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Abstract

Solid-state dewetting is the process by which micro– and nano–scale films, wires, and
other fabricated structures on a substrate evolve toward geometries which reduce the
overall surface free energy of the system. This process, also sometimes referred to
as agglomeration, occurs at elevated temperatures and is mediated by surface self-
diffusion. Regardless of initial conditions, dewetting eventually leads to the formation
of one or more particles whose morphology is determined by the orientational depen-
dence of the constituent material’s surface free energy density.

Subtle differences in initial conditions can determine whether a system dewets
into a single particle or many and whether this evolution occurs over the course of
minutes, hours, days, or years. Furthermore, the intermediate stages of dewetting
behavior can exhibit profound complexity, and many materials systems are prone
to a host of morphological instabilities. Although decades of research have steadily
increased the extent of our knowledge about solid-state dewetting, a generalizable,
predictive understanding of dewetting behavior has remained elusive, in large part
because of the difficulty of modeling systems with strong crystalline anisotropy.

The work in this thesis focuses on advancing our understanding of the dewet-
ting behavior of single-crystal materials and consists chiefly of two parallel thrusts:
the development of a powerful new method for simulating solid-state dewetting and
the use of lithographic patterning to experimentally study dewetting in systems with
precisely controlled geometries. We apply these two synergistic approaches to under-
standing the morphological stability of ruthenium nanowires, the effects of ambient
conditions on dewetting nickel (110) films, and the dendritic morphologies which arise
at the corners of holes in dewetting films.

Thesis Supervisor: Carl V. Thompson
Title: Stavros Salapatas Professor of Materials Science and Engineering

Thesis Supervisor: W. Craig Carter
Title: Stavros V. and Matoula S. Salapatas Professor of Materials Science
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Terminology

1. WMC: Weighted mean curvature, also denoted as 𝜅𝛾. The anisotropic analog

of curvature, see chapter 1.2.1 (pg. 30).

2. LSM: Level-set Method(s). An Eularian approach (meaning the surface is

tracked implicitly rather than parameterized explicitly) which models the evo-

lution of a surface by tracking the distance from that surface to other points in

space. See chapter 2 for a detailed discussion.

3. (HR)SEM: (High Resolution) Scanning Electron Microscopy. A relatively non-

destructive characterization tool with resolutions up to nanometer scale. See

chapter 1.9.1 (pg. 47).

4. TEM: Transmission Electron Microscopy. An extremely high resolution charac-

terization technique with more constraints and sample-prep requirements than

SEM. See chapter 1.9.2 (pg. 47).

5. FIB: Focused Ion Beam. A type of microscopy which is often used in sample

preparation and small-batch micro-/nano-fabrication. See chapter 1.9.3 (pg.

48).

6. AFM: Atomic Force Microscopy. A physical characterization technique in which

a vertically oscillating probe is scanned across the surface of a sample to provide

nanometer-scale resolution of surface topography. See chapter 1.10 (pg. 49).

7. (Microscopic) Solvability: An idea originally developed through the study of

solidification. It posits that the steady–state morphologies of dendrite tips

11



are stable attractors in configuration space. Crystalline anisotropy can endow

systems with solvability. See chapter 5 for a detailed discussion and relevant

references.
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Chapter 1

Introduction

Thin crystalline films, and the micro-and-nano-devices which are patterned from

them, are crucial to our modern world. At such length scales measured in nanometers,

surface area to volume ratios are immense, and surface free energy can be a dominant

component of the overall free energy of micro-and-nano-scale systems. As manufac-

tured, most of these devices are far from surface free energy minimizing geometries

and thus experience large driving forces for morphological evolution. At normal oper-

ating temperatures, however, such evolution is sufficiently slow as to be insignificant.

In contrast, at elevated temperatures, the diffusion of surface atoms in many metals

and semiconductors becomes sufficiently rapid to allow for significant morphological

change over the course of minutes or hours. This diffusive flow of surface atoms from

areas of higher surface free energy density to areas of lower surface free energy density

can give rise to shockingly complex behaviors and morphologies. Collectively, these

behaviors are known as solid-state dewetting, in reference to the fact that, for most

systems, such morphological evolution entails decreasing contact, or wetting, between

the film and the substrate.

