
A SOFTWARE SYSTEM FOR THE HONEYWELL OCULOMETER

NY

MICHAEL TERRY ERRECART

Submitted in Partial Fulfillment

of the Requirements for the

Degree of Bachelor of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1972

ature of Author

ified bv

ted DY

Chairman’

Sighature redacted
J Department of Electrical Engineering

Signature redacted To.
_ . N.Thesis Supervisor?t-77

Signature redacted
Departmental Committee of Theses

Archives

ohss. INST, Tecy

JUN 1 1972

"LIBRARIES

The Honeywell Oculometer is an instrument capable

of determining the direction in which a person is looking

through a remote camera. The Oculometer utilizes a digital

computer which processes optical data.

This report describes and analyzes a software system

implemented on the digital computer used in the Oculometer.

It gives an overview of the entire Oculometer, a thorough

analysis of the design decisions involved in creating the

software, and a complete documentation of the software

implemented on the system.

2

TABLE OF CONTENTS

INTRODUCTION: eco oensen
Tr - I»

PART Ie ccoese in
tte sansaeaaceaseaad

DA. CAMERA.¢¢o.. , 6

Be. COMPARATORS. ee.»

C. DIGITAL INTERFACE SYSTEM.cecocecooceces9

vn eoseessd

D. Hl1l1l2 COMPUTER. vee os « «12

PART IX. n 14

A. SYSTEM. 16

Be. PROCESSING. © ¢2¢0a 23

l. Data AnalySiS.ceececscsscesseel3

2. Computation AnalySiS.eeececeeses32

3. Processing sequenCe.cecseesesed?

;

C. OUTPUT CONTROL.:s os « +s eseseld

D. CALIBRATION. ceeeo 3 ©
. «04

APPENDIX A. SOFTWARE LISTING. ® & & » & ¢ 2 a ¢ 8 6 &5 0° .eb6l

tl

INTRODUCTION

This report is a summary and analysis of the software

system I developed at Honeywell Radiation Center on the Ocu-

lometer Project. It is intended to provide a comprehensive

overview of the oculometer, a thorough analysis of the constraints

upon the software subsystem and of the software itself, and

a complete, detailed documentation of the software system.

The project was headed by John Merchant, who first pio-

neered the oculometer concept. Dick Morrissette was respon-

sible for maintaining the hardware systems. I was responsible

for designing and maintaining the software systems. The

project was an internal development program.

The purpose of this project was to produce an oculometer

whose components were readily reproducible subsystems. Previous

oculometers had been constructed of special purpose analog

circuits, of a complexity not readily reproducible. This pro-

ject developed an oculometer in which digital systems performed

the bulk of the data processing operations.

Part I of this report details the hardware environment

which constrains the software system. Part II analyzes and

documents the software system I developed.

aTib T

Briefly speaking, the oculometer principle is this: a

1

OCULOMETER SYSTEM

CAMERA 1 i

«Ta,
>3

BY:

SF

fIELD

BIT VIDEO

Sg.

COMPARATORS

P C

v d h

DIGITAL

INTERFACE

SYSTEM
o/)| p/a | p/a

|

OD

BUS

I/0 BUS

TELE-

TYPE

H112 COMPUTER

5

light shone into a person's eye produces a corneal highlight.

The relative position of this highlight to the center of the

person's pupil gives an accurate indication of the direction

in which the person is looking. Oculometers have been built with

errors of less than %o if eye rotation.

The oculometer is composed of four major sybsystems,plus

associated input/output devices. These subsystems are the cam-

era, the comparator circuitry, the Digital Interface System,

and the H11l2 computer. Peripheral devices include three di-

gital to analog converters, a television monitor,anx-y os-

cilloscope, and an ASR-33 teletype.

The systems operates in the following manner: The camera

is focused upon an eye. Its output video signal triggers pupil

and cornea comparators. The Digital Interface System assigns

X,y coordinates to each transition of a comparator, building

up a file in the H11l2 memory containing the coordinates of the

outline of the pupil and the cornea. The H1ll2 determines the

centers of the pupil and cornea and the relative positions of

these centers, outputting the results upon analog channels.

This part is divided into four sections, one for each major

subsystem. The subsystems are covered in the order that data

would propagate through the system.

A

A stationary camera with light source is directed towards

an eye which is positioned directly in front of the camera and

approximately 33 inches away (This distance can be altered.).

~

2 a

The eye can move within approximately two cubic inches of space

and produce acceptable camera output.

The camera is the master timing control of the oculometer.

It assumes this role because it sets the rate at which data is

fed into the system. Obviously, all other components must pro-

cess this data at least as fast as it is sent, on the average,

or the data will not be utilized to its fullest.

The camera scans the incoming image 30 times per second.

Each scan is called a frame. A frame represents 525 parallel

horizontal sweeps across the input image. Each sweep is a line.

A line is transmitted every 63.5 microseconds. The frame is

scanned from the top line down, scanning every other line. Thus

half of the lines are left out as the trace works down the

screen. To output a complete frame the scan from top to bottom

must be executed twice, once outputting even numbered lines and

once outputting oddd numbered lines. Each time across is called

a field. To sum up, the output of the camera is a succession of

frames, each frame consisting of two fields, and each field

consisting of 262+ lines of video data, each field in a frame

representing different video lines.

The control signals are logical results of this method of

data transmission. At the beginning of each field, a Start

Field (SF) pulse is transmitted. At the beginning of each line,

a Start Line (SL) pulse is transmitted. Another line is low

during the first field in a frame and high during the second.

7

CAMERA OUTPUT

rr ————

4

FF™FEai

L

VIDEO

LINE

SL

+ 63.5
usec.

16. 74

jm

1

FR I =

FIELD 1

SI,

$ L
» &

—~

CY

Tt

9

———

FIELD 2

TL

1

SL SL

iQ ~
b,

PIMBe;
1

11

FIELD BIT

COMPARATOR OUTPUT

INPUT

PUPIL

ouTPUT
{

LINE LINE | LINE | LINE

|r— | J ll.
?

1B Co —] In

i

CORNEA

OUTPUT Lon
—

63.5usec.

Q

BR.

The comparators perform the function of detecting the boun-

daries of the pupil and cornea. This operation is necessary

in order to be able to eventually compute the centers of the

pupil and cornea and thus the relative position of these centers.

Two comparators are used to detect the presence of the

pupil and cornea, the corneal comparator being set considerably

higher than the pupil comparator, due to the relative signal

strengths. Thus there are two output channels from the comparators,

one for the pupil and one for the cornea. These output signals

are logical signals whose transition points signify when the

pupil/cornea was encountered and then left on any particular

line sweep.

Note that by detecting the cornea and pupil in this manner

|

that a cornea will always trigger the pupil comparator. As

long as the cornea is within the pupil boundary and not too

close to that boundary of the pupil, this will have no effect.

However, if the cornea is outside the pupil, this method will

produce two pupils, the true pupil and the virtual pupil about

the cornea. The boundary of the true pupil can become distorted

since a cornea near the boundary will cause the pupil comparator

to fire slightly sooner than it would otherwise.

CC.

The Digital Interface System (DIS) maps a digitized Car-

tesian coordinate system onto the TV camera image. Each

transition by an input comparator signal is assigned a coordinate

in this grid. Each quantized transition is then written into

9)

the H112 memory. Thus the DIS write digital data files into

the H112 memory corresponding to the position of the outline

of the pupil and the outline of the cornea upon the TV camera.

The grid system is created by two counters. The Line

Counter (LC) creates the y axis. It is initialized to zero

upon the receipt of an SF from the camera. Each subsequent

SI increments the line counter. Thus every video line is

assigned a unique line number. This is subject to the pro-

viso that since alternate lines are scanned in a field, the

LC will vary from 0 to 263 each each field even though 525

distinct lines are sent on consecutive fields. The Clock

Counter (CC) establishes the x axis. It is reset to zero by

every SL pulse. A ten megahertz clock increments the counter.

Thus a grid is established whose coordinates range 0 to 263

top to bottom and 0 to 635 left to right.

The DIS writes three items into the H1ll2 memory for each

pupil or cornea encountered in a line. (The DIS allows up to

two pupils or two corneas per line.) These items are the Clock

Counter reading when the pupil/cornea was encountered, the Clock

Counter reading when the pupil/cornea was left, and the Line

Counter value for that line. Two data lists are created, one

for all pupil encounters and one for all cornea encounters. The

4112 has control over the initial address of each list. The

DIS increments the appropriate address pointer after each item

trans fer.

10.

Immediately after the DIS receives a Start Field pulse

from the camera it accesses six control words from the H1ll2

memory. Four of these words outline a "Gate" in the camera

image. The Gate consists of two LC values and two CC values.

The DIS is constrained to reject data transitions from the

comparators whose coordinates would be outside this gate.

The other two words are the initial addresses at which the

DIS can begin to write data files.

When ‘ever the LC is equal to one of the two LC values of

the Gate, the DIS generates an interrupt. This causes the

H112 to stop normal processing and enter a special routine

to read two status bits. The DIS transmits a bit corresponding

to the field (0 = first field, 1 = second field), and a bit

corresponding to the interrupt (0 = first interrupt of field,

1 = second interrupt of field).

To sum up the events over an entire frame: First, the

DIS receives an SF from the camera. It sets the line Counter

to zero. It reads in two file start addresses and four Gate

values from the H1l1l2, Each Start Line pulse then increments

the Line Counter and resets the Clock Counter to zero. Next,

when the LC equals the top Gate value, the DIS generates an

interrupt. The H11l2 responds and reads a 0-field,O0-interrupt

status. on subsequent lines, until the bottom Gate value is

encountered, the DIS will input data directly into the H112

memory corresponding to the CC readings and the LC reading

when comparator logic signals make transitions. Data is input

11.

into memory locations starting with the file start addresses

read in after the SF pulse. When the botton Gate is encountered

the DIS generates an interrupt. The H11l2 responds and reads

a 0O-field,l-interrupt status. No further data transfers take

place this field. The second field repeats the above process

except that the interrupts are 1-field,O0-interrupt-and l-field,

j-interrupt status.. This constitutes the events of an entire

Frame.

nN.

The H11l2 is a single sequence, single accumulator, single

processor, synchronous digital computer with 4096 words of twelve

bit memory. It is a relatively slow minicomputer with memory

access times of around two microseconds compared to other machines

with 800 nanosecond times. The H11l2 can be interfaces with a

variety of input/output devices through the use of a program-

mable input/output bus ora nonprogrammable Direct Data Bus.

The H112 processes the data files written by the DIS. It

provides control words for the DIS and reads status bits from

the DIS. The Oculometer imposes these constraints upon the

Hl1l2 software:

1. In order not to lose data, the H1ll2 must process a field

of data and output any results wihtin 16.7 milliseconds after

the field has been received. This is a weak constraint in that

for part of this processing time, the DIS will be writing into

the H112 memory the next data file. Writing via the Direct Data

channels locks out the execution of H1l1l2 machine code.

 0D

2. The H11l2 must be able to respond to interrupts from

the DIS at any time. Interrupts times are completely asynchron-

ous with respect to the execution of the coding. It is therefore

necessary that the H1l1l2 have the capability of resuming its

former machine state the interrupt.

3. The H1ll2 must control the Gate such that

flow is maximized.

valid data

4, The H11l2 must manage the start of file addresses such

that the inputting of the next data field by the DIS will not

affect the processing of the last data field by the Hll2.

13.

PART II.

The software system presented here is not intended to

describe the ultimate answer to the oculometer data processing

problem. Rather, I will describe a system I developed to

meet specific data processing requirements,.asystemwhich has

existed in literally scores of forms as our knowledge has

grown about the nature of the data and the most useful types

of interaction between the user and the system. The system

documented and analyzed here is in actual use at Honeywell

Radiation Center, except for the calibrated eye direction

output facility, which is not in use.

