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Model-based convolutional neural network approach to
underwater source-range estimation

R. Chena) and H. Schmidt
Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

ABSTRACT:
This paper is part of a special issue on machine learning in acoustics. A model-based convolutional neural network

(CNN) approach is presented to test the viability of this method as an alternative to conventional matched-field process-

ing (MFP) for underwater source-range estimation. The networks are trained with simulated data generated under a par-

ticular model of the environment. When tested with data simulated in environments that deviate slightly from the training

environment, this approach shows improved prediction accuracy and lower mean-absolute-error (MAE) compared to

MFP. The performance of this model-based approach also transfers to real data, as demonstrated separately with field

data collected in the Beaufort Sea and off the coast of Southern California. For the former, the CNN predictions are con-

sistent with expected source range while for the latter, the CNN estimates have lower MAE compared to MFP.

Examination of the trained CNNs’ intermediate outputs suggests that the approach is more constrained than MFP from

outputting very inaccurate predictions when there is a slight environmental mismatch. This improvement appears to be at

the expense of decreased certainty in the correct source range prediction when the environment is precisely modeled.
VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0003329
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I. INTRODUCTION

Acoustic source localization is pertinent to many fields

such as ship tracking, marine mammal monitoring, and

underwater vehicle operations. Approaches to this task can

be broadly divided into two categories: model-based and

data-driven. Model-based methods largely make use of

matched-field processing (MFP) and its variants,1–13 which

employ acoustical modeling to simulate the expected propa-

gation environment. Consequently, the performance of such

methods can be sensitive to model mismatch. Alternatively,

growth in computational and data management capabilities

have promoted interest in data-driven approaches; particu-

larly, machine learning (ML) methods that learn propagation

features directly from collected data without the need for

any environmental modeling. Studies have demonstrated the

capability of data-driven ML methods to perform on par or

better than MFP when given adequate training data for

source localization under a variety of environments.14–17

However, drawbacks exist as well; data-driven techniques

are often limited by the impracticality of collecting enough

acoustic data over a sampled space of source locations in

order to build their required training dataset, making them

potentially costly to implement due to increased ship time

and experiment logistics. Taking advantage of the perfor-

mance of ML methods and the ease of the model-based

approach to simulate training data, other works have exam-

ined model-based ML as another alternative.18–23 This

mixed approach shows promise as the ML methods

demonstrate comparable or improved performance to con-

ventional methods. Thus, the model-based ML approach

may offer a good compromise between performance and

ease of data generation. However, some research questions

still being investigated regarding this approach include:

(1) How does the performance of model-based ML methods

compare to MFP when tested on simulated environ-

ments outside the bounds of the originally modeled

parameters? Do they suffer the same environmental

robustness issue as MFP?

(2) Does the performance of model-based ML methods

transfer to real data collected in the field? How does

their performance compare to MFP in this case?

(3) If model-based ML methods show improvement over

MFP for questions 1 and 2, how may they be achieving

their better performance?

This paper takes an initial step to address these ques-

tions. We propose a model-based convolutional neural net-

work (CNN) approach to source-range estimation and test

its performance against MFP in two separate environments

with different types of mismatch. In Sec. II, the two propa-

gation environments are introduced. The first is an Arctic

case modeled after the Beaufort Sea in which robustness to

the water column sound speed profile (SSP) is tested. The

second is a shallow waveguide modeled after a region off

the coast of Point Loma, CA, in which robustness to sea bot-

tom depth is examined. These separate test cases are chosen

because of the availability of field data collected there dur-

ing past experiments, which are used to verify the accuracy

and utility of our CNN approach. We also describe oura)Electronic mail: aruic@mit.edu, ORCID: 0000-0001-7790-2553.
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methods for generating training and testing datasets in simu-

lation in this section. In Sec. III, we provide an overview of

our proposed CNN architecture and training process. We

also show performance comparisons between CNN and

MFP on simulated data. For both environments, the per-

formances of the model-based CNN and MFP on real data

collected in the regions are compared in Sec. IV to see if

they agree with results from the simulated data tests. Then,

in Sec. V, we further investigate how our CNN approach

may be achieving its performance by taking a closer look at

the networks’ intermediate outputs.

II. PROPAGATION ENVIRONMENTS

A. Beaufort Sea

The first propagation environment we present in this

study is based off of the Beaufort Sea region of the Arctic

Ocean during the U.S. Navy’s 2016 ICE Exercise

(ICEX16). Specifically, the model consists of a 1 m surface

ice layer, a 3000 m water column, and a solid bottom half-

space [Fig. 1(a)]. The parameters for these layers are sum-

marized in Table I. All environmental simulations in this

study are done with OASES.24

The SSP simulated in the water column is measured

during ICEX16 [Fig. 1(b), solid-blue] and contains a local

maximum at �70 m depth caused by the Beaufort Lens

(BL)—a layer of warm Pacific water neutrally buoyant at

that depth.25 This feature creates a double duct propagation

environment and its strength, as defined by the difference

between the local SSP maximum and the local minimum

below, is a dominant factor affecting underwater acoustics

in the region.26–29 Furthermore, the Beaufort Sea SSP is

continuously varying, with most of the variability focused

near the local SSP maximum.28 As a result, any viable

model-based ML approach to source-range estimation in

this region must show robustness to some SSP mismatch.

