considered.
In the dilute-1imit model, the zone-folding along the kz-direction
is used to treat the effect of staging (superlattice structure along the
c-direction due to the intercalant). An example of such zone-folding for
a stage-4 compound [5] is shown in Fig. 2.8. The cross section of the

Fermi surface resulting from the graphite bands is sketched in Fig. 2.8(a).

The distance HH= % 7% is the height of the Brillouin Zone (see
c 0 6
Fig. 2.3). Here IO = 6.70A 1is the graphite Tlattice constant

along the z-direction (see Fig. 2.1). The new zone boundaries indicated

-
by H are the result of the larger lattice constant I for a stage- 4

2
compound (HH ﬂ ). For simplicity, it is assumed in this figure
Ie

that there is no stacking periodicity and that I = pg, = 4*3.35 =
13.40A. In actuality, IC is intercalant-dependent and is not equal

to n % c. (See Fig. 2.2 for potassium compounds.)’

+In the analyses presented in Chap. VI the measured I values are
used. (See Chap. III for determination of Lye)
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Construction of the Fermi surfaces [5] for a stage-4 compound
using the dilute-Timit model and zone-folding.

a) Cross section of the Fermi surface is shown assuming the graphite
rigid-band model and a shifted Fermi level to accommodate the
additional electrons (or holes).

b) Zone-folding along the c-direction is performed to account for the
superlattice periodicity in this direction.

c) Schematic Fermi surfaces are deduced from (b) by introducing splittings
at the new zone boundaries due to the periodic potential of the
superlattice.

d) Fermi surfaces as constructed in (c) are shown in the extended
zone scheme.
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In Fig. 2.8(b), the folding of the Fermi surface on to the reduced-

zone scheme is shown. The effect of the periodic potential due to the
superlattice is shown in Figs. 2.8(c) and 2.8(d) for the reduced and
extended zone schemes. The gaps that open up at the superlattice zone
boundaries as a result of the periodic potential modify the Fermi sur-
face as shown in Figs. 2.8 (c) and (d). The resulting Fermi surface
indicates that there are five extremum cross-sectional areas perpendicu-
lar to the c-axis (denoted by S] through 85) which should be observable
in the SdH experiment. This model was used by Tanuma et al [5] to
interpret the SdH results for a K-stage-4 compound and in Chapter VI
Tanuma's results will be discussed together with our results when use of
the model is made.

2.4.2. A Phenomenological Band Model for GIC

Although there are several first-principles band calculations available
for the graphite intercalations compounds, they all focus on stage 1 com-
pounds [16-18]. These stage-1 models have been applied to predict the
Fermi surface for these compounds; good agreement is obtained for CBK[5].

The calculations focus on stage 1 mainly, because of the complexity of

the calculations, due to the large unit cell and the large number of orbi-
tals that are involved in the high stage compounds. As a result, no first-
principles calculations for high stage (n» 2) compounds have yet been
carried out. However, some phenomenological models have been developed
[17,19,39] that do treat high-stage compounds. The model, developed by

Dresselhaus and Leung,[22] has the advantage that it can be applied
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to any stage and intercalant, and therefore is especially useful for the
interpretation of experimental results. This model will be used in
Chapter VI to discuss the experimental SdH data.

A detailed presentation of this model is given by Leung [40], and
here only a brief summary of the model js presented. As mentioned before,
this model is also directly based on the graphite w-bands. It uses the
previously discussed three-dimensional Fourier expansion of the graphite 7 -
bands [35] and is thus valid throughout the Brillouin zone. The matrix
elements of the Hamiltonian in the Fourier expansion representation are
chosen so that the Hamiltonian is consistent with the restrictions imposed
by the crystal symmetry, and also that it reduces to SWMcC at the zone edge.

This Hamiltonian for the w-bands has the form:

Han Hag Hape Hpp:
*
- H H Heg i Hawi
(k) - iB EB BB AB 113
Higr  MBer Mo Hp
Hine  HRgr MAg Han

where the matrix elements are given in references [34] and [40].

To incorporate the effect of staging (superlattice along the z-direction),
2one-folding is used. The repeat distance along the c-axis, assuming

for the moment that the intercalate layer is indistinguishable from
draphite, is given by IC = nxC, Where Cqy = 3.35A. The zone-folded

Hamiltonian is therefore [22]:



e

>
Ho(ks) 0
= _ m ~
HeotdedKs) =] O H (Rg+ i, z). (2.18)
’ =1 7 2
Ho(ks+ 3 Eﬂz)
where 2 = (n+1)/2 for odd stages and (n+1) for even stages (stage = n),

and each of the Hj blocks is a 4x4 SWMcC Hamiltonian given in Eq.2.77.
The zone-folded Hamiltonian (Eq. 2.18) 1is transformed to a layer representa-

tion by a unitary transformation:

> == s |
H]ayer(ks) = 1 Hf01ded (kS)U (2.19)

so that the effect of intercalation can be considered explicitly. The

resulting Hamiltonian in the layer representation is written as

H H
AOAO AOBO
" Ha B Hp 5 Hg (2.20)
H] (k) = 00 00 01 )
ayer' s
H H
B,A, ALA;
T
Ba-1B2-1

where the blocks HAiAj’ HA B> HB B. - are 2x2 matrices and Ai,Bi

i i’j
are layer subscripts. Note that, since the unitary transformation does
not change the eigenvalues of the Hamiltonian, the energy bands
obtained from Eq. 2.20 are identical to the SWMcC bands. The advantage

of having a layer Hamiltonian such as Eq. 2.20 is that the effect of
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intercalation can easily be incorporated by substituting matrix

blocks specific to the intercalant species in place of every (n+1)st

graphite Tayer.

(n) t
Hetc | Mxa

where )\ =

The resulting Hamiltonian for odd stage n is:

Hoo ... H
XAq XB,
H
BoAl
H
ArA
H
B?\B)\

(n-1)/2 and X denotes an intercalate layer.

stage compounds, the Hamiltonian is:

where u = n/2 and

Hxx

H
XB0

H

XB0

H
BoBo

Ha A Hpy X
LM H
.
H H
A X XX
.1-'
Hya

d
XBn

(2.21)

For the even

(2.22)




—4ty—

p(2x2)

+|6.0

o Stc:ge

T w T K H A T

(2x2)
+160 a0l )
q —
Stage
e ?3.1_“ N}S\O 2
/| —
O M T K H AT T 1
+16.0 - . E_( 2,‘2) Ty +10} /
TS === - Stage
o) /;55 \\i_:jij o;;;;;;7ﬁ=:¢<<::é£;o -
L e B B e S -10 \

Figure 2.9 [40]

Electronic energy levels derived by kz—axis zone-folding of

the three-dimensional Fourier expansion of the pristine graphite
n-band Hamiltonian for a primitive (2 x 2) superlattice. An
empty intercalate layer is assumed and the expansion parameters
are based on the SWMcC parameters along the HK axis. On the
right, an expanded scale is used to plot the levels on and

near the HK axis.
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E(E) for graphite intercalation
compounds along and near the edge
of the Brillouin zone. Bands

are for the "empty" intercalate
layer model with no graphite-
intercalate interaction.

