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Abstract: Consistent with the biochemistry of coronaviruses as well established over decades,
SARS-CoV-2 makes its initial attachment to host cells through the binding of its spike protein
(SP) to sialylated glycans (containing the monosaccharide sialic acid) on the cell surface. The virus
can then slide over and enter via ACE2. SARS-CoV-2 SP attaches particularly tightly to the trillions
of red blood cells (RBCs), platelets and endothelial cells in the human body, each cell very densely
coated with sialic acid surface molecules but having no ACE2 or minimal ACE2. These interlaced
attachments trigger the blood cell aggregation, microvascular occlusion and vascular damage that
underlie the hypoxia, blood clotting and related morbidities of severe COVID-19. Notably, the two
human betacoronaviruses that express a sialic acid-cleaving enzyme are benign, while the other
three—SARS, SARS-CoV-2 and MERS—are virulent. RBC aggregation experimentally induced in
several animal species using an injected polysaccharide caused most of the same morbidities of severe
COVID-19. This glycan biochemistry is key to disentangling controversies that have arisen over the
efficacy of certain generic COVID-19 treatment agents and the safety of SP-based COVID-19 vaccines.
More broadly, disregard for the active physiological role of RBCs yields unreliable or erroneous
reporting of pharmacokinetic parameters as routinely obtained for most drugs and other bioactive
agents using detection in plasma, with whole-blood levels being up to 30-fold higher. Appreciation
of the active role of RBCs can elucidate the microvascular underpinnings of other health conditions,
including cardiovascular disease, and therapeutic opportunities to address them.

Keywords: SARS-CoV-2; spike protein; COVID-19; sialic acid; hemagglutination; red blood cell;
microvascular occlusion; hemagglutinin esterase; pharmacokinetics

1. Introduction

As continuing breakthroughs in genetics have been prioritized in medical research
funding of recent decades, certain biochemical findings of the past have faded from col-
lective memory, including those central to the morbidities of COVID-19 and options
for mitigation. In particular, the well-established bindings of the spike protein (SP) of
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SARS-CoV-2 and other coronaviruses to surface glycans on blood, endothelial and other
host cells and their pathogenic consequences have been largely overlooked. With ground-
ing provided in a recent in-depth review [1] and dozens of other works, including [2–5],
key principles of glycan biochemistry essential to understanding and treating COVID-19
and its post-acute sequelae (long COVID) are presented below.

As will be detailed, coronavirus attachment to host cell sialic acid (SA) residues located
at the tips of cell surface glycans is an essential and overlooked pathological step. After
making its initial attachment to SA, which is ubiquitously distributed on eukaryotic cell
surfaces [6–8], the virus can then slide over to a host cell receptor for cellular entry, fusion
and replication, e.g., via the replication receptor ACE2 for SARS-CoV-2. This is not a
new discovery but is rather well-established coronavirus biochemistry known for decades
and recently confirmed with multifaceted evidence for SARS-CoV-2 [1]. Ignoring these
biochemical fundamentals and assuming that only the replication receptor, ACE2, is of
interest for SARS-CoV-2 has led to failures to interpret important pathological sequelae
needed to understand clinical symptomatology. These oversights include the following:

1. The central role in SARS-CoV-2 pathology of the 25 trillion red blood cells (RBCs) and
close to one trillion each of platelets and endothelial cells in the average human adult
has been underappreciated because they have either no ACE2 [9–11] or, for endothelial
cells, minimal ACE2 [12–16]. Yet all three cells have millions to billions of SA surface
molecules per cell (see Appendix A), to which SARS-CoV-2 SP strongly binds, forming
attachments that are key to the severe vascular-based morbidities of COVID-19.

2. As an example of the oversight noted above, investigators have struggled to explain
clinical observations of the infiltration of endothelial cells by SARS-CoV-2 SP and
associated vascular damage under the assumption that ACE2 is the sole host cell
attachment point for the virus, given that endothelial cells have minimal ACE2 [17,18]
(but they have billions of SA molecules per cell [19]).

3. More broadly, disregard for the active physiological role of RBCs yields unreliable
or erroneous reporting of pharmacokinetic parameters being routinely obtained for
most drugs and other bioactive agents as detected in plasma, with their whole-blood
levels being up to 30-fold higher.

The binding of SARS-CoV-2 SP to host cell glycans, notably for RBCs, platelets and
endothelial cells, proceeds within the broader framework of inflammatory and coagulatory
pathways that underlie the vascular morbidities of severe COVID-19. These pathways of
blood cell aggregation, inflammation and coagulation are intricately intertwined, with, for
example, RBC aggregation serving as a trigger for the coagulation cascade and ensuing
thrombosis [20–23]. The biochemical processes and direct consequences of SARS-CoV-2
SP binding to host cell glycans, however, are most clearly considered within a narrower
focus, and their importance is illustrated, for example, by the in vivo elicitation of the main
severe morbidities of COVID-19 by experimentally induced RBC aggregation in vivo, as
described below.

2. Coronaviruses including SARS-CoV-2 Attach to Host Cells via Sialylated Glycans

Coronaviruses use a variety of host cell receptors for replication, including DPP4 for
MERS, ACE2 for SARS and SARS-CoV-2, and APN for HCoV-229E [24]. Yet more important
for the pathology of SARS-CoV-2 and other coronaviruses is the mechanism by which they
initially attach to host cells, which is via glycoconjugate molecules (glycans) on the cell
surface [1,3,4,6,25–27]. Sialic acid (SA), the most common terminal monosaccharide (sugar
monomer) for vertebrates [28], is the specific attachment point on host cell glycans for
SARS-CoV-2 SP [3,29–31]. Following attachment, the virus slides over to its receptor target
for fusion and replication. The ratio of one million or more SA molecules to one hundred
or fewer ACE2 receptors per typical human cell (see Appendix A) indicates why SA is the
most readily available initial attachment point of SARS-CoV-2 to host cells.
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2.1. RBCs and Platelets Mount a Nonspecific Immune Response by Attaching to Certain Pathogens

