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ABSTRACT

A theoretical study has been made of the thrust and

efficiency of fish-type propulsion systems. Fish are

modelled as long, round three-dimensional flexible cylinders

in an incompressible lrrotational fluid. The assumed

swimming motion consists of plane waves progressing axially

along the cyllnder with exponentially growing amplitude

end constant wave number and phase veloclty.

The velocity fleld surrounding the cylinder is determined

by finding solutions to La Place's equation subject to

appropriate geometrical surface-compatibility conditions.

The requirement that energy be radiated from the fish into

the environment 1s satlsfied by using Hankel functions of

the second type (with complex arguments) as solutions.

Pressures are determined from the time-dependent Bernoulli

equation. Work is then found by pressure-times-area calcu-

lations, and the integration of squared Hankel functloms is

required for the determination of thrust by momentum methods.

All results are presented in closed-form expressions.

In addition to expressions for velocity, work, thrust

and efflcliency, the following topics are discussed: boundary

conditions for a cylinder whose dimensions vary with axial

distance; fluid-fish force interactions: three-dimensional

virtual mass: and first-law derivations for thrust. Conclusions

conslder the dependence of swimming efficiency on wave number,

and on phase velocity.
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TABLE OF SYMBOLS

(Including only symbols used throughout this work and
not locally used forms).

Symbol

h(x,t)

X,T,6

h») 7 Vo

Definition

Displacement of the flsh cen* —Tline from the x axle

Three dimensional polar coordinates

Components of the velocity field

Stream veloclty

Stream-wise perturtc. ion velocity

= F(r,0,%x,t) = 0 equation of the fish surface.

Usually the perpendicular distance between the
fish center line and surface

meD

vi)

2. on

"

r. evaluated at the surface

The substantive time derivative

The radial velocity at the surface

omplete or total pressure

Tne constant part of the total pressure

= Pyins the linearized perturbation pressure.

= 1, descriptive of the separable angular variable

The angular frequency, a real number

N avenumber, a complex number

In

Lon

1)

Zz

fy

Bessel function of the first kind of order n

Begsel function of the second kind of order n

Bessel function of the third kind of order n; Hankel

type 1 function

Beggselffunction of the third kind of order n; Hankel

type 2 function.
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A
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Y

= Cyys the fleld constant

Velocity Potential

Virtual mass (two di=-—~cional)

Rate of doing work

Thrust

D.imensionl-  J) bs od Wm -wenCYy = Wri/u

koa

Drag,

a

Amplitude of h(x,t)

= wr¥/4, ea dimensionless frequency, (called

fREQ or OMEGA in FORTRAN)
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SUMMARY

Chapter I desclbes the kinematic boundary condition

which is satisfied by the fish within a nonviscous fluid.

This velocity fleld is formed from the separable solutions

to the La Place’ equation in three dimensions, and

specialized to satisfy the requirements of the condition that

snergy be radiated outward from the fish. The pressure 1s

found from the general time-dependent Bernoulll equation.

Velocities and pressures are expressed in terms of Henkel

functions of the second type. In Chapter I fish are

modelledeslongcylinderswithconstantcrosssection. The

problem of the dynamics of a finite fish and of an elliptic

cross sectioned fish are sketched in the appendicies.

Chapter II uses the resulting forms of the velocity

and pressure fields to calculate the fish's thrust by

momentum methods, end work by direct integration of the

pressure field at the surface. An expression for efficiency

is presented. Work and thrust are then related by energy

methods which clarify the differences between this theory

and the slender-body theory.

Chapter III presents dlagramatically the velocity field

and evaluates work and thrust under certain fish movements.

Evaluation of these quantities involves integration of

squared Hankel functions; this Integration 1s completed in

Appendix C. The source programs for evalutation of the
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sork, thrust and velocities on the IBM7090 are written in

Fortran and presented in Appendlx D.

The concluding chapter considers the physical inter-

pretation of the graphicel results and expands upon the

applications of the theory presented in Chapters I and II.
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INTRODUCTION

There has been considerable interest in the past few

decades in studying the physics of fish locomotion because

of possible applications to efficient: propulsion of boats

and ships of all types. The study of blomechanlsms such as

are found in snakes, birds, bats and other animals has led

to many practical and productive insights for pure and

applied science. However, the study of animal locomotion

in fluids has not yet matured sufflelently to contribute

to practical mechanical propulsion systems, or for that

matter, to the actual blological principles which may be

correlated with fluid mechanics.

For at least one half of a century blologists have

#

observed the remarkable behavior of fish. Bainbridgel® has

noted that the speed of the swimming fish 1s ilndevendent

of surface shape, and Gray tr 1? has observed that fish seem

to disobey the standard rigid body fluid mechanical drag

laws, This anomaly has been popularly called the"fish

paradox." In fact, Grayl? has also observed that amputation

of the rear fin of certain fish does not significantly alter

their "powers of locomotion." (Amputation did however alter

the wave configuration on their backs). Gray’ also noticed

that when fish are placed on a pez board, they arch their

hacks in such a way as to brace themselves against the pegs

Numbers placed in such a manner refer to the Bibliography.

Bainbridge and other authors mentioned in the Introduction

ere discussed further beginning on page 4. .



to gain forward momentum by reaction.

Gray's and Bainbridge's observations and an experimental

paper by Rosen'? on the vortex motions generated in the

wake of fish, caused this author to believe that the actual

body configuration in swimming, represented geometrically

by wave number, uniquely determines swimming efficlency.

It was also belleved that the three dimensional virtual mass

of the fluld associated with fish motion might somehow

be construed to be a variable and to be a factor upon

which the efflclency would depend. The former intultion

concerning wave number is, it is hoped substantiated in

Chapter II of this paper; the latter statement concerning

virtual nage is made plausible in Appendix B.

It appeared wisest to begln a study of fish motion

With Lighthill's" excellent and conceptually simple paper

which 1s based on the slender-body theory. Instead of

sxtending Lighthill's work which neglects the velocity

field details, the next step was chosen to be a description

of this field. Thus a linearized surface condition was

written and coupled with the general inviscid equation of

fluid motion. The solution for the flow fleld was derived

rem the three dimensional La Place equation. This solution

was written in terms of Hankel functions of the second type

to satisfy a directional radiation condition.

To calculate thrust and work, we attempted temporarily

to use a two dimensional virtual mass theory, similiar to



Lighthill's approach. In this method we employed a strean-

Wise perturbation. This involved a detalled energy approach

following the First Law. However, it soon became apparent

that using a perturbation velocity with:atwodimensional

virtual mass involved contradictory ideas. This method

of calculating work etc. was abandoned altogether in

favor of a simple and more straight-forward approach.

This latter approach was based upon integration of

pressures and momentum considerations. In order to cal-

culate the thrust exactly, we were forced to Integrate

analytically squared Hankel functions between a finite

radius and infinity. It was then found that energy input

thrust and thus efficiency depended upon wave nunber.

These conclusions concerning the correlation between

wavenumber, work, thrust and efficlency are not simple

0 Interoret physically, because such relationships

are not common to steady state rigid body fluid dynamics.

Certain comments concerning thrust and wave number have

1
however been made by van Karman. 3 Ag far as we know, he

was the flrst to see such relatlionshps; hls comments

being confined to two-dimensional cases.

After gaining some confidence in the plausibility of

our solutions, the resulting functions of Hankel function

with complex arguments were programmed for computation on

the IBM 7090, so that they could be graphically plotted.



A good historical review of the flsh swimming paradox

and of the attempts to harness swimming type movements to

1
oroduce thrust can be found in Fraize 7, To conclude this

introduction, we shall indicate only the more important

~ontributions to the problem of the swimming flexible fish.

Three theoretical papersonly have been wrltten on

2 10
the three-dimensional model of the fish. »9s . Lighthi11

Investigates the movements of a flexible flnlte three

dimensional fish. He employs the approximations of the

slender body theory which he reviews in reference 3.

His analysis is based fundamentally on the assumptlons that

there is no streamwise perturbation velocity and that the

total flow is the sum of the flows due to fluld motlons

past a stretched stralght fish and those due to the two

dimensional flow, lateral to the body. Therefore, he assumes

that the usual two dimensional concent of virtual mass

leads to correct expressions for the flsh's thrust, work

end efficiency.