There is a large body of work exploring, cataloging, and modeling these behav-

iors in different materials systems, motivated by three primary goals: improving our

understanding of basic materials physics, learning how to design more resilient nano-

structures, and designing self-assembly nano-scale patterning techniques to achieve
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Figure 1-1: An illustration of edge retraction, the simplest dewetting phenomenon.
A) shows a section of a semi-infinite film with a straight edge, prior to dewetting. B)
shows a later stage for a film with isotropic materials properties (see section 1.1 for a
discussion of (an)isotropy), while C) shows the intermediate morphology for a model
crystalline film. D) shows the isotropic film from B) after pinch-off has occurred and
edge retraction has started again, see section 1.7.1

sub-lithographic resolution. Much past work has focused on polycrystalline films (see

Refs. [1, 2], for example) because they are cheaper and easier to manufacture, but

the high degree of randomness introduced by grain boundaries means that the degree

of control which can be exerted over such systems is relatively low. By contrast, the

behavior exhibited in single-crystal systems has been shown to be extremely repro-

ducible [3, 4], suggesting that a predictive understanding of such systems is possible.

The most advanced studies of dewetting phenomena have made use of lithographic

patterning of single-crystal films to instantiate specific initial morphologies carefully

designed to probe specific dewetting behaviors [5–8]. Phenomenological models and

heuristics derived from these experiments have demonstrated a great deal of explana-

tory value and can be predictive within the confines of the experimental regimes for

which they were developed. Likewise, computational models, numerical analyses, and

simulations have provided a great deal of qualitative insight into dewetting behaviors,
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but none of these techniques have demonstrated significant predictive power across a

wide range of materials systems and phenomena. From the outset, the goal of this

thesis work was to advance the state of our understanding of dewetting phenomena

from explanatory to predictive and to study interesting new phenomena along the

way. This thesis aims to present the fruits of those labors as cleanly and accessibly

as possible, and the rest of this introduction is dedicated to laying out the science,

mathematics, tools, and techniques necessary to understand subsequent chapters.

1.1 Crystalline Anisotropy

As stated above, the work in this thesis focuses on single-crystal materials, meaning

that, ignoring unavoidable defects, all the atoms in a sample are neatly arranged into

a single, well-defined lattice. The physical properties of single-crystal materials can

be strongly orientationally dependent. Properties with such orientational dependence

are described as anisotropic, and the orientation dependence itself is called anisotropy.

Properties without such dependence are labeled isotropic. For solid-state dewetting,

we are particularly concerned with the anisotropy of surface properties, such as sur-

face free energy and diffusivity. Figure 1-2 illustrates how the orientation of a surface,

relative to the crystalline lattice from which it is cut, can have a dramatic effect on

the atomic structure of that surface. The details of how such structural differences

manifest in surface properties are discussed below. In nature, most crystalline mate-

rials are polycrystalline, being composed of many small crystalline grains which meet

at so-called grain boundaries. Each of these grains is single-crystalline, but may, de-

pending on the growth and processing history of the material, have entirely random

orientations. Surfaces in polycrystalline materials, therefore, have properties which

can vary even along flat surfaces, as illustrated in figure 1-2. Thus, even if one had

perfect knowledge of all the relevant materials properties and physics, without de-

tailed knowledge about the sizes, shapes, and orientations of these grains, one cannot

make detailed predictions about phenomena occurring at length-scales similar to the

sizes of these grains, such as dewetting. Single-crystal materials, in contrast, present
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Figure 1-2: A figure illustrating, in two-dimensions, how cutting a single-crystal ma-
terial along different orientations can yield surfaces with dramatically different struc-
tures. A) A simple square lattice with each gray circle representing an atom. B) A
horizontal cut across crystal yields a simple flat surface. C) Cutting this lattice along
a different line exposes a fundamentally different surface with a stepped structure.

a more controlled system for developing and testing our understanding of dewetting

physics.
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Figure 1-3: Repeating the construction from figure 1-2 for a polycrystalline material.
Atoms belonging to the same grain have the same color, and the surfaces exposed
in both B) and C) contain atoms from multiple grains, giving the surface irregular
structure.

