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ABSTRACT

A theoretical study has been made of the thrust and
efficlency of fish-type propulsion systems. Fish are
modelled as long, round three-dimensional flexible cylinders
in an incompressible irrotational fluid. The assumed
swimming motion consists of plane waves progressing axially
along the cylinder with exponentially growing amplitude

and constant wave number and vhase veloclity.

The veloclty fleld surrounding the cylinder is determined

by finding solutions to La Place's equation subject to
appropriate geometrical surface-compatibility conditions.

The requirement that energy be radiated from the fish into
the environment is satisfied by using Hankel functions of
the second type (with complex arguments) as solutions.
Pregssures are determined from the time-dependent Bernoullil
equation. Work is then found by pressure-times-area calcu-
latlons, and the integration of squared Hankel functiomns is
required for the determination of thrust by momentum methods.

All results are presented in closed-form expressions.

In addition to expressions for velocity, work, thrust

and efficiency, the following topics are discussed: boundary
conditions for a cylinder whose dimensions vary with axial
distance; fluid-fish force interactions; three-dimensional
virtual mass; and first-law derivations for thrust. Conclusicns
consider the dependence of swimming efficiency on wave number,

and on phase velocity.
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TABLE OF SYMBOLS

(Including only symbols used throughout this work and
not locally used forms).

Symbol

h(x,t)
X, r,e
a
u'

F

Definition
Displacement of the fish centefline from the x axls
Three dimensional polar coordinates
Components of the velocity field
Stream veloclity
Stream-wise perturbation velocity
= F(r,8,%x,t) = 0 equation of the fish surface.

Usually the perpendicular distance between the
fish center line and surface

r, evaluated at the surface

The substantive time derivative

The radial velocity at the surface

Complete or total pressure

The constant part of the total pressure

= DP1jns the llnearized perturbatlon pressure.
= 1, descriptive of the separable angular variable
The angular frequency, & real number
Wavenumber, & complex number

Bessel function of the first kind of order n
Bessel functlion of the second kind of order n

Bessel function of the third kind of order n; Hankel
type 1 function

Besselffunction of the third kind of order n; Hankel
type 2 function.
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Rw v N R

= Cyy» the fleld constant
Velocity Potential

Virtual mass (two dimensional)
Rate of doing work

Thrust

Dimensionless frequency = wr#/m
= kpit

Drag

Amplitude of h(x,t)

= wr¥ /4, a dimensionless frequency,
FREQ or OMEGA in FORTRAN)

(called
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SUMMARY

Chapter I desclbes the kinematic boundary condition
which is satisfied by the fish within a nonviscous fluid.
This velocity field is formed from the separable solutions
to the La Place' equation in three dimensions, and
specialized to satisfy the requirements of the condition that
energy be radlated outward from the fish. The pressure 1s
found from the zeneral time-dependent Bernoulll equation.
Velocities and pressures are expressed in terms of Hankel
functions of the second type. In Chapter I fish are
modelled as long cylinders with constant cross section. The
problem of the dynamics of a finlte fish and of an elliptie
cross sectioned fish are sketched in the appendicies.

Chapter II uses the resulting forms of the velocity
and pressure fields to calculate the fish's thrust by
momentum methods, and work by direct integration of the
pressure field at the surface. An expression for efficiency
is presented. Work and thrust are then related by energy
methods which clarify the differences between this theory
and the slender-body theory.

Chapter III presents dlagramatically the velocity field
and evaluates work and thrust under certaln fish movements.

Evaluation of these quantities involves integration of

sguared Hankel functions; this integration 1s compled in

Appendix C. The source programs for evalutation of the
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work, thrust and velocitlies on the IBM7090 are written in
Fortran and presented in Appendix D.

The concluding chapter considers the physical inter-
pretation of the graphical results and expands upon the

applications of the theory presented in Chapters I and II.
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INTRODUCTION

There has been consliderable interest in the past few
decades in studying the physics of fish locomotion because
of possible applications to efficient  propulsion of boats
and ships of all types. The study of biomechanlisms such as
are found in snakes, birds, bats and other animals has led
to many practical and productive insights for pure and
applied science. However, the study of animal locomotion
in fluids has not yet matured suffielently to contribute
to practical mechanical propulsion systems, or for that
matter, to the actual biological principles which may be
correlated with fluid mechanics.

For at least one half of a century blologists have
observed the remarkable behavior of fish. BainbridgelA*has
noted that the speed of the swimming fish is independent

11,12 has observed that fish seem

of surface shape, and Gray
to disobey the standard rigid body fluld mechanical drag
laws. This anomaly hes been popularly called the"fish
paradox." In fact, Gray13 has also observed that amputation
of the rear fin of certain fish does not significantly alter
their "powers of locomotion." (Amputation did however alter
the wave configuration on their backs). Graynalso noticed
that when fish are placed on a peg board, they arch theilr

backs in such a way as to brace themselves agalinst the pegs

# Numbers placed in such a manner refer to the Blbliography.
Bainbridge and other authors mentioned in the Introduction
are discussed further beginning on page 4. .



to gain forward momentum by reaction.

Gray's and Bainbrige's observations and an experimental
paper by Rosen'® on the vortex motions generated in the
wake of fish, caused this author to believe that the actual
body configuration in swimming, represented geometrically
by wave number, uniquEly determines swimming efficiency.

It was also believed that the three dimensional virtual mass
of the fluld assoclated with fish motlion might somehow

be construed to be a varlable and to be a factor upon

which the efficliency would depend. The former intultion
concerning wave number is, it is hoped substantiated in
Chepter II of this paper; the latter statement concerning
virtual mass 1s made plausible in Appendix B.

It appeared wilsest to begln a study of fish motion
with Lighthill's2 excellent and conceptually simple paper
which is based on the slender-body theory. Instead of |
extending Lighthill's work which neglects the veloclty
- fleld details, the next step was chosen to be a description
of this field. Thus a linearized surface condition was
written and coupled with the general inviscid equation of
fluld motion. The solution for the flow fleld was derived
from the three dimensional La Place equation. This solution
was written in terms of Hankel functions of the second type
to satlsfy a directional radiation condition.

To calculate thrust and work, we attempted temporarily

to use a two dimensional virtual mass theory, similiar to
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Lighthill's approach. In this method we employed a stream-

wlse perturbation. This involved a detalled energy approach
following the Flrst Law. However, it soon became apparent
that using a perturbation velocity withatwo dimensional
virtual mass involved contradictory ideas. This method

of calculating work etc. was abandoned altogether in

favor of a simple and more straight-forward approach.

This latter approach was based upon integration of
pressures and momentum considerations 1In order to cal-
culate the thrust exactly, we were forced to integrate
analytically squared Hankel functions between a finite
radlius and infinity. It was then found that energy input,
thrust and thus efficiency depended upon wave number.
These conclﬁsiona concerning the correlation between
wavenumber, work, thrust and efficiency are not simple
to interpret physically, because such relationships
are not common to steady state rigid body fluid dynamics.
Certain comments concerning thrust and wave number have
however been made by van Karman.13 Ag far as we know, he
was the first to see such relationshps; his comments
being confined to two-dimensional cases.

After gaining some confidence in the plausibility of
our solutions, the resulting functions of Hankel function
with complex arguments were programmed for computation on

the IBM 7090, so that they could be graphically plotted.



A good historical review of the fish swimming paradox
and of the attempts to harness swimming type movements to
produce thrust can be found in Fraize‘T. To conclude this
introduction, we shall indicate only the more important
contributions to the problem of the swimming flexible fish.

Three theoretical papers only have been wrltten on

2,9,10
e B Lighth1112

the three-dimensional model of the fish.
investigates the movements of a flexible finlte three
dimensional fish. He employs the approximations of the
slender body theory which he reviews in reference 3.
His analysis is based fundamentally on the assumptions that
there is no streamwise perturbation velocity and that the
total flow is the sum of the flows due to fluld motlons
past a stretched stralght fish and those due to the two
dimensional flow, lateral to the body. Thereforge, he assumes
that the usual two dimensional concept of virtual mass
leads to correct expressions for the fish's thrust, work
end efficiency.

Taylor1o glves a finite amplitude analysis employ-
ing empirical flow field data from experiments on long
cylinders to calculate lateral forces. Tayplor's model
is infinitely long and has a constant cross section which
is invariant with distance.

The third three dimensional analysis 1s given by

Cummings9 who is generally neglected in the literature.He uses a



completely different approach from either Lighthlll or
Taylor. Cummings calculates the forces and moments on an
elongated body which has time variant motion from a
potential field which 18 caused by a row of sources interior
to the body. This method 1s limited by the fish shapes
which can be represented by the source sink method, but

is not limited to only slightly non-uniform flelds.

