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ABSTRACT

This thesis reports three explorations of two human-associated biological systems: the
gut microbiome and the adaptive immune system. These two systems are closely
intertwined, and engage in significant crosstalk with each other and with the rest of the
body. Advances in recent years in high-throughput sequencing technologies have
enabled study of these systems with unprecedented depth and comprehensiveness. In
this thesis I leverage these tools to uncover novel insights into their composition and
function. In the first chapter, I describe a project in which we closely tracked a small
cohort of subjects’ microbiomes over a period of up to one year, as they traveled from
North America to Africa and back. We then intersected these data with data from
African locals and contextualized our results via reanalysis of larger, published datasets
on travelers’ microbiomes, to build a fuller picture of what happens to our gut microbes
when we travel. In the second chapter, I describe an analysis of a forthcoming
microbiome data resource from our lab, in which I examined and quantified the diversity
of antiphage defense capabilities at the strain level within the gut microbiome. My
results underscore the value of large, cross-sectional datasets to capture underlying
strain heterogeneity. Finally, in the third chapter, I describe a longitudinal study of an
important component of adaptive immunity, the T cell receptor (TCR) repertoire, in
healthy individuals over a time span of up to one year. Our results served as the first
reference point for normal temporal fluctuations in TCR repertoire dynamics. Together,
this thesis underscores the value of modern sequencing-based observational study of
these complex human systems, using both cross-sectional and longitudinal designs.
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Introduction

The human microbiome comprises a diverse and dynamic community of

microorganisms living in and on our bodies. The gastrointestinal tract, in particular, is

home to the highest density of these microbes, numbering by some estimates in the

tens of trillions (making it comparable to the number of cells in the human body), and

being made up of up to several hundred distinct species (Ursell et al. 2012; Costea et

al. 2018). Much interest and study in recent years have gone into several fundamental

questions about these gut microbes. Who are they? What do they do? Where do they

come from? When do they show up or go away? From these efforts, we have an idea of

what a typical gut microbiome profile might look like (especially in better-studied

western populations, although sampling inclusivity has been improving in recent years),

what these microbes use up and output (and in turn, how these things affect and are

affected by their human host bodies), and how mutable factors such as age, disease, or

diet might be reflected in the gut (Rinninella et al. 2019). Advancements in

next-generation sequencing technologies have facilitated the study of gut microbes at

the population level. Common approaches to this will often begin with taking a stool

sample, then purifying out DNA, and sequencing either everything (shotgun

metagenomic sequencing) or a targeted marker gene that is conserved across all

bacteria (the 16S ribosomal DNA locus is a popular choice). Improved whole genome

sequencing platforms and protocols have also paved the way toward both a higher

number and quality of reference genomes for diverse gut bacterial strains derived from

single-isolate culturing techniques, popularizing along with it the concept of the

“pangenome” of a species (Medini et al. 2005). As researchers continue to push the

boundaries of microbiome science, more effort is going into scaling up these studies, in

particular to draw more robust conclusions from observational designs.

Inextricably linked with the gut microbiome is the human immune system, a complex,

highly-specialized group of bodily structures, including organs, vessels, cells, and

macromolecules that together serve to detect and defend the body from harmful “non

self” invaders (e.g. bacteria, viruses) and “altered self” components (e.g. damaged or
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cancerous cells) (Murphy et al. 2008). At the same time, the immune system has

mechanisms to communicate with and regulate symbionts such as commensals in the

gut to allow coexistence. Human immunity comprises two branches, innate and

adaptive, which together provide layered and extensive response mechanisms. The

adaptive immune system has the distinction of being able to mount highly specific

responses upon recognizing “non self” or “altered self” molecular signatures, termed

antigens, and to retain memory of previous recognition events which affect the strength

and timing of future repeat recognition events. This capacity is derived from the

presence of specialized receptors on two types of adaptive immune cells, B and T cells,

functioning in concert with cell surface proteins called Human Leukocyte Antigen (HLA)

proteins. These B and T cell populations start out with already immensely diverse

antigen recognition capacities from the get-go during human development. Subsequent

antigen encounters throughout life further shape the collective antigen recognition

capacities of these cells, termed the BCR or TCR repertoires. In recent years, interest in

studying these adaptive immune repertoires has accelerated, as new sequencing

protocols have been developed that can capture their diversity, sometimes tied to other

rich data such as cell subtype identity and gene expression (Rosati et al. 2017; Pai and

Satpathy 2021).

This thesis includes three chapters exploring the two systems described above. I will

briefly introduce these chapters here.

Chapter 1 describes a project in which we tracked the gut microbiomes of four travelers

from North America to Africa over the time span of up to a year, with daily or near daily

sampling. Our project follows up on an earlier paper from our lab characterizing the two

subjects’ gut (and oral) microbiomes over one year, one of whom happened to travel

internationally during the sampling period (David et al. 2014). That paper, nearly a

decade old, was a milestone in the burgeoning study of temporal variation in the human

gut, and to our knowledge, a similar travel study design has not been presented since,

likely due to the logistical challenge of frequent sampling, especially when subjects are

abroad. In the project presented here, we additionally compared and contextualized our

subjects’ time series with cross-sectional destination-matched cohorts of African locals
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for whom we have microbiome data as well as a reanalysis of published travelers’

microbiome datasets from the literature.

Chapter 2 describes an analysis of a forthcoming microbiome data resource from our

lab, which I mined to identify antiphage defense systems and subsequently quantified

their heterogeneity at the strain level, in order to demonstrate the value of our resource

and to underline the hidden diversity in these systems likely still to be found.

Chapter 3 revisits the time series theme, and describes a project in which we conducted

T cell receptor sequencing of blood samples from three subjects whom we followed

longitudinally for one year. These data allowed us to study baseline diversity and

temporal flux patterns the immune repertoires of healthy adults in a time span relevant

for short-term changes such as seasonal infectious disease. We further characterize the

“publicness” of observed TCRs by intersecting our data with a similar, large

cross-sectional published dataset of TCR sequences.
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Chapter 1: Temporal dynamics of the human gut
microbiome during international travel

This chapter is a collaboration between me, Mathilde Poyet, and Mathieu Groussin.
Mathilde and Mathieu performed the study design and most of the library preparation for
sequencing. I performed some of the library preparation with Amy Xiao and all of the
analyses and visualization. This chapter is written by me.
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Background

With the broad availability and increased affordability of high-throughput sequencing

technologies, large-scale interrogations of human host-associated microbial

communities have become widespread. Much of this interest is driven by our deepening

understanding of the inextricable two-way link between microbiome and host health. In

addition to large cross-sectional studies, research efforts in the past two decades have

explored how human microbiomes change over time (Palmer et al. 2007; Caporaso et

al. 2011; Faith et al. 2013; Rajilić-Stojanović et al. 2012). From these landmark

longitudinal studies, we know that there generally tends to be individuality and stability

that is maintained on the timescale of months to years to decades. Despite this, it has

been shown that lifestyle factors such as alterations in diet, stress, and medication use

can induce shifts in microbiome away from these stable states (Vich Vila et al. 2020;

Singh et al. 2017; Madison and Kiecolt-Glaser 2019). It remains an ongoing area of

research which of these lifestyle factors result in what changes in the microbiome,

whether these changes are temporary or permanent, and whether these changes are

beneficial or otherwise for the host.

One such important lifestyle factor is host travel. Each year, over one billion

international tourist arrivals are logged globally, and hundreds of millions of people

travel from industrialized to resource-limited, tropical or semitropical countries

(Kampmann et al. 2021). The frequency of modern travel makes it relevant for

understanding both microbiome and host health outcomes on an individual scale and

also public health at large. On an individual scale, previous studies have demonstrated

travel-associated effects such as broad microbial dysbiosis as well as upticks in

diarrheagenic and multi-drug resistant taxa (David et al. 2014; Youmans et al. 2015;

Kennedy and Collignon 2010). The latter presents a burgeoning challenge to global

health as travel is known to facilitate the exchange of antimicrobial resistance (AMR)

between high- and low-prevalence populations (D’Souza et al. 2021).

Untangling the effects of travel on the gut microbiome is a complex task, since travel

usually comprises many concomitant changes – to diet, to activity levels, to stress, to
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circadian rhythms, and to one’s environment. Few study designs can address all of

these factors.

Existing work on the impact of international travel on gut microbiome dynamics have

largely been limited to pre- and post-travel or otherwise sparse sampling designs

(Cheung et al. 2023; Youmans et al. 2015; D’Souza et al. 2021; Langelier et al. 2019;

Bengtsson-Palme et al. 2015; Leo et al. 2019; Pires et al. 2019; Kampmann et al. 2021;

Peng et al. 2021). Given the difficulty of during-travel sample acquisition, to our

knowledge the only prior study to include dense intra-subject sampling comprising pre-,

during-, and post-travel time periods is from our lab (David et al. 2014). Our early

findings then demonstrated that microbiome changes happen on a timescale of days.

Furthermore, many of the studies on travelers’ gut microbiota only examine certain taxa

of interest (usually antimicrobial-resistant Enterobacteriaceae) and thus use culture- or

targeted PCR-based approaches (Mellon et al. 2020; Paltansing et al. 2013; Blyth et al.

2016; Tängdén et al. 2010; Ostholm-Balkhed et al. 2013; Kennedy and Collignon 2010;

von Wintersdorff et al. 2016; Kantele et al. 2015; Reuland et al. 2016). A few recent

studies that do employ high-throughput community sequencing-based approaches also

take a narrow focus on resistome changes (D’Souza et al. 2021; Boolchandani et al.

2022). Little attention has been given to broader gut community dynamics of traveling

hosts beyond immediate disease and AMR associations.

Our aim with this study is to follow up on the earlier microbiome time series work from

our lab and to expand its scope. We follow a modestly bigger cohort of subjects for

whom we analyze long, densely-sampled microbiome time series. Subjects all

originated in an urban, western geography and variously traveled to different countries

in Africa, visiting both towns and cities as well as rural locales. Multiple subjects share

travel destinations in Africa and for several destinations we additionally have matching

large local subject cohorts whose microbiomes we also profiled via community

sequencing. We validate some of our results from our new, densely-sampled but limited

sized cohort data via analysis of previously-published large cohort sequencing studies

of travelers’ microbiomes (with different data types) to provide independent lines of

evidence.
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Methods

Four healthy adult subjects were included for participation, all of whom for the duration

of the study resided in Massachusetts, USA and had planned travel to various African

countries (Figure 1a). Subjects were instructed on a wipe-based self-collection protocol
for stool samples as previously described (García 2018), and collected samples daily or

as frequently as possible starting prior to travel, continuing through travel periods, and

following their return to the United States (Figure 1b). Subjects self-recorded their
location and illness status on each day of sample collection. Subject time series ranged

from 45 to 251 days long.

Stool samples were flash-frozen when collected during travel or otherwise stored within

hours at -80C when collected in Boston. Sample processing and DNA extraction were

performed using the Qiagen PowerSoil kit as previously described, and paired-end

Illumina libraries were prepared for 16S amplicon sequencing. Sequencing was

performed at the Broad Institute Microbial ‘Omics Core (for batches 1 and 2) and the

BioMicro Center at MIT (for batches 3 and 4). Samples were assigned to batches

chronologically.

Raw sequencing data were processed using Qiime2 software v. 2021.4 (Bolyen et al.

2019). Amplicon sequence variants (ASVs) were denoised with Dada2 and taxonomic

labels were assigned using the naive Bayes classifier pre-trained on the Silva 138 99%

OTUs from 515F/806R 16S region provided by Qiime2 developers (Bokulich et al. 2018;

Robeson et al. 2021). Subsequent analysis and visualization were performed with

custom Python and R scripts.

A large cross-sectional dataset of microbiome 16S amplicon sequencing profiles from

stool samples from locals in some of the African destination countries as well as the US

was previously curated in the lab. A previously-generated feature table and associated

taxonomy table collapsed at the genus level were used for this study.

