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ABSTRACT
Open material databases storing thousands of material structures and their properties have become the cornerstone of modern computational
materials science. Yet, the raw simulation outputs are generally not shared due to their huge size. In this work, we describe a cloud-based
platform to enable fast post-processing of the trajectories and to facilitate sharing of the raw data. As an initial demonstration, our database
includes 6286 molecular dynamics trajectories for amorphous polymer electrolytes (5.7 terabytes of data). We create a public analysis library at
https://github.com/TRI-AMDD/htp_md to extract ion transport properties from the raw data using expert-designed functions and machine
learning models. The analysis is run automatically on the cloud, and the results are uploaded onto an open database. Our platform encourages
users to contribute both new trajectory data and analysis functions via public interfaces. Finally, we create a front-end user interface at
https://www.htpmd.matr.io/ for browsing and visualization of our data. We envision the platform to be a new way of sharing raw data and
new insights for the materials science community.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0160937

I. INTRODUCTION

In the past decade, the rapid development and application
of computational theory, methodology, and infrastructure for high
throughput materials discovery have generated huge amounts of
data in the computational materials science community.1–4 Open
databases, such as the Materials Project,5 AFLOW,6 and Mate-
rials Cloud,7 store millions of material structures and computed
properties, spanning inorganic crystals, metal organic frameworks,
and many other types of materials. In addition, open source soft-
ware, such as pymatgen,8 atomate,9 FireWorks,10 and RDKit,11

have streamlined the analysis and visualization of materials data,

significantly simplifying tasks such as computing effective mass
from band structures,12–14 calculating Li-ion conductivity from
molecular dynamics (MD) trajectories,15–18 and rendering chem-
ical structures.19–21 In the biophysics community, tools such as
GPCRmd,22 BIGNASIM,23 Cyclo-lib,24 and Dynameomics25 have
enabled interactive analysis and visualization of MD data of proteins
and small molecules.

Despite a push toward open science, a significant portion of
computational materials data has not been shared publicly26–28—the
raw outputs from the simulations, such as the trajectories from MD
simulations and the charge densities from density functional theory
(DFT) calculations. The raw data can provide valuable information
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about how the simulations were run and analyzed. Sharing of raw
data can enable full transparency and reproducibility of the simula-
tion data and accompanying analyzed results. Additionally, as new
analysis methods are developed that more appropriately describe a
physical phenomenon, these can be re-run on raw simulation data to
extract new insights without re-running the simulations. However,
the raw data for a single calculation can require gigabytes of stor-
age, easily accumulating to terabytes for a high throughput screening
project. Due to the high cost of data storage and transfer, most open
databases only store key properties extracted from the raw data28,29

while leaving the raw data in the local storage of large supercomputer
centers where it is often left unattended or deleted after a period
of time. Very recently, the Materials Project5 has started to pro-
vide charge density distributions from DFT to users. However, the
transfer of charge density data is not automated as users still need to
communicate with the provider for access.

In this work, we provide a cloud-based platform to facilitate
the sharing of raw data from high throughput materials screening.
Our platform includes three components, as illustrated in Fig. 1: (1)
cloud storage on Amazon Web Services (AWS) that stores raw data
from simulations; (2) an open codebase on GitHub that analyzes
raw data and extracts key properties; and (3) a graphical interface
that allows users to interact with and visualize analyzed properties.
Users can access extracted properties like in other open databases,
and they can also develop new analysis functions to extract new
properties from the raw data via the open codebase. Our plat-
form eliminates the high cost of transferring terabytes of raw data
by running the analysis in the cloud but still allows the user to
analyze raw data based on their needs. Finally, it also aims to cre-
ate a standard data format and analysis software ecosystem for
MD trajectories that can eventually be expanded to include other
raw outputs from other simulation methods, such as DFT. We

demonstrate the effectiveness of this platform by creating an
open database of MD trajectories for amorphous polymer elec-
trolytes generated using the Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS) program,30,31 which includes
6286 trajectories and 5.7 terabytes of data.

II. SOFTWARE INFRASTRUCTURE AND DATABASE
Our software infrastructure is hosted on Amazon Web Services

(AWS)32 and utilizes its serverless cloud services for data processing,
analysis, storage, and flow management, as shown in Fig. 2.

For processing, each raw trajectory data are expected to have
the complete trajectory (in the “custom” LAMMPS trajectory for-
mat33) as well as a metadata file (in json format) that describes the
input parameters of the data (SMILES, temperature, molality, length
of simulations, force field, and ion types). We use [Cu] and [Au] as
special atoms to label the two polymerization points in the SMILES
string of polymers. When new trajectory data are uploaded to the
platform, they are archived in an AWS Simple Storage Service (S3)
bucket, which is a scalable cloud file system. The creation of the new
data files in the bucket triggers an upload event, which is picked up
by a serverless compute service AWS Lambda. The Lambda instance
verifies the completeness of the trajectory data to ensure that all files
needed for the analysis are present. Afterward, the Lambda instance
initiates a workflow execution in a AWS StepFunction graph.

