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ARTICLE

Accelerating amorphous polymer electrolyte
screening by learning to reduce errors in molecular
dynamics simulated properties
Tian Xie 1,2✉, Arthur France-Lanord 1,3, Yanming Wang 1,3, Jeffrey Lopez 3, Michael A. Stolberg1,4,

Megan Hill4, Graham Michael Leverick 5, Rafael Gomez-Bombarelli 1, Jeremiah A. Johnson 4,

Yang Shao-Horn 1,5 & Jeffrey C. Grossman 1,3✉

Polymer electrolytes are promising candidates for the next generation lithium-ion battery

technology. Large scale screening of polymer electrolytes is hindered by the significant cost

of molecular dynamics (MD) simulation in amorphous systems: the amorphous structure of

polymers requires multiple, repeated sampling to reduce noise and the slow relaxation

requires long simulation time for convergence. Here, we accelerate the screening with a

multi-task graph neural network that learns from a large amount of noisy, unconverged, short

MD data and a small number of converged, long MD data. We achieve accurate predictions

of 4 different converged properties and screen a space of 6247 polymers that is orders of

magnitude larger than previous computational studies. Further, we extract several design

principles for polymer electrolytes and provide an open dataset for the community. Our

approach could be applicable to a broad class of material discovery problems that involve the

simulation of complex, amorphous materials.
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Polymer electrolytes are promising candidates for next-
generation lithium-ion battery technology due to their low
cost, safety, and manufacturing compatibility. The major

challenge with the current polymer electrolytes is their low ionic
conductivity, which limits the usage in real-world applications1–3.
This limitation has motivated tremendous research efforts to
explore new classes of polymers via both experiments4–7 and
atomic-scale simulations8–10. However, the simulation of ionic
conductivity is extremely expensive due to the amorphous nature
of polymer electrolytes and the diversity of timescales involved in
their dynamics, drastically limiting the ability to employ high-
throughput computational screening approaches. Note that
although some polymers have crystalline structures and past
studies have performed large-scale screenings on crystalline
polymers with density functional theory calculations11,12,
screening polymers with lower levels of crystallinity requires
more expensive molecular dynamics (MD) simulations to sample
the equilibrium structure and dynamics. For instance, recent
studies8–10 exploring amorphous polymer electrolytes with clas-
sical MD only simulated around ten polymers. In contrast, a
study that applies machine learning methods to literature data is
able to explore a larger chemical space7, but it is limited by the
diversity of polymers that have been studied in the past. The
exploration beyond known chemical spaces would require a sig-
nificant acceleration of the computational screening of polymer
electrolytes.

There are two major reasons for the large computational cost
for simulating the ionic conductivity of polymer electrolytes with
MD. First, the amorphous structure of polymer electrolytes can
only be sampled from a random distribution using, e.g., Monte
Carlo algorithms, and yet this initial structure has a significant
impact on the simulated ionic conductivity due to the lack of
ergodicity in the MD simulation10,13. Multiple simulations
starting from independent configurations are therefore required
in order to properly sample the phase space and reduce statistical
noise. Second, the slow relaxation of polymers requires a long
MD simulation time to achieve convergence for ionic con-
ductivity (on the orders of 10’s to 100’s of ns), so each MD
simulation is also computationally expensive8,10.

Machine learning (ML) techniques have been widely used to
accelerate the screening of ordered materials14,15, but most pre-
vious studies implicitly16–19 assume that the properties used to
train the ML models are generated through a deterministic,
unbiased process. However, the MD simulation of complex
materials like amorphous polymers is intrinsically stochastic, and
obtaining data with low statistical uncertainties by running
repetitive simulations is impractical at a large scale due to the
large computational cost. An alternative approach is to reduce the
accuracy requirements for individual MD simulations and learn
to reduce the random and systematic errors with large quantities
of less expensive, yet imperfect data. It has previously been
demonstrated that ML models can learn from noisy data and
recover the true labels for images20 and graphs21. Past works have
also shown that systematic differences between datasets can be
learned by employing transfer learning techniques22–25. Inspired
by these results, we hope to significantly reduce the computa-
tional cost for simulating the transport behavior of polymers by
adopting a noisy, biased simulation scheme with short, uncon-
verged MD simulations.

