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Abstract Radiative corrections are crucial for modern
high-precision physics experiments, and are an area of active
research in the experimental and theoretical community.
Here we provide an overview of the state of the field of
radiative corrections with a focus on several topics: lepton—
proton scattering, QED corrections in deep-inelastic scatter-
ing, and in radiative light-hadron decays. Particular emphasis
is placed on the two-photon exchange, believed to be respon-
sible for the proton form-factor discrepancy, and associated
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Monte-Carlo codes. We encourage the community to con-
tinue developing theoretical techniques to treat radiative cor-
rections, and perform experimental tests of these corrections.
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1 Introduction

Radiative corrections are of central importance for modern
high-precision, sub-atomic physics experiments. In order to
extract physical observables from experiments with percent
precision, radiative corrections on the experimental observ-
ables need to be known to sub-percent precision. Modern
tools to calculate the size, and to estimate the uncertainty, of
these corrections are a subject of active research in the field.
Frameworks for determining these effects can be developed
and must be checked experimentally.

In modern experiments the radiative corrections for QCD
and QED interactions are of particular interest. QCD systems
(e.g., nucleons or light nuclei) are often probed in scattering
experiments, which allow for precision extractions of form
factors and structure functions. Typical probes are leptons
or photons, since they have no internal structure themselves.
Traditionally, the electron would be used as the lepton in
scattering experiments as it is stable, but its low mass allows
for significant external radiation. This becomes a challenge
as experiments move to ever higher energies in the deeply
inelastic scattering regime. In modern experiments, the muon
serves as an attractive alternative to the electron, as its higher
mass typically leads to smaller radiative corrections. In the
case of QCD systems being studied via meson decay chan-
nels, hadronic and QED corrections can be of similar and sig-
nificant size. In e e™ interactions, special care must be taken
to not neglect the mass of the electron in order to achieve the
requisite experimental and theoretical precision.

The topic of radiative corrections is quite broad, and as
such in this review article we focus on a few selected top-
ics. This work follows from an ECT* workshop on radiative
corrections [1], and the topics covered reflect the discussions
and presentations of that workshop. In Sects. 2 to 4, we focus
on the process of elastic lepton—proton (¢p) scattering where
£ = e, u can be an electron or a muon. We cover both polar-
ized and unpolarized scattering, although we primarily focus
on the unpolarized case. In Sect. 2, we start with the theo-
retical base and the classification of radiative corrections. In
Sect. 3, we study an important class of radiative corrections
— the two-photon exchange (TPE) contributions, which for
hadron targets require knowledge of hadronic structure. In
Sect. 4, event generators for scattering experiments are dis-
cussed. In Sect. 5, we consider higher-order corrections to
the purely QED process of ete™ annihilation in the deeply
inelastic regime. Again, while we focus on the unpolarized
case, we provide an overview of polarized measurements.
In Sect. 6, we discuss the corrections for radiative decays of
light mesons. Finally, we summarize the state of the field, and
give recommendations to those involved for a path forward
to push the global understanding of radiative corrections to
higher precision than exists today in Sect. 7.
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Fig. 1 Generic ¢p scattering (left panel), tree-level Born diagram (right
panel)

2 Lepton—proton scattering

Scattering experiments allow experimenters to probe the
structure of the target. From a measurement of the unpolar-
ized ¢p scattering cross section, one can for instance deter-
mine the proton electric and magnetic Sachs form factors
(FFs), G(0%) and G(0Q?), functions of the momentum
transfer t = ¢> = —Q?> withq = ky —k» = pr — p1,
where pi (k1) and p> (kp) are the incoming and outgoing
proton (lepton) four-momenta, respectively. The Born cross
section of elastic £p scattering, given by the tree-level one-
photon exchange (OPE) diagram in Fig. 1 (right panel), can
be written in a compact form as

do©@ ooT
= o
dQ e(l+1)

R (D
with the reduced Born cross section

£
or =Gy (Q%) + — GL(0Y), 2)

and the elementary cross section o [40,94,119] for a point-
like spin-1/2 target with electric charge of the proton, van-
ishing magnetic moment, and arbitrary lepton kinematics

2Ma? k 1
o0 = a- e |ky 3)

0% l—er|kil M +¢ —EQ%COSQ.

In the limit of an infinitely heavy target, M — oo, and for
ultra-relativistic leptons, o reduces into the Mott cross sec-
tion:

a?ey cos? 0/2

Y = —u ), 4
O M T Y S sint 02 X
Here, we introduced the photon polarization parameter
2 4
v-—M*t(l + 1)
(5)

£= ,
vZ 4+ M4t (1 +1)(1 — 2¢¢)
and the degree of linear polarization of transverse photons
T
V2 — M7 (1 4 1)(1 + 2¢0)
er = ,
T =30 M (1 + o) (1 — 2ep)

(6)

as well as the dimensionless quantities T = Q%/4M?, g, =
1/21y) and 7y = Q2 / (4m%), and the crossing-symmetric
variable v = k1 - (p1 + p2)/2 = (s — u)/4, with M (my)
the proton (lepton) mass, and where s and u denote the
usual Mandelstam variables of the elastic scattering pro-
cess of Fig. 1. Furthermore, « >~ 1/137 is the usual fine
structure constant, €] (¢2) and k; (k) are the energy and
three-momentum of the incoming (outgoing) lepton, and 6
is the scattering angle in the laboratory frame, see Eq. (2).
The squared momentum transfer Q2 can be conveniently
expressed as

2 M +epsin?6 — M2 — m?sin® 6 cos 6

Q (M + &1)* — k3 cos2 0

2MK3. (7)

The extraction of the FFs, cf. Eq. (3), is done via Rosen-
bluth separation [2], which requires measurements at the
same momentum transfer Q% but for different energies and
angles. To recover the Born cross section, the experimen-
tally measured cross section needs to be corrected for radia-
tive corrections, cf. Refs. [3—11]. These change not only the
absolute value of the cross section but also its dependence on
the relevant kinematical variables. In general, the O () Born
cross section has to be corrected by additional virtual photons
or inelastic scattering with emission of real bremsstrahlung.