With this in mind, we generate a training dataset for our

CNN approach using the originally measured SSP during

ICEX16. We then generate several testing datasets with

deviations to the original SSP BL strength [Fig. 1(b), inset]

to measure our method’s robustness to SSP mismatch. To

generate the training dataset, an 850 Hz monopole source is

placed 0.26 m below the ice cover and moved from 3 to

50 km from a recording vertical line array (VLA) at 10 m

increments. A discrete, near-surface source is deployed

because our goal is to use our approach to estimate the range

of ice cover generated ambient noise, which has been shown

Fig. 1. (Color online) (a) Simulation setup for generating training and testing datasets in the Beaufort Sea environment. (b) Original, measured ICEX16 SSP

used to generate training dataset (solid line); SSPs with deviations to the BL strength used to generate testing datasets (dashed and dotted lines).

TABLE I. Parameters for simulated ICEX16 and SWellEx-96 environments.

ICEX16 SWellEx-96

Ice Layer Cp ¼ 3600 m/s, Cs ¼ 1800 m/s, N/A

q ¼ 0:9 g=cm3, thickness¼ 1 m,

Root-mean-square roughness¼ 0.2 m

Roughness correlation length¼ 20 m

Water Column Thickness¼ 3000 m Thickness ¼ 213:5� 219:5 m

ICEX16 SSP with varying BL strength SWellEx-96 SSP

Bottom Layer 1 Cp ¼ 2200 m/s, Cs ¼ 1500 m/s, Ctop ¼ 1572.3 m/s, Cbot ¼ 1593 m/s

q ¼ 2:9 g=cm3, halfspace q ¼ 1:76 g=cm3, thickness¼ 23.5 m

Bottom Layer 2 N/A Ctop ¼ 1881 m/s, Cbot ¼ 3245 m/s

q ¼ 2:06 g=cm3, thickness¼ 800 m

Bottom Layer 3 N/A Cp ¼ 5200 m/s, q ¼ 2:66 g=cm3

Halfspace
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to be well modeled by a discrete source in the recent Arctic

environment with younger and thinner ice cover.29 The

source frequency and range interval are chosen based on

those of real noise data collected during ICEX16. The simu-

lated VLA consists of 32 elements with nested spacing

(1.5 m for the outer ten elements, 0.75 m for the inner 22 ele-

ments). The normalized sample covariance matrix (SCM) of

the acoustics signal recorded on the array at each source

range increment is measured and makes up the training data-

set. These matrices are of size 32� 32� 2, with the third

dimension containing the real and imaginary parts of the

SCM. Normalization of the matrices14,15 is performed to

reduce the effect of acoustic amplitude so that our approach

may be used regardless of the simulated source amplitude.

The testing datasets are generated in a similar manner, but

each with a different amount of BL strength deviation to the

original SSP. One thousand SCM samples are generated for

each testing dataset by placing the source at random ranges

within the training interval of 3–50 km.

B. Point Loma, CA

A second propagation environment included in this

study is modeled after the site of the SWellEx-96 experi-

ment30 off the coast of Point Loma, CA. The environment

consists of a 216.5 m water column atop of three solid bot-

tom layers with increasing density [Fig. 2(a), Table I]. The

SSP used in simulated environment is the average of profiles

collected during the experiment. The simulated array

matches the VLA deployed during SWellEx-96 and contains

21 elements between 94.125 and 212.25 m depth [Fig. 2(b)].

At this site, the main environmental variability results

from the depth of the ocean bottom as the bathymetry

around the VLA varies from �150 to 270 m. Thus, we use

this environment to test the robustness of our CNN approach

to ocean bottom depth mismatch. To generate the training

dataset, the ocean bottom is set at 216.5 m depth. A 109 Hz

monopole source is placed 9 m below the ocean surface and

moved from 0 to 10 km away from the VLA at 10 m incre-

ments [Fig. 2(a)]. The SCM recorded on the VLA at each

source location, size 21� 21� 2 in this case, makes up the

dataset. As with the ICEX16 environment, the source fre-

quency, depth, and range interval are chosen based on the

experimental setup and real data collected during the field

experiment. Four testing datasets are generated with ocean

bottom depth set to 213.5, 215.5, 217.5, and 219.5 m,

respectively. For each, the source is placed at 500 random

ranges within the training interval and the SCM recorded on

the VLA is simulated.

