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Abstract

We develop a method for the evaluation of extreme event statistics associated with nonlinear dynamical
systems, using a very small number of samples. From an initial dataset of design points, we formulate
a sequential strategy that provides the ‘next-best’ data point (set of parameters) that when evaluated
results in improved estimates of the probability density function (pdf) for a scalar quantity of interest. The
approach utilizes Gaussian process regression to perform Bayesian inference on the parameter-to-observation
map describing the quantity of interest. We then approximate the desired pdf along with uncertainty
bounds utilizing the posterior distribution of the inferred map. The ‘next-best’ design point is sequentially
determined through an optimization procedure that selects the point in parameter space that maximally
reduces uncertainty between the estimated bounds of the pdf prediction. Since the optimization process
utilizes only information from the inferred map it has minimal computational cost. Moreover, the special
form of the criterion emphasizes the tails of the pdf. The method is applied to estimate the extreme event
statistics for a very high-dimensional system with millions degrees of freedom: an offshore platform subjected
to three-dimensional irregular waves. It is demonstrated that the developed approach can accurately
determine the extreme event statistics using orders of magnitude smaller number of samples compared with
traditional approaches.

Keywords Extreme events; Gaussian processes regression; Sequential experimental design.

For many natural and engineering systems, extreme
events, corresponding to large excursions, have sig-
nificant consequences and are important to predict.
Examples include extreme economic events, such as
credit shocks [1], rogue waves in the ocean [2], and ex-
treme climate events [3]. Extreme events ‘live’ in the
tails of the probability distribution function (pdf). For
most real-world problems, the underlying processes
are far too complex to enable estimation of the tails
through direct simulations or repeated experiments.
This is a result of the low probabilities of extreme
events, which necessitates a large number of exper-
iments or ensembles to resolve their statistics. For
random dynamical systems with inherently nonlinear
dynamics (expressed through intermittent events, non-
linear energy transfers, broad energy spectrum, and
large intrinsic dimensionality) we are usually limited

to a few ensemble realizations.
The setup in this article involves a stochastic dy-

namical system that depends on a set of random
parameters with known probability distribution. Be-
cause of the inherent stochastic and transient charac-
ter of extreme responses, it is not sufficient to consider
the dynamical properties of the system independently
from the statistical characteristics of solutions. A
statistical approach to this problem has important
limitations, such as requiring various extrapolation
schemes due to insufficient sample numbers (see ex-
treme value theorems [4]). Another strategy is large
deviations theory [5, 6], a method for the probabilistic
quantification of large fluctuations in systems, which
involves identifying a large deviations principle that
explains the least unlikely rare event. While applied
to many problems, for complex systems estimating the
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rate function can be very costly and the principle does
not characterize the full probability distribution. The
resulting distributions via such approaches cannot al-
ways capture the non-trivial shape of the tail, dictated
by physical laws in addition to statistical character-
istics. On the other hand, in a dynamical systems
approach there are no sufficiently generic methods
to infer statistical information from dynamics. For
example, the Fokker-Planck equation [7] is formulated
for white-noise driven systems, which is nonetheless
challenging to solve in moderate-dimensions [8]. To
this end, it is essential to consider a blended strat-
egy. The utilization of combined dynamic-stochastic
models for the prediction of extreme events have also
been advocated and employed in climate science and
meteorology by others [9, 10, 11]. In [12, 13] a proba-
bilistic decomposition of extreme events was utilized
to efficiently characterize the probability distribution
of complex systems, which considered both the statis-
tical characteristics of trajectories and the mechanism
triggering the instabilities (extreme events). While
effective, the proposed decomposition of intermittent
regimes requires explicit knowledge of the dynamics
triggering the extremes, which may not be easily iden-
tifiable or obtainable for general systems with high
complexity.

Here we formulate a sequential quantification
method for capturing the statistics of an observable
that has the form of a functional of the dynamical sys-
tem state. The dynamical properties of the system are
modeled through a machine learning scheme that in-
fers the quantity of interest (i.e. the observed variable)
by utilizing only a few strategically sampled numerical
simulations or experiments. Combining these poste-
rior predictions from the machine learning model (via
Gaussian process regression) with available statistical
information of the random parameters, we formulate
an optimization problem that provides the ‘next-best’
or most informative experiment that should be evalu-
ated to maximally constrain the pdf prediction. The
optimization process relies exclusively on the inferred
properties of the parameter-to-observation map and
no additional simulations are required in the search for
the ‘next-best’ parameter set. The proposed method
allows us to sequentially select where to sample in
parameter space in order to rapidly capture the pdf
and, in particular, the tails of the distribution of the
observable.