2.1 Radiative corrections

In this subsection, we discuss the calculation of cross sections
in a perturbative expansion of the electromagnetic coupling
o. While many remarks are valid for arbitrary processes, we
will illustrate the general procedure for elastic £p scattering

Ckr, h) + p(pi, 2) — Llka, B)) + p(pa, ) ®)

where ki (ky) and pi(p2) are the incoming (outgoing) lep-
ton and proton momenta, and & (k") and A()) the respective
helicities.

The Born or leading order (LO) cross section for elastic £p
scattering, given in Eq. (1), is of O(a?Z?) and is a function
of G (Q?) and G (Q?). These form factors are depicted as
grey blobs in Fig. 2 and, for each appearance, a factor Z, the
total charge, is included in the counting of the couplings. To
improve the theory description, next-to-leading order (NLO)
corrections to Eq. (1) have been computed in Refs. [3-8].
The NLO corrections can be decomposed into several gauge-
invariant parts. The one-photon exchange (OPE) contribu-
tions are of the form O («> Z?2) and also include vacuum polar-
isation (VP) corrections. They are illustrated in Figs. 3 and
4, respectively. The TPE contributions, depicted in Figs. 5
and 6, are (’)(a3Z3). Finally, corrections to the proton line
are of O (> Z*), with a sample contribution shown in Fig. 7.
These corrections change not only the absolute value of the

@ Springer
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Fig. 2 Schematic illustration of the squared LO amplitude A® A© *
for lepton—proton scattering. Leptons (protons) are depicted as single
(double) lines and the grey blobs represent the form factors
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Fig. 3 An example contribution O Z?) to the squared NLO ampli-
tude with photon emission restricted to the lepton line. The virtual (v)
cut represents AWM AO* whereas the real (r) cut represents |A§,O) 12

™
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<44,444444444444

Fig. 4 An NLO correction due to VP contributions. The virtual (v) cut
represents A1 A®*

observables but also their dependence on the relevant kine-
matical variables, e.g., the square of the transferred momen-
tum Q2 and the photon polarization parameter ¢, defined
in Eq. (5).

If the radiative corrections are small, an NLO calculation
might be sufficient. For sufficiently inclusive observables,
these corrections are sometimes included as a multiplicative
factor without a precise description of how additional radi-
ation is treated. The error associated to this procedure is at
the percent level. Radiative corrections can lead to contri-
butions that are enhanced by large logarithms of the form
L =1In (Q2/m%). As we will discuss below, these are asso-
ciated with hard collinear radiation. Another source of large
logarithms are stringent experimental cuts that restrict the
phase space for soft emission. As a consequence, modern
high-precision experiments are required to introduce higher
order corrections and a more sophisticated treatment of real
radiation.

@ Springer

|
p1 v

Fig. 5 An example contribution to the squared NLO amplitude
O(a’Z3) with elastic TPE. The virtual (v) cut represents AWM A0
whereas the real (r) cut represents IA;O) 2

P1 rv

Fig. 6 An example contribution to the squared NLO amplitude with
inelastic TPE. The virtual cut (v) represents AD A0 * whereas the real
cut (r) represents IA;O) 2

k1 ks

pl I \

Fig. 7 An example contribution O (a3 Z*) to the squared NLO ampli-
tude with photon emission restricted to the proton line. The virtual (v)

cut represents A1 A© * whereas the real (r) cut represents IA)(,O) 2

This leads us to consider fully differential computations of
cross sections which allows one to obtain precise predictions
for fiducial cross sections. To keep full generality, the phase-
space integration needs to be adaptable to the experimental
setting. As a result, it is necessary to revert to numerical inte-
grations, which are most efficiently carried out using Monte
Carlo (MC) techniques.

For aLO description of a differential cross section do (¥ ~
o? 72, the tree-level matrix element squared | A |2, depicted

in Fig. 2, is to be integrated over the two-body phase space
®5. Thus,

do© — /dcbz A2 S(ka, p2), ©)

where the so-called measurement function S(k», p») gives a
precise definition (including cuts) of the quantity to be com-
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puted in terms of the momenta of the final state particles. For
simplicity, trivial elements such as the flux factor are also
included in S. A simple way to understand the measurement
function is to view it as being equal to 1 for a particular bin in
a histogram of a particular observable, and equal to 0 other-
wise. Then, Eq. (9) gives the value of the distribution in this
bin. This way, fully differential cross sections for arbitrary
observables can be computed. Obviously, in practice all bins
of all histrograms are filled simultaneously. An example of
a measurement function for a three-jet cross section can be
found in Ref. [12].

Going beyond LO, we encounter ultraviolet (UV) and
infrared (IR) divergences. After renormalization, in a QED
calculation where all fermion masses are kept at their finite
values, only soft IR divergences remain. These soft singular-
ities cancel between the virtual and real corrections. At NLO
this is illustrated in Fig. 3, where some corrections due to
photon emission from the lepton line are shown. The virtual
corrections are obtained as

do(V = f d®; 2 Re(ADAQ*) S(ka, p2), (10)
whereas the real corrections are given by
doV = /d<1>3 |AD 2 S(ka, p2. ky) - (11)

Both terms are (’)(oz3 Zz). Here, Re denotes the real part of
the amplitude, AV is the one-loop amplitude of the process
Eq. (8) and Ag,o) is the tree-level amplitude with an additional
photon of momentum k,, in the final state. The integration in
Eq. (11) has to be carried out over the three-particle final
state ®3. Also, the definition of ¢ is more subtle now, since
ky —ka # p2 — p1.