III. MFP AND CNN APPROACHES

A. MFP approach

With MFP, localization prediction is made by compar-

ing the input data SCM against a template of replica vectors

modeled with the source at various locations, a. At a partic-

ular frequency, the optimal estimate is calculated as

argmax
a

BðaÞ ¼ wHðaÞPwðaÞ
� �

; (1)

where P is the SCM of the input data and wðaÞ is the replica

vector for location a. The MFP replica vector templates are

generated for the two environments presented in Sec. II in

the same manner the training SCM datasets are generated

for the CNN approach. In other words, the information con-

tent of the MFP template vectors is equivalent to the training

datasets for the CNN approach.

B. CNN approach

Source range estimation is performed using a CNN

approach in which spatial filters extract features from input

SCMs and learn a relationship between those features and

their corresponding labeled source ranges. In this sense, this

approach models a mapping between the training data and

the source range outputs and uses that model to make

Fig. 2. (Color online) (a) Simulation setup for generating training and testing datasets in the SWellEx-96 environment. To generate the training dataset,

ocean bottom depth is set at 216.5 m. To generate the testing datasets, ocean bottom depth is varied between 213.5 and 219.5 m at 2 m increments. (b) SSP

used to generate training and testing datasets and VLA element locations.
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predictions for new, testing data. This differs from MFP,

where testing data is directly compared with the training

data (replica vectors). The complexity of the CNN model is

governed by its number of parameters, decided, in part, by

the number of layers and filters. The larger the number of

parameters, the more exact the mapping between the train-

ing data and the source-range outputs may be. However, an

exact mapping to the outputs for the training dataset does

not guarantee good performance on unseen testing data.

Thus, we must regularize the CNN approach so that over-

fitting on the training data does not occur and the network

generalizes well to new data. We decided to use a CNN

approach because the inputs to our problem are matrices and

CNNs specialize in ML problems where the input is not a

one-dimensional (1-D) vector, such as image classification.

A detailed overview of CNNs is presented in a review by

Bianco et al.31 Two separate CNNs are trained for each of

the two environments presented in this study. One takes a

classification approach (CNN-c), while the other takes a

regression approach (CNN-r). For the ICEX16 environment,

the categorical training labels for CNN-c are created by

rounding the source ranges in the training interval to the

nearest 0.5 km, thus creating 95 classes between 3 and

50 km. For the SWellEx-96 environment, source ranges are

rounded to the nearest 0.1 km due to the smaller training

interval to create 101 classes between 0 and 10 km. For both

environments, the training labels for CNN-r are kept as the

training increment values, as the regression approach out-

puts predictions in continuous space.

C. Network architecture and training

The CNN network architectures designed for both envi-

ronments and both the classification and regression

approaches are largely similar. All networks contain three

convolutional layers with 16, 128, and 256 scaled exponen-

tial linear unit (SELU) activated filters in each layer, respec-

tively (a description of all activation functions used in this

study can be found in the Appendix). These are followed by

a fully connected layer of 256 sigmoid activated nodes, and

then an output layer. The number of layers and number of

filters in each layer are selected after some initial testing on

the performance of various CNN architectures with more

and less layers and filters. For CNN-c, the activation in the

output layer is the softmax function, while for CNN-r, the

activation in the output layer is the linear function. Batch

normalization regularization is performed after each convo-

lutional layer while dropout regularization is performed

after each convolutional (drop rate ¼ 0.5) and fully con-

nected layer (drop rate ¼ 0.25). These regularization layers

help to prevent the CNNs from over-fitting during train-

ing.32,33 The major difference between the CNN architec-

tures of the two environments is the size of the filters used

in the convolutional layers. For ICEX16, the sizes are 3� 3,

5� 5, and 7� 7, respectively, for the three layers. All filters

in each layer are applied with a stride size of 2 to condense

information from one layer to the next. For the SWellEx-96

environment, the same stride size of 2 is applied in each

layer. However, because of the smaller SCM input dimen-

sions compared to the ICEX16 case, the filter sizes for the

layers are set to 3� 3, 5� 5, and 5� 5, respectively, for the

three convolutional layers. We decided to increase filter size

with network depth because our initial testing showed that

smaller filters in the first layer and larger filters in the deeper

layers performed better than the reverse. We suspect that

this is because the smaller filters capture more detail in the

SCMs that gets passed on to the later layers while the larger

filters in the later layers help more with condensing informa-

tion to pass onto the fully connected layer. A schematic of

the CNN architectures is shown in Fig. 3 (right).

The CNNs are implemented and trained using the Keras

and Tensorflow libraries.34 The training dataset is randomly

segmented into an 80/20 split, where 80% of the data is used

for training and 20% is used for validation. The categorical

cross-entropy cost function is used for classification and

mean-squared-error (MSE) is used for regression. The

Adam optimizer35 is used with a batch size of 128 and an

initial learning rate of c ¼ 0.0001. c subsequently decreases

by 90% if the validation cost does not decrease for 75

epochs. Training stops if the validation cost does not

decrease for 125 epochs to help prevent over-training.

To further optimize the CNNs’ architectures, network

pruning36 is done to strip away under-activated filters as

determined by the filters’ L1 norms. This process is as

follows:

(1) The original, full network is trained until stoppage.