Published datasets were identified via a literature search and downloaded from the

Sequence Read Archive. Shotgun metagenomic sequencing data (Cheung et al.,
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D’Souza et al., and Boolchandani et al.) were processed using Kraken2 and Bracken

software (Wood, Lu, and Langmead 2019; Lu et al. 2017). A standard Kraken2

database comprising Refseq archaeal, bacterial, viral, plasmid, and human reference

sequences and UniVec vector sequences dating from Mar 2023 available on

benlangmead.github.io was used, as well as an accompanying Bracken database from

the same update. 16S amplicon data (Pires et al. and David et al.) were processed

using Qiime2, same as above. Analysis and visualization were performed in Python v.

3.9.7.

Results

Microbiome diversity declined following travel periods across diverse destinations

We first examined broad microbial community diversity throughout subjects’ time series.

A handful of previous studies have found no statistically-significant difference in

intra-individual diversity before and after travel, however these conclusions came from

small sample sizes (as small as n=10), so there is yet to be clarity on whether travel is

robustly associated with any directional shift in diversity as larger studies have only

recently come out, nor has there been a cross-study comparison (Youmans et al. 2015;

Leo et al. 2019; Langelier et al. 2019). We thus explored this question first in our novel

data, and then in recently published large(r) cohort study datasets. In our study we

observed that microbiome alpha diversity as measured by Shannon index modestly

decreased in ¾ travelers after returning from Africa (mean pre-travel=6.08, mean

post-travel=5.99), averaging across daily samples during each period (Figure 2a).
Diversity trajectories were inconsistent among travelers during travel, again averaging

across samples during this period. Comparing with our previous work (David et al.

2014), we see the same slight decline in alpha diversity in the traveling subject (Subject

A) during the sampling period (mean pre-travel=4.38, mean post-travel=4.33) (Figure
2b).

We observed similar and more robust findings in the large cohort published datasets

included in our analysis. We analyzed three studies (Cheung et al., D’Souza et al., and
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Pires et al.) with pre- vs. post-travel sampling designs (the former two being the two

largest cohort travel studies with public data of this design we identified, among over a

dozen studies). Among the Cheung et al. travelers (n=90, originating in Hong Kong and

visiting various destinations mostly in Southeast and East Asia), there was a significant

overall downturn in diversity post-return (Wilcoxon signed-rank test p=0.033, 55% of

travelers experienced absolute declines in diversity) (Figure 3a). We observed the

same outcome in the D’Souza et al. Dutch travelers (n=190, Wilcoxon signed-rank test

p=0.007, 58% of travelers declined) (Figure 3b). Since subject-specific destination
information was available for these data, we grouped subjects by regional destination

and repeated testing for each group, however with these smaller cohort sizes none

were standalone significant (Southeastern Asia p=0.17; Southern Asia p=0.24; Northern

Africa p=0.20; Eastern Africa p=0.12) (Figure 3e). Next we analyzed the Pires et al.
Swiss traveler data (n=40, all subjects travel to India), but comparing the pre-travel and

immediately-post travel timepoints, we did not observe a significant diversity shift,

possibly due to the smaller cohort size (Wilcoxon signed-rank test p=0.38, comparing

subject-matched pre- and immediately-post travel samples). Anecdotally, however, there

was a minor and gradual long term uptick in diversity (mean pre-travel=7.04, mean

immediately post-travel=7.18, mean 3 months post-travel=7.47, mean 6 months

post-travel=7.56, mean 12 months post-travel=7.31) (Figure 3c).

To dive deeper into in-travel diversity dynamics, we analyzed the Boolchandani et al.

data (n=159, comprising travelers with many countries of origin, all traveling to Peru and

sampled exclusively during their time in Peru), we did not observe a clear directional

change in diversity during the course of travel (fitted linear regression model

shannon_index = 0.002*day_count + 5.84, R2=0.004), however this study did not

include pre- or post-trip samples for us to compare with other datasets (Figure 3d).
Thus our analyses showed a recurring pattern of microbiome diversity decrease

immediately post-travel and that this held across diverse geographies for traveler origins

and destinations, but that the timing of the onset of this decrease was inconsistent

(although there is not yet sufficient data to address this).
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High-level microbiome structure was maintained but minor taxa experienced temporary

blooms

We next explored community compositional changes brought on by travel in our

subjects’ time series. All four of our travelers’ microbiomes were dominated by

Firmicutes and secondarily Bacteroidetes, and this hierarchy held stable through the

sampling period (Figure 4). In contrast with our earlier findings (David et al. 2014) but
consistent with other published work (Youmans et al. 2015), Firmicutes-to-Bacteroidetes

ratio temporarily increased during African travel periods and then reversed in the

majority (¾) of our subjects (Figure 5). Subject 1, who was the exception, was also the
only subject to visit Africa twice during the sampling period, and both times experienced

a decrease in Firmicutes-to-Bacteroides ratio (comparing with the adjacent North

American time periods for each African trip), which remained lower post-travel.

In two of our subjects, we observed blooms in already-present Verrucomicrobiota

coinciding with African travel (Figure 4), which, in subject 1, who has the longer time
series, does not persist or reoccur beyond the end of their first period in Africa. We

observed as well that average relative abundance of Proteobacteria decreased in ¾ of

subjects going from pre- to during-travel, but subsequently increased in all subjects,

resulting in overall higher abundance post- versus pre-travel in half of subjects (Figure
6). We saw consistent outcomes in our analysis of published data. Among the Pires et

al. travelers, major gut phyla remained steady while minor phyla (Proteobacteria,

Verrucomicrobiota, and Fusobacteriota) experienced upswings immediately post-return,

which were restored to pre-travel levels by the next sampling point and maintained out

to 12 months post-travel (Figure 7). We were particularly interested in Proteobacteria

dynamics in traveler microbiomes, as this phylum encompasses common

illness-causing and antibiotic resistance-associated Enterobacteriaceae. Indeed, we

observed spikes in Enterobacteriaceae in all four of our subjects which appeared to

coincide with travel to Africa (Figure 8). In two of the three published datasets we used
which included pre- and post-travel sampling time points, the two outcomes of lower

post-travel microbiome diversity and higher abundance of Proteobacteria tended to

coincide, though this was statistically significant only in the biggest study cohort
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(D’Souza et al., Fisher’s exact test p=3.69*10-10) (Figure 9). This was also true on a
smaller scale in our novel data. Together, these findings underscore the ubiquity of

Proteobacteria abundance as a signature of post-travel microbiome disturbance.

We next dug into ASV-level dynamics within our traveler data. In concordance with

results from our earlier study, we found that mean relative abundance of ASVs was

positively correlated with their temporal persistence across all subjects, and that there

was a core set of abundant and prevalent taxa for each person (Figure 10). We

examined the dynamics of the most abundant and prevalent ASVs in each subject’s

time series and observed that many experienced temporary downturns during travel

periods, coincident with when minor taxa bloomed (Figure 11). We recapitulated the

analysis on conditionally-rare taxa (CRT) from our earlier work using the same

thresholds (Gibbons et al. 2017) but identified very few CRTs in any time series (ranging

in count from 0-11 among subjects), however interestingly despite this, three subjects

had CRTs in common (Figure 12a). CRT blooms appear to coincide with travel periods

in some but not every case (Figure 12b).

Broad microbiome shifts occurred during travel but were largely independent of specific

traveler destination

We next examined overall microbiome shifts through time among our travelers. Above

all else, we observed that our travelers maintained individuality in their microbiome

signatures over time, as samples clustered most clearly by subject, compared to

geography or processing batch (Figure 13). We hypothesized that there may have been

broad shifts concomitant with travel, and indeed we observed an “out-and-back” pattern

in subjects 1, 2, and 4, wherein their in-Africa samples appeared more disparate

compared to their in-North America and in-Europe samples, both before and after

African travel (Figure 14). In the Pires et al. travelers, we anecdotally observed a slight
long-term divergence from pre-travel sampling points, however we cannot directly

compare patterns in trajectory without in-travel samples (Figure 15).

With our destination-matched local cohort data, we wanted to examine whether our

travelers’ microbiomes became more similar to those of local residents from the African
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countries they visited while they were there. Specifically, our local cohort included

samples from Cameroon (uniquely-sampled donors n=103, visited by subjects 1 and 2),

Tanzania (n=91, visited by all subjects), and Rwanda (n=92, visited by subject 1), as

well as from the United States (n=117). We did not observe a clear “assimilation” pattern

for any of the three African countries, however for subjects 1, 2, and 4 there appeared

to be shifts away from American local microbiome profiles, such that these travelers’ gut

communities became more dissimilar versus their country of origin while simultaneously

not becoming more similar to those of their temporary host countries (Figure 16).

We further explored this idea of destination-specific effects using our collection of

published datasets. With the D’Souza et al. data we asked whether there was more or

less divergence from pre-travel baseline depending on destination geography, however

we did not observe a significant difference between the four regions (Kruskal-Wallis test

p=0.74) (Figure 17). We also wanted to examine whether same-destination post-travel

microbiomes of distinct subjects became more similar to each other, compared to

different-destination subjects. In other words, was there a “convergence” by

destination? We did not observe this in the D’Souza et al. cohort, comparing

all-versus-all post-travel samples for destination-matched and mismatched subjects

(Figure 18). Approaching the question of “convergence” from a different angle, we

sought to determine whether travelers with shared destination were more similar to

each other after travel than they were before (perhaps a “shared experience effect”,

which in the Pires et al. data appeared anecdotally to be the case, interestingly with

continuing convergence further out from return date (Figure 19). Taken together, the
bulk of our results suggest that travel-associated microbiome shifts are largely

decoupled from specific traveler destination.

There was no enrichment in local microbe colonization in Africa, and in-Africa

colonization events were not distinctly different from others elsewhere

Finally we focused on the question of new microbe influx during travel. Our expectation

was that we might see distinct local signatures of microbe colonization while in Africa,

however we did not observe this in our results. For each of our subjects, we identified

every ASV first observed while in Africa, which presumably were taken up from

17



subjects’ environs. Firstly, we observed little overlap between subjects of these

newly-acquired ASVs, despite shared destinations and travel experiences among some

subjects (indeed, we observed more overlap among ASVs lost in Africa) (Figure 20a-b).
The phylum distribution of newly-acquired ASVs reflected dominant phyla in subjects’

existing microbiome composition (Figure 20c), and did not include any
largely-exclusive-to-Africa microbes from the cross-sectional dataset (Figure 21). With

our destination-matched cross-sectional sampling cohort, we tested whether these new

microbes were shared with local African populations, which one might expect to see

given proximity and sharing of diets. Unexpectedly, we did not see this effect (at the

genus level), and there was no marked enrichment for shared microbes among all new

microbes first appearing in subject time series in Africa, comparing between destination

country cohorts (Cameroon, Tanzania, and Rwanda) and unrelated country cohorts

(Figure 22). Of note was the fact that dominant phyla overlapped between our travelers
and our local African cohorts, and where they differed were mostly in minor phyla.

We next examined the frequency of colonization through travel periods. Segmenting

each time series by geographic region, we calculated the average number of new ASVs

per day per continuous time period in each region. In the results, we did not see

consistently outsized colonization frequency during periods in Africa for our subjects

(Figure 23). Lastly, we asked whether, for significantly-long continuous time periods in
each geography for each subject, there was any difference in temporal persistence or

peak or mean abundance of newly-colonized microbes. In plain terms, we wanted to

ask whether there was anything special about microbes acquired in non-native

surroundings that allowed them to colonize particularly well (or poorly). We did not

observe a clear association across subjects between geography and the proportion of

new microbes being less (≤3 sampling days) or more (>3 sampling days) prevalent

(Figure 24), nor between geography and the two abundance measures (Figures 25-6).
Examining the temporal dynamics of the cumulative abundance of Africa-acquired

microbes, we observed, across all subjects, a temporary spike immediately

post-colonization followed by a drop to a sustained low abundance post-travel (Figure
27). Only in Subject 2 did Africa-acquired microbes appear to establish a meaningful
(but still minor) foothold.
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Discussion

In this study we investigated the impact of international travel from more developed to

less developed geographies on the human gut microbiome. By complementing our

analysis of our novel long and dense time series with reanalysis of large,

cross-sectional studies, we uncovered new insights and delivered them with broader

context. We found that diminished microbiome diversity was significantly associated

with return from travel, and that this effect was observed across diverse destinations in

developing regions. This runs counter to earlier negative conclusions from more limited

investigations (Kampmann et al. 2021; Langelier et al. 2019; Leo et al. 2019), and

suggests a new lower-bound to the time it takes to observe an effect on microbiota

diversity post-relocation. It is possible that traveling between highly dissimilar

environments may prompt a fast adjustment or perturbation, perhaps coinciding with a

shift in diet or behaviour. As a point of comparison, earlier work studying immigrants to

the US from Southeast Asia reported that diversity measures dropped within 9 months

of permanently moving, presumably reflecting a longer-term acclimatization (Vangay et

al. 2018).