As part of the StepFunction workflow, containerized AWS
Elastic Container Service (ECS) tasks are run to analyze the raw tra-
jectory data and store the results. Analyzed properties, such as ionic
conductivity, diffusion coefficients of cations, anions, and polymer
chains, and transference number, as well as metadata—SMILES,
molality, temperature, length of simulations, force field, and ion
types—are stored in an AWS Relational Database Services (RDS)

FIG. 1. Illustration of the cloud based database for raw data sharing. (a) A typical workflow for computational material data generation. Our database enables the sharing
of raw simulation data and flexible user-defined analysis methods to obtain properties, while most existing databases have a fixed set of pre-computed properties. (b) An
overview of the software components in the platform. The platform consists of a cloud file system containing raw data, a public code repository for analysis functions, and a
user interface for interacting with the data.
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FIG. 2. Detailed software workflow showing the backend processes. Final results stored in S3 bucket and RDS are accessed by the frontend UI via an API stored in a AWS
Lambda instance.

postgreSQL database. Other types of data, such as the mean squared
displacement (MSD) time series for the ions, as well as the final
structure file (.cif) and an image of the monomer chemical struc-
ture (.png) are uploaded to an S3 bucket and their URLs are stored
in the database.

The specific analysis steps that are run as ECS tasks are specified
in the public htpmd GitHub repository (https://github.com/TRI-
AMDD/htp_md). The repository contains analysis code suited for
polymer electrolytes based on an LiTFSI salt and allows extracting

property results, such as Li-ion conductivity, diffusion coefficients of
Li+, TFSI−, and polymer chains, and transference number. In addi-
tion, the code generates average mean squared displacement (MSD)
time series for Li+ and TFSI− ions, as well as the final structure of the
simulation box, which can also be retrieved from the UI. In addition,
pre-trained machine learning models are applied to the existing tra-
jectory data to provide predictions of a subset of the properties. More
details are found in Sec. IV C. While there is a natural discrepancy
between predicted and computed properties due to the variance in

FIG. 3. Workflow for retrieving data from the backend and displaying it on the frontend.
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FIG. 4. Web graphical user interface (GUI) to browse database for Simulation Data (a) and Prediction Data (b).
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the machine learning models, predictions can be useful for making
estimates of a property without having to run the full length of the
simulation.

Members of the research community are encouraged to provide
their specific analyses or prediction models to the GitHub codebase
via a pull request from a fork. Upon review and merging of new code,
the application is containerized using Docker and provided to ECS
to be run as an automated task in the workflow.

III. FRONTEND UI
The platform provides a publicly accessible graphical user inter-

face (GUI) that allows browsing through the available data. This web
app is hosted at www.htpmd.matr.io and utilizes the React frame-
work34 for the frontend and Python for the backend. The frontend
communicates with the backend using RESTful Application Pro-
gramming Interface (API) calls, as described in Fig. 3. Plots are
drawn using Plotly JS, which allows graphs to be zoomed in and
exported to png.

On load of the application, the frontend makes an API call to
fetch all trajectories available. This is used to populate the trajectories
table and generate scatter plots of properties of interest. When filters
are changed on the left panel, the cached data are filtered based on
the user’s selected filters.

A. Simulation data
Frontend UI displays data in two available tabs. The default

tab, Simulation Data, displays all data related to the MD simula-
tions of polymers, such as extracted properties and simulation input
parameters for individual trajectories. Properties such as ionic con-
ductivity, diffusion coefficients of Li+, TFSI−, and polymer chains,
and the transference number are extracted using analysis functions
in the htpmd github repository.

This tab shows aggregate data in two ways: (1) scatter plots
of transport properties (Li-ion conductivity, Li ion diffusion coef-

ficient, TFSI ion diffusion coefficient, polymer chain diffusion
coefficient, and transference number) as a function of molality,
monomer molecular weight, or degree of polymerization and (2)
a table overview of all trajectories (named Sample) and their
properties. By default, analyzed properties of all available MD
trajectories are shown in the graphs and tables. A filter on the
side bar allows the user to down-select data by material group,
cation/anion types, as well as temperature and molality ranges.
In addition, the user can filter by the range of the property of
interest.

When a trajectory is selected via table row click or a plot data
point click, additional API calls are made to fetch data specific to a
single trajectory. These calls fetch monomer SMILES string, chemi-
cal structure, the conditions of simulations, and the Li+ and TFSI−

MSD time series. If the user clicks on the “Download Raw Data” but-
ton, a pre-signed S3 url is opened for the user to download a zip file
of the trajectory’s raw data.

All table and graphs have a download button that allows the
user to retrieve the displayed data as comma-separated values (csv)
data files.

B. Prediction data
Switching to the Prediction Data tab allows the user to view

aggregate and trajectory-specific prediction data made using pre-
loaded ML models, as shown in Fig. 4(b). The table shows ionic
conductivity, diffusion coefficients of ions and polymers, and trans-
ference number that have been extracted from MD simulations,
compared against predictions using RF and graph neural network
(GNN) models (details provided in Sec. IV C).

Scattered plots show parity plots for conductivity and ion dif-
fusion coefficients for predicted data against MD simulation data.
The user can select a specific trajectory by clicking on a data point in
the plots or by selecting a row in the tables. As with the Simulation
Data tab, any aggregate data can be downloaded using the download
button below the table or graphs.