For donor compounds, E- > 0
and there are up to n ffor odd
stage) or 2n (for even stage)
electron pockets.
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An explicit diagonalization of matrices (2.21) and (2.22) can
be made to obtain the k-dependence of the energies (eigenvalues). For
the simplest case, called the "empty intercalate layer model", the
intercalate layer is assumed to be "vacuum" -- i.e., Hyy = HXAi = Hxéz 0.
To distinguish between donor and acceptor compounds, interaction terms
may be introduced so that the intercalate layer is allowed to interact
with the graphite bounding layers. Plots of E(k) for different stage
compounds based on the empty intercalate layer model are shown in Figs.
2.9 and 2.10 [40]. Figure 2.9 considers explicitly the effect of an
in-plane superlattice and calculations for several different in-plane
superlattices show that the effect of the in-plane superlattice on
E(E) within ¥ 1 eV is very small and can be neglected. Figure 2.10
considers E(?) for a larger number of stages, but assumes no in-plane
superlattice structure. Once such plots are available, the determina-
tion of the Fermi surface is dependent only on one additional parameter,
namely, the Fermi level Ep. The Fermi Tevel can be determined either
from an assumed charge distribution in the graphite layers or from
experiments such as magnetoreflection, or -- if we are to fit SdH data --
we can set Ep such that the resulting Fermi surface cross sections match
the experimentally observed frequencies. The Fermi level is determined
from SdH data in this study (chapter VI).

For the donor compounds, Er is positive and there are electron
pockets. Note from Fig. 2.10, and also from Egs. 2.21 and 2.22, that

there are 2n bands for odd stage and 4n bands for even-stage compounds.*

* The Targer number of bands for even stages stems from the fact that,
because of the AB stacking (Fig. 2.2) present in even stage compounds,

the unit cell is twice as large as the one without AB stacking. Note also,
however, that the bands for even stage compounds are nearly degenerate in
pairs (Fig. 2.10).
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For donor compounds, half of these bands are completely occupied and
the other half may or may not be partially occupied. Thus, depending
on the position of EF’ we can have up to n (for odd stage) and 2n

(for even stage) electron pockets, assuming one pocket per band.

Since Landau level extrema may occur at both the H and K points,
additional carrier pockets or Fermi surface extrema may occur. As

will be further discussed in Chapter VI, these numerous carrier pockets
give rise to a great number of Fermi surface cross sections (for high-
stage compounds), which is consistent with the many frequencies that

are observed experimentally.

II-5. Shubnikov.de Haas (sdH) Effect

The Shubnikov.de Haas (SdH) effect refers to the periodic oscillatory
behavior of the electrical resistivity as a function of H'] (H is the
magnetic field strength). The quantization of the electronic energy
Tevels in the presence of a magnetic field results in magnetic-field
dependent oscillations in the density of states at the Fermi level.

These oscillations are responsible for the oscillatory magnetoresistance
as well as other quantum oscillatory phenomena such as the de Haas-van
Alphen effect (oscillations of the magnetic susceptibility X as a

function of H). The oscillations are periodic in inverse field H"],

at least in the high quantum number 1imit. The experiments based on these
effects areamong the most useful tools for probing the energy band
structure at the Fermi Tevel of solids. They especially provide infor-

mation about the Fermi surface of metals, doped semiconductors, and

semimetals.
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The quantum oscilatory phenomena for most materials are fairly
complicated if all details of the band structure are taken into
account [41-47]. However, starting with the simplest case of a free-
electron gas in a magnetic field, much insight can be acquired into
the nature of the phenomena, especially the origin of the periodicity
of the oscillations in H'1. The energy eigenvalues (Landau levels) for
an electron exposed to a magnetic field H along the z-direction are

given by [41,46]:

guHs  1=0,1,2,... (2.23)

no|—

E = (n + %jﬁwo + (h2k2/em*) ¥

where m* 1is the isotropic effective mass ,w = eH/m*c 1is the cyclotron
frequency, k, is the wave vector in the z-direction, g is the spectro-
scopic splitting factor, and E is the Bohr magneton. According to
Eq. (2.23), as a result of the magnetic field, the electronic energy
levels are split into magnetic subbands separated by the amount ﬁmo.
In order to observe the discrete nature of the Landau levels, their

separation fiw  must be larger than kT (ﬁm0 >> kBT). Also, if the

electronis are to exhibit quantum effects, they must complete orbits in
k-space (in a plane perpendicular to the H field) before they are
scattered. This requirement can be fulfilled by the condition w, T >>1
where t 1is the relaxation time. The density of states per unit energy
and unit volume (neglecting spin) is found to be [41]:

3/lmax

g(E) = (%)2(%1;)5

h
—, (2.24)

n=0 [E- (n+%) fiw ]
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where A is the quantum number for the highest occupied state.
Equation 2.24 implies that the density of states diverges whenever the
energy is equal to that of a Landau level. This divergence, which is
due to neglecting the finite width of the Landau levels, vanishes if
the effects of collision broadening are included [41, 45, 46]. If W, T
is large (1 << w, T < =), then oscillations in the density of states as
a function of the magnetic field result. These oscillations have pro-
found effects on the scattering rate of electrons, and hence on the
transport properties. The physical origins of the oscillatory behavior
may also be grasped by the following considerations.

Suppose a solid with electronic energy levels filled up to the
Fermi Tevel Ef 1is placed in a varying magnetic field. As the magnetic
field is increased, the separation w, = ehH/m*c between the Landau
levels is also increased. In Fig. 2.11, the Landau levels corresponding
to two different magnetic field values H and H' are schematically repre-
sented by n and n' with H' > H. We note that as the magnetic field
is changed from H to H', the Landau level n = 3 which was fully occupied
(because its energy is below EF)’ is raised to n' = 3, which lies above
Ep and thus cannot be occupied, Hence, the electrons occupying the
level n = 3 will have to redistribute themselves in the levels below
Ep. This emptying of electrons from high magnetic subbands into Tower
ones is not a linear function of H and is particularly rapid when a
Landau Tevel passes through the Fermi level. As a result, there are

resonances in the electronic (and magnetic) properties, such as maxima

in resistivity, whenever the magnetic field values are such that EF
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Figure 2.11

Schematic representation of the Landau levels and the
Fermi level Ep. As the magnetic field H is increased, the
separation between Landau Tlevels hwo = ehH/mxc

increases also. The passage of the Landau level n = 3
through Ep causes redistribution of the occupied states,
and hence resonances in the electronic properties.
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coincides with one of the Landau Tevel extrema. If the field 1S swept
continuously then these extrema correspond to oscillations which are

periodic in H'], with the period of oscillations given by:

sy - e 1 _ e 1 _ 2e 1. 2me 1
H m*c EF' m*c (RZKz/2m*) ic ?Eﬁk hic A
(2.25)

In this expression, substitutions EF = ﬁk§/2m* and A = wké are made
for the simplest model of a solid. A is the maximum cross-sectional

of the(spherica]) Fermi surface. For a Fermi surface of general shape,
the above result has been generalized [47]. In fact, in the case of an
arbitrarily shaped Fermi surface, only the extremal cross sections con-
tribute to observable quantum oscillations and the effects of other

parts of the Fermi surface interfere destructively. Equation 2.25 can

therefore be written more generally as:

1 2ne 1
Al = B A . (2.26)
H fie Aextr‘.
where Aextr is the extremal cross-sectional area of the Fermi surface

perpendicular to the magnetic field.