(2) The L1 norms of the filter weights in each convolutional

layer of the trained network are plotted (example shown

in Fig. 3, left); all filters whose L1 norm is much smaller

compared to the largest L1 norm value are deleted from

the network.

(3) Training is continued on the updated, smaller network to

re-adjust the weights of the kept filters, until stoppage

again. The initial training rate is set as the same as when

training last stopped.

(4) Steps 2 and 3 are repeated until the validation accuracy

of the reduced network decreases from that of the origi-

nal, full size network.

These pruning steps reduce the trained networks’ com-

plexity by decreasing their number of parameters, making

the final models more lightweight. For both environments,

the CNN-c networks are reduced much more than the CNN-

r networks. This may be attributed to regression being a

more difficult task than classification. For the ICEX16 envi-

ronment, the final number of filters in each convolutional

layer of the CNN-c model is 12, 24, and 46, respectively,

and that for the CNN-r model is 12, 108, and 206, respec-

tively. For the SWellEx-96 environment, the final number of

filters in each convolutional layer of the CNN-c model is 6,

38, and 40, respectively, and that for the CNN-r model

remained the same as the full network, as any reduction

caused a decrease in performance. The details of the pruned

networks are shown in Table II.
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D. Performance on simulated testing data

1. Beaufort Sea environment

As noted previously, the training dataset for the Beaufort

Sea environment is generated by simulating a source at vari-

ous ranges under the measured SSP during ICEX16, as shown

in Fig. 1(b). To test the robustness of our CNN approaches

compared to conventional MFP, we generate testing data-

sets—each with 1000 test samples with the surface source

placed at a random range within the training interval—with

varying deviation to the original ICEX16 SSP.

Two performance metrics are compared in this section.

One is the percentage of testing predictions that are within

1 km of the actual source range. This metric reflects how

accurate each individual prediction is to the corresponding

correct value. The other metric is MAE and reflects the aver-

aged error over all predictions for a testing dataset. This

metric is formally defined as

MAE ¼ 1

N

XN

i

jPrediction i½ � � Actual i½ �j: (2)

The performance of our trained CNNs on the testing

datasets is compared to MFP in Figs. 4 and 5. As expected, as

the magnitude of BL strength deviation (SSP mismatch)

increases in the generation of the testing datasets, the perfor-

mance of all three methods decreases by both metrics.

However, the CNN-c and CNN-r approaches show improved

performance over MFP with SSP mismatch while performing

similarly to MFP with no mismatch (Fig. 5). The panels

within Fig. 4 further reveal that there is high variability in the

MFP predictions. This means that close-to-correct predictions

can often be extremely accurate while for incorrect predic-

tions, the margin of the mistakes can be quite large. In con-

trast, the CNN methods, particularly CNN-r, show lower

variability in their predictions. As a result, although the accu-

racy of any individual CNN prediction may not be as high as

the corresponding MFP prediction, the overall predictions are

more consistent with ground truth. Thus, the CNN approaches

appear to gain robustness to environmental mismatch over

MFP by trading off individual data-point prediction accuracy

for overall prediction consistency. Furthermore, the reason

that CNN-r is the more prominent example of this trade-off

over CNN-c is likely because of the difference in the cost

function used during their training. For CNN-r, training

focuses on minimizing the MSE loss, which inherently leads

to more consistent predictions and lower overall error than

predictions derived from categorical association, as is the

case with CNN-c. Further discussion on how the CNN

approaches achieve their robustness to environmental mis-

match is presented in Sec. V.

Fig. 3. (Color online) (Right) Architecture of CNNs trained in this study. CNN-r and CNN-c differ only in the output layer. The number of filters in each

convolutional layer depends on the pruning process. The size of convolutional filters depends on the simulated environment. (Left) L1 norms of CNN-c and

CNN-r convolutional layer filters for the ICEX16 environment. Filters to the left of the vertical line on each plot are deleted in the final reduced networks

after successive rounds of pruning.

TABLE II. CNN architectures after iterative pruning.

ICEX16 ICEX16 SWellEx-96 SWellEx-96

CNN Type CNN-c CNN-r CNN-c CNN-r

# of Conv. Filters 12; 24; 46 12; 108; 206 6; 38; 40 16; 128; 256

# of Parameters 275 009 1 968 687 162 433 1 463 025
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2. SWellEx-96 environment

With the SWellEx-96 environment, our CNN

approaches’ robustness to bottom depth mismatch is com-

pared with conventional MFP. The environment with a bot-

tom depth of 216.5 m is used to generate the training dataset

for the CNN methods and the replica vector template for

MFP. The testing datasets are created with bottom depths of

213.5, 215.5, 216.5, 217.5, and 219.5 m. The performance

comparison, based on the two metrics introduced previously,

is shown in Figs. 6 and 7. These plots show a similar trend in

the methods’ performance compared to the ICEX16 environ-

ment. However, in this case, the CNN-c approach shows a

clear improvement in performance compared to the other two

methods by both metrics for all bottom depths. Comparing

CNN-r to MFP, the results again demonstrate that, similar to

the ICEX16 simulated tests, CNN-r trades off accuracy of

individual predictions for lower overall error. However, for

this environment, this trade-off may be overdone. While

the MAE of CNN-r is lower than MFP for all bottom depths,

Fig. 6 shows that CNN-r typically has a larger error margin

than MFP when comparing individual predictions, especially

as the bottom depth mismatch increases from 216.5 m. Thus,

for this environment, the CNN-r approach may not be a more

robust alternative to MFP while CNN-c shows promise.