FIG. 5. Database of polymer electrolytes, containing 6057 unique polymers and their raw trajectories. Raw trajectories contain coordinates and types of atoms, as well as
periodic box sizes and bond connectivity. Using the htpmd github repository, multiple properties including relaxed 3D structures, transport properties, and physical properties
are automatically extracted from the raw trajectories.
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TABLE I. Properties computed and associated methods.

Property Symbol and units Type Method and comments

Molality m (mol/kg) Scalar Number of moles of ion pairs divided by the
total polymer mass

Structure String Written out in the CIF file format42

Atomic displacement δ(∣X∣) [Å] Scalar Can output either the mean or the maximum
displacement along the trajectory

Mean squared displacement MSD(t) (Å2
) Vector MSD(t) = ⟨∣X(t) −X(0)∣2⟩ the average is per-

formed on all atoms of the same species and can
be switched on for time origins

Ion diffusivity D (cm2
/s) Scalar D = 1

6
dMSD(t)

dt
Polymer diffusivity D (cm2

/s) Scalar Defined as the average of electronegative sites
(N, S, O)

Ionic conductivity σ (S/cm) Scalar Nernst–Einstein or cluster Nernst–Einstein
approximation36

Cation transference number t+ Scalar Nernst–Einstein or cluster Nernst–Einstein
approximation36

Polymerization degree p Scalar Degree of polymerization
Density ρ(g/cm3

) Scalar Density of the system

IV. POLYMER DATABASE AND CONTENT
A. Overview of the polymer database

As a demonstration of the platform, we upload the raw trajec-
tories generated by a previous study35 that uses molecular dynamics
(MD) to screen polymer electrolytes for Li-ion battery applications.
The database contains 6057 unique polymers that share the same
structure template in Fig. 5, which can be synthesized through a
condensation polymerization route detailed in Ref. 35. The initial
3D structures of the polymer electrolytes are generated by insert-
ing 1.5 mol lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt
per kilogram of polymer (equivalent to 50 pairs of LiTFSI ions) into
a mixture of polymer chains and performing a 5 ns MD equilibra-
tion at 353 K. Currently, the database contains 6152 MD trajectories
for 5 ns simulations of polymer electrolytes at 353 K, recorded
every 2 ps. This database is more comprehensive than the previous
study,35 in which only 900 of these polymers were simulated with
MD, the rest screened with ML property predictors. In addition, the

database also contains 134 MD trajectories for 50 ns simulations
of polymers, recorded every 2 ps, which provides better converged
transport properties, such as diffusion coefficients and Li-ion con-
ductivity. The force fields and simulation protocols follow previous
work.35

B. Properties computed and associated methods
Several properties are computed by default, mostly related

to ion transport. Current methods rely on the identification of
ion clusters to calculate transport properties, which are shown in
Fig. 5. An extensive list is given in Table I, with the associated
methods.

We also provide two ways of calculating the ionic conductiv-
ity and cation transference number: the standard Nernst–Einstein
approximation and the cluster Nernst–Einstein approximation.36

These methods make assumptions about the interaction strength
between ions in the polymer–salt system and are appropriate for
different ranges of salt concentrations. For instance, the cluster

TABLE II. Performance of different machine learning models on Li transport properties. Errors are based on the test set, and
error bars are standard deviations of predictions from the four models trained in the fourfold cross-validation.

RF +molecular features GNN +molecule structures

Property MAE R2 MAE R2

σ (S/cm) 0.120 ± 0.003 0.532 ± 0.024 0.115 ± 0.002 0.573 ± 0.014
DLi+ (cm2/s) 0.117 ± 0.002 0.508 ± 0.012 0.115 ± 0.000 0.492 ± 0.005
DTFSI− (cm2/s) 0.103 ± 0.002 0.633 ± 0.017 0.100 ± 0.001 0.650 ± 0.010
Dchain (cm2/s) 0.088 ± 0.002 0.820 ± 0.005 0.082 ± 0.001 0.832 ± 0.002
t+ 0.158 ± 0.000 0.502 ± 0.002 0.159 ± 0.001 0.491 ± 0.004
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Nernst–Einstein approximation to ionic conductivity was shown
recently37 to hold quantitatively for LiTFSI-tetraglyme up to inter-
mediate concentration (r = 0.10 Li/EO) and qualitatively up to the
highest reported concentration (r = 0.24 Li/EO). Eventually, we will
implement solvent reference frame based methods,38,39 which were
recently shown to be crucial in capturing the correct transference
numbers.40 This highlights the need for sharing of raw trajectory
data: as our understanding of behaviors in more complex systems
increases, so do our methods of extracting properties. Raw trajec-
tory data not only make it very easy to follow the provenance of
extracted properties (assumptions made, methods used, and how the
simulations were performed) but also make it extremely easy to com-
pare the applicability of different analysis methods and reanalyze as
necessary.

In the future, we expect to further extend the analysis methods
to calculate more properties, such as dielectric constant based on lin-
ear response theory41 and viscosity based on the Einstein–Helfand
method or the Green–Kubo method.