The use of sequential strategies have been consid-
ered in previous works for experimental design selec-
tion without considering the possible existence of an

underlying dynamical model with random parameters
nor the subsequent estimation of the target observ-
ables distribution, e.g. [14]; such an approach, while
useful in a purely black-box setting does not consider
the properties of the random system parameters and
can thus lead to infective and uninformative sampling,
e.g. experimental parameters with zero probability.
The blended approach we propose can therefore more
effectively and efficiently determine the desired distri-
bution of the observable by minimizing the number
of simulations required.

1 Problem setup

We consider a random, nonlinear dynamical system
with state variable u 2 Rn with dynamics

du

dt
= f(t, u, ✓(!)), ! 2 ⌦,

where ⌦ is the sample space in an appropriate probabil-
ity space (we denote the density of the random variable
X by f

X

). The random variable ✓ : ⌦! U ⇢ Rm pa-
rameterizes sources of uncertainty, such as stochastic
forcing terms, initial conditions, or system parameters
with a priori known distribution f

✓

. For fixed ! 2 ⌦,
the response u

✓

is a deterministic function in time.
We are interested in estimating the pdf ˆf of a scalar
observable q 2 R given by

q =

ˆT (✓) , G(u
✓

) + "

where ˆT : Rm � U ! R is the parameter-to-
observation map of the quantity of interest, G is an
arbitrary functional of u

✓

, and " is some (e.g Gaus-
sian) observational or numerical noise term, which we
take as zero, without loss of generality. In our setup
the parameter-to-observation-map ˆT is expensive to
compute (e.g. a large scale numerical simulation or a
costly physical experiment), so we seek to minimize
evaluations of this map. Our objective is to estimate
the statistics (especially non-Gaussian features) of the
observable q described by the map ˆT :

Given an observable q =

ˆT (✓) with unknown distri-
bution ˆf , where the distribution of ✓ is a priori known
f
✓

and a dataset D = {ˆ✓
i

, ˆT (ˆ✓
i

)}n
i

of small size n
(so that the estimated distribution of q is f

n

), find
the next best experimental parameter ✓

n+1

(without
evaluating ˆT ) such that when this new simulation is
evaluated the error between the resulting estimate of
the distribution f

n+1

and ˆf is minimized, with par-
ticular emphasis on minimizing the error in the tail
features of the distribution.

2

D
ow

nloaded from
 http://onepetro.org/snam

eattc/proceedings-pdf/ATTC
17/1-ATTC

17/D
011S005R

002/2566062/snam
e-attc-2017-0049.pdf/1 by M

assachusetts Inst. of Tech. user on 19 April 2024



The search for the next best experiment ✓
n+1

should
not involve direct evaluation of the true map ˆT (expen-
sive) and also cannot involve ˆf since this is unknown.
The exact statistics of q are given by,

ˆf(s) =
dF

✓

ds
=

d

ds

Z

A(s)

f
✓

(✓) d✓,

where A(s) = {✓ 2 U :

ˆT (✓)  s} and F
✓

is the cumu-
lative distribution function of ✓ 2 Rm. Our aim is to
determine the (non-Gaussian) statistics of ˆf through
a minimum number of observations of q. The key idea
behind the method is the observation that we do not
need to densely sample all regions in ✓ space, since not
all regions have significant probability (i.e. f

✓

may be
negligible) or importance. Specifically, we formulate
a sampling strategy that aims to accurately predict
the tail region of the pdf by taking into account both
the magnitude of the map | ˆT | (through a surrogate
approximation) and the value of f

✓

.
In Fig. 1 we illustrate this point graphically: the

proposed sampling will not in general be uniform in
the whole set U ; especially if we emphasize ‘extreme
magnitude events’, where | ˆT | is large. The strategy
that we formulate is based on the construction of
a surrogate for the map ˆT using Gaussian process
regression. Based on this surrogate we then estimate
the pdf for the quantity of interest, as well as the pdf
for its bounds. The selection of the ‘next-best’ point
is based on the minimization of this estimation error,
in the form of an optimization problem.