ReTation 2.26 can also be obtained by quantitative and rigorous

calculations [41,45]. The result of such calculations for conductivity

in thd presence of a magnetic field can be summarized as [45,46]:

(1) (2)

a(H) = %bgnd. * Yoscil. ¥ Yoscil.

(2.27)

where Gbgnd is the background magnetoconductivity which is proportional
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-2 (1) . _
to H "™, and %oscil are given by:
(1) 1,
o h 2 _1\(o 2
-y m(: wo) Mk exp(=2T_) coS(ZHFEF -PE)
%bgnd. ) r (2or) Bsinn(2ntrk /e ) Yot e, 4
(2) (2.28)
2 r >
R m[’hmoj z (-1)" (2n r‘kBT/ﬁwO) exp (-Zﬂ ) COS(ZHY‘EF ) 1)
“bgnd EpJ T sinh(2nrk T/ho,) wTC o, 2
(2.29)

The symbols in the above expressions are as referred to previously. The

collision time . is in general different from the relaxation time [45].

c
lle see that there are oscillations in conductivity as a function of H-

field ( w, = eH/m*c) due to the cosine terms, while their amplitudes

are exponentially damped by the sinh terms. The oscillations have har-
monics (r > 1), but the amplitudes of the harmonics are also damped

exponentially. The period of oscillations (for the rth harmonic) can

be deduced from the argument of the cosine term as:

(eh/m*c) ome 1 ] (2.30)

Period = —p——= fic ¥

which is in agreement with the result previously obtained from qualita-
tive arguments --- see Eq. 2.25.

In Eqs. 2.28 and 2.29 the effect of collision broadening at the finite
(non-zero) temperature T is taken into account by the exponential damping
factor. The collision time T, may also be written as (ﬁ/ka'TD), where
TD is called the "Dingle temperature". From the field dependence of
the amplitude of the oscillations, Tp (or Tc) can be measured experi-

mentally. Note that in order to observe the oscillatory terms in the
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conductivity, the damping terms must be reasonably small -- i.e.,

kBT << hw and o 1
(6]

A 1, as mentioned previously. In order to

appreciate the magnitude of field intensity and temperature required

to satisfy these requirements, consider the following:

H =10 Tesla . heH T
At: ) 1o o m*c ?
! i

Mg /m 3107 eV 21077 ey

Thus, we see that high magnetic field, Tow temperature are neces-
sary and small effective masses are advantageous for the observation
of oscillatory magnetoresistance.

To summarize, in the Shubnikov-de Haas experiment, the resistivity
of the material is measured at lTow temperature as a function of high
magnetic field, H. One can then relate the frequency(ies), or period(s)
of the oscillations (which are periodic in H"]) to the extremal cross

sections of the Fermi surface perpendicular to H through:

(i) _ _2me (i) _ 12 (1)
Aextr. fc USdH 0.9546 x 10 Vs dH [2.31)
where Aéilr. has units of cm'2 5 véé% is expressed in Tesla.

Further information about the Fermi surface can be obtained by
studying the angular and temperature dependence of the SdH results. By
changing the direction of the field relative to the crystalline axes,
it is possible to map the shape of the Fermi surface. Figure 2.12 illus-
trates this point schematically. The temperature-dependent SdH measure-

ments are used to obtain the effective masses of the carriers at the
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Figure 2.12

A sketch of a hypothetical Fermi surface is shown, with
its extremal cross-sectional areas (shaded areas) perpen-
dicular to the direction of the magnetic field, H.

By performing the SdH experiment on the sample as the
angle 8 is varied, and relating the frequency(ies) of
oscillation to the cross-sectional areas A(;itr (see

Eq. 2.31), one can study the topology of the Fermi surface.
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Fermi surface. To see this, consider the temperature-dependent terms
in Egs. 2.28 and 2.29. Note that the amplitude of the oscillations
depends on temperature. For r = 1 (main frequency) the amplitude
goes as:

L}} « T exp(szkBT/ﬁmo) = T exp(2w2kBTm*c/ﬁeH) (2.32)

Based on Eq. 2.32, a common way to extract the effective mass m*

is to plot 2n (J47T) as a function of temperature. Here, the amplitude
J# must be measured at some fixed value of the field H0 for several
temperatures. According to Eq. 2.32, the resulting plot is a straight

Tine with the effective mass being inversely proportional to its slope:

m (A7) fe .
= n T H HO (2.33)

. =
m 2m kBmoC 0 14.6

where my is the electron rest mass and S is the slope (h/%is measured
in arbitrary units, while S is in okl and H0 is in Tesla).

The above analysis leading to Eq. 2.33 assumes that the amplitude
J*’corresponds to oscillations of a certain single frequency. If oscil-
Tations of more than one frequency are present, then the above analysis
should be done cautiously, since the measured amplitude is a result
of the interference of the oscillations of two or more frequencies.

These different frequencies correspond to different cross sections of

the Fermi surface and are likely to have different effective masses.
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This point will be discussed further in Chapter V, where the analysis

of data is presented.
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ITI. SAMPLE PREPARATION

The starting point for these measurements was the growth and
characterization of the alkali-metal graphite intercalation compounds
(GIC). In section 3.1 of this chapter, details of the two-zone growth
process are discussed, while section 3.2 deals with the X-ray characteriza-

tion (0@ - 20 diffractometer scans) of the intercalated samples.

IIT1.1. Sample Growth

The samples used in this study were all grown using highly oriented
pyrolytic graphite (HOPG) as the host crystal. Blocks of HOPG were cut
(parallel to the c-axis) to the desired size [see Fig. 3.1(a)] using a
string saw. Once cut to the right a-plane dimensions, the blocks were
cleaved perpendicular to the c-axis to obtain thin (~ 1mm thick) samples.
They could then be made even thinner by peeling them using Scotch Tape
[Fig. 3.1(b)]. This peeling is essential when samples of high (a-palne)
resistance are needed. The thin and long samptes [type B in Fig. 3.1(b)]
were particularly grown to improve the SdH magnetoresistance signal-to-
noise ratio (Chap. IV) and are recommended for these measurements.

The two-zone vapor transport method [48-51] was used to grow the
samples. In this method, the intercalant and the graphite crystal are
heated in an evacuated ampoule to two different temperatures (Tg> Ti)
while they are separated in distance. In this study, one or more of the
host HOPG crystals was placed at one end of a prepared reaction vessel
containing the alkali-metal in a sealed ampoule [Fig. 3.2(a)l.

The vessel is then vacuum-pumped to ~ 10 millitorr and sealed at the
open end [Fig. 3.2(b)]. The break seal shown in Fig. 3.2(a) is then
broken, using a steel hammer. The reaction vessel thus prepared is put

in the furnace (Lindberg ). A coil (R~ 100 %) powered by a variac
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Figure 3.1

HOPG blocks cut parallel to c-axis, using a string saw, are
shown in (a). These blocks were then cleaved perpendicular
to the c-axis and peeled to obtain very thin (~ 0.05mm thick)
samples (b). Type A and type B samples, which are referred
to in the text, are shown in (b).
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Figure 3.2
Schematic diagram of the system used for the preparation of alkali-metal
GIC.

a) The reaction vessel containing the alkali-metal at a sealed end.

b) The break seal is broken using the glass-encapsulated steel
hammer after the reaction vessel is evacuated.

c) Position of the reaction vessel in the furnace.
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is used as the hot zone ( ~ 500°C), while the main furnace is set for
~220-320°C depending on the stage of the sample. The position of the
ampoule in the furnace is shown in Fig. 3.2(c). Three thermocouples are
used: TCg adn TCi monitor the temperatures of the graphite host crystal
Tg’ and the intercalant metal, Ti’
TCh also reads the hot-zone temperature, and together with a temperature

respectively. The third thermocouple

controller (Omega) work as the feedback to the variac.