1.2 Diffusion

In general, diffusion is the stochastic motion of a chemical species which results in a

net movement of the species along gradients of chemical potential, such that the flux

of the species 𝐽 is given by

𝐽 = −𝐵∇𝜇, (1.1)
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where 𝐵 encodes information about how responsive the motion of the diffusing species

is to gradients in chemical potential. In general, 𝐵 is tensor-valued, and in certain

contexts and conventions, this tensor is simply called the diffusivity, 𝐷, but in other

contexts, 𝐷 is defined such that 𝐵 is the product of 𝐷 and other material properties

[9]. In ideal systems, in which chemical potential is simply proportional to concentra-

tion, equation 1.1 simply states that the random thermal movements of the particles

will eventually tend to spatially homogenize the concentration over time. More gen-

erally, the chemical potential of a species is the partial derivative of the Gibbs free

energy of the relevant system with respect to the quantity of that species and can

be a function of factors such as concentration and position. Equation 1.1 embodies

the fact that random movements from areas of high chemical potential to areas of

low chemical potential will occur more frequently than those in the reverse direction.

Thus, the free energy of the system will tend to decrease over time, until equilibrium

is reached.

In crystalline systems, these random movements can occur within the bulk ma-

terial if mediated by the presence of grain boundaries, vacancies, or other defects.

These movements can also occur along the surface of the material, where no medi-

ation is necessary. Particularly in single-crystal systems, in which grain boundaries

are absent, diffusion along a material’s surface can be orders of magnitude faster than

volumetric diffusion. Solid-state dewetting tends to occur under such conditions, and

surface diffusion will therefore be the primary focus of the remaining discussion below.

Below, the terms of equation 1.1 are broken down in the context of surface diffusion.

1.2.1 Chemical Potential and Weighted Mean Curvature

For isotropic materials, the chemical potential at the surface is given by [10]

𝜇 = 𝛾𝜅Ω, (1.2)
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where 𝛾 is the surface free energy density of the material, i.e. the excess free energy

associated with a surface of unit area, 𝜅 is the mean curvature of the surface, and Ω is

the molar volume. This equation can be explained in many, fundamentally equivalent

ways, but the following geometric explanation is most useful for the discussion here.

Mean curvature is defined as divergence of a surface’s normal vectors, taken along

that same surface.

Figure 1-4: An illustration giving the intuition for why curvature can be defined as
the divergence of 𝑛̂. Normal vectors are plotted along an oscillating surface with con-
verging vectors (indicating negative curvature) colored orange and diverging vectors
(indicating positive curvature) colored black.

An alternative convention sometimes used in the literature defines mean curvature

as half this quantity, such that it is the arithmetic mean of the two principle curvatures

of a surface, however the convention used here is equivalent to rate at which new

surface is created (or if curvature is negative, the rate at which existing surface is

consumed) as volume is changed by the movement of this surface along it’s normal

direction. Stated more succinctly, though perhaps not entirely rigorously,

𝑑𝐺

𝑑𝑛
=

𝑑𝐺

𝑑𝐴

𝑑𝐴

𝑑𝑉

𝑑𝑉

𝑑𝑛

= 𝛾𝜅Ω
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For crystalline materials, the chemical potential at the surface, and the diffusion

driven by it, is more complicated, as the surface free energy density tends to be

strongly anisotropic. This can be at least intuitively, if not somewhat simplistically,

understood by returning to figure 1-2. In figure 1-2 A), each atom is bonded to its

four nearest neighbors. If we imagine that the surfaces in B) and C) are created

by cutting the lattice along the lines illustrated, we see that both surfaces have a