In terms of microbiome composition, we observed mostly temporary effects from travel

in the form of fluctuations of lesser-abundant phyla. Our findings corroborated earlier

reports of temporarily-elevated Enterobacteriaceae resulting from travel to developing

regions and confirmed that it occurs often and irrespective of specific geography

(Kampmann et al. 2021; Leo et al. 2019; Langelier et al. 2019). This suggested that

there were common triggers stemming from travel-associated lifestyle change and

exposure to non-native surroundings.

The microbiome shifts we saw in our analyses appeared to be largely temporary, and

did not differ meaningfully by destination. Nor did, surprisingly, within-travel microbial

colonization patterns. Indeed, while there were in some subjects significant numbers of

newfound microbes in Africa, they did not seem to originate from substantial exchange

with local gut microbiome reservoirs. Instead, we saw a “more of the same” outcome

emerge. It would be difficult to pinpoint exactly why this was the case, but we speculate
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that perhaps it would take a more extended duration stay for subjects to meaningfully

shift toward a more “local” state (including changes such as adopting a more local diet),

like what was observed in the immigration study mentioned earlier (Vangay et al. 2018).

It could also be that microbes we labeled as “new” during this period were simply

already present but below the limit of detection before then.

We acknowledge some limitations of our study, chiefly the limited cohort size of our

primary dataset. Our subjects were in proximity to each other for the duration of

sampling, and in some instances, traveled together as a party. Our subjects were also

sometimes in proximity to subjects in the local cross-sectional cohort whose data we

intersected with our longitudinal data. More generally, in each case we aimed to

recapitulate our findings in large published datasets, however much of this was not

possible as there are no other directly comparable studies besides the smaller one from

our group years ago (David et al. 2014). Thus, we cannot speculate on the extent to

which our observations from our cohort of 4 will generalize more broadly. This study

represents a preliminary step towards this kind of heavy repeated-sampling-based

interrogation of microbiome dynamics in travel, which can address questions that simple

pre- versus post- sampling designs cannot. Further scaling up is a formidable challenge,

and would likely require non-trivial subject education and compliance on self-sampling

procedures.

Altogether, we hope that our findings here will fill in some gaps in the current

understanding of microbiome dynamics in travel, and pave the way to more

comprehensive and rigorously-designed studies in the future.
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Figure 1. a) Map of subject origins and travel destinations. b) Subjects’ self-sampling
scheme. Each coloured circle denotes a sampling day, and circles are coloured by
subjects’ location (grey=North America, orange=Africa, Blue=Europe, Purple=Middle
East).
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Figure 2. a) Alpha diversity trajectories (as measured by mean Shannon index in each
continuous period in each region) across subject time series in this study. Dashed line
denotes Subject 1’s second trip to Africa, and their adjacent stays in North America. b)
The same visualization for Subject A’s time series from David et al., segmented by their
time before, during, and after living abroad in Southeast Asia.

Figure 3. Subject-matched alpha diversity (as measured by Shannon index) before and
after travel among the a) Cheung et al. and b) D’Souza et al. travelers. c)
Subject-matched alpha diversity (Shannon index) at each of the 5 sampling points in
Pires et al. d) Individual alpha diversity (Shannon index) trajectories of the Boolchandani
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et al. travelers while in Cusco, Peru. e) same as b) but separating travelers by
destination.

Figure 4. Stacked bar plots depicting subject microbiome composition over time. ASVs
are grouped by genus, genuses belonging to a phylum are coloured as distinct shades
of the colour assigned to that phylum (e.g. Firmicutes are shown in shades of red).
Within a phylum, genuses are ordered bottom-to-top by descending relative abundance,
and ASVs belonging to a phylum but with unassigned genus are grouped together and
shown as the lightest shade of the phylum’s colour (e.g. unassigned genuses belonging
to Firmicutes are shown as the lightest shade of red). Phyla are ordered bottom-to-top
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by descending total relative abundance. The 1st colour bar below denotes the location
of the subject on the day of sampling, coloured by region. The 2nd colour bar denotes
whether the subject self-reported illness on that sampling day.

Figure 5. Ratio of mean relative abundances of Firmicutes to Bacteroidetes in our
subjects before, during, and after travel to Africa. Dashed line denotes Subject 1’s 2nd
trip to Africa.

Figure 6. Relative abundance of Proteobacteria in our subjects before, during, and after
travel to Africa. Dashed line denotes Subject 1’s 2nd trip to Africa.
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Figure 7. Heatmap of mean relative abundances of most common gut phyla, z-scored
across time points in the Pires et al. data.
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Figure 8. a) Relative abundance of Enterobacteriaceae in our subjects’ time series.
Periods in Africa are coloured in orange background. b) Relative abundance of
Africa-acquired Enterobacteriaceae in our subjects’ time series. Subject 3 did not
acquire any Enterobacteriaceae while in Africa. c) Relative abundance of
Enterobacteriaceae already present pre-African travel in our subjects’ time series.
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Figure 9. Sankey plots of the association between post-travel outcomes (∆ α diversity, ∆
Proteobacteria relative abundance) in the D’Souza et al., Cheung et al., and Pires et al.
travelers.

Figure 10. Temporal persistence vs. mean relative abundance of ASVs in each
subject’s time series.

30



31



32



33



Figure 11. Horizon plots depicting abundance fluctuations of the most abundant and
prevalent ASVs in each subject’s time series. Abundance values are centred at zero
(indicating the median relative abundance for that ASV) and colours reflect the quartile
abundance above (blue) or below (red) the median. Dots on the left denote the phylum
the ASV belongs to (with the same colour scheme as Figure 4). ASVs are labeled with
their genus classifications.
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Figure 12. a) Conditionally-rare taxa abundances through subject time series. CRTs
were identified as ASVs with Sarle’s bimodality coefficient > 0.8 and peak relative
abundance ≥ 10%. b) Venn diagram of shared CRTs among subjects. No CRTs were
identified in Subject 4’s time series.

Figure 13. PCoA plots of samples in all of our subjects’ time series, coloured by
sequencing batch, subject, and geographic region.
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Figure 14. PCoA plots of each subject’s samples, coloured by geographic region.
Continuous stays in each region are numbered in order (e.g. north_america_0 is a
subject’s first continuous period in North America, north_america_1 is the period when
they next return to North America, etc.) and coloured by geographical region (Africa:
shades of red-orange, Europe: shades of blue, North America: shades of black-grey,
Middle East: purple). X’s denote centroids (e.g. a black X denotes the centroid of all
samples from north_america_0 for that subject). Arrows connect consecutive centroids
in each time series.

Figure 15. Microbiome divergence (as measured by Bray-Curtis dissimilarity) over time
from pre-travel baseline for each subject in the Pires et al. cohort.
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Figure 16. Beta diversity trajectories (as measured by mean Bray-Curtis dissimilarity)
from location-matched cross-sectional microbiome sampling cohorts in the US (grey),
Rwanda (dark red), Tanzania (orange), and Cameroon (yellow) for each subject’s
microbiome. Periods in Africa are coloured in orange background.

Figure 17. Within-subject divergence from baseline pre-travel (as measured by
Bray-Curtis dissimilarity) grouped by destination, among the D’Souza et al. cohort.
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Figure 18. Cross-subject all-versus-all microbiome dissimilarity of post-travel samples
(as measured by Bray-Curtis dissimilarity), grouped by shared vs. different destinations,
in the D’Souza et al. cohort.

Figure 19. Cross-subject all-versus-all microbiome dissimilarity, grouped by time point,
in the Pires et al. cohort.
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Figure 20. a) Venn diagram of newly-colonizing ASVs in Africa in common between
subjects. For Subject 1, only the 1st trip to Africa is included. b) Venn diagram of ASVs
that disappeared in Africa in common between subjects. For Subject 1, only the 1st trip
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to Africa is included. c) Pie charts of phylum assignments of all newly-colonizing ASVs
in Africa for each subject.

Figure 21. Microbiome composition of 50 example subjects from each of Rwanda,
Cameroon, Tanzania, and USA in the cross-sectional dataset. Microbes are coloured by
phylum according to the same colour scheme as Figure 4, with black being assigned to
all phyla which were never detected in our travelers’ gut samples.
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Figure 22. a) Overlap of genuses newly-appearing in each African country with those
found in country-matched local microbiome sampling cohorts (highlighted in red). A
darker colour denotes greater overlap (more genuses in common between travelers and
locals in that country). b) Fraction of newly-colonizing genuses in Africa that were
shared with country-matched local cohort.

Figure 23. Mean number of newly-appearing ASVs per day in each continuous time
period in each geography. The first 3 days of each subject time series is represented as
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a separate time period, to account for core or already-present ASVs (those that are not
actually new). In-Africa periods highlighted in red.

Figure 24. Fraction of newly-appearing ASVs in each longer continuous time period in
each geography which exhibited high (>3 sampling days, pale colour) or low (≤3
sampling days, opaque colour) temporal persistence. In-Africa periods highlighted in
red.

Figure 25. Mean peak relative abundance of new ASVs in each continuous time period
in each geography. The first 3 days of each subject time series is represented as a
separate time period, to account for core or already-present ASVs (those that are not
actually new). In-Africa periods highlighted in red.
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Figure 26. Mean (across ASVs) of mean relative abundance (across time) of each new
ASVs in each continuous time period in each geography. The first 3 days of each
subject time series is represented as a separate time period, to account for core or
already-present ASVs (those that are not actually new). In-Africa periods highlighted in
red.

Figure 27. Total relative abundance of Africa-acquired microbes over time. Only
microbes acquired during Subject 1’s first trip to Africa are shown. Periods in Africa are
coloured in orange background.
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Chapter 2: Strain-level diversity of antiphage
defense capabilities across gut bacterial phyla

This chapter was a collaboration between me and Jay Zhao. Jay and his undergraduate
mentees generated StrainAtlas biobank isolates and genome data, I performed the
antiphage analyses, and Jay and I performed visualization. This chapter is written by
me.
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Background
The typical human gut microbiome comprises hundreds to thousands of distinct

bacterial species (Costea et al.). Beyond this inter-species-level diversity, it is known

that different human hosts can harbour different strains of a given species, and that one

host microbiome can contain multiple strains of the same species, coexisting. Research

has uncovered vast strain-to-strain phenotypic variability among many gut bacteria, with

many of these findings carrying significant relevance to host health. For example, it is

widely known that antibiotic resistance capacity within a species can range from

susceptible to fully resistant. This can be seen in the classical case of Escherichia coli,

which naively is susceptible to most clinical antibiotics, but in practise is able to acquire

any of a wide arsenal of resistance via its neighbours in addition to its own mutational

processes (Poirel et al.). Pathogen virulence can vary similarly highly within species. As

well, it has been observed more recently that there can be differing host immune

responses to different strains of the same gut species, with one group observing a

range of IgA secretion levels by identical hosts in response to different Bacteroides

ovatus strains (Yang et al.). Researchers have also shown that there can be strain-level

differences relevant to host therapeutics, such as bacterial metabolism of

host-administered drugs and anti-cancer activity (Chambers and Illingworth).