The software system was written in machine code. I

had access to two compilers, but neither was adequate. One

compiler was implemented on a time-sharing system in Basic.

Unfortunately, it did not allow programming to the full capa-

bility of the H1ll2. The Honeywell supplied compiler was ade-

quate except that it was a very tedious process to load and

compile: a program due to the small amount of core storage

available. As a result, I found it simpler to hand compile

most of the algorithms used.

This part is composed of four sections. The first

section details the SYSTEM algorithm. The SYSTEM algorithm

controls the interactions of the H1l1l2 with the DIS. It is

responsible for providing control words to the DIS and for

14.

determining when the processing of data may begin. This sec-

tion analyzes the types of timing errors that can occur. The

second section describes the PROCESSING algorithm. PROCESSING

applies data analysis and computational subroutines to the

raw data and links to the appropriate output routine. The

PROCESSING section analyzes the types of input data errors,

the relative importance of the possible types of error, and

how some of these errors can be avoided. The PROCESSING section

analyzes methods of computing the relative centers of the

pupil and cornea and describes the method used in terms of

its advantages and limitations. The third section describes

the OUTPUT CONTROL algorithm and the various output routines.

This section deals primarily with the problem of man-machine

interaction,i.e. it explores the types of controls that the

operator has over the system and the type of information

output that has proven useful to the operator of the system.

The fourth section describes the CALIBRATION routine. The

CALIBRATION routine is designed to provide an easy means of

scaling the x-y axes and shifting the origin of the system.

These four algorithms interact in the following manner:

When the computer begins execution, it enters the OUTPUT

CONTROL routine. The user may select any of three output rou-

tines or enter the GALIBRATION routine. If the CALIBRATION

ROUTINE IS entered the operator will have the opportunity

to computer right,left,up,down scale factors and x and vy

185.

null constants. At the conclusion of the CALIBRATION routine

control is returned to OUTPUT CONTROL. If the user selects an

output routine, the system automatically links the appropriate

output routine with the PROCESSING algorithm and initiates

normal operation by entering the SYSTEM algorithm. SYSTEM

synchronizes the operation of the H1l1l2 software to the DIS

and controls the application of PROCESSING which processes the

raw data and outputs the results using the output routine

selected. At any time the user may select another output

routine by pressing the teletype break key. This will cause

control to be returned to the QUTPUT CONTROL routine.

A. SYSTEM

The SYSTEM algorithm synchronizes the operation of the

H11l2 to the second interrupt in a field. When this second

interrupt is recognized, SYSTEM allocates two file start

addresses to the DIS for inputting during the next field and

allocates the two file start address used by the DIS during

the current field to the PROCESSING routine for processing.

When PROCESSING has been executed, control is returned to

SYSTEM which waits for the second interrupt status of the next

field to begine the cycle anew.

SYSTEMiscinitially entered through_a series of initiali-

zation steps including: establishing interrupt configuration,

such that the DIS is the only peripheral device allowed to

16.

5Y5TEM

ENTER

SET INTERRUPT

CONFIGURATION

174-201
| woiboarrr——_—

 EXECUTE

ADDRESS SWITCHI

202

 ENABLE

INTERRUPTS

203

EXECUTE

ADDRESS SWITCHII

210

 EXECUTE

PROCESSING

21]

NA [Tl

LL
DIS

BITS= 0]? eo

YEG
204,207

EXECUTE

WAITL

he— EXECUTE

PROCESSING

204 . 207 -

EXECUTE

NAIT2
s—— }

EXECUTE

ADDRESS SWITCHI
*

212,21 g

WALT2

— eeSRE

no b
 DIS |

BITS= 11?

~—

212,215
VEG

17,220

17.

interrupt; initializing the DIS status bits; initializing file

start addresses; enabling interrupts; entry into WAITI1

In the actual program WAIT1 provides the necessary stall

until the first field, second interrupt status is received

at which time ADDRESS SWITCH1l is applied. ADDRESS SWITCH

allocates file start addresses Cl and Pl (C-corena,P-pupil)

to the DIS and C2 and P2 to PROCESSING. PROCESSING is then

executed. Control is returned to WAIT2 which waits for the

second field,second interrupt status. ADDRESS SWITCH2 is

applied. C2 and P2 are.allocated to the DIS and Cl and Pl

to PROCESSING. PROCESSING is executed and control is returned

to WAITI1,etc.

The alternate field property of SYSTEM should be pointed

out. SYSTEM is constructed such that is always processes a

second field of a frame after a first field of a frame and a

first field after a second field of a frame. This is done to

insure that the output of thw system will reflect all of the

data in the TV image not just the first scan or the second

scan, which in fact represent different video data.

The WAIT routines have an important adjunct, the INTERRUPT

routine. An interrupt is a signal from the DIS which causes the

H112 to stop processing and jump to a predetermined routine.

This routine is used to read in status bits from the DIS via

the input/output bus. The program then resets the interrupt

and restores the H11l2 to its machine state before the interrupt.

18.

ADDRESS SWITCH I

22]

C2 into MAO

n

»
222,223

Cl into C

ADDRESS SWITCH II

ENTER

234

C] into MAO

Js
235,236

C2 into C

x

 aN

=

5 224,225

P2 into MBO

J. 226,227

Pl into P

230,23]

23D

<r 237.240

Pl into MBO

241,242
hid

P2 into P

i

Q)
243,244

243

C],C2 - Corneal file start addresses

Pl1,P2 - Pupil file start addresses

C = Cornea processing address

P - Pupil processing address

MAO = Cornea inputting address

MBO - Pupil inputting address

19.

The INTERRUPT routine is also used to determine if the tele-

type is breaking. If so, control is transferred to the OUTPUT

CONTROL routine.

There are two reasons for the synchronization to the

second interrupt of the field. First of all, the second inter-

rupt is the point in time at which the H1l1l2 is first notified

that a new data field has been totally received. Thus it is

also the earliesftime that the new data can be processed.

Secondly, it is the last time that the H1ll2 is notified that

the next event performed by the DIS will be to read in six

control words from the Hll2. This method of handling the

control words may create serious problems if the input data

files become too long.

If the processing of the data takes more than 16 milli-

seconds, SYSTEM may fail to manage the file start addresses

correctly. Normally, processing of a field begins after the

second interrupt of the field and terminates sometime before

the second interrupt of the next field. Case.l. Processing

terminates after the second interrupt but before the SF pulse

is received by the DIS. No problem this field, but if the

next field takes as long there will be problems, namely Case

2. Processing terminates after the second interrupt of the

next field and just after the DIS has received the SF pulse

from the camera and read in the control words for the next

field. At this point the status bits still signify a second

20.

INTERRUPT ROUTINE

\

100

land.

 > r

ACCUMULATOR
;

0)

IS

T.T.BRE

AKING?

102,103

oj
{GET DIS BITS

FROM DIS

EXECUTE

OUTPUT CONTROL

ROUTINE

+i

prm————

RIGHT SHIFT 10

AND SAVE

RESTORE

ACCUMULATOR

Yo 105,106

107,110

Ly

—

ENABLE

INTERRUPTS

111

104

112

{ RETURN)
q ©

21.

interrupt status. Therefore, SYSTEM executes the file switch.

PROCESSING Will process the files into which the DIS input

data last field, but since the file address switch was executed

after the DIS read in its control words for the next field,

the DIs will input new files into the same addresses which the

PROCESSING routine is using for computation. Fortunately,

Case 3., the delay is so long the first interrupt occurs in

the next field, will cause the SYSTEM algorithm for the

appropriate second interrupt to resynchronize the system.

Unfortunately, Case 2. could have been avoided. The

problem is for the SYSTEM algorithm to be able to absolutely

determine the file start addresses of the DIS, no matter

what point in time the PROCESSING algorithm terminates. The

requirement that SYSTEM recognize the first interrupt in a

field before recognizing the second interrupt would have met

this requirement. (It has been passed on to HONEYWELL.)

For instance, if Case @ occurs, the new requirement would

force SYSTEM to wait until it recognized the appropriate

first interrupt before it could synchronize to the second,

thus quaranteeing that the appropriate address switches are

always executed before the DIS reads its control words. It

should be noted that the appearance of a Case 2 condition

usually signifies a great deal of spurious data, rather than

a large amount of valid data. Thus this correction will usually

result in accurate output of garbled data as opposed to garbled

output of garbled data!

22.

B. PROCESSING

The PROCESSING algorithm proper does little actual

processing. Principally, it sequences the application of

data analysis, computation, and output routines to the data.

It operates under no time constraints with respect to the

rest of the system. It has been designed such that it will

process a normal field of data in less than 16 milliseconds,

thus incurring no problems for the SYSTEM algorithm.

This part of the report is written in three sections.

Section 1. deals with an analysis of the data structure and

the most important types of raw data error and with the

algorithm used to overcome some of these data deficiencies.

Section 2. analyzes methods for determining the relative

position of the pupil and cornea. It also analyzes the

computational routines used by PROCESSING. Sections 3. ties

together the results of the previous two sections by showing

how the data analysis and computation routines are sequenced

to process the input data files.

SECTION 1.

The data is structured into two files. A file is a se-

quential list of data, whose length is a multiple of three,

terminating with three items equal to 1777 . One file corres-
8

ponds to corneal data, the other file to pupil data. Each

set of three items correspond to two threshold: crossingsof

23.

the appropriate comparator and the line counter value (x1,

x2,y). The DIS is constrained to allow up to two pupils or

two corneas per line.

There are several peculiarites of the eye data which

must be overcome by the processing algorithm. The blink, of

course, destroys the eye picture. A blink may be intercepted

by a field half way down, thus distorting the image of the

eye. The upper lid will sometimes obscure the eye when a person

looks down. A tear sometimes can be mistaken for a cornea.

It has approximately the same size and sometimes the same

brilliance. If the eye is slightly out of focus, the cornea

level may sink below the comparator threshold. If the eye is

sl ghtly out of position, the gate will cut off a portion

of the image. If the cornea is on the pupil boundary, it can

cause distortion of the pupil. Defects in the camera may pro-

duce recurrent spurious data. Transients caused by switching

lights can cause spurious images. The amount of pupil signal

remains low except for certain angles of eyeball rotation, in

which case the pupil level can become very high and appear to

be corneal data.

The data analysis routine employed must be able to make

distinctions between field of data that possess the basic

information necessary to compute relative postion and those

fields that do not. It must further be able to minimize the

effects of distortion in those fields which do possess the

24.

requisite characteristics.

The data checking routine has these controls over the

data: 1. It can change the start of file address, thus ef-

fectively losing some number of lines from the top of the

picture. 2. It can change the end of file address, thus ef=

fectively losing some number of lines from the bottom of the

picture. 3. It can set the y value of any line to zero. This

is a signal that this line of data should be ignored in fur-

ther processing. 4. It can terminate the processing of the

file and return control to SYSTEM. Thus, the data checking

routine (DATACHEK) determines what data should be ignored

by subsequent routines on the basis of certain assump tions

about the structure of valid data.

These assumptions about valid data are embodied in DATA-

CHEK: 1. The pupil and cornea are solid shapes. Thus valid

data will be represented by a minimum number of consecutive

lines. DATACHEK assumes that the pupil must have eight con-

secutive lines and the cornea two. 2. There is at most one

valid pupil and at most one valid vornea pedfline. In all

cases, when two pupils or corneas are encountered on any line,

one is in error. Since shoosing proved to be a time consuming

and difficult task, the only option was to ignore both items.