There have been several two dimensional theoretical
analyséa. Wug calculates the thrust, work and efficlency
of a plate of finite cord waving in a potential fluid fleld.
He uses a linearized analysls for the velocity fleld and
employsthe Theodoresen functions of an oscilating airfoil.
Wu's results contain a discussion of the thrust , work and
efficlency of a two dilmensional plate in terms of a dimen-
sionless frequency and wavenumber.

Bonthron10

calculates the two dimensional potential.
flow due to a hinged surface. Siekma.n4 presents a thin
plate model of fish and derives thrust, and work by
replacing the model by a vortex sheet. His results include
afgrams of thrustrand work versus dimensionless frequency
with wave number as a parameter. He also presents experi-
mental verifications of his work based on studies of a
thin waving plate in a canal.

The experimental investigations have been concentrated

mainly on trying to understand the actual mechanism of
swimming by flow fileld visualization, and by measurements on
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frequency and veloclity. Nowhere are values of wave length
or wave number tabulated.

Roaen15 has perhaps been most successful in flow
field visualization. He employed a thin layer of milk
on the bottom of a small shellow tank. The milk became
disturbed and followed the fluld motions caused by a fish
swimming down the tank. Rosen claims to have seen a trail
of vorticés: in the wake of these fish and proposes the
theory that fish are able to rederive energy from the
vortex motions of the fluid:; that is from the pressure
fields of such motions. These vortices are supposedly
generated at the head and travel downstream,

Kelly7 in reviewing his experiments on two dimensional
mechanical models mentions that a three dimensional
mechanical model is under construction by the Navy.

Gray1, the accepted blological authority on fish
mechanisms, reviewshls observations on the speeds, lengths
and tail beat frequencles correlated with swimming speeds
of actual fish. He also proposges or implies the theory
that fish swim by sensing a stationary "peg" structure
in the vortices of the fluld against which it may push.
This is the origin of the vortex peg theory. Gray also
states the so called fish paradox, namely, that fish do
not seem to have the energy necessary to overcome the drag

on thelr bodles as calculated from rigid body drag laws.
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Bainbridge presents experimental data from several

speclies of fish. He records speed, frequency and mean
forward velcolty with length and swimming motion
amplitudes as parameters. His graphs indlicate linear
relationships between frequency and veloclity for any one
length of fish. He concludes that the observed swimming
speed 1s independent of body shape. In a lateér paper?5
Bainbridge dlscusses his experiments on flsh in which
wave number varied with the length of fish and where
the lateral area presented to the fluld at the fin
end varied with time.

In particular, the literature ' presents nowhere
the effect of a (downwash streamwise) perturbation velotity
on thrust or work for a three~dimensional model. Thus,
there has been no correct or ccmplete expression for
the first law of thermodynamics for this case. Nopaper
has been found which describes a three-dimensional boundary
condition or describes in any way the relationship or

dependence of efficient three dimenslional swimming on

wave number,



I FISH ' MOTION COUPLED WITH A PERICDIC FIELD

The first chapter of thlis paper formulates the
problem of describlng the movements of a very long fish
and the inviscld, incompressible flow field resulting
from these movements. When stretched straight, the fish
lies along the x axis in a. r,6,x cylindricel coordinate
gystem, and 1s assumed stationary relative to the fluid
which flows parallel to its body at constant veloecity u.
The fish is fléxible and makes small movements at right
angles to the stream. These movements, h(x,t), are
displacements of the fish centerline from the x axis and in
the ©=0,x plane.

We then write outJthe general surface condition
relating h(x,t) to the flow field. We solve La Place's
equation in cylindrical coordinates . The boundary and
surface conditions are then considered in order to deter-
mine the exact form of the field. The time dependent
Bernoulll equation 1s then solved forthe pressure,.

Thus, our mathematical problem is to find sultable
expressions for the veloclties Vr,Ve,Vx(in the r, theta

and x direction respectively), and the pressure p, when
h(x%,t) is given (1)

for all x between +L and =L, where L 1s a very large



number.We wish to find the velocities and the pressure
from the La Place equation (equation (8) ) and the time
dependent Bernoulli equation (equation (24) ). The
boundary conditions on the velocity field are that

the velocities are to satisfy the special
surface condition ( equation (7) ), (2a)

the veloclities are to be finite at infinity
and at the surface, (2p)

the velocities must represent waves which
radiate energy or information uni-
directionally outward from the fish, (2¢)

and these velocities must represent movements

at the fish surface which satisfy the

conservation of momentum laws, (24a)
Conditions a,b, and ¢ are absolutely essential.

For an infinitely long fish, (2d4) is mainly of academic

interest.

IA. GEOMETRIC COMPATIBILITY

To demonstrate the relationship between the move-
ments of a flexible, inextenslble, nonpermeable body and
the fluid flow about this body, we consider arbltrary
movements h(x,t) of the centerline of this body in the
©=0,x plane. The movements are perpendicular to Vx’
the velocity in the x direction.

h(x,t) can be related to the resulting perturbed

field about the body by a general kinematic surface
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condition. This is a condition on mass continuity at the
surface and reguires the resultant velocity at the surface
to be wholly tangential to it since there can be no flow
through the surface. The usual condition on mass continulty
can be replaced by a specilal surface condition.1p'7 1f
we describe the surface by some function F(r,8,x,t), then
the condition that a particle of fluld situated on the

surface have no normal velocity relative to this surface

is
D__LID. =0 (3)

Dt
where D/Dt represents the substantial time derivative.

Once F is determined, the condition (3) may be explicitly
stated.

From Diagram 1 (see page 32 ) 1t is easily seen that
Ty = T +‘E, where ?; is the radius vector to the surface of
the body, T# is the radius vector to the surface of the
body measured from the actual body centerline, and'ﬁ'is
h(x,t), the displacement of the body centerline from the
x axis.

F(r,e,x,t) = f% -h-Tk=0 (4)
is then the equation of the surface. The Lamglgg;face

condition can now be written as

QE_D(?)_.D.E E*:O
Dt=Dt° "Dt "Dt . (5)

Equation (5) may be further interpreted according to
reference 1 as stating that the relative velocity of a
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particle on the surface is elther tangential to the surface
or zero. Thus the time rate of change of poaitioﬁ#due to
the steady state flow velocity at a point on the surface
in the fleld at any time t, 18 equal to the local velocity
caused by the change in position of the surface in the field
itself at that point.

Now consider small displacements h(x,t). That is, let
|h(x,t)| < \e*(x,#), (see diagrem 1). Then by inspecting
Diagram 1, the quantities (8 - ¢) and 2= (9h/x)/h+0nsaF)
are both very small when compared to © say. In addition,
if we also assume that r* 1s only a very weak function of
x, then Dr*/Dt 1s almost wholly tangential to the surface.
Thus for a fish which makes small motions h(x,t) at
right angles to the stream at theta equal to zero, the
scaler components of the geometric compatibility condition
(5) written in the radial direction are

Dr Dh e
Dt® - Dtcose =0 (6)

if r* is & weak function of x. (See diagram 2.) But since
the radial velocity at the surfacg(Vp)g,1s just Drg/Dt,
and the definition of the substantive derivative is

D) _ ), Vegraa( )
Dt - A

we have from (6) that
(Vp)g = (3n/72t + Vydh/Xx)cose
We consider Vyx, the veloeity in the x directlon to be the

sum of a mean stream velocity Ul and a disturbance pertur-
# for a fluld particle
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bation u', which is caused mainly by h(x,t). Then

the surface condition becomes
(vr)s = [bh/at + (u + u'))h/Dx]cose . (6a)

But since u' is of the order of h, 2h/ot or Jh/ox, we
spproximate (u + u')’h/o>x by u’h/>x. Thus, the

"1inearized" surface condition becomes

(v = (dh/%t + udh/2x)cos® , (7)

r)s

where we have assumed that

I'*(X,e) = r*(@),
lh(x,t” <c (e,
and

u' =[o]n/tcu .

IB SOLUTION FOR THE VELOCITY FIELD

We now propose a velocity field which will at least
yield u' and V., for the completion of equation (7). Ve
consider only periodic movements in x and t. Then, peri-
odic separable solutions to the flow fleld equations will
be developed to satisfy once and for all the surface
boundery condition (7).

Since our fluid is incompressible (¢ not a function
of pressure) and inviscid, we may consider the field to
be irrotational. A velocity potential { may thust be

21, p.184
defined which satisfies the condition of irrotation-
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ality. This condlition is represented by the so called

La Place equation which is written

12 20 1 0% 24 = o, 8
rbr(rﬁr'}-'- 2 D ©° i %—;{2 .

in cylindrical coordinates.

Although we may formally proceed to solve (8) by
separation of variable techniques, since we are interested
in motlons which are perlodic in x and t, it 1s convenient

to guess a solution of the form ##
$ = Rexp(kx + iwt + ino) (9)

where R 1s an undetermined function of r. Substituting
(9) into (8) gives
(redaR/dr2 + rdR/dr + (-n°)R + K°r°R )exp(Kx+1n6+iut)

(10)
= O

Equation (10) is identified as Bessel's equation.22

2
The standard solution to (10) is 2

R = C,J,(Kr) + Coy,(Kr) (11)

where Jn and Y, are Bessel functions of the first and
second kinds respectively, snd the C's are constants.