After SARS-CoV-2 penetrates the bloodstream through a compromised alveolar–
capillary barrier [32,33] and attaches to SA on blood cell surfaces, reciprocally, RBCs,
the most abundant cells in the human body [34,35], and platelets mount a primal immune
response against such SA-binding pathogens [1,4]. RBCs and platelets (both heavily sialy-
lated, with no ACE2 [1,9–11,19,36]) attach to such pathogens, forming virally interlaced
RBC aggregates, and deliver them to leukocytes or to macrophages in the liver and spleen
for phagocytosis [1,4]. Notably, glycophorin A, a sialoglycoprotein, with one million of
its strands extending from each RBC’s surface [37], has no other known physiological
role other than for this primal immune response [28,38]. For severe COVID-19 infections,
however, the extent of RBC clumps formed can exceed the host’s capacity to sequester them.

2.2. Multifaceted Evidence for High-Affinity Bindings of SARS-CoV-2 SP to Host Cell Glycans

High-affinity bindings of SARS-CoV-2 SP to sialylated glycans on host cell surfaces
have been repeatedly confirmed in preclinical and clinical studies [1,4]. These studies
used nanoparticle arrays of SA derivatives [29] and nuclear magnetic resonance (NMR)
spectroscopy [30] and detected SP-induced RBC clumping using the hemagglutination
assay [39]. Clinically, SP traces were found on 41% of RBCs from hospitalized COVID-19
patients [40]. When SARS-CoV-2 SP was injected into zebrafish embryos, small RBC
aggregates formed, and blood flow slowed within minutes, as thrombosis developed in
capillaries, arteries and veins [41]. A competitive SP-binding agent coinjected with SP
blocked this thrombogenic effect [41]. Two in vitro studies that failed to detect attachments
of SARS-CoV-2 SP to SA [42] or to a sialylated cellular receptor [43] used microarray
detection instead of the nanoarray techniques required to support the multivalent bindings
that form durable attachments [1,4].

3. Clinical Consequences of Glycan Attachment from SARS-CoV-2 SP to Blood and
Endothelial Cells

Many studies have found that after COVID-19 gains infectious penetration in the
lungs, in severe infections, the SARS-CoV-2 virus penetrates the bloodstream through a
compromised alveolar–capillary barrier [32,33]. Severe morbidities, including hypoxia
and blood clotting, are then caused by vascular damage and occlusion [1,4,44–46]. Indeed,
with trillions of RBCs, platelets and endothelial cells per human adult, each heavily sia-
lylated [1,4,19], it is unsurprising that SARS-CoV-2 SP can severely damage the human
vasculature. RBC clumps were found in the blood of most of the severe COVID-19 patients
in several studies [1,23,47–49]. The SARS-CoV-2 virus or SP was frequently detected on
endothelial cells in severe COVID-19 patients, with heavily damaged endothelial cells also
being observed [1]. Virally induced RBC clumping is reflected in a significantly increased
erythrocyte sedimentation rate (ESR) [50–54] and decreased [55] hematocrit levels in severe
COVID-19 patients. Also, von Willebrand factor (vWF), a mediator of immunothrombosis
associated with endothelial inflammation, was sharply increased in COVID-19 [56,57] and
long COVID patients [58] vs. controls (see Appendix B). The potential for RBC aggregation
and endothelial damage to trigger the coagulation cascade, resulting in thrombosis, is
indicated in [20,22,23] and other studies [1].

RBC Clumping and Endothelial Damage Cause Microvascular Occlusion, Hypoxia and Blood Clots

Corresponding to the RBC aggregates found in most patients with severe COVID-19
in the studies noted above and associated triggers of the coagulation cascade, many studies
have reported microvascular occlusion in both the pulmonary and extrapulmonary vascu-
lature of such patients [1,4]. RBC clumps and microthrombi in the lungs have been considered
to be likely causes of hypoxemia, as reflected in decreased peripheral oxygen saturation (SpO2)
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in severe COVID-19 patients [1,4]. Microthrombi elsewhere in the body, including in the
heart, kidneys and liver, were frequently observed in autopsy examinations of COVID-
19 patients, often with accompanying multiorgan damage and blood clots [1,4]. The
attachment of SARS-CoV-2 SP to host cell glycans underlying these morbidities of severe
COVID-19 is diagrammed in Figure 1.
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Figure 1. Key facets of the biochemical underpinning of the severe morbidities of COVID-19. Repro-
duced under CC-BY 4.0 from Scheim et al. 2023 [1]. Lower left panel: SARS-CoV-2 SP, which is posi-
tively charged, binds to RBCs, platelets and endothelial cells, the surfaces of which are densely coated
with negatively charged sialylated glycans. Upper left panel: the two human betacoronaviruses
that express the SA-cleaving enzyme HE are benign, while the other three—SARS, SARS-CoV-2
and MERS—are virulent. Upper center panel: RBC aggregation experimentally induced in vivo by
injecting high molecular weight dextran (HMWD) caused most of the same morbidities of severe
COVID-19. Middle center panel: An interlaced sheet of RBCs in the hemagglutination assay (left)
and RBC clumps in zebrafish embryos (right) are shown, both induced by the introduction of SARS-
CoV-2 SP. Lower center panel: Three key risk factors for COVID-19 morbidity—older age, diabetes
and obesity—are each associated with markedly increased RBC aggregation. Middle right panel:
An electron microscopic image of RBC clumps in blood is shown and SP in damaged endothelial cells
is depicted, with both being commonly observed in severe COVID-19 patients. Lower right panel:
Microvascular occlusion in lung septal capillaries is associated with hypoxia, and microvascular
occlusion in extrapulmonary capillaries is associated with blood clots.