The samples were prepared by keeping T, constant ( ~ 500°C) and varying Ty

g
for different stages. Over 20 samples (K and Rb) were made (2 < n £ 8)
using this method. The main parameter which determines the stage is the

temperature difference AT =T _ - Ti’ with Targer AT resulting in higher

g
stage. Other important parameters are ampoule and sample shape and size,
while less important is the amount of alkali-metal in the ampoule (as Tong as
this amount is larger than the minimum amount needed for a desired stage.*)
The time needed for the intercalation process is only a few hours; however,
as a matter of convenience, samples were usually left in the furnace over-
night, hence the times used were 12-24 hours. 1In Table 3.7, the growth
parameters for some of the typical samples are given. It must be empha-
sized that these parameters should be used only as guidelines in growing
samples. During this study, in numerous cases when the right AT for a

given stage n was used, the sample turned out to be a stage n sample mixed
with either stage n-1 or n+l. In such cases, it is possible to put the

reaction vessel back in the furnace and raise (when mixed with n-1) or

lower (when mixed with n+1) AT, to obtain a single stage sample. A

* Since alkali-metals, especially potassiumyattack glass when in the
vapor phase, it is necessary to start with more alkali-metal than
needed. In this study ~.1 gram was used for each ampoule, which was
sufficient for intercalating up to 3 samples of mentioned sizes (n > 2).
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Sample Type Intercalant To(°C) T;(°C) AT(°C) Time(hrs.) Stage

K02.Y10 A K 469 319 150 18 2
K02.Y13 A K 510 339 gl 12 2
KO2.Wi4 B K 488 323 165 18 2
K02.Y14 B K 500 305 195 48 2
K02.Y15 B K 486 300 186 48 2
K03.Y05 A K 493 277 216 19 3
K03.W1l5 B K 502 271 231 48

K03.Yl6 B K 494 262 232 18

KO4.WO4 A K 466 235 231 18

KO4.W16 B K 486 247 239 17

K05.Y03 A K 481 230 251 16 5
K05.W1l7 B K 475 234 241 19 5
RO2.WO8 A Rb 450 261 189 36 2
RO4.W09 A Rb 476 225 251 24 4*)
RO5.W09 A Rb 470 200 270 1 5
RO8.Y01 A Rb 505 140 365 24 8

*Same sample put back in the furnace.

Table 3.1

Reaction times and temperatures used for growing various
compounds. Types A and B refer to the dimensions shown
in Fig. 3.1(b).
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detailed example of such a process is shown in Fig. 3.8.

Figures 3.3 and 3.4 summarize the temperature differences used
to grow samples with different stages. Included in these figures are
the data of D. E. Nixon [48] and C. Underhill [51] who used a similar
method. The lines through the experimental points indicate that a
given stage (especially n € 5) can be prepared for a range of AT values.
Figure 3.3 also indicates that, for a given stage, AT is larger for
type B samples.

One general comment about sample growth is that, since growing
single-stage samples is a time-consuming process, it is useful to start
with two or three host crystals in the reaction vessel. This was done,
especially in the case of type B samples, and proved to be very effic-

ient.

III-2. Sample Characterization

In order to characterize the graphite intercalation compounds, several
techniques, such as weight uptake, visual inspection, chemical analysis,
X-ray diffraction and electron microscopy are used. For qualitative
information, sample color (observed by visual inspection) and weight up-
take (change in the weight of graphite crystal upon intercalation)
can be used. In the case of alkali-metal GIC's, a yellow or gold color
is characteristic of stage 1, steel blue for stage 2, dark blue for
stage 3, and graphite metallic for higher stages [49, 52]. Visual
inspection, however, is not capable of identifying mixed-stage samples
and samples of stages higher than 3. The weight uptake measurement

provides information about the sample stage if a chemical formula is
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Figure 3.3

Isobar diagram showing 1/stage versus temperature difference
between sample (Tg) and intercalant (Ti) for graphite-

potassium compounds.
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Isobar diagram showing 1/stage versus temperature difference
between sample (Tg) and intercalant (Ti) for graphite-
rubidium compounds.
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known for the compound. However, because of sample inhomogeneity and
the presence of intercalate vacancies/accumulations in preferred crystal
defect sites, this information is only qualitative. X-ray diffraction
measurements,on the other hand, give quantitative information about the
stage as well as the in-plane structure of the compounds.

Since the reported results on the Fermi surface of Potassium-GIC
[5] indicated a significant stage-dependence for the Fermi surface, it
was necessary to grow and preserve single-stage samples for these
measurements. Hence, X-ray diffraction using (00%) reflections was
used for accurate determination of the stage of the samples.

Figure 3.5 shows the system used in this study for the X-ray measure-
ments. The position of the sample in the X-ray beam is shown more clearly
in Fig. 3.6. The incoming X-ray beam makes an angle (8) with the c-face
of the sample. The detector is rotated in such a way that it always
makes angle 28 with the incoming beam (6-26 diffractometer). The X-ray
diffractogram is obtained by scanning angle © (usually from 1° to ~40°)
and recording the output of the detector. The stage index can be found
from I., the intercalate (c-axis) repeat distance (see Fig. 2.2), which
is itself determined from the diffraction angles Gﬁ for the (00%)
diffraction peaks. The angles 8, are given by Bragg's law:

Lr = ZIC sin eE 5

where & takes positive integer values and X 1is the wavelength of
the X-ray beam. Molybdenum-Ka radiation was used so that the X-ray
absorption by the glass encapsulating the samples is minimized. As

shown in Fig. 3.5(b), the Si(Li) detector is sensitive to the continuum
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Figure 3.5

X-ray system for (00%) diffractometer scans. K, radiation from

a Mo X-ray source is incident on the sample and the diffracted beam
is detected by a cooled Li-drifted detector. The detector permits
high resolution energy discrimination of the diffracted beam. The
energy windows of the single-channel analyzer are set so that only
signals corresponding to Kal and Ku2 radiation are processed.

The multichannel analyzer is used for data acquisition of (00%)
diffractograms [50].