Taylor © glves a finite amplitude analysis employ-

ing empirical flow field data from experiments on long

aylinders to calculate lateral forces. Tayplor's model

is infinitely long and has a constant cross section which

ig invariant with distance.

The third three dimensional analysis is given by

Jummings? who 1s generally neglected in the literature.He uses  a



completely different approach from either Lighthillor

Taylor. Cummings calculates the forces and moments on an

elongated body which has tlme variant motion from a

potential field which 1s caused by a row of sources interior

to the body. This method 1s limited by the fish shapes

which can be representedbythesource sink method, but

1s not limited to only slightly non-uniform fields.

There have been several two dimensional theoretical

analyses. Wud calculates the thrust, work and efficiency

of a plate of finite cord waving in a potential fluid field.

He uses a linearized analyels for the veloclty field and

employsthe Theodorsen functions of an oscilating airfoil.

Wu's results containadiscussionofthethrust, work and

efficlency of a two dimensional plate in terms of a dimen=-

sionless frequency and wavenumber.

Bonthron' © calculates the two dimensional potential

flow due to a hinged surface. S1ekian presentsathin

plate model of fish and derives thrust, and work by

replacing the model by a vortex sheet. His results include

dfgrams of thrust and work versus dimensionless frequency

with wave number as a parameter. He also presents experi

mental verifications of his work based on studies of a

thin waving plate in a canal.

The experimental investigations have been concentrated

mainly on trying to understand the actual mechanismof

swimming by flow fleld visualization, and by measurements on



frequency and veloclty. Nowhere are values of wave length

or wave number tabulated.

Rosen &gt; has perhaps been most successful in flow

field visualization. He employed a thin layer of milk

on the bottom of a small shallow tank. The milk became

disturbed and followed the fluid motlons caused by a fish

swimming down the tank. Rosen claims to have seen a trail

of vortices: in the wake of these fish and proposes the

theory that fish are able to rederive energy from the

vortex motions of the fluid: that is from the pressure

fields of such motions. These vortlces: are supposedly

zenerated at the head and travel downstream.

Kelly’ in reviewing his experiments on two dimensional

mechanical models mentions that a three dimensional

mechanical model is under construction by the Navy.

Gray!, the accepted blological authority on fish

nechanlisms, reviewshis observations on the speeds, lengths

and tall beat frequencies correlated with swimming speeds

of actual fish. .He also proposges or implies the theory

that fish swim by sensing a stationary "peg" structure

in the vortices. of the fluid agalnst which 1t may push.

This is the origin of the vortex peg theory. Gray also

states the so called fish paradox, namely, that fish do

not seem to have the energy necessary to overcome the .drag

on thelr bodies as calculated from rigid body drag laws,



presents experimental data from several

specles of fish. He records speed, frequency and mean

forward velcolty with length and swimming motion

amplitudes as parameters. Hls graphs indicate linear

14

Bainbridge

relationships between frequency and veloclty for any one

length of fish. He concludes that the observed swimming

| 25

speed 1s independent of body shape. In a later paper,

Bainbridge discusses his experiments on fish in which

wave number varied with the lensth of fish and where

the lateral area presented to the fluid at the fin

ond varied with time.

In particular, the literature : presents = nowhere

the effect of a (downwash streamwise) perturbation veloelty

on thrust or work for a three-dimensional model. Thus,

there has been no correct or ccmplete expression. for

the first law of thermodynamics for this case. Nopaper

has been found which describes a three-dimensicnal boundary

condition or describes in any way the relationship or

dependence of efficient three dimensional swimming on

nave number,



FISH - MOTION COUPLED WITH A PERICDIC FIELD

The first chapter of this paper formulates the

problem of describing the movements of a very long fish

and the lnvliscld, lncompressible flow field resulting

from these movements. When stretched straight, the fish

lies along the x axis in a r,6,x cylindrical coordinate

system, and is assumed statlonary relative to the fluid

which flows parallel to its body at constant velocity u.

The fish is flexible and makes small movements at right

angles to the stream. These movements, h(x,t), are

displacements of the fish centerline from the x axis and in

the ©=0,x plane.

#e then write out the general surface condition

relating h(x,t) to the flow field. We solve La Place's

equation in cylindrical coordinates . The boundary and

surface conditions are then considered in order to deter

nine the exact form of the field. The time dependent

Bernoulll equation 1s then solved forthe pressure.

Thus, our mathematical problem is to find suitable

axpressions for the velocities Vis Vg, Vo (in the r, thete

and x direction respectively), and the pressure p, when

h(x,t) is given

for all x between +L and -L, where L is a very large



number.We Wish to find the velocities and the pressure

from the La Place equation (equation (8) ) and the time

dependent Bernoulli equation (equation (24) Y. The

boundary conditions on the velocity field are that

the velocities are to satisfy the special

surface condition ( equation (7) ),

the velocities are to be finlte at

and at the surface,
infinity

the velocities must represent waves which

radiate energy or information uni-

iirectionally outward from the fish,

and these velocities must represent movements

at the fish surface which satisfy the
conservation of momentum laws.

(2a

(2b)

(Dc

(24,

Conditions a,b, and ¢ are absolutely essential.

For an infinitely long fish, (24) is mainly of academic

interest.

[A, GECMETRIC COMPATIBILITY

Fo demonstrate the relationship between the move-

nents of a flexible, inextensible, nonpermeable body and

the fluid flow about this body, we consider arbitrary

movements h(x,t) of the centerline of this body in the

0=0,x plane. The movements are perpendicular to Vos

the velocity in the x direction.

h(x,t) can be related to the resulting perturbed

field about the body by a general kinematic surface



{

condition. This is a condition on mass continulty at the

surface and requires the resultant velocity at the surface

to be wholly tangentialtoitsince there can be no flow

through the surface. The usual conditiononmasscontinuity

can be replacedbyaspeclal surface condition. P°7 If

We describe the surface by some function F(r,0,x,t), then

the condition that a particle of fluid situated on the

surface have no normal velocity relative to thls surface

}

D(F) -o
Dt.

(3;

shere D/Dt renresents the substantial time derivative.

Once F is determined, the condition (3) may be explicitly

stated.

From Diagram 1 (see page 32) 1t is easily seen that

?, = T# + h, where Py 1s the radius vector to the surface of

the body, T™ is the radius vector to the surface of the

body measured from the actual body centerline, and hh is

h(x,t), the displacement of the body centerline from the

Xx axis,

F(r,0,x,t) = Ty ~- h-T%=0 { 4,

1p.7
ls then the equation of the surface. The Lamb surface

~ondition can now be written as

DF _ D(¥,)_ Dh _ Db* _ g
Dt “Dt = Dt Dt

Equation (5) may be further i:AY  ed according to

\ D4

reference 1 as stating that the relative velocity of a



particle on the surface is elther tangentialtothesurface

 ¥%
or zero. Thus the time rate of change of position due to

the steady state flow velocity at a point on the surface

in the fleld at any time t, 18 equal to the local velocity

caused by the changeinpositionof the surface in the field

iteself at that point.

Now consider small displacements h(x,t). That is, let

|h(x,t)&lt;Ir*(x,¥), (see diagram 1), Then by inspecting

Diagram 1, the quantities (8 = ¢) and a= (Ih/&gt;x)/f+ow0F)

are both very small when compared to © say. In addition,

if we also assume that r* 1s only a very weak function of

x, then Dr*/Dt is almost wholly tangential to the surface.