To give mathematical meaning individually to dav(l) and
dar(l), the IR singularities need to be regularized. Many cal-
culations in QED still use a (small) fictitious photon mass to
do so. Then, the IR singularities manifest themselves as log-
arithms of this mass. Another approach that is more in line
with the tremendous progress in computational techniques
that has been made for QCD calculations is to use dimen-
sional regularization (i.e. work in 4 — 2¢ dimensions) also
for IR singularities. In this case, IR singularites show up as
poles 1/€. See Sect. 3.2.1 for a detailed discussion. Indepen-
dent of the chosen regularization, in the combination of da\fl)
and dor(l) the remnants of the IR singularities (i.e. the photon
mass logarithms or the 1/€ poles) cancel. This is ensured by
the well-known limiting behavior of the real matrix element
in the soft limit (S@) [13], where it can be written as an
eikonal factor £ times the Born matrix element

S@AVP = gAY, (12)

The explicit form of £ can be read off Eq. (62). It scales as

E, 2 with the photon energy which leads to the singularity

upon integration over the photon phase space. Hence, in the
complete NLO corrections to Eq. (9),

do® = do'V 4 doV, (13)

the regularization can be removed (i.e. the photon mass or
€ set to zero). For this cancellation to occur, the observable
has to be IR safe. This means that the observable must not
change whether or not an arbitrarily soft photon is emitted.
At a technical level, we must require

lim S(ka, p2, ky) = S(k2, p2). (14)
ky—0

From a mathematical point of view, it is sufficient if Eq. (14)
holds in the strict limit. However, if experimental cuts
(directly or indirectly affecting real radiation) induce a dif-
ference between S(k2, p2, ky) and S(kz, p2) for finite, but
small photon energies AE,, there can be a large logarithm

In (A E)2, / Q2> as a remnant. Such (soft) logarithms can lead
to enhanced QED corrections.

Another source of large corrections is collinear emission.
While collinear singularites are regulated by the fermion
masses, they still can also lead to enhanced logarithmic terms
a L after combination of real and virtual corrections. These
logarithms often form the dominant part of the higher-order
corrections. This also entails that in fully differential QED
calculations — contrary to QCD calculations — it is not possi-
ble to set the lepton masses to zero. Furthermore, the neglect
of hard collinear emission potentially leads to a loss of accu-
racy. Thus, using the soft approximation for the real matrix
elements can have severe implications on the accuracy of the
results.

The extraction of the IR poles from Eq. (11) for an arbi-
trary IR-safe observable, i.e. an arbitrary S(k2, p2, k, ) satis-
fying Eq. (14), is by now a standard procedure at NLO and the
focus turns towards next-to-next-to leading order (NNLO)
applications as discussed in Ref. [14]. Again, at NLO there
are two widely used options, the slicing method and the sub-
traction method.

In the slicing method [4], the phase space is split into two
parts, depending on the photon energy

doV| | = /dq>3 |AD 12 S(ka, pa)
E,<$

+ / d®3 A * S(ka, pa, ky) . (15)
E,>$8

In the part, where the photon energy is larger than a chosen
resolution parameter §, the integration can be carried out for
a massless photon without encountering singularities. In the
part, where the photon energy is smaller than the resolution
parameter, the soft (eikonal) approximation Eq. (12) is used

@ Springer
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for the matrix element. The integration over the photon phase
space then simplifies and can be carried out analytically. In
this term, the photon mass logarithms that cancel those of
the virtual corrections are generated. This method relies on
a suitable choice for §. It should not be too large, to ensure
that the soft approximation is good enough. It should also not
be too small, otherwise numerical problems (large cancella-
tions between the resolved and unresolved parts) occur. The
quality of the approximation that is inherent to this approach
is typically checked by making sure that the variation of the
physical result w.r.t. § is negligible. For more details, see
Sect. 4.

In the subtraction method [9] a term (the soft limit of the
integrand) is subtracted and added back

doM| = /dq>3 S@ AV Sk, p2)

+ / d¢3<|«4,(/0)|25(k2, p2.ky) — S@IAD S (ka, pz))-
(16)

The first term on the r.h.s. of Eq. (16) is very similar to the
corresponding term in Eq. (15). The only differences are that
in Eq. (16) no approximation is made and the photon is treated
as massless. Furthermore, the integration is done over the full
phase space. This results in IR 1/¢ poles that cancel against
the IR poles of the virtual contributions. The second term on
the r.h.s. of Eq. (16) is finite and can be integrated in four
dimensions. An efficient numerical evaluation of this term
including the subtraction requires an adapted phase-space
parameterization. Within the subtraction method, there is no
motivation to split the real corrections into hard and soft parts.
It is actually simpler to always include the full real matrix
element and make no approximation whatsoever.

The OPE corrections due to emission from the lepton line
O(a® Z?) and the VP corrections, illustrated in Figs. 3 and
4, are simple from a conceptual point of view as they involve
standard QED pointlike interactions only. However, there are
also corrections of O (> Z3) that involve multiple exchange
of photons between the two fermion lines, in particular the
notorious TPE corrections. The class of corrections depicted
in Fig. 5 is more complicated than those of Fig. 3 for several
reasons. Even if the proton was pointlike, these corrections
now involve one-loop box diagrams at NLO. In addition,
there is the complication that the photon-proton vertex is
more involved than for a pointlike particle. Furthermore, for
£p scattering there are also contributions where the interme-
diate state is not just a proton, as depicted in Fig. 6. These
aspects will be discussed in Sect. 3.

A final class of NLO corrections are those where the emis-
sion of additional photons is restricted to the proton line. They
are O(a® Z*) and a sample contribution is depicted in Fig. 7.
It is tempting to include these diagrams into the definition

@ Springer

Fig. 8 Example of a NNLO contribution O(a*Z?) to the squared
amplitude for £p scattering. The double-virtual (vv) cut represents

A AO* the real-virtual (rv) cuts .A;O)Ag,l) * and .Ag,l).A;O) *, and the
double-real (1) cut |A§/0; 2

of the form factors. However, they contain IR divergences
that, once more, cancel between the real and virtual parts.
Thus, from a practical point of view it is more convenient to
explicitly include these diagrams into the radiative correc-
tions and define the form factors accordingly, i.e. exclude all
QED effects from their definition. The numerical impact of
these contributions is rather minor, as they do not generate
collinear logarithms. Hence, it is often possible to simply
neglect the O(a? Z*) contribution.