As a consequence, the operation of DATACHEK is really an

inspection of the y line numbers. In the pupil file, data is

checked until the first eight consecutive lines are encountered.

28.

The beginning of these eight lines becomes the beginning of

the file. The first nonconsecutive line after the first eight

signals the end of file. Duplicate line numbers are set to zero.

(Duplicate line numbers do not affect the sequentiality require-

ment.) The corneal file analysis is analagous. Note that

encountering the end of file code before the sequentiality

requirement is fulfilled necessitates the termination of

processing.

This type of error checking works quite well in the

pupil case. This is because spurious data in the pupil file

is almost totally of a spot nature. Large spurious pupil

formations have never been encountered. Spurious data thus

has a negligible effect since it is is above the pupil it is

rejected, if it is even with the pupil only a small amount of

valid data is rejected, and if it is below the pupil it is

rejected. Even small spots will be accepted if they appear

on lines that are consecutive to the true pupil. Note that

this analysis is independent of the various distortional sources

of error.

Corneal data checking is much less well-defined. Since

the cornea has such a small size and is not limitted to any

particular position relative to the pupil, it proved impossible

to distinguish between a cornea and a tear. The basis for

checking the cornea is that most tears will be below the cornea.

They will therefore be nonsequential and rejected. A tear

26.

even with the cornea will zero out the duplicate lines,

leaving the non-duplicate data, which will be unreliable.

A tear above the cornea will be accepted as the cornea. If

one is willing to restrict the use of the oculometer to

small angles, one could require that the corenea be inside

the pupil, which would eliminate the tear problem.

Further data checking is done only to the extent that

computational routines check to see if data lines have

zero y's. The pupil x average does utilize a guard against

the blink. It averages sixteen values at the bottom of the

data file to calculate the x center. In this way even if the

top of the pupil is distorted by the eyelid coming down, the

x center will remain stable since it is calculated from data

at the bottom of the pupil.

Note that some data problems have not been overcome.

|
Certain errors can only be overcome by the operator by in-

suring correct positioning of the subject's eye. The most

serious remaining data problem is distortion. Distortion

is a readily repeatable effect due to the relative position

of the cornea and pupil. The effect is due to the corneal

position affecting the time that the pupil comparator fires

when the cornea is near the edge of the pupil. In all cases

the pupil is made larger near the cornea. The only solution

to this problem is to exploit the curvature of the pupil to

detect localized distortions. This is unfortunately a most

27.

TYPICAL IMAGES OF INVALID DATA FIELDS

EB

 Nn
 |

im om

|
EYE IS OUT OF THE GATE

|

~—

-

-

-

- =

[3

-

-

- -

- a

- -

-; -
-

{ k

1

A TEAR

|Jo— RR ——— -—

— usm, a

——

a

art

.

ro

: dames aEE—

J a ES—

| i ’»

v

.

®e ase

SFOTS EITHER TRANSIENTS OR CAMERA DEFECT

DISTORTION CORNEA NEAR PUPIL EDGE

titi pumimt— -

’
| f°, ® .

oe n-8e -
 ld

~e o
Come

1 ————

LEFT EDGE INDISTINCT OUT OF FOCUS

28.

DATACHEK

ENTRY

600

 FIRST PUPIL Y

ADDRESS INTO

y

i

J 601,602

7 INTO K1l

N/E 603,604 oa

EXECUTE
ANALYZE

|

i

|p 605

END OF FILE AD-

DRESS INTO PUPI

Y BOTTOM ADDRES

—

y 606,607

FILE START AD_
DRESS INTO PUPII

FILE START ADD.

J 610,611
 BOTTOM Y VALUE

INTO PUPIL Y

BOTTOM VALUE

- 663

BOTTOM Y VALUE
INTO CORNEA

Y BOTTOM VALUE

> 625-6,662

FILE START i

INTO COR. F.S.A,

ATT— ———

|623,624i

END OF FILE |

ADDRESS INTO

CORNEA BOT. ADD!

T 621,622
J

EXECUTE

ANALYZE

SN oo

|" 620

a

1 INTO Kl

\

| 616,617

FIRST CORNEAL |
v ADDRESS INTO

 ow

1

612.613 614,615

7Q

ANALYZE

ENTR

627

K2= 3(Kl)+2

 gE

—_—

ny
Jy 630.634

0 into YL

TO NEXT

PAGE

J, 635,636

Yi © K2 into File

_ Start Address

YES 704,707
iw 7’

/ YES
 Yi] C=K1 NO

 ANCEND oF STFILE? ANI

641,643 - 644 677,70°

10 YESA

1¥;) [Y.]1 NO . j

(om ? =yL+i MO»? ’

645,651 652,654

YES

C+1l into C

746,747

l into C

 655,656

\l/
{

 .-

1

[y.] into YL
-

1
N

Ointoly,] y.-3 int;=3 into y.

664,665 J 666,670
r om =

J 657,660

y. + 6 into y. y, +3 into Y;

673,676 671,672

ey

661,750,753

i Retl returns control to SYSTEM (ABORTS PROCESSING)

2N

FROM PREVIOUS

PAGE
RET.

] 730

—

[Y,] into YL

1 y+ 3 into vy.

710,714

 IY) NO
—— 1 =yL}

\ 715,721

sd
0 into (yl

731,734

y. + 6 into vy

142.745

Y;-3 into

Y Bottom Address

no 725,727

_ [y;] |

=YL+1 ?

- 722,724

YE

Ys «~ 3 into v.

ye 735.737

0 into [y.]
1

740 741

31.

complex problem to code without a high level compiler. It is

also very time consuming from a processing time standpoint.

of Lo
Note that the method rejecting duplicate lines (Setting

the y values of the line to zero.) produces an added dividend

if the EYE IMAGE routine is used for outputting. One can tell

at a glance if duplicate data is being input simply by the

line of dots along the bottom of the oscilloscope

SECTION 2.

Consider how to compute the relative position of the

pupil and cornea. Clearly, the first task is to dtermine the

centers of these objects. Exploiting the symmetry of the x

coordinates about the vertical line passing through the center

of the pupil/cornea, an average of several lines of x value

pairs should give an accurate indication of x center. The

y case is different in that in the vertical direction we

know where the shape begins and ends, but not that these lines

are symmetric about a horizontal line through the y center

of the shape. In other words, the x data is input into the

memory in x-pairs, symmetric about the x center, while it is

not immediately obvious which y-lines form symmetric pairs about

the y center. Consider further that the shape is being intercepted

by different y-lines every field, thus a mean y may be different

each field. Several schemes suggest themselves for the y prob-

lem, the most accurate of which would be to do a center of

mass calculation, that is add up the lengths of the x chords

22.

starting from the top of the shape down and to start a simi-

lar summation from the bottom up, stopping at the y value at

which the two summations are most nearly equal. Unfortunately,

this method requires too much computation time. I finally

settled on a scheme which made use of the x diameter of the

shape, which can be determined quite accurately. The method

involves determining the bottom y value of the shape and sub-

tracting from it a number representing the y radius of the

shape, determined from the x diameter of the shape. The result

is the vy center of the shape.

Once the center coordinates are obtained it is a straight-

forward operation to calculate the relative displacement of

the cornea and pupil.

This method of calculation requires four computational

routines: LONG CHORD determines the longest x chord of a file;

CXAV determines the x center of the cornea; PXAV determines the

x center of the pupil; and CONVERT which converts the x diameter

of a file into the y radius of the file.

One additional computational routine is employed to

ensure the quality of the output. The values of the x and

y relative positions are smoothed using DIGITAL FILTERS.

LONG CHORD

This routine examines input data files by calculating

the difference of the x coordinates of each data line and

comparing that difference to the previous largest difference

encountered. The search is initiated with the top line of the

file and continues until the current relative position is more

~~

— -

LONG CHORD

ENTR

400

FILE START

ADDRESS INTO P

pr

401-2
4 —

® into CMAX

jy

, 403-4

=[pl] into acc. |

()
420

(=)
ves AL

3

Y= NO 7 NO TsEnd of AE L cmax
file C;+2

416-17 421-25 /

No!
437-5

increment P

wd

405-11

i [P]+Acc into c,d

increment P
I

405-11

A
N

N -

y,=02 /

7412,415
YES

s

C. into CMAX

426~="7

increment P

430-1 _

C; represents current chord of search,

CMAX represents maximum chord encountered.

34.

than two counts less than the maximum chord previously en-

countered. Since the pupil is nominally a circle, every

comparison will normally result in the current chord becoming

the maximum chord until the search goes past the center of the

circle. The factor of two counts is used to guarantee that

a bit of noise on any one chord won't Crminate the search

prematurely.

In practice, this routine has worked quite well except

in two cases: 1. When the cornea is very near the pupil boun-

dary the x diamter there will become larger. This may cause

the x diameter to become too large which will eventually cause

the y center of the pupil to move up, which will cause the EYE

DIRECTION output to bob down. 2. If the eye is out of focus the

assumption that the pupil is a circle is no longer valid. Thus

the search for the longest chord of the file may be terminated

prematurely.

The input to LONG CHORD is the starting address of the data

file to be searched. The output is the value of the longest x

chord of that file. Lines whose vy values are zero are ignored.

OXAN

CXAV computes the average x position of the cornea file.

The input to the routine is the address of the start of the

cornea file. The output is the x average to % of an x count.

The cornea file is normally very short, usually only 3

or 4 lines. To avoid having to divide, the routine was written

tn add the first four x values of the file. This result is

"Ya
35.

CXAV

446

X. +X. into Sum
11 12

vi 447-52

POINTER TO

NEXT LINE

—

k 454-5

\, y FN
YES

/ 456-7
NO

—

+ » »

Suml Xi14%, 5

into Sum2

POINTER TO

NEXT LINE

466-7

YES NO
Y.=0?

1

J

460-5

.

Sum2 into CXAV

472-3

>

474

36.

CXAV with two fractional bits. The H1ll2 is only a twelve bit

machine, but no overflows can occur since the maximum value

that any x could have is less than 1000 (This is the maximum

Gate setting.). Therefore the sum of for x's must be less

than 4000 , i.e. no overflows.

Aiding four va lues necessitates two valid cornea lines.

The DATACHEK routine will terminate processing of the data if

less than two valid cornea lines are encountered. Lines which

have zero vy values are ignored.

PXAV

PXAV averages the bottom 16 valid x values of the pupil

file. Sixteen values are used to provide an accurate average

and to avoid division. Bottom lines are used to .avoid blink

distortional problens.

Each line, starting with the bottom line, is checked to

see if the y value is zero. If it is,the line is skipped.

If it is not zero, the x values of that line are added into

a running sum of the x values. Note that an overflow of a

12 bit machine can occur. Also note that it can occur at most

one for 16 values constrained to be less than 1000 octal.

To conform to CXAV it is necessary to have two fractional bits.

This necessitates dividing the sum of 16 values by 4 or right

shifting two places. If an overflow occurred this result will

be 2000 less than the true average. The algortihm is thus: set

SiS 2s let Suml be the sum of 16 valid x values; set

Sum2=2000 if an overflow occurs; right shift Suml two places;

Suml+Sum2= PXAV.

7

PXAV

ENTRY

/ 500 501-3
\

RET.

/ 534
TT

1

0 into Suml
Sum2+Suml/4
into PXAV

into Sum?

-8

\V_s504-5

into C

AN

EIN 530-3
(ro

c=02 /

Get y

Js 506-7 _

AN 527

increment C

Spr

-o-

iL

«

Jy 510-1

Get X2

Jr 512-3

Get X1

 4
oi

NO

< y=07?
514-6 >

ves |
\/

Get new Y

IR7

526

’ YES

(OVERFLOW >— >

K 524-5
Suml+X2+X1

‘into Suml

J
.

|

T
r Reset

overflow

51°

2000

into

Sum2

540-2

38.