Collectively, this observed functional diversity at the strain level is underpinned by the

vast genomic diversity of gut bacterial species. To grapple with the scale of this diversity,

researchers have introduced the concept of the pangenome to describe the whole set of

genes in a species (Tettelin et al.). Alongside this are the related concepts of the core

genome (the subset of genes in the pangenome shared by most or all species

members, often essential or housekeeping genes) and the accessory genome (the

subset of genes shared by only some species members and more likely to be

dispensable). Some researchers break down the accessory genome further into shell

and cloud sections (medium- and low-prevalence genes, respectively) (Wolf et al.). In

many gut species, the size of the pangenome greatly outmeasures the size of the core

genome or any individual strain genome. This indicates that the pool of possible gene

content (and thus functional capacity) of the species as a whole is far greater than can
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be captured in any single genome. As an example, E. coli is estimated to have a core

genome of 2000-3000 genes, but by comparison its pangenome is estimated at

100,000+ genes (Park et al.). Furthermore, the average E. coli genome only contains

about 5000 genes total. Thus, to fully grasp the scope of genetic and functional diversity

of E. coli, one needs to study far more than a single E. coli genome.

The same is true for other species in the gut, but while E. coli is among the best-studied

and most-sequenced species, for many others there is a paucity of publicly-available,

high-quality sequenced genomes or cultured strains (Blackwell et al.).

To address this gap in data availability, our lab has developed a rich biobank and data

resource called StrainAtlas, which comprises 15,000+ cultured gut bacterial strains with

sequenced whole genomes from 700+ human donors from varied geographies and

demographics. This new resource differs from previously-released biobank resources in

its uniquely-deep intra-species sampling, and thus it is ideal for exploration of

strain-level diversity.

Among the many little-studied questions in this domain of strain-level diversity include

that of strain-to-strain differences in microbial anti-bacteriophage defense capabilities. A

recently-burgeoning area of study for microbiologists broadly, antiphage mechanisms

are now known to be far more diverse than previously believed, in good part because of

a landmark study in 2018 which discovered ten new defense systems through an

exploratory computational approach with experimental validation, which leveraged their

known patterns of genomic colocation (Doron et al.). The authors used 45,000+

bacterial and archaeal genomes for their initial search, which comprised the entirety of

public genomes on the NCBI at the time.

Since then and with the renewed interest in this area, researchers have unearthed more

novel defense systems (Gao et al.; Bernheim et al.; Millman et al.), and automated their

computational annotation in genome assemblies (Tesson et al.; Payne et al.). Building

upon this and with the vast new resource of StrainAtlas, we demonstrate the extent of

strain-level diversity in antiphage defense capabilities across the phylogenetic tree of

gut bacteria. Our results point toward there being much more to discover in the way of
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antiphage defense mechanisms in model and non-model bacteria and underscore the

value and importance of resources like StrainAtlas in capturing strain heterogeneity.

Methods

In brief, stool samples from human donors were plated and grown on selective media,

and colonies were picked for species-level identification via 16S amplicon sequencing.

Colonies were then restreaked, grown, and arrayed onto 96-well plates for Illumina

whole genome sequencing. Whole genomes were then assembled from FASTQ reads

using Unicycler (Wick et al.), and assigned species identifiers using rMLST (Jolley et

al.).

Genomes were filtered for inclusion in the phage defense analysis by average read

depth (minimum=5), and genome FASTA files in nucleotide format were translated to

amino acid format with Prodigal (Hyatt et al.).

Amino acid files were then inputted for phage defense system annotation into

DefenseFinder (Tesson et al.). Briefly, DefenseFinder employs a two-step method for

prokaryotic antiviral system identification: first, it uses a Hidden Markov Model-based

sequence homology detection step to find individual sequences resembling those of

known defense systems in the literature (manually curated by the authors); and second,

it checks that the presence and arrangement of these sequences abide by the set of

“decision rules” for the system containing that sequence, again prescribed by the

authors and based on its genetic architecture as previously studied. The HMM database

used was up-to-date as of December 2022, and the software was run with default

(conservative) settings. Results were analyzed and visualized in Python.

Results

An overview of the antiphage arsenal in gut bacteria

In total, 16,610 StrainAtlas genomes are included in these analyses, comprising 181

species and spanning all four major gut phyla. We detect 156,769 different antiphage
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systems total, comprising 124 distinct families (e.g. CBASS), 188 subfamilies (e.g.

CBASS type I, II), and 365,467 genes. Antiphage system count per genome varies

between zero (occurring in 25 genomes) and 46 (found in one genome of

Parabacteroides distasonis) (Figure 1a). Most genomes (18/25) lacking any defense
systems belong to just two species, Latilactobacillus sakei and Enterococcus faecium.

Overall, 50% of genomes harbour at least 9 defense systems.

Figure 1. a) Most genomes contain a modest number of total antiphage defense
families. b) Similarly for unique defense system families.

To understand the diversity of antiphage defense in StrainAtlas, we calculate the

per-genome count of distinct antiphage system subfamilies (which we refer to as just

“families” from here on for ease, superseding the previous more general meaning),

which is on average 7.24 (Figure 1b). Genomes can carry multiple systems of the same
family, for example many Lactobacillus paragasseri genomes contain multiple

Restriction-Modification (RM) type I systems. We observe that generally antiphage

system count correlates positively with family count (Pearson r=0.96, p<0.001) (Figure
2), suggesting that as the sheer size of antiphage arsenal increases, so too does its
diversity. Some genomes are exceptions to this, such as one strain of Phocaeicola

vulgatus, which has high redundancy among its systems (23 total, 13 unique).

Consistent with past findings in the literature, these genomes tend to contain many

restriction-modification (RM) systems (Tesson et al.). In fact, we find that for genomes
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encoding >5 systems but with high redundancy (# unique systems / # total systems

≤60%, n=87), RM systems comprise 57% of all systems.

Figure 2. Antiphage systems are found in many gut species (shown are species with
≥100 genomes in StrainAtlas). There are consistent positive correlations between
genome size, antiphage system count per genome, and family count per genome
between species.

Across and within species, we observe consistent positive correlations between

genome size and antiphage system count (Figure 3a-c). This makes sense, as genome
size reflects accessory system capacity.

49



Figure 3. a) Antiphage system abundance positively correlates with genome size

across species. b) Antiphage system abundance positively correlates with genome size

within a species (E. coli is shown). c) This within-species correlation is true for many

species (shown are StrainAtlas species with ≥100 genomes).

The antiphage arsenal of gut bacteria is variable across most phyla but enriched in

Proteobacteria
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We next focus on the antiphage defense families found in StrainAtlas. Among those

detected, earlier discovered families are the most predominant, with RM systems

showing highest prevalence at 96% of all genomes and CRISPR-Cas systems second

at 57% of all genomes (Figure 4). These and the handful of other more prevalent
families tend also to be the most abundant. Frequencies for remaining detected families

range from a single genome (the TerY-phosphorylation triad family) to 46% of genomes

(the PARIS abortive infection system family), though most are below 30% prevalence.

Among all families detected, 48% are very rare (n=59), found in ≤1% of genomes, and

of these 20% are found only in a single species (n=12). Some families are enriched in or

restricted to certain phyla. This can be seen in the occurrence patterns of the abortive

infection systems AbiG and AbiN, both found across genera within Firmicutes. The most

striking example, however, is concentration of families in Proteobacteria. Despite

making up only a minority of all strains in StrainAtlas (Figure 5), 80% of all detected

families are detected in Proteobacteria genomes (Figure 6). This is mostly driven by the
outsized enrichment of families in E. coli. We posit that this is due not to any unusual

intrinsic quality of E. coli itself, but rather its history as the best-studied model

bacterium. This likely biases the detection method we used (and realistically, any

computational detection method) toward E. coli-based systems as they would be

highly-represented in the methods’ databases. Indeed, many of these systems were first

discovered in E. coli experiments.

Figure 4. StrainAtlas contains both a vast number and variety of antiphage defense
systems, dominated by RM (red) and CRISPR-Cas (yellow) systems.
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Figure 5. Proteobacteria comprise a minority of StrainAtlas genomes but contain a
plurality of antiphage systems.
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Figure 6. The majority of all detected antiphage families in StrainAtlas can be found in
Proteobacteria (shown are StrainAtlas species with ≥10 genomes).

Most known antiphage defense systems remain rare in large species pangenomes

To examine the frequency of antiphage defense families within species, we consider

each family in the context of a species pangenome, constructed using every strain of

that species in StrainAtlas. Focussing first on the example of E. coli, which is

well-represented in StrainAtlas with over 1000 genomes, we find that the vast majority

of newly-discovered families detected in E. coli genomes belong to the cloud section of

its pangenome (which we define as genes present in <5% of all genomes) (Figure 7). In
other words, most of these families are exceedingly rare, even among such a sizable

genome set. We next take one step back to include all unique families found in E. coli.

By performing repeated (n=100) randomized resampling of genome sets of size 1 to all

E. coli genomes, we observe that as the pangenome size increases, most families

continue to be present only in the cloud section, and that this levels out at ~75% of

families (Figure 8). This leveling out indicates that the rarity of these families in
StrainAtlas likely reflects their underlying overall rarity in the E. coli species rather than

our mistakenly-assigning non-rare families as rare due to our undersampling. This then

suggests that additional currently-unknown rare families may be discovered with

increased genome sampling. Repeating this analysis for all species with ≥100 genomes,

we find that this generally holds true across phyla in StrainAtlas. Together, these

findings suggest that continuing deep intra-species sampling is crucial to capture the

true diversity of that species’ antiphage arsenal.
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Figure 7. Newly-discovered antiphage systems from Vassallo et al. are enriched in the
cloud section of the E. coli pangenome.
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Figure 8. As we increase the genome set size, most antiphage systems remain in the
cloud section of the pangenome, indicating their rarity in StrainAtlas reflects true rarity in
the species. Shown are all StainAtlas species with ≥100 genomes.

Most species appear to fall far short of E. coli’s defense repertoire

We next compare pangenomes cross-species to understand the relative size of the

phage defense capacity of each species as a whole. We see that pangenome-wide

unique family count correlates positively with species average genome size (Pearson

r=0.39, p=4.67e-08), but that E. coli is again an outlier, with >50% more unique defense

families in its pangenome versus the next species with a comparable genome size

(Figure 9a). Indeed, its pangenome-wide defense arsenal far outstrips every other
species, despite having only a middle-of-the-pack genome size (5.06Mbp) and

per-genome average family count (8.97). To mitigate potential bias from the relatively

high representation of E. coli in StrainAtlas, we repeat this analysis including only

species with ≥100 genomes and randomly downsampling to exactly 100 genomes

(Figure 9b), and also visualize pangenome-wide defense unique family count versus
total pangenome size (Figure 9c). In both cases, E. coli remains a clear outlier species,
with a much more expansive antiphage defense repertoire than we would expect for a

typical species of its size. In turn, this reflects the fact that the relatively smaller
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apparent size of defense repertoires of non-E. coli species may stem from lack of

investigation rather than their true modest capacity.

Figure 9. a) Total unique antiphage family count in a species positively correlates with
species average genome size, but E. coli (in red) is an outlier with an outsized number
of families. b) Taking into account varying species representation in StrainAtlas by
plotting against cumulative sum of genome sizes within species, E. coli remains an
outlier. c) Repeating a) but including only species with ≥100 genomes and randomly
subsampling to 100 genomes, again to mitigate varying species representation, E. coli
remains an outlier.

There is likely additional undiscovered diversity in E. coli’s own antiphage defense

repertoire
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We now pivot to focus on E. coli itself, which as mentioned, is perhaps the best studied

of gut (and all) bacteria. In spite of this, we hypothesize that there is much value in

continuing to explore E. coli’s viral defense and that much like other non-model bacteria,

the key lies in in-depth sampling of intra-species diversity. A recent paper from

colleagues at MIT takes this approach and succeeds in identifying 21

previously-unknown defense system families by applying an experimental selection

scheme on 71 diverse strains of E. coli. Using their data, we calculate the portion of

known and novel families at genome set sizes downsampled from 1 to 71, and fit a

logistic curve to the novel family counts using the scipy.optimize.curve_fit() function

(RMSE=0.13, R2=0.9994) (Figure 10a). We use the fit equation to extrapolate the total

number of novel families expected in an E. coli genome set size equal to that of

StrainAtlas’ (50 families in n=1869 genomes) (Figure 10b). This reflects the uncharted
territory of E. coli phage defense that could be discovered by applying Vassallo et al.’s

technique to StrainAtlas. In fact, this could very well be a conservative estimate as it is

beholden to their technique’s biases and limitations.
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Figure 10. a) As the number of genomes increases, so too do the number of both
known and novel antiphage systems in the E. coli genomes from Vassallo et al., without
appearing to reach saturation. b) Using the occurrence patterns observed in the
Vassallo et al. E. coli, we extrapolate to estimate the number of novel antiphage
systems to be discovered within the StrainAtlas E. coli collection.