Thus for a fish which makes small motions h(x,t) at

right angles to the stream at theta equal to zero, the

scaler components of the geometric compatl’&gt;' ity condition

(5) written.intheradial direction are

Dr's - tsos0 = 0 {6

If r# is a weak function of x. (See diagram 2.) But since

the radial velocity at the surfacg(Vyp),,1s just Drg/Dt,

and the defirition of the substantive derivative is

D() _ 20), Vegraa( )
Dt = ‘3 t

de have from (6) that

(Vp)g = (31/9 + Vydh/)x)cose

We consider Vy, the velocity in the x direction to be the

sum of a mean stream velocity 8 and a disturbance pertur-

#¥ for a fluld particle



pation u', which is caused mainly by h(x,t). Then

the surface condition becomes

(V.)g = [on/ot + (u + u')oh/o-lcose

But since u' is of the order of h, 2h/2t or 2h,90x,

approximate (u + u')oh/&gt;x by udh/ox. Thus, the

11inearized" surface condition becomes

(V.)g = (on/2t + uda/cajcoad

we

(€a;

| {

shere we have agsumed that

r#(x,8) = 1r*(e),

Ih(x,t)] &lt;5 |r*] ,

and

a! a Telon/otecu

[IB SOLUTION FOR THE VELOCITY FIELL

We now propose.avelocity field which will at least

yield u' and V, for the completion of equation (7). We
r

zonsider only periodic movements in x and t. Then, peri-

rdic separable solutions to the flow fleld equations will

be developed to satisfy once and for all the surface

boundary condition (7).

Since our fluid is incompressible ( ¢ not a function

of pressure) and inviscid, we may consider the field to

be irrotational. A velocity potential { may thus: be

21, p.18%4
jefined which satisfies the condition of irrotation-



21ity. This condition 1s represented by the so called

La Place equation which is written

1 20 1 0% 2%
12 (x30) + YG * Ls

5)

in cylindrical coordinates.

Although we may formally proceed to solve (8) by

separation of varlable techniques, since we are interested

in motions which are perlodlic in x and t, it is convenient

0 guess a solution of the form #%#

D = Rexp(Kx + iwi +  ae)

where R is an undetermined function of r.

{9) into (8) gives

Substituting

7

(ra®R/ar2 + raR/dr + (-n°)R + K°reR Jexp(ii in+ivt)
10

3

2
Equation (10) 1s iden.iTied as Bessel's SUUETAON. 2

2
The standard solution tec (10) is 2

- = C.J, Kn) + Coy, (Kr) \ | 1)

where J. and ¥ are Bessel functions of the first and

second kinds respectively, and the C's are constants.

However, (11) may also be written in the form,

R = cm" (kr) + c, 152) (kr) (12;

#% Formal proceedures prove. the assumed theta variation.



where n{1) and n!2) are generally referred to as Hankel

Functionsof the first and second kinds respectively, or

ns Bessel functions of the third kind. These functions

are particularly convenient when discussing the propagatlon

direction of waves or of energy. The Hankel functlons

are generally defined as 22

“ -_ J. LY
n

(13)

and
+a

2 _

i, = J, - 1%  | 1 1

combining (9), (12),(13), and (14), and definitions for

the velocity potential we may complete the solution for

the field.

db = [cH (Er) + C,Ha(kr) | exp(Kx + ino +

= K[CHp (Er) + CHE(Kr) ] exo(T

I. = ob/or

[oH] (Kr)K —nH_ (Kr) /r] (exp(Kx+1in6+iwt))
fo, B2_, (Kr)K - nHA(Kr)/r] (exp(Kx+ino+iut))

1!

ww

(15a;

[1 5b)

(15¢)

and

Vo = 0/%0(i/r)

=fot (xr) + c B(x )|( in/r)exp(K:+ind+iwt)
since

(15a)

a(y,)/ar = (Ky_.= nyy/ri

#%¥From this point on we shall always denote gl!) and (2)

by H! and HC



"here

 2 1
Va = Jno ins H , Hp

IB 1. BOUNDARY CONDITIONS

Ne may now determine the specific forms of the

velocity field (15) which are pertinent to the fish

problem.

To allow for exponential growth of amplitudes in x,

se may define a complex wave number K in equations (15)

"here

Kp and K,

the form

A K, + 1X,

are real numbers. The x variation is then

SAPLGX) = exp(K x)exp(K,x1).

(16)

of

(17)

If we let K. be posilive., then waves grow with increasing

amplitude in x.

The type of Hankel function H! or H® used to describe

the velocity field or pressure 1s determined by condition

(2e¢), i.e. by the condition that ererxy, pressure, convective

na.ss transfer etc. radiate outward along positive r

toward infinity. Reflections backwards in the direction

3f decreasing r are not pvermitted. The Hankel functions

were used originally in order to formulate this condition

most simply. This formulation proceeds by noting that

for large r239.83
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Atl (kr) = const(2/kr)fe~Eirellkpr +u t)

and

yuk . 1 -

HE (Kr) = const'(2/Kr)%etkiTe 1(K.r -wt)

(18)

(19)

Since K, 1s positive, exp(iwt)HS is the pertinent function

because K.r -wt represents a wave of phase velocity

“/K.. moving outward toward infinity. K, must then be a

negative number®* Thus, in (13)(14) and (15)

Cx = O { 20)

since B) represents a reflective situation.

We next determine n in (15). Since h(x,t) is not

a function of theta, we note by lnspection that the surface

condition (7) will require Ceexp(1n0)™ in the expression

(15) for V, to be cos1®6. Thus since

Cgexp(1n®) = Cg cos(nd) + 1Casin(ne),

no= 1, and Yo, = 0. le i.

These conclusions, (21), may be reached alternatively by

substituting the complete expression for V,, from (15)

into (7), expanding in sines and cosines and simplifying,¥d%

# note that all velocitles approach zero and Vy, = u as
r &lt;s0 in accordance with condition (2b)!

¥# conslder Co to be a complex constant which 1s part of

Cx and Ce

¥##¥There are two interesting ideas related to our study of

boundary conditions which will now be noted. Consider
the case in which h(x,t) and thus the resultant field

vary as exp(iKix) with XK, = O. Then by (19), the



IB 2. FINAL FORM OF SOLUTION

We may now write down the complete solution for

the velocity field and linearized pressure. Combining

(15) with (16),(19),(20), and (21), we have

TS Cc] H3 (Er) - 1 Hy (r)] cosee Tet (1X +t)Fy (¢) 7 1
wo K WI |

- K

| (1/0) [H2(Er)] cosee T¥e tt 1x + wt)

—~

{
\

-2)

A Vy
Kyx + wt)-C H2 (Kr)cose rXel( 3X

Lf Tuk
wi

wl

Jhere

Cw = CuK (23)

pertinent solutlon in 7% shows that information concerning

pressures and amplitudes is radiated in the r direction with

infinite velocity since w/K_ is infinite. On the other
hand, 1f there is a small chinge in the amplitude of the

field represented by exp(K.x) as x varies, (i.e. K_ # 0)
then at any x, there will be a finite velocity of Propa-

zation of a disturbance. This large but finite veloclty

1s assoclated with diffusion or convection. It may be

of considerable interest when flow field interactions

between two neighboring fish are analysed since w [EK
will then be the velocity with which pressure or mass

disturbances (but not energy) will be propagated.
We also note that we have imposed no boundary ccndi-

tions in x on the solution. This condition might be of

some importance in considering finite length fish. Then
Lf the veloclties are to be finite at all r, including

r = 0, it can be shown that n must be greater than zero.

However, in this case, the condition on radiation toward

infinity is not possible to satisfy as far as we know.

Thus we have chosen to represent the sclution of the long

fish, which neglects end conditions in x and instead to

Write the answers in terms of Hankel functlon which satisfies

the radiation condition at infinity. This seems to be

the more rigorous and fundamental approach. If the results

of these assumptions are experimentally verlfied, one can

only conclude that end effects are not important.



The summations generallze the problem and are Jjustl-

fied as solutions themselves since they are simply additive

combinations of solutions to entirely linear equations.

The actual velocity field is simply the real parts of (22).

(22) is representedgravhically in Chapter III for very simple

notion, h(x,t). In these motions,wandKhaveonlyone

value each, and thus we call C ws CV, the field constant.

The field constant is calculated in detsall in sectionlIlsa.

IC. BERNOULLI SOLUTION FOR THe PRESSURE

For momentum calculations of the thrust, terms

such as pdA where dA is an area will be of interest.