4. Substantiation of the Biochemical Underpinnings of Severe COVID-19 Morbidities

The key role of SARS-CoV-2 SP bindings to host cell glycans and associated blood cell
aggregation in the severe morbidities of COVID-19 has been substantiated through the
following pre-clinical and clinical evidence. For the first three points below, the RBC, the
most abundant cell in the human body, was a key focus of most of the related studies, but
similar effects were also observed for platelets. The evidence is as follows:
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1. RBC aggregation experimentally induced in several animal species by injecting the
polysaccharide HMWD caused most of the same morbidities of severe COVID-19,
notably microvascular occlusion, hypoxia and blood clots. In studies dating back to the
1940s in dogs, rabbits, mice, hamsters and other animals, RBC clumping was induced
within minutes to hours after injection of HMWD, followed by the morbidities noted,
with the molecular bridging of RBCs by HMWD being a hypothesized mechanism.
Low molecular weight dextran (LMWD) inhibited and reversed this RBC aggregation
and microvascular occlusion when RBC clumping had not progressed to clotting [1].

2. Three of the major risk factors for COVID-19 mortality—older age, diabetes and
obesity—are each associated with significantly increased RBC aggregation and mi-
crovascular occlusion [1,59,60].

3. Three of the generic drugs that have been most closely studied for potential clinical
benefits against COVID-19 either reduce RBC aggregation or specifically inhibit virally
induced RBC aggregation by competitively binding to SARS-CoV-2 SP [1].

4. For mammalian species, the degree of clinical susceptibility to COVID-19 correlates
with the degree of aggregability of RBCs with p = 0.033 [1].

5. Of the five human betacoronaviruses, the two that express hemagglutinin esterase
(HE), an enzyme that releases viral bindings to host cell sialylated glycans, are benign
(the common cold viruses HKU1 and OC43). The other three—SARS, SARS-CoV-2
and MERS—are virulent, even though the viral loads for COVID-19 and the common
cold infections are about the same [1].

An important finding related to experimentally induced RBC clumping by HMWD
and its inhibition and reversal by LMWD is that RBC aggregation occurs transiently even in
healthy mammals under conditions of slow blood flow, with larger clumps sequestered via
a distributed network of arterioles and a pulmonary catch–trap architecture [61,62]. When
the extent of RBC clumping exceeds the capacity of this sequestration network or when
fibrin-stabilized microthrombi are formed, however, that is no longer readily reversible,
and the morbidities observed in these studies are manifested.

5. SARS-CoV-2 SP Unattached to Virus Induces Microvascular Occlusion

An experimental in vivo system to study the effects of SARS-CoV-2 SP unattached to
whole virus in blood was provided by IV injection of an mRNA COVID-19 vaccine, which
induces synthesis of SP by host cells, with the trillion endothelial cells lining blood vessels
being suitable for this role [1]. In studies in mice [63] and rats [64], the range of adverse
effects caused by IV injection of the BNT162b2 vaccine (distinct from the intramuscular
(IM) administration route used clinically) included marked blood hypercoagulability along
with pericardial damage, electrocardiogram changes and other abnormalities that reflected
myocardial injury. Similar myocardial injuries were common adverse effects in the HMWD-
induced RBC clumping studies [1]. All of the mice in both the IV- and IM-injected groups
of the mouse mRNA injection study had myocardial WBC infiltration and cardiomyocyte
degeneration and necrosis vs. no effects in saline-injected controls.

Clinically, a COVID-19 vaccine made from inactivated whole virus, the Sinovac-
CoronaVac vaccine, caused no changes to the vascular density (VD) of flowing retinal
blood vessels (which excludes occluded, non-flowing vessels), as determined by optical
coherence tomography angiography [65,66]. CoronaVac and similar antigen-based vaccines
differ from mRNA and adenovector-DNA COVID-19 vaccines in that the latter’s lipid–
nanoparticle or adenoviral carrier envelopes transfect cell and tissue membranes far from
the injection site and produce unregulated, potentially large amounts of SP for prolonged
periods up to months [2].
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The Pfizer-BioNTech BNT162b2 mRNA vaccine, however, caused small but statistically
significant reductions (p < 0.001) in various VD measures [66,67], indicative of microvascular
occlusion. At four weeks after vaccination, seven of these VD reductions persisted at
statistically significant levels [66]. In another study that used PET/CT scans to track
myocardial fluorodeoxyglucose F 18 (FDG) uptake, an indicator of myocardial injury [68,69],
that value was abnormally high and significantly greater in mRNA-vaccinated subjects
vs. unvaccinated controls, as detected 1–180 days after vaccination (median of 4.8 vs.
3.3, p < 0.0001) [70]. Similar potential risks without overt clinical manifestations were
indicated from cardiac test markers 2–10 weeks after COVID-19 mRNA vaccinations vs.
pre-vaccination values in 566 patients at a cardiac clinic, with an increase in the five-year
predicted risk of acute cardiac events from 11% to 25% [71].

The risk period for the occurrence of possible microvascular complications post-
COVID-19 vaccination has not been established, but mass spectrometry analysis of whole
blood detected SP in 50% of mRNA-vaccinated subjects up to six months after vaccina-
tion [72]. Another study found that of 16 COVID-19 mRNA-vaccinated patients hos-
pitalized afterward for myocarditis, all had significant levels of SARS-CoV-2 SP in the
blood, while 45 asymptomatic, vaccinated subjects had no detectable SP [73]. Studies
which include one recently conducted by a multinational collaboration that examined the
health records of 99 million COVID-19 vaccinated individuals [74] and a Yale study of
adverse effects manifested after COVID-19 vaccination [75] can help to harmonize post-
vaccination signs of microvascular occlusion and myocarditis from retinal VD and myocar-
dial FDG uptake as noted above and from ECG abnormalities [76,77] with safety/toxicity
signals corresponding to overt clinical events.