CONVERT

566

NULI, CONSTANT

 1310

Bo

2 (IN)+ (IN) /4

 into OUT

567-74

5775

(delta X)-xnull
into delta x

1311-4

| (eres y)-ynull

into delta vy

1315-20

Co)ret

1321

29

Note that DATACHEK guarantees that the pupil will have

eight valid lines and thus 16 valid x values.

CONVERT

The CONVERT routine exploits the geometry of the camera

and the shape of the x-y grid to convert x counts into y counts

divided by two,i.e. x diameters into y radii.

The formula for conversion is:

(%) (X counts) (262.5 y counts/3 units) (4units/635 x counts)

Y counts

 x

a) (282.0048) (X diameter) = (Y radius)

Al
.

- (X diameter) = (¥ ~ydiuz)

(Note that 4/3 is the aspect ratio of the TV camera.)

The CONVERT routine approximates +thi=
1

CF
“iP

2.25 XxX =v

This is approximately equivalent to the conversion formula

with three bits beyond the decimal point retained. (To check-

divide by eight- .28125x=y)

If the input is less than 3434 (an Xx diameter of 707

no overflows will occur.

40.

DIGITAL FILTERS

ENTR

2400
vy

eal

-7 into Cl

\

Xold ¥ into Fl

3
, 2401-3

Xold/8 into Il

1 ..

J, 2404-6

-7 into Cl1l,C2

\ 2407-11
aml

‘

Lpew into Acc.

J, 2412,3

Add Il

i

| 2414
a”

| Ynew into Acc...
nl a —

2441-3

lacc./8+I1 into

|X0ld into Xnew
i ————e

YES 2425,30

NO

\, C2=07?

NO 2424
 »N

———

increment C2

© 2423

add Fl

2422

Add Yold

| 2444

increment Cl

WN 2445

NO

Cl=07?

2446

vey

i

~~

Acc/8 into Yold

into Y 29)
2447-51

28352

|

increment Cl Xnew 7 into Acc

lf

J 2415

No Yes

Cl=07?

2416 I.

2420,1

Accumulator

into Il

2° v7

41.

DIGITAL FILTERS

The function of the digital filters is to smooth the

eye direction output. Each field the output value is determined

by the following formula:

(7/8) (01d Value) (1/8) (New value)= Output Value.

It takes approximately 17 iterations of the digital filter:

to achieve .9 of a unit step at time zero. Since there are

about 60 iterations per second, the time constant for the

filter is a little under % of a second. This has proven more

than adequate to achieve a well behaved, responsive trace in

the EYE DIRECTION routine,

The Filters must cope with the contingency that overflows

are likely to occur since the summation must be carried out

before the division by eight to attain maximum accuracy.

The filters overcome this problem by splitting the values,

performing the summations separately and recombining the

results.

SECTION 3.

The first action done by PROCESSING is to execute the

data analysis routine, DATACHEK. The input to DATACHEK resides

in a common area (The zero sector of the hll2.) Before calling

DATACHEK, PROCESSING must first initialize two variables to

the respective addresses of the firsty't in the cornea and

pupil files. This is done by incrementing each file start

address by two. The output of DATACHEK is: the starting addresses

a9

of the data files;the addresses of the last valid item in

each file; and the value of the bottom valid y in each file.

Next, the longest chords of the cornea and pupil files

are found. The LONG CHORD routine has as its input a file

address in common and it returns the x value of the diamter

to another common location. PROCESSING applies LONG CHORD

to the corneal file and them to the pupil file.

CXAV is executed, then PXAV. These routines manage there

I/0 completely, making use of variables stored in the common

area. The output of these two routines is the x center of

the cornea and the x center of the pupil.

PROCESSING next computes the relative x nosition of the

cornea and pupil.

The CONVERT routine is then applied to the x diameter of

the corneal file, yeilding the y radius of the cornea (within

1/8 of a y count).

The bottom y values of the pupil and cornea are multiplied

by eight (left shifted three) to align the decimal points.

The corneal y average,CYAV, is computed.

The CONVERT routine is applied to the x diameter of the

pupil file,yeilding the y radius of the pupil (within 1/8 of

a count). The pupil y average is computed (PYAV).

PROCESSING computes the relative y position.

The DIGITAL filters are applied to delta x and delta vy.

43.

PROCESSING

©.-_r-

COMPUTE FIRST

CORNEAL Y

ADDRESS

\ 251,253
[COMPUTE FIRST

PUPIL Y

ADDRESS

Nr 254,25€

EXECUTE

DATACHEK

_—

Jr 257

FIND CORNEAL |
DIAMETER

wo

\ 263,267
- —a]FIND PUPIL

DIAMETER

J 270,274
[EXECUTE

CXAV

>

1785

V
COMPUTE PUPIL

Y RADIUS

 KN 321,323

| CORNEA BOTTOM

VALUE-LEFT |
SHIFT THREE

tT |

PUPIL BOTTOM

VALUE-LEFT SHIF"

| THREE
T 312,314

I -

COMPUTE CORNEAL|
Y RADIUS

hh.

™ 303,306

[CcXAV-PXAV INTO
DELTA X

a

WN

277,302
oo har — :

| EXECUTE

DXAV

2°76

~

 tT

[purr BOTTOM

VALUE)-(PUPIL
Y RAD.)= PYAV

ly 324,327
[(CORNEA BOTTOM

VALUE)-(CORNEA
Y RAD.)= CYAV

J, 315,320
— -

CYAV-PYAV INTO

DELTA Y

330,332
§

| EXECUTE DIGITAL

FILTERS

a

333

EXECUTE NULL

CONSTANT ROUTINE

+334

EXECUTE OUTPUT

ROUTINE

. 335
316

AA

PROCESSING lastly calls the output routine which was

selected during execution of OUTPUT CONTROL.

Control is returned to SYSTEM. This concludes the process-

ing of the current field.

C. OUTPUT CONTROL

During the course of my work it became very readily

apparent that the operation of the software could be irrevoc-

ably damaged through an inexperienced computer operator. It

was also obvious that most people operating this system would

like to be able to switch £rom one form of output to another.

(For example, if the analog output of eye position was noisy,

a person would like to switch to a picture of the eye to see

if the input data to the computer was stable.) . It was apparent

thay any method of changing output relying upon the user to

change the Instruction Location Counter or to access control

words manually was fraught with risk for the software system.

For these reasons, I developed a method of program control

over the computer involving the minimum of actions by the user:

master clear; press start. Initially, the computer responds,

through the teletype with "2". The user may respond "1" ,"2",

or "3". This signifies TELETYPE output, EYE IMAGE output, or

EYE DIRECTION output respectively. Optionally, the user may

specify "c", causing the computer to enter the CALIBRATION

routine. The computer automatically establishes the output

45.

OUTPUT CONTROL

ENTR

1241

PRINT LINESPACE]

CARRIAGE RETURN

RUBOUT |

- TJ 1200,1212

PRINT Hon

NN 1242,1.
GET ASCII CHAR.

FROM TELETYPE

| PUT INTO C

| C-300 into

ACCUMULATOR

-44

1245,1246

han

1247

\, NO

{acc=02
/ 1250

> |

*

CALIBRATE

EXECUTE

YES),
Jr— Cm al

(ACC 7)-2 into

ACCUMULATOR

1251

\ 1252.1253,1215

oo YES

7 ACC=0? Y

1216,1217

GET EYE IMAGE

LINK

¥ 1230,31

YES

ace 0? =
1220,122;

GET TELETYPE
‘

LINK

el:

1222 .%2283

EXECUTE

SYSTEM

i\
1225

J

| PRINT LINESPACE

CARRIAGE RETURN

RUBOUT

#N1224,1200-1212
STORE IN OUTPUT

ROUTINE LINK

3 - 13rr

GET EYE DI RECTION

LINK

 ES rr SOR.~~

NN 1226,1227

\O
1

46.

configuration and enters the SYSTEM algorithm. At any time

during the operation of the system the operator may change

the output by depressing the break key for a few seconds. The

computer will respond "?" as above.

The output routines have undergone more changes than any

other part of this software system. At one point, for example,

the EYE IMAGE routine would output not only the raw eye data

on analog channels, but a box representing the coordinates

of the Gate.

These changes have reflected the differing needs of the

people who have used the system. For example, the people who

are selling the system are concerned that eye direction be

represented by a steady,responsive dot; they would like a sys-

tem that is easy to use; they would like to be able to scale

outputs. The people who designed and built the system had
|

a greater need for precise data output forms. They needed to

be able to examine the state of the data at different points

in the system.

Three routines are currently operational. They are EYE

IMAGE, EYE DIRECTION, AND TELETYFT output. EYE DIRECTION provides

an analog signals on two channels representing relative

x and y eye direction. EYE IMAGE provides analog voltages which

trace the pupil and corneal shape. TELETYPE lists the input

data files on the teletype.

TFIL.FTVYPE

The teletype output algorithm has existed in several forms

17.

TELETYPE ROUTINE

A)
—

T &

ENTR

1400

oe
Cornea File

Start Address

into P
kiran o—

| 1401,1402
\N/

RI

1410 1432

" Print Linespace PRINT MOST SIG.

OCTAL BIT OF [p]
Carriage Retur

| Execute Rl |

1411,1416

[p] \ YES
= End of

file

> 1422
NN. /1417,21
no }

1433,1440

403

| Pupil File |
Start address

into P _

\/,1404,1405

] \/

PRINT NEXT MOST

SIG.OCTAL BIT

oF [P]

| 1441,1446

[PRINT THIRD MOST

SIG. OCTAL BIT |

|_OF [P]

1447,1454

PRINT LEAST Ble.
OCTAL BIT OF [P]

-3 into C

J 1423,1424
_

Execute Rl Execute R2 e-

y
1407

J, 1425
p+l into P

J 1426

p—

\/ 1455,1461

PRINT SPACE
C + 1 into C

1427

YES NO

C=07?

« /1430,1431

1462 ,1464

=
1465

48.

during the course of the testing of the system. In its most

useful form the program would print the cornea amd pupil

files for a field and a vector of computed values from the

PROCESSING algorithm, thus allowing one to pinpoint computational

errors. In its current form the vector of addresses has been

discarded since they are not useful to the people operating

the system.

I chose to output the raw data in a form which preserved

the right, left,up,down structure of the eye. This is accomplished

by "printing one line per each line received from the DIS,

in the same order as they were input from the DIS. See next

page.

The operation of the algorithm is accomplished through

the use of a pointer which is set to the current address of the

value to be output. The pointer is incremented after each word

is output, The program automatically spaces after every word

and linespaces and carriage returns after every three words

(x1,%x2,y). The program is terminated when the value of a

word to be output is 1777,

Output is octal. Since all output is numeric the conversion

from binary to ASCII is trivial. (The ASCII equivalent of an

octal bit is just 260 plus the octal bit.)
8

EYE IMAGE ALGORITHM

The primary requirement of this algorithm is to display

yicture of the eye upon an oscilloscope, with a mimimum of4

49_

TELETYPE OUTPUT ROUTINE SAMPLE

(Cornea)
233 234]3]

233 235 132

Each line contains X1 x2 VE

232 236 133

233 235 134

(Pupil)
240 241 120

240 246 121

237 255 122

230 267 123

225 270 124

222 272 125

222 273 126

222 272 127

222 272 130

225 265 131

230 260 132

237 250 133

240 247 134

50.

EYE IMAGE ROUTINE

ENTRY

 1, 1033

| CORNEAL FILE |
START ADDRESS

INTO FSA |

RE

\} 1034 »1035

 mw

JSR.