As discussed above, at each order in o the QED cor-
rections can be enhanced by a collinear logarithm L and
possibly a soft logarithm In (A E, >/ Q?). Hence, the correc-
tions can be considerably larger than naive scaling with «
implies. Thus, for very precise predictions it is necessary
to go beyond NLO. Regarding OPE corrections restricted
to emission from the lepton line O(a* Z2), the computa-
tions have been extended to NNLO. This involves double-
virtual, real-virtual, and double-real corrections, as illus-
trated in Fig. 8. Results have been obtained using photon-
mass regularization and the slicing method in Refs. [15,16]
as well as using dimensional regularization in Ref. [17], using
the subtraction method developed in Ref. [18]. This class of
corrections is a gauge invariant subset of the full corrections.
The virtual part involves only the vector part of the two-
loop heavy-lepton form factor, cf. Refs. [19-21]. For lepton
masses much smaller than the proton mass, these corrections
are typically also dominant. They involve up to two addi-
tional photon emissions and a precise description how these
photons are treated is required. This amounts to a defini-
tion of S(k2, p2, ky,, ky,). In particular, both photons can be
collinear, leading to enhanced NNLO correction of the form
(@ L)

Corrections at NNLO that go beyond the OPE approxi-
mation lead to substantially more complicated calculations.
If the proton is treated as pointlike, the NNLO results for
electron-muon scattering in Refs. [22,23] can be adapted by
simple replacements m,, — M and m, — my. This requires
the computation of the two-loop amplitude .A® (for double-
virtual) involving (crossed) double-box diagrams [24]. For
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the real-virtual corrections .Ag,l) is required where one-loop
pentagon diagrams contribute. Efficient techniques for one-
loop computations have been developed in connection with
high multiplicity processes at hadron colliders, as reviewed
in Ref. [25]. As part of this topical collection, the effect of
pointlike NNLO corrections were compared to present uncer-
tainties from hadronic correction [26]. It turns out that the
former can be sizeable and need to be properly taken into
account. Beyond pointlike photon-proton interaction make
the formidable task of the two-loop amplitude computation
even more daunting. At NNLO, depending on the experimen-
tal set up, it might also be necessary to include the process
with emission of an additional lepton pair which also has
been computed for electron-muon scattering in Ref. [27].

First steps to move beyond NNLO have already been
taken. The form factor y* — £7£~ is known at three loops
[28] and the subtraction method for massive QED has been
extended beyond NNLO [18]. Hence, a next-to-next-to-next-
to leading order (NNNLO) calculation of OPE contributions
O(a® Z?) seems to be feasible within a reasonable time
frame. However, a full computation of 2 — 2 scattering
processes with massive particles at NNNLO is currently out
of reach.

As alluded to above, the corrections are often dominated
by large logarithms associated with collinear or soft emis-
sion. A convenient method resumming all contributions of
large logarithms at all orders has been proposed in Ref.
[29]. All leading contributions of order («L)" are taken into
account. The accuracy can be further improved calculating
non-leading contributions of order o (« L)" as a K -factor. The
application to ep elastic scattering can be found in Ref. [8],
and, including hard photon emission, in Refs. [30,31].

A more generic approach to include logarithmically
enhanced corrections is to use QED parton showers. A recent
review of this activity can be found in Ref. [32] and will be
discussed in some more detail in Sect. 4. Parton showers
allow for the inclusion of the leading logarithmic contribu-
tions in a process independent way. Combined with fixed-
order calculations this is a powerful tool to improve further
the precision for fully differential cross sections. Including
next-to-leading logarithms from initial-state (or final-state)
collinear emission is also possible in a generic way [33].
However, in general the systematic inclusion of subleading
logarithms is observable dependent and some examples will
be discussed in Sect. 5. Contrary to QCD, in QED it is typi-
cally not required to actually resum the logarithms. The sup-
pression by « is strong enough to ensure that « L is still
reasonably small. Hence, the inclusion of the logarithms at
the first few orders in « beyond the fixed-order results is
sufficient.

2.2 Experimental observables

In the following, we discuss different experimental observ-
ables and how they are affected by the LO in « virtual correc-
tions, cf. Eq. (10). Of particular interest are the unpolarized
cross section, the longitudinal and transverse polarization
transfer observables P; and Pj, as well as the target and beam
asymmetries A, and By, introduced in Sects. 2.2.4 and 2.2.5
respectively.

2.2.1 Elastic lepton—proton scattering

Let us start by presenting the tensor decomposition of elas-
tic £p scattering. Taking into account discrete symmetries,
assuming parity and time reversal invariance of the electro-
magnetic interaction, this process can be described in terms
of 6 independent complex scalar amplitudes: Gy and F;
(i =2,...6), which are generally functions of two indepen-
dent kinematical variables, e.g., the Mandelstam variables
t = (ki —ko)?and s = (ki + p1)%. The helicity amplitudes
of the process can be split into a sum of helicity-conserving
and helicity-flip contributions, see, e.g., Refs. [34-36],

non—flip flip
Ah/)\/’h)\ == Ah/)»/,h)» + Ah/k/,h)\’ (17)

_fli dro _ -
At = gz ke Wyt by N (p2, 1)

. ph y - KPH
x| Gmy —fzﬁ—f—}}T N(p1,2),

(13)
flip _ dra my _
A = 02 Y

XN (p2, 1) (}"4 +

(ko, W Yu(ky, h)

y-K
N A
i fs) (p1, A)

4o my _ ,
+?M u(ky, h)ysu(ky, h)

XN (p2, M) FeysN(pi1, 1), 19)

where g = k1 —ky = prp—p1, K = (k1 +k2) /2, P = (p1 +
p2)/2,and y -a = y*a,. The 6 complex amplitudes Gy and
Fi,sometimes called generalized FFs, fully describe the spin
structure of reaction Eq. (8) for any number of exchanged
virtual photons. In the limit of m;, — 0, the contribution
from the helicity-flip amplitudes to observables vanishes, see
Eq. (19). Relations between the helicity amplitudes and the
generalized FFs can be found f.i. in Ref. [37].