The time averaged pressure multiplied by a time 1lnvarlant,

the area, then will yield non-zero answers only if the

second order terms of the pressure are included. It 1s

of interest then to calculate a general expression for

nressure. Thus, we investigate the time dependent general

Bernoulll equation which 1s valid for non-viscous

irrotational fluids. It is obtained by integrating the

Euler equations of motion, and ls, for an incompressible

fluid

2. ye
(bgoy = BI = =-20 = Ver Ver Vi

ot 5

The arbitrary time function usually associated with this

1 p.19
equation has been omitted $ . (24) holds specifically

(24)

For the case of no force fields. By using the relationships

between velocity potential and velocities, (15) and the

jefinition of V,, 1t follows immediately that (24) may be



put into the form

0. Jo = D(u'/k) + u'll - Yo Vir VE o (32/2 - )

tot’¥ 2 gr Vx Vr / B15 (25)

Tt 1s convenient to break (25) into its first and second

srder components. Therefore, let us define py4

+p= Pline=rizedtot 213
“J

const

28

| 26)

“here

—_— ! K Uw
P1in 92 (u'/K) +

p ond ov ¢ ( ve+ V+ ve )

5

(27)

and

on = -¢(a?/2 - v./¢)

I'he expressions for the velocity (15) and the pressure

(25) now allow us to calculate the thrust and work.

II. WORK, THRUST _AND EFFICIENCY

There are two well defined methods of calculating

the thrust and work produced by a fish. The first is a

straight forward momentum calculation for thrust, and,

lateral force times local lateral velocity evaluation for

the work. The second method 1s to write the first law of

thermodynamics for a control volume and to calculate the

associated energy integrals. Although this second method,

the energy method, has been used by several authors, =? 1°
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the terms of the first law have generally not been written

out or criticized. In particular, the effects of the stream-

wise perturbation, u', have been completely neglected in

the literature. We shall attempt en interpretation of the

first law here only as supplementary information to momen-

tum methods because we feel that the calculation of

the different energies involve somewhat arbitrary assumptions

soncerning the control volume which are not rigorously

justifiable.

ITA. MOMENTUM CALCULATION FOR THE THRUST

Ne now proceed to calcukbte the thrust by control

volume and momentum methods. In IIB, we calculate the

work by employing the pressure fleld.

Newton's Second Law for a control volume fixednh

inertial space may be expressed as follows: (see the

sontrol volume in Diagram 4920 and 21

A. GA Vi A(R. 3k von 8
H vi, dA + fy n) (ri da) "0s: ie n,dvol (28)

-

where T 1s the thrust exerted by the fish on the fluld in

the x direction, and TT, 1s the unlit normal vector in that

Jirection. The integral over the volume averages out to

zero in time for an incompressible fluld. Thus, if dA,

(or dAy etc.) 1s now understood as n, - dA, the pressure-

area integral may be rewritten from (24) as,



- 2
P. = 2) - V+ Vo+ Vo dA.

Cop 2g - plegen)
i

If we assume a bar type of fish with constant round cross

sections at 2 and 1, then for small motions

Il. oa,
J

= //. van,

Furthermore, as we shall be concerned only with the time

averaged thrust, the time average of (20/2t)dA is zero

from (9) since ¢ 1s seen to be proportional to ott

p (20/2 )dA has zero value in any case because the integral

of the perturbation velocity times area involves the

evaluation of | 28os0a0. Therefore
© 2n Ao 5 1

- {pas + s/2, 1 (Ves ut © )rdrdo
7 Ops

201/75 54
212), L(G (3a (588)) ed od ol

B ut by Green's Theorem

2b sb 1b 143 12 M041 GE (3 1728 2001)
where dl is now a line integral about the circumference

(20

of the fish. (29) is generally known to hold for the

reduction of a volume integral to a surface integral.

That (29) is correct for the area to line integral reduction,

when 1 and 2 are evaluated at x and at © + dx is shown in

Appendix A.

“or small motions dl 1s approximately r¥*d0. The
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subscript s or sur refers to the quantity evaluated at

the surface. From expressions forthe real parts of o

and V.,., we have on the time average that

b -pdA = hegre (cng/Ke exp(Kx+1wt+in@))
+ Re(C(HZ:H2/Kr) exp(Kx+iwt+1nd Jr*240

(30)

Ne now proceed to calculate the right hand side of

28). We note that

724A = ( G° +pu'a + (u')2 )aa.

Upon integration, 3° and Gu' have no consequence for the

same reasons as previously noted for nda and (94/ot) aA.

fhe righthand side of (28) therefore reduces to the

real part of

[20
lq-

CUBS
~n3b ©

(31)

No

For fixed XK and ww , the time average of (31) becomes

upon substitution from (22)

nse

if / (Re(CHZc0s0e T exp(1kyx +iwt)) Y2raras |
 QO pr¥*

(32)

where the bar denotes time averages and where Re denctles

the real part of the expression. When (32) 1s expanded

by breaking the exponential into real and imaginary parts,

the square of the parenthetical expression involves terms

such as cos®(K, x+w t), stn”(K, x+ wt) and



J

sin(k, x +wt)eos(k,x +uvt). The time average of the

latter term 1g zero, that of the first two is one-half.

The square of the parenthetical term thus becomes, after

some simplifying

2krXo0520 (Rec)? + (1m)? [(zm:5)2 + (ReH?)? |

62 ¥rX005%0 | c(i? 2
2 .

where the vertical lines enclosing C and i Indicate that

{55 ¢

the magnitudes only of these acuantlitles are considered, and

nence only the magnitude of the product of their magni-

tudes squared. The integral (32) may now be written,

0

2k x 2 / 2,2 BEee r[C | ri (5) ref,

die

(34)

vhere r* 1s a weak function of x. It can be easily shown

however that since rdr is a real quantity,

2

2)? rdr = [ (12) rar |
Ne are thus confronted with the evaluciion of the integral

LO

Z

| / tu? (ke far |

Since this 1s not a commonly used integral, it has been

evaluated analytically in Appendix C where an exact ex-

pression 1s given for 1ts numerical value. With the

results of Appendix C, (34) becomes

: 2KrX_ 2 7a WM [62] su (ket 2 (Kp#) C 2 2 g
| Ee%ron2/a] [62] anf (kenBem)_(afr) 12 (Be) ) |
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DETERMINATION OF THE FIELD CONSTANT C.

We now proceed to determine C in (36). We call

C the field constant. It is determined by apvlication

of the boundary condition (7) for given wand K. To find

pctual values for the thrust etc, We now speclallze

our solution for an explicit h(x,t). Let

a(~,t) = Bsin(K.x + wt) efr®

where B 1s a real amplitvude.

with (26)

Ta = Hitooe](relo(12 - ES /Lr# Jpos (K, x +ut)
~(zufe (12 - 12 fr Jo in(Ky ot)

Be*rXcoss[(w + Kyu) cos (K,x +ot)

+(E,@)sin(Kx+wt)]
JI’

2
ReCRe (Ho- HZ/Kr#) - ImCIm(H_ - HZ /Kr#) ax
and |

-InCRe(HS - H2/Kr#) - ReCIm(HS - HP/Kr#) = KGB

3guaring both sides and adding leads to

B2 | (os K.3)° + (kK u)2 /
| ¢2| _ 1 r

- nn

[TH 2 (Kr¥) - He ( Kr) JK )e

We can now compute the time averaged thrust,T.

TIME AVERAGED THRUST

(w+ K,u)B

(38)

From (28), (29), (zo), and (31),
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T 2
12 _ V+ V2 + (u ) T dA= ¢ plan !

| 2¢/on )  r¥deXe (u')%aa -g 3 (6 cr

(39a)

(29D)

BY eX Trre2/4 [ (w+)? + (K,8)2](2(1) = B(1)) (390)

where T(1) and P(1) are given in (41) below, If we evaluate

| and 2 at x and x+dx es previously mentioned, then

exp(2K,.x) / dx = 2K,.dxexp(2Kpx ).