However, (11) may also be written in the form,

R = ol (xr) + o182 (kr) (12)

#% Formal proceedures prowve: the assumed theta variation.
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where H£1) and Hée) are generally referred to as Hankel
functionsof the first and second kinds respectively, or
as Bessel functions of the third kind. These functions
are particularly convenient when discussing the propagatlon

direction of waves or of energy. The Hankel functions

are generally defined as <2
1
H, = &0+ 0 (13)
and
5 et
B, = dgp - X, (14)

Combining (9), (12),(13), and (14), and definitions for

the velociiy potential we may complete the solution for

the fleld.
¢ = [CsHi(kr) + CuH2(kr) ] exp(kx + 1n@ + ivut) (158)
u' = 0/x

=K[o5Hp(Er) + C4HA(Kr)] exp(Kx+ino+iut) (15b)
V, = op/or

= [CBH; s (Er)K -nH1(Kr)/r] (exp(Kx+1in6+iwt)) (15¢)

+[04 (Kr K - nH2(Kr)/r| (exp(Kx+1in6+iwt))

and
Vg =2 0/08(i/r)

:[c3H:1(Kr) + CAHE(Kr)](in/r)exp(Kx+in6+iwt) (154)
since

a(yy)/ar = (Ky__, - ny,/r)

(1) (2)

##From this point on we shall always denote H and H

bj 2! and HZ,
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where
yn = Jn’ Yn’ H

IB X, BOUNDARY CONDITIONS

We may now determine the specific forms of the
velocity field (15) which are pertinent to the fish
problem.

To allow for exponential growth of amplitudes in x,
we may define a complex wave number K in equations (15)
where |

E = K, + 1K . (16)

K. and Ki are real numbers. The x variation is then of |
the form

exp(Kx) = exp(er)exp(Kixi). (17)

If we let Kr be positive, then waves grow with increasing
amplitude in x.

The type of Hankel functlion g or H2 used to describe
the velocity field or pressure 1s determined by condition
(2e), i.e. by the condition that ererxy, pressure, convective
mess transfer etc. radlate outward along positive r
toward infinity. Reflections backwards in the direction
of decreasing r are not permitted. The Hankel functions
were used originally in order to formulate this condition

most simply. This formulation proceeds by noting that
for large r239'83
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eiutHA(Kr) = COnEt(E/Kr)%e‘Kirei(Krr +wt) (18)
and ' '
eiumﬁi(Kr) = const'(E/Kr)%e+K1Pe‘i(KrP ~wt) (19)

Since Kr is positive, exp(iwt)Hﬁ is the pertinent function
because Krr -wt represents a wave of phase velocity
UVKr moving outward teward infinity. Ki must then be a
negative number®* Thus, in (13)(14) and (15)
CB = O (20)
since H; represents a reflective situation.
We next determine n in (15). Since h(x,t) is not

a function of theta, we note by inspection that the surface
condition (7) will require Ceexp(ine)** in the expression
(15) for V, to be cos1®. Thus since

- Cgexp(in®) = Cercos(ne) + 1quin(n6),

n=<1%,asnd 6, =9, (21)
1

These conclusions,(21), may be reached alternatively by
substituting the complete expression for Vr from (15)

into (7), expanding in sines and cosines and simplifying, %

¥ note that all velocities approach zero and Vy - u as
r #s0 in accordance with condition (2b)!

%% consider Cg to be & complex constant which is part of
03 and 04.

#¥*#There are two interesting ideas related to our study of
boundary conditions which will now be noted. Consider
the case in which h(x,t) and thus the resultant field
vary as exp(iKix) with K, = 0. Then by (19), the
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IB 2. FINAL FORM OF SOLUTION

_ We may now write down the complete solution for
the velocity field and linearized pressure. Combining
(15) with (16),(19),(20), and (21), we have

Vé = EEE.CQK Hg(Kf) - % H?(Kr?}cos@eerei(Kix +“*),
W K ' r

k 1(Ksx + wt
Ve =ZZ cwk(i/Kr)[H?(Kr)]coaee LIRS ) . (22)
w K ' ’ '
u' + u = Vi
= Jye H2(Kr)cosde T¥el(Kix + «t)
Wi 1 :
ik : )
Where

Cx = CuK. (23)

pertinent solution in H~ shows that informatlion concerning
pressures and amplitudes 1s radiated in the r direction with
infinite velocity since w/K_ is infinite. On the other
hand, if there 1s a small chﬁnge in the amplitude of the
field represented by expo(K .x) as x varies, (i.e. K_ # 0)
then at-any x, there will be a finite velocity of Eropa-
gation of a disturbance. This large but finite velocity

is assoclated with diffusion or convection. It may be

of considerable interest when flow field interactions
between two nelghboring fish are analysed since qr/Kr
wlll then be the velocity with which pressure or mass
disturbances (but not energy) will be propagated.

We also note that we have imposed no boundary ccndi-
tions in x on the solution. This condition might be of
some importance in considering finite length fish. Then
if the velocities are to be finite at all r, including
r = 0, i1t can be shown that n must be greater than zero.
However, in this case, the conditlion on radiation toward
infinity 1s not possible to satisfy as far as we know.

Thus we have chosen to represent the sclution of the long
fish, which neglects end conditions in x and instead to

write the answers in terms of Hankel functlion which satisfies
“fhe radlation condition at infinity. This seems to be

the more rigorous and fundamental approach. If the results
of these assumptlons are experimentally verified, one can
only conclude that end effects are not important.
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The summations generallze the problem and are justi-
fied as solutions themselves since they are slimply additive
combinations of solutions to entirely linear equations.
The actual velocity field is simply the real parts of (22).
(22) is representederavhically in Chapter III for very simple
motion, h(x,t). In these motions, w and K have only one
value each, and thus we cﬁll C k’"C"' the field constant.

The field constant 1s calculated in detall in sectionlIla.

IC. BERNOULLI SOLUTION FOR TH& PRESSURE

For momentum calculations of the thrust, terms
such as pdA where dA is an area will be of interest.
The time averaged pressure multiplied by a time invariant,
the area, then will yield non-zeroc answers only if the
second order terms of the pressure are included. It is
of interest then to calculate & general expression for
pressure. Thus, we investigate the time dependent general
Bernoulll equation which 1s valid for non-viscous
irrotational fluids. It is obtained by integrating the
Euler equations of motion, and 1s, for an incompressible

fluid

Dar a
et Vn . (24)

- - - . 2
(Pyoy = B = 20 Ve+ v

ot )
The arbitrary time functlon usually associated with this

1 ps19

equation has been omitted 5 . (24) holds specifically
for the case of no force fields. By using the relatlionships
between velocity potential and velocitles, (15) and the

definition of V., it follows immediately that (24) méy be
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put into the form

iz . v2 5
Pyot/P = %%(ul/k) + - P Vi Vo - (8772 - E”{?)(z

) 5)

It is convenient to break (25) into its first and second
order components. Therefore, let us define Dy 4 28
Ptot = Plinearized * p2nd & Peonst (26)
where |

Piin =3—%_1E (u'/K) + u'Gyg

Popa = S:(V§+ gg* 0 - it
and

Bcon i ?5£u2/2 i Rb{?) ’

The expressions for the velocity (15) and the pressgure

(25) now allow us to calculate the thrust and work.

I. WORK, THRUST _AND _EFFICIENCY

There are two well defined methods of calculating
the thrust and work produced by a fish., The first is a
straight forward momentum calculation for thrust, and,
lateral force times local lateral velocity evaluation for
the work. The second method i1s to write the first law of
thermodynamice for a control volume and to calculate the
gssociated energy integrals. Although this second method,

the energy methog, has been used by several authors,2’10
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the terms of the first law have generally not been written
out or criticized. In particular, the effects of the stream-
wise perturbation, u', have been completely neglected in
the literature. We shall attempt an interpretation of the
first law here only as supplementary information to momen-
tum methods because we feel that the calculation of
the different energies involve somewhat arbitrary assumptions
concerning the control volume which are not rigorously

Justifiable.

IIA. MOMENTUM CALCULATION FOR THE THRUST

We now proceed to calcukte the thrust by control
volume and momentum methods. In IIB, we calculate the
work by employing the pressure field.