6. Rapid Reversal of COVID-19 Hypoxia by Competitive Binding to SARS-CoV-2 SP

Two of the three generic drugs that received the most attention as potential COVID-19
therapeutics, hydroxychloroquine (HCQ) and fluvoxamine, have significant activity in reduc-
ing RBC and platelet cell aggregation [1]. A more closely targeted molecular mechanism for
mitigating the virulence of SARS-CoV-2 SP by competitive binding is indicated for the third
generic drug of major interest, ivermectin (IVM), a macrocyclic lactone that has been dispensed
in over four billion human doses worldwide since 1987 [78,79]. IVM had the strongest or
close-to-strongest binding affinity to SARS-CoV-2 SP in four in silico studies that collectively
screened over 1000 molecules [1]. One molecular modeling study that focused on IVM binding
to SARS-CoV-2 SP at its receptor-binding domain (RBD), its region of attachment to host cell
ACE2, however, found only low affinity binding [80]. Yet in silico examination of IVM binding to
21 sites distributed across the SP’s RBD and N-terminal domain (NTD) found high-affinity bind-
ing to eight of these sites, all but one on the NTD, the SP region which governs its attachments
to host cell glycans [81] (see Appendix B). Six other molecular modeling studies confirmed
high-affinity bindings of IVM to SARS-CoV-2 SP [1,82].

Several observations of recovery of COVID-19 patients in severe respiratory distress
1–2 days after IVM treatment, with accompanying sharp increases in SpO2, prompted
early interest in this drug in 2020 [1]. This striking SpO2 normalization, as tracked in
three clinical studies summarized in Figure 2 and Table 1 below, sometimes occurring
within hours after IVM administration [83], paralleled the rapid disaggregation by IVM of
RBC clumps that formed after SARS-CoV-2 SP was added to human RBCs in vitro [39].
Sharp increases in SpO2 one day after IVM treatment in these three clinical studies con-
trasted distinctly, far outside 95% confidence intervals, with a flat SpO2 curve under
standard treatment. A similar flat SpO2 curve was tracked in several other clinical studies
during the first 1–2 weeks of severe or moderate COVID-19 under standard treatment [1].
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following treatments including or excluding IVM, with statistical significance of compared values.

Clinical Series Used IVM

Day 1 after Start of Treatment Day 2 after Start of Treatment

No.* Mean ± SE of
∆SpO2 † p-Value ‡ No.* Mean ± SE of

∆SpO2 † p-Value ‡

Stone et al.
2022 [83] Y 33 6.76 ± 0.80 9.75 × 10−10 34 7.06 ± 0.80 2.84 × 10−10

Hazan et al.
2021 [86] Y 19 6.55 ± 0.70 5.45 × 10−9 - - -

Babalola et al.
2021 [87] Y 19 2.63 ± 0.99 0.00149 19 3.58 ± 1.11 0.0001901

Thairu et al.
2022 [84] N 26 -0.42 ± 0.27 - 26 -0.62 ± 0.35 -

* The number of patients having SpO2 values on the day noted. † SE is standard error; ∆SpO2 is the change in
SpO2 from day 0 (pre-treatment) to the designated day (1 or 2). ‡ The p-value shown is the probability of the set of
SpO2 changes for study patients being stochastically equivalent to those for Thairu et al. (2022), as calculated
using the Mann–Whitney U test (two-tailed) [88]. The underlying data on SpO2 changes for individual patients in
these four studies are shown in Tables S1–S5.
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The probabilities that the IVM-based treatments yielded greater SpO2 increases than
the standard treatment on day 1 or 2 by chance, as listed in Table 1, were very small
(p < 0.0015) for the Babalola study and infinitesimally small (p < 5.5 × 10−9) for the other
two IVM studies that used a triple therapy of IVM, doxycycline and zinc. A case series
that monitored pre- and post-treatment SpO2 values in 71 patients over a 10-day treatment
period for COVID-19 who were given the same triple therapy likewise found consistent
SpO2 normalization, with means of 93.3% to 98.1% pre- to post-treatment, respectively [89].
Although these results are consistent with the mostly positive results on IVM efficacy from
more than 20 randomized controlled trials (RCTs) for COVID-19 treatment conducted in
2020 through mid-2021 [79,90], they may seem incongruous given two such RCTs conducted
in 2021 [91] and 2022 [92] that received widespread attention, both of which concluded
that IVM provided no statistically significant benefits vs. placebo. Yet both of these RCTs
violated core scientific norms, calling their credibility into question (see details [1,93]).

In the 2021 RCT, IVM was substituted for placebo doses for 38 of the 398 total patients,
a mistake that was discovered a month later, and blinding was broken by the study’s use of
sugar water as the placebo for one-third of the patients (liquid IVM has a bitter taste) [91,94].
Adverse events that are distinctive to the high IVM dose used (transient and non-critical)
occurred at almost identical rates in the IVM and placebo arms, while over-the-counter
sales of IVM surged in the study region during the study period [94,95].

Despite repeated inquiries, coauthors of the 2022 study (the TOGETHER trial,
IVM arm) refused to disclose four of its key outcome numbers, namely, per-protocol
deaths and hospitalizations, treatment vs. placebo [93]. These four numbers are of key
importance given critiques by the US Food and Drug Administration [96] and National
Institutes of Health [97] of the primary outcome used in all arms of that platform trial.
Instead, a coauthor of that study directed inquiring scientists to the ICODA data repository,
the data source listed in the study’s data sharing statement [93,98]. After two months of
futile attempts by scientists to obtain the data from ICODA, however, an ICODA manager
disclosed that ICODA never held this study’s data and that she had instructed its authors
to stop citing it as their data source [99]. As of 1 April 2024, however, 20 months after notifi-
cation by the ICODA manager [99] and others [100] to study coauthors that their data were
never at ICODA, two TOGETHER trial sister publications with mostly overlapping sets of
coauthors with its IVM trial (all having ClinicalTrials.gov registry number NCT04727424)
still list their data sharing source as ICODA, which never held their data [101,102].