60



61



Figure 11. a) This upset plot depicts every unique combination of families found in the
Vassallo et al. E. coli (vertical connected dots) and the number of genomes containing
that exact combination (top histogram), showing wide dispersion of families across all
genomes. b) The same plot for a random subsample of 100 StrainAtlas E. coli
genomes.

We further probe the diversity within this dataset by calculating every set of unique

combinations of defense families and for each set, tabulating the genomes that contain

that exact combination (Figure 11a). The result demonstrates that families are spread
widely and evenly throughout all genomes, rather than there being a concentration

within a few genomes or a partitioning of certain combinations of families within groups

of genomes. This can be seen from the high number of family sets (n=67), the modest

average size of family sets (8.30 systems/set), and the very small genome counts
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corresponding to each set (mode=1 genome/set). Repeating this analysis for a

comparable number of randomly-subsampled StrainAtlas E. coli genomes (n=100), we

observe similar results (number of family sets=92; mean family set size=8.62; mode of

genome counts=1 genome/set) (Figure 11b). Once again, this reinforces the necessity
for extensive intra-species sampling, as no arbitrary sparse downsampling of either of

these E. coli datasets would suffice to capture the majority of the defense arsenal

contained in the whole dataset, much less in the species as a whole.

Discussion

In this chapter we approach the question of bacterial strain-level diversity from one

specific angle, focussing on strain-to-strain variability in viral defense across many gut

species. With StrainAtlas we are able to show that the relatively modest defense

arsenal equipped to the average gut bacterium usually belies the much larger arms

selection available to its parent species. This global view of antiviral defense in the gut

does away with the notion that any one or handful of strains is a sufficient

representation for a species. Instead, researchers should move toward larger-scale

systematic intra-species interrogations, now made much more accessible with our

biobank.

Our survey of viral defense also points to the promising horizon of defense mechanism

discovery, both in current StrainAtlas isolates and in future broad

culture-and-sequencing efforts. We show that for model and non-model bacteria alike,

even StrainAtlas’ extensive sampling depths do not appear to exhaust diversity at the

species level, and that many new and rare defense families are likely yet to be

discovered. E. coli showing up again and again as an outlier with an apparently huge

pangenome-level defense repertoire serves to cast doubt on the sufficiency of repertoire

detection in other species. In effect, its own richness highlights what is missing

elsewhere – what is unknown or cannot be found with current computational methods.

Here we acknowledge the limitations of our data and method. Our data, derived from a

culture-based procedure, is naturally biased by which bacteria are culturable in a lab
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setting, and indeed in the theme of strain-level variation, which strains out of these are

most easily culturable. Our computational method relies on an existing HMM database

and thus can only recognize what is similar enough to systems already studied. Any

wholly unique unstudied system would be missed entirely here, though our goal is to

aim a light in their direction with our current results.

We hope that our data and results will empower future research toward expansion of

our knowledge of phage defense, not only through discovery of new systems, but also

extension of study into their synergy, sharedness with components of eukaryote

immunity, and more.
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Chapter 3: Longitudinal immunosequencing in
healthy people reveals persistent T cell receptors
rich in highly public receptors

This chapter is a collaboration between me, Nathaniel Chu, and scientists at Adaptive
Biotechnologies. The Adaptive scientists performed all sample collection and
sequencing, Nathaniel and I performed all analyses, Nathaniel performed visualization,
and I wrote the manuscript. This chapter is adapted from the published paper in BMC
Immunology (2019).
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Abstract

Background

The adaptive immune system maintains a diversity of T cells capable of recognizing a

broad array of antigens. Each T cell's specificity for antigens is determined by its T cell

receptors (TCRs), which together across all T cells form a repertoire of millions of

unique receptors in each individual. Although many studies have examined how TCR

repertoires change in response to disease or drugs, few have explored the temporal

dynamics of the TCR repertoire in healthy individuals.

Results

Here we report immunosequencing of TCR β chains (TCRβ) from the blood of three

healthy individuals at eight time points over one year. TCRβ repertoires of all

peripheral-blood T cells and sorted memory T cells clustered clearly by individual,

systematically demonstrating that TCRβ repertoires are specific to individuals across

time. This individuality was absent from TCRβs from naive T cells, suggesting that the

differences resulted from an individual's antigen exposure history, not genetic

background. Many characteristics of the TCRβ repertoire (e.g., diversity, clonality) were

stable across time, although we found evidence of T cell expansion dynamics even

within healthy individuals. We further identified a subset of "persistent" TCRβs present

across all time points. These receptors were rich in clonal and highly public receptors

and may play a key role in immune system maintenance.

Conclusions

Our results highlight the importance of longitudinal sampling of the immune system,

providing a much-needed baseline for TCRβ dynamics in healthy individuals. Such a

baseline will improve interpretation of changes in the TCRβ repertoire during disease or

treatment.
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Background

T cells play a vital role in cell-mediated immunity, one branch of the adaptive immune

response against foreign and self-antigens. Upon recognizing an antigen from an

antigen-presenting cell, naive T cells activate and proliferate rapidly. This process

stimulates an effector response to the immediate challenge, followed by generation of

memory T cells, which form a lasting cohort capable of mounting more-efficient

responses against subsequent challenges by the same antigen.

The key to the flexibility and specificity of T cell responses lies in the cells' remarkable

capacity to diversify their T cell receptor (TCR) sequences, which determine the

antigens those cells will recognize. Most T cells display TCRs made up of two chains:

an α and a β chain. Sequence diversity in these chains arises during T cell

development, through recombination of three sets of gene segments: the variable (V),

diversity (D), and joining (J) segments [1]. Random insertions and deletions at each

genetic junction introduce still more diversity, resulting in a theoretical repertoire of 1015

unique receptors in humans [2]. Selective pressures during and after T cell

development, as well as constraints on the number of T cells maintained by the body,

limit this diversity to an observed 107 (approximately) unique receptors per individual

[2-5].

This TCR repertoire forms the foundation of the adaptive immune response, which

dynamically responds to disease. Each immune challenge prompts expansions and

contractions of different T cell populations, and new T cells are continually generated.

Substantial research interest has focused on these dynamics in the context of immune

system perturbations, including in cancer [6-9], infection [10,11], autoimmune disorders

[12,13], and therapeutic trials [8,14,15]. Observing changes in TCR populations not only

uncovers cellular mechanisms driving disease, but can inform development of new

diagnostics, biomarkers, and therapeutics involving T cells.

Less research has explored TCR dynamics in healthy individuals. Previous studies

found that some TCRs remain present in individuals over decades [16,17], but these
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long-term studies may not directly relate to shorter-term events, such as diseases or

treatments. Interpreting TCR dynamics when the immune system is challenged would

be more straightforward if we had a clear picture of TCR dynamics in healthy

individuals.

To help develop this picture, we report immunosequencing of peripheral TCR β chain

(TCRβ) repertoires of three individuals at eight time points over one year. We focused

on the TCR β chain because, unlike the α chain, only one β chain can be expressed on

each T cell [18], the β chain contains greater sequence diversity [19], and it more
frequently interacts with presented antigens during recognition [20]. These factors

suggest that TCRβ sequences should be sufficient to track individual T cells and their

clones. Our analysis revealed overall individuality and temporal stability of the TCRβ

pool. We also uncovered a set of temporally persistent TCRβs, which were more

abundant, and shared across more people, than transitory TCRβs.

Results

T cell receptor repertoires show individuality and stability through time

To characterize the dynamics of T cell receptors in healthy individuals, we deeply

sequenced the TCRβ locus of all T cells from peripheral-blood mononuclear cells

(PBMCs) isolated from three healthy adults (for schematic of experimental design, see

Figure 1a). We sampled each individual at eight time points over one year (Figure 1a).
For three intermediate time points, we also sequenced flow-sorted naive and memory T

cells from PBMCs (see Methods). Our deep sequencing effort generated ~21 million (+/-

6 million SD) sequencing reads and -250,000 (+/- 100,000 SD) unique, productive

TCRβs – which we defined as a unique combination of a V segment, CDR3 amino acid

sequence, and J segment [21] – per sample. These values and other summary statistics

per sample appear in Table S1. Most TCRβs had abundances near 10-6 (Figure S1),
and rarefaction curves indicate that all samples were well saturated (Figure S2). This
saturation indicates that our sequencing captured the full diversity of TCRβs in our
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samples, although our blood samples cannot capture the full diversity of the TCRβ

repertoire (see Discussion).

We first examined whether previously observed differences among individuals were

stable through time [7,22]. Looking at shared TCRβs (Jaccard index) among samples,

we indeed found that samples of PBMCs or memory T cells taken from the same

individual shared more TCRβs than samples taken from different individuals (Figure
1b), and this pattern was consistent over one year. In adults, memory T cells are

thought to make up 60-90% of circulating T cells [23,24], which aligns with the

agreement between these two T cell sample types. In contrast, TCRβs from naive T

cells did not cluster cohesively by individual (Figure 1b). As naive T cells have not yet

recognized a corresponding antigen, this lack of cohesion might suggest one of two

possibilities: (1) that before antigen recognition and proliferation, TCRβ repertoires are

not specific to individuals or (2) the naive T repertoire is simply too diverse or too

dynamic for individuality to manifest. We thus conclude that at the depth of sequencing

and sampling of this study, individuality results from an individual's unique antigen

exposure and T cell activation history, which shape memory and total T cell repertoires.

We next examined patterns across samples from the same individual to understand

TCR dynamics in healthy individuals. We observed only a minority of TCRβs shared

among samples from month to month; indeed, samples of PBMCs at different months

from the same individual typically shared only 11% of TCRβs (+/- 3.6% SD, range

5-18%) (Figure 1b).

Two factors likely played a role in the observed turnover of TCRβ repertoires: (1)

changes in TCRβ abundances in the blood across time and (2) inherent undersampling

of such a diverse system (see Discussion). Surveying peripheral blood immune
repertoires undersamples at multiple points, including blood drawing, nucleic acid

extraction, library construction, and sequencing. The resulting undersampling likely

explained much of the low overlap of TCRβs among samples but simultaneously

highlighted the significance of TCRβs shared across time points. To verify that patterns

we observed were not artifacts of undersampling, we also analyzed a subset of
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high-abundance TCRβs (those ranked in the top 1% by abundance, see Methods,
Additional File 1), which are less likely to be affected. In these TCRβs, we observed
typical sharing of 63% (+/- 13.8% SD, range 35-88%) of TCRβs in PBMC samples

across time (Figure S3a). PBMC and memory T cell samples (but not naive T cell

samples) still clearly clustered by individual when only these TCRβs were considered

(Figure S3a).

The frequencies of high-abundance TCRβs from each individual were largely consistent

over time (Figure 1c).We found that abundances of the same TCRs correlated within

individuals over the span of a month (Figure 1d, S3b) and a year (Figure 1e, S3c).
This correlation was particularly strong for abundant TCRβs (Figure S3b-c) whereas
rare TCRβs varied more. This correlation held true in naive and memory T cell

subpopulations, sampled across a month (Figure 1f-g). In contrast, correlation was
much weaker among abundances of TCRβs shared across individuals (Figure 1h,
S3d), again highlighting the individuality of each repertoire. We found that the proportion

of shared TCRβs (Jaccard index) tended to decrease with longer time intervals passed

between samples, although with a notable reversion in Individual 02 (Figure S4). We

observed stable diversity (Figure 1i, S3e), clonality (Figure 1j, S3f), and V and J usage

(Figure S5, S6; Table S2, S3) within individuals over time.