In this work, we aim to accelerate the high throughput com-
putational screening of polymer electrolytes by learning from a
large amount of biased, noisy data and a small number of
unbiased data from molecular dynamics simulations. Despite the
large random errors caused by the dependence on the initial
structure, we only perform one MD simulation for each polymer,
and learn a shared model across polymers to reduce the random

error and recover true properties that one would obtain from
repetitive simulations. To reduce the long MD simulation time,
we perform large quantities of short, unconverged MD simula-
tions and a small number of long, converged simulations. We
then employ multitask learning to learn a correction from the
short simulation properties to long simulation properties. We
find that our model achieves a prediction error with respect to the
true properties smaller than the random error from a single MD
simulation, and it also corrects the systematic errors from
unconverged simulations better than a linear correction. Com-
bining the reduction of both random and systematic errors, we
successfully screen space of 6247 polymers and discover the best
polymer electrolytes from the space, which corresponds to a 22.8-
fold acceleration compared with simulating each polymer directly
with one long simulation. Finally, we extract several design
principles for polymer electrolytes by analyzing the predicted
properties in the chemical space.

Results
Polymer space and sources of errors. The polymer space we aim
to explore is defined in Fig. 1a, which considers both the syn-
thesizability of polymers and their potential as electrolytes. In
general, it is difficult to determine the synthesizability, especially
the polymerizability, of an unknown polymer. Here, we focus on
a well-established condensation polymerization route using car-
bonyl dichloride and comonomers containing any combination of
two primary hydroxyl, amino, or thiol groups to form poly-car-
bonates, ureas, dithiocarbonates, urethanes, thiourethanes, and
thiocarbonates. This scheme does not guarantee polymerizability,
but provides a likely route for lab synthesis. The carbonyl
structure ensures a minimum capability to solvate Li-ions as an
electrolyte, and it also allows for the maximum diversity of
polymer backbones. The monomers are sampled from a large
pharmaceutical database26 to ensure its structures are realistic.
After obtaining the molecular structure of the polymer, we
sample its 3D amorphous structure with a Monte Carlo algo-
rithm, insert 1.5 mol lithium bis(trifluoromethanesulfonyl)imide
(LiTFSI) salt per kilogram of polymer, perform a 5 ns MD
equilibration, and finally run the MD simulation to compute its
transport properties like conductivity.

There are mainly two types of errors in this workflow. In the
scope of this work, we call random errors the ones that can be
eliminated by running repetitive simulations on the same
polymer, and systematic errors those that cannot be eliminated.
The major source of random error is the sampling of the initial
amorphous structure of the polymer. In Fig. 1b, we show the
conductivities computed from six different random initializations
for the same polymer, which has a large standard deviation of
0.094 log10(S/cm) in the log scale at 5 ns. This error comes from
the lack of ergodicity of MD simulations for polymers—the large-
scale amorphous structure of the polymers usually does not
change significantly at the timescale that can be achieved with
MD. The systematic errors mainly come from the long MD
simulation time needed to obtain the converged conductivity.
Figure 1c shows the value of conductivity as a function of the
simulation time for five different polymers, which slowly
converges as the simulation progresses. This slow convergence
introduces a systematic error of ionic conductivity with any
specified simulation time with respect to the converged
conductivity. On average, there is a 0.435 log10(S/cm) difference
in the log scale between a 5 ns and a 50 ns simulation for these
five polymers. Here, we use the 50 ns simulation results as the
converged values, although it is not fully converged for some
polymers. Based on our comparison with respect to experimental
values reported in literature4,6,27–36 in Supplementary Fig. 1, the
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50 ns simulation has a reasonable agreement except for polymers
with very low conductivity. Note that even 50 ns conductivities
have large random errors similar to the 5 ns conductivities, since
the random errors are mainly caused by the large-scale
amorphous structures that do not change significantly with long
simulation time. In addition to the random and systematic errors,
the difference between the 50 ns simulation and experimental
results represents the simulation error of the MD approach,
which is influenced by the accuracy of force field, finite size of the
simulation box, etc. We do not consider this simulation error for
most of our multitask learning workflow and only use experi-
mental data for final evaluation. In principle, if we have enough
experimental data, they can also be incorporated into the learning
framework similar to the systematic error to further improve the
prediction accuracy with respect to experimental results.

Multitask model to reduce errors. These two types of errors
introduce significant computational costs to achieve an accurate
calculation of ionic conductivity, because such a calculation
requires repetitive simulations on the same polymer that are also
individually expensive. Here, we attempt to reduce these errors by
learning a shared model across the polymer space. To achieve this
goal, we develop a multitask graph neural network architecture
(Fig. 1d) to learn to reduce both random and systematic errors
from MD simulations. We first encode the monomer structure as
a graph G (details of the encoding discussed in “Methods”) and
use a graph neural network G to learn a representation for the
corresponding polymer, vG ¼ GðGÞ. Here, we use a CGCNN37 as
G, similar to previous works that employ graph convolutional
networks (GCNs) in polymers38,39.