Based on the infectious characteristics of Omicron variants of SARS-CoV-2 noted in
Section 11, which sharply limit penetration into the blood, it is unclear whether the clinical
benefits of IVM against pre-Omicron variants as noted above would apply to typically
milder Omicron infections. Only modest such benefits in time to recovery were suggested
in a platform trial that compared IVM treatment of COVID-19 patients enrolled up through
July 2022, an Omicron-dominated period, with controls in a pre-Omicron-dominated
period [103]. The study found 1.6% vs. 4.4% rates of hospitalizations and 0.14% vs. 0.37%
rates of deaths, IVM vs. controls, with no death rates reported for a concurrent subset of
controls and other serious flaws noted [104].

Competitive binding by IVM to SARS-CoV-2 SP appears to underlie the rapid, sharp
normalization by IVM of SpO2 values and alleviation of the accompanying respiratory
distress in severe pre-Omicron COVID-19 patients. This clinical effect parallels the rapid
disaggregation by IVM of RBC clumps that formed after SARS-CoV-2 SP was added
to human RBCs in vitro [39]. As noted above, RBC aggregation is readily reversible, as
commonly occurs in healthy mammals, with significant masses of RBC clumps nevertheless
detrimental to blood oxygenation [1]. In contrast, it does not appear that dissolution of
fibrin-enmeshed blood clots, mitigation of endothelial damage or a significant reduction in
viral load could occur within one day, even if IVM could cause these effects. However, an
anti-inflammatory effect mediated by positive allosteric modulation of the alpha-7 nicotinic
receptor by IVM [81] would occur rapidly and might additionally contribute to the noted
SpO2 normalization by IVM in that short timeframe.
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7. Obstacles to the Deployment of Repurposed Generic Drugs

As outlined above, in most COVID-19 research of the past three years, a lack of
knowledge or appreciation of how SARS-CoV-2 and other coronaviruses initially attach
to host cell surface glycans led to ACE2 being considered the sole host cell receptor of
interest for SARS-CoV-2. Also largely overlooked was the associated key role of the
heavily sialylated RBCs, platelets and endothelial cells, with trillions of each in the hu-
man body, in the key morbidities of severe COVID-19. Under the assumption that since
SARS-CoV-2 SP does not replicate, it must be harmless, SP was chosen as the immunogen
for most COVID-19 vaccines. Compounding the scientific oversights noted, however, was
the vulnerability of medical science to commodification, a subject that has engaged the
contributions of some of science’s most distinguished scholars, including current and past
editors of leading scientific journals [105–113].

Richard Horton, Editor-in-Chief of The Lancet, for example, wrote in 2015 that plagued by
“flagrant conflicts of interest”, “much of the scientific literature, perhaps half, may simply be
untrue” [105]. Financially driven biases in medicine have manifested in the marginalization of
some generic drugs in competition with patented offerings. A prime example was a treatment
consisting of two antibiotics and bismuth for H. pylori (peptic ulcers), a previously intractable
condition, which was shown to be 96% curative in a clinical trial conducted by Thomas Borody in
1990 [114]. That triple-therapy cure was rapidly deployed in Australia, preventing an estimated
18,665 deaths up through 2015 [115]. It was not widely used in the rest of the world, however,
until the late 1990s, after the patents for two best-selling palliative drugs for that condition
expired [116]. The related discovery of the bacterial cause (H. pylori) of peptic ulcers was honored
with the Nobel Prize for Medicine in 2005. (Borody was a coinvestigator of one of the clinical
studies shown in Figure 2 that found rapid, sharp increases in SpO2 after IVM-based triple
therapy of severe COVID-19 [86].)

The use of IVM to treat COVID-19 was likewise subjected to questionably based
restrictions [117–120], yet real-world evidence in large populations demonstrated the safety
and efficacy of IVM against COVID-19. In Peru, excess deaths decreased 14-fold during four
months of mass IVM use in 2020, until a new president elected on November 17 restricted
its use, after which excess deaths then increased 13-fold over the next two months [121]. A
rigorous state-by-state analysis of IVM use in Peru’s 25 states using national health data
that aligned with WHO summary data found a correlation between the extent of IVM use
and reductions in excess deaths, by state, with p < 0.002 [121].

In Uttar Pradesh, the largest state in India, having a population of 229 million,
COVID-19 deaths fell by 97%, from 328 to 10 per day (seven-day moving averages) between
May 7 and 7 July 2021, after mass distribution of IVM, doxycycline, zinc with vitamins and
acetaminophen tablets began [121]. The cumulative total of COVID-19 deaths per million
population in Uttar Pradesh from 7 July 2021 to 1 April 2023 was 4.3, 0.27% of that figure in
the US (1596.3) for the same period [121].

8. Ignoring RBCs Yields Inaccurate Blood Levels of Drugs and SARS-CoV-2 SP

An RCT for COVID-19 prophylaxis that yielded significant clinical benefits 42 days
after a single IVM dose led us to conjecture that RBCs could provide a persisting reservoir
for IVM and other drugs (see Appendix C) and that pharmacological values typically
determined in plasma or serum could accordingly be inaccurate. A deep literature search
finally resolved this pharmacological conundrum. This RBC-binding effect proved not
to apply for IVM [122], but it did apply for rapamycin, a widely used drug that is a
chemical cousin of IVM, which has a striking, 30-fold ratio of whole-blood-to-plasma
concentrations [123–125]. This effect also proved to apply to dozens of other drugs [126,127]
and bioactive agents [128], with blood-to-plasma ratios greater than 10 for several [126–128].
Such binding of drugs and other bioactive agents to RBCs provides extended persistence
in circulation [127], with increased opportunity for physiological potency beyond what
concentration values in plasma would indicate. Yet this effect has been obscurely reported,
pharmacokinetic parameters are still typically detected only in plasma or serum, and
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erroneous values of significant consequence have been reported for SARS-CoV-2 SP and
for another bioactive molecule considered in the next section.