In the Born approximation, i.e., considering only the tree-
level OPE diagram with proton FFs in Fig. 1 (right panel), the
number of amplitudes in Eq. (17) reduces to 2. To be more
precise, the Born amplitudes read

GEM(Q?,5) = Gu(Q?), (20)
FRM(Q2,5) = F2(0%), (21)
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.7:,'Bom(Q27 S) =0 (l = 3, ey 6)7 (22)

where Fz(Qz) is the Pauli FF of the proton. The fact that the
FFs in the space-like region are real functions of the virtuality
of the exchanged photon is a consequence of unitarity, the
spin-1 nature of the virtual photon, parity conservation, and
the identity of the initial and final states, see Refs. [38,39]
for an explicit derivation.

To separate the Born contribution from effects of virtual
radiative corrections to the elastic scattering, we define the
following decomposition of the scalar amplitudes:

Gu(Q%,5) = Gy (0% + AGM(Q%,s), (23)
GE(Q?,s) = GE(Q) + AGE(0%,9), (24)
Fi(Q?%,s) = AF:(Q%s) (i=3,...,6), (25)

where G has been introduced via

1
FaQ5) = 1= [On(Q 9 = G2 (@ 9)]. @6)

The order of magnitude of these quantities is given by
Gur ~ o and AGy(Q%s) ~ AGE(Q%s) ~
AF; (0% )i =3,...,6) ~a.

2.2.2 Laboratory frame

The proton and lepton four-momenta in the laboratory frame
can be written as

p1=(M,0), (27)
p2 = (E2, p2), (28)
ky = (e1, k1), (29)
ko = (€2, k2), (30)

where three momenta are denoted by bold symbols. The scat-
tered lepton energy is written in terms of 6 as

1
(61 + M)?2 — k2 cos20

X |:(61—i—M)(Mel—i—m%)—}—kl2 cos 6,/ M2—m? sin’ 9i| ,

€1y}

while the Mandelstam variables s and ¢ are expressed as

t = —Q7% =2m? — 2e1e; — |ky||kz| cos 0), (32)
s = M? +m? +2Me,. (33)
The differential cross section in terms of the matrix element
squared is given by

ent 2_dkadp

do =
4] (27)%4er Eo

8 (k) 4 p1 — k2 — p2),
(34)

with the invariant 12 = (k1 - p1)* — my 2M? and the energy

of the recoil proton Ej.

@ Springer

For the case where the scattered lepton is detected in the
final state, one obtains

d L
do _ APk , (35)
dQ ~ (4m)24M D|ky|

where © = (M +¢€1)|ka| — €2|k1]| cos 6, and dS2 is the differ-
ential solid angle of the scattered lepton. For the case where
the recoil proton is detected in the final state, one obtains

d 2 2
g _ |v42| rr (36)
a2, (4m)*4M D k|

with ® = (M + €1)|p2| — Ezlky|cos 6y, where 6, is the
angle between the directions of the lepton beam and the recoil
proton, and d€2, is the differential solid angle of the scattered
proton. Using the relation

1 E,2+ M

d = —
0’ =lhllpal

aQ,, 37)

we obtain the following expression for the differential cross
section as a function of Q2

do AP

- . 38
d0? 647 M ki (38)

2.2.3 Unpolarized cross section

The interference of the Born diagram (Fig. 1, right panel)
with any higher-order in o diagram of elastic £p scattering
(Fig. 1, left panel), can be expressed through a multiplicative
correction [34,40],

2 e
s — — = _|GyReA ZGgReA
v Gﬁ4+£G2|:Meg]+rEeg2
(1 —e7) (——GE Re AGy — Gy Re AQ3)}

(39)

to the O(«?) Born cross section in Eq. (2). Here, Re denotes
the real part of the auxiliary amplitudes

2
G =Gum + .7:3 + fs, (40)
G ZQM—(1+T)5’:2+W}—3, 41
m v
g3=w-7‘—5+m-7:3, (42)

Gs = Fa+ 43)

vV
e

In this way, one can also describe the leading TPE correction,
cf. Eq. (58).
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2.2.4 Polarization transfer observables

The longitudinal and transverse polarization transfer asym-
metries, P; and Py, are defined as (with, e.g., h = +)
_do=4)—do(M' =-)
T oV =+) +do(W =)’
_do(§'=S51)—do(§'=-5])
C do(§=S81)+do(S'=-S1)’

(44)

Py

(45)

where §' = £S5 is the spin direction of the recoil proton in
the scattering plane transverse to its momentum. In the Born
approximation, their ratio is related to the ratio of electric to
magnetic Sachs FFs [41,42]

P 2 G
__ | 5E (46)
P (1 +¢) Gy

Equivalent information on the proton FFs can be obtained
from measuring double-spin asymmetries on a polarized pro-
ton target [43]. Taking into account the leading virtual cor-
rections to the asymmetries, the ratio modifies, up to terms
of order O(az), as described in Refs. [34,44,45] as

P _ 28 | Rpw + Yi — RenY
P[ == T(1+8) EM E EMIM

I I @7)

1+8 EM 31
with
GEg

R = —, 48
EM Gt (48)

where the shorthand notations for ratio of two-photon ampli-
tudes relative to the magnetic FF have been used:

ReAgM
= —, 49
M G (49)
ReAgE
Yp = ——, 50
E G (50)
v Re R
Y;=— . 51
T M2 Gy o1

Furthermore for the longitudinal polarization transfer P; sep-

arately, its expression relative to the 1y -result PIBOm is given
in Refs. [34,44], up to terms of order (’)(oe2), by
P[ & 5 —1
R2 R
x{|: € <1_ EM>+ EM:|Y3
1+¢ T T
Rem
+ [Ye — REmYm] } (52)

with
—1
PP“H=\/1—82<1+-§R%M> , (53)

Note that in Egs. (47) and (52) the lepton mass has been
neglected, my = 0, which is not a valid approximation for
low-energy muon scattering [40].