3 Detector

Figure 3.6

Geometry for measurement of X-ray (002) reflections
from intercalation compounds based on single-crystal
and highly oriented pyrolytic graphite host materials.
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of energy radiated by the Mo source. A single-channel analyzer works

as the energy window, and when properly set, singles out the Ko radia-
tion ( A =0.7107A)*.  The multi-channel analyzer shown in Fig. 3.5(b)

is used to make several measurements such as 8 - 28 scans or the integrated
intensity measurements. Examples of 8 - 20 diffractograms are shown in

Fig. 3.7 for potassium compounds of stages 2, 3, and 4,

Previous work [50,52,54] as well as present work has shown that
graphite interlayer separation is essentially unaffected upon intercala-

tion. Thus, the stage index n is found from the relation:

IC = nc, + d = (n--1)c0 + ds’

where Cy is the distance between adjacent graphite layers, and dS =

co * di is the distance between two graphite bounding layers. Analysis

of (00%) diffractograms have shown also that d. and c, are essentially

independent of stage for a given intercalant [48,52,54].; o remains
equal to 3.35ﬁ (as in pristine graphite) and dS is 5.35A for potassium
(48] and 5.65A for rubidium [1,2,51]. With this information, the expected
positions of the X-ray diffraction peaks for different stage compounds

can be predicted. Using the above values for c_ and ds’ and X = 0.71073,

0
we have listed the 2 e, angles for several & values in Table

3.2 for graphite-potassium compounds of several stage indices.
: [s]
* Molybdenum in fact has Ko, =0 70930A) and Ko, (1 =0.71359A)
radiation. The value A = 0 7107& is the we1ghted average of the two

wavelengths [53]. Diffraction peaks corresponding to these two wave-
lengths can sometimes be resolved at high 9, angles.
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K-Stage-2 K-Stage-3 K-Stage-4
20p (Degrees)

Obs. Calc. Obs. Calc. Obs. Calc.
£ (0.10°) (#0.10") (£0.10°)
i 4.64 4,68 3.38 3.38 2.66 2.64
2 9.35 9.37 6.77 6.76 5.31 5.29
3 14.08 14.08 10.16 10.15 7.99 7.94
4 18.85 18.81 13.55 13.55 10.60 10.59
5 24.60 23.57 17.02 16.96 13.28 13.25
6 28.39 28.37 - 20.38 15.92 15.92
7 - - 23.86 23.83 18.61 18.59
8 - - 27.24 27.29 - 21.27
9 - - - - 23.94  23.97

Table 3.2

Comparison between observed and calculated 2 ©p
angles for K-GIC (stages 2,3,and 4). The very
good agreement indicates that the assumpitons
made in the calculation of 26 (c, =3.35A and
ds=5.353, both stage-independent) are wvalid.
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X-ray stage characterization using (00%) diffractograms for stages 2, 3,
and 4 graphite-K compounds.
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X-ray diffractogram showing how
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For comparison, the peak positions (2 egvalues) observed for some of
the samples are tabulated together with the calculated values (Table
3.2). The very good agreement between the observed and calculated
angles indicates that the assumption is indeed valid that the ds and
Co values are stage-independent and are equal to the above-mentioned
values.

The structure factor analysis shows that the index ) of the
reflection with maximum peak intensity (003) for K and Rb compound of
stage n is given by ; =n+ 1 [54]. Also, the separation between con-
secutive peaks increases with decreasing stage.

To obtain accurate X-ray data, sample alignment is critical. A
fast method for aligning the sample is as follows:

a) Initially, place the sample at the goniometer head (Fig. 3.5)
such that the c-axis is parallel to the horizontal plane and
is also perpendicular to the beam when 8 = 0°. Visual alignment
is sufficient at this step.

b) Set 26 to~13 ° (maximum intensity of the envelope function)
and maximize the reflected beam (detector output) by using the
goniometer to rotate and translate the sample. Thus, the main
(00g) peak can be roughly found.

c) Once this peak is found, a fast scan for angles 20 -] 13° can
be taken and the stage of the sample can be determined by
either counting the number of peaks below the main (OOE) one,
or by measuring the separation between two neighboring peaks

(Table 3.2),
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d) Now 28 can be set exactly equal to the 287 angle for the
given stage (Table 3.2 | €., ) and the sample can be realigned
using the goniometer so that the main peak appears precisely
at this 20. A new and accurate diffractogram can now be
obtained.

e) Finally, the position and width of the peaks can be measured
and compared to the calculated/expected values; thereby it can
be judged whether the sample is single-stage or consists of
mixed stages.

Note that in Fig. 3.7, the full widths at half maximum (FWHM) intensity
for the intercalation compounds are roughly equivalent to those of pristine
graphite. Typical FWHM values for the most intense (OOE) peaks are ~ 0.2°
to 0.3°. In the case of samples of mixed stages, the X-ray diffractograms
show a superposition of the (00%) peaks for the two stages present in
the sample (Fig. 3.8), but these peaks are usually broadened relative to
those from a single-stage compound. The existence of such fairly well
defined patterns is compatible with the presence of macroscopic regions that
exhibit stage n and other macroscopic regions with different stages (n+1 or
n-1).

The X-ray (002) diffraction measurements can provide more information
than just the stage of the sample. For example, the intensities of the
peaks, using structure factor analysis, provide detailed information about
the internal structure of the intercalate layer [54]. In this work however,
the X-ray technique was used mainly to determine the stage of the sample at

different steps of the experiments. No strong correlation was found between
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the quality of the X-ray traces, such as the width of the peaks, and
the SdH periods for single-stage compounds. However, the SdH oscilla-
tions were usually very hard to observe for samples of mixed stages, and

single-stage samples were needed to give good SdH results.
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IV. DETAILS OF THE SDH EXPERIMENT

In this chapter the details of the SdH experiment will be presented.
In section 4.1, we will explain how the leads were attached to the sample
for the electrical resistivity (P) measurements. Section 4.2 illustrates
the geometry of the experiment and the last section deals with data

acquisition and analysis.

IV-1. Mounting the Sample

In order to do the resistivity measurements, the four-point probe
method was used. In this method, four leads are connected to the corners
of the sample and the voltage drop across two of these is measured, while
a current flows through the other two [Fig. 4.1(a)]. This method is not
the most suitable one for resistivity measurement of highly anisotropic
materials and corrections have to be made to obtain correct values of
the resistivity and Hall tensors [55,56]. In the case of the SdH exper-
iment, however, the anisotropy of the solid, or the non-uniformity of the
injected current, pose no problem - since we are interested only in the
change in conductivity as the magnetic field is varied; neither the
uniformity of the current nor the anisotropy of the material is a func-
tion of the magnetic field.

Because of the instability of the alkali-metal samples in the pre-
sence of the air and moisture, the samples had to be handled in a dry
box (Argon filled with €1 pmm oxygen content). Since this handling in
the dry box was physically the hardest, as well as the most crucial

step of the experiment, a detailed description of this aspect of the
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(a) Geometry for the four-point probe method. Resistance is measured
by measuring the voltage Vpc while a known current I flows from
A to D.

(b) Another geometry for sample and contacts for the resistivity mea-
surements. Again, Vpe 1s measured as current I flows through AD.
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experiment will be presented here.

Usually, on the day before the experiment, two or three reaction
vessels containing grown samples were transferred to the dry box.
Small boards [Fig. 4.1(a)] with contact posts and wires attached to
these posts were prepared in advance and transferred to the glove box.
(Contact posts were made by printed circuit techniques.) The magnet
wires (Belden Co., 32 AWG HVY Polythermalize, No. 8068) used were
tightly wound in pairs to minimize magnetic flux linkage, and thus
reduce the pickup noise during the SdH experiment.