Blood concentrations of SARS-CoV-2 SP are reported in almost every case using
plasma or serum, but this glycoprotein binds strongly to RBCs [1], e.g., with SP traces
being found on 41% of RBCs from hospitalized COVID-19 patients in one study [40].
Although methodological differences preclude exact comparisons, one mass spectroscopic
examination of whole blood found SP in 50% of blood samples from subjects up to six
months after mRNA COVID-19 vaccination [72]. Other studies that used plasma or serum,
however, found much lower SP levels [73,129,130], e.g., no detectable SP in any subject
10 days post-vaccination [130]. This substantial underassessment of SARS-CoV-2 SP in
blood detected using plasma or serum, which may be on the order of or greater than
the 30-fold such effect for rapamycin, exemplifies the pitfalls of overlooking the glycan
bindings of SP. Moreover, it has confounded assessments of persisting SP in long COVID
and post-vaccination syndrome.

9. Limiting RBC Aggregation Can Enhance Cardiovascular Health, Cognitive Function
and Longevity

As noted above, elevated RBC aggregation and microvascular occlusion are found with
older age, diabetes and obesity [1,59,60], and these three are also major risk factors for the
largely vascular-based morbidities of severe COVID-19 [1]. These same three risk factors are
also associated with significantly increased incidence of cardiovascular disease [131–133].
Aside from causing damage associated with microvascular occlusion, RBC aggregation
can induce atherosclerosis through mechanisms including increased blood viscosity and
forces of traction exerted by the blood on the arterial wall [134,135]. Elevated erythrocyte
sedimentation rate (ESR), an indicator of RBC aggregation, was found in multivariate
analyses to be closely correlated with cardiac [136] and carotid [137] atherosclerosis and to
cardiac mortality, with a closer correlation of cardiac mortality to ESR (p < 0.0001) than to
elevated cholesterol [136,138]. For the incidence of carotid atherosclerosis, the correlations
to ESR and to a direct measure of RBC aggregation in blood were also much higher than its
correlation to C-reactive protein (CRP) [137], suggesting that the correlations to indicators
of RBC aggregation were not merely reflections of inflammation. Three agents that bind to
RBCs, lower RBC aggregation and have shown reductions in the incidence of cardiovascular
disease are briefly considered below.

Resveratrol (RSV), a polyphenol component of red wine and other dietary sources,
was found in clinical and animal studies to bind to RBCs [139], limit RBC aggregation [140],
decrease ESR [141,142] and improve microvascular circulation [143]. In heart failure pa-
tients, RSV yielded an improved exercise capacity that was significantly correlated with
reduced RBC aggregation [140]. In mice, increased microvascular density and decreased
microvascular abnormalities in the brain in the RSV vs. control group were paralleled
by enhanced performance in a maze task [143]. Human RSV levels after oral intake were
3.2 times higher in blood vs. plasma [144] due to its RBC binding, but its underassessed
plasma concentrations were erroneously cited in several reports as indicative of a disparity
between peak RSV blood levels and two- or three-fold higher levels required for beneficial
effects in vitro [145–147].

Chloroquine and its analog, hydroxychloroquine (HCQ), also have blood-to-plasma
concentration ratios greater than 3.0 [126,148], and for these drugs as well, this effect
was associated with decreased RBC and platelet aggregation, reductions in microvascular
occlusion and associated physiological benefits found clinically and in vivo [149–151].
Three RCTs that studied HCQ use for rheumatoid arthritis and lupus found significant
reductions in cardiovascular events and morbidity vs. non-HCQ controls [152–154].

RSV, however, is most compellingly positioned for evaluation as a practical inter-
vention to reduce the risks of cardiovascular disease in light of the real-world evidence
associated with the “French paradox”. Mortality from coronary heart disease (CHD) in
France in recent decades was found to be one-half to one-third of that in other countries, in-
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cluding the US, UK and Sweden, despite higher French consumption of saturated fat [155].
RSV in red wine, a mainstay of the French diet, has been proposed as the key to that
country’s decreased CHD mortality [155]. Ethanol at concentrations commensurate with
moderate alcohol consumption, however, has also been found to decrease aggregation of
RBCs [156], with the same aggregation-limiting effect observed for platelets [157]. Thus,
the ethanol in red wine might also contribute to the lower French CHD mortality, yet
multivariate analyses of the effects of light-to-moderate ethanol consumption show either
no reduction in CHD mortality [158] or reductions of 12–20% [159], much less than those
noted above for France.

10. Discussion

This article summarizes and extends more detailed works by its coauthors and others,
including [2–5], which delve into complexities not considered here. It bears reaffirma-
tion that the binding of SARS-CoV-2 SP to RBCs, platelets and endothelial cells which
underlies the blood cell aggregation, vascular damage and related severe morbidities of
COVID-19 proceeds within a broader framework of cascading inflammatory and coag-
ulatory pathways. At the same time, however, there is stark simplicity to the disregard
of well-established biochemistry—including the initial attachment of SARS-CoV-2 and
other coronaviruses to host cell surface glycans, and the primal immune defense by which
RBCs and platelets clump and sequester such viruses—that has characterized most COVID-
19 research. Probing the pathology of SARS-CoV-2 through the nearly exclusive lens of
its replication and its replication receptor, ACE2, has resulted in the noted significant
oversights concerning opportunities and risks of COVID-19 therapeutics.