C. ML predictions
The dataset enables investigating through machine learning the

transport properties of polymer electrolytes. In this work, we use
two baseline machine learning models to learn the transport prop-
erties: (1) human-engineered descriptors + random forest model
and (2) graph neural networks (GNNs). Twenty percent of the data
points are randomly reserved at the very beginning as the test set,
and the remaining data points are used to train and tune the hyper-
parameters via a fourfold cross-validation. The human-engineered
descriptors are generated using the package Mordred.43 The ran-
dom forest models are built using scikit-learn.44 We adopt the GNN
architecture used in our prior work35 that builds Crystal Graph Con-
volutional Neural Networks (CGCNN)45 on top of polymer graphs.
Note that in this work, both models are based on 2D molecular infor-
mation of the monomer; machine learning models making use of the
3D structure of polymers will be left for future work.

In Table II, we show the performance of the machine learn-
ing models on five transport properties: Li-ion conductivity, Li+,
TFSI−, polymer chain diffusion coefficients, and transference num-
ber. We can see that the deep representation learning model (GNN)
performs slightly better than the random forest model based on
human-engineered descriptors for all transport properties, except
for the transference number. In addition, except for the polymer
chain diffusion coefficient, the R2 scores of prediction of trans-
port properties from both machine learning models are lower than
0.8, which indicates the limitations of current two models. Note
that the machine learning prediction of ion transport properties of
solid polymer electrolytes is not the main focus of this study and is
merely included to demonstrate the usefulness of our database. More
information on improving the prediction performance of machine
learning models using features extracted from 3D structures and
dynamics of the systems has been discussed in detail somewhere
else.46

V. USER SCENARIO
We envision two broad user scenarios for the platform: (1) a

user whose primary goal is to explore and visualize existing data (raw

data and analyzed properties) and (2) a user who wishes to develop
and contribute new analysis functions and ML prediction models to
derive additional insights from existing data or use existing analysis
functions and ML prediction models on private data and poten-
tially contribute new data to our platform. We outline recommended
workflows for each user scenario.

A. Visualization and exploration of data
A user wishing to explore the data can access the platform at

https://www.htpmd.matr.io/. All trajectory data are loaded at once;
however, the user can down-select the data using the selection panel
on the left, filtering by components, simulation, material conditions
(molality, monomer molecular weight, degree of polymerization,
force field, time step, temperature, and simulation length), and the
desired range of analyzed properties. Most trajectories also have
additional data (chemical structure and mean squared displacement
time series) and can be filtered by whether the data are available.

Filtered data are displayed in tabular and graphical formats.
The data table lists simulation conditions and analyzed properties
for each trajectory ID and can be sorted by ascending/descending
value. Aggregate view shows one plot with selectable x- and y-axes,
where molality, monomer molecular weight, or degree of polymer-
ization can be plotted on the x-axis and Li-ion conductivity and
diffusion coefficients of Li+ and TFSI− and polymer chains and
transference number can be selected as the y-axis (Fig. 6). Users can
hover over each data point for trajectory ID information or zoom
into parts of each plot using click-and-drag.

More detailed information on a single trajectory can be dis-
played by selecting a specific trajectory (in the table or on the
graph), as shown in Fig. 4. The sample view displays MSD time
series, chemical structure, and simulation conditions for the selected
trajectory.

Trajectory-specific data in sample view or aggregate infor-
mation in aggregate view can be downloaded by clicking on the
Download button. This information is downloaded as a csv file.

B. Community contribution of new analysis
methods and data

Some users may wish to run the analysis module locally in
order to develop new analysis functions, train new ML prediction
models, or try existing analysis functions on private data. This can
enable new insights from existing data. For these users, the best
starting point is at the public github repository at https://github.
com/TRI-AMDD/htp_md.

The repository provides test data for three test systems (an
aqueous NaCl electrolyte and two LiTFSI polymer electrolytes).
Additional data can be downloaded from the database via the UI.
Newly developed analysis functions can be tested on the test data, as
well as any data downloaded from the database [see Fig. 7(a)].

In order to merge the new analysis function or method, the user
must open a pull request containing the source code in function.py
and an accompanying test in function_test.py, as well as test data
and results (if different from provided test data). The format of the
code should follow the provided template. Contributed code will be
reviewed by the repository maintenance team.

Once contributed code is reviewed and merged, htpmd version
number will be updated, and the pipeline will run the latest version

APL Mach. Learn. 1, 046108 (2023); doi: 10.1063/5.0160937 1, 046108-7

© Author(s) 2023

 25 April 2024 13:34:03

https://pubs.aip.org/aip/aml
https://www.htpmd.matr.io/
https://github.com/TRI-AMDD/htp_md
https://github.com/TRI-AMDD/htp_md


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

FIG. 6. Aggregate data plots showing Li-ion conductivity and Li+ diffusion coefficient of all available trajectory data. Numeric values and trajectory ID can be shown when
hovering on a specific data point. Clicking on a data point highlights all corresponding points in subsequent graphs, as well as on the table. This also enables trajectory
sample view, which gives specific information about the polymer, simulation conditions, and property values.