The ampoules were broken inside the glove box and samples were
secured in their positions on the boards, using a very small amount
of vacuum grease. The leads were then brought in contact with the
corners of the sample and conducting epoxy (Eccoband Solder 56C with
Catalyst 9, purchased from Emerson and Cuming, Inc., Canton, MA) was
used to attach the leads [Fig. 4.1(a)]. The contacts made by this
epoxy proved to be ohmic and much stronger than those made at the
earlier runs of these experiments, when silver paint (DuPont, compo-
sition No. 4929) was used. Leads attached by silver paint tended to fail
and usually broke when the sample was cooled down to liquid Helium
temperature, and subsequently brought back to room temperature.
Recycling the temperature very rarely caused a problem when the
above conducting epoxy was used.

The mounted sample was then inserted inside a rectangular (3 x 9mm ID;
1 mm wall thickness) rectangular ampoule, sealed at one end, very care-
fully; then the ampoule was sealed off, using epoxy (Stycast 2850F, with

catalyst 9), while it was placed in a stream of He gas. This partial
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filling of the ampoule with He gas was used as a means of heat exchange,
since the ampoules were to be immersed in a liquid helium bath.

Stycast, although a very good sealant for glass at room temperature,

is not a perfect seal under temperature recycling. Cleaning the glass
ampoule with trico and acetone before using Stycast proved helpful in
retaining the seal.

The sealed ampoule was left inside the dry box for the conducting
epoxy and sycast to cure (about 12-18 hours). A sketch of the encapsulated
sample, with contacts attached and ready to be mounted on the sample holder,
is shown in Fig. 4.2.

Although simple in principle, the above procedure proved to be the most
crucial, as well as the most painstaking, step of the experiment. Working
in the dry box for four or five hours can be very tedious and frustrating.
Some brief hints which are results of the author's experience after
repeating the above stps over 10 times follow:

a) Use flexible holding jigs (Edmund Scientific Co., Barrington, NJ)
inside the dry box. As many as six hands are needed there -- and
you have only two!

b) Plan to work inside the dry box as little as possible. Prepare
the leads such that minimum changes in their position and
length are needed inside the box.

c) Since the pot-life for stycast is about two-three hours, either
prepare it in advance (mix it with catalyst) or use a hot-air
blower to heat it for a few minutes. (After mixing with catalyst

but prior to applying it to the ampoule.) Once heated, it will
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Sketch of the encapsulated sample with contact leads
attached and ready to be mounted on the sample holder
for the magnetoresistance measurements.
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harden very fast ( ~ 30 minutes), and it takes only a few
hours to cure.

d) Leave the sealed ampoule in the He atmosphere overnight. Heljum
diffuses through glass easily. The antechamber of the dry box
can be filled with He and used to store the ampoules while the
Stycast is being cured. At other times, use a He-filled dessicator
to store and transfer the samples.

In general, with good timing and calmness, the time spent working in
the glove (dry) box can be cut down to one and one-half hours (for mount-
ing two or three samples). This is important, because even though the dry
box contains less than 1 ppm oxygen, the samples, especially low-stage
compounds, are not stable in it for long periods of time such as 12 hours.
As for the sealant, stycast was the best material available with the
desired properties - i.e., endurance when recycling the temperature, and
curing at room temperature (the alkali-metal graphite compounds cannot be
heated to high temperatures). However, it was noted that Stycast reacts
with the samples, especially when near them. This reaction was particu-
larly notable for concentrated samples (stage € 3) and resulted in dis-
coloration of the sample surface. However, the X-ray traces, even in the
case of discolored samples, showed no change, in most cases. Hence, it may
be concluded that Stycast has 1ittle effect on the bulk of the sample.

In order to ensure the stage fidelity of the samples (008) X-ray
diffractograms were taken at different steps of the experiment. Examples
of such traces are shown in Fig. 4.3. This figure shows X-ray profiles

for a K-stage-4 sample when it was still in its original reaction ampoule
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X-ray traces for a K-stage-4 sample before (a) and after (b) the SdH
experiment. The position of the peaks and their linewidths are indica-
tive of a K-stage-4 compound. The difference in relative intensities

of peaks is related to the geometry of the glass ampoules encapsulating
the sample.
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(a), and after the SdH experiment (b). The position of the peaks and
their Tinewidths are characteristic of (single-stage) potassium-stage-4
compound. The change in relative intensities of the peaks, especially
the attenuation of the (009) peak, can be related to the geometry of
the glass ampoules containing the sample: the ampoule used in trace (a)
was made of a thin cylindrical tube, while in (b), rectangular tubing
was used.

In numerous cases, when a sample of stage n, but containing a slight
amount of stage n+l was mounted, traces taken after the experiment showed
that the sample had entirely changed to a pure stage n+l. In general,
starting with a compound of single stage (n > 1), this encapsulation tech-
nique is capable of preserving the stage of the sample. If a compound of
mixed stage is used, however, it is very likely that it will change toward
the higher stage. In this thesis, unless explicitly stated otherwise, the
reported results correspond to compounds whose stage identities were deter

mined to be the same both before and after the SdH experiment.

IV-2. The SdH Experiment

The resistivity measurements were made at the Francis Bitter National
Magnet Laboratory for the field range O < H < 15 Tesla and at 1iquid Helium
temperature (4.2°K). In most cases, pumping on liquid He was used to get
to lower temperatures(1.4 to 4.2°K),

The position of the sample in the magnetic field is shown in
Fig. 4.4. 1Initially, with the c-axis of the sample parallel to the H-field

constant-current I (~ 20 to 80 mA) flows through the current contacts A
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Sample geometry with respect to the magnetic field.

For angular dependence measurements, the sample is rotated
around AD so that the c-axis of the sample makes an angle @
with H. Since A 1L T; transverse magnetoresistance is

measured.
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and D while voltage VBC’ which is proportional to the electrical
resistivity, is measured across the other two contacts. By rotating

the sample around the AD axis, the angular dependence of the SdH oscil-
lations is measured. © 1is the angle between the c-axis and the H-field.
Note that with this geometry, H is always perpendicular to AD, and hence
transverse magnetoresistance is measured. The sample holder used in
these studies was generously donated by Dr. L. Rubin of the Magnet Lab-
oratory, and was rewired and slightly modified by the author. The
modification made it possible to mount up to three samples at one time,
and hence much time and expense was saved.

At the beginning of the experiment (with zero field), the contacts
were checked to be ohmic. This check of contacts was done at both room
temperature and at 4.2°K. The I-V relation was in most cases linear for
currents of up to about 200 mA. The resistivities estimated from the
slops of the I-V lines were, in general, in agreement with published
values [ 1,2]. Resistivity dropped by a factor of 5 to 20 when the
sample was cooled from room temperature to 4.2°K.

It must be emphasized that measuring the absolute resistivity of
the material was not the aim of these experiments. As mentioned in
section 4.1, the above method is not suitable for such measurement and
the results should be considered only as an order-of-magnitude estimate
of resistivity.

The magnetoresistance measurements were made using both DC and AC
techniques. The emphasis was on the oscillatory part of the resistance,

rather than the background magnetoresistance. In both dc and ac methods,
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constant current I flows from A to D within the a-planes of the

sample (Fig. 4.4). Figure 4.5 shows the dc setup. The voltage VBC is
measured directly and recorded after amplification (Keithley precision nano-
voltmeter No. 140) as the magnetic field is swept continuously from high

to low field (~ 15 to 0 Tesla). A typical trace corresponding to a K-
stage-5 compound is shown in Fig. 4.6. The magnitudes of the signal

and oscillations are very typical (20-100 wV for a current of ~ 40 mA)

of the results that were obtained. The setup for the AC magnetoresistance
technique is illustrated in Fig. 4.7.