Although additional cellular receptors, including neuropilin-1 and the alpha-7 nicotinic
acetylcholine receptor, are likely targets of SARS-CoV-2 for certain cell types [1,160], SA is of
prime interest because it serves as the initial attachment point on all host cells for this and
other coronaviruses, as noted, and is ubiquitous on eukaryotic cell surfaces [6–8]. Although the
attachment of SARS-CoV-2 SP to sialylated host cell glycans has been demonstrated in multiple
studies, a complete understanding of how different chemical bonds support such attachment
remains to be achieved. Most conspicuous is the attraction between the positively charged SARS-
CoV-2 SP [39,161–163] and the negatively charged, densely distributed SA on the surfaces of RBCs,
platelets and endothelial cells, as depicted in the bottom left panel of Figure 1. (The associated
electrostatic repulsion between blood and endothelial cells is key to smooth blood flow [19].)
Covalent glycosidic bonds from SA to other sugar monomers may also join glycans populating
the 22 N-glycosylation sites and the four O-glycosylation sites of SARS-CoV-2 with interlocking
glycans on host cells [1,30,164–167].

Although this review focuses on attachment to host cells by SARS-CoV-2 SP in the
context of that for other coronaviruses, SA is also the attachment point for pathogens of
other viral families [168–170]. For influenza, the virus’s membrane fusion glycoprotein,
hemagglutinin, is complemented by its SA-cleaving enzyme, neuraminidase [3,168,170,171],
which serves a role analogous to hemagglutinin esterase (HE) for the two benign human
betacoronaviruses, the common cold viruses HKU1 and OC43.

11. Conclusions

The well-established glycan biochemistry of coronaviruses, as multiply confirmed
for SARS-CoV-2 SP, reveals how this viral SP attaches to the densely sialylated surfaces of
RBCs, platelets and endothelial cells and to other host cells, causing RBC aggregation, pul-
monary and extrapulmonary microvascular occlusion, hypoxia and blood clots. Especially
vulnerable to these severe morbidities are patients of older age, diabetes or obesity, who
have significantly increased baseline levels of RBC aggregation. These basic principles of
SARS-CoV-2 biochemistry and the associated key roles of the trillions of RBCs, platelets
and endothelial cells in the average human adult, which have no ACE2 or (for endothe-
lial cells) minimal ACE2 but very dense SA surface coatings, however, have been largely
marginalized in most COVID-19 research of the past three years.
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This disregard of glycan biochemistry has resulted in the following significant over-
sights concerning SARS-CoV-2 SP. Blood levels of SP, as with almost all drugs and other
bioactive agents, are commonly misdetermined using plasma, an invalid detection method
for RBC-binding molecules, which can have whole-blood-to-plasma ratios as high as 30 to
one. Indeed, SP levels in the blood, which persist to detectable levels months after mRNA
COVID-19 vaccination [72], have only been accurately determined using whole blood
(see Section 8). A second oversight was the assumption that SARS-CoV-2 SP is harmless
because it cannot replicate, yet it binds strongly to RBCs and endothelial cells, induces
RBC aggregation in vitro [39] and causes damaging related effects in vivo [63,64].

The use of SARS-CoV-2 SP as the immunogen for most COVID-19 vaccines raises concerns
for the current versions that use Omicron subvariants, since SP from one Omicron lineage
was found to have ten times the hemagglutinating activity of SP from prior variants [39].
Corresponding multi-fold increases in the net positive charge of the SP of Omicron vs. prior
variants [39,161–163] account for this markedly increased attachment strength to the negatively
charged RBC surface. Although Omicron infections are milder than those of prior variants,
as related to its less efficient replication in the lung alveolar epithelium [172,173], which is the
virus’s portal into the blood [32], the much greater hemagglutinating activity of Omicron’s SP
increases its potential risks for use in vaccinations. Therefore, there may be additional risks
associated with the new generation of Omicron-based COVID-19 vaccines, which had no human
testing [174] and, as noted in an NIH media advisory of 19 July 2022 [175], have reduced efficacy
vs. those based on prior variants [176–178].

The RBC-disaggregating effect of IVM caused by its competitive binding to SARS-CoV-2 SP,
which underlies its striking clinical benefits for pre-Omicron variants (see Section 6), would
likely not apply for Omicron infections due to the Omicron properties noted above. Yet
IVM may prove useful for the treatment of long COVID, in which SP has been found to
persist in blood [179–182], and for prevention of COVID-19 [183–186]. Given the clear
record of safety of IVM in four billion human doses worldwide [78,79], with this safety
record specifically noted by the Nobel Prize committee in 2015 in honoring the discovery
of this drug [187], the availability of IVM to treat or prevent COVID-19 and long COVID
will provide far more benefits than risks to public health.

Expanding beyond the scope of COVID-19, gaps in knowledge of glycan biochem-
istry and the associated role of RBCs have extended to underappreciation of the role of
RBC aggregation in cardiovascular disease. For RSV, for example, which may be key to
the major reductions in CHD mortality in France vs. other countries in past decades, these
oversights extend even to errors in its basic pharmacology, with three-fold underassessed
values for RSV concentrations reported using plasma vs. whole blood. As noted above,
RSV has been found in clinical and animal studies to bind to RBCs, limit RBC aggregation,
and improve microvascular circulation, exercise capacity and cognitive function.