ℙ(θ) contours

10-4    

10-2

extreme response set

|T(θ)| > ζ  

U� ⊂ U
θ1

θ2

Figure 1 Areas with large probability in ✓ are not
necessarily associated to regions with large T̂ . The
proposed algorithm focuses on sampling regions where
the probability of occurrence is important and also takes
into account the expected magnitude of |T̂ |.

2 Method description

An important ingredient of our algorithm is the con-
struction of a surrogate for the map ˆT . To this end,

we utilize Gaussian process regression (GPR) method.
An overview of GPR is given in appendix A. An impor-
tant property of GPR is that it provides a posterior
distribution and the variance of the posterior can
be used as an error estimate, which will guide the
selection of the next point to sample.

We estimate the parameter-to-observation map,
ˆT (✓) : U ! R, with U 2 Rm, via a GPR scheme from
an observed dataset D

n�1

= {ˆ✓
i

, ˆT (✓
i

)}n�1

i=1

. These
are the points that we have already processed. To
estimate ˆT we place a Gaussian process prior over ˆT
and consider the function values as a realization of
a GP. This gives us the posterior mean T

n�1

(✓) and
variance �

n�1

(✓) (see, e.g. [15]).
We then write the sequence of derived distributions

based on the GPR surrogate T
n�1

as,

f
n�1

(s) =
dF

n�1

ds
=

d

ds

Z

An�1(s)

f
✓

(✓) d✓,

where A
n�1

(s) = {✓ 2 U : T
n�1

(✓)  s}. F
n�1

is the
corresponding cumulative distribution function and
the pdf f

n�1

is our estimation (the indexed n � 1,
denotes the current number of data points).

Next we formulate the optimization problem that
will provide the ‘next-best’ experiment. This will be
based on minimizing the distance between the pdfs
of the upper and lower bounds of the surrogate map.
Specifically, defining as the upper and lower bounds
of the surrogate map through the ↵-scaled standard
deviation of the posterior of the Gaussian process
regressor, we have the following sequence of pdfs that
represent the map bounds:

f±
n�1

(s) =
d

ds

Z

A

±
n�1(s)

f
✓

(✓) d✓, (1)

where A±
n�1

(s) = {✓ 2 U : T
n�1

(✓) ± ↵�
n�1

(✓)  s}.
Throughout this work we employ the 95% interval
bounds, so that the standard deviation is scaled by a
factor ↵ = 1.96, i.e. T

n

± 1.96�
n

. Note again, the sur-
rogate map T

n�1

and the corresponding standard devi-
ation are based on the points D

n�1

, {ˆ✓
i

, ˆT (ˆ✓
i

)}n�1

i

.
Denote the point that is sampled next by ✓⇤. We

seek a criterion for the selection of ✓⇤ that does not
involve the computation of the exact map ˆT at this
stage. The exact map value will be computed after
we have selected the optimal experimental parameter
value ✓⇤. To this end, we assume that the exact
value of the map is given by the best linear unbiased
estimator, using the n � 1 points we have already
analyzed through the GPR surrogate, i.e. ˆT (✓⇤) '
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T
n�1

(✓⇤). In addition, the variance of the updated
map, now consisting of n points (n � 1 real points
and one hypothetical) will vanish at ✓⇤. Note that the
mean value of the map based on the n points (n�1 real
points and one hypothetical) is identical to the map
based on the n� 1 real points. However, what differs,
is the variance which now vanishes at the additional
point ✓⇤. Based on this construction we have the pdfs
for the upper and lower bounds that are based on
the n� 1 real points, ˆ✓

i

, i = 1, . . . , n� 1 and the one
hypothetical point ✓⇤. These are different from the
bounds based on the n� 1 points. We denote these
pdfs as ˜f±

n

(s; ✓⇤), which are computed using Eq. 1
with the additional point (✓⇤, T

n�1

(✓⇤)) appended to
the dataset D

n�1

.
The criterion we utilize to select the ‘next-best’

point is based on the following L
1

distance between
the pdfs ˜f±

n

(s; ✓⇤),

ˆQ
n

(✓⇤) , 1

2

Z
(log

˜f+

n

(s; ✓⇤)� log

˜f�
n

(s; ✓⇤)) ds,

which we write as d
L1(log(

˜f+

n

), log( ˜f�
n

)). The integral
is computed over the intersection of the two domains
that the pdfs ˜f±