In the absence of experimental intervention, we observed complex clonal dynamics in

many TCRβs, including cohorts of TCRβs with closely correlated expansion patterns

(Figure S7). To avoid artifacts from undersampling, we looked for such cohorts of

correlating receptors only in high-abundance TCRβs (see Methods). In all individuals,
many high-abundance TCRβs appeared together only at a single time point. We also

found cohorts of high-abundance TCRβs that correlated across time points (Figure S7).
Some of these cohorts included TCRβs that fell across a range of abundances (Figure
S7a-b), while other cohorts were made up of TCRβs with nearly identical abundances
(Figure S7c). Correlating TCRβs were not obviously sequencing artifacts (Table S4,
Methods). These cohorts of closely correlated TCRβs indicate that even in healthy
individuals whose overall TCR repertoire appears stable, underlying dynamics remain.
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Taken together, these results revealed a diverse system, which nevertheless displayed

consistent, unifying features differentiating individuals, plus longitudinal dynamics that

suggested continual immune processes.

A persistent TCRβ repertoire contains elevated proportions of clonal, highly public

TCRβs

During our analysis, we discovered a subset of TCRβs that was present across all eight

PBMC samples from a single individual, a subset we called "persistent" TCRβs (Figure
2a). While approximately 90% of unique TCRβs observed over all of an individual's

PBMC samples occurred in only one sample, 0.3-0.8% of TCRβs occurred at all eight

time points (Figure 2a). When considering individual samples, this pattern translated to

1-5% of TCRβs observed in each sample were persistent receptors (Table S5). When

we considered only high-abundance TCRβs, the frequency of persistent TCRβ

increased substantially (Figure S8a).

We hypothesized that these persistent TCRβs might be selected for and maintained by

the immune system, perhaps to respond to continual antigen exposures or other chronic

immunological needs.

In our data, we found multiple signatures of immunological selection acting on persistent

TCRβs. The members of this persistent subset tended to have a higher mean

abundance than TCRβs observed at fewer time points (Figure 2b, Table S6). We also

observed that the number of unique nucleotide sequences encoding each TCRβ's

CDR3 amino acid sequence was generally higher for persistent TCRβs (Figure 2c,
Table S7). This pattern of greater nucleotide redundancy varied across individuals and
region of the CDR3 sequence (Figure S9a), but TCRβs with the highest nucleotide
redundancy were reliably persistent (Figure S9b). Furthermore, we discovered that
TCRβs occurring at more time points, including persistent TCRβs, shared larger

proportions of TCRβs also associated with memory T cells (Figure 2d). Remarkably,
98% of persistent TCRβs also occurred in memory T cells, suggesting that almost all

persistent T cell clones had previously encountered and responded to their

corresponding antigens. We found a similar pattern in naive T cells, although the overall
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overlap was lower (50%), indicating that persistent TCRβs were also enriched in the

naive compartment (Figure 2e). Persistent TCRβs did not show altered CDR3 lengths

or VJ usage (Figure S10-S12). Like alpha diversity and clonality, the cumulative
abundance of TCRβs present in different numbers of samples appeared stable over

time and specific to individuals (Figure 2f). Surprisingly, although persistent TCRβs
constituted less than 1% of all unique TCRβs, they accounted for 10- 35% of the total

abundance of TCRβs in any given sample (Figure 2f), further evidence that these T cell

clones had expanded. We observed similar patterns when analyzing only high-

abundance TCRβs (Figure S8).

Taken together, these characteristics – persistence across time, higher abundance,

redundant nucleotide sequences, and overlap with memory T cells – suggest

immunological selection for persistent TCRβs. We therefore investigated whether

persistent TCRβs coexisted with TCRβs having very similar amino acid sequences.

Previous studies have suggested that TCRβs with similar sequences likely respond to

the same or similar antigens, and such coexistence may be evidence of immunological

selection [25,26].

To explore this idea, we applied a network clustering algorithm based on Levenshtein

edit distance between TCRβ CDR3 amino acid sequences in our data [25-27]. We

represented antigen-specificity as a network graph of unique TCRβs, in which each

edge connected a pair of TCRβs with putative shared specificity. We found that TCRβs

having few edges-and thus few other TCRβs with putative shared antigen

specificity-tended to occur in only one sample, while TCRβs with more edges included a

higher frequency of TCRβs occurring in more than one sample (Figure 3a, p < 10-5 for
all three individuals by a nonparametric permutation test). This pattern indicates that

TCRβs occurring with other, similar TCRβs were more often maintained across time in

the peripheral immune system.

We next examined the association between persistent TCRβs-those shared across time

points – and "public" TCRβs – those shared across people. Public TCRs show many of

the same signatures of immunological selection as persistent TCRβs, including higher

73



abundance [28], overlap with memory T cells [28], and coexistence with TCRs with

similar sequence similarity [25]. To identify public TCRβs, we compared our data with a

similarly generated TCRβ dataset from a large cohort of 778 healthy individuals [21]

(Additional File 2). We found that the most-shared (i.e., most-public) TCRβs from this

large cohort had a larger proportion of persistent TCRβs from our three sampled

individuals (Figure 4a-b, Table S8, p < 10-5 for all three individuals by a nonparametric
permutation test). Private TCRβs – those occurring in few individuals – most often

occurred at only a single time point in our analyses. Interestingly, TCRβs that occurred

at many but not all time points (i.e., 3-5 time points) were on average the most-shared

(Figure S14a), but persistent TCRβs were specifically enriched in highly public
TCRβs-here defined as those shared by over 70% of subjects in the large cohort

(Figure 4c, S14b). The three most public TCRs (found in over 90% of the 778-individual

cohort) were found to be in the persistent TCRβ repertoires of all three individuals and

were diverse in structure (Figure 4d).

Public TCRs are thought to be products of genetic and biochemical biases in T cell

receptor recombination [29,30] and also of convergent selection for TCRs that respond

to frequently encountered antigens [21,32]. To better understand the effects of biases

during TCRβ recombination on receptor persistence, we used IGoR to estimate the

probability that each TCRβ was generated before immune selection [33]. Similar to

previous studies [30], the probability that a given TCRβ was generated correlated

closely with publicness (Figure S15a). In our time series data, TCRβs that occurred at
multiple time points tended to have slightly higher generation probabilities than TCRβs

only observed once (Figure S15b), but persistent TCRβs did not have higher
generation probabilities than other receptors observed in more than one time point. In

addition, more abundant TCRβs (both persistent and nonpersistent) did not have higher

generation probabilities (Figure S15c-d). These results suggest that, unlike public
receptors, persistent receptors and their abundances do not appear to result from

biases in TCR recombination. The contradiction that public and persistent receptors are

associated but only public TCRβs appear to be generated by recombination bias is

possible because despite their association, these two TCRβ subsets are largely

independent. Although the most public receptors are overwhelmingly persistent (Figure
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4), they represent a tiny fraction of the persistent receptors in each individual. Thus,
although these two subsets of the TCR repertoire-persistent and public-overlap and

share many characteristics, they are also distinct, suggesting that they may play

complementary roles in adaptive immunity.

Discussion

Our analyses revealed both fluctuation and stability in the TCRβ repertoire of healthy

individuals, providing a baseline framework for interpreting changes in the TCR

repertoire. We identified a number of consistent repertoire characteristics (e.g., diversity,

clonality), which are known to be affected by immunizations, clinical interventions, and

changes in health status [7,14,34]. These patterns differed among individuals across

time, highlighting the role played by genetics [like human leukocyte antigen (HLA) type]

and history of antigen exposure in shaping the TCR repertoire. We did not obtain

HLA-type information from these three subjects, so the relative contributions of HLA

type versus individual history remains unknown.

We further discovered a subset of persistent TCRβs that bore signs of immune

selection. Persistent TCRβs tended to be more abundant than nonpersistent receptors,

although this distinction is to a certain extent confounded by the fact that

high-abundance receptors are also more likely to be detected in a given sample.

Nevertheless, this circular logic does not detract from the immune system's

maintenance of specific dominant TCRβs across time. We further found that persistent

TCRβs had higher numbers of distinct nucleotide sequences encoding each TCRβ.

TCR diversity is generated by somatic DNA recombination, so it is possible for the same

TCR amino acid sequence to be generated from independent recombinations in

different T cell clonal lineages. Thus, coexistence of multiple clonal lineages encoding

the same TCRβ amino acid sequence may reflect selective pressures to maintain that

TCRβ and its antigen specificity. Similarly, the presence of many TCRβs similar to

persistent TCRβs – as identified by our network analysis – could also result from

selection for receptors that recognize a set of related antigens [20,36]. Previous studies

using network analyses also found that public TCRβs tend to occur with similar TCRβs
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[25], further suggesting that both public and persistent TCRβs are key drivers of lasting

immunity. In addition to using TCR sequencing to track TCRβs that proliferate in

response to intervention, we propose that the three dimensions explored in this paper –

similarity with other receptors, publicness across individuals, and persistence through

time – represent useful strategies for identifying biologically important TCRβs.

The presence of near-ubiquitous (present in >90% of individuals in a cohort of 778

individuals) and persistent TCRβs led us to speculate that these TCRβs might be

responding to a set of common antigens repeatedly encountered by healthy people.

These antigens could be associated with self-antigens, chronic infections (e.g.,

Epstein-Barr virus), or possibly members of the human microbiota. In fact, the CDR3

sequence CASSPQETQYF has been previously been associated with the inflammatory

skin disease psoriasis [37] and CASSLEETQYF has been implicated in responses to

Mycobacterium tuberculosis [20] and cytomegalovirus [38].

In addition to persistent TCRβs, our analysis revealed many receptors with unstable,

transient behavior. Many high-abundance TCRβs did not persist through time, with

many occurring at only a single time point (Figure 2b, S8a). These TCRβs could well
correspond to T cells that expanded during a temporary immune challenge but then did

not persist in high abundance afterward. These dynamics might also reflect the

migration of T cells to and from different tissues, which could manifest as fluctuating

abundance in the blood. The presence of dynamically expanding or migrating TCRβs in

apparently healthy individuals poses an important consideration for designing studies

monitoring the immune system. Studies tracking TCR abundances in cross-sectional

immune system sampling [7,14,34-36] may capture not only T cell clones responding to

intervention, but also expanding clones inherent in the T cell dynamics of healthy

individuals. Repeated sampling before and after intervention could minimize such false

positives.

Current immunosequencing methods have limitations that should inform the

interpretation of our results. Most important, given such a diverse system as the TCR

repertoire, even large sequencing efforts like ours undersample. Although our
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sequencing appeared to saturate our samples (Figure S2), additional bottlenecks
during library preparation and, particularly, blood drawing limit our ability to capture full

TCRβ diversity. Previous studies exhaustively sequenced multiple libraries from multiple

blood samples, but even these estimates are considered a lower limit of TCRβ diversity

[42]. This detection limit could confound our identification of persistent TCRβs. Many of

the TCRβs that did not occur in all samples were undoubtedly present but too rare for

our analysis to capture. Thus, identification of a persistent TCR repertoire was subject

to an abundance cutoff, whereby we focused on TCRs that persisted above the

detection limit of sampling. To check that our conclusions were not heavily altered by

undersampling, we analyzed high-abundance TCRβs and found similar overall patterns,

so we infer that our main conclusions are likely robust despite this experimental

limitation. In addition, our study included data from only three female individuals ages

18-45. The immune system varies across sex [43] and age [44], and although the

patterns we describe are clear, larger longitudinal studies on the immune repertoire with

greater patient characterization (particularly HLA type) and representation (e.g.,

including men and a range of ages) will better define how these patterns apply across

populations.

Conclusions

To better understand healthy immune system dynamics in humans, we profiled the

TCRβ repertoires from three individuals over one year. We found a system

characterized by both fluctuation and stability and further discovered a novel subset of

the TCRβ repertoire that might play a key role in immunity. As immune profiling in

clinical trials becomes more prevalent, we hope our results will provide much-needed

context for interpreting immunosequencing data, as well as for informing future trial

designs.