characteristic number of broken bonds per unit length of surface. Surfaces with

more broken bonds per unite length (or area in three spatial dimensions) tend to

have higher surface free energy densities. In reality, entropic effects complicate this

picture, as does the tendency of surface atoms to locally reconfigure themselves into

surface reconstructions which reduce the number of unsatisfied bonds. At sufficiently

high temperatures, entropic effects can dominate energetic effects and lead 𝛾(𝑛̂) to

become more isotropic, a condition known as thermodynamic roughening. Despite

these additional complexities, counting broken bonds is a useful heuristic and tends

to be at least directionally correct, with low index surfaces (those that leave few

bonds unsatisfied) usually having low surface free energy densities. In any case, the

function which describes the surface free energy density as a function of orientation

is usually denoted as 𝛾(𝑛̂). The orientational dependence of 𝛾 means that our simple

equation for chemical potential (eq. 1.2) is no longer valid. However, we can derive

an anisotropic analog to this equation by following the logic of its derivation. In the

isotropic case, 𝛾𝜅 gives the rate at which surface energy is increased with increasing

volume for a surface with curvature 𝜅. This equation is saying that 𝜇 = 𝜕𝐺
𝜕𝑁

= 𝜕𝐺
𝜕𝑉

𝜕𝑉
𝜕𝑁

.

In this context, 𝜕𝐺
𝜕𝑉

is known as the weighted mean curvature and is commonly denoted

as 𝜅𝛾. For isotropic systems,𝜅𝛾is further separable into 𝜕𝐺
𝜕𝐴

𝜕𝐴
𝜕𝑉

= 𝛾𝜅, but for anisotropic

systems, such a separation is not valid. Instead, 𝜅𝛾is defined as the surface divergence

of the Cahn-Hoffman vector, 𝜉(𝑛̂) [11, 12]. The Cahn-Hoffman vector is defined as the

gradient of the homogeneously extended surface free energy function 𝛾(𝐴𝑛̂) = 𝐴𝛾(𝑛̂),

which gives the total surface free energy, rather than the surface free energy density,

for a surface with normal vector 𝑛̂ and surface area 𝐴. This construction is illustrated,

in two dimensions, in figure 1-5. In the same way that the divergence of the normal
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Figure 1-5: Figure 2: From left to right, top to bottom: a) Start with surface energy
function 𝛾 (𝑛̂) shown as a polar plot, b) this can also be represented as a scalar function
on the unit circle, c) extend this function over all of space such that 𝛾 (𝐴𝑛̂) = 𝐴𝛾 (𝑛̂),
d) plotting isocontours of this function makes it easier to see where 𝛾 is changing most
rapidly, e) 𝜉 (𝑛⃗) is the gradient of this function— only 𝜉 (𝑛̂) for 𝑛̂ of magnitude 1 is
shown here for clarity, f) plotting just these highlighted 𝜉 (𝑛̂) with their tails at the
origin yields the traditional 𝜉-vector construction, the convex hull of which is gives
the equilibrium shape.

vector 𝑛̂ is equivalent to the rate at which new surface is created as volume is swept

out by a surface moving along it’s normal, the divergence of 𝜉(𝑛̂) gives the rate at

which new surface free energy is created. Thus, 𝜅𝛾= ∇ · 𝜉(𝑛̂), implying that for an

isotropic system, 𝜉(𝑛̂) = 𝛾𝑛̂.

1.2.2 Diffusivity

As discussed in section 1.2, diffusivity, 𝐷, is a property of the system which contains

information about the kinetics of the system. As stated above, diffusive transport is

the net result of many stochastic particle movements. Roughly speaking, the gradient

of the chemical potential tells us the directional bias of these movements while the
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diffusivity combines the rate at which these random events take place and the raw

contribution of a single jump to the net flux. In an isotropic system, diffusivity is a

scalar-valued function of the temperature of the system. In crystalline systems, sur-

face atoms diffuse via discrete hops to neighboring, unoccupied surface lattice sites.