R1

1000

FSA INTO X,

 WV 1001.1002

EXECUTE R1

 + 2 .into vy,
Xi + 2 i

 ow

y 1036

PUPIL FILE |
| START ADDRESS

INTO FSA

yl, 1037,1040
EXECUTE R1l

a 1003.1004
EXECUTE R2

A 1005

FSA+l into Xx.

‘043 4

)042

i

J, 1006,1011

x.+1l into y
1 i

J 1012.1013
EXECUTE R2

1014

1015

51.

. 1016
vpg [xj]

\ =END OF

102NFILE?/ 1017,1021

NOY ,

1044
\l

 wn

INHIBIT

INTERRUPTS
L

| \, 1045

 ourpur "Low"

ON CHANNEL 3

EXECUTE R3

. 1023
 um

X 4
1

3 into x
4

Jy 1024,1026

y +3 into y

1027,1031,1032

\N/ 1046,1053

J— (x,]
on CHANNEL 1

\Jy 1054,1061

OUTPUT [Y]
on CHANNEL 2

he

L

_ A _1062,1067

[OUTPUT "HIGH"

ON CHANNEL 3

4

\V/ 1070,1075
enable interrupts

1076

1077

52.

spurious images due to the process of moving the trace from

one spot to the next. The algorithm accomplishes this with

one spurious spot, except that the image is upside down. If

the output medium has provision for intensity modulation no

spurious images are produced.

The upside down characteristic is a consequence of using

an oscilloscope in which a positive voltage must be above a

a less positive voltage, and a D/A converter which converts

a "larger" two's complement number into a larger voltage than

the voltage corresponding to a smaller two's complement number.

The problem is that the y coordinate system used goes from

zero at the top of the picture to 262 at the bottom of the

picture. An inverter must be used somewhere in the system

to have an absolutely accurate analog image output. This defect

has been ignored.

This algorithm essentially starts at the top of the cornea

file outputting x »Y + incrementing i until the end of file

marker is SCO aad Next x,y is output from i=l to the

end of file. The pupil is A Cia in the same manner.

A spurious dot appears in the typical output because when

the output changes from the cornea file to the pupil file the

trace makes a transition in x and then a transition in vy. The

point x',v shows up clearly on the output. Note that these tran-

53.

sition point occur during the outputting of a single file. They

are not discernible because of their proximity to the boundaries.

EYE DIRECTION I.

This version of the eye direction output is currently not

in use. This version is compatible with the CALIBRATION Routine.

This routine takes the filtered values of delta x and

delta y (the relative positon of the cornea and pupil) and

shifts them by the appropriate null constants. The resultsi:

are scaled by the appropriate scale factors. A simple output

routine than outputs them onto analog channels. For a discussion

of these constants see the CALIBRATION routine description.

EYE DIRECTION II.

This routine, currently implemented, simply outputs the

filtered values of delta x and delta y onto analog channels.

D. CALIBRATION

If the operator types "c" during the OUTPUT CONTROL routine

control will be transferred to CALIBRATION. CALIBRATION Will

rewspond "--CAL?" The user may type "L","R","U","D",".", sig-

nifying left, right,up,down, or quit respectively. He may also

type "N", signifying null. After each subroutine has been executed,

control will be returned to CALIBRATION (except quit)

With the subject looking towards a 0,0 point, the operator

should first type "N". The computer will store the actual

coordinates of the subject's direction, to be used to shift

54.

EYE DIRECTION

ENTR

1700

 -—

X INTO A OF

 MULTIPLY _

X 1701,1702
—

<
§ YES

37?

“/1703,1704
k

LEFT SCALE FAC.|
INTO B OF

MULTIPLY

1711.1712

EXECUTE

MULTIPLY

/

 Vv 1707,1710
 |

SUM1 into x

Vv 1725,1727

Y INTO A OF |
MULTIPLY

¥y 1713,1714

Y YES

0? ~

|

Ais 1716
1

i

(=)
T 1733RIGHT SCALE FAC

INTO B OF

MULTIPLY OUTPUT PUPIL

DIAMETER

1705,1706

1 1348.335%
 -—

ouyTpuT VY

AY

1337,1344
OUTPUT X

‘

r 3330,1358
SUM1 into ’

A —
N 1730,1732

—L —_

EXECUTE |
| MULTIPLY

-

1721 1722

[bow SCMLE FACTO
INTO B OF

MULTIPLY

— a ed}

1717,1720 /in 1723,1724

UP SCALED FACTOR |
INTO B OF |

MULTIPLY

55.

MULTIPLY

1600

\!

ZERO INTO SUMI

INTO SUM2

: 1646,1652
INTO S

Js 1601-1604 vol
A into Acc.

. =S=07?

re

-Suml into Suml

1644,1645 1605 1647 ,1651

/

\. $8?

YES

606,1607

NOW,

-A into Acc.

_—

1610
 ~fl

Ir

Q=1 ACCUMULATOR

INTO A

J 161)
&

SUM2 +

SUM1/4 into

SUM1
dhe

{1653,1654 ves] 1634,1643

RESET OVERFLOW *<

FLIP FLOP |

NO A

=07?

N 1612,1615
YES \ls.

NO

\ 1632,1633

/

be

\V/ 1616

SUMI + B INTO

i

-

n
T——_
v

i

r
¥ B+B INTO B Lad A/2 into A

SUMI

, 1617,162]

J oVER \l NO
\. FLOW?

“1699

I A

* 1624,1626
py

a, |
SUM2+ 1 into

SIIM?2

1623

-3

1627,1631

YES
Ra

56.

all subsequent readings by that amount. Next the right,left,

up, or down scale factors may be computed. If the operator

would like to relate a 20 displacement with a 5 volt output,

then he simply should have the subject look 20° left.,or right

or up or down and press the appropriate key. The computer will

store as the scale factor (5 volt digital equivalent/(Actual

reading minus appropriate null constant)),

After the appropriate key is depressed the computer first

stalls about 20 frames. This is done to give the DIGITAL FILTERS

time to settle upon a value.

The CALIBRATION routine has never really worked satisfactor-

ily. The principal problems seem to be that the output

spot cannot be made to behave steadily without additional filter-

ing. Yet more filtering slows down the responsiveness of the

system.

S57.

CALIBRATE

—

EXECUTE

STALL

non 9 2014

ly INPUT CHARACTER

FROM TELETYPE

into¢
2012,2013

7

Nd

PRINT "--CAL?"

CARRIAGE RETUPN

| LINESPACE

N 2000-2011
_

. YES

\ C=0? 3
2015-16

GET RIGHT

ADDRESS

2
|

-

2040,204]NO 3

NO

0?

\, 2017,2020
YES \/

Ce
\

GET UP

ADDRESS

-
LY

&

2036,2037

C+Kl into C

N

\ 202]

ceo? Sus
/2022,2023

oy

GET LEFT =
ADDRESS -

2042,2043

ha]
—

>

 ¢
NO .

0? oo

. 2024 ,2025

YES3

X+ 2 INTO X.

2044 ,2046

C+K2 into C O
2026

Q C=0? =

~~ /2027,2030

EXECUTE

OUTPUT CONTROL

wo

2030
 ~—

ENTRY,

store in out-

put routine
link

J 2032
EXECUTE

SYSTEM

2037

{ '

Y_, INTO Y,

2047,2052

_. GET DOWN

ADDRESS

MN 203]

»

I & of

-

58.

RIGHT

Se|,2064

GET X

\/ 2065

| EXECUTE
DIVIDE

2066

STORE RIGH}

SCALE FAC.

2067

_

BS into C |

Rl into out.rout

TT Thzeorase
EXECUTE !
SYSTEM

2685

LEFT

: 2072
Je——

GET X

Up

: 2100
rr — - ™

GET Y

ag
J, 2073

h °

EXECUTE

DIVIDE |
J 210]

EXECUTE |
DIVIDE :

2074

| STORE LEFT

SCALE FAC.

2075

ly 2102

STORE UP

SCALE FAC.|

2103

re Vv

ENTER

CALIBRATE

2070,2076,2104,2112

n

STAL™ol

Rl

1266

Es

C+l into C

V 1267

yd YES
{ c=02

, 1270-7

DOWN

GET Y

Ressvantmsu

J 2107
rr

EXECUTE

DIVIDE

 Ny 2110

STORE DOWN

SCALE FAC.

2111

re-enter

CALIB RATE

1272.,1273
NO

RET

59.

DIVIDE ¢ K/ACCUMULATOR)

ENTRY [ACCUMULATOR]

into D

220
i, 2201-2203

0 into Q

vo
2204-2205

K into NJ] goo.

—3, 2206-2207

4000 into P

2210,2211

Jn P YES
Nn. =0?

/2212,2215

vo %

&=07?
 ANY

NN

YES,

/ 2236,224]

N1l-D into N1

Q into Accumu-

lator
.

NC A

D

2216,2221A
YES

-

N
“ P/2 into P

2222,2224

a NO0 pes ? \

Sinz, 2226

YES |

 7’

rs——

Nl1-D into N1

2227 ,2232
AP

0+] into

ACCUMULATOR

| 2242,2245

Q+l1 into Q (=)
2233,2234

n-J
-
+

a gq

2246 ,2247

60.

APPENDIX A.

The following pages contain a complete listing of the

software system used in the H11l2 for the Oculometer.

Each line of code is written in the following format:

Bl #2 Al A2 #3-#4 -

where

3

#1- core location of this particular instruction or constant

#2- Contents of location

Al- mnemonic for instruction; from Hll2 assembler

A2- Either blank or *; blank signifies direct memory reference

* signifies that the memory reference is to the contents

of an address which is the contents of the memory location

referenced

43- either 0 or]. 0 signifes that the memory reference is to

the 0 sector. A 1 signifies that the reference is to a lo-

cation in the same sector of memory as the instruction

k4- location of memory referred to by instruction

A3- a description of the instruction

I.

The coding is organized in the following

SYSTEM

ADDRESS SWITCH] 54

ADDRESS SWITCHZ2 a

INTERRUPT 5

format:

61.

IT. PROCESSING

DATACHEK

LONG CHORD

CXAV

PXAV

CONVERT

DIGITAL FILTERS

NULL CONSTANT

III. OUTPUT CONTROL

EYE IMAGE

TELETYPE ouTPUT

EYE DIRECTION

IV. CALIBRATE

DIVIDE

STALI

Vo COMMON

LO.
- -~

Aire

’

68

72

73

74

76

77

78

79

30

33

86

20

932

JA

05

62.

SYSTEM

The following instructions perform the initialization operations

for the SYSTEM algorithm.

174 7707

175 774 lda 0-74 -

176 4301 smk

L177 4300 smk

200 60 cra

201 1077 sta

202 3621 jst

203 | 44 enb

0 -

0-77 -

1-21 -

mask constant

get mask constant

set mask

set mask

get zero

store in DIS bits

execute ADDRESS SWITCH1

enable interrupts

The following instructions perform WAITI.

204 477 1lda 0-77 - get DIS bits

205 2376 add 1-1l70- add -1

206 202 sze

207 1604 jmp 1-4 =~ no- repeat loop

when WAIT] is satisfied ADDRESS SWITCH1 and PROCESSING ARE applied.

210 3634 jst 1-34 - yes- execute ADDRSS SWITCHI

211 3650 jst 1-50 ~- execute PROCESSING

The following instructions perform WAIT2.

212 477 lda 0-77 - get DIS bits

213 2377 add 1-177- add -3

214 202 sze =

215 1612 gmp 1-12 = no- repeat loop

63.

When WAIT2 is satisfied ADDRESS SWITCH2 and PROCESSING are applied.