To build a predictor that reduces random errors, we use the
robustness of neural networks against random noises in the
training data, previously demonstrated in images20 and graphs21.
We assume that there exists a true target property (e.g.,
conductivity) that is uniquely determined by the structure of
the polymer (which would require infinite repetitive simulations
to obtain), and the computed target property from MD is slightly

different from the true property due to the random errors in the
simulation. This assumption can be written as,

t ¼ f ðGÞ þ ϵ; ð1Þ

where t is the target property computed from MD, f is a
deterministic function mapping from monomer structure to true
polymer property, and ϵ is a random variable independent of G
with zero mean. Note that ϵ should be a function of G in
principle, but similar noise is observed across polymers as shown
in Supplementary Fig. 2 and assuming ϵ is independent of G
simplifies our analysis. By regressing over t, it is possible to learn
f ðGÞ even when the noise is large20 if enough training data is
available. To generate a large amount of training data, since 50 ns
simulations are too expensive practically, we use less accurate 5 ns
simulations to generate training data and use a network g1 to
predict t5 ns with the graph representation,

y5ns ¼ g1ðvGÞ: ð2Þ

With enough training data generated using the affordable 5 ns
simulations, we can learn an approximation to the true property
function f5 ns despite the random errors. However, there is a
systematic error between f5 ns and f50 ns due to the slow relaxation
of polymers. To correct this error, we perform a small amount of
50 ns simulation to generate data for the converged conductiv-
ities. This correction can then be learned with a linear layer g2
using both predictions from 5 ns simulations and the graph
representations,

y50 ns ¼ g2ðvG k y5 nsÞ; ð3Þ

where ∥ denotes concatenation.
Finally, the two datasets, a larger 5 ns dataset and a smaller

50 ns dataset, can be trained jointly using a combined loss

Fig. 1 Illustration of the polymer space and the learning framework. a The polymer space and molecular dynamics simulation workflow. b Ionic
conductivity as a function as simulation time from six independent 5 ns MD runs for the same polymer, showing the random errors caused by the
amorphous structure initialization. c Ionic conductivity as a function as simulation time for five different polymers, showing the long simulation time needed
for convergence. (Polymer structures for (b, c) are provided in the supplementary information.) d Multitask learning framework to reduce the random and
systematic errors from MD simulations.
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function,

Loss ¼ ð1� wÞ � 1
N5ns

∑
G5 ns

ðy5 ns � t5 nsÞ2 þ w � 1
N50 ns

∑
G50 ns

ðy50 ns � t50 nsÞ2;

ð4Þ

where w is a weight between 0 and 1.
Using an iterative scheme, we sampled the entire polymer

space in Fig. 1a with both 5 ns and 50 ns simulations. The 5 ns
dataset includes 876 polymers and the 50 ns dataset includes 117
polymers. Note that we only simulate each polymer once so there
is no duplicate in both datasets. We leave 10% of the polymers in
both datasets as test data, and use tenfold cross-validation on the
rest of the data to train our models. Due to the small size of the
50 ns dataset, we use stratified split while dividing the data to
ensure that the training, validation, test data contain polymers
with the full range of conductivities40. In the next sections, we
first demonstrate the performance of our model based on these
two datasets and then discuss the iterative screening of the
polymer space.

Performance on reducing random errors. To demonstrate that
our model can recover the true properties from noisy data, we
first study a toy dataset for which we have access to the true
property f ðGÞ in Eq. (1). We use the same dataset from 5 ns
simulations and compute the partition coefficient, LogP, of each
polymer using Crippen’s approach41,42, which uses an empirical
equation whose output is fully determined by the molecular
structure. Then, we add different levels of Gaussian random noise
into the LogP values to imitate the random errors in simulated
conductivities. Here, we only use the g1 branch of our model, i.e.,
w= 0, to predict LogP values from the synthesized noisy data.
Figure 2a shows the true mean absolute errors (MAEs) with
respect to the original LogP values and apparent MAEs with
respect to the noisy LogP values as a function of the standard
deviation of the Gaussian noise, on a test dataset including 86
polymers. We observe that the true MAEs become smaller than
the mean absolute deviation (MAD) of the Gaussian noise when
the noise standard deviation is larger than 0.08. This result shows
that our model predicts LogP more accurately than performing a
noisy simulation of LogP due to the existence of large random
error in the simulation. The random error reduction is possible
because structurally similar polymers tend to have similar prop-
erties. Since the random errors in each MD simulation is inde-
pendent, the random fluctuations in the simulated properties will

cancel out for structurally similar polymers during the training of
the GCN.