APL Mach. Learn. 1, 046108 (2023); doi: 10.1063/5.0160937 1, 046108-8

© Author(s) 2023

 25 April 2024 13:34:03

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

FIG. 7. Schematics for contributing new methods and data. (a) Analysis method
contribution. User can download sample raw data from the database and develop
new analysis function locally. New functions will be scaled to the entire database
after merging. (b) Data contribution. User can contribute new trajectories to the
database by following the standard format. All existing analysis functions will be
used to analyze the new data.

of analysis functions on existing data. Latest versions of extracted
properties will be available on the webapp.

Alternatively, some users may wish to contribute new data that
were locally generated [Fig. 7(b)]. Users are not required but are
encouraged to provide information on the compiler and version of
LAMMPS used.

VI. DISCUSSION
The htpmd database enables researchers to harvest insights

from molecular dynamics simulations of thousands of polymer–salt
systems. We will be adding trajectories and property data as we
simulate more polymer–salt systems to identify their respective ion
transport properties. We encourage researchers in the community
to make use of the presented data, methods, and models for their
own investigations and for use as benchmarks. We also welcome any
contributions to this database. If you would like to add your data,
methods, or machine learning models to this platform, contact us
for details. In future updates of the database web portal, we envision
adding functionality that will enable direct upload and automatic
verification of new data from MD simulations, experiments, and
literature.

In order to make material simulations a meaningful tool in the
pursuit of accelerated materials discovery, it is necessary to estab-
lish the validity and accuracy of material property data resulting
from such simulations. Previous work examined the alignment of
MD simulation results with experimentally determined transport
properties, such as Li+ conductivity.47–49 To further complete the
picture, we envision future additional features of the platform, which

allow a direct comparison of simulation data to experimental results
published in the literature. This will enable researchers to further
explore the conditions for validity, possible limitations, and future
improvements to the simulation methodologies.

A separate effort that is currently under way is the development
of high throughput experimental screening methods for measuring
ionic conductivity in solid polymer systems. One of its uses will be
to validate computational results via synthesis and characterization
of previously simulated systems. The experimental data generated
through the screening can be further incorporated into our database.

To close, we emphasize that our suite of analysis functions can
make the data easily shareable, even those that already exist in lit-
erature. For example, if all published studies of MD simulations of
polymer–salt electrolytes (from January–March of 2023) shared raw
trajectory data, it would enable open sharing of roughly 130 GB of
additional data. If every study from the last decade shared their raw
trajectory data, it would double our database, increasing it to roughly
11 terabytes.

While the current available analysis functions and the fron-
tend UI are specific to the transport properties in polymer–salt
systems, the cloud-based platform and its infrastructure can be eas-
ily extended into other types of simulation approaches and material
properties. The backend workflow of our platform only requires a
raw data format and a list of analysis functions designed for the for-
mat. This means that with the addition of specific analysis functions
and raw trajectory format, we could expand our platform to other
use cases, such as the extraction of rheological and mechanical prop-
erties from MD simulations of large polymer systems at different
strain rates.

ACKNOWLEDGMENTS
This work was supported by the Toyota Research Institute.

Computational support was provided by the National Energy
Research Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231, and the Extreme
Science and Engineering Discovery Environment, supported by
National Science Foundation Grant No. ACI-1053575.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Tian Xie, Ha-Kyung Kwon, and Daniel Schweigert contributed
equally to this work.

T.X., H.-K.K., D.S., J.C.G., and Y.S.-H. conceived the idea. H.-
K.K., D.S., and T.X. led the development of the platform. T.X., S.G.,
A.F.-L., and E.C. generated the data and developed the analysis
functions. H.-K.K., D.S., A.K., M.P., C.F., and W.P. developed the
software infrastructure on AWS, including both frontend and back-
end. All authors (T.X., H.-K.K., D.S., S.G., A.F.-L., A.K., E.C., M.P.,

APL Mach. Learn. 1, 046108 (2023); doi: 10.1063/5.0160937 1, 046108-9

© Author(s) 2023

 25 April 2024 13:34:03

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

C.F., W.P., Y.S.-H., and J.C.G.) contributed to the writing of the
paper.

Tian Xie: Conceptualization (equal); Formal analysis (equal);
Methodology (equal); Software (equal); Writing – original draft
(equal); Writing – review & editing (equal). Ha-Kyung Kwon: Con-
ceptualization (equal); Methodology (equal); Software (equal); Visu-
alization (equal); Writing – original draft (equal); Writing – review
& editing (equal). Daniel Schweigert: Conceptualization (equal);
Methodology (equal); Software (equal); Visualization (equal);
Writing – original draft (equal); Writing – review & editing (equal).
Sheng Gong: Formal analysis (equal); Writing – original draft
(equal); Writing – review & editing (equal). Arthur France-Lanord:
Formal analysis (equal); Writing – original draft (equal); Writing –
review & editing (equal). Arash Khajeh: Software (equal); Visual-
ization (equal); Writing – original draft (equal); Writing – review
& editing (equal). Emily Crabb: Formal analysis (equal); Writing –
original draft (equal); Writing – review & editing (equal). Michael
Puzon: Software (equal); Visualization (equal); Writing – original
draft (equal); Writing – review & editing (equal). Chris Fajardo:
Software (equal); Visualization (equal); Writing – original draft
(equal); Writing – review & editing (equal). Will Powelson: Software
(equal); Writing – original draft (equal); Writing – review & edit-
ing (equal). Yang Shao-Horn: Conceptualization (equal); Writing –
original draft (equal); Writing – review & editing (equal). Jeffrey
C. Grossman: Conceptualization (equal); Writing – original draft
(equal); Writing – review & editing (equal).