216 3621 jst 1-21 - execute ADDRESS SWITCH2

217 3650 jst 1-50 -

220 1604 jmp 104 ~

ADDRESS SWITCHLI

TL
¢

7 7

222 746 lda 1-1l46-

223 5350 sta* 1-150-

224 744 1lda 1-144-

225 1023 sta 0-23 -

226 747 1lda 1-147-

227 5351 sta* 1-151-

230 745 1lda 1-145-

231 1024 sta 0-24 -

entry (Store return address.)

get C2

store in MAO

get Cl

store for PROCESSING

get P2

store in MBO

get Pl

store for PROCESSING

272 5621 jmp* 1-21 - return

ADDRESS SWITCH2

234

235 744 1lda 1-144-

236 5350 sta* 1-150-

237 745 1lda 1-145-

240 5351 sta* 1-151-

241 746 1lda 1-146-

242 1023 sta 0-23 -

243 747 1lda 1-147-

244 1024 sta 0-24 -

245 5634 Tmp* 1-34 -

entry (Store return address.)

get Cl

store in MAO

get Pl

store in MBO

get C2

store for PROCESSING

get P2

store for PROCESSING

ret.

4.

INTERRUPT ROUTINE

hdnS

101 1314 sta 1-114 -

102 4101 sks l - is teletype breaking?

103 1705 jmp 1-105 =~ no- goto 105

104 5676 jmp* 1-76 -

105 4060 ina 60 -

106= 1705 jmp 1-105 ~-

107 112 1gr 12 -

110 1277 sta 1-77 -

111 714 lda 1-114 ~-

112 44 enb -

yes— goto OUTPUT CONTROL routine

right shift bits]2 (decimal 10)

enable interrupts

113 . 5700 jmp* 1-100- return

65.

PROCESSING

Ly(
-

251 423 lda 0-23 -

252 2343 add 1-143-

253 1023 sta 0-23 -

254 424 lda 0-24 -

255 2343 add 1-143-

256 1024 sta 0-24 -

7431 Jjst* 0-31 -

260 1663 mp 1-63 -

263 423 lda 0-23 -

264 1011 sta 0-11 -

265 7404 jst* 0-4 ~-

266 412 1lda 0-12 -

267 1361 sta 1-l6l-

270 124 lda 0-24 -

271 1011 sta 0-11 -

272 7407 Jjst* 0-4 ~-

273 412 1lda 0-12 -

274 1022 sta 0-22 -

275 7405 jst* 0-5 ~-

276 7406 jst* 0-6

277 417 1lda 0-17 -

300 5 +tca -

301 2015 add 0-15 -

302 1020 sta 0-20 =-

entry (Store return address.)

get start of cornea file

add 2

store first cornea y address

get start of pupil file

add 2

store first pupil y address

execute DATACHEK

get start of cornea file

store for LONG CHORD routine

execute LONG CHORD

get longest cornea chord

save it

get start of pupil file

store for LONG CHORD routine

execute LONG CHORD

get longest pupil chord

save it

execute CXAV

execute PXAV

get PXAV

minus it

add CXAV

store delta x

66.

303 761 1lda 1-161-

304 1011 sta 0-11 -

305 7407 Sst* 0-7 -

306 200 nop -

307 425 1lda 0-25 -

310 151 rar 11 -

311 1370 sta 1-170-

312 426 1lda 0-26 -

313

314

315 412 1lda

316 5 tca

317 2370 add

320

321 422 1lda 0-22 -

322 1011 sta 0-11 -

323 7407 jst* 0-7 ~-

324 412 lda 0-12 -

1-166-

325 5 tca

326 2371 add 1-171-

327 1375 sta

330

331

1=175-

5 tca

2366 add 1-1l66-

332 1021 sta 0-21 -

333 7432 dst* 0-32 -

get longest corneal chord

store for CONVERT routine

execute CONVERT

no operation

get cornea bottom value

left shift three

save it

get pupil bottom value

left shift three

save it

get cornea y radius from CONVERT

minus it

add cornea bottom value

store CYAV

get pupil long chord

store for CONVERT routine

execute CONVERT

get pupil y radius

minus it

add pupil bottom value

store PYAV

minus it

add CYAV

store delta vy

execute FILTERS

67.

334 7416 jst* 0-16 - execute NULL CONSTANT

335 7410 jst* 0-10 - execute (OUTPUT) routine

336 5650 Jjmp* 1-50 - return

The following routines are called by PROCESSING.

l. DATACHEK

Lv!
p-

)

423 lda 0-23 -

502 1356 sta 1-156-

503 774 1lda 1-174-

504 1357 sta 1-157 -

505 3637 jst 1-27 -

506 770 1lda 1-170-

507 1027 sta 0-27 -

610 771 1lda 1-171-

611 1023 sta 0-23 =

612 767 1da 1-167-

613 1025 sta 0-25 -

514 424 1lda 0-24 =-

615 1356 sta 1-156-

516 773 lda 1-173-

617 1357 sta 1-157-

520 3627 jst 1-27 -

521 770 1lda 1-170-

622 1030 sta 0-30 -

523 771 1lda 1-171-

524 1024 sta 0-24 -

“at

767 1l1lda 1-167-.

in v3

entry (Store return address.)

get first corneal y address

store in y

load consecutive line requirement (8)

store in kl

execute ANALYZE

get end of file address

store in corneal y bottom address

get new start of file address

store as corneal file start address

get y bottom value

store as corneal y bottom value

get pupil first y address

store in y

i

load consecutive line requirement (2)

store in kl

execlte ANALYZE

‘get+end of file address

store in pupil y bottom address

get new start of file address

store in pupil start of file address

get bottom y value

60.

35 1662 Jmp 1-62 =

562 1026 sta 0-26 -

tg

663 5600 Jjmp* 1-0 =

store pupil y bottom value

return

ANALYZE

ov
{ag entry (Store return address.)

530 757 1lda

531 2357 add

532 2357 add

633 2375 add

634 1360 sta

535 60 cra

6536 1367 sta 1-167-

537 762 lda 1-162-

640 1361 sta 1-161-

641 4756 lda* 1-156-

642 2366 add 1-166-

302 snz -

i~15'7~

1-157- + k1

get kl

1-157- + kl

1-175- + J

store as k2

clear accumulator

store in ylast

get 1

store in C (Comparison counter)

get y value
i

add end of file checking constant

643 is result zero?

5414 jmp* 0-14 -

645 4756 lda* 1-156-

yes— terminate PROCESSING

no-get y value
i

minus it546 5 tca

647 2367 add 1-167- add ylast value

is result nonzero?550 302 snz

651 1664 jmp 1-64 - no- jump to 664

652 2362 add 1-l62- add 1

A 33 302 snz is result zero?

£0.

554 1677 Jmp 1-77 -

762 1lda 1-162-

1361 sta 1-l6l-

4756 lda* 1-156-

1367 sta 1-167-

1750 jmp 1-150-

1026 sta 0-26 -

563 5600 jmp* 1-0 -

664 60 cra -

565 5356 sta* 1-156-

566 756 lda 1-156-

567 2363 add 1-163-

570 1356 sta 1-156-

571 60 cra ~

572 5356 sta* 1-156-

673 756 lda 1-156-

2365 add 1-165-

1356 sta 1-156-

1641 jmp 1-41 -

677 757 lda 1-157-

700 5 tca

701 2361 add

702 202 sze

703

1-161~

1746 jmp 1-l146-

704 760 1lda 1-160-

I 5) 5 +tca

yes jump to 677

no-load 1

store in C

get y Value

i

store in ylast

goto 750

store pupil y bottom value

return

zero into accumulator

store in y value

i

get y address
i

add -3

store y address

i

zero into accumulator

store in y value

i

get y address

add 6

store Y

i

goto 640

address

get £1

minus it

add C

is result zero?

no- jmp to 746

yves- get k2

minus it

70.

706 2356 add 1l-156-

707 1371 sta 1-171-

710 4756 1lda* 1l-156-

711 1367 sta 1-1l67-

712 756 lda 1-156-

713 2364 add 1-lo4-

714 1356 sta 1-156-

715 4756 lda* 1l-156-

716 we

717 2367 add 1-167-

720 302 snz -

721 1731 jmp 1-131-

722 2362 add 1-162-

723 302 snz -

724 1710 jmp 1-110-

725 756 1da 1-156-

726 2363 add 1-163-

727 1370 sta 1-170-

730

add y address

i

store new file start address

get y value

store in ylast value

get y address

+

store in y address

i

get y Value
i

minus it

add the value of ylast

is the result zero?

yes-jump to 731

 +4 1

is the result zero?

yes-= go to 710

get v address (no)

+ l ~ 3)

store in v bottom address

return

731

7132

60 cra ~

734 5356 sta* 1-156-

735 756 1lda 1-156-

736 2363 add 1-163-

737 1356 sta 1-156-

5

44) 60 cra

zero into accumulator

store in y value

oh

get y address
A

+ (=3)

store in y address

i

zero into accumulator

71

741 5356 sta* 1-156-

756 lda 1-156- get y address

2365 add 1-165-

1356 sta 1-156-

1715 jmp 1-115-

3361 irs

store in y value

i

742

743

744

745

746

747 1657 jmp

750 756 lda

751

address

1-161-

3~87 =

1-156-

goto 657

get y address

1-164- +3

752 1356 sta

753 1641 jmp

1-156- store y

i

goto 641

address

1-41 -

754-761 Temporary

762-765 Constants

773-774 Constants

Storage

2. LONG CHORD

“i)|

4101 411 1l1lda 0-11 -

102 1344 sta 1-144-

103 60 cra

404 | 1012 sta 0-12 -

405 4744 1lda* 1-144-

5 tca -

407 3344 irs 1-144-

410 6344 add* 1-144-

1345 sta 1-145-

3344 irs 1-144-

411

412

4713 4744 l1lda* 1l-144-

entry (Store return address.)

get data file starting address

store pointer (P)

zero into accumulator

set max chord to zero (MC)

get value of pointer (x1)

minus it

increment P

add value of P

store current chord

increment P

get value of P (v

72.

"14 302 snz

1630 jmp415 1-30 -

416

417 302 snz

420

421 745 1da

2365 add 1-165-

jmp* 1-0 -

1-145-

122 5 +tca

123 2012 add 0-12 -

424 203 smz

425

A426 745 1lda

127 1012 sta

430 3344 irs

431 1605 jmp

132 2347 add 1-147-

433 203 smz

434 5600 Jjmp* 1-0 -

1-32 ~

1-145-

435 1630 jmp 1-30 -

3

4F

4423 1lda* 0-23 -

150 3023 irs 0-23 -

451 6023 add* (0-23 =-

is it zero?

yes— goto430

no-add end of file check constant

is result zero?

yes- return

no- getcurrent chord

minus it

add MC

is result less than or equal to zero?

no- goto 432

yes- get current chord

store in MC

increment P

next line

add -2

is result less than or equal to zero?

return (yes)

no- get next line

=

La
»

AJ

entry (Store return address.)

get x1

increment pointer

add x2

73.

v2

453

1345 sta 1-145-

3023 irs 0-23 =

4423 lda* 0-23 -454

455 3023 irs 0-23 -

156 302 snz

457 1647 jmp 1-47 -

460 745 lda 1-145-

461 6023 add* 0-23 -

3023 irs 0-23 -

6023 add* 0-23 -

1360 sta 1-160-

3023 irs 0-23 ~-

4423 1lda* 0-23 =

3023 irs 0-23 -

466

467

470 302

471

472

473

sna
a

1660 Imp 1-60 -

760 1lda 1-160-

1015 sta 0-15 =~

474 5646 jmp* 1-46 -

store sum

increment pointer

get y value

increment pointer

is y value zero?

yes— go to 447

no- load sum

add x1

increment pointer

add x2

store suml

increment pointer

get y value

increment pointer

is it zero?

yes— go to 460

no- get suml

store CXAV

return

4 .PXAV

¢-
*

ar y J

501

502

503

60 cra

1363 sta

1364 sta

1-163-—

1-164-

504 752 1lda 1-152-

entry (Store return address.)

zero into accumulator

store suml

store suml

initialize line counter to -8

74.