IV. PERFORMANCE ON REAL DATA

Field experiment data collected from the two environ-

ments presented in this study are used to validate whether

Fig. 4. (Color online) Diagonal solid line represents ground truth. Dots show prediction values. Quivers represent the difference between each prediction

and the corresponding ground truth value. (a) Performance of MFP, CNN-c, and CNN-r on testing data generated using original ICEX16 SSP. (b)–(d)

Performance of each approach on testing data generated with deviations to the original ICEX16 SSP.
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the performance improvements of our CNN approaches

over MFP on simulated data transfer to real data. As

noted, the goal of this section is to examine whether our

model-based CNN approaches can still be a more robust

alternative to conventional MFP when used on real data.

Accordingly, the CNNs used to process the real data are

exactly the ones trained with simulated data, as presented

in Sec. III.

A. ICEX16

As described in Sec. II, ICEX16 was a U.S. Navy exer-

cise and research expedition conducted in the Beaufort Sea

in March, 2016. As part of this effort, �8 h of ambient noise

data were collected on March 13th (UTC) to record the

under-ice soundscape using a 32 element VLA with a sam-

pling frequency of 12 000 Hz. The simulated environment

used to generate the CNN training datasets is modeled after

Fig. 4. (Color online) (Continued).
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this experimental setup [Fig. 1(a)]. To prepare the testing

dataset, the collected data is segmented into ten 240-point

Hanning windows with 50% overlap. The SCM averaged

over 800–900 Hz is then calculated for each data snapshot

window using the chirp-z transform with a fast Fourier

transform (FFT) size of 512. Following this, the SCMs over

every 32 snapshot window are averaged so that the resultant

covariance matrices for MFP are not singular. Although not

shown in the results, longer snapshot averages are tried as

well and the prediction outputs for all approaches are consis-

tent across all averaging lengths tested. The ICEX16 dataset

was collected overnight under quiet camp noise conditions

so the major contributor of ambient noise is from the ice

cover. A previous analysis29 of this data suggest that ambi-

ent noise recorded during this time is predominantly and

consistently generated by a surface ice ridge �27–34 km

from the VLA. Ice temperature satellite imagery from the

National Snow and Ice Data Center37 captured on the day of

data recording further confirms this result. As shown in Fig.

8(a), an ice pressure ridge was present to the northeast of the

ICEX16 camp site (VLA location) with the most prominent

portion of the ridge �34 km away.

Figure 8(b) presents the source range estimations of

MFP, CNN-c, and CNN-r on the ICEX16 ambient noise test

dataset. The dots show the individual predictions for each

snapshot window while the solid line represents the 10-min

moving average of the predictions. From the top plot, MFP

predictions deviate up to �20 km from the range of the ice

ridge formation, where the ambient noise was likely gener-

ated. The prediction outputs of CNN-c and CNN-r are more

consistent with the range of the ice ridge. This is especially

true for CNN-r, whose predictions show very little variabil-

ity and largely remain between �25 and 40 km.

B. SWellEx-96

Acoustic recording by the 21 element VLA (sampling

frequency ¼ 1500 Hz) from the S5 event of the SWellEx-96

experiment is used to test the performance of our trained

CNNs on real data from this environment. Again, the CNNs

are trained with simulated data generated under the environ-

ment shown in Fig. 2. As part of the S5 event, a 9 m deep

source emitting at 109 Hz was towed by a ship along the

blue track shown in Fig. 9(a). While the recording VLA was

deployed at a location with ocean bottom depth of 216.5 m,

the bathymetry along the source track varied mostly

between �180 and 220 m depth. Thus, there is mismatch

between the simulated training environment and the real

testing environment. Similar to the ICEX16 dataset, the S5

event dataset is segmented into Hanning windows, in this

case of size 512, with 50% overlap. The SCM averaged over

108.5–109.5 Hz is then calculated for each data snapshot

window using the chirp-z transform with an FFT size of 12.

Following this, the SCMs over every 25 snapshot window

are averaged to prevent singular covariance matrices. The

ground truth range of the towed source with time is calcu-

lated from recorded GPS coordinates of the VLA and the

source during the experiment; this is shown as the solid line

in Fig. 9(b).