Newton's Second Law for a control volume fixed h
1nertiél space may be expressed as follows: (see the

control volume in Diagram 4020 and 21

T = B+ dA (Vi )R - 3h) V-n. avol 28
i%(Apnx +j§6i i o +‘¢%///(ol n_avo (28)

where T is the thrust exerted by the fish on the fluid in
the x direction, and ﬁi is the unit normal vector in that
direction. The integral over the volume averages out to
zero in time for an incompressible fluld. Thus, if da,
(or dAy etc.) 1s now understood as H;-éﬁ, the pressure-

area 1ntegrai may be rewritten from (24) as,
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2, Vq .
ACREET RN S Ve

If we assume a bar type of fish with constant round cross

sections at 2 and 1, then for small motions

j/A,P iy =//A2P‘m2

Furthermore, as we shall be concerned only with the time
averaged thrust, the time average of (20/2t)dA is zero

from (9') since ¢ is seen to be proportional to eiwt.
-?(?¢/®t~)dA has zero value in any case because the integral
of the perturbation velocity times area involves the

2gos®d0. Therefore
v}

ny 4o 1
-ﬁpﬂﬁ ﬁ{f/eﬁ)‘?/r*(ve-r Gt )rdrd(%g

(J)/e/a”r*(( ) r2df o 2;5))rdm(ajf

1
B ut by Green's Theorem

s/2 g{ Jr(28) (2 }4A~f/2f(¢ g@dl)sur (29)

where dl 1s now a line integral about the circumference

evaluation of

of the fish., (29) is generally known to hold for the
reduction of a volume integral to a surface integral.

That (29 ) is correct for the area to line integral reduction,
when 1 and 2 are evaluated at x and at x + dx 1s shown in
Appendix A,

For small motions dl 1s approximately r#d®. The
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subseript s or sur refers to the quantity evaluated at
the surface. Firom expressions forthe real parts of ()

and V,, we have on the time average that

56-pdA = #ffﬁe(CH?/Kr"exp(Kx+1u2t+1n6))o (30)
« Re(C(HZ4H7/kr) exp(Kx+dwt+ind Jre2de

We now proceed to calculate the right hand side of

(28). We note that
veaA = (02 +2u'd + (u')? )aA.

2 and uu' have no consequence for the

Upon integration, u
seme reasons as previously noted for %gﬂ and (DQ/at)dA.
fhe righthand side of (28) therefore reduces to the
real part of
20°%° o
(u') aa ¢ . (31)
Oroﬂ-

) A

For fixed K and w , the time average of (31) becomes

upon substitution from (22)

2 hsee
‘{/ / (Re(CH?cosOe exp(1kyx +iwt)) )érdrdo } (32)
0 ‘¥ |

X

where the bar denotes time averages and where Re denctes
the real part of the expression. When (32) 1s expanded
by breaking the exponential into real and imaginary parts,
the square of the parenthetlcal expression involves terms

o 2
such as cos (Kix+u,t), sin (K1x+ wt) and
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sin(k, x +=ot)cos(k1x +vt). The time average of the
latter term is zero, that of the first two is one-half.
The square of the parenthetical term thus becomes, after
some simplifying

eekr:gosze[(ReC)g + (1mC)®] [(1my)2 + (Reﬂ?)ej

) (33)
egercosze [CEHH12 2[
2
where the vertical lines enclosing C and indicate that
the magnitudes only of these quantlties are considered, and
hence only the magnitude of the product of their magni-

tudes squared. The integral (32) may now be written,
%
C H d
{f_____;rez | Jﬁ<1)rzf2 (34)

where r% is a weak function of x. It can be easily shown

however that since rdr 1s a real quantity,

}(Hf)Qj rdr = J(Hf)zrdr / . - (35

We are thus confronted with the evaluation of the integral

|/ et | .

Since this is not a commonly used integral, it has been
evaluated snalytically in Appendix C where an exact ex-
pression is given for 1ts numerical value. With the

results of Appendix C, (34) becomes

[(; ezxrﬁvrﬁe/ay;[cel{an$<§;%%§§(xr*) _ (ug (k%) )2 (H2(krs) )

(36)

1
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DETERMINATION OF THE FIELD CONSTANT C.
We now proceed to determine C in (36). We call
C the field constant. It 1s determined by application
of the boundary condition (7) for given wand K. To find
actual values for +the thrust eta, we now specialize

our solution for an explicit h(x,t). Let
hiz, ) = Bsin(Kix + wt)eer

where B 18 a real amplitude. Then, equation (7) becomes
with (26)

o X 2 :
Vp, = or coe@[ ée‘{:(ﬂo - H?/Lr'*j)):os(Kix +ut)

-(?ﬁ@(ﬂi - H%/Krfj}in(Kix*ut)

Beercose((wr+ Kia)cos(Kix +wt)
+(K.U)sin(K, x +uvti] (37)
or .
2 .2 2 2 =
ReCRe(Hy= H{/Kr#*) - ImCIm(Ho - H{/Er#*) = (o + Kiu)B

and

-ImGRe(HE - H2/Kr#) - ReCIm(H> - H3/Kr#) = K B

Squaring both sides and adding leads to
B2 ,(w Kiﬁ)z + (Krﬁ)2 /
[TH,ZTEr*) - HY(Kr#)7Ke% )= |

We can now compute the time averaged thrust,T.

(38)

| o]

TIME AVERAGED THRUST
From (28)s (29 ) » (30 ) ’ and (31 )’
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T = fﬁ[(u')e - V& V2 + (u')? ] dA (392)
2
i\ L
- 5’56 (whZas -o3% 35 (02¢/2n L (39%)
o

= 8% e THrer2/h [ (o4, %)% + (K, 8)2](2(1) - (1)) (39¢)
where T(1) and P(1) are given in (41) below: If we evaluate

1 and 2 at x and x+dx a8 previously mentlioned, then

x+dx
exp(2K,x) /x
If we define a dimensiohless thrust per unit length, T#, then

= 2K dxexp(2Kpx).

™ = Texp(-2K.x)/(K_ dxpBu?)

= % [eez(2) )2+ 202 [ (2(1) - 2(1) ) (40)
*
. oHT(2)H2(2) _ H2(2)2 _ H2(2)2
0(1) = g " : | (41a)
| (85(2) - H{(2)/2 )= |
P(1) = Re((u§(2)/2)/(82(2) - H§(2)/2) ) (41b)
and
A = wr*/u (41¢c)
Z = Kp# (414d)
Z{1) = Ko (41e)
2(2) = K,r# (#1¢)

T+ is rederived in Appendix G by integrating pressures over
the surface.

II.B. WORK INPUT RATE

The rate at which work is done by the fish on the

f d is eguivalent to the foreewhlich the fish exerts on
*Ti1j and (1) ete. are conveniently defined in (40 and (41)
to be compatible with FORTRAN statements in Appendix D.



26
the fluid in the direction of lateral motion(® = 0)
multiplied by the local velocity in that direction. The

total work is, on the time average, for small motions

W= %Apcosgsah/bt)dA = f}\(plin-b p2nd+pcon) (Dh/Dt)dA(ag)

where
dA = r#dedx.

The constant part of the pressure, Poon’ will not appear

in the final expression because p dA is invariant in x

con
if r* is a weak function of x. Pong will on the time
average cancel out since it will be multiplied by the local
velocity. (Integration in © or third order consideration
would in any case be sufficient reasons for neglecting

this latter term.) D14, May be calculated from the
Bernoulll equatioﬁ(QT). Breaking P1in into 1ts component

parts, we have

kXl = 2
= = cosle’r Rely iw+uK ,CH cos(Ksx + wt
bl ( syl ond ] con iz ¢ )

K
27)

" (
£ =T 1w+uKJCH$Js1n(K1x+ut) .
K ¥
If we assume as before that

h = Beerxsir(Kix +wt),

or

k
+Be Qﬁcba(Kix + wt)

2h/ot

then,only the cosine part of the first order pressure

will survive the time average of W. From (42) and
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(27) we have then,

7 - 2 20
W o= Re[(iw + uK)CH1Lr* waZeQKTxCOSQ(Kix+wt)dx/ cos=64d0
K (s

The time average 1s taken before the integration 1s per-
formed. It has been assumed in the above that r#* 1ls

a weak function of x. Therefore

T =]Ref (1w + TK)CH?] phyBre irX (43)
=% ¥ 72 2K,
o

If we let W be evaluated at x and x + dx as previously, then
e2er/2Kr/ = o ™Max | (35)
X

Let us define admensionless Work per unit length by

e . W e-Eer
KpaxBary 0
Then, by: employing (43), (44) and (38)?
W# = A+ Z(2))+(2(1)) w(1
%E{_\”[rc + 2(2))+(2( ] (1)
where (45)
W(1) = [(uwz) H2(Z ]
2 HZ(Z _H]zz)

and where & 2, 2(1), and Z(2) are defined by (41 b,c,d,e).