The sample geometry and the constant current applied to the sample
remain the same. Superimposed on the sweeping field, however, is a small
sinusoidal magnetic field. The output signal VBC’ which is proportional
to the derivative of the electrical resistivity with respect to magnetic
field (8p/3H), is detected by a lock-in amplifier (Ithaco Dynatrac 391A).
An oscillator (GenRad. 1310-B) and a frequency divider provide a stable
7.5Hz modulating signal to drive the oscillatory part of the sweeping
field as well as the reference to the lock-in amplifier. The frequency
divider, which divides the 60 Hz Tine frequency by 8, is essential in
procuding stable modulation. In choosing the magnitude of the modulat-
ing signal, care should be taken: the magnitude must be large enough to
produce a reasonable signal, yet it has to be sufficiently small not to
lose the fine structure of 3p/38H. A typical amplitude for the modulation
field was ~1000-2000 Gauss (0.1 - 0.2T). Figure 4.8 shows the signal
obtained using the AC technique. Note the absence of the large magneto-
resistance background present in Fig. 4.6. This is due to the fact that

the AC signal is effectively the derivative of the DC signal. When
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the power spectra* for the DC and AC signals are compared (Figs. 4.9

and 4.10), we note that some of the fine structure of the DC spectrum

is lost in the AC case, perhaps due to overmodulation (compare Figs.

4.9 and 4.10). In one case, modulation of the current I (Fig. 4.3) at

a frequency of 500 Hz was used instead of field modulation. This technique
did not improve the signal to any large extent.

The temperature-dependent measurements were made using another
sample holder available at the Magnet Laboratory. Using this fairly sophis-
ticated sample holder [57] one can attainany desired temperature (between
4.2 and ~40°K) with an accuracy of AT/T € 0.1%. The position and
orientation of the sample cannot be changed, once it is mounted onto
this sample holder; nor can the sample be encapsulated easily.

The presentation in the previous paragraphs about making the magneto-
resistance measurements also applies when using this sample holder, with
the additional constraint that, in order to avoid heating the sample,
small current ( ~ few mA) should be used.

In general, one of the major sources of noise in these measurements
is the current induced in the four contact wires attached to the sample.

In the DC case, the large magnetic field varies only slowly, however,

the sample and the Teads vibrate a great deal because of the vibrations

of the magnet due to the water-cooling hoses. In the AC case, some of

the noise due to vibrations is reduced; however, the modulating magnetic
field passing through the wire loops varies much faster. To deal partially
with this source of noise, which is common to both methods, the lead wires

were tightly twisted in pairs to minimize the lToop area, and hence the

* Detaj]s concerning data processing and the taking of the
Fourier transforms will be discussed shortly, in the next section.
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induced currents.

The output signal VBC’ as mentioned before, was usually in the
range 20-100 uV. For a water-cooled magnet, and with the geometry of
the experiment, signals less than a few uV are comparable to the
noise level. It is thus desirable to have large signals. One way to
do this is to increase the resistance of the samples.

The recently grown samples which had dimensions ~3 x 15 x .05 mm
proved to be very suitable for this experiment: at zero field and
4.2°K, with a current of ~40 mA, they produced signals as large as

& 50 pV. Hence, this sample shape is recommended for this experiment.

IV-3. Acquisition and Reduction of Data

It was stated 1in section 2.5 that the oscillatory behavior of the
magnetoresistance is periodic in 1/H. It is evident from Figs. 4.6 and
4.9 that these oscillations occur at many frequencies and that there is
also fine structure. Thus, in order to extract the details of these
profiles, it was necessary to use a computer for the acquisition and
processing of the data. Data processing, in brief, consisted of invert-
ing the H-field and taking a Fourier transform (power spectrum) of Poscil.
or 3p/3H) vs 1/H. Details of data acquisition and processing will now
be presented.

To take the data, the signal Vpc and the voltage proportional to
the magnetic field were digitized and recorded in pairs on floppy disks
using a MINC 11/3 (Digital Equipment Corporation) computer. When equip-
ment was available, the experiment was performed on two samples simultan-
eously; in this case, triplets of numbers (Field, Véé), Véé) ) were
recorded. The programs used for recording data DYM1 and DVM2 are
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modified versions of the program RMDVM written by D. Nelson of the
Magnet Laboratory. In most cases, 3000 pairs (or triplets) of data
were taken at the rate of 10 pairs per second (magnetic field was
usually swept in five minutes). If needed, the magnetic field could
have been swept more slowly, and also more data points could have been
recorded, but this was rarely necessary.

Once the data acquisition was complete, a FORTRAN program, SDH,
was used to analyze the data. SDH does the following:

a) Reads data pairs [Fig. 4.11(a)]

b) Subtracts the background magnetoresistance to find the oscilla-

tory part of the data, p This is done by least-square

oscil.”
fitting of a first-or second-degree polynomial (a0+ alH o a2H2)
through all data points, and subtracting this polynomial (point
by point) from the data.

c) Samples the resistivity values as a function of uniform
inverse magnetic field. The data thus obtained are (proportional
to oscillatory) resistivity vs (uniform) 1/H. A plot of data
(o

Fig. 4.11(b); here the sinusoidal oscillations, as well as the

oscil. VS 1/H) at this stage of the analysis is shown in
beat frequencies, can be clearly seen.

d) Pads the data obtained in part (c) with zeroes to make the number
of points equal to a power of two (usually 2" = 2048 points).
This is required by the Fast Four Transform (FFT) algorithm.

The FFT subroutine used is DEC's FFTM.MAC. Zero padding also
allows one to obtain a better resolution in the power spectrum.

More about zero-padding and the Discrete Fourier Transform (DFT)
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will be presented in Appendix A.

e) Fourier transforms the data in (d), squares the real and the
imaginary parts of the DFT, adds the squares and records the
sums as the power spectrum points. A plot of such a power
spectrum is shown in Fig. 4.11(c).

The basic structure of the program SDH should be clear from the
above description. Most of its parts are straightforward. When invert-
ing H and obtaining p vs uniform 1/H, one should be careful, since
writing an efficient program that does this is somewhat tricky! To
obtain spectra with good resolution (1-2 Tesla), zero-padding (see
Appendix A) is usually necessary.

Note in the spectrum of Fig. 4.11(c) that, since the data in
Fig. 4.11(b) are periodic as a function of 1/H, then the frequencies of
oscillations have units of H; i.e., Tesla. Also note the structure of
this spectrum, and also that the low- and high-frequency oscillations
differ in several respects. The high-frequency oscillations, which cor-
respond to large cross sections of the Fermi surface, have larger
(cyclotron) effective mass associated with them. They are smaller in
amplitude, and they are also attenuated more rapidly at lower fields.
This is an expected feature of SdH experiments (section 2.5). The next

chapter deals with the general and specific features of these spectra.
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V.  EXPERIMENTAL RESULTS

Chapters V and VI deal with the presentation and analysis of the
experimental data. In both of these chapters we first focus on a specific
sample (potassium-stage-5) and treat it in much detail. A summary of the
results for the other compounds then follows. In section 5.1 of this
chapter, the Shubnikov-de Haas (SdH) results and their angular and temper-
ature dependence will be presented for a K-stage-5 sample. Section 5.2
gives a summary of the SdH results for potassium and rubidium compounds.
In the last section, 5.3, some brief comments are made about the general
features of the results for the different compounds.