[f we define a dimensionless thrust per unit length, T#, then

3k Texp(=-2K,.x)/(K_axpB27u?)

i [etrz(2) V2 + 2(1)2] (2(1) = 2(1)-

where
r(1) =

 anf (2)82(2) _ H2(2)2 _ 18(2)°

| (85(2) - H5(2)/2 )°

P(1) = Re((HF(2)/2)/(H2(Z) - H$(2Z)/2)

(40)

(41a)

(41D)

Ali

X= wrr/u

Z = Kpit

2(1) = Kpr#

2(2) = K,r#

(41c)

(41d)

(41e)

(417)

I 1s rederived in Appendix G by integrating pressures over

the surface.
I1.B. WORK INPUT RATE

The rate at which work 1s done by the fish on the

f d is eauivalent to the foreewhich the fish exerts on
TT) and Z(1) etc. are conveniently defined in (40 and (41)

to.be compatible with FORTRAN statements in Appendix D.



fo

the fluid in the direction of lateral motlon(e = 0)

multiplied by the local velocity in that direction. The

total work is, on the time average, for small motions

i = 6 pcos@(0n/pt)dA = 6 (pgs? Pond*Peon’ (OBIVIEA

shere

dA = opr¥*oodx

I'he constant part of the pressure, Poon? wlll not appear

in the final expression because Poondh is invariant in x

if r#* is a weak function of x. Pong will on the time

average cancel out since 1t will be multiplied by the local

velocity. (Integration in © or third order consideration

would in any case be sufficient reasons for neglecting

this latter term.) Diy, May be calculated from the

Bernoulli equation(27). Breaking Pan into 1ts component

parts, we have

5 = = cosoe r¥/ Ref iw+uK cif | coa(Kyx + wt)lin ( K )

- nf to, 058 ng ut) :
K r¥*

[ff we assume as before that

Ld Be
LpX

'*einK.x + wt),

(27)

KX

oh/0t = +Be Liecos(K,x + wt)

then,only the cosine part of the flrst order pressure

4111 survive the time average of W. From (42) and



Ld

 -_

(27) we have then,

&gt; - 2 _ yyT— 240

¥ = Re (1 + GK) cH * Bg[e¥ a0? (Ky xevt)ax | c08-0d0
K Tp 0

The time average ls taken before the integration 1s per-

formed. It has been assumed in the above that r# is

3 weak function of x. Therefore

= [Re {dw + GK) CH? | } pity Bre2krX )
~ K r¥* 2 2K,

[(f we let W be evaluated at x and x + dx as pre

2x fai | zo Tax
©

“ously, then

(ak)

Let us define adimen-ionless Werk per unit length by

Wit _ w o-2kpx

K..axBorr62

hen, by employing (43), (44) and (38)}

A (a+ z(2))+(2(1)) | w(1)el ve
shere

(1) =

iL

—

M14 + 2) H(z ]oz HZ) “rm

(45)

and where a Z, Z(1), and Z(12) are defined by (41b,c,d,e).

IIC. EFFICIENCY

Define the efficiency of a work producing fish by

7 = T4/f = Energy availsble for thrust

Total Enerzy Input

(46)

TW¥ and W(1) are plotted against (X. in Chepter III.



~
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But it can be easily shown that

Therefore®

TH#0/W# = To/W

y = Ti /WH

(47 )
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IID. ENERGY CONSIDERATIONS

Since the energy approactf has been used by several

antopsr 10 without criticism, we now formulate the

first law of thermodynamics for the control volume of

Diagram 4. This control volume does not exchange heat

with 1ts surroundings. Furthermore, it encompasses no

energy sources since the area between 1 and 2 of the

control volume 1s “just deep enough beneath the fish sur-

face so that the fish surface never passes out of the

control volume. This depth will then be a maximum at

9 = 90° or 6 = 0° and x, The depth will be a little

greater then ht). Yet we consider that the control

volume is not so deep as to contain any "sources" of energy

Within the fish as previously mentioned. These consider-

ations are clearly Justified by our previous smell ampli-

tude analysis.

We proceed by purely mechanical considerations. The

energy equation for the rate of doing work 1s found by

multiplying a generalized form of equation (28) for the

thrust, by a small displacement Da of a fluid particle.

Since there are no energy sources or heat transfer, the

first law of thermodynamics for the incompressible fluid

%* 1s plotted amgainst (OX in Chapter III.
+ fan approach tc be considered only as supplementary material
to IIA as previously mentioned on page 20.



of the control volume of Diagram 4 fixed in inertial

space 1s, on the time average,

D3 = bs oF = [D3 = TW =¢pV Ds( V- aA)
F PE A

since the vector force, F, which includes both body and

(49)

surface forces 1s independent of Ds. Therefore,

expanding (49) into its r, theta and x scaler components,

aw = FyDs, EX F.Ds. ope FoDsq

#,T7.05 + hg
But

¥ Ds. = FgDsg = 0

=f Vo V,3hxDsg = $V; V_aA,Ds,

50}

(51)

since there are no net forces tending to revolve the

control volume about the x axis or push it radially out-

ward on the time average. Therefore, dividing both

sides of (50) by dat, we get on the time average

=: FY = &gt;

= FV, = 4 dAy (52)

3jnce

Dsy/dt = Dsx/Dt = Dx/Dt = V_

by definlitlon for the velocity of a fluid particle.

(52) may be rewritten as

FV = T(d+u') = b pda (u +u') + § Vy( + u')da
X x ) A AX

III (53)
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to

which gives exactly the same T as (28).

The terms of (53) may be interpreted as follows:

[ is the work consumption of the real fluid dynamical

rag forces - or the work done by the thrust exerted on

the control volume by the fish; III is the rate at which

kinetic energy 1s lost to the wake of the fish from the

control volume; and II 1s the rate at which work is

consumed by fluctuating pressures on the perturbation

velocity - this term 1s some times referred to as flow

work. Term II 1s generally neglected in treatments in-

volving the first law because thls term's significance

really stems from the inclusion in the theory of the

perturbed velocity field. Also, generally a Wyn of the

fish itself is included in the first law statement.

But, as we have just shown, this term must be included

only if the specified control volume includes the fish.

III GRAPHICAL REPRESENTATIONS (Diagrams and Graph Results)

Diagrams refered to in the text which relate to

derivations are numbered one through four; graphlcal

results are presented in Diagrams flve through nine. All

results depend upon h, where h = Be r¥g1n(Ky x+wt) as usual.

(B,K,and Ky are real numbers).

The perturbed veloclty fleld 1s plotted in Diagrams

5a and 5b. These results are derived from (22) in dimension-

less form. The actual fleld would require a large constant



a to be added in the x direction to all velocities. The

area between r = O end r = 1 in Diagrams 5a and 5b 1s

considered to be occupied by the fish.

Thrust in Diagram 6 is determined from c¢xoression

(63) of Appendix G; work in Diagrem 7 from equation (45);

and efficiency in Diagrams 8 and 9 from expression (48)

and (G3) and (45).





















IV. CONCLUSIONS

Diagram 5 shows that the magnitude of the velocity

fleld dles off rapidly and exponentially with increasing

dlstance from the fish. The two dimensional graph, 5a, of

the velocity field "above" the fish, shows that there are

cores of vorticity of varying sense distributed along the

length of the center of the fih. Although it is necessary

to obtain one three dimensional picture of the field to

see exactly how the fields of these vortices connect

11 now appears as if the vortex cores form a torous like

corkscrew fileld. This field may wind within and around the

4 sh.

We may draw several conclusions from diagrams 6 through

G. For the case where c¢/i§1, (¢ is w/K;, the phase velocity)

T# and W#* are very small and are negative in the vicinity

of ¢/a = 1. (Also for the case in which ¢/4 = 1, the

perturbed velocity fleld 1s negligible because C, the fleld

constant is practically 0) Also T¥ and W# approach zero

for any frequency as wavenumber, K, increases. Furthermore,

the efficiency defined in (G4) of Appendix G as

—- a 4+ gmall correction

- 7/(T + losses),

1s always greater than one. The reason for this is that T and

W_ (the total work put into the fluid) are negative.in the

#¥This research is presently belng carried to completion.
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c/d 1 region. The losses to the wake etc. however are

always positive. Therefore the total work, T + losses,

1s less than T, and the efficlency 1s correspondingly

greater than one.

For the case of c¢/u&gt;1, efficiency increases linearly

with wavenumber and approaches zero for all frequency as

wavenumber approaches zero. Efficlency also goes to zero

for all wavenumber at large frequency. Furthermore, in the

c/u&gt;1 region, W# and T# increase almost quadratically with

frequency and decrease extremely rapidly with increasing

wavenumber for any one frequency. These results all show

that swimming can be achleved most efficlently and productively

with regard to thrust at as low a frequency and as high a

wavenumber as possible without encountering the c¢/u &lt;1

region. From our graphs, we estimate that u/c should be

between .75 and .8 for an efficlency of between 80 and

90 percent. This conclusion correlates well with Bainbridge's

observations on actual living righ" and with Legltnill es

results.