DATA AVAILABILITY
All data are available at https://www.htpmd.matr.io50 and code

is available at https://github.com/TRI-AMDD/htp_md.51

REFERENCES
1C. Suh, C. Fare, J. A. Warren, and E. O. Pyzer-Knapp, “Evolving the materi-
als genome: How machine learning is fueling the next generation of materials
discovery,” Annu. Rev. Mater. Res. 50, 1 (2020).
2Y. Liu, T. Zhao, W. Ju, and S. Shi, “Materials discovery and design using machine
learning,” J. Materiomics 3, 159 (2017), part of the Special Issue: High-Throughput
Experimental and Modeling Research Toward Advanced Batteries.
3R. Pollice, G. dos Passos Gomes, M. Aldeghi, R. J. Hickman, M. Krenn, C.
Lavigne, M. Lindner-D’Addario, A. Nigam, C. T. Ser, Z. Yao, and A. Aspuru-
Guzik, “Data-driven strategies for accelerated materials design,” Acc. Chem. Res.
54, 849 (2021).
4A. Nandy, C. Duan, and H. J. Kulik, “Audacity of huge: Overcoming challenges
of data scarcity and data quality for machine learning in computational materials
discovery,” Curr. Opin. Chem. Eng. 36, 100778 (2022).
5A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D.
Gunter, D. Skinner, G. Ceder, and K. A. Persson, “Commentary: The materials
project: A materials genome approach to accelerating materials innovation,” APL
Mater. 1, 011002 (2013).
6S. Curtarolo, W. Setyawan, G. L. Hart, M. Jahnatek, R. V. Chepulskii, R. H.
Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. J. Mehl, H. T. Stokes, D. O. Dem-
chenko, and D. Morgan, “AFLOW: An automatic framework for high-throughput
materials discovery,” Comput. Mater. Sci. 58, 218 (2012).
7L. Talirz, S. Kumbhar, E. Passaro, A. V. Yakutovich, V. Granata, F. Gargiulo, M.
Borelli, M. Uhrin, S. P. Huber, S. Zoupanos et al., “Materials cloud, a platform for
open computational science,” Sci. Data 7, 299 (2020).

8S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter,
V. L. Chevrier, K. A. Persson, and G. Ceder, “Python materials genomics (pymat-
gen): A robust, open-source python library for materials analysis,” Comput.
Mater. Sci. 68, 314 (2013).
9K. Mathew, J. H. Montoya, A. Faghaninia, S. Dwarakanath, M. Aykol, H. Tang,
I. h. Chu, T. Smidt, B. Bocklund, M. Horton, J. Dagdelen, B. Wood, Z.-K. Liu, J.
Neaton, S. P. Ong, K. Persson, and A. Jain, “Atomate: A high-level interface to gen-
erate, execute, and analyze computational materials science workflows,” Comput.
Mater. Sci. 139, 140 (2017).
10A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman,
G. Petretto, G.-M. Rignanese, G. Hautier, D. Gunter, and K. A. Persson,
“Fireworks: A dynamic workflow system designed for high-throughput
applications,” Concurrency Comput.: Pract. Exper. 27, 5037 (2015).
11G. Landrum, Rdkit: Open-Source Cheminformatics, 2013, http://www.
rdkit.org.
12R. Woods-Robinson, D. Broberg, A. Faghaninia, A. Jain, S. S. Dwaraknath,
and K. A. Persson, “Assessing high-throughput descriptors for prediction of
transparent conductors,” Chem. Mater. 30, 8375 (2018).
13G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, and X. Gonze, “Identification
and design principles of low hole effective mass p-type transparent conducting
oxides,” Nat. Commun. 4, 2292 (2013).
14V.-A. Ha, F. Ricci, G.-M. Rignanese, and G. Hautier, “Structural design princi-
ples for low hole effective mass s-orbital-based p-type oxides,” J. Mater. Chem. C
5, 5772 (2017).
15E. Sivonxay, M. Aykol, and K. A. Persson, “The lithiation process and Li dif-
fusion in amorphous SiO2 and Si from first-principles,” Electrochim. Acta 331,
135344 (2020).
16J. Cheng, E. Sivonxay, and K. A. Persson, “Evaluation of amorphous oxide
coatings for high-voltage Li-ion battery applications using a first-principles
framework,” ACS Appl. Mater. Interfaces 12, 35748 (2020).
17J. Qi, S. Banerjee, Y. Zuo, C. Chen, Z. Zhu, M. Holekevi Chandrappa, X. Li,
and S. Ong, “Bridging the gap between simulated and experimental ionic con-
ductivities in lithium superionic conductors,” Mater. Today Phys. 21, 100463
(2021).
18B. Zhang, Z. He, J. Zhong, L. Yang, Z. Lin, and F. Pan, “Balancing stability
and Li-ion conductivity of Li10SiP2O12 for solid-state electrolytes with the assis-
tance of a body-centered cubic oxygen framework,” J. Mater. Chem. A 9, 22952
(2021).
19D. Flam-Shepherd, T. C. Wu, and A. Aspuru-Guzik, “MPGVAE: Improved gen-
eration of small organic molecules using message passing neural nets,” Mach.
Learn.: Sci. Technol. 2, 045010 (2021).
20J. Jiménez-Luna, A. Cuzzolin, G. Bolcato, M. Sturlese, and S. Moro, “A
deep-learning approach toward rational molecular docking protocol selection,”
Molecules 25, 2487 (2020).
21R. J. Hall, C. W. Murray, and M. L. Verdonk, “The fragment network: A chem-
istry recommendation engine built using a graph database,” J. Med. Chem. 60,
6440 (2017).
22I. Rodríguez-Espigares, M. Torrens-Fontanals, J. K. Tiemann, D. Aranda-
García, J. M. Ramírez-Anguita, T. M. Stepniewski, N. Worp, A. Varela-Rial, A.
Morales-Pastor, B. Medel-Lacruz et al., “GPCRmd uncovers the dynamics of the
3D-GPCRome,” Nat. Methods 17, 777 (2020).
23A. Hospital, P. Andrio, C. Cugnasco, L. Codo, Y. Becerra, P. D. Dans, F. Battis-
tini, J. Torres, R. Goñi, M. Orozco, and J. L. Gelpí, “BIGNASim: A NoSQL database
structure and analysis portal for nucleic acids simulation data,” Nucleic Acids Res.
44, D272 (2015).
24E. Mixcoha, R. Rosende, R. Garcia-Fandino, and Á. Piñeiro, “Cyclo-lib: A
database of computational molecular dynamics simulations of cyclodextrins,”
Bioinformatics 32, 3371 (2016).
25M. W. van der Kamp, R. D. Schaeffer, A. L. Jonsson, A. D. Scouras, A. M. Simms,
R. D. Toofanny, N. C. Benson, P. C. Anderson, E. D. Merkley, S. Rysavy, D. Brom-
ley, D. A. Beck, and V. Daggett, “Dynameomics: A comprehensive database of
protein dynamics,” Structure 18, 423 (2010).
26F.-X. Coudert, “Materials databases: The need for open, interoperable databases
with standardized data and rich metadata,” Adv. Theory Simul. 2, 1900131 (2019).