2.2.5 Beam and target normal single-spin asymmetries

The target (beam) normal single-spin asymmetries (SSA) A,
(By) is defined for the scattering of an unpolarized beam (a
beam polarized normal to the scattering plane, with s = +s,
the direction of incoming lepton,) off a target with normal to
the scattering plane polarization S = %S, (an unpolarized
target)

_do(§=S,) —do(S=-S5,)
T do(S=S,) +do(S =-S5,
. do(s =s,) —do(s = —sy)
T do(s =sp,) +do(s = —sp)

A, (54)

(55)

n
Both these asymmetries are zero in the Born approximation.

Taking into account leading virtual corrections, the asymme-
tries can be expressed as [35,46,47]

2(e —egp)(1 + & — 2¢¢ e -1
A,,=\/( 0 2 (14 k%)

(1 — &¢)2

2
XL{ —Im (Agz + m%>
Gy v

2
+ Ry Im (A@ - wﬂ) } (56)

2(1 — — 1 -1
B = PO VIHT (1 fpg )
M (1 —gp)? T T

1 v Fs

—3tIm((FAH+ ——— Reyl ,

XGM{T m( 3+ 21+r>+ EM mg4}
(57)

where Im denotes the imaginary part.

3 Two-photon exchange

The TPE contribution to lepton scattering, shown in Fig. 11,
is of particular importance for two main reasons: Firstly,
hadronic corrections, cf. the blob in Fig. 11 (bottom panel),
are notoriously difficult to calculate and often have a large rel-
ative uncertainty. Secondly, as will be explained in Sect. 3.1,
the OPE may not be a good approximation for the extrac-
tion of FFs from the unpolarized cross section at large Q2.

@ Springer



91 Page 10 of 52

Therefore, the leading TPE correction

_2Re(AD*4,))

8oy x~ W, (58)

following from the interference of the Born and TPE ampli-
tudes, A® and Ay, , has to be taken into account appro-
priately. A complete calculation should go beyond the soft-
photon approximation and include the hard TPE with all pos-
sible intermediate states. In the last decade, predictions of
the TPE correction have been systematically improved and
model dependence has been reduced by employing disper-
sion relations and effective field theories.

This part of the paper is organized as follows. In Sect. 3.1,
we illustrate the importance of the TPE by comparing Rosen-
bluth and polarization-transfer measurements of the proton
FFs. In Sect. 3.2, we review theoretical predictions for the
leading TPE correction, distinguishing between proton and
inelastic intermediate states, as well as regions from small to
large momentum transfer. In Sect. 3.3, we discuss effective
field theory calculations. In Sect. 3.4, empirical extractions
of TPE corrections and amplitudes are presented and updated
based on new data. In Sect. 3.5, results of past experiments
aimed at extracting the TPE are presented and compared to
theoretical predictions. We finish with an outlook on future
experiments and theory advances in Sect. 3.6. For further
reading, we refer to the following reviews in Refs. [48-51]
and the recent CFNS whitepaper, Ref. [52].

3.1 Rosenbluth vs. polarization transfer experiments

Polarization experiments in elastic ep scattering at Jefferson
Lab Hall A [53-56], revealed that the ratios of proton FFs,
G £(0%)/Gu(0?), extracted based on the Rosenbluth [2] or
polarization transfer methods [41,42] in the OPE approxima-
tion deviate with increasing Q2. The FF ratio from Rosen-
bluth extractions is nearly constant as a function of 0%, while
it decreases for polarization transfer measurements, as can be
seen in Fig. 9. In the limit of OPE, one defines an unpolar-
ized reduced cross section that is linear in ¢ and the corre-
sponding ratio of measurements with transverse or longitu-
dinal polarization of the recoiling proton is constant in € as
given in Egs. (2) and (46). What is measured in experiment,
however, will always include radiative corrections. Taking
these into account and under some assumptions, in pres-
ence of TPE, the expressions modify according to Egs. (39)
and (47), respectively. One can see that after inclusion of
the TPE correction, the interpretation of what is measured in
Rosenbluth and polarization transfer experiments changes.
Model independent considerations [57-59] show that it is
still possible to recover experimentally the electric and mag-
netic proton FFs, even in presence of TPE, but this requires
either the measurement of three time-odd or five time-even
polarization observables (including triple spin observables,
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Fig. 9 Ratio of proton electric and magnetic FFs, Gg 11,/ G m, with
i p the magnetic moment of the proton, as obtained from three types
of measurements: Rosenbluth separation [62—68], polarization transfer
[54-56,69,70], and beam-target asymmetry [71,72]. Shown are a sub-
set of the available data to not overcrowd the figure. The Rosenbluth
result only contains the TPE corrections in the form of the well-known
Maximon-Tjon radiative corrections [3] (no hard TPE was included),
whereas for the polarized extraction no radiative corrections were taken
into account

of the order of «) or, alternatively, the generalization of the
Akhiezer-Rekalo recoil proton polarization method [41,42]
with longitudinally polarized electrons and positron beams
in identical kinematical conditions.

In a series of papers in the early 2000s, it has been shown
that the inclusion of “hard” TPE may reconcile the FF extrac-
tions from polarized and unpolarized £p scattering, within
some assumptions (real-valued FFs and ¢ linearity of the
TPE contribution). Guichon and Vanderhaeghen identified
in Ref. [34] the experimental observables used to extract the
G /Gy ratio as the e-slope in the reduced cross section

or(e, 02) = G2, (1+§R§M> [1+48,). (59)

Neglecting lepton mass terms and using the shorthand nota-
tions for the TPE amplitudes of Eq. (51), 82, has the form

2,6, 0% = (14 SRy )

Rem

X{ZYM+28 YE+28(1+

REM) Y3} . (60)

T
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On the other hand, the polarization transfer experiments yield
the ratio given by Eq. (47)

T(1+¢e) P
_JEEa R =Rem +YE — RemYm
2¢e P

(1= 2R )y ©61)
I 4¢ EM)T3

Reference [34] showed that the TPE in the Rosenbluth
method effectively corrects a small number, cf. the ¢ depen-
dent term in Eq. (59) with R%,,(0) ~ (1/2.79)> ~ 0.13
which has an additional 1/t suppression at large Q2. The
FF ratio extracted from P;/P; is only mildly affected by
radiative corrections as it involves asymmetries, whereas the
cross sections themselves are strongly modified by radiative
corrections at moderately and large momenta. Around the
same time, Blunden et al. in Ref. [60] showed with a simple
hadronic model calculation, including the finite size of the
proton, that the dominant TPE with a proton intermediate
state allows to partially resolve the discrepancy. Inclusion of
the A(1232) resonance further improved the agreement, as
shown by Kondratyuk et al. in Ref. [61]. A similar conclu-
sion was drawn by Chen et al. and Afanasev et al. in Refs.
[46,47] respectively, with a partonic model calculation.