n

are defined over. The next sample
point ˆ✓

n

is chosen so that Q
n

is minimized. In sum-
mary, as it is not feasible to compute the criterion
ˆQ
n

based on f±
n

, we instead use ˜f±
n

, whose evalu-
ation only requires the GPR emulator T

n�1

at the
current iteration. This provides a practical and ef-
ficient strategy to perform the optimization for the
next, near-optimal1 design point ˆ✓

n

.
The starting design plan size n

s

, if not a priori
given, should be small and a simple strategy such a
Latin hypercube sampling plan may be utilized if it
can be freely specified. We also recommend to process
a few initial iterations using a d

L2 metric in Q to
quickly capture the main mass of the probability den-
sity function, i.e. low order moments, before utilizing
the proposed metric that emphasizes extreme event
statistics. In addition, it is not necessary to retrain
the GPR hyperparameters after every iteration, which
can remain fixed after being calibrated from a few iter-
ations. Updating the Gaussian process emulator after
the addition of new data points can be done in O(n2

)

if the hyperparameters are fixed, otherwise the GPR
emulator must be performed anew in O(n3

)

2. The
strategy described above is summarized in pseudocode

1
Near optimal in the sense that we are using the best linear

predictor of the map.

2
For low-dimensional ✓, since we presume the dataset size

is small, the cost difference may be negligible.

in appendix B. The dominant cost is the optimization
of the objective Q

n

, the details of which depend upon
the chosen optimizer. In the applications section we
utilize a particle swarm global optimizer.

3 Application: Hydrodynamic forces and
moments on an offshore platform

Here we apply the sampling algorithm to compute
the probability distributions describing the loads on
an offshore platform in irregular seas. The response
of the platform is quantified through direct, three-
dimensional numerical simulations of Navier-Stokes
utilizing the smoothed particle hydrodynamics (SPH)
method [16]. We demonstrate that the developed
framework allows for the accurate quantification of
the extreme event statistics through a small number
of numerical experiments, showing that the proposed
scheme can realistically take into account extreme
events in the design and optimization processes for
systems with this degree of complexity.

Our numerical setup parallels that of a physical
wave tank experiment and consists of a wave maker
on one end and a sloping ‘beach’ on the other end of
the tank to quickly dissipate the energy of incident
waves and avoid wave reflections.

Wind generated ocean waves are empirically de-
scribed by their energy spectrum. Here, we consider
irregular seas with JONSWAP spectral density:

S(f) =
↵g2

(2⇡)4f5

exp

h
� 5

4

�
fp

f

�
2

i
· �exp

⇥
�(f�fp)2

2�2f2
p

⇤
, (2)

where � = 0.07 for k  k
0

and � = 0.09 for k > k
0

and f
p

is the peak frequency. In the original formu-
lation ↵ is related to the fetch and the mean wind
speed, however for offshore applications, especially in
the North Sea, the following modified version is often
adopted [17] ↵ = 5.058H2

s

f4

p

(1 � 0.287 log �). The
random wave field can be described by a superposi-
tion of primary wave groups, each characterized by
a group length scale L and height A. Following [18]
we describe these primary wavegroups by the repre-
sentation u(x) = A sech(x/L), which is an explicit
parameterization in terms of L and A. Thus, L and A
correspond to ✓

1

and ✓
2

in the notation of Eq. 1. The
statistical characteristics of the wave groups associ-
ated with a random wave field (such as the one given
by the JONSWAP spectrum in Eq. 2) can be obtained
by applying the scale-selection algorithm described
in [19]. Specifically, by generating many realizations
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of the spectrum in Eq. 2 we use a group detection
algorithm to identify coherent group structures in the
field along with their lengthscale and amplitude (L
and A). This procedure provides us with the empirical
probability distribution f

✓

of the wave field and thus
a nonlinear parametrization of the randomness in this
system.

Figure 2 Rendered snapshot of the SPH simulation at
t = 103.5 s with ✓1 = 4.63 and ✓2 = 0.662 in
non-dimensional units.

The quantities of interest in this problem are the
forces and moments acting on the platform. The
incident waves primary impact is in the x direction
and as such we consider the pdf of the force in the x
direction F

x

and the moment M
y

about the bottom-
center of the platform:

q
f

= max

t2[0,T ]

|F
x

(t)| and q
m

= max

t2[0,T ]

|M
y

(t)|.