These lattice sites are local energy minima, so the atoms must overcome relatively

large energy barriers in order to hop from one site to another. At a given temperature,

a surface atom is more likely to hop over a lower barrier than a higher one. This,

combined with the possibility that hops in certain directions can span different physi-

cal distances, means that surface self-diffusivity can be highly anisotropic, depending

on the symmetry of the underlying lattice. Complicating things further, this in-plane

anisotropy is also a function of the surface’s normal vector 𝑛̂. Mathematically, there

is nothing particularly special about this tensor, and it can certainly be described

using traditional notation. However, in many parts of this thesis, I have chosen in-

stead to express diffusivity as a function 𝐷natural(𝑛̂) which returns three-dimensional

diagonal matrices of which the third diagonal value, corresponding to the out of plane

direction, is 0. This 𝐷natural(𝑛̂) is thus paired with a transformation matrix used to

convert chemical potential gradients and fluxes to the correct basis, such that

𝐷 (𝑛̂) = 𝑅𝑇 (𝑛̂)𝐷natural(𝑛̂)𝑅(𝑛̂) (1.3)

for 𝐷natural of the form

𝐷natural =

𝑑1 0 0

0 𝑑2 0

0 0 0

for an orthonormal basis {𝑣1, 𝑣2, 𝑛̂}
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1.3 The Mullins Equation

The Mullins equation describes the evolution of a surface which is evolving toward

equilibrium via the diffusion of the surface’s constituent atoms along the surface itself,

a process called surface self–diffusion. The equation expresses the fact that diffusive

fluxes which cause a net accumulation of atoms at a given piece of surface will cause

that piece of surface to grow outward along its normal [13]. Likewise, fluxes which

cause net a net depletion of atoms in a given area will cause that area to recede. In

isotropic systems, this can be simply expressed as

𝑣𝑛 =
𝐷𝜈Ω2

𝑘𝑏𝑇
∇2𝛾𝜅 (1.4)

Where 𝜈 is the surface concentration of atoms, Ω is the atomic volume, 𝑘𝑏 is Boltz-

mann’s constant, and 𝑇 is the temperature of the system. More generally, the velocity

of a surface along its normal is given by

𝑣𝑛 = −Ω∇ · 𝐽 (1.5)

for diffusive flux

𝐽 = −𝐷𝜈Ω

𝑘𝑏𝑇
∇𝜅𝛾 (1.6)

In a crystalline system, 𝜈 also has an orientational dependence, so it is convenient to

gather all the materials properties into one term 𝐵(𝑛̂), a tensor of the same form as

𝐷(𝑛̂) discussed above, such that

𝑣𝑛 = 𝐵(𝑛̂)∇2𝜅𝛾 (1.7)

For certain initial geometries, studying the long-time behavior of the isotropic Mullins

equation is analytically tractable, and a great deal of our understanding of dewet-

ting behavior comes from early theoretical work on isotropic systems. However, in

anisotropic systems, the Mullins equation generally becomes analytically unsolvable,

leaving numerical and computational approaches as the only viable options for mod-
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eling the behavior of physically realistic systems.

1.4 Equilibrium Shapes

1.4.1 Isotropic Materials

We have shown above that the flow of surface atoms is driven by gradients in 𝜅𝛾,

which implies that the system reaches local equilibrium when 𝜅𝛾is constant across

the entire surface of the object. This is equivalent to stating that the total surface

free energy of the system is a local minimum. For a free-floating (i.e. not in contact

with a substrate) object with isotropic surface energy, the shape which minimized

surface free energy is simply the shape which minimizes overall surface area for a

given volume, a sphere. For an isotropic material in contact with a substrate (also

assumed to be isotropic), the equilibrium shape is a fraction of a sphere resting on

the substrate. The angle formed by the surface of the sphere and the substrate along

their line of contact—called the triple line in reference to the particle, substrate, and

surrounding vapor all making contact along this line—is called the contact angle and

is given by the Young-Dupre equation [14]