It 1s also noted that our results for T#, W#* and

efficiency are of exactly the same form as those obtalned

8
by Wu . Wu analysed the swimming of a waving plate with

oscillating airfoll theory.

We would like to point out that our values for thrust and

work are probably accurate in comparison with any finite

fish theory. Althoush the net momentum exchanged in the x



direction will be greater for.a finite fish then for an

infinite fish, the net energy lost to the wake will also

be proporticnately greater and will cancel the

former effect.

The physical plausibility or our results, and the

correlations between our results and other work previously

mentioned, indicate that an exact study of end conditions

will not greatly amplify: an understanding of the swimming

f4sh mechanics,##¥*

The present theory would however be improved if it

1s found possible to match the form of the momentum derivation

for thrust with the form of the pressure surface integration.

However, this would be difficult, since the momentum deriva-

tion employs the second orderpart of the pressure

( 1.e. HZ and its derivatives squared). whereas the surface

pressure integration uses only the first order part of the

- 2

pressure (.e. uu! or HY alone.)

##% A possible approach to the finite fish case by means of

our theory might be to assume that r¥# varles strongly with

XxX. Then one would assume that r¥# approaches zero repidly at

the ends of the fish. In thls case the boundary condition

(E1) and the method of calculating thrust of Apvendix G

would probably be simplest to employ.
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APPENDIX A. PROOF THAT

D4 + 4 1 D45,T
dbFL+ 4 12

IF EVALUATED AT X AND -

a eal

Y’

‘L L ¢

29 34 GE) dw

The above equivalence was stated in equation (38).

fe now show it to be true. In general, Green's Theorem

cannot be aprlied to the integral on the right hand

side of the equivalence sign, 1f reduction to a line

Integral 1s desired, unless of course one is dealing

1p. 66
with a two dimensional velocity potential.’ Bsr the fish

problem, this would mean no dependence of O upon x in

pccordance with the assumptions of the slender body theory

That Green's theorem also applies to (38) under the

special condition of evaluation of the areas at x and

Xx + dx 1s shown in the following.

We wish to evaluate

D §C+ (£4) aAYour uf347 .

1 (3a Te fe A Gh (34

A+ (34°(4forawy

(A1)

(A2)

 3%
1f V0 is contimmus by definition. Therefore

BRL+ ady'+ (hy fea ” 2 pal (2h (Ql Fone
(A3)

&amp; [lag +28) Rev
¥ This step was brought to my attention by Prof. Edward Kurtz.



But according to Green's Theorem , (A3) 1s equivalent to

J J (22) dg or J) (029 | dxr*de (Ak)
OX J oM/ gyuprface dX A on Jsurface

which 1s exactly the same answer as previously obtained

in (29). Therefore, we can only conclude that the thesis of

Appendixdis correct.

APPENDIXB. ON THREE DIMENSIONAL VIRTUAL MASS

In this section we would like to comment on the differ-

ences between the two dimensional virtual mass of a slender

body model fish, and that of a non slender body three

dimensional fish. We shall consider the virtual mass of

2 circular cross sectioned evlinder becauge this special

shape facilitates integration and makes it easier to see

the difference between the two and three dimensional

concept of virtual mass.

The virtual mass of a circular cross section of

mit length of a long cylinder subject to a two dimensional
1

flow is prr*°/2 ver unit lensth, if p 1s the mass density

of the water, and r#, the radius of the cross section.

On the other hand, the virtual mass of a2 long circular

cylinder which has "wiggled" sufficiently to produce a

three dimensional (votential) flow is a function of a

characteristic x dimension varameter. This may be shown as

follows:

The kinetic energy of the volume of fluid (see diagram

74) between x=0 and x=1, 1s (let dx be a unit length),
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If r* is not a function of x, then

2 2
K.E. = (rr* 3p(V )g)ax/ Sr els

O i

where V, 1s given by (26). But the inside of (B2) is

Just the two dimensional virtual mass which is not yet

multiplied by its x dimension. In two dimensional theory,

as in the slender body theory, the bracketed term is not

a function of x. But if we integrate (B2), we must

consider V.'s x variation of oF, where k is the complex

wave number. (We note that K may itself be a function of

x.) (B2) becomes, (the equality holds if k is not a function

of x)
2 .

K.E. = [my rr (eF '-1)/f
Tso. ; e=0,

Thus, wé may define a virtual mass

wiggles periodically in x from (B3) by

| . 2, 2, k | /K.E. 2; V Err (e™ = 1)/k1 eo
rz: rd

dd

Mz =0% p—— -1)/k1

per unit length, which may be greater or less than Map

which is LoprHe, devendlng upon whether cr not

(eX _ 1) /x

(B4)

(B5)

is greater or less than 1. But (BS is always larger



than 1, belng close to 1 for small values of k or for

very large wavelengths. Thus, for the same lateral velocity

at €=0, V__.. oo» OUT fish will put more work into the

fluid, produce a greater thrust and "lose more energy

to the wake than the slender bodied fish. But since

thrust and work both vary linearly with virtual mass&gt;?&gt;

the efficlency will be unaffected by this variation.

We might make ore further comment. For finite fish

who have the tendency or abllity to vary thelr wave number,

it would seem as 1f the natural motion of fish might

Ne

3

instead of

[
—

wad
ST

\

So

7

since the former would have a smaller K at the rear and

thus a smaller virtual mass and hence less kinetic

energy lost to the wake than the latter case b, for the

game lateral velocity amplitudes.

b

APPENDIX _C.  INTRGRATION OF J (HZ(Er) )2rar
2 -

Consider the equation for ut

raul fap + raUT Jar + (kere - n2)uT (C1)



It was noted in (21) that

r _ 1 \ 2

Ut = Cetin (Kr) + GC, H-(Kr)
was a solution to (C1). A special solution for UY

satisfying (C1) was found to be

vt = corr).

Now to find I, multiply (C1) by 2du¥/dr, getting

2r®a2y" aut + or(aut/ar)? + 2(fr2-1)uTauT/ar -
dr ar

or

2 2 &gt; 2
d (r2(aur/ar)? + (Kr? =1)UT°) - 2Kru¥

ar

tr

Integrating between a and b gives
b b

(r2uavr/ar)? + (Kr® -1)ur?) / =/ 2KBu war
&amp; a

But. from (C3). since 22 P.152

L

(c2)

(C3)

(C4)

 ££Fj

ot = C,HS(Kr), aut/ar = 0 xZ(xr).

Letine Crp = 1 for convenlence,
2 2

PPk2(H2 (kr) )2 + (&amp;2-1)(8S(kr))2k%/” (13k) ) rar
di

0S) VPrar = 3r2( (1(kr))? + (11/522) (1 (1) )
5J

But the recurrence formulas for Bessels function lead

£020 0.83

Ln? (kr) = -B2(Kr) /Er + HE(Kr) = ike).

therefore (C5) becomes

(C6)

(63 (kr) 2rar = 3r2(=282(kr)B2 (kr) /Er + (H3(kr))®

(52 (kr) 2
7
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Since SH = 31.0 - 1, or a must be # 0, or else I will

be infinite. In addition, since for large Kr, (if Kr =

ool?
HS (Kr) = 12(pot") = fon? ~1(geosf+ 20 - 3/1) (e7,

where Re(Kr)&gt;0, -n/2 &lt; f&lt;n/2, We see that Y must be small

or between -/2 and zero, (that is K,&lt;O, and K 70) if

r?&gt;0, for HZ (Kr) to converge. Then at r =w, or ¢ =x

r°H Hy/Kr and (H2(Kr) )“r? and (H2(Kr))Zr®

211 approach zero!

00
U(#3(%r))%rar = 3r#2(2H2(krJH(Kr*)/(Ko)

-(H3(kr*))? - (B2(kr#))?)
(c8)

where

 {yvit -

a

which is the desired evaluation. A similiar type of inte-

gration may be found in Mec Lachlan®”, pages 103 to 104

for Bessel's function of the first kind. We believe that

the above integration will hold for Bessel functions cf the

first, second or third types, (the latter are Hankel

functions of the first or second kinds) if, appropriate

limits of integration are assumed. This fact does not seen

to be generally known.