Methods

Study design
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We sought to study baseline dynamics and characteristics of the TCRβ repertoire in

healthy individuals across time. We sampled blood from three individuals from eight

time points over one year. We kept our sample size small so that we could perform

extremely deep immune repertoire profiling on each sample, a choice that should be

taken into consideration when interpreting our results.

Sample collection

Three healthy adult female volunteers ages 18-45 provided blood samples over the

course of one year, with samples taken on a starting date and 1, 2, 3, 5, 6, 7, and 12

months after that date (Figure 1a). We sequenced TCRβ chains from approximately 1

million PBMCs from each sample. From the samples at 5, 6, and 7 months, we also

sequenced TCRβ chains from sorted naive (CD3+, CD45RA+) and memory (CD3+,

CD45RO+) T cells.

High-throughput TCR sequencing

We extracted genomic DNA from cell samples using a Qiagen DNeasy blood extraction

kit (Qiagen, Gaithersburg, MD, USA). We sequenced CDR3 regions of rearranged

TCRβ genes and defined these regions according to the international immunogenetics

information system (IMGT) [45].We amplified and sequenced TCRβ CDR3 regions

using previously described protocols [2,46]. Briefly, we applied a multiplexed PCR

method, using a mixture of 60 forward primers specific to TCR Vβ gene segments plus

13 reverse primers specific to TCR Jβ gene segments. We sequenced 87 base-pair

reads on an Illumina HiSeq System and processed raw sequence data to remove errors

in the primary sequence of each read. To collapse the TCRβ data into unique

sequences, we used a nearest-neighbor algorithm-merging closely related

sequences-which removed PCR and sequencing errors. By sequencing genomic DNA

and not RNA, our approach more accurately reflected T cell abundances but also

captured both expressed and unexpressed T cell receptors [19].

Data analysis
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In our analyses, we focused on TCRβs containing no stop codons and mapping

successfully to a V gene and J gene (Table S1). Relative abundances of these
"productive" TCRβ sequences, however, took into account the abundances of

nonproductive TCRβ sequences, as these sequences were still part of the greater

TCRβ pool. We defined a TCRβ as a unique combination of V gene, J gene, and CDR3

amino acid sequence. We examined nucleotide redundancy of each TCRβ by counting

the number of T cell clones—a unique combination of V gene, J gene, and CDR3

nucleotide sequence— encoding each TCRβ. We defined TCRβs whose abundances

ranked in the top 1% for each sample as high-abundance TCRβs, and we analyzed

these TCRβs in parallel with the full TCRβ repertoire as a check for artifacts of

undersampling (Figure S5, S8).

We calculated Spearman's and Pearson's correlation coefficients for TCRβ abundances

across samples using the Python package SciPy, considering only TCRβs that were

shared among samples. We calculated alpha diversity (Shannon estimate = e(Shannon

entropy)) and clonality (1 - Pielou's evenness) using the Python package Scikit-bio 0.5.1.

We calculated Levenshtein distance using the Python package Python-Levenshtein

0.12.0 and analyzed the resulting network using the Python package NetworkX 1.9.1.

To look for TCRβs with similar temporal dynamics, we focused on TCRβs that occurred

in the top 1% at least twice. These TCRβs likely represented T cell clones that had

expanded. We then calculated Spearman's and Pearson's correlation coefficients for all

high-abundance TCRβ pairs, filling in missing data with the median abundance of

TCRβs from each sample. We used median abundance – instead of a pseudocount of 1

or half the minimum abundance detected – because the immense diversity of the TCRβ

repertoire means that most detected TCRβs are likely similarly abundant as TCRβs that

were not detected. We identified pairs of TCRβs that had high (>0.95) correlation. To

identify cohorts of TCRβs that co-correlated, we represented TCRβs as nodes in a

network, where nodes were connected by edges if the corresponding TCRβs were

highly correlated. We then searched for the maximal network clique (a set of nodes

where each node has an edge to all other nodes) using NetworkX. We visually

inspected these TCRβ cohorts for evidence of sequencing error, which might have

79



resulted in a high-abundance TCRβ that closely correlated with many low-abundance

TCRβs with similar sequences (Table S4). To test the significance of TCRβ cohort size,
we performed the same analysis on 1000 shuffled datasets. Each shuffled dataset

randomly permuted sample labels (i.e., the sampling date) for each TCRβ within each

individual.

To test the significance of persistent TCRβ enrichment in (a) public receptors (Figure 4)
and (b) TCRβs that occurred with many similar receptors (Figure 3), we analyzed
10,000 shuffled datasets. For these permutations, we randomly permuted the number of

time points at which each TCRβ was observed and repeated the analysis.

We estimated the probability of generation of each TCRβ before immune selection

using IGoR version 1.1.0 with the provided model parameters for the human TCRβ

locus [33].
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Figure 1. The TCRs repertoire displayed stability and individual-specific characteristics
across time. (a) Experimental design of T cell sampling. (b) A heatmap of Jaccard
indexes shows clear clustering of samples by individual. Samples of naive T cells
clustered less by individual than did PBMC or memory T cell samples. Relative
abundances of the 20 most abundant TCRβs (c) appeared stable through time. TCRβ
abundances in PBMCs correlated within an individual across time points, including
across a month (d, shared TCRβs = 33601, Spearman rho = 0.55718, p < 10-6), and a
year (e, shared TCRβs = 25933, Spearman rho = 0.53810, p < 10-6), as well as across a
month in naive (f, shared TCRβs = 15873, Spearman rho = 0.37892, p < 10-6) and
memory T cells (g, shared TCRβs = 47866, Spearman rho = 0.64934, p < 10-6). TCRβs
correlated much less across individuals (h, shared TCRβs = 5014, Spearman rho =
0.28554, p < 10-6). Shannon alpha diversity estimate (i) and clonality (defined as 1 -
Pielou's evenness, j) of the TCRβ repertoire were consistent over time.
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Figure 2. A subset of the TCRβ repertoire occurred across all time points-the persistent
TCRβ repertoire. (a) The number of TCRβs observed at n time points. Persistent
TCRβs tended to have (b) greater abundance (Mann-Whitney U test,
statistic=26297052589.5, p < 10-308) and (c) nucleotide sequence redundancy
(Mann-Whitney U test, statistic=25851211348.0, p <10-308) than other receptors.
Mann-Whitney U tests between groups are in Tables S6, S7. Persistent TCRβs had
higher proportions of TCRβs in common with memory (d) and with naive (e) T cell
populations and constituted a stable and significant fraction of overall TCRβ abundance
across time (f).
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Figure 3. Persistent TCRβs were more functionally redundant. We created a network
graph of TCRβs from each individual, drawing edges between TCRβs on the basis of
sequence similarity (Levenshtein distances), which reflects antigen specificity. We then
grouped TCRβs into decile bins based on the number of neighbors (similar TCRβs) of
each TCRβ. In other words, TCRβs in the 0-10% bin had 0% to 10% of the maximum
number of neighbors observed for any TCRβ – the fewest neighbors – while those in the
90-100% bin had near the maximum number of neighbors observed. For each decile
bin, we then counted how many samples each TCRβ occurred in from our time series
data. (a) Vertical histograms of these distributions indicate that TCRβs with few
neighbors -and thus few similar observed TCRβs-tended to occur at only a single time
point, while TCRβs with more neighbors-and thus higher numbers of similar TCRβs
observed-tended to have a higher proportion of persistent TCRβs. (b) The number of
TCRβs in each neighbor bin (Figure S13a).
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Figure 4. Persistent TCRβs were enriched in highly public TCRβs. We identified public
TCRs occurring in 0-10%, 0-20%,. .. 90-100% of individuals in an independent, large
cohort of similarly profiled subjects (N = 778). For each of these decile bins, we
examined TCRβs shared across each of our three individuals' time series data and
tallied the number of time points at which we observed each TCRβ. (a) Vertical
histograms of these distributions indicate that more- private TCRβs-TCRβs shared by
few people-occurred most often at only a single time point, while more-public TCRβs
tended to persist across time. (b) The number of TCRβs evaluated in each decile bin.
The vast majority of receptors were not shared or were shared across few individuals
(also see Figure S13b). (c) In all three individuals in this study, persistent TCRβs
included greater numbers of highly public TCRβs-defined here as receptors shared by
over 70% of subjects from the large cohort-than receptors that only occurred once
(independent t-test, statistic=-4.508, p=0.01). Asterisks indicate p < 0.05. (d) The three
most public TCRβs (in over 90% of 778 individuals) were also persistent in all three
individuals.
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Figure S1. Representative frequency rank plots for memory T cells, naive T cells, and
all T cells from PBMCs from Individual 01. As expected, naive T cells had fewer
abundant clones than PBMC or memory T cells. In all cases, the majority of TCRβs had
abundances around 10-6.
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Figure S2. Rarefaction curves for each subject indicate that sample libraries were
sequenced well past saturation.
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Figure S3. Analyses examining only high-abundance TCRβs agree with results from
full- repertoire analysis, suggesting that undersampling likely did not confound our
results. (a) A heatmap of Jaccard indexes shows similar clustering of PBMC and
memory T cell samples by individual and less clustering of naive T cell samples.
Abundances of high-abundance TCRβs in PBMC samples correlated within an
individual (individual 01) across time points, including across a month (b, shared TCRβ
= 2057, Spearman rho = 0.66902, p < 10-6) and a year (c, shared TCRβs = 1390,
Spearman rho = 0.59251, p < 10-6). High-abundance TCRβs did not appear to correlate
across individuals, largely because of lack of shared TCRβs (d, shared TCRβs = 7,
Spearman rho = 0.14286, p = 0.75995). Shannon alpha diversity estimate (e) and
clonality (defined as 1 - Pielou's evenness, f) of the TCRβ repertoire were consistent
over time.

Figure S4. TCRβ repertoire overlap (Jaccard index) often decreases with increasing
time between samples, except in Individual 02, where the final time point at one year
past the first sample shared more TCRβs with the previous samples. Different colors
depict changes over time relative to each sample. For example, the blue line depicts
overlap between each sample after the first sample and the first sample, while the green
line depicts overlap between each sample after the second sample and the second
sample.
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Figure S5. V gene usage across time and cell compartment in all three individuals.
Each of nine plots represents each cell type in each individual. Within each plot,
different colors represent different V genes, and each dot represents a comparison of
the abundances of that V gene from one sample to another. Points that fall near a 1:1
ratio (indicated by the dotted line) are nearly identical in abundance between the two
samples considered. These plots indicate that VJ gene usage was generally the same
across time points, particularly in total and memory T cells. In naive cells, VJ gene
usage varied more.
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Figure S6. J gene usage across time and cell compartment in all three individuals. Plots
are as in Figure S5, with similar findings.