APL Mach. Learn. 1, 046108 (2023); doi: 10.1063/5.0160937 1, 046108-10

© Author(s) 2023

 25 April 2024 13:34:03

https://pubs.aip.org/aip/aml
https://www.htpmd.matr.io
https://github.com/TRI-AMDD/htp_md
https://doi.org/10.1146/annurev-matsci-082019-105100
https://doi.org/10.1016/j.jmat.2017.08.002
https://doi.org/10.1021/acs.accounts.0c00785
https://doi.org/10.1016/j.coche.2021.100778
https://doi.org/10.1063/1.4812323
https://doi.org/10.1063/1.4812323
https://doi.org/10.1016/j.commatsci.2012.02.005
https://doi.org/10.1038/s41597-020-00637-5
https://doi.org/10.1016/j.commatsci.2012.10.028
https://doi.org/10.1016/j.commatsci.2012.10.028
https://doi.org/10.1016/j.commatsci.2017.07.030
https://doi.org/10.1016/j.commatsci.2017.07.030
https://doi.org/10.1002/cpe.3505
http://www.rdkit.org
http://www.rdkit.org
https://doi.org/10.1021/acs.chemmater.8b03529
https://doi.org/10.1038/ncomms3292
https://doi.org/10.1039/c7tc00528h
https://doi.org/10.1016/j.electacta.2019.135344
https://doi.org/10.1021/acsami.0c10000
https://doi.org/10.1016/j.mtphys.2021.100463
https://doi.org/10.1039/d1ta06338c
https://doi.org/10.1088/2632-2153/abf5b7
https://doi.org/10.1088/2632-2153/abf5b7
https://doi.org/10.3390/molecules25112487
https://doi.org/10.1021/acs.jmedchem.7b00809
https://doi.org/10.1038/s41592-020-0884-y
https://doi.org/10.1093/nar/gkv1301
https://doi.org/10.1093/bioinformatics/btw289
https://doi.org/10.1016/j.str.2010.01.012
https://doi.org/10.1002/adts.201900131