We consider a spectrum with parameters ↵ =

0.060, � = 3.0, H
s

= 13.2m (in the appendix C we
provide an additional case). These parameters are rep-
resentative of North Sea conditions. The chosen peak
wave period is T

p

= 10 s. The forces and moments
are normalized by k3

0

/⇢g and k2
0

/⇢g, respectively. A
snapshot in time from a value at a sampled grid point
of the SPH simulation is shown in Fig. 2.

In Fig. 3 we show the results of the algorithms
progression. We begin by arbitrary selecting 4 ini-
tial sample points from a Latin Hypercube sampling
strategy. Next, we perform 4 iterations using the L

1

distance metric to quickly capture the main mass of
the distribution before focusing on the distribution
away from the mean that utilizes the L

1

metric of the
logarithmic of the pdf. The lightly shaded red region
in the pdf plots is a visualization of the uncertainty
in the pdf, obtained by sampling the GPR prediction
and computing the pdf for 200 realizations and then
computing the upper (lower) locus of the maximum
(minimum) value of the pdf at each value. The figures

demonstrate that with 15 (i.e 14 total sample points)
iterations (together with the 4 samples in the initial
configuration) we are able to approximate the pdf
to good agreement with the ‘exact’ pdf, which was
computed from a densely sampled grid. We note that
the sampling selects points in the upper right half
of the map, where the values of the force becomes
large but which also have non-negligible probability
of occurrence. We emphasize that for this problem
the GPR operates on the logarithm of the observable
because the underlying function is always positive.

4 Conclusions

We developed and analyzed a computational algo-
rithm for the evaluation of extreme event statistics
associated with nonlinear dynamical systems that de-
pend on a set of random parameters. The algorithm,
provides a sequence of points that lead to improved
estimates of the probability distribution for a scalar
quantity of interest. The criterion for the selection
of the next design point emphasizes the tail statis-
tics. We have demonstrated its applicability through
a problem involving a demanding system with millions
degrees of freedom.

Future work will explore extensions of the proposed
method by including multifidelity models. Here, lower
resolution but cheaper to compute models that are
correlated with the high-fidelity model can be uti-
lized to enhance GPR predictions of the parameter-
to-observation-map (see [20]). Incorporating multiple
levels of fidelity and utilizing additional samples from
cheaper models would lead to improved convergence
rates. Such extensions could greatly benefit com-
plex and expensive computer codes such as the three-
dimensional hydrodynamic wave loads application we
considered.
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A Overview of Gaussian process regression

An important ingredient of our algorithm is the con-
struction of a surrogate for the map ˆT . To this end
here we utilize the Gaussian Process Regression (GPR)
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Figure 3 Progression
for the force variable.
Bottom row show‘s the
map T (✓). Green points
denote the initial
configuration (LH
sampling), purple points
are from the iterative
algorithm, and the red
point represents the next
predicted sample point.
Dashed lines denote one
standard deviation.

method. A feature of critical importance for GPR is
that it provides a posterior distribution and the vari-
ance of the posterior can be used as an error estimate,
which can in turn be used to guide optimization and
explore parameter space. Here, we briefly provide an
overview of GPR.

We estimate the parameter-to-observation map,
ˆT (✓) : U ! R, with U 2 Rm, via a GPR scheme
from an observed dataset D

n

= {ˆ✓
i

, ˆT (✓
i

)}n
i=1

, using
n design points. These are the points that we have
already sampled. Specifically, to estimate ˆT we place
a Gaussian process prior over ˆT and consider the
function values as a realization of the GP. In particu-
lar, with ⇥ = {ˆ✓

1

, ˆ✓
2

, . . . , ˆ✓
n

}, we have the following
posterior mean T

n

(✓) and covariance k
n

(✓, ✓0) (see,
e.g. [15]):

T
n

(✓) = T (✓) + k
0

(✓,⇥)

Tk
0

(⇥,⇥)

�1

(

ˆT (⇥)� T (⇥))

k
n

(✓, ✓0) = k
0

(✓, ✓0)� k
0

(✓,⇥)

Tk
0

(⇥,⇥)

�1k
0

(⇥, ✓0)

where,

• T (✓) is an arbitrary regression mean function,
often chosen to be a constant or zero,