V-1. Results for a Potassium-Stage-5 Compound

In this section, the SdH results for a K-stage-5 sample (namely,
sample K05.Y03 in Table 3.1) are presented. This sample is chosen for a
detailed presentation because the SdH experiment was performed on it
twice (with new sets of leads and encapsulation for each run) and both
the p vs H data and the power spectra for the two runs were practically
identical. Also, when the SdH experiment was done on another K-stage-5
sample, there was again no notable difference between the results for the
two stage-5 samples. Moreover, because of the higher stability of the
K-stage-5 compound, compared to the compounds of lower stage, the SdH
oscillations for this compound were observed more reproducibly. Finally,
this is the compound for which the angular dependence data are most com-
plete and accurate.

Figure 5.1 shows the transverse magnetoresistance results for this
K-stage-5 sample at 1.42°K and 0 < H < 14 Tesla for 6 = 0°,10°,20°,30°,

40°, 45°, 55° and 65°. Recall from Chapter IV that @ is the angle between
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The transverse magnetoresistance results at T = 1.42°K for a potassium-stage-5 sample.
(a) through (h) show the magnetoresistance data as a function of angle 8, where 8 is
the angle between the c-axis of the sample and the direction of the magnetic field.

Note that as @ is increased, the amplitudes of the oscillations (especially those with

high frequencies) are attenuated.
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the magnetic field tand the c-axis of the sample (Fig. 4.4). The power
spectea of the p vs 1/H data corresponding to some of the traces in
Fig. 5.1 are shown in Fig. 5.2. Some features of these oscillatory mag-
netoresistance data, which are also common to other compounds studied in
this thesis, can be easily seen from Figs. 5.1 and 5.2. In general, in
the SdH experiment, the high-frequency oscillations are weaker in ampli-
tude than the ones with smaller frequencies. This is because the larger
frequencies correspond to larger cross-sectional areas of the Fermi
surface (section 2.5) and the (cyclotron) effective mass m* (in an orbit
containing the cross-sectional area A) defined by:

_h? 5A
m* = o “E (5.1)

is heavier for the larger areas. Note from Eqs. 2.28 and 2.29 that the
oscillations in resistivity are more heavily damped with increasing m*.
This effect can be seen in Figs. 5.1(a) and 5.2(a), which show, for
example, that the ~450 Tesla frequency is small in amplitude and also
dies out at the lower field values much faster than the small-frequency
oscillations, such as the 24-Tesla frequency oscillation.

Another important feature is that as the angle 8 is increased, the
frequencies of the oscillations shift toward higher values, while their
amplitudes are decreased. One can see in these two figures that at
8 = 35°, for instance, the ~ 150 Tesla frequency has shifted to ~ 180 Tesla
with decreased amplitude, while the 450 Tesla frequency can no longer be
seen because of its very small amplitude. In Table 5.1 the frequencies
observed for the K-stage-5 sample at different © values are tabulated.

Note that the higher the frequency, the smaller the extent of 8 over
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8 (degrees) Shubnikov-de Haas Frequency (Tesla)

0 18 24 48 71 135 152 172 191 213 224 243 267 290 302 430 439 453

=TOT~

5 18 24 48 71 137 153 175 192 215 225 243 267 290 304 431 441 455
10 18 24 50 72 138 153 175 192 216 226 243 268 292 304 432 442 457
15 18 25 50 73 139 155 176 195 219 230 246 270 296 305 439 449 463
20 18 26 52 76 144 161 - 201 226 237 254 280 303 - 454 463 479
25 18 26 53 77 147 163 - 206 230 242 260 287 315 - - - -
30 19 28 56 84 157 177 - 220 - - 276 307 329 - - - -
35 20 29 59 86 160 180 - 227 - - - - - - - - -
40 22 31 63 96 175 197 - 247 - - - - - - - - -
45 24 33 67 - 188 212 - 263 - - - - - — - = =
50 - 37 72 - - - - - - - - - - - - - -
55 - 40 80 - 200 248 - 321 - - - - - - - - =
60 - 48 - - - - - - - - - - - - . .-
65 - 53107 - = = = = = =4 = = = < = = =
70 - 62 - - = = = - - - - - - - - - -
75 - T4 = = = = e a = e am = a e =
b/a = 5.0 4,6 4,9 2.8 4.9 ~ 5,3 2.5 1.3 3.0 7.3 2.9 -~ 2.6 2,3 2.5

Table 5.1

The SdH frequencies for a K-stage-5 sample at different
08 (angle between the c-axis of the sample and the direction of
the magnetic field). The anisotropy ratios (b/a) of least-squares

fitted ellipsoids are listed in the last row.
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which the frequency can be followed. The reason for the upshift of the
frequencies to larger values can be understood by considering an aniso-
tropic Fermi surface (FS) of general shape, such as is shown in Fig. 5.3,
such that the cross-sectional area perpendicular to the direction of the
field increases with 8. In fact, one can plot the ratio vo/v9 = AO/Ag
for the experimental SdH frequencies as a function of 8. Here, v and A
stand for the SdH frequency and the extremal cross section of the FS,
respectively, and the subscript gives the value (in degrees) of 8 at
which the frequency is measured. Such a plot is shown in Fig. 5.4, and
gives information about the topology of the FS.

In Fig. 5.4, the solid line is the plot of vo/v9 = cos8, which cor-
responds to a cylindrical FS [Fig. 5.3(a)]. The dashed line is related to
vo/vg for an ellipsoidal FS with an anisotropy ratio of b/a = 5.0 (see
Fig. 5.3(b)]. Indeed, one can find the b/a ratio of ellipsoids that best
(least-squares) fit the experimental points (Appendix B). This was
actually done for the data of Table 5.1 and the resulting b/a are given
in the Tast row of this table. The accuracy of these b/a values is very
poor (+ 0.5 to *3, depending on the extent of 8 to which the frequency
could be followed). This is evident from Table 5.1 and Fig. 5.4 , and is
due to the fact that b/a is most sensitive to vo/vg at large values of 8
( > 50°) and most of the frequencies cannot be followed to such high 8.
The general comment about these angular dependent results is that they
are compatible with a highly anisotropic FS, a result which is itself com-
patible with the interpretation of results given in the next chapter,

using the theoretical models.
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Figure 5.3

Cylindrical (a) and ellipsoidal (b) Fermi surfaces.

Note the increase in the cross-sectional area perpendicular
to the H-field direction as the angle 8 between H and ?z

of the sample is increased.

For case (a), Ay/Ag = cosB, while for

2 1
(b), Ay/Ag = [cos8 + %g sin%@] % (Appendix B).
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Figure 5.4

The angular dependence of some of the SdH frequencies observed for a K-stage-5 sample.
The normalized frequencies vO/vg are plotted as a function of 8 (angle between c-axis of

t