Figure 9(b) also shows the range predictions by MFP,

CNN-c, and CNN-r. From this plot, it appears that MFP and

CNN-c have similar performances, while CNN-r does worse

in comparison. Table III shows that based on the perfor-

mance metrics introduced in Sec. III, CNN-c has the highest

percentage of predictions within 1 km of ground truth with

70.7%, followed by MFP at 57.5%, and last, CNN-r with

37.8%. However, comparing their MAEs, CNN-r, and

CNN-c have similar performances by this metric, with 1.4

and 1.41 km, respectively. Both out-perform MFP, which

has a MAE of 1.73 km. These results match the observations

from the simulated testing cases, where CNN-c has the best

performance of the three methods and CNN-r had lower

MAE than MFP but lacked accuracy in individual predic-

tions. This similarity again demonstrates that the perfor-

mance of our model-based CNN approaches does indeed

transfer to real data. Here, as with the simulated testing

cases, the CNN-r approach appears to over-compensate for

lowering overall error at the expense of less accurate indi-

vidual predictions. On the other hand, the CNN-c approach

Fig. 5. (Color online) Performance metric comparison between MPF, CNN-c, and CNN-r with varying amounts of deviation to the original ICEX16 SSP.

By both metrics, CNN approaches show similar performance to MFP without any SSP mismatch but improved performance with SSP mismatch.
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shows better performance than MFP but is not immune to

environmental mismatch, as demonstrated by its prediction

errors at similar source ranges as MFP shown in Fig. 9(b).

Also, seen on this plot is that there is a consistent overesti-

mation of �1 km or more in the MFP and CNN-c predic-

tions from ground truth after the �10 min mark along the

source track. The CNN-r predictions also greatly overesti-

mates the source range during this part of the track. This

overestimation may be attributed to the mirage effect in

shallow water38—as a source moves over shallower bathym-

etry than what is modeled, the mismatch leads to the appear-

ance of the source at a greater range than ground truth.

Figure 9(a) shows that, indeed, after around the 10 min

mark, the bathymetry along the source track begins to

become shallower than the modeled bottom depth of

216.5 m. Evidence of the mirage effect on the CNN

Fig. 6. (Color online) Diagonal solid line represents ground truth. Dots show prediction values. Quivers represent the difference between each prediction

and the corresponding ground truth value. (a)–(c) Performance of each approach on testing data generated with different bottom depths.
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predictions again demonstrates that although this approach

may achieve more robust performance than MFP (CNN-c in

this case), it is nonetheless subject to the same mismatch

challenges that exist for all model-based methods.

V. INSIGHT INTO HOW CNNS ACHIEVE THEIR
PERFORMANCE

In this section, we explore in more detail how the CNN

approaches achieve their more robust performance com-

pared to MFP. To do this, it is helpful to examine an inter-

mediate output of the networks. In MFP, source range

predictions are made by essentially comparing the recorded

data replica vector (in the form of data SCM) with the tem-

plate of modeled replica vectors. Analogous to the MFP

template replica vectors for the CNN approach would be the

pre-prediction output vectors of the fully connected (FC)

layer (last layer before prediction layer) in the trained CNN-

c and CNN-r networks. The MFP replica vectors consist of

32, complex-valued entries while the CNN FC-layer tem-

plate vectors are 256-element, real-valued vectors (the

length of the vectors match the number of nodes in the FC-

layer). Both sets of vectors are used in the last calculation

step in their respective approach before a prediction is out-

putted. We use the ICEX16 environment with the source at

33 km as a specific example and demonstrate how the MFP,

Fig. 6. (Color online) (Continued).

Fig. 7. (Color online) Performance metric comparison between MFP, CNN-c, and CNN-r with various bottom depths. CNN-c shows improved performance

to MFP in all cases by both metrics. CNN-r shows similar or improved performance over MFP in all cases by both metrics; however, it still may not be pref-

erable to MFP based on results shown in Fig. 6.
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CNN-c, and CNN-r vector sets are affected by different

amounts of SSP mismatch. For this demonstration, we first

need to define a quantitative measure to describe how differ-

ent one vector is from another. We adopt the Euclidean dis-

tance between two vectors, which is defined as

Distance ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

n¼1

ð~vi n½ � �~vj n½ �Þ � ð~vi n½ � �~vj n½ �Þ
h ivuut ;

(3)

where �x denotes the complex conjugate of x and N is the

length of the vectors.

Taking a look at MFP first, Fig. 10(a) shows the nor-

malized Euclidean distance between the MFP template rep-

lica vectors with a data replica vector simulated with the

source at 33 km under no SSP mismatch (0% change to BL

strength). The normalization is accomplished by dividing by

the maximum distance between the data vector and every

vector in the template set. Unsurprisingly, because there is

no SSP mismatch, the data replica vector is exactly the same

as the MFP template replica vector with source at 33 km.

Thus, the Euclidean distance between the two vectors is 0.