𝛾𝑃𝑉 cos(𝜃𝑐) + 𝛾𝑃𝑆 − 𝛾𝑉 𝑆 = 0. (1.8)

Where 𝛾𝑃𝑉 is the particle-vapor surface free energy density, 𝛾𝑃𝑆 is the particle-

substrate interfacial free energy density, and 𝛾𝑉 𝑆 is the surface free energy density of

the bare substrate in contact with the vapor. See figure 1-6 C) for an illustration of

how these quantities determine the contact angle.
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Figure 1-6: Examples of the Wulff and Winterbottom constructions for isotropic and
anisotropic materials. A) Isotropic Wulff construction; B) Wulff construction for
material with hard anisotropy; C) Winterbottom construction for isotropic material
for 𝜎 = 𝛾𝑉 𝑆−𝛾𝑃𝑆

𝛾𝑃𝑉
= −0.5; D) Winterbottom construction for an anisotropic material

with the same 𝜎 as C) Note that the contact angle in C), 𝜃𝑐 = 135∘ , matches that
predicted by Young-Dupre. The material in D) is said to have effective contact angle
of 135∘ . In general, anisotropic materials can have facets with different energies,
unlike the simple example shown here.

1.4.2 Anisotropic Materials: The Wulff and Winterbottom

Constructions

For an anisotropic material, the shape which has uniform 𝜅𝛾, and thus minimizes

surface free energy, is not a sphere but can be found through simple geometric con-

structions. The method most often used in the literature is called the Wulff con-

struction [15, 16], and it entails taking the inner envelope of lines perpendicular to
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𝑛̂ with distance 𝛾(𝑛̂) from the origin. The Winterbottom construction [16], used for

materials in contact with substrates, is exactly the same as the Wulff construction,

except 𝛾(𝑛̂) is replaced with 𝛾𝑃𝑆 − 𝛾𝑉 𝑆 for 𝑛̂ corresponding to the particle-substrate

interface, see figure 1-6. For anisotropic materials, 𝛾𝑃𝑆 and 𝛾𝑉 𝑆 are taken to be those

corresponding to the orientation of the particle–substrate interface. The quantity
𝛾𝑉 𝑆−𝛾𝑃𝑆

𝛾𝑃𝑉
is often denoted by 𝜎, such that arccos(𝜎) gives what is called the effective

contact angle, in reference to equation 1.8. It is also true that that the equilibrium

shape of a material is given by the convex portion of 𝜉(𝑛̂), while the non-convex parts

correspond to metastable and unstable orientations.

1.5 Thin Single Crystal Films

As stated above, experiments designed to explore the details of how crystalline anisotropy

impacts dewetting behavior require micro- and nano-scale features fabricated from

single-crystal materials. The first step in fabricating such experimental structures

is the deposition of large-area single-crystal thin films. Unless otherwise stated, the

information in this section is all adapted from Prof. Carl Thompson’s course, “Mate-

rials Processing for Micro and Nano-Systems” [17]. Other good resources are “Silicon

VLSI Technology” by Plummer, Deal, and Griffin [18] as well as “Materials Science

of Thin Films” by Ohring [19]. In general, metal and semiconductor films can be

deposited through either physical or chemical vapor deposition (PVD or CVD). In

PVD processes, a relatively large source of the material to be deposited is energized—

through either direct heating or bombardment with some form of energy—causing it

to eject material. Depending on the geometry and other details of the deposition

system, some fraction of the ejected atoms impinge upon and stick to the substrate

onto which material is being deposited. If deposition is continued long enough, these

atoms will cover the entire surface of the substrate, constituting a film. Deposition

is generally conducted under conditions at which the mobility of deposited atoms is

low relative to the deposition flux, leading to films which are metastable as deposited.

These films can be annealed at higher temperatures post deposition to achieve a lower
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energy state. By contrast, CVD processes generally flow precursor gases over the sub-

strate. These gases either decompose on the substrate to leave behind material and,

if multiple gases are being used, undergo surface-catalyzed chemical reactions which

also leave behind material of the desired composition. The work in this thesis focuses

on materials which tend to be grown through PVD processes (e–beam evaporation

for our Ni films and sputtering for our Ru films), so CVD processes will be ignored

for the rest of this discussion.