We cannot use the same approach to evaluate the model
performance on predicting simulated 5 ns conductivities because
we do not have access to the true conductivities. Therefore, we
make an approximate evaluation by running another independent
MD simulation for each test polymer and compare our predicted
conductivity to the mean conductivity from the two independent
simulations, i.e., the original simulation (config A) and the new
simulation (config B). In Fig. 2b, the MAE on 86 test data is 0.078
log10(S/cm), which is smaller than the corresponding random
error from simulation of 0.094 log10(S/cm) (computed by the
MAE between the two independent MD simulations in Fig. 2c
divided by

ffiffiffi
2

p
). This result indicates that our prediction of the

noisy conductivity also outperforms an independent MD
simulation due to its large random noise, similar to the LogP
prediction. In Supplementary Fig. 3, we employ a random forest
(RF) model with the Morgan fingerprint43 of the polymer
structure to predict the conductivity, achieving an MAE of 0.099
log10(S/cm). This result shows that RF has slightly worse
performance than GNN, causing the errors to be larger than
the random errors in the simulated conductivities. To estimate
the true prediction performance with respect to the inaccessible
true conductivity, we need to assume that the random errors for
5 ns MD conductivity follow a Gaussian distribution, which is
approximately correct (Supplementary Fig. 2). We could then
estimate the true root mean squared error (RMSE) to be 0.060
log10(S/cm), smaller than the standard deviation of the Gaussian
noise 0.117 log10(S/cm). Further, we estimate that our GNN
prediction accuracy is the accuracy of running ~4 MD
simulations for each polymer (detailed calculations can be found
in Supplementary Note 1).

Performance in correcting systematic errors. In addition to
reducing random errors, our model is also able to learn the sys-
tematic difference between 5 ns and 50 ns MD simulated prop-
erties with the multitask scheme. After co-training our model
with both 5 ns and 50 ns datasets, we present the predictions on
11 test data from 50 ns MD in Fig. 3a. Compared with the original
5 ns conductivities, our model corrects the systematic error and
achieves a MAE of 0.076 log10(S/cm) by averaging the predictions
from tenfold cross-validations. It is clear that the model corrects
the systematic error by learning a customized correction to each
polymer, which is better than an overall linear correction which
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Fig. 2 Performance on reducing random errors. a Mean absolute errors (MAEs) on a toy dataset to predict LogP with increasing noises in training data.
Blue line denotes MAEs with respect to true LogP values, green line denotes MAEs with respect to noisy LogP values, and dashed line denotes the mean
absolute deviation (MAD) of the Gaussian noise. b Scatter plot comparing the predicted conductivity and computed mean conductivity from two
independent initializations (config A and config B) in the test dataset. c Scatter plot comparing conductivities from two independent initializations for the
same polymers in the test dataset.
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gives a MAE of 0.152 log10(S/cm). Note that this MAE does not
include random errors, because our 5 ns and 50 ns conductivities
are computed from the same random initial structures. The
results in Fig. 3a represent the interpolation performance of our
model since we randomly split our data. To further study the
extrapolation performance, we perform the same co-training but
reserve the top ten polymers with the highest conductivity as test
data. In Fig. 3b, we find that by training with low-conductivity
polymers, the model underestimates the 50 ns conductivity and
achieves a MAE of 0.182 log10(S/cm). This underestimation is due
to the larger systematic error between 50 and 5 ns conductivities
in training data, caused by slow relaxations in low-conductivity
polymers and the possible different transport mechanism between
low- and high-conductivity polymers. Nevertheless, the model
still performs better than a linear correction that only has access
to the training data, which has a MAE of 0.275 log10(S/cm).

In Table 1, we study how the systematic error correction
performs for other transport properties, including lithium-ion
diffusivity (DLi), TFSI diffusivity (DTFSI), and polymer diffusivity
(DPoly). Both interpolation and extrapolation performances are
reported similar to the results of conductivity. To better evaluate
the uncertainties caused by the small 50 ns dataset, we compute
the mean and standard deviation of the prediction MAEs from
each fold of tenfold cross-validation in GCN CV. This MAE is
different from our previous MAEs, denoted as GCN average,
which uses the mean from cross-validations to make a single
prediction. Overall, ML average outperforms a linear correction
for all properties, indicating the generality of the customized
correction of systematic errors. However, there is a relatively high
variance between different folds of cross-validation due to the
small data size, especially for the extrapolation tasks. GCN CV
performs the same or slightly worse than a linear correction for
DTFSI, DPoly, and D�

Poly. A potential explanation is that a linear
correction already performs reasonably well for these properties,
demonstrated by the small MAEs of linear correction, while a
more complicated multitask model is prone to overfitting the
noises in a small 50 ns dataset. Due to the relative small size of
our training data, we develop a simpler multitask random forest
(RF) model that mimics the multitask GCN architecture in
Fig. 1d (details described in Supplementary Note 2). However, the
RF model performs worse than GCN in all properties as shown in
Supplementary Table 1, which is consistent with the relative poor
performance of RF in random error reduction.