I1IC. EFFICIENCY

Define the efficliency of a work producing fish by

7?’: T4/f = Energy available for thrust (46)
Total Energy Input

¥ W¥ and W(1) are plotted against (X in Chepter III.
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But it can be easily shown that

T#G/MNE = TO/W . (47 )

Therefore®
7] T*/We (48)

IID. ENERGY CONSIDERATIONS

Since the energy approact* has been used by several

2,10 without criticism, we now formulate the

authors
first law of thermodynamics for the centrol volume of
Diagram 4. This contrel volume does not exchange heat

with 1ts surroundings. Furthermore, it encompasses no
energy sources since the area between 1 and 2 of the
control volume is “just deep enough beneath the fish sur-
face so that the fish surface never passes out of the
control volume. Thils depth will then be a maximum at

© =90 or © = 0° and x, The depth will be a little
greater then hft). Yet we consider that the control
volume is not so deep as to contain any "sources" of energy
within the fish as previously mentioned. These consider-
ations are clearly Justified by ocur previous small ampli=-
tude analysis.

VWe proceed by purely mechanlcal considerations. The
energy equation for the rate of doing work is found by
multiplying & generalized form of equation (28) for the
thrust, by a small displacement ﬁg of a fluid @article.

Since there are no energy sources or heat transfer, the

first law of thermodynamlics for the incompressible fluid

¥ 1s plotted against (O in Chapter III.
+ n approach to be considered only as supplementary material
to ITA as previocusly mentioned on pege 20.




of the control volume of Diagram 4 fixed in inertial

space 1s, on the time average,

F*Ds = ﬁE/F =/EFJ°D—§ =ﬁ=ﬁg\}"D-;z ‘?’dAj (49)
4 A
F 5

since the vector force,'ﬁ, which includes both body and
surface: forces 1s independent of DS. Therefore,

expanding (49) into its r, theta and x scaler components,

aw

]
txj
o
0]
+
)
o
w
i |
¥
i
@
o
n
©

(50)

I
;Q\
N<‘¢
(w)
3]

4
+
a5l
n
()
+
<
L2
)
[41]
i
H<§
£
"

F Dsy = 'E".eDs@ = O

S e (51)
E ﬁve V. dA.Dsq = JgAvr V. k. Dsy,

since there are no net forces tending to revolve the
control volume about the x axis or push 1t radially out-
ward on the time average. Therefore, dividing both

sides of (50) by dt, we get on the time average

o 3
at = F,v, = ngvx dAy (52)

since

Dsy/dt = Dsx/Dt = Dx/Dt = V_

by definition for the velocity of a fluld particle.
(52) may be rewritten as

FV = T(a+u') = jﬁ pah (B +u') + ¢ Vi(E + u')aa
% x ; A _ A%

T 3 II . TTE - L (85)
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which gilves exactly the same T as (28).

The terms of (53) may be interpreted as follows:
I is the work consumption of the real fluld dynamical
drag forces - or the work done by the thrust exerted on
the control volume by the fish; III is the rate at which
kinetic energy 1s lost to the wake of the fish from the
control volume; and II 1s the rate at which work is
consumed by fluctuating pressures on the perturbation
velocity - this term 1s some times referred to as flow
work. Term II 1s generally neglected in treatments in-
volving the first law because thls term's significance
really stems from the incluslon in the theory of the

perturbed velocity field. Also, generally a ﬁ of the

in
fish itself is included in the first law statement.
But, as we have Jjust shown, this term must be included

only if the specified control volume includes the fish.

III GRAPHICAL REPRESENTATIONS (Diagrams and Graph Results)
| Diagrams refered to in the text which relate to
derivations are numbered one through four; graphical
results are presented in Diagrams five through nine. All
results depend upon h, where h = Bekfxsin(Kixﬁwt) as usual.
(B,Kpand Ky are real numbers).
The perturbed velocity field‘is plotted in Diagrams

5a and 5b. These results are derived from (22) in dimension-

less form., The actual field would require a large constant
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U to be added in the x directlon to all velocitles. The
area between r = 0 and r = 1 in Diagrams 5a and 5b 1s
congidered to be occupied by the fish.
Thrust in Diagram 6 is determined from expression
(63) of Appendix G; work in Diagram 7 from equation (45);

and efficiency in Diagrams 8 and 9 from expression (48)

and (G3) and (45).
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IV, CONCLUSIONS

Diagrem 5 shows that the magnitude of the velocity
fleld dles off rapldly and exponentially with increasing
distance from the fish. The two dimensional graph, 5a, of
the velocity field "above" the fish, shows that there are
cores of vortlclity of varylng sense distributed along the
length of the center of the fih. Although 1t 1ls necessary
to obtailn one three dimensional picture of the field to
see exactly how the fields of these vortices connect*
it now appears as if the vortex cores form a torous like
corkscrew field. This field may wind within and around the
fish.

We may draw several conclusions from diagrems 6 through
. For the case where c/is1, (¢ is w/K;, the phase velocity)
T# and W# are very small and are negative in the vicinity
of ¢/u = 1. (Also for the case in which c¢/u = 1, the
perturbed velocltiy fleld is negligible because C, the field
constant is practically 0) Also T# and W¥# approach zero
for any frequency as wavenumber, K, increases. Furthermore,
the efficiency defined in (G4) of Appendix G as

E? = ¢ + small correction

7? = ?/(T + losses),
is always greater than one. The reason for this is that T and
W_(the total work put into the fluid) are negative.in the

#This research is presently being carried to completion.
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¢/ 21 region. The losses to the wake ete. however are
always positive. Therefore the total work, T + losses,
is less than T, and the efficlency is correspondingly
greater than one.

For the case of ¢/u>1, efficlency increases linearly
with wavenumber and approaches zero for all frequency as
wavenumber approaches zero. Efficiency also goes to zero
for a2ll wavenumber at large frequency. Furthermore, in the
c/u>l region, W¥* and T# increase almost quadratically with
frequency and decrease extremely rapidly with increasing
wavenumber for any one frequency. These results all show
that swimming can be achleved most efficlently and productively
with regard to thrust at as low a frequency and as high a
wavenumber as possible without encountering the c/u 1
region. From our graphs, we estimate that u/c should be
between .75 and .8 for an efficlency of between 80 and
90 percent. This conclusion correlates well with Bainbridge's
obgervations on actual living fish25 and with Lighthill's2
results.

It 1s also noted that our results for T#, W# and
efficiency are of exactly the same form as those obtalned
by Wu?. Wu analysed the swimming of a waving plate with
oscillating airfoll theory.

We would like to point out that our values for thfust‘and

work are probably accurate in comparison with any finite

fish theory. Although the net momentum exchanged in the x
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direction will be greater for.a finite fish than for an
infinlte fish, the net energy lost to the wake will also
be proporticnately greater and will cancel the
former effect.

The physical plausibllity or our results, and the
correlations between our results and other work previously
mentioned, indicate that an exact study of end condlitions
will not greatly amplify'’ an understanding of the swimming
fish mechanics,##¥

The present theory would however be improved if 1t
is found possible to match the form of the momentum derivation
for thrust with the form of the pressure surface integration.
However, this would be difficult, since the momentum deriva-
tion employs the second orderpart of the pressure
5 B H% and its derivatives squared), whereas the surface
pressure integration uses only the first order part of the

pressure (.e. uu! or H? alone. ).

###% A possible approach to the finite fish case by means of
our theory mlght be to assume that r¥* varies strongly with
x. Then one would assume that r# approaches zero raplidly at
the ends of the fish. In this case the boundary condition
(E1) and the method of calculating thrust of Appendix G
would probably be simplest to employ.



44
BIBLIOGRAPHY

1. Lamb, Horace, derodﬁnamics, Dover Publ., New York,

2.

10.

11.
12,

13.
14.

1932, 6th Edition.

Lighthill, M.J., "Note on the Swimming of Slender

Fish", J. of Fluid Mech., Vol. 9, n305-
317, 1960.

Lighthill, M.J., J. of Royal Aero. Soc., Vol 64,

p.375 = 394, 1960.

Siekman, U.J., "Untersuchungen unter die Bewegung
Schwimmender Tiere," Zet. Ver. Deutcher
Ingenieurs, Vol. 104, No. 10, 1962.

Smith, E.H., and Stone, D.E., "Perfect Fluld Forces
in Fish Propulsion," Proceedings of the
Royal Soc., Series A, Vol. 26, p.316, 1961,

Taylor, G.I., "Analysis of the Swimming of Long and
Narrow Animals", Proceedings of the
Roy. Soc., London, Ser. A, Vol.214,
Pr.158, 1952.

Kelley, H.R., "Fish Propulsion Hydrodynamics," Develop-
ments in Mechanics, Vol. I, Plenum Press,
. EE2, 1961,

Wu,T.Y., "Swimming of a Waving Plate," J. of Fluld
Mech., Vol 10, p. 321, May, 1961.

Cummings, W.E., "Forces and Moments Acting on a
Body Moving in an Arbltrary Potential
Stream," David W. Taylor Model Basin
Report 780, June, 1953.

Bonthron, "A Hydrodynamical Study of Fish Locomotion,"
Fourth: U.S. National Congress on Applied
Mechanics.