Away from the correct source distance of 33 km, the

Euclidean distance values increase very rapidly such that

there is a sharp and narrow minimum at 33 km. Because of

this steep minimum, it is obvious from this plot that MFP

should output 33 km as the correct prediction, which it does,

as shown by the dotted vertical line in Fig. 10(a). However,

when SSP mismatch is introduced, the correct output

becomes much less obvious in the Euclidean distance plot.

Figure 11(a) shows that when the data replica vector is

generated under SSP mismatch (again with source at

33 km), the normalized Euclidean distance between the data

replica vector and the MFP template vector for source at

33 km grows to about the same value as that of any other

vector in the template set—nearly all Euclidean distance

values in Fig. 11(a) are between 0.75 and 1 and there is no

longer a steep and obvious minimum. While MFP may still

output a prediction close-to-correct answer in this case (as

shown by plots for 0.1% inc., 0.25% inc., and 0.25% dec. to

BL strength), it is also more likely than the no mismatch

case that MFP will output a very inaccurate prediction (as is

the case for 0.5% inc., 0.1% dec., and 0.5% dec. to BL

strength). Thus, we can view the Euclidean distance metric

as a proxy for predictive confidence. When there is no SSP

mismatch, MFP has much higher confidence that the correct

source range is 33 km than any other range value. However,

when mismatch is introduced, the predictive confidence of

MFP for the correct source range decreases significantly

more compared to other range values. As a result, the MFP

prediction may become very inaccurate.

Now we examine the Euclidean distance plots for

CNN-c and CNN-r. Similar to the MFP case, we first plot

the distance between the CNN FC-layer template vectors

and the FC-layer output vector when the source is at 33 km

under no SSP mismatch. Figure 10(b) shows that for both

CNN-c and CNN-r, the minimum Euclidean distance occurs

at the correct source range of 33 km. However, different

from the MFP plot [Fig. 10(a)], away from the correct range,

the increase in Euclidean distance is more gradual. This is

especially true for the CNN-r plot. The more gradual

increase away from the minimum means that, unlike MFP

template replica vectors, CNN FC-layer template vectors for

Fig. 8. (Color online) (a) Ice temperature satellite imagery on the day of field data collection shows a prominent ice ridge �30–50 km away from the VLA

(ICEX16 camp) location, as reflected by the warmer ice temperature. (b) Prediction outputs from MFP, CNN-c, and CNN-r on collected ambient noise data.

Dots represent individual predictions; solid lines denote 10-min moving averages.
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neighboring source range inputs are also closer to each other

in Euclidean space. For example, the CNN FC-layer vector

for source at 33 km is closer to the vector for source at

32.5 km in Euclidean space than it is to vectors for source at

10 km. This neighboring property of the CNN FC-layer tem-

plate vectors may be what increases the robustness of the

CNN approaches compared to MFP. Given the same amount

of environmental mismatch which causes a slight change in

the data input, the CNN approaches are more constrained

from outputting a prediction drastically different from the

true value than MFP because their FC-layer template vectors

closest to correct vector also represent source ranges near

the correct range value. Of course, if the mismatch causes a

large enough change to the data input, the CNN approaches

are not immune from making a very inaccurate prediction

(as is the case for CNN-c under 0.5% inc. to BL strength).

The CNN approaches’ increased robustness can be seen in

Fig. 11(b), which shows their Euclidean distance plots under

varying degrees of SSP mismatch. These plots retain their

minima near the correct range (33 km) much better than the

MFP plots [Fig. 11(a)]. Although the CNN predictions in

Fig. 9. (Color online) (a) Left plot shows source track (solid line with dots) and the location of the VLA during event S5 of the SWellEx-96 experiment.

Figure from SWellEx-96 data website (Ref. 30). Right plot shows the bottom depth along the source track; the bottom depth at the VLA is 216.5 m. (b)

Prediction outputs from MFP, CNN-c, and CNN-r on collected S5 data. Solid lines represent ground truth of source range to VLA with time. Dots show indi-

vidual predictions. Quivers show difference between individual predictions and corresponding ground truth values.

TABLE III. Testing performance on SWellEx-96 S5 event dataset.

Method MFP CNN-c CNN-r

% within 1 km of actual 57.5 70.7 37.8

MAE (km) 1.73 1.41 1.40
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these cases (dotted lines) are not exactly equal to 33 km,

they are very close to the correct value and remain more

consistent between different amounts of mismatch than

MFP. However, the more gradual increase from the

Euclidean distance minima also suggests that the CNN

approaches are less certain of the exact correct source range

compared to MFP when the environment is precisely mod-

eled (MFP has a very sharp and narrow minimum in this

case). Thus, this appears to be the trade-off for the CNNs’

improved performance when mismatch is present.