In Fig. 3c, we further study how the performance of our model
would evolve with less 50 ns data, since these long MD simulations

are expensive to run and cannot be easily parallelized. We find
that the performance of the multitask model decreases relatively
slowly with less training data, and it still has some correction
ability even with 13 CV data points, despite the large uncertainties
due to the small data size. This observation shows the advantage of
co-training a larger 5 ns dataset and a smaller 50 ns dataset—it is
much easier to learn a systematic correction than learn the
property from scratch, and the co-training allows the transfer of
graph representation learning from the 5 ns dataset to the 50 ns
dataset. In contrast, the performance of a single-task model
directly predicting 50 ns conductivity degrades much faster with
less training data.

Acceleration of the screening of polymers. After demonstrating
the performance of the multitask model on reducing both random
and systematic errors, we employ this model to perform an extensive
screening of polymer electrolytes in the polymer space defined in
Fig. 1a. The goal of the screening is to search for polymers with the
highest conductivity. As shown in Fig. 4a, we obtain 53,362 polymer
candidates using polymerization criteria from the ZINC chemical
database26. To reduce the average computational cost, we limit our
search space to only include polymers with monomer molecular
weight less than 200, resulting in 6247 polymers. As shown in
Supplementary Figs. 6 and 7, both search and candidate spaces cover
a diverse set of polymer structures.

We first use 5 ns MD simulations and a single-task GCN to
explore polymers in the search space. To reduce the computa-
tional cost, we only simulate each polymer once and employ GCN
to reduce the random errors in the simulation. We perform
300 simulations in each iteration, 150 on randomly sampled
polymers and 150 on best polymers predicted by GCN, which
balances the exploration and exploitation. As shown in Fig. 4b,
the conductivities of the top 50 polymers gradually increase as
more polymers are explored with the iterative approach. But after
900 simulations, the average conductivity only increases slightly,
indicating that we have achieved the best polymers in the
6247 search space based on 5 ns simulations.

Due to the systematic differences between 5 and 50 ns
simulations, we randomly sample 120 polymers from those 900
polymers (876 successful simulations) and perform additional
50 ns MD, in which 117 are successful. These data allow us to
correct the systematic errors in 5 ns simulation using the
multitask model. We note that in previous sections we already
use some data from the screening workflow to demonstrate the
model performance. In Fig. 4c, we use the multitask model to
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Fig. 3 Performance on correcting systematic errors. a, b Scatter plots showing the interpolation (a) and extrapolation (b) performance of the model on
test data. Blue and green dots present the results of 5 ns MD simulations and ML predictions compared with 50 ns MD conductivities, respectively. The
error bars represent the standard deviations of predictions from 10-fold cross-validation. c Change of interpolation performance with the different numbers
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predict the 50 and 5 ns conductivities of all 6247 polymers in the
search space. As a result of the customized correction, the
ordering of conductivity changes from 5 to 50 ns predictions. The
Spearman’s rank correlation coefficient between these two
predictions is 0.852, indicating that the ordering change is small
but significant. For the top 50 polymers from 5 ns predictions,
only 37 remain in the top 50 based on 50 ns predictions. This
ordering change shows that the correction of systematic errors
help us to identify some polymers that might be disregarded if
only 5 ns simulations are performed.

To estimate the amount of acceleration we achieve, we compare
the actual CPU hours used to the CPU hours that would be required
if we performed one 50 ns MD simulations for each polymer. These
simulations are run on NERSC Cori Haswell Compute Nodes and
the CPU hours are estimated by averaging 100 simulations. In total,
we use approximately 394,000 CPU hours for the MD simulations,
with 33.2% for sampling and relaxing amorphous structure, 28.6%
for 5 ns MD, and 38.2% for 50 ns MD. The total cost only accounts
for around 4.4% and 0.51% of the computation needed to simulate
all the polymers from the 6247 search space and the 53,362
candidates, respectively. Note that this conservative estimation
assumes that only one 50 ns MD simulation is performed for each
polymer for the brute-force screening. As shown in the previous
section, our model has a true prediction error smaller than the
random error from a 5 ns MD simulation. Although the random
error from 50 ns simulation might be smaller, our model may have a
larger acceleration due to the effect of random error reduction.

Validation of the best candidates from the screening. We
employ the learned multitask model to screen all 6247 polymers in
the search space and 53,362 polymers in the candidate space. In
Fig. 5a, we use 50 ns MD to simulate ten polymers out of the top 20
in the search space and 14 polymers out of the top 50 in the can-
didate space. These polymers are randomly selected from the top
polymers using Butina clustering42,44 to reduce their structural
similarity, and only polymers which have not been seen in the 50 ns
dataset are selected. We observe a MAE of 0.120 log10(S/cm) and
0.093 log10(S/cm) for the predictions in search space and candidate
space, respectively, which are between the interpolation and extra-
polation errors in Fig. 3 and Table 1. It shows that the extrapolation
to the candidate space is easier than our hypothetical extrapolation
test in Fig. 3b, yet a similar underestimation of conductivity is
observed in the extrapolation. The larger errors for the top polymers
in the search space might be explained by a combination of extra-
polation errors and random errors in 50 ns MD simulations. We
summarize the structure of the top polymers in Supplementary
Tables 2 and 3, and most of them have PEO-like substructures
which might explain their relatively high conductivity.