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

27C. H. Ward, J. A. Warren, and R. J. Hanisch, “Making materials science
and engineering data more valuable research products,” Integr. Mater. Manuf.
Innovation 3, 292 (2014).
28L. Himanen, A. Geurts, A. S. Foster, and P. Rinke, “Data-driven materials
science: Status, challenges, and perspectives,” Adv. Sci. 6, 1900808 (2019).
29S. R. Kalidindi and M. De Graef, “Materials data science: Current status and
future outlook,” Annu. Rev. Mater. Res. 45, 171 (2015).
30S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,”
J. Comput. Phys. 117, 1 (1995).
31A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown,
P. S. Crozier, P. J. in’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen et al.,
“LAMMPS—A flexible simulation tool for particle-based materials modeling at
the atomic, meso, and continuum scales,” Comput. Phys. Commun. 271, 108171
(2022).
32S. Mathew and J. Varia, Overview of amazon web services, Amazon Whitepa-
pers, 2014.
33See https://docs.lammps.org/dump.html for LAMMPS Manual: Dump Com-
mand.
34J. Walke, React—A javascript library for building user interfaces, 2022,
https://reactjs.org/.
35T. Xie, A. France-Lanord, Y. Wang, J. Lopez, M. Stolberg, M. Hill, G. M. Lev-
erick, R. Gomez-Bombarelli, J. A. Johnson, Y. Shao-Horn, and J. C. Grossman,
“Accelerating amorphous polymer electrolyte screening by learning to reduce
errors in molecular dynamics simulated properties,” Nat. Commun. 13, 3415
(2022).
36A. France-Lanord and J. C. Grossman, “Correlations from ion pairing and the
Nernst-Einstein equation,” Phys. Rev. Lett. 122, 136001 (2019).
37C. Fang, A. Mistry, V. Srinivasan, N. P. Balsara, and R. Wang, “Elucidating
the molecular origins of the transference number in battery electrolytes using
computer simulations,” JACS Au 3, 306 (2023).
38D. R. Wheeler and J. Newman, “Molecular dynamics simulations of multi-
component diffusion. 1. Equilibrium method,” J. Phys. Chem. B 108, 18353
(2004).

39K. D. Fong, H. K. Bergstrom, B. D. McCloskey, and K. K. Mandadapu,
“Transport phenomena in electrolyte solutions: Nonequilibrium thermodynamics
and statistical mechanics,” AIChE J. 66, e17091 (2020).
40Y. Shao, H. Gudla, D. Brandell, and C. Zhang, “Transference number in poly-
mer electrolytes: Mind the reference-frame gap,” J. Am. Chem. Soc. 144, 7583
(2022).
41I. Leontyev and A. Stuchebrukhov, “Accounting for electronic polarization in
non-polarizable force fields,” Phys. Chem. Chem. Phys. 13, 2613 (2011).
42I. D. Brown and B. McMahon, “CIF: The computer language of
crystallography,” Acta Crystallogr., Sect. B 58, 317 (2002).
43H. Moriwaki, Y.-S. Tian, N. Kawashita, and T. Takagi, “Mordred: A molecular
descriptor calculator,” J. Cheminf. 10, 4 (2018).
44F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine
learning in Python,” J. Mach. Learn. Res. 12, 2825 (2011).
45T. Xie and J. C. Grossman, “Crystal graph convolutional neural networks for an
accurate and interpretable prediction of material properties,” Phys. Rev. Lett. 120,
145301 (2018).
46A. Khajeh, D. Schweigert, S. Torrisi, L. Hung, B. Storey, and H.-K. Kwon,
“Early prediction of ion transport properties in solid polymer electrolytes using
machine learning and system behavior-based descriptors of molecular dynamics
simulations,” Macromolecules 56, 4787 (2022).
47Z. Li, G. D. Smith, and D. Bedrov, “Li+ solvation and transport properties
in ionic liquid/lithium salt mixtures: A molecular dynamics simulation study,”
J. Phys. Chem. B 116, 12801 (2012).
48P. Kubisiak and A. Eilmes, “Molecular dynamics simulations of ionic liquid
based electrolytes for Na-ion batteries: Effects of force field,” J. Phys. Chem. B
121, 9957 (2017).
49H. Gudla, C. Zhang, and D. Brandell, “Effects of solvent polarity on Li-ion dif-
fusion in polymer electrolytes: An all-atom molecular dynamics study with charge
scaling,” J. Phys. Chem. B 124, 8124 (2020).
50See https://www.htpmd.matr.io for htpmd web app.
51See https://github.com/tri-amdd/htp_md for htpmd source code.

APL Mach. Learn. 1, 046108 (2023); doi: 10.1063/5.0160937 1, 046108-11

© Author(s) 2023

 25 April 2024 13:34:03

https://pubs.aip.org/aip/aml
https://doi.org/10.1186/s40192-014-0022-8
https://doi.org/10.1186/s40192-014-0022-8
https://doi.org/10.1002/advs.201900808
https://doi.org/10.1146/annurev-matsci-070214-020844
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1016/j.cpc.2021.108171
https://docs.lammps.org/dump.html
https://reactjs.org/
https://doi.org/10.1038/s41467-022-30994-1
https://doi.org/10.1103/physrevlett.122.136001
https://doi.org/10.1021/jacsau.2c00590
https://doi.org/10.1021/jp047850b
https://doi.org/10.1002/aic.17091
https://doi.org/10.1021/jacs.2c02389
https://doi.org/10.1039/c0cp01971b
https://doi.org/10.1107/s0108768102003464
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1103/physrevlett.120.145301
https://doi.org/10.1021/acs.macromol.3c00416
https://doi.org/10.1021/jp3052246
https://doi.org/10.1021/acs.jpcb.7b08258
https://doi.org/10.1021/acs.jpcb.0c05108
https://www.htpmd.matr.io
https://github.com/tri-amdd/htp_md