05 1353 sta 1-153- store in k

506 430 lda 0-30 -

1360 sta 1-160-

2351 add 1-151-

1362 sta 1-162-

2351 add 1-151-

513 1361 sta 1-161-

514 4760 1lda* 1-160-

515 302 snz

get bottom y address

store in kl

store in x2

store in x1

is 1t zero?

316 1735 jmp 1-135-

517 30 toa

520 4762 1l1lda* 1-162-

521 6361 add* 1-161-

522 2363 add 1-163-

523

524

525

yes—- goto 535

clear overflow bit

get x2 value

add x1 value

add suml wvalue

store result in suml

was there an overflow?

yes goto 541

526

527 1735 jmp 1-135-

530 763 lda 1-163-

531 102 1gr

532 2364 add

1017 sta 0-17 -

no-increment line counter

goto 535 (if line counter is neg.)

get suml

divide by 4

add sum?

533

534 5700 Jjmp* 1-100-

535 761 lda 1-161-

536 2351 add

store PXAV

return

get x1 address

add ~1

75.

1707 jmp

540 757 1lda

- oY

3

541 1364 sta

542 1726 jmp

1-107- goto 507

1-157-

1-164- store in sum2

1-126~- goto 526

43-565 constants

S66

567

570

571

572

573

574

575

411 lda 0-11 -

153 rar

1344 sta

13 -

1=-144~-

103 1gr 3 -

2344 add 1-144-

1012 sta 0-12 - =~

5766 Smp* 1l-1l66-

> CONVERT

entry (Store return address.)

get X counts

left shift 1

store 2x

right shift 3

add 2x

store result (2x+x/4)

return

76.

DIGITAL FILTERS

24°50i

2401 636 lda

2402 2637 ana 1-37 -

2403 1235 sta 1-35 -

2404 636 lda 1-36 -

2405 123 are

2406 1234 sta

2407 640 lda

2410 1232 sta

2411 1233 sta 1-33 -

2412 420 lda 0-20 -

2413 123 ars

2414 2234 add

2415 3232 irs

2416 1614 jmp

2417 1234 sta

2420 420 lda

2421 2637 ana

2422 2235 add

2423 3233 irs

2424 1622 jmp 1-22 -

2425 123 ars

2426 2234 add

2427 1236 sta

1-34 -

1-40 -

«32 =

1-34 -

1-32 ~-

1-34 -

0-20 -

1-37 -

2430 1020 sta 0-20 -~

entry

get Xold

logical and with 7
jo

store in Fl

get Xold

divide by eight

store in Il

get -7

store in Cl

store in C2

get delta X

divide by eight

add Il

increment Cl

if Cl is negative go to 2414

if Cl is zero store acc.in Il

get . delta ¥

logical and with 7

add Fl

1.

increment C2

if C2 is negative go to 2422

if C2 is zero divide acc. by eight:

add Il

store in Xold

store in delta =

77.

2431 1641 jmp 1-41 - goto 2441

2441 640

2442 1232 sta 1-32 -

2443 421 lda 0-21 -

2444 2253 add 1-53 -

2445 3232 irs 1-32 =~

2446 1644 jmp 1-44 -

2447 123 ars

2450 1253 sta 1-53 -

get =-7

store in Cl

get delta y

add Yold

increment Cl

if Cl is negative go to 2444

if Cl is zero divide by eight

store in Yold

2451 1021

2452 5600

sta 0-21 - store in delta y

jmp* 1-0 - return

2432-2440 Constants and Temporarv Storage

NULL CONSTANT ROUTINE

1310

1311 437 1lda 0-37 -

1312 5

1313 2020 add 0-20 -

1314 1020 sta 0-20 -

1315 440 1lda 0-40 -

L316 5

1317 2021 add 0-21 -

1320 1021 sta 0-21 -

1321 5710 Smp* 1-110-

entry

get X null constant

minus it

add delta x

store in delta x

get Y null constant

minus it

add delta vy

store in delta vy

return

78.

OUTPUT CONTROL

1200 entry (Store return address.)

1201 ‘632 lda 1-32 - get linespace character

1202 4202 ota 2 -

1203 1602 jmp 1-2 -

1204 633 lda 1-33 -

1205 4202 ota 2 -

1206 1605 jmp 1-5

1207 657

1210 4202

1211 1610 jmp 1-10 -

1212 5600 dgmp* 1-0 -

get carriage return character

1215 2235 add

1216 302 snz

1217 1630 3mp

1220 201 smi

1221 1626 jmp 1-26 -

1222 640 lda 1-40 -

1223 1010 sta 0-10 -

1224 3600 jst 1-0 -

1225 5414

1226 636

1227 1623

1230 637 1lda 1-37 -

1231 1623 mp 1-23 =

add -2

is result zero?

yes— go to 1230

no- is result minus?

no- go to 1226

ves-get teletype routine link

store in output routine link

execute carriage control rout. (1200)

begin SYSTEM algorithm

get eye direction link

go to 1223

get eye image link

go to 1223

1232-1240 Constants and Temporary Storage

TY

1241 3600 jst 1-0 -

1242 655 1lda 1-55 -

1243 4202 ota 2

1244 1643 jmp 1-43 -

1245 4001 ina 1 -

1246 1645 jmp 1-45 -

1247 2256 add 1-56 -

1250 201 smi -

1251 5654 Jjmp* 1-54 -

1252 2634 ana 1-34 -

1253 1615 jmp 1-15 -

execute carriage control subrout.

get question mark character

output to teletype

go to 1243

input character from teletype

go to 1245

add -300

is result negative?

no- execute CALIBRATE

yes- select units digit

go to 1215

1254-1257 Coastants

l. EYE IMAGE

This routine is entered at location 1033.

1000

1001 774 lda

1002 1344 sta

1003 2350 add

1004 1345 sta

1005 3616 jst

1006 774 1lda

1007 2347 add

1010 200 nop

1011 1344 sta

1012 2347 add

1013 1345 sta

1-174-

1-144-

1-150

1-145-

1-16 -

1-174-

1-147-

1=-144~

1-147-

1-145~-

1014 3616 1st 1-16 -

entry

get file start address

store in Ww

add 2

A

store in vy
 Xi

execute subroutine

get file start address

add 1

no operation

store in x

i

add 1

store in y
i

execute subroutine

R{

1015 5600 jmp* 1-0 =

1016

1017 4744 lda* 1-144-

1020 2352 add

1021 302 snz

1-152-

1022 5616 jmp*

1023 3644 jst

1024 744 1lda

1025 2351 add

1026 1344 sta 1-144-

1027 745 1da 1-145-

1030 2351 add 1-151-

1031 1345 sta 1-145-

1032 1617 jmp 1-17 -

1-16 -

1-44 -

1-144-

1-151

1033

1034 423 1da 0-23 -

1035 1374 sta 1-174-

1036 3600 jst 1-0 -

1037 424 1da 0-24 -

1040 1374 sta 1-174-

1041 3600 jst 1-0 -

1042 5633 Jjmp* 1-33 -

1044

1045 50 inh

1046 755 1lda

1047 4216 ota 16

1-155~-

1050 200 nop

return

entry

get value of x

i

add end of file check constant

is result zero?

yes— return

no-execute subroutine

get x address

4

add 3

store in x address

1

get y address
i

add 3

store in y address

i

go to 1017

entry (Store return address.)

get corneal file start address

store in file start address

execute subroutine

get pupil file start address

store in file start address

execute subroutine

return

entry

inhibit interrupts

get channel 3 address

open d/a channel 3

no operation

3 3

1051 746 1lda

1052 4217 ota

L053 200 nop

1054 753 lda

1055 4216 ota

1056 200 nop

1057 1715 jmp

1060 4217 ota

1061 200 nop

1062 754 lda 1-154-

1063 4216 ota 16 ~

1064 200 nop

1065 1720 jmp

1066 4217 ota 17

1067 200 nop

1070 755 1lda 1-155-

1071 4216 ota 16 -

1072 200 nop

1073 + 756 1lda 1-156-

1074 4217 ota 17 -

L075 200 nop

1076 44 enb -

1077 5644 Jst* 1-44 -

L115 4744 1da* 1-144-

1116 152 rar 12 -

1117 16660 jmp 1-60 -

1-146- output "low" on channel 3

get channel 1 address

open channel 1

go to 1115

output on channel 1

get channel 2 address

open channel 2

go to 1120

output on channel 2

get channel 3 address

open channel 2

get "high" signal

output on channel 3

enable interrupts

return

get value of x
1

left shift two

go to 1060

QD.

1120 4745 1lda* 1-145- get y value
i

1121 152 rar 12 - left shift two

1122 1666 jmp 1-66 - go to 1066

1144-1177 Constants and Temporary Storage

2. TELETYPE OUTPUT

1400

1401 423 1lda 0-23 -

1402 1301 sta 1-101-

1403 3610 jst 1-10 -

1404 424 lda 0-24 -

1405 1301 sta 1-101-

L406 3610 jst 1-10 -

1407 5600 jmp* 1-0 ~-

1410

1411 676 1lda 1-76 -

1412 4202 ota 2 -

1413 1613 jmp 1-13 -

1414 677 1lda 1-77 -

1415 4202 ota 2 ~

1416 1615 jmp 1-15 -

lda* 1-101-1417 4701

1420 2274

1421 302

add 1-74 -

SNZ

1422 5610 Jjmp* 1-10 -

1423 675 1l1lda 1-75=~

entry (Store return address.)

get cornea file start address

store in current address pointer (P)

execute subroutinel

get pupil file start address

store in current address pointer (P)

execute subroutine

return

entryl

get carriage return character

output to teletype

get linespace character

output to teletype

get value of P

add end of file constant check

is result zero?

yes-return

get -3

QQ.

1424 1300 sta

1425 3632 jst

1426 3301 irs

1427 3300 irs

1430 1625 jmp

1431 1611 jmp 1-11 -

1432

1433 4701 1lda* 1-101-

1434 2673 ana 1-73 -

1435 111 1lgr 9 -

1436 2267 add 1-67 -

1437 4202 ota 2 -

1440 1637 jmp 1-37 -

1441 4701 1lda* 1=101-

1442 2672 ana 1-72 -

1443 106 lgr 6 -

1444 2267 add 1-67 -

1445 4202 ota 2 --

1446 1645 jmp 1-45 -

1447 4701 1da* 1-101-

1450 2671 ana 1-71 -

1451 103 1lgr 3

1452 2267 add 1-67 -

1453 4202 ota 2 -

1454 1653 jmp 1-53 -

1455 4701 1lda* 1-101-

1-100-

1-32 ~-

1-101-

1-100-

store in word counter (C)

execute subroutines

increment P

increment C

if C is negative go to 1425

go to 1411

entrvy3

get value of P

select most sig. octal bit

right justify

convert to ASCII

output to teletype

get value of PF

select next most sig. octal bit

right justify

convert to ASCII

output to teletype

get value of P

select third most sig. bit

right justify

convert to ASCII

output to teletype

get value of P

Q4.

1456 2670 ana 1-70 -

1457 2267 add 1-67 -

1460 4202 ota 2 -

1461 1660 jmp 1-60 -

1462 666 lda 1-66 -

1463 4202 ota 2 -

1464 1663 jmp 1-63 -

1465 5632 jmp* 1-32 -

select lest sig. octal bit

convert to ASCII

output to teletype

get space character

output to teletype

return3

1466-1501 Constants and Temporary Storage

f5.