In Fig. 5b, we further validate the prediction of the model by
gathering experimental conductivities for 31 different polymers
from the literature which are measured at the same salt
concentration and temperature as our simulations4,6,27–36, and the

results are also summarized in Supplementary Table 4. Note that
some polymers, like polyethylene oxide (PEO), do not follow the
same structural pattern as our polymers. Nevertheless, the model still
gives a reasonable prediction on these out-of-distribution polymers
because there are many PEO-like polymers in the training data. The
largest errors come from the polymers with experimental con-
ductivity less than 10−5 S/cm. In general, it is difficult to simulate the
conductivity of polymers with such low conductivity due to the long
MD simulation time needed for convergence. In Supplementary
Fig. 4, we observe a much smaller prediction error with respect to
50 ns MD simulated conductivities for these polymers, indicating
that the error with respect to the experiments is likely caused by the
limited simulation time in MD. Other than the difficulty of
simulating low-conductivity polymers, possible causes of the error
also include the inaccuracy of the force fields, the finite length of the
polymer chain, the finite size of the simulation box, etc. For the top
polymers like PEO, we observe an underestimation of conductivity
because the model cannot extrapolate to these polymers that are
significantly different from the training data. It is also possible to
incorporate the experimental data in our multitask GCN model to
correct this simulation error with respect to experiments. In
Supplementary Fig. 5, we show the predicted experimental
conductivities by replacing the 50 ns MD data with experimental
data in the multitask GCN. However, due to the limited size of
experimental data, it is challenging to evaluate the predictions
without further experiments.

Insights for polymer electrolyte design. The polymer electrolyte
space screened in this study is significantly larger than previous
works, and it contains less human bias because the candidates are
randomly sampled from large databases. Therefore, we can draw
more statistically meaningful conclusions to some important
questions for polymer electrolyte design. In Fig. 6a, we find that
there is an optimum ratio of solvating sites of around 0.4,
approximated by the atomic percentage of N, O, S atoms to non-
hydrogen heavy atoms, to maximize Li-ion conductivity. A pre-
vious study indicates that higher solvation-site connectivity leads
to a higher conductivity for PEO-like polymers27, whose max-
imum oxygen percentage is 0.33 for PEO. Our results indicate
that an even higher ratio of solvating sites might harm con-
ductivity due to increased glass transition temperature from
strong solvating site interactions45,46. In Fig. 6b, we observe that
introducing side chains to the polymer backbone decreases the Li-
ion conductivity, which might be explained by the difficulty of
forming solvation sites with side chains compared with a simple
linear chain. We note that general statistical correlations may not
apply to carefully designed structural modifications to individual
polymers. For instance, previous studies have shown that intro-
ducing ethyleneoxy (EO) side chains can improve the con-
ductivity of polymer electrolytes47.

We further explore the atomic-scale mechanisms that limit the
conductivity in polymer electrolytes. A well-known hypothesis is

Table 1 Comparison of the mean absolute errors (MAEs) on predicting 50 ns MD simulated properties between different
approaches.

Method σ σ* DLi D�
Li DTFSI D�

TFSI DPoly D�
Poly

5 ns (direct) 0.528 0.278 0.503 0.419 0.455 0.249 0.612 0.528
5 ns (linear) 0.152 0.275 0.148 0.247 0.096 0.297 0.072 0.110
GCN CV 0.093 ± 0.017 0.186 ± 0.053 0.106 ± 0.016 0.209 ± 0.050 0.101 ± 0.020 0.181 ± 0.028 0.072 ± 0.019 0.114 ± 0.030
GCN
average

0.076 0.182 0.080 0.202 0.075 0.171 0.056 0.104

The first row denotes the MAE between 5 and 50 ns simulated properties. For each property, interpolation and extrapolation performance are represented by labels without and with the * symbol.
Uncertainties are the standard deviations of MAEs from tenfold cross-validation (CV).
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that Li-ions transport in polymers via segmental motion mechanism,
rather than the ion hopping mechanism in ceramic solid
electrolytes1,48. We examine this hypothesis by computing the ratio
between predicted Li-ion diffusivity and polymer diffusivity. In
Fig. 6c, this ratio is between 0.59 and 3.63 for all polymers, while
most high-conductivity polymers have this ratio below 1. This result
supports the segmental motion hypothesis because the Li-ion and
polymer dynamics are strongly coupled, at least for high-
conductivity polymers. The lack of polymers in the upper right of
the plot indicates none of the high-conductivity polymers employs
an ion hopping mechanism. Therefore, the exploration of such
polymers requires a chemical structure far different from our search
space. We believe more scientific insights can be obtained from our
data, therefore we provide all four predicted 50 ns MD properties for
6247 polymers in the search space and 53,362 polymers in the
candidate spaces in the supplementary materials for the community.