APPENDIXD.FORTRANPROGRAMS FOR CHAPTER III

The program used to generate values for dimensionless

thrust, work and efficiency is presented on page $7 . Thrust



5¢

is called TSTAR; work, WSTAR; and efficiency EFF. T(1)

2(1) and w(1) are defined in the text on pages 25, 25

and 27 respectively.

The program used to genel:

presented on page 55.

Both programs calculate the Hankel functions by com-

puting Bessel functions of the first and second types, and

of the zeroth and first orders with the aid of subroutine

COMBES 24, This subroutine was used in its original form2*

except for modifications in calling LNGAM (a subroutine of

COMBES) and a complete revisgion of COMLOG ( also a subroutine

of COMBES). The revisitn of COMLOG was suggested by

its authors in a personal communicaticn. The resulting

ofoda |

gcecuracy of the new COMBES is estimated at two decimal

places.



CALCULATES WORK AND THRUST FOR FISH PROBLEM

DIMENSION H1(2)9sHO(2)92(2)s TEMP1(2)sTEMP2(2)sTEMP3(2)sHOSQ(2)yH1SQ
L(2) 2 YO(2) Y1(2)sW(2)sBJRE(100)sBIJIM(100)sTHRUST(2)

2YRE(50)esYIM(S50)+sBOTTOM(2)sTOP(2)sWINSID(2)sTEMP4L(2)
3FJO(2)9FJ1(2)sP(2)9C{2)9XFRONT(2)sXWSTAR(2)

READ 6000s FREQM

PRINT6000s FREQM

READ 70009sRZM

PRINT7000¢RZM

READ 1000s ANGZ

PRINT10009ANGZ

READ 4000s FREQ

FREQ = FREQ + le

RZ = Qe

RZ = RZ + «5

2(1)=RZ*COSF(ANGZ)

2(2)=RZ%¥SINF(ANGZ)
BETA = Oe

ALPHA = Qe

N = 1

CALL COMBES(Z!

FJO(2y= BJIMI(1)

FJO(1)y= BJURE(1}?

yO(l) = YRE(1)

Yo0(2) = YIMI(1)

HO(1l) =FJO(1) +

HO (2) =FJ0(2) =

FJ1(1)= BJRE(2)

FJ1(2)= BJIM(2)
Y1{(1l) = YRE(Z)

Y1(2) = YIMI(2)

H1(1l) =FJ1(1l)y + Y1(2)

H1(2) =FJ1(2) - Y1(1)

CALL CDIV (TEMPlslslsHlsleleZselsl)

3OTTOM(1) = HO(1l) — TEMP1(1)

BOTTOM (2) = HO(2) - TEMP1(2)

NINSID(1) = le+ FREQ*Z(2)/((2(2))%¥%2 + (Z(1))**2)

WINSID(2) = FREQ®Z(1)/((Z(2))*%2 + (Z(1))*¥2)

XFRONT(2) = FREQ + Z(2)

XFRONT(1) = Z(1)

CALL CDIV(Csl9l9oXFRONT»1s14BOTTOMels1)

CALL CMULT(XWSTARs191sWINSIDs1913sCslsl)

CALL CMULT(WslslsXWSTARs1s1leH1lelyl)
18 TSTAR = =W(1)1%2(2)/(2(1)%24) + W(2)/2e

180 WSTAR = W(1l)*FREQ/(2e%*2(1))

FF = TSTAR/(WSTAR)

SRINT10009ANGZ

PRINT 4000,4FREQ

PRINT 8000sRZ

PRINT 2000+WSTARsTSTAR

PRINT S5000EFF

PRINT3000sW(1)eW(2)
[F(RZ = RZM) 10420420

20 IF(FREQ = FREQM) 591,

L000 FORMAT (6H ANGZ=E25.6)

2000 FORMAT (13H WSTARSTSTAR=2EZ256)
3000 FORMAT(11H W({1)sW(2)=2E15.6)

4000 FORMAT (6H FREQ=EZ25.6)

5000 FORMATI(S5H =FF=E25e6)

0



5000

7000

3000

FORMAT{(TH FREQM=E2546)

FORMAT (5H RZM=EZ2546)
FORMAT (4H RZ=E2546)

END(1l91l909090919190s09” 909090900)

54

TOTAL



CALCULATES VELOCITIES FOR FISH FIELD

DIMENSION H1(2940)s HO(2940)s TEMP1(2+40)sFJ0(2040)sFJ1I(2940)

2 BOTTOM(2940)s WAVENO(2)s C(2)sVR(2)sy VTHETA(2)y UPRIME(2),

BAXP(2)9Z(2)sY0{2940)9Y1(2+40)sBJIJRE(100), TEMP (2940) +BJIM(100),
4YRE(50)9YIM(50)

CONTINUE

READ 1000s Ks DELTR

PRINT 1000s Ko DELTR

READ 2000s OMEGA »DARGDTHETA

PRINT2000s OMEGA IDARGsDTHETA

READ 3000s WAVENO (1) yWAVENO(2)

PRINT3000sWAVENO(1)sWAVENO(2)
R= l,
Z(1) = WAVENO(1)#%*R

Z(2) = WAVENO(2)*R

BETA = Oo

ALPHA = Qo

N = 1

CALL COMBES(Z(1)9Z2(2)sALPHASBETAINSBIRESBIIMIYRESYIM)
FJO(lseJ) = BJURE(1)

FJO(2eJ) = BJIM(1)

YO(leJ) = YRE(1)

YO(29J) = YIM(1)

HO(ledJ ) = FJO(1lsJd ) + YO(2sJ )

HO(29J ) = FJO(29J ) = YO(1lsJ )

FJ1(1leJ) = BURE(2)

FJ1(24J) = BJUIM(2)

ritleJd) = YRE(2)

f1(2¢J) = YIM(2)

Hl(led ) = FJ1(1leJ )+ Y1(29J)

H1(29J ) = FJl(29J ) = Y1(1lsJ )

CALCULATE THE CONSTANT PART OF THE FIELD

CALL CDIV(TEMPlelslgHlelsleZelsl)
BOTTOM(191) = HO(1ls1l) = TEMP1(1ls1l)

BOTTOM(2s1) = HO(291) = TEMP1l(2s1)

TEMP1(1) =SQRTF{ (OMEGA + WAVENO(2))*%#2 + WAVENO(1)%##2)

TEMP1(2) = OQ

CALL CDIV(CoelslsTEMPlelselsBOTTOMel1l,y1)

SET UP AN ARRAY AND FILL IT WITH VALUES FOR DIFFERENT RS

R = 1

DO 200 J=1,4K

Z{(1) = WAVENO(1)*R

212) = WAVENO(2)*R

CALL COMBES(Z(1)s2Z

FJO(leJ) = BJURE(1)

FJO(24J) = BJIM(1)

YO(leJ) = YRE(1)

YO(24J) = YIMI(1)

40(1esJ ) = FJO(1led ) + YO(2sJ )

HO(29J ) = FJO(29J ) = YO(1sJ )

FJ1(1lsJ) = BJURE(2)

FJ1(2sJ) = BJIM(2)

Y1(1leJ) = YRE(2)

Y1(29J) = YIM(2)

Hl1(leJ ) = FJ1(1lsJd + Y1(29J)

H1(2¢J ) = FJ1(29sJ ) = Y1(lsJ )

CALL CDIV(TEMPlsJsesloHloeJdslsZs1ls1)

BOTTOM(1sJ) = HO(1leJ) = TEMP(1lsJ)

3O0TTOM(29J) = HO(29J) = TEMP(2,J)

55
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R = R + DELTR

CONTINUE

VARY THETA AT FIXED KX (ARG)

THETA = Qo

ARG = Qe

J = 1

AXP(1l) = COSF(ARG)

AXP(2) = SINF(ARG)

CALL CMULT{VRs1919BOTTOMsJs19AXPslsl)

CALL CMULT(VTHETAs191sTEMPlyJslsAXPylsl)
CALL CMULT(UPRIMEs1919H1lsJelsAXPsl,s1)

CALL CMULT(VR9191eVR91s1sCslsl)

CALL CMULT(VTHETA»1s1sVTHETAs1919Cslsl)