VI. CONCLUSIONS

In this study, we set out to answer three questions. The

first is whether a model-based ML approach would show

more robustness to environmental mismatch than MFP on

simulated testing data. To this end, we proposed two CNN

approaches (CNN-c and CNN-r) and compared their perfor-

mance to MFP under SSP and ocean bottom mismatch,

respectively, in two separate simulated environments. CNN-

c shows improved performance over MFP in both cases. On

the other hand, CNN-r performs better than MFP against

SSP mismatch but less clearly so against ocean bottom mis-

match. The reason for CNN-r’s inconsistent performance is

likely due to its goal of lowering the overall MSE cost dur-

ing training. This specification causes CNN-r to have less

variability in its predictions, which lowers the overall error

of the estimates but increases error on individual predictions

compared to MFP.

Second, we used field data collected in the two environ-

ments to test whether the performances of our model-based

CNN-c and CNN-r transfer to real data. Our results show

that, yes, this is indeed the case. For the ICEX16 dataset,

both of our CNN approaches return predictions consistent

with the expected source range. For the SWellEx-96 dataset,

CNN-c outperforms MFP by both of our metrics while

CNN-r shows better overall MAE than MFP but is less

accurate on individual predictions. These results are consis-

tent with our simulated data test results.

Last, we explored how our model-based CNNs may be

achieving their performance by examining their intermedi-

ate outputs. Using the ICEX16 environment as an example,

we compared the Euclidean distance plots of MFP’s tem-

plate replica vectors to those of the CNNs’ FC-layer (pre-

prediction) output vectors (Figs. 10 and 11). For MFP, these

plots show a sharp and narrow minimum when this is no

SSP mismatch; the steep minimum disappears when mis-

match is introduced. This result demonstrates that MFP can

make very accurate predictions under no mismatch but can

become very inaccurate with mismatch. In comparison,

Euclidean distance plots for CNN-c and CNN-r show more

gradual increases away from their respective minimum. This

result means that CNN FC-layer output vectors for neigh-

boring source ranges are also near each other in Euclidean

space. Thus, any slight change to the FC-layer vectors as a

result of environmental mismatch is less likely to cause the

CNN methods to output a prediction that is drastically dif-

ferent from the correct output, as would be the case with

MFP. However, the broad minima of the CNN plots also

means that these networks are less certain of the correct

range prediction than MFP when there is no environmental

mismatch.
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Fig. 10. (Color online) Plots are generated from simulated data in the ICEX16 environment with no SSP mismatch. (a) Normalized Euclidean distances

between replica vectors in the MFP template set and data replica vector with source at 33 km. By definition, the normalized distance of the vector with itself

is 0 (at 33 km); away from 33 km, the distance values quickly increase from 0, forming a sharp and narrow minimum. Dotted line shows MFP prediction for

this case. (b) Normalized Euclidean distances between CNN-c (blue) and CNN-r (red) FC-layer template vectors with their respective FC-layer output vector

with source at 33 km. Note, the normalized distance of the vector with itself (at 33 km) is not 0 for CNN-c because there are multiple samples in each output

class; the distance shown in the figures represents the averaged distance between an input with every sample in each output class. The CNN plots show more

gradual increase away from the Euclidean distance minima than the plot for MPF. Dotted lines show CNN-c and CNN-r predictions for this case.
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APPENDIX: DESCRIPTION OF ACTIVATION
FUNCTIONS

More information is provided here on the four activa-

tion functions mentioned in this study. These functions are

SELU, sigmoid, linear, and softmax (Fig. 12).

The SELU function is defined as

f ðxÞ ¼
kx; if x > 0

kaðexp ðxÞ � 1Þ; if x � 0:

(
(A1)

Fig. 11. (Color online) Plots are generated from simulated data in the ICEX16 environment with varying amounts of SSP mismatch. (a) Normalized

Euclidean distances between replica vectors in the MFP template set and data replica vector with source at 33 km. With SSP mismatch, the expected mini-

mum at 33 km increases to around the same value as at any other range. As a result, the MFP predictions (dotted lines) may become very inaccurate. (b)

Normalized Euclidean distances between CNN-c (blue) and CNN-r (red) FC-layer template vectors with their respective FC-layer output vector with source

at 33 km. The CNN plots retain their minima near the correct range (33 km) much better than the MFP plots under mismatch. As a result, their predictions

remain consistent and closer to the correct range value.
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The parameters a and k are pre-defined constants and

not hyperparameters of the CNNs. Their values are

a ¼ 1:67326324 and k ¼ 1:05070098 and are chosen to

help standardized the input between consecutive neural net-

work layers.39 This in turn decreases the chance of vanish-

ing or exploding gradients during backpropagation which

are detrimental to network training.

The sigmoid function is another popular activation

function, it is a logistic function whose output ranges from 0

to 1

yðxÞ ¼ exp ðxÞ
exp ðxÞ þ 1

: (A2)

The linear function is commonly used in the output

layer of regression neural networks, it is defined as

yðxÞ ¼ x: (A3)

The softmax function is typically used in the output

layer of classification neural networks. It takes in a

vector input x of length K and outputs a probability dis-

tribution based on the exponential of each entry in the

vector

ykðxÞ ¼
exp ðxkÞXK

j¼1

exp ðxjÞ
; where k ¼ 1;…;K: (A4)
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