The scope of health impacts from RBC aggregation and microvascular occlusion is
exemplified by the finding that subjects of ages 56–75 had ten-fold the percentage of occluded
microvessels in the bulbar conjunctiva as for those of ages 16–35 (30% vs. 3%) [59], with
ocular microvascular occlusion having been found to mirror such conditions elsewhere in the
body [188,189]. Moreover, elevated ESR, an indicator of RBC aggregation, was found to be
highly correlated to cardiovascular mortality (p < 0.0001), with a stronger correlation than
that to elevated cholesterol. It is thus conceivable that a public health program to monitor
ESR levels and restrict them within normal limits using RSV or related agents might yield equal
or greater benefits than current strategies of monitoring and normalizing cholesterol levels. In
a best-case scenario, biochemical insights gleaned through research that was prompted by the
COVID-19 pandemic may result in enduring benefits for public health.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v16040000/s1, Table S1: Changes in SpO2 for 34 COVID-19 patients treated with IVM,
doxycycline and zinc, as reported by Stone et al. (2022), Table S2: Changes in SpO2 for 19 COVID-
19 patients treated with IVM, doxycycline and zinc, as reported by Hazan et al. (2021), Table S3:
Changes in SpO2 for 19 COVID-19 patients treated with IVM, zinc and vitamin C, with some
also given azithromycin and hydroxychloroquine, as reported by Babalola et al. (2021), Table S4:
Changes in SpO2 for 26 COVID-19 patients treated without IVM using different combinations of
lopinavir/ritonavir, remdesivir, azithromycin, enoxaparin, zinc sulfate and vitamin C, as reported by
Thairu et al., Table S5: Means and standard errors of SpO2 changes from day 0 to day 1 and from day
0 to day 2 for the full set of 26 patients from Thairu et al. (2022) and for the subset of 18 patients who
were on room air (without oxygen supplementation or ventilation).
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Appendix A. Notes and Calculations on Surface Area and Extent of Sialylation of RBCs
and Endothelial Cells in Human Vasculature

In an average human adult, the blood contains 25 trillion RBCs [34,35], each with a surface
area of 163 µm2 [126], yielding a total surface area of about 4075 m2. The blood also contains
nearly one trillion platelets [190], and the vasculature is lined with one trillion endothelial cells
having a total surface area of about 1000 m2 [191]. RBCs, platelets and endothelial cells are each
heavily sialylated, with about 35 million SA monosaccharides per RBC [19,192], a more than
ten-fold greater surface density of SA on platelets and endothelial cells than on RBCs [19,36],
and about 25–50 billion SA molecules (vs. 175 ACE2 receptors) per endothelial cell [12,19] (using
the figure of 1000 µm2 for the approximate surface area of an endothelial cell [191]). The surface
of one type of immortalized human glomerular endothelial cell was found to consist of 50%
SA [193]. RBCs [9] and platelets [10,11] have no ACE2, while endothelial cells have minimal
ACE2 [12–16]. Whereas mammalian cells of all major tissues typically contain at least one
million SA molecules per cell [8], ACE2 is either absent or expressed at counts of one hundred
or less per cell in most human cell types [12,194].

Appendix B. Significantly Increased Erythrocyte Sedimentation Rate (ESR), Decreased
Hematocrit Level and Increased von Willebrand Factor (vWF) in Severe COVID-19
Patients and Long COVID Patients

Significantly increased blood values for erythrocyte sedimentation rate (ESR) and de-
creased hematocrit levels were found in severe COVID-19 patients. ESR was increased [50–54],
and hematocrit level decreased [55] in COVID-19 patients with greater disease severity, with
p < 0.001 for both. This ESR increase is consistent with the RBC clumping induced by
SARS-CoV-2 SP, while the decreased hematocrit level could result from larger RBC clumps being
sequestered, as it occurs for such clumps that form transiently even in healthy mammals, via a
distributed network of arterioles and a pulmonary catch–trap architecture [61,62]. Note that
RBC aggregation, which is readily reversible, is different from the formation of fibrin-enmeshed
blood clots. Also, von Willebrand factor (vWF), an indicator of endothelial inflammation, was
sharply increased in severe vs. non-severe COVID-19 patients [195,196] and in COVID-19 [56,57]
and long COVID patients [58] vs. controls.

Appendix C. High-Affinity Binding of IVM to SARS-CoV-2 SP at the SP’s NTD

Aminpour et al. (2022) found by in silico computations that IVM binds with high
affinity (<−7.0 kcal/mol) to seven sialoside binding sites or other glycan-binding sites on
SARS-CoV-2 S1, six on the N-terminal domain (NTD) and one on the receptor-binding
domain (RBD), for the RBD in the open (“up”) position [81]. For the RBD in the closed
(“down”) position, these binding energy values of <−7.0 kcal/mol were obtained for
two additional glycan binding sites (eight total) on the NTD and the same one on the
RBD. As a measure of the significance of that binding energy value, binding energies of
<−7.0 kcal/mol predicted efficacy for a large set of HIV inhibitors with 98% sensitivity and
95% specificity in another study [197].

Appendix D. A Persistent Physiological Effect of IVM 42 Days after a Single Standard
Dose, Despite a Plasma Half-Life of 72 h for the Major Metabolites of IVM

An RCT for COVID-19 prevention administered just one dose of IVM at 12 mg (about
150 µg/kg, at the low end of a standard dose) to 617 subjects on day one of a 42-day
observation period [184]. Three other agents were each administered daily to subjects in
other study arms over that same period. IVM at that single low dose on day one yielded the
best results of the four agents, with statistically significant reductions close to 50% in both
symptomatic COVID-19 patients (p = 0.01) and patients with acute respiratory symptoms
(p = 0.0034) vs. controls on day 42.
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A significant physiological effect of IVM 42 days after oral administration, however,
appears puzzling given its elimination half-life. IVM is absorbed into the blood and
distributed in body tissues to peak levels typically within 4–8 h after oral dosage, with
an average elimination half-life of IVM determined in plasma of roughly 18 h [198–201].
This plasma half-life is four-fold greater, three days, however, for the major metabolites of
IVM [198], but that still does not appear consistent with a significant physiological effect
42 days after a single dose. If IVM were to bind with moderate or high affinity to RBCs, that
could provide a reservoir for the drug that would not be detected from its plasma levels,
yet IVM was found, in fact, to bind minimally to RBCs [122], although it is conceivable that
its active metabolites bind more strongly to RBCs. Other studies indicate persistence of
IVM in tissue and persistent physiological effects in humans [198,200,202] and rabbits [203],
respectively, from many days to one month after a single dose.
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