Discussion
We have performed a large-scale computational screening of
polymer electrolytes by learning to reduce random and systematic
errors from molecular dynamics simulation with a multitask

learning framework. Our screening shows that the PEO-like
structure is the optimum structure for a broad class of carbonyl-
based polymers. Although the result may seem unsurprising
because PEO has been one of the best polymer electrolytes since
its discovery in 197349, it shows the advantage of PEO-like
polymers over a very diverse set of chemical structures. The only
constraint of the polymer candidates is to have a carbonyl
structure, and the rest of the structure is randomly sampled from
a large database of drug-like molecules26, containing few human
biases. Since the PEO substructure automatically emerge from the
candidates, it indicates that the PEO substructure has an
advantage over almost all other types of chemical structures in the
diverse database, given the existence of a carbonyl group in the
polymer. This result might explain why PEO is still one of the
best polymer electrolytes despite a significant effort to find better
candidates in the community. Several potential directions remain
open for discovering polymer electrolytes better than PEO. The
first is to search for polymer electrolytes that achieve optimum
conductivity at very high salt concentrations. Conductivity gen-
erally increases with increased salt concentration, but ion clus-
tering and decreased diffusivity will reduce conductivity at high
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concentrations1. Our screening keeps a constant concentration of
1.5 mol/kg LiTFSI for different polymers, but some polycarbonate
electrolytes show advantage at an extremely high salt
concentrations50,51. The second is to explore polymer chemistry
beyond this study. Due to the limitations of the Monte Carlo
procedure used to generate initial configurations, our simulations
do not include polymers with aromatic rings. Recent studies
propose the potential of polymers with high fragility and aromatic
rings as polymer electrolytes due to the decoupling of ionic
conductivity from structural relaxation52. Backbones containing
different lewis acidic heteroatoms or non-carbonyl-based motifs
could also lead to better polymer electrolytes9.

The large-scale screening is possible because we significantly
reduce the computational cost of individual simulations by
learning from imperfect data with the multitask learning frame-
work. The ability of neural networks to learn from noisy data is
extensively studied in machine learning20,53,54 and has recently
been applied to reduce the signal-to-noise ratio of band-excitation
piezoresponse force microscopy55 in materials science. Despite
the wide use of graph neural networks in material
discovery18,56,57, the random errors in training data are less
studied, possibly because previous studies focus on simpler
materials of which the random errors are much smaller. We show
that random errors can be effectively reduced by learning a graph
neural network across different chemistry even when the random
error for each simulation is significant. It provides a potentially
generalizable approach to accelerate the screening of complex
materials whose structures can only be sampled from a dis-
tribution, e.g., amorphous polymers, surface defects, etc., because
only one, instead of several, simulation needs to be performed for
each material by adopting our approach.

The systematic error reduction demonstrated in this work is
closely related to the transfer learning studies that aim to combine
data from different sources22,24,58,59. Our unique contribution in
this work is to demonstrate the value of short, unconverged MD
simulations in the context of material screening. We find that the
systematic error between the 5 and 50 ns simulated transport
properties can be corrected with a small amount of 50 ns simu-
lations, which can potentially be generalized to other types of
materials, properties, and simulation methods. Because our
multitask GCN architecture uses the 5 ns properties as an addi-
tional input to predict 50 ns properties, it is also conceptually
similar to the delta-learning approach60. In summary, we hope
that the random and systematic error reductions observed in this
work could highlight the value of imperfect, cheaper simulations
for material screening that might previously be overlooked. A

broader class of complex materials could be screened with a
similar approach if a cheap, noisy, and biased simulation method
can be identified.

Methods
Graph representation for polymers. The polymers are represented by graphs
based on their monomer structure. The node embeddings vi and edge embeddings
uij are initialized using atom and bond features described in Supplementary
Tables 5 and 6. An additional edge is added to connect two ends of the monomer,
allowing the end atoms to know the local chemical environments. We find that this
representation has a better performance than using dummy atoms to denote the
monomer ends.