GrayJ.,'How Fishes Swim ," Sci. American, Aug. 1957.

GrayJ.,'"The Propulsive Powers of the Dolphin," J. of
Exp. Biol., Cambridge, p.192 - 199,
Aug. 10, 1955,

GrayJ.Jd. of Exp. Blol., Jan., 1933.
Bainbridge,R., "The Speed of Swimming Fish," J. of Exp.

Biol., Vol 35, no. 1, p. 109 = 433,
March, 1958.



15c

16.

17.

18-

19.

20.

21.

22.

23.

24,

25.

45

Rosen, M.W., "Experiments with Swimming Fish and
Dolphins," A.S.M.E. paper, no.6j), WA-203.

Kramer, M.C., "The Dolphin's Secret," J. of Amer,
So0c., of Haval Eng,., Vol. T35, no.l, 1961.

Fraize, W., Doctor's Thesis, M.I.T., June 1964
(Department II, Mechanical Englneering)

Schlichting, .H., Boundry Layer Theory, McGraw-Hill
Book Co., Inc., New York, 1955.

Lin, C.C., The Theogy‘gg Hydrodynamic Stability.
Cambridge Unlversity Press, Cambridge, 1955.

Shapiro, A.H., The Dynamics and Thermodynemlcs of
Compressible Fluid Flow, Vol. I, Ronald
Press, 1953, . I, 395

Shemes, I.H., Mechanics of Flulds, McGraw Hill Book
Ca, New York, 1962, (P. 96).

Hildabrand, F.B., Advanced Calculus for Applications,
Prentice Hall Inc., New Jersey, 1963.

MclLachlan, N.W., Bessel Functions for Engineers,
Clarenden Press, Oxford, second Editbn,l1961,

Goldstein, M., and others, Bessel Functions Program,
NU BES C-3, M.I.T. Share Library #979.

Bainbridge, Richard, "Caudal Fin and Body Movement

in the Propulsion of Some Fish", J.Exp.
B101. ’40’ 23-56, 1963-



46
APPENDIX A. PROOF THAT o

HF G4l ol 84 Gy an

IF EVALUATED AT X AND AT X + &X

The above equivalence was stated in equation (38).
We now show it to be true. In general, Green's Theorém
cannot be applied to the integral on the right hand
side of the equivalence sign, 1f reduction to a.line
integral is desired, unless of course one is dealing
with a two dimensional veloclty potentiallp'ﬁgr the fish
problem, this would mean no dependence of § upon x in
accordance with the assumptions of the slender body theory.

That Green's theorem also applies to (38) under the
special condition of evaluation of the areas at x and
X + dx 1s shown in the following.

We wish to evaluate

j - s 45 a8 esd) 14

but A

H {(%V +(%éjf T%gf i = /((%9‘4 [yt (%é)ﬁc a,

: (22)
f B4+ (34" (34
A | of o
#*
1f 90 1s contimwus by definition. Therefore

W b = ) L 4 (¢
sk ah gt - Bl apab
A3

- % /(65 CH- e

Vol

# This step was brought to my attention by Prof. Edward Kurtz.
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1
But according to Green's Theorem , (A3) is equivalent to

N/ gurface surface
which is exactly the same answer as previously obtained

) ( 2 ) d0 or _;)_/(@ dxr*de (A-'-t)

in (29). Therefore, we can only conclude that the thesis of

Appendixfis correct.

APPENDIX B. ON_THREE DIMENSIONAL VIRTUAL MASS

In this section we would like to comment on the differ-
ences between the two dimensional virtual mass of a slender
body model fish, and that of a non slender body three
dimensional fish., We shall consider the virtual mass of
a2 circular cross sectioned cylinder because this special
shape facllitates integration and makes it easier to see
the difference between the two and three dimensional
concept of virtual mass.

The virtual mass of a circular cross section of
unit length of a long cylinder subject to a two dimensional
flow 1is tf/Tf*z/E per unit length, 1if P is the mass density
of the water, and r#, the radius of the cross sectlon.

On the other hand, the virtual mass of a long circular
cylinder which has "wiggled" sufficiently to produce a
three dimensional (potential) flow is a funection of a
characteristic x dimension parameter. This may be shown as
follows:

The kinetic energy of the volume of fluid (see diagram
44) between x=0 and x=1, 1s (let dx be a unit length),
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K.E. = efﬂé[_%é %3 @jfavu (B1)

3%, i__da(g = ff/(r*de(v )2r#) dx

If r* is not a function of x, then
| K.E. / (/Tr* zp(V, )%)_ (B2)

where V, 1s given by (26). But the inside of (B2) is
Just the two dimensional virtual mass which is not yet
multiplied by its x dimension. 1In two dimensional theory,
as in the slender bedy theory, the bracketed term is not
a function of x. But if we integrate (B2), we must
consider Vr’s x varlation of ekx, where k 1s the complex
wave number. (We note that K may itself be a function of

x.) (B2) becomes, (the equality holds if k is not a function

of x)
K.E. = wfr*zv r (eF 1) /kj). i (B3)
X=o =~_D.-
Thus, we may define a virtual mass for a fish who
wiggles periodically in x from (B3) by
K.E. _[j vV gnre©(e 1) /1y
r=ord
or
May =% rr#c(ef - 1)/k 1 (B4)
p =8= 17

per unit length, which may be greater or less than M2D
which is %Jﬂr*z, depending upon whether cr not
(e® - 1)/x (85)

is greater or less than 1. But (B5 is always larger
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than 1, being close to 1 for small values of k or for

very large wavelengths. Thus, for the same lateral velocity
at e=0, vrat e=0® our fish will put more work into the
fluld, produce a greater thrust and 'lose more energy

to the wake than the slender bodlied fish. But since

thrust and work both vary linearly with virtual massz’?

the efficliency will be unaffected by thls varilation.

We might make orme further comment. For finlte fish
who have the tendency or abllity to vary thelr wave number,
it would seem as 1f the natural motion of fish might
be

instead of

" B} i L5 LB 0

since the former would have a smaller K at the rear and

thus a smaller virtual mass and hence iess kinetic
energy lost to the wake than the latter case b, for the

same lateral veloclty amplitudes.

b
APPENDIX C. INTEGRATION OFv/r (Hg(Kr) )2rdr = I
: a

Consider the equation for Ur,

r2a2uT/are + ralt/ar + (K02 - n2)U* = o . (c1)
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It was noted in (21) that

o = c6Hz‘1(Kr) + CHi(Kr) . (c2)

7
was a solution to (C1). A special solution for Ur
satlsfying (C1) was found to be

Ut = CoHj(kr). (c3)
Now to find I, multiply (C1) by 2au¥/dr, getting

2rla?yt aut o+ 2r(dUr/dr)2 + 2(1@:-2-1)Uraur‘/d_r = 0

dr dar
or

2 2 2 2
a (r2(aut/ar)® + (Kr2 -1)UT") - 2kp0f = o.
ar

Integrating between a and b glves
b b
(reUdUr/dr)‘? + (Kr® -1)U1‘2) / =/ 2K2Ur€r'dr ) (C4)
a
a

But, from (C3), since 22 p.152

o

2
Ut = CoH{(Kr), avt/dr = 07m1(Kr).

Letting 07 = 1 for convenience,

b
PR (k) )2 + (F2o1) (1P(xe) )P = 265/ (s (ke ) rar

a
or

/’b (Hf(Kr) yBogts %r2<(H$/(Kr))2 + (1-1/K2r2)(H12(Kfé§)
A ke

But the recurrence formulas for Bessels function lead
t023 p . 83

g_..rH?(Kr) = -Hf(Kr)/Kr + Hg(Kr) = H?l(Kr), (c6)
therefore (C5) becomes | '
b :
j (85 (kr))%rar = 4r2(-22 (kr)E2(Ke) fkr + (B2(Kr))2
a

b
s (5 (xe))? )/
8.
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2 = L

Since H1’O = J1,o 1Y1’O, a must be # 0, or else I will
be infinite. 1In addition, since for large Kr, (if Kr =

i
get’,

¢
H?(Kr‘) = H$(Jeﬂo) = ofPinY o-i(geosf+ 36 - 3/4) (g,
(:B:I'j;?

where Re(Kr)>0, -m/2 < £<n/2, We see that ¥ must be small
or between -/2 and zero,(that is K;<0, and Kﬁ?o) if
r20, for Hf(Kr) to converge. Then at r =w, or ¢ = ,

rPH Hy/Kr and(Hg(Kr))ErE and (H2(Kr))%r®

all approach zero! Therefore

Lo
I = d/~ (52(kr))°rar = Bru2 (252 (K% JH2 (K ) /(Ko )
r* 2 T ay. (08
~(E5(kr%))2 - ((xr*))2)
where | |
Kr# £ 0,
which 15 the desired evaluation. A similiar type of inte-

gration may be found in Me Lachlan23

, pages 103 to 104

for Bessel's function of the first kind. We believe that
the above integration will hold for Bessel functions of the
first, second or third types, (the latter are Hankel
functions of the first or second kinds) if, appropriate

limits of integration are assumed. This fact does not seem

to be generally known.