3. EYE DIRECTION

1 ¥
t

Jv)

1701 420 lda 0-20 -

1702 1260 sta 1-60 ~

1703 201 smi

1704 1711 jmp 1-111-

1705 433 lda 0-33 -

1706 1257 sta 1-57 -

1707 3600 jst 1-0 =

1710 1725 jmp 1-125-

1711 434 lda 0-34 -

1712 1706 jmp 1-106-

1713 42] lda 0-2] =~

1714 1260 sta

1715 201 smi

1716 1723 jmp 1-123-

1717 436 lda 0-36 -

1720 1257 sta 1-57 -

1721 3600 jst 1-0 ~-

1722 1730

1723 435

1724 1720

1725 661

1726 1020 sta 0-20 -

1727 1713 jmp 1-113-

1730 661 lda 1-61 ~-

entry

get delta x

store for MULTIPLY

is accumulator less than zero?

no- go to 1711

get right scale factor (yes)

store for MULTIPLY

execute MULITPLY

go to 1725

get left scale factor

go to 1706

get delta y

store for MULTIPLY

is accumulator less than zero?

go to 1723

get up scale factor

store for MULTIPLY

execute MULTIPLY

go to 1730

get down scale factor

go to 1720

get result of ¥ mulitply

store in delta x

go to 1713

get result of $x multiply

RA.

1731 1021 sta 0-21 -

1732 7764 jst* 1-164-

1733 5700 jmp* 1-100-

store result of y multiply

execute ANALOG OUT

return

ANALOG OUT

1330

1331 754 lda 1-154-

1332 4216 ota]6

1333 1732 jmp 1-132-

1334 420 lda 0-20 -

1335 4217 ota 17 a

1336 1735 jmp 1-135-

1337 755 lda 1-155-

1340 4216 ota 16

1341 1740 jmp 1-140-

1342 121 lda 0-2] -

1343 4217 ota 17 -

1344 1743 jmp 1-143-

1345 756 lda 1-156-

1346 4216 ota 16 ~

1347 1746 jmp 1-146-

1350 422 lda 0-22 =~

1351 4217 ota 17 -

1352 1751 jmp 1-151- go to 1351

1353 5730 jmp* 1-130- return

get channel 1 address

open channel 1

get delta Xx

output on channel 1

go to 1335

get channel 2 address

open channel 2

go to 1340

get delta vy

output on channel 2

go to 1343

get channel 3 address

open channel 3

get pupil diameter

output on channel 3

]354-]356 Constants and Temporary Storage

Q°7.

MULTIPLY

1600

1601 60 cra

1602 1261 sta 1-61 -

1603 1262 sta 1-62 -

1604 1263 sta 1-63 -

1605 660 lda 1-60 -

1606 201 smi

1607 1653 jmp

1610 5 tca

1611 1260 sta 1-60 =~

1612 660 lda 1-60 -

1613 2655 ana 1-55 -

1614 303

1615 16234

1616 30 toa

1617 657 lda

1620 2261 add

1621 1261 sta 1-61 -

1622 304 sno

1623 3262 irs

1624 657 lda 1-57 -

1625 2257 add 1-57 -

1626 1257 sta 1-57 =

1627 660 lda 1-60 -

1630 = 101 lgr 1 -

1-62 -

entry

zero into accumulator

zero into suml

zero into sum

zero into S

get A

is A negative?

no-go to 1653

yes- minus it

store int A

get A

select l.s.b.

is it one?

go to 1624

zero in overflow flop

get B

add suml

store suml

overflow?

yes- sum2+1l into sum2

get B (no)

add B

store B

get A

divide by 2 (right shift one)

qq.

1631 1260 sta 1-60 =~

1632 202 sze

1633 1613 jmp

1634 661 lda 1-61 -

1635 102 lgr 2

1636 1261 sta

1637 662 lda

1640 2656 ana 1-56 -

164]]42 rar

1642 2261 add

1643 1261 sta 1-61 -

1644 663 lda 1-63 ~-

1645 202 sze

1646 5600

1647 661 lda 1-61 -

1650 5 tca -

]651 1261 sta 1-61 -

1652 5600 jmp* 1-0 -

1653 3263 irs 1-63 =

1654 1612 imp 1-12 ~-

store A

is A zero?

no-go to 1613

yes- get suml

divide by 4

store suml

get sum2

select two least significant bits

left shift 10,5

add suml

store in suml

get S

is S zero?

no-return

yes- get suml

minus it

store suml

return

incremtn S

goto 1612

1655-1663 Constants and temporary storage

R9.

CALIBRATE

2000 737 1lda 1-137- get number of characters

2001 1363 sta %-163-

2002 746 1lda 1-146-

2003 1364 sta 1-1l64-

2004 4764 1l1lda* 1-164-

2005 4202 ota 2 -

2006 1605 Jmp 1-5 ~

2007 3364 irs 1-1l64-

2010 3363 irs 1-163-

2011 1604 Smp 1-4 ~-

2012 4001

2013 1612

2014 5770

2015 302

2016 1640 jmp

2017 201 smi

2020 1636 jmp

2021 2342 add

2022 302 snz

2023 1642 jmp

2024 201 smi

2025 1644 jmp

2026 2340 add

2027 202 sze

store in character counter

get start of message address

store in message address counter

get character

increment character counter

if char. counter is neg go to 2004

receive character from teletype

Fo

yes—add constant for next check

is result zero?

ves~ add constant for next check

Qn.

2030 5634 jmp* 1-34 -

2031 762 1lda 1-162-

2032 1010 sta 0-10 -

2033 5414 jmp* 0-14 -

2034 1241

2036 761 1lda 1-161-

2037 1632 3mp 1-32 -

2040 757 1da 1-157-

2041 1632 jmp 1-32 -

2042 760 1da 1-160-

2043 1632 jmp 1-32 -

2044 420 1da 0-20 -

2045 2037 add 0-37 -

2046 1037 sta 0-37 -

2047 421 1lda 0-21 -

2050 2040 add 0-40 -

2051 1040 sta 0-40 -

2052 1600 Smp 1-0 -

2064

2065 420 1lda 0-20 =

2066 7716 jst* 1l-1lle6-

2067 1033 sta 0-33 -

2070 1600 H9mp 1-0 ~-

2072

2073 420 lda 0-20 -

no-execute OUTPUT CONTROL

yes-get DOWN routine address

store in output routine address

execute SYSTEM algorithm

QUTPUT CONTROL entry address

get UP routine address

go to 2032

get RIGHT routine address

go to 2032

get LEFT routine address

go to 2032

get delta x

add old correction constant

store new xX correction constant

get delta y

add old y correction constant

store new y correction constant

go to 2000

entry to RIGHT

get delta x

execute DIVIDE

store right scale factor

go to 2000

entry to LEFT routine

get delta x

91.

2074 7716 jst* 1-116-

2075 1034 sta 0-34 -

2076 1600 jmp 1-0 -

execute DIVIDE

store left scale factor

go to 2000

2100

2101 421 1lda 0-21 -

2102 7716 jst* 1-1lé-

2103 1035 sta 0-35 =

2104 1600 jmp 1-0 -

entry to UP routine

get delta y

execute DIVIDE

store up scale factor

go toz0(+0

2106

2107 421 1lda 0-21 -

2110 7716 jst* 1-116-

2111 1036 sta 0-36 -

2112 1600 jmp 1-0 ~- go to 2000

entry to DOWN routine

get delta y

execute DIVIDE

store down scale factor

2113-2117 Constants and Temporary Storage

1. DIVIDE

2200

2201 301 spl

2202 5 tca

2203 1251 sta

2204 60 cra

2205 1254 sta

2206 653

2207 1250 sta

2210 653 1lda

2211 1252 sta 1-52 =

1-51 =

1-54 -

1-53 =

1-50 -

entry (Store return address

is accumulator positive?

no- minus it

yes- store denominator(D)

zero into accumulator

store quotient (Q)

get numerator (N)

store N1

get constant

store in pointer (P)

97.

2212 650 lda 1-50 -

2213 2652 ana 1-52 -

2214 202 sze

2215 1636 jmp

2216 651 1lda

2217 2652 ana

2220 202 sze

2221 1634 jmp

2222 652 1lda

2223 101 1gr

2224 1252 sta

2225 202 sze

2226 1612 jmp

2227 651 1lda 1-51 =

2230 5 tca

2231 2250 add 1-50 -

2232 1250 sta 1-50 -

2233 3254 irs 1-54 -

2234 654 1lda 1-54 -

2235 5600 Jjmp* 1-0 ~-

2236 651 1lda 1-51 =

2237 2652 ana 1-52 -

2240 202 sze

2241 1622 jmp 1-22 =

2242 651 lda 1-51 -

2243 5 tca

2244 2250 add 1-50 -

get Nl

select bit P

is result zero?

go to 2236 (no)

get D (yes)

select bit P

is result zero?

no- go to 2234

get P

right shift one (Select next m.s.b.)

store P

is result zero?

go to 2212 (no)

get D (yes)

minus it

add N1

store in N1

increment Q

get Q

return

get D

select bit P

is result zero?

go to 2222 (no)

get D (yes)

minus it

add N1

913.

2245 1250 sta 1-50 - store in N1

2246 3254 irs 1-54 -

2247 1610 jmp 1-10 - go to 2210

2250-2254 Constants and Temporary Storage

"TAT,L

1260 1274 sta

1261 675 1lda

1262 1276 sta

1263 677 1lda 1-77 -

1264 1010 sta 0-10 -

1265 5414 Jjmp* 0-14 -

1266

1-75 =-

1267 3276 irs 1-76 -

1270 5666 Jjmp* 1-66 -

1271 674 1da 1-74 -

1272 2300 add 1-100-

1273 5701 Hmp* 1-101-

store accumulator

get number of fields to wait

store in counter (C)

get address for output routine

store for output

enter SYSTEM algorithm

entry

increment C

C#0 return

if C is zero get accumulator

add constant

return

1275-1301 Constants and Temporary Storage

04.

COMMON (ZERO SECTOR)

3)

3

~

t

LO

14

15

560] Jjmp* 1-1 -

1241 sta 1-41 -

3700 4st 1-100-

400

446

“0

5¢420

75

execute OUTPUT CONTROL

output control routine link

execute INTERRUPT

LONG CHORD LINK

CXAV LINK

PXAV LINK

CONVERT LINK

output routine link location

SYSTEM LINK

CXAV KXN VALUE

16

17

20

21

22

23

24

25

16

27

30

3

34

3} 5

T=

37, € 9)

PXAV VALUE

DELTA X

DELTA Y

PUPIL DIAMETER

COPNEA FILE START ADDRESS

PUPIL FILE START ADDRESS

CORNEZ BOTTOM VALUE

PUPIL BOTTOM VALUE

CORNEA BOTTOM ADDRESS

PUPIL BOTTOM ADDRESS

RIGHT SCALE FACTOR

LEFT SCALE FACTOR

UP SCALE™ FACTOR

DOWN SCALE FACTOR

NULL CORRECTION CONSTANTS

5]

	A software system for the Honeywell oculometer.
	TitlePage
	Abstract
	TableOfContents
	Introduction
	Part I
	Figure
	Chapter A
	Figure

	Chapter B
	Chapter C
	Chapter D

	Part II
	Chapter A
	Figure
	Figure
	Figure

	Chapter B
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure

	Chapter C
	Figure
	Figure
	Figure
	Figure

	Chapter D
	Figure
	Figure
	Figure
	Figure
	Figure

	Appendix A