CALL CMULT(UPRIME»ls1sUPRIMEs19s19Cylyl)

GROWTH = EXPF(ARG*WAVENO(1)/WAVENO(2))

DO 210 M = 1,2

VR(M) = VR(M)*GROWTH

VTHETA(M) = VTHETA(M)¥GROWTH

UPRIME(M) = UPRIME(M)*GROWTH

CONTINUE

VR(1) ==VR(2)*COSF(THETA)

VTHETA(2) = =-VTHETA(1)*COSF(THETA)

UPRIME(1l) =-UPRIME(2)¥COSF(THETA)

PRINT 4000, J

PRINT 5000, THETA

PRINT 7000s ARG

PRINT 6000sVR(1)sVTHETA(2)UPRIME(1)

IF ( THETA = 342) 230424049240

THETA = THETA + DTHETA

GO TO 220

Z NOW VARY AXIAL DISTANCE IN X

240 THETA = Oe

IF(ARG = 663 ) 250452604260

250 ARG = ARG + DARG

GO TO 205

C FINALLY CALL ON ALL THE VALUES KEPT IN THE ARRAY BEFORE 200

260 ARG = Oe

J = J +1

IF(J=K) 2054205,1

FORMAT (9H KsDELTR=I34E1566)

TORMAT (19H OMEGA sDARGSDTHETA=3E1546)

TORMAT (21H WAVENO(1)sWAVENO(2)=2E154,6)

"ORMAT (3H J=13)
TORMAT (7H THETA=E15.6)

"ORMAT (18H VReVTHETASUPRIME=3E1546)

TORMAT (5H ARG=E1546)

END

&gt;

a=

106

[TOTAL 104A »
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APPENDIX E. FISH WITH VARIANT CROSS SECTION

We now consider the case where r#* 1a a strong function

of x. Let r¥ not be a function of © or @. Since SL in

Diegram 1 is of the order of Jh/)x, to a first order approx-

imation r¥# may be considered to have derivatives in the

x direction only. Thus in (5),

Dr¥* /Dt = uor¥/Jx

or 1. (5) is written in the r direction only, then

v.//cos@ - Qor#*/2x)-. = (oh/t
“ uch/2x) (ET)

Where we have implied that Jr%/2x is of the order of

V, or h/t. (E1) is then the surface condition for the

case in which the cross section of the fish varies with

axial distance.

Fake the case of an elongated elliptic fish. Let

the elllpse have its major axis con the x axis, and minor

axis at x = O, and at © = 90° say. (See Diagram 3).

Then, if a and b are constants (see Diagram 3),

id

rE La)
——-

 -— (8° 2) Yexb/=

(E2)

rex = (a° - x2) Exp/a.
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APPENDIX FF. CONSERVATION OF MOMENTUM

The conservation of momentum conditlon 1s not easily

incorporated into a long fish theory since all end forces

are not determinate. When Introduced, such a condition may

be Incorporated only by assuming that there are no end

forces in the fish body or that the fish 1s finite. But

In this case, the flow field used in this paper is not

rigorously applicable, but only an approximation to reality

However, for completeness we now briefly discuss Newton's

Law cn lateral movements.

Aghthill? has been, as far as we know, the first and

only author to actually write the equation on the dynamic

force balZance between the fish and the surrounding fluid.

He did this by nelecting end conditions and by assuming the

so called slender-body theory.

The slender-=body theory may SLO a two dimensional

virtual mass. in order to calculate thrust and work. This

is a mass of fluld associated with a cylinder having lateral

velocity (or constant axial velocity) only. This mass,

multiplied by the lateral velocity squared, represents,

supposedly,theentirekinetic energy of three-dimensional

fluid movements to a good approximation. This virtual mass

1s a rigld body two-dlmensional concept and is evaluated

from the time invariant geometrical body configuaration

in question. The slender-body theory virtual mass concept

then assumes that the flow past a cross section S(x) of

fish, is equivalent to the lateral flow plus the axial flow

rast an infinitely
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long cylinder with constant cross section S(x). This

assumption holds strictly only if r# is not a function of

Xx or 1f down-stream conditions have no influence on

the upstream flow pattern, Thls 1s equivalent to saying

not only that the streamwise perturbation is small,

but negligible at all times and at all points. If M(x)

1s the virtual mass of fluld associated with an infinitely

long cylinder of cross section S(x), then Newton's Law may

be written as?

1JL psx Pu,, = /1 M(x)p(Vp) . cx
dt Dt o=0

0

for the entire fish for all situations in which u' and

2nd conditions are nesligible. Analogously the conserve-

tlon of angular momentum mev be written as

CF

1 - /1 g

Js x(x) Lnyax = / =(x)Dr) 0  f0

If M(x) were a three dimensional virtual mass. one would

have greater faith in (F1 and 2.). The most accurate

nethod of writing the invariance vrincinles however

Is to express the lateral force exactly in the O = O

3d rection as

1
2/s 2h S _ (1/20. co© =o (x)ax [5 / pcos’ (r¥*)axde { £3)

where vp 1s the line~r’ ~~4 pre-aure snd where r# is an

arbitrary functlon of © and x. Also we may write analogously

ond visa versa.
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so (F2)
1

JE x $h,5 (x)dx = / [27 xpeose trance. (F4)
o 2t o /

For a given h(x,t), and therefore given wand k, if (F3)

and (F4) are not satisfied, then rigid body reflex motions

w111 result. These motions are similiar to the reflex

of a gun due to the momentum deficiency after a bullet

1s shot. Lighthill has called these rigid body recoils

applied to a fish "F(t) + xG(t)." These movements when

added to h(x,t) would cause (F3) and(F4) to be satisfied.

Lighthill® however 1s concerned with recoils as a correction

to (F1) or (F2). ©Since he considers only a two dimensional

rirtual mass, such a correction would seem to be unimnortant

in comparison with the errors due to neglecting the

velocity field perturbations. A more correct virtual

nass has been described in Appendix B.

APPENDIX G. THRUST DERIVATION BY SURFACE PRESSURE INTEGRATION

A numerically concise and perhaps more physically

Intuitive method of deriving an expression for thrust is

now accomplished by integrating the pressure over the si. lace.

le wish to find the resultant of the pressure forces

exerted by the fluld on a fish cross section in the x

direction. Consider a cylindrical cross section of length

dx and radius r#. Let this section be displaced a distance

h from the x axis in the € = OQ direction as usual. Because

of this displacement, the cross section will be inclined by



an angle £2. (see Diagram 1) in the © = 0, x plene. At

© = 0 and © =180° the x component of the pressure will be

a maximum or minium end equal to psinfl.. At @ = 90° and

70° the pressure is perpenidicular to the x axis and has

no component in that direction (see Diagram 1). Therefore.

x

since L.=2h/0x( 1 + Oh/Ax)2 )%, to a good approximation

the x component of the pressure is

o(Dr "_A, Yeos30 (31)

The force in the x direction exerted by the fluld pressure

on &amp; small area of this cross section 1s correspondingly

»y(Vh/0x)cose(r#dxdae). G 2)

The total force or the thrust exerted on the elementary

cross section of lengthdis equivalent to (G2) integrated

over ©. To evaluate (G2) we consider only the linear part

of the pressure (p, =¢ 00/0t +pun’ ) since the second

order components (the velocities squared) when multiplied

by Oh/0x would become third order quantities. The second

order terms would in any case have zero time average or

integrate over theta to zero when multiplied by(2h/0x)cose.

From equation (27) on page 26 we have therefore

2k - SE

= refs Fi work curr)oFIXME).0[5x06(k,xewit)K

x+wt +
if h is defined as usual, Or, with tle d....ition of Tw

nN

X_and z on page 25, the time averazed value of T leads to

#Actually it is the vector normal to the surface or the pressure

force which is prervendicular to the x aXis
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- -4Re (1442 cup(z)fz(2) +HIn{ 12] oH (2) (G3)

'% is plotted egainst « in Diagram 6 with I as .

The efficiency, T#/W# may now be written in the very

simple form

naremeter.

K w + F¥_/w|Infiw+EacH?} / Re iw+¥R GHZ
Tr x 1 x 1

(G4)

7 = phase velcniwy + sma.l acre ction.
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