APPENDIX D. FORTRAN PROGRAMS FOR CHAPTER III

The program used to generate values for dimensionless

thrust, work and efficiency is presented on page § 7 . Thrust
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is called TSTAR; work, WSTAR; and efficiency EFF. T(1)

Z(1) and w(1) are defined in the text on pages 25, 25
aﬁd727 respectively.

The program used to generate the velocity fileld 1is
presented on page 55.

Both programs calculate the Hankel functions by com-
puting Bessel functlions of the first and second types, and
of the zeroth and first orders with the aid of subroutine
COMBE524, This subroutine was used in its original form24
except for modifications in calling LNGAM (e subroutine of
COMBES) and a complete revisgion of COMLOG ( alsc a subroutine
of COMBES). The revisitn: of COMLOG was suggested by
its author24 in & personal communicaticn. The resulting
accuracy of the new COMBES is estimated at two decimal

places.
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CALCULATES WORK AND THRUST FOR FISH PROBLEM

53

DIMENSION H1(2)sHO(2)sZ(2)sTEMP1(2)sTEMP2(2),TEMP3(2),H0SQ(2)sH1SQ
Ei2) sYO(2) Y1(2)sW(2)sBJRE(100)9sBJIM(100)s THRUST(2)

2YRE(50) sYIM(50) ¢BOTTOM(2)s TOP(2)sWINSID(2)+TEMP4L(2)
3FJO(2)9FJ1(2)9P(2)9C(2) s XFRONT(2) s XWSTAR(2)
READ 6000y FREQM

PRINT6000s FREQM

READ 7000sRZM

PRINT7000+RZM

READ 1000sANGZ

PRINT10009sANGZ

READ 4000y FREQ

FREQ = FREQ + 1le

RZ = Q.

RZ = RZ + <5

2(1)=RZ*COSF (ANGZ)

Z(2)=RZ*SINF(ANGZ)

BETA = Oe
ALPHA = 0O
N =1

CALL COMBES(Z(1)sZ(2)sALPHAsBETAsNsBJIRE »BJIM » YRE
FJO(2)= BJIM(1)

FJO(1)= BJRE(1)
YOt(l) = YRE(1)
Yo(2) = YIM(1)
HO(1) =FJO(1l) + YO(2)
HO(2) =FJ0(2) - YO(1l)

FJ1(1l)= BJRE(2)
FJ1(2)= BJIM(2)
Y1(1l) = YRE(Z2)

Y1(2) = YIM(2)
Hitl) =FJlil) + Yit2)
Hit2) =FJ1t2) = YI{1)

CALL CDIV (TEMPlslylsHlslelseZslsl)
BOTTOM(1l) = HO(1l) - TEMP1l(1)
BOTTOM (2) = HO(2) - TEMP1(2)

WINSID(1) = le+ FREQ*Z(2)/((2(2))%%2 + (Z(1))*%*2)
WINSID(2) = FREQ¥*Z(1)/((Z(2))¥%2 + (Z(1))*%2)
XFRONT(2) = FREQ + Z(2)

XFRONT(1) = Z(1)

CALL CDIV(CslsleXFRONT91s1+BOTTOMs1l,s1)
CALL CMULT(XWSTARs1s1sWINSIDs1lslsCslsl)
CALL CMULT(WslslsXWSTARs1slsHLls1lsl)
TSTAR = =W(1)*¥Z(2)/(Z2(1)%24) + W(2)/2.
WSTAR = W{1)*¥FREQ/(2%2(1))

EFF = TSTAR/{(WSTAR)

PRINT1000s ANGZ

PRINT 4000,4FREQ

PRINT 80004RZ

PRINT 2000sWSTARsTSTAR

PRINT 5000EFF

PRINT3000sW(1)sW(2)

IF{(RZ - RZM) 10920420

IF(FREQ - FREQM) 5911

FORMAT (6H ANGZ=E25.6)

FORMAT(13H WSTARsTSTAR=2E2546)
FORMAT(11H W{(1)sW(2)=2E156)

FORMAT(6H FREQ=EZ2546)

FORMAT(5H EFF=E256)

sYIM )



6000
7000
8000

FORMAT(7H FREQM=EZ2546)
FORMAT(5H RZIM=EZ2546)
FORMAT (4H RZ=E2546)

END(191909090919150s091+0s020s0s0)

54

TOTAL

63

6% -



C CALCULATES VELOCITIES FOR FISH FIELD 55

DIMENSION H1(2+40)s HO(2940)s TEMP1(2+40)sFJO(2+40)sFJL(2940)
2 BOTTOM(2940)s WAVENO(2)s C(2)sVR(2)s VTHETA(2)y UPRIME(2),
BAXP(2)9Z(2)sY0(2940)9sY1(2+40)sBIRE(100)s TEMP(2+40)+sBJIM(100),
4YRE(50)sYIM(50)
CONTINUE

1 READ 1000+ Ks DELTR
PRINT 1000s Ks DELTR
READ 2000+ OMEGAsDARGsDTHETA
PRINT2000s OMEGAsDARGsDTHETA
READ 3000sWAVENO(1)9yWAVENOI(2)
PRINT3000s WAVENO (1) yWAVENO(2)
R= 1.
Z(1) = WAVENO(1)#*R
Z(2) = WAVENO(2)*R

BETA = 0.
ALPHA = 0.
N =1

CALL COMBES({Z(1)9Z2(2)sALPHASBETAsSNsBJRESsBJIMyYRESYIM)
FJO(1lsJ) = BJURE(1)

FJO(2sJ) BJIM(1)

YO(lyJ) = YRE(1)

YO(2sJ) = YIM(1)

HO(leJd ) = FJO(1lsd ) + YO(2sJ )
HO(29J ) = FJO(2sJ ) = YOU(1lsJ )
FJ1(1lsJ) = BJRE(2)

FJ1(2yJ) = BJUIM(2)

Y1(leJ) = YRE(2)
Y1(24J) = YIM(2)
Hlt1le) ) FJdlllsd Y}t YLtZ29d)
H1t2yJd ) FJl(2ed ) = Y1(1lsJd )
C CALCULATE THE CONSTANT PART OF THE FIELD
CALL CDIV(TEMPlslsleHlslslsZs1s1)
BOTTOM(1s1) = HO(1lsl) - TEMP1l(1lsl)
BOTTOM(2s1) = HO(2s1) = TEMP1(2,1)
TEMP1(1) =SQRTF{(OMEGA + WAVENO(2))*%2 + WAVENQO(1)%#%2)
TEMP1(2) = Qs
CALL CDIVI(Cs191sTEMPlslslsBOTTOMel,y1)
C SET UP AN ARRAY AND FILL IT WITH VALUES FOR DIFFERENT RS
R = 1le
DO 200 J=14K
2015 WAVENO(1)#R
Z12) WAVENO(2) *R
CALL COMBES(Z(1)sZ(2)9sALPHASBETAsNsBJREsBJIIMsYREsYIM)
FJO(lsJ) = BJURE(1)
FJO(24J) = BJIM(1)
YO{lsJ) = YRE(1)

1]

]

YO(2sJ) YIM(1)

HO(lyeJ ) = FJO(1lsJ ) + YO(2sJ )
HO(29J ) = FJO(29J ) = YOU(1leJ )
FJ1(1lsJ) = BJRE(2)

FJl1(2,J) = BJIM(2)

Y1l(lsJ) = YRE(2)

Y1(2eJ) = YIM(2)

Hl(led ) = FJLl(1led )+ Y1(2ypJ)
HllZgd ) = FJlt2e¢d ) = Yitlsd )

CALL CDIV(TEMP1lsJslsHleJslsZy1ls1l)
BOTTOM(1sJ) = HO(1lsJ) = TEMP(1ysJ)
BOTTOM(2sJ) = HO(2yJ) =~ TEMP(2,J)