• k
0

(✓, ✓0) = �2

exp

�� |✓�✓

0|
2�

�

is the regression covariance function with � and
� being positive parameters,

• k
0

(⇥,⇥) 2 Rn⇥n is the covariance matrix, with
the ijth entry given by k

0

(

ˆ✓
i

, ˆ✓
j

), and k
0

(✓,⇥),
T (⇥), ˆT (⇥) are n-dimensional vectors with the
ith entries given by k

0

(✓, ˆ✓
i

), T (ˆ✓
i

), ˆT (ˆ✓
i

), respec-
tively, and

• �2

n

(✓) = k
n

(✓, ✓) denotes the local variance.

There are several important properties to emphasize
in the GPR scheme [21]. Firstly, for any choice of
the regression function the GPR mean estimate is
an interpolant of the exact map at the design points,
T
n

(⇥) =

ˆT (⇥). Secondly, for T (✓) = 0 the GPR
scheme is the best linear estimator in the mean square
error sense [22].

Since k
0

(⇥,⇥) is positive definite

�
n

(✓)  �
n�1

(✓)  . . .  �
0

(✓), ✓ 2 U,

or in other words, additional data points lead to non-
increasing local variance. In addition, at each of
the design points the estimated variance vanishes,
�
n

(

ˆ✓
i

) = 0, for i = 1, . . . , n.

B Algorithm pseudocode

Below we summarize the main loop of the sequential
algorithm in pseudocode:

input initial design plan D
n

= {ˆ✓
i

, ˆT (ˆ✓
i

)}n
i=1

of
size n = n

s

repeat
T
i

,�
i

 predict Gaussian process mean and
variance

f
i

, f+

i

, f�
i

 integration using T
i

, �
i

, and f
✓

ˆ✓⇤  argmin

✓

Q
n

(✓;T
i

,D
i

)

Append (✓⇤, ˆT (✓⇤)) to dataset D
i

until desired error level d(f+

i

, f�
i

) < ✏
return f

i

This procedure provides us an iterative scheme that
leads to a series of pdfs of the observable f

i

which
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converges to the true pdf under appropriate condi-
tions. The computation of the distance measure Q

n

is summarized below:
function Q(✓⇤; T

n

, D
n

)
Append (✓⇤, T

n

(✓⇤)) to dataset D
n

�̃
n+1

 predict Gaussian process variance
˜f+

n+1

, f�
n+1

 integration using T
n

, �̃
n+1

, and
f
✓

return d
L1(log(

˜f+

n

), log( ˜f�
n

))

end function

C Hydrodynamic forces and moments on an
offshore platform

C.1 Numerical experiments

The numerical simulations are performed using the
open-source code DualSPHysics [16], which utilizes
the smoothed particle hydrodynamics (SPH) frame-
work, a meshless Lagrangian method. DualSPHysics
has been validated on numerous test cases for off-
shore engineering applications, including forces on
structures and also wave propagation, see e.g. [24].

A sketch of the numerical domain is provided in
Fig. 4. We are interested in analyzing the forces and
moments on offshore structures in the deep ocean,
where the dispersion relation is given by !2

0

= gk
0

. We consider waves with peak period 10 s so that
the characteristic wavelength is �

0

=

2⇡

k0
= 156m.

In addition, the depth of the wave tank is selected
so that tanh(k

0

h) = 0.99, thus the water depth is
h = 62m. The beach is setup at a 17.5� angle and
the length of the horizontal tank dimension, that is
excluding the sloping beach, is 100m. The structure
we consider is an offshore gravity platform (Fig. 4,
right) and the dimensions of the model are based on
prototypical values. In particular, the base width of
the platform is 45m with height 25m, three columns
with base diameter 10m extend from the bottom
platform and narrow to a 4m width at height 42.5m.
To generate waves, we implemented a hinged-type
wave maker utilizing the corresponding Biésel transfer
function [25] to relate the wave height to the stroke of
the paddle. For the flap-type wave maker the utilized
Biésel transfer function is given by

H

S
0

=

2 sinh(kh)(1� cosh(kh) + kh sinh(kh)

kh(sinh(kh) cosh(kh) + kh)
,

where S
0

is the stroke at the free surface, H is the
wave height in the far-field, k is the wavenumber, and
h is the water depth.
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