In principle, PVD can make use of single-crystal, polycrystalline, or amorphous

substrates, and the details of the substrate surface can have large effects on the

character of the deposited film. For example, FCC metals are often deposited on

oxidized silicon substrates, the top surface of which is amorphous. The resulting films

are invariably polycrystalline, though the individual grains often have a (111) texture,

meaning that disproportionately many grains have (111) top surfaces because of that

surface’s low energy. In order to obtain single-crystal films, a single-crystal substrate

is required. If a film can be grown on a single-crystal substrate such that two lattices

align in an energetically favorable way, that film is said to be epitaxial. However, an

epitaxial relationship between substrate and film is no guarantee of a single-crystal

film, as other factors such as contamination, background deposition pressure, and high

deposition flux can confound the formation of a single-crystal film. To obtain single-

crystal films, one generally wants to achieve Frank-Van der Merwe (FvM) growth, in

which the film grows roughly one atomic layer at a time, across the entire surface

of the substrate. FvM growth is enabled by high atomic mobility, relative to the

incoming flux of atoms, as well as low interface coherency strain between the film

and the substrate. It is also possible to grow single-crystal films through the Volmer-

Weber (VW) growth mode in which atoms first form isolated clusters on the substrate

surface which coalesce as they grow. This growth mode tends to occur when mobility

is lower and the bonds between film atoms are much stronger than those between the

those atoms and the substrate. This description matches the conditions under which

both our Ni and Ru films were depositied, and it is very likely that these films grew by

the VW mechanism. The Stranski-Krastanov growth mode is intermediate between
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these two, with a thin layer coating the entire substrate before clusters begin to

form at larger thicknesses. In practice, developing a protocol for obtaining large area

single-crystal films can be quite difficult, requiring tight control over variables such as

temperature, deposition rate, and background pressure. To deposit our single-crystal

Ni films, we use our own Balzers UMS500 electron beam system which, without the

time constraints of shared equipment, we are able to pump down to and maintain a

pressure in the mid 10−7 Torr range. Our system is also very clean because of the

limited selection of materials we deposit in it. We deposit films at a rate of 0.5Å/s

and are consistently able to achieve single crystal films of uniform thickness across

our 1 cm2 MgO substrates. Preparation for a deposition involves a prolonged bake of

the chamber and the substrate while under vacuum to drive off contaminants. Our

Ru films are deposited by collaborators at the University of Central Florida, using

DC magnetron sputtering, as discussed in chapter 4.

1.6 Patterning

There are several ways of patterning thin films into useful micro- and nano- structures,

but lithographic patterning and lift-off processes will be the only two discussed here.

As in the above section, the course notes for “Materials Processing for Micro and

Nano-Systems” [17] provide the most comprehensive overview of this topic that I am

aware of. Plummer et al. [18] is also a good reference for this topic.

1.6.1 Lithographic Patterning

Lithographic patterning usually involves placing a patterned protective coating over

the top of a film and then etching away all of the film which is not covered by

the protective coating. In photolithography, special polymers called photoresists are

uniformly applied to the surface of the film to be patterned. The photoresist is then

selectively exposed to light, either through the use of a shadow mask which is placed

between the film and the light source to cast an engineered shadow over the resist or
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by direct write systems which scan a laser across the surface of the resist to draw the

desired pattern. The sample is then baked for a short period of time to aid in curing

the photoresist. Resists which cure in the regions without light exposure are called

positive resists, and those which cure in the lighted regions are called negative resists.

The uncured resist is then chemically removed and the unprotected areas of the film

are etched away by either chemical etching or by physical etching, such as exposure

to an ion beam. Finally, the cured resist is dissolved in a solvent such as acetone, and

a patterned film is left behind. Past work in our group using photolithography has

achieved resolutions down to about 2𝜇m; for resolutions below this, electron beam