Note that alternative explanations have been put for-
ward, such as different calculations of radiative corrections,
including also lepton structure functions [8,73], correlations
between the Rosenbluth parameters [74], or acceptance prob-
lems in the analysis or experiment [75].

The electric FF is determined by the slope of the Rosen-
bluth plot, at fixed Q2, derived from the radiatively corrected
cross section. Corrections at large Q% may reach 40% [64]
and the e-slope may essentially change. Even more dramati-
cally, above 3 GeV? the slope of the measured cross section
may even be negative before corrections, cf. Fig. 10 [76,77]
where the effect of radiative corrections [4], including “soft”
but no “hard” TPE, is shown. Note that G g must be real in the
space-like region. This means that G% is essentially deter-
mined by the e-dependence of the applied radiative correc-
tions. Different calculations show a difference of few percent
in the slope, already at NLO [6,7].

Concerning polarization observables, it is commonly
assumed that the FF ratio given by polarization measure-
ments is not (or less) affected by radiative corrections, giv-
ing therefore a more reliable result on this ratio than the one
extracted by the Rosenbluth method. The polarization asym-
metries Py and P; are ratios of cross sections, cf. Egs. (44)
and (45), in which the bulk of the radiative corrections that
factorize (virtual corrections on lepton side and soft-photon
emission corrections) drop out. Therefore, they are less sen-
sitive to radiative corrections than the unpolarized cross sec-
tion.

10.5 L T I T I T I T I T
- with rad. correction h
100 | =
95 [ >
9.0 [ =
g5 F =
© - ]
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70 F—_ & 3
C O ~~=< ]
65 [ 2.n
r without rad. correction =~ — _]
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Fig. 10 Rosenbluth plot for the data from Ref. [64] at momentum
transfers of 1.75 (green squares), 3.25 (blue triangles) and 5 GeV? (red
circles). Empty and full symbols show data before and after radiative
corrections [4] (no hard TPE included), respectively. Figure taken from
Ref. [77], copyright Elsevier 2007

Already in the 1970s, a reason why the TPE correction
could become important at large Q2 was put forward [78-80]:
when the transferred momentum is equally shared between
the two photons the scaling in @ may be compensated by the
steep decrease of the FFs with Q2. The effect is therefore
expected to increase with Q2 and with the hadron mass. The
advent of the high duty cycle and highly polarized electron
beam at the Jefferson Lab, together with the availability of
large solid angle spectrometers and hadron polarimetry in the
GeV region, opened the way to high-precision experiments in
elastic and inelastic electron-hadron scattering. Two exper-
iments of elastic electron-deuteron (ed) scattering at large
Q2 in Hall A [81] and Hall C [82] claiming an error of 5%,
showed a discrepancy of up to 15% in the elastic ed cross
section at the same Q2 but different energies and angles. A
possible explanation was brought up that the TPE contribu-
tion could be at the origin of these findings [83]. Finally the
discrepancy was attributed to a systematic error of the Hall
C spectrometer setting, as no Q> dependence was observed.

3.2 Theoretical predictions

In this subsection, we review theoretical predictions for the
TPE contributions to £p scattering. We will refer to the (stan-
dard) TPE approximations by Maximon and Tjon [3] (or Mo
and Tsai [4]), conventionally included in the experimental
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analysis, as “soft” TPE. (Non-standard) refinements of the
TPE, that need to be included given the accuracy of modern
scattering experiments, will be referred to below as “hard”
TPE. Starting from the so-called elastic TPE with a pro-
ton intermediate state, Fig. 11 (top panel), we subsequently
discuss TPE contributions with inelastic intermediate states,
Fig. 11 (bottom panel), in regions of small, medium and large
momentum transfer. Furthermore, we discuss the forward
TPE as the limiting factor in the theoretical description of
the energy spectra of light muonic atoms.

3.2.1 Infrared subtraction schemes

As discussed in Sect. 2.1, the “virtual” TPE corrections need
to be combined with “real” TPE corrections, i.e., the interfer-
ence of bremsstrahlung emission from the lepton and proton
line, respectively, in order to obtain an IR safe, thus, measur-
able quantity. The corresponding diagrams are depicted in
Figs. 5 and 6. All of them separately contain IR divergences,
which then cancel in their sum. Discussing both real and vir-
tual TPE contributions at the same time can be quite cumber-
some in practice, as it makes comparing different TPE scenar-
ios and parametrisations needlessly complicated. Therefore,
the O (3 Z3) contribution of virtual TPE, discussed in this
section, is often presented separately. When plotting this TPE
contribution to 83, or Ry), defined in Egs. (58) and (92), one
has to somehow treat the contained IR divergences. The com-
mon way is to define an IR subtraction scheme that removes
the IR divergence (and potentially some finite parts as well).
The exact form of this subtraction term is somewhat arbitrary
and solely determined by conventions since the result is no
longer a physical quantity.

A common way of doing this in the high-energy commu-
nity is the definition of the Catani I operator [84] that simply
removes the 1/€ poles in dimensional regularisation.