95



Figure S7. Cohorts of TCRβs exhibit correlated dynamics over time. We found large
cohorts of correlating TCRβs by Spearman (a) and Pearson (b) correlation. Although
these TCRβs spanned a range of abundances, we did not observe any clear signs of
correlation caused by sequencing or library preparation errors (Table S2). We also
found smaller cohorts (c) of TCRβs with nearly identical abundances whose dynamics
also correlated through time. The number of TCRβs found in all cohorts was significant
(p < 0.001) in a random permutation test (see Methods). These TCRβ cohorts might be
an artifact of sampling noise, or they may represent receptors involved in the same
immune response.
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Figure S8. Persistent high-abundance TCRβs exhibit similar patterns as overall
persistent TCRβs. (a) High-abundance TCRβs had a greater prevalence of persistent
TCRβs, although the exact values varied across individuals. Persistent high-abundance
TCRβs also showed greater mean abundance (b) and nucleotide redundancy (c).
Persistent high-abundance TCRβs also had higher proportions of TCRβs in common
with memory (d) and naive (e) T cell populations and constituted a stable and significant
fraction of overall TCRβ abundance across time (f).
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Figure S9. Nucleotide redundancy across individuals and with more stringent
assignment of CDR3 sequence (figure supplements Figure 2c). (a) Each plot represents
nucleotide redundancy for TCRβs that were observed in n samples. Rows represent
plots for each individual. The left- most column of plots comprises data from full CDR3
nucleotide sequences as identified by IMGT (as in Figure 2c): we observed that the
pattern of increasing nucleotide redundancy in persistent TCRβs was not consistent
across individuals. Each of the following columns plot data from CDR3 nucleotide
sequences that were progressively trimmed on each end by 3, 6, 9, and 12 nucleotides.
We trimmed these sequences because CDR3 sequences identified by IMGT generally
capture a number of amino acids – usually one to four at each end of the sequence –
that are derived from V and J genes. Nucleotide mutations in these leading and trailing
ends are thus less likely to be of biological origin and more likely to be from sequencing
error, since we do not expect nucleotides from the V or J genes to be altered during
TCR recombination (except for deletions). From these plots, we can observe that
nucleotide redundancy is generally stable over different lengths of trimming, suggesting
that our data are not skewed by these potential sequencing errors. (b) To further
examine the relationship between persistence and nucleotide redundancy, we grouped
TCRβs into 10 bins according to nucleotide redundancy. Because nucleotide
redundancy is extremely skewed-the vast majority of TCRβs are encoded by a single
clonotype-we created these bins on a logarithmic scale: the first bin includes TCRβs
with nucleotide redundancy values up to 1.6% of the maximum value for each
individual; the second between 1.6% and 2.5% of the maximum value; and up to the
10th bin, which includes TCRβs with nucleotide redundancy values between 64% and
100% of the maximum value. For each of these TCRβ bins, we then plotted a histogram
of the frequency of TCRβs that were observed at n time points. We observe a clear
pattern across individuals and trimming lengths: TCRβs with greater nucleotide
redundancy tend to occur at more time points, and the most redundant TCRβs are
exclusively persistent receptors.
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Figure S10. The persistent TCR repertoire exhibited little alteration of CDR3 lengths.

Figure S11. The persistent TCRβ repertoire does not exhibit altered V gene usage.
These plots show V gene usage in TCRβs that occurred only once (x-axis) versus in
persistent TCRβs (y axis). Each data point represents a single V gene. These values
were closely correlated.
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Figure S12. The persistent TCRβ repertoire does not exhibit altered J gene usage.
Similar plots as in Figure S10 indicate that J gene usage is not greatly changed in
persistent TCRβs.
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Figure S13. Distributions of the number of neighbors and degree of sharing across
people for all TCRβs and high-abundance TCRβs. Each plot is a distribution of all
TCRβs from PBMC samples for each individual (a, c) or only high-abundance TCRβs
(b, d). Plots (a) and (b) show the number of neighbors in a network based on
Levenshtein distance and plots (c) and (d) show the number of subjects sharing a given
receptor in a large, independent, and similarly profiled cohort.
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Figure S14. Persistent TCRβs were rich in highly public TCRβs. (a) Over all TCRβs,
receptors that occurred at an intermediate number of time points were on average
most-shared across people, but these distributions are heavily skewed toward private
receptors. (b) We focused on TCRβs that were shared by at least a certain percentage
of individuals in the large (N = 778) cohort. We found that less public TCRβs were
generally observed at few time points, while highly public TCRβs were predominantly
observed at all time eight points. These results were even more striking given that we
observed ~100-1000-fold more TCRβs occurring at a single time point than at all time
points.
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Figure S15. Persistent and public receptors may result in part from TCR recombination
biases. (a) As in previous studies, the probability that a given TCRβ was generated
correlated closely with publicness in a cohort of 778 individuals. For each individual,
only TCRβs occurring in both that individual and the cohort were considered. (number of
TCRβs evaluated in individual 01 = 638091, Spearman rho = 0.51111, p < 10-6; number
of TCRβs evaluated in individual 02 = 338617, Spearman rho = 0.52231, p < 10-6;
number of TCRβs evaluated in individual 03 = 284990, Spearman rho = 0.51129, p <
10-6). (b) TCRβs occurring at more time points tended to have higher generation
probabilities, although persistent TCRβs did not have higher generation probabilities
than other receptors observed at multiple time points. Letters indicate significant
differences from all other groups by a Mann-Whitney U test (p < 0.001), while dagger (†)
indicates groups that were not significantly different from multiple other groups. (c)
Mean abundance of all TCRβs correlated significantly with generation probability but
with a low correlation coefficient (individual 01: Spearman rho = 0.07884, p < 10-6;
individual 02: Spearman rho = 0.05300, p < 10-6; individual 03: Spearman rho =
0.08208, p < 10-6). (d) Mean abundance of persistent TCRβs did not correlate with
generation probability (persistent TCRβs: number of TCRβs evaluated in individual 01 =
3448, Spearman rho=-0.08988, p < 10-6; number of TCRβs evaluated in individual 02 =
1978, Spearman rho = -0.04341, p = 0.0537; number of TCRβs evaluated in individual
03 = 2965, Spearman rho = 0.04552, p = 0.01318).

Table S1 (available online). Overall TCRβ-sequencing statistics per sample:
sequencing depth, productive TCRβ sequencing depth, fraction of productive TCRβ
sequences, unique V genes identified, unique J genes identified, unique CDR3
sequences, unique TCRβs, unique TCRβ nucleotide sequences.

Table S2 (available online). V gene usage across subject and T cell population,
expressed as both a fraction of all unique productive TCRβs and as a mean total
abundance per sample.
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Table S3 (available online). J gene usage across subject and T cell population,
expressed as both a fraction of all unique productive TCRβs and as a mean total
abundance per sample.

Table S4 (available online). Sequence and abundance information for the largest
cohort of closely correlated TCRβs identified in eacxh individual by Spearman's or
Pearson's correlation.

Table S5 (available online). The fraction of TCRβs in each sample that occurred in 1-8
samples from that subject's time series.

Table S6 (available online). Mann-Whitney U test statistics for mean abundance of
TCRβs occurring in different numbers of samples during the time series.

Table S7 (available online). Mann-Whitney U test statistics for nucleotide redundancy
of TCRβs occurring in different numbers of samples during the time series.

Table S8 (available online). The fraction of TCRβs in each sample that were shared to
different degrees among subjects in a large, independent cohort.

Additional File 1 (available online). Count, frequency, V, J, and CDR3 amino acid
sequence data for high abundance TCRβs in each sample. This is a tab-delimited,
gzip-compressed file. The column "tcr" corresponds to a label that identifies a unique
combination of CDR3 amino acid sequence, V gene, and J gene observed in this study.
The column "count (templates/reads)" represents the counts of a given receptor's DNA
sequence in the sequencing data. The column "frequencyCount (%)" is the relative
abundance of that TCR within each sample, accounting for productive and
nonproductive receptors. The columns "vGeneName" and "jGeneName” are the IMGT
assigned V and J genes. The column "aminoAcid" is the CDR3 amino acid sequence.

Additional File 2 (available online). Data for persistence across our time series and
sharing across subjects in an independent, large cohort for TCRβs in this study. The
columns "aminoAcid", 'vGeneName", "jGeneName", and "tcr" are the same as for
Additional File 1. The column "n-cmv-public" is the number of subjects (out of 778) that
shared that TCRβ. The columns "numocc_sublpbmc", "numoccsub2_pbmc", and
"num_occ sub3_pbmc" are the number of time points at which a given receptor was
observed in the PBMC samples for Individual 01, 02, and 03, respectively.
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Conclusion

The common thread through the three results chapters in this thesis is that they

demonstrate the value of greater sampling to achieve finer resolution of study

observations and to discover hidden heterogeneity. We showed this as applied to both

longitudinal and cross-sectional studies. Here I will reflect on the potential significance

of our results and discuss some limitations and potential extensions for our work.

Chapter 1

In chapter 1, we reported the longitudinal tracking of gut microbiomes of a small cohort

of travelers over a long period with frequent sampling. With this kind of study it is hard to

standardize the conditions in which we would like to study subjects since there are

many variables at play, such as duration of stay, regional destination, and behavioural

differences while abroad. Short of planning subjects’ travel for them (and what kind of

research budget would allow that), the best we can do is to be transparent with

intra-study variability and potential confounders.

The tradeoff we took in our study for participants who were compliant over time and

trained in self-sampling was that there were few of them who fit this bill, which in some

ways is the opposite tradeoff of most travel studies in the literature (Cheung et al. 2023;

D’Souza et al. 2021; Kampmann et al. 2021). This carries implications for how our

results should be interpreted, and to what extent we can reasonably expect results to

generalize.

Some of our results, particularly those involving more minor observed changes or

inconsistency among even our small cohort, are less likely to hold water upon more

rigorous validation. We reported these to be thorough with our analysis. On the other

hand, several of our findings appear to corroborate each other, chiefly our recurring

observation of the lack of destination-specific effects and local microbial uptake. These

present interesting leads to pursue for future work aiming to expand and solidify our

understanding of travel and the microbiome.
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There are a few natural follow-up directions for our work. The most obvious (but at the

same time very challenging) is to expand the cohort size, perhaps by following a group

of travelers at once, which may also better ensure uniformity in travel duration, origin,

and destination (with the tradeoff of less “independent” observations if travelers travel

together and possibly less generalizable). As well, since we employed amplicon

sequencing for our samples, which is more economical but provides less rich

information, another next step could be to instead use shotgun metagenomic

sequencing, which can not only identify which bacteria are in a sample, but also give

readouts on bacterial genome content (and thus inferred functional capacity, including

antimicrobial resistance). The resulting higher-dimensional data would be interesting but

also a greater task to analyze.

Chapter 2

The results we presented in chapter 2 constitute a slice of all preliminary analyses to

accompany the introduction of this immense resource. Limitations to our results from

the analysis side chiefly stem from our reliance on existing databases comprising

already-identified systems, and making assumptions about how they extrapolate. From

the wet lab side, the questions of donor diversity and how representative they are of

global microbiome diversity are pertinent.

The potential follow-ups are endless, both computational and experimental (since this

resource comprises not only a rich dataset but also a physical strain library). Our aim is

to encourage further exploration, leveraging our resource.

Chapter 3

Many of the study design limitations and extensions for chapter 3 mirror those for

chapter 1, as both are longitudinal profiles of small subject cohorts. I will elaborate on

some points of discussion specific to chapter 3.

First, while the TCRβ CDR3 is a good choice for single-locus profiling when studying

TCR repertoires, it is not the sole determinant of antigen specificity. This is true on a few

levels. Within the TCRβ chain, there is more to the V region than just the CDR3, and it
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is possible that our choice of sequencing bounds was conservative. The TCRβ chain is

also one half of a two-chain complex with the TCRα chain, which also contacts

MHC-antigen. Beyond this, while α/β T cells are a good choice to prioritize when

profiling TCR repertoires, they do not comprise the entirety of the T cell population in

the body. To tie things back in with the gut microbiome, γ/δ T cells, for example, while a

minority of all T cells, are known to be highly involved in the gut-associated lymphoid

tissue (Wu et al. 2023). Thus, expanding the sequencing target, for example by

capturing the whole V region, or capturing paired α/β chain information (such as by

single-cell protocols which now exist) (Redmond, Poran, and Elemento 2016), or even

capturing more T cell types, could provide additional layers of information beyond what

we had in our study.

There may also be value in further separating by cell sublineage, whether physically by

sorting using T cell surface markers, or computationally by examining gene expression.

It could also be interesting to sample not only blood, but different peripheral tissues,

where certain T cells may localize. This could provide a more in-depth picture of

immune activity of these different cell types.

Finally, our design was to sample (up to) monthly over a period of one year, which is

likely relevant for certain known patterns within the immune system, such as seasonal

exposures. There may, however, be finer-scale dynamics, such as on daily timescales,

that average out in our data. Increasing sampling frequency (again, mirroring what we

did in chapter 1) would capture these finer-grained processes. It may also be interesting

to time the onset of sampling with the onset of an anticipated immune response. Most

recently, this has been employed in time course studies of repertoires in immune

responses to COVID-19 (Kotagiri et al. 2022).
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