R = R + DELTR 56
200 CONTINUE
C VARY THETA AT FIXED KX (ARG)
THETA = Qe
ARG = Qe
J =1
205 AXP(1) = COSF(ARG)
AXP(2) = SINF(ARG)
CALL CMULT(VRs1s19BOTTOMsJs1l9sAXPoelsl)
CALL CMULT(VTHETAsly1sTEMPlsJslsAXPs1ly1l)
CALL CMULT(UPRIME»191sH1lsJs1lsAXPyl,1l)
CALL CMULT(VR9191sVRs1lslsCslsl)
CALL CMULT(VTHETA»19s1sVTHETAs1s1sCslsl)
CALL CMULT(UPRIME»lsl9sUPRIMEs19s1lsCslyl)
GROWTH = EXPF(ARG*WAVENO(1)/WAVENO(2))
DO 210 M = 142
VR{M) = VR(M)*GROWTH
VTHETA (M) VTHETA(M) *GROWTH
UPRIME (M) UPRIME (M) *GROWTH
210 CONTINUE
220 VR(1) ==VR(2)*¥COSF(THETA)
VTHETA(2) = -VTHETA(1)*#COSF(THETA)
UPRIME(1) =-UPRIME(2)*¥COSF(THETA)
PRINT 4000, J
PRINT 5000, THETA
PRINT 7000+ ARG
PRINT 6000sVR(1)sVTHETA(2),UPRIME(1)
IF ( THETA = 342) 23092404240
230 THETA = THETA + DTHETA
GO TO 220
C NOW VARY AXIAL DISTANCE IN X
240 THETA = 0.
IF(ARG - 643 ) 250492604260
250 ARG = ARG + DARG
GO TO 205
C FINALLY CALL ON ALL THE VALUES KEPT IN THE ARRAY BEFORE 200
260 ARG = Qe
R ]
IF(J=K) 205420541
1000 FORMAT(9H KsDELTR=I343E1546)
2000 FORMAT(19H OMEGA+DARGsDTHETA=3E1546)
3000 FORMAT(21H WAVENO(1)sWAVENO(2)=2E1546)
4000 FORMATI(3H J=13)
5000 FORMAT({7H THETA=Elb5.6)
6000 FORMAT(18H VRsVTHETAyUPRIME=3E1546)
7000 FORMAT(5H ARG=E15e6)
END

106

TOTAL 106*
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APPENDIX E. FISH WITH VARIANT CROSS SECTION

We now consider the case where r¥ 1s a strong function
of x. Let r* not be & function of © or @. Since fL in
Diagram 1 is of the order of Jh/Jx, to a first order approx-
imation r#* may be considered to have derivatives in the

x direction only. Thus in (5),

Ibe

Dr# /Dt Gor¥/)x ,

or if (5) is written in the r direction only, then
(Vr/cose - Gor#*/ox) = (oh/ot + udh/ox) (E1)
, . .

where we have implied that )r*/?k is of the order of
Vr or 2h/ k. (E1) is then the surface condition for the
case in which the cross section of the fish varies with
axial distance.

Take the case of an elongated elliptic fish. Let
the ellipse have its major axis on the x axis, and minor
axis et x = 0, and at @ = 90° say. (See Diagram 3).

Then, if a and b are constants (see Diagram 3),

2

r#(x) = (a° - xe)%xb/a

and (E2)
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APPENDIX F. CONSERVATION OF MOMENTUM

The conservation of momentum condition is not easily
incorporated into a long flsh theory since all end forces
are not determinate. When 1introduced, such a condition may
be incorporated only by assuming that there are no end
forces in the flish body or that the fish i1s finite. But
in thls case, fthe flow fleld used in this paper is not
rigorously applicable, but only an approximation to reality.
However, for completeness we now brliefly discuss Newton's
Law on lateral movements.

Lighth1112 has been, as far as we know, the first and
only author to actually write the equation on the dynamic
force ballance between the fish and the Burrounding fluid.
He d4id this by nelecting end condltions and by assuming the
so called slender-body theory.

The slender-body theory may employ2 a two dimensional
virtual mass. in order to calculate thrust and work. This
is 2 mass of fluld associated with a cylinder having lateral
velocity (or constant axial velocity) only. This mass,
multiplied by the lateral velocity squared, represents,
supposedly, the entire kinetic energy of three-dimensional
fluid movements to a good approximation. This virtual mass
1s a rigid body two-dimenslional concept and is evaluated
from the time Iinvariant geometrical body configuaration
in question. The slender-becdy theory virtual mass concept
then assumes that the flow past a cross section 5(x) of
fish,is equivalent to the lateral flow plus the akial flow

past an infinitely
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long cylinder with constant cross section S(x). This

assumption holds strictly only if r# is not a function of
x or if down-stream conditions have no influence on

the upstream flow patternf This 1s equivalent to saying
not only that the streamwise perturbation is small,

but negligible at all times and at all points. If M(x)

1s the virtual mass of fluld associated with an infinitely
long cylinder of cross section S(x), then Newton's Law may

be written as?

los(x)%h,, - /1
Jro-F (X)'SIzdx -~/£ M(x)ﬁéV:} o plX (F1)

for the entire fish for all situations in which u' and
end conditlons are negligible. Analogously the conserva-
tion of angular momentum may be written as

1 T | 5
/O XfS(x)Q;%de _-A xM(x)g:(bIr)ezodx ) (F2)

If M(x) were a three dimensional virtual mass, one would
have greater faith in (F1 and 2). The most accurate
method of writing the invariance principles however

is to express the lateral force exactly in the O = 0O

directlion as
1 7 _
22h_ S(x dx:=}[1 cos®’ (r¥*)dxde F
/Oyﬂe (x) 0/02;:- ¢ (F3)

where p 1s the linearized pressure and where r# is an

arbitrary functlon of © and x. Also we may write analogously
#and visa versa.
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to (F2)

/jx 2S(:c)dx /f xpcose{ »*%dxde. (F4)

For a given h(x,t), and therefore given wrand k, if (F3)

and (F4) are not satisfied, then rigid body reflex motions
will result. These motions are similiar tc the reflex

of a gun due to the momentum deficiency after a bullet

1s shot. Lighthlll has called these rigid body recoils
applied to a fish "F(t) + xG(t)." These movements when
added to h(x,t) would cause (F3) and(F4) to be satisfied.
Lig,hthill2 however is concerned with reéoils as a correction
to (F1) or (F2). Since he considers only a two dimensional
virtuai mass, such a correction would seem to be unimportant
in comparison with the errors due to neglecting the

velocity field perturbations. A more correct virtual

masgs has been described in Appendix B.

APPENDIX G. THRUST DERIVATION BY SURFACE PRESSURE INTEGRATION

A numerically concise and perhaps more physically
intuitive method of deriving an expression for thrust is
now accomplished by integrating the pressure over the surface.
We wish to find the resultant of the pressure forces
exerted by the fluid on a fish cross section in the x
direction. Consider a cylindrical cross section of length
dx and radius r*., Let this section be displaced a distance,
h,from the x axls in the @ = O direction as usual. Because

of this displacement, the cross section will be inclined by
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an engle €2 (see Diagram 1) in the © = 0, x plane. At

@ = 0 and @ =180° the x component of the pressure will be
a maximum or minlum and equal to psinfl.. At @ = 90° and
270o the pressure is perpeﬁdicular* to the x axis and has
no component in that direction (see Diagram 1). Therefore,
since L.="n/0x( 1 + OhNAx)? )%, to a good approximation

the x component of the pressure is
p(oh/0x)cos0 . (G1)

The force in the x direction exerted by the fluid pressure

on a small area of this cross section 1s correspondingly
p(¥h/ox)cose(r*dxde). (@2)

The total force or the thrust exerted on the elementary
cross section of lengthdxisequivalent to (G2) integrated
over ©. To evaluate (G2) we consider only the linear part
of the pressure (plln =¢ 00/0t +gﬁu' ) since the second
order compcnents (the velocities squared) when multiplied
by 0h/)x would become third order quantities. The second
crder terms would in any case have zero time average or
integrate over theta to zero when multiplied by(2h/2x)cose.

From equation (27) on page 26 we have therefore

2k o :
T = Re{Be Srfiw-rﬁK)GH?(Kr*)ei(Kix*'wt)» . -'-[u§cos(K1x+tit)
K
+TK,sin (K, x+wt) |
if h 1s defined as usual., Or, with the definition of T¥

o_and z on page 25, the tlime averaged value of T leads to

#Actually it is the vector normal to the surface or the pressure
force which 1s perpendicular to the x axis
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T# = -%Re{y%%% CH?(Z{I%{%} *ﬁlm[é%i%}CH?(ZJ (G3)

T# 1s plotted egainst « in Diagrem 6 with Z as a parameter,
The efficiency, T#/W# may now be written in the very
simple form

'@ = K/w+ E/w{lm{%_guCH?/Re[g%E_ﬁﬂH%}] (G4)

77 = phase velocity + small correction.



	A study of fish type motion and propulsion systems /
	TitlePage
	Acknowledgment
	Abstract
	List of Diagrams
	TableOfAbbreviations
	Summary
	TableOfContents
	Introduction
	Chapter I: Fish Motion Coupled with a Periodic Field
	Chapter II: Work, Thrust, and Efficiency
	Chapter III: Diagrams and Graphical Results
	Diagram 1
	Diagram 2
	Diagram 3
	Diagram 4a
	Diagram 4b
	Diagram 5a
	Diagram 5b
	Diagram 6
	Diagram 7
	Diagram 8
	Diagram 9

	Chapter IV: Conclusions
	Bibliography
	Appendices