In the QED community it is not uncommon to add the first
terms of Egs. (15) or (16)

85 = 82y +/ do, £
E,<$

p2 -k
p2-kky-k

p1 - ki
_5 dCI>(
2“/ ok & T

&)
(s —> u)). (62)

This scheme, sometimes called eikonal subtraction [18], has
the added advantage of giving the remnant a physical inter-
pretation as long as the parameter § is chosen small enough —
it just approximately includes real corrections up to the cut-
off §. The calculation of this integral is somewhat involved
but the result is well known [18,85,86]. Since this physi-
cal interpretation exists, it also means that the result needs
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Fig. 11 Off-forward TPE contribution to elastic £p scattering with pro-
ton intermediate state (top panel), where the circles represent the proton
FFs, and inelastic intermediate states (bottom panel), where the blob
represents all possible excitations. The horizontal lines correspond to
the lepton and proton (double line). Crossed TPE diagrams are implied
in all references to this figure

to be independent of how the TPE calculation was regu-
larised, making comparisons between different methods eas-
ier. The TPE community usually follows either Mo-Tsai
(MoT) [4,87] or Maximon-Tjon (MTj) [3]. Note that in this
paper, we use the MTj convention for our Figs. 12, 13, 14,
15, 16, 17, 18 and 19. The latter defines the IR-subtracted
TPE contribution as

MTj

2a
82)/ =68y — ;que[pl - ki

de

x / EZ(Z _ q)z[(g _ kl)z _ mz] [(@ + pl)z _ Mz]

— (s — u)i|. (63)

This integral can be evaluated both using photon-mass
regularisation or dimensional regularisation

2 2
MT;i 2a m-+ M- —s
52VJ=52V+;RCI:T
s
m2
m2+ M? —s + /A, an—é
x In ¢
2mM 1(M_2>
e\ 02
—(s—>u)], (64)

where we have defined Ay = m*+(M?%—s)2 =2 m%(M?+s).
In the limit of m?> <« s, M?, Q2, the expression for e~ p
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Fig. 12 The TPE correction &, (in %) versus & for nucleon plus all
spin-parity 1/2% and 3/2% states [141] at Q> = 0.2 GeV? (green
dashed line), 0.5 GeV? (dark red long-dashed), 1 GeV? (red solid),
3 GeV? (orange dot-dashed), 4 GeV? (black dotted), and 5 GeV? (blue
dashed). The shaded bands correspond to the uncertainty propagated
from the input electrocouplings

scattering simplifies to

MTj 200 ‘S—Mz‘ ln@

82)/ = 827/ + ; In m (65)

To derive the MoT subtraction prescription, we instead
start by replacing either the ¢> propagator or the (¢ — ¢)>
propagator with 1/¢%. The idea is to mimic the soft behaviour
of the integral as either the £ propagator goes to zero or the
(¢ — ¢)? propagator. This procedure results in two identical
triangle functions

v 2a
5%[/01‘ = 82), — ?q2RC|:pl . k]

de
<J e[ (e —kn? = m?][ €+ p1? = M?]

—(s— u)]- (66)

Note that this is not yet the correct MoT prescription,
hence MoT'. The loop integral is slightly more involved than
the previous one but can still be trivially written in terms of
the well-known Ellis—Zanderighi functions [88]. In this case,
we need the integral 16ﬁn (s; m2, M 2) commonly referred to
as Triangle 6,

, 2
ST =6, + —O‘{(m2 + M?* - s)Re|:16ﬁ“(s; m*, M?)
T

2
n 1 1 m? 4+ M? — s + /Ay an—X,,
n
A 2mM 1(#_2)6
e\ mM
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Fig. 13 Polarization transfer observables for elastic ep scattering at
0% = 2.5 GeV2. Upper panel: —u,+/t(1+¢)/(2¢) P/ Py, lower
panel: P /PlBom. The JLab/Hall C data are from the GEp-2y exper-
iment [159], using the updated analysis of [70]. The red curves are
the fit to the data. Left: e-independent fit according to Ref. [70]; right:
updated fit from Ref. [44] according to Eq. (83). Note that the values
for the polarization observables are shown without radiative correc-
tions. The bulk of these corrections (virtual corrections on the lepton
side and soft-photon emission corrections), which factorize in terms of
the Born cross section, drop out of the asymmetries, and the hard TPE
is therefore expected to be the leading correction. It has been checked
in Refs. [70,159] using the MASCARAD program [11] that the stan-
dard radiative corrections yield a multiplicative correction around or
less than 0.1% on the asymmetries

—(s —> u)}. (67)

If one chooses, 16ﬁn could be expressed in terms of logarithms
and dilogarithms. The resulting expression is not overly com-
plicated but reproducing it here serves no practical purpose.
However, in the limit of m? < s, M 2, Q2 the expression is
fairly compact

y L. 2
1 (s; m?, M?) = —m< — —(im+ log(—ys))

3
y .
2In(—y)1 —2Lip(—
+2In( y)n1+y (=)
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Fig. 14 Upper panel: e-dependence of the reduced cross section oy for
0% =2.5 GeV2, based on the linear fit of Ref. [68] (red dotted curve),
using the modified fit function of Eq. (87) (green solid curve), as well
as in the OPE approximation, setting 82, = 0, (blue dashed curve).
Lower panel: e-dependence of the TPE correction 8, for Q% =25
GeV?2, based on the linear fit of Ref. [68] (red dotted curve), using the
modified fit function of Eq. (87) (green solid curve), using the spline fit
(purple long-dashed curve) and Padé fit (yellow short-dashed curve) of
Ref. [157]. The black dot-dashed curve shows the McKinley—Feshbach
correction, which gives the leading behavior for ¢ — 1
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Fig. 15 & dependence for the TPE amplitudes for 0> = 2.5 GeV?,
based on the polarization data of Ref. [70], shown in Fig. 13, and the
cross section fit of Ref. [68], improved using the fit function of Eq. (87),
given by the red curves in Fig. 14
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Fig. 16 Comparison of predictions for Ry, , Eq. (92), from ep scatter-
ing with beam energy Epeam = 2.01 GeV toresults from the OLYMPUS
experiment (black points; statistical