Network architecture. We employ a graph convolution function developed in
ref. 37 to learn the node embeddings in the graph. For each node i, we first
concatenate the center node, neighbor, and edge embeddings from last iteration
zðt�1Þ
ði;jÞ ¼ vðt�1Þ

i k vðt�1Þ
j k uði;jÞ, then perform graph convolution,

vðtÞi ¼ vðt�1Þ
i þ ∑

j2NeighðiÞ
σðzðt�1Þ

ði;jÞ W ðt�1Þ
f þ bðt�1Þ

f Þ � gðzðt�1Þ
ði;jÞ Wðt�1Þ

s þ bðt�1Þ
s Þ; ð5Þ

where Wðt�1Þ
f , Wðt�1Þ

s , bðt�1Þ
f , bðt�1Þ

s are weights, σ and g are sigmoid and softplus
functions, respectively. After learning the node embeddings, we use a global soft-
attention pooling developed in ref. 61 to learn a graph embeding,

vG ¼ ∑
i
softmaxðhgateðviÞÞ � hðviÞ; ð6Þ

where hgate : R
F ! R and h : RF ! RF are two fully connected neural networks.

The graph embedding vG is then used in Eq. (2) and Eq. (3) to predict polymer
properties.

Molecular dynamics simulations. The molecular dynamics simulations are per-
formed with the large atomic molecular massively parallel simulator (LAMMPS)62.
The atomic interactions are described by the polymer consistent force field (PCFF
+)63,64, which has been previously used for polymer electrolyte systems10,13,65. The
charge distribution of TFSI− is adjusted following ref. 66, using a charge scaling
factor of 0.7, to better describe the ion-ion interactions. All partial charges are
reported in Supplementary Table 7. There are 50 Li+ and TFSI− in the simulation
box. Each polymer chain has 150 atoms in the backbone. The number of polymer
chains is determined by fixing the molality of LiTFSI at 1.5 mol/kg. The initial
configurations are generated using a Monte Carlo algorithm, implemented in the
MedeA simulation environment67. The 5-ns-long equilibration procedure is based
on a scheme described in ref. 13. Once equilibrated, the system is then run in the
canonical ensemble (nVT) at a temperature of 353 K, using a rRESPA multi-
timescale integrator68 with an outer timestep of 2 fs for nonbonded interactions,
and an inner timestep of 0.5 fs. The high-throughput workflow is implemented
using the FireWorks workflow system69. To resolve unexpected errors during MD
simulations, the workflow will try to restart the simulation three times and dis-
regard the simulation if all three simulations are failed.

Calculation of transport properties. The diffusivities of lithium and TFSI ions are
calculated using the mean squared displacement (MSD) of the corresponding

Fig. 6 Relation between several descriptors and predicted 50 ns MD Li-ion conductivity for polymers in the 6247 search space. a The percentage of N,
O, S atoms to non-hydrogen heavy atoms in the polymer structure. b The percentage of backbone atoms to non-hydrogen heavy atoms in the polymer
structure. c The ratio between predicted Li-ion and polymer diffusivity, corresponding to the degree of decoupling between Li ion and polymer dynamics.
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particles,

D ¼
xiðtÞ � xið0Þ
� �2D E

6t
; ð7Þ

where x is the position of the particle, t is the simulation time, and < � > denotes an
ensemble average over the particles. The diffusivity of the polymer is calculated by
averaging the diffusivities of O, N, and S atoms in the polymer chains. The con-
ductivity of the entire polymer electrolyte is calculated using the cluster Nernst-
Einstein approach developed in ref. 65. This method takes into account ion-ion
interactions in the form of aggregation of ion clusters,

σ ¼ e2

VkBT
∑
Nþ

i¼0
∑
N�

j¼0
z2ijαijDij; ð8Þ

where αij is the population of the ion clusters containing i cations and j anions, zij,
Dij are the charge and diffusivity of the cluster, N+ and N− are the maximum
number of cations and anions in the clusters, e is the elementary charge, kB is the
Boltzmann constant, and V and T are the volume and the temperature of the
system. We use the cNE0 approximation that assumes Dij is equal to the average
diffusivity of lithium ion if the cluster is positively charged, and TFSI ion if the
cluster is negatively charged65.

Data availability
The toy LogP dataset, the 5 ns, and 50 ns MD datasets are available in Supplementary
Data 1. The CGN predicted 50 ns conductivity, Li-ion diffusivity, TFSI diffusivity, and
polymer diffusivity for the 6247 search space and 53,362 candidate space are available in
Supplementary Data 1. The experimentally measured conductivity from literature is
available in Supplementary Table 4. The raw MD trajectories are too large to be shared
publicly. We are developing a database to facilitate the sharing and they will be made
available in the future.

Code availability
The multitask graph neural network is implemented with PyTorch70 and PyTorch
Geometric71. The code is available at https://github.com/txie-93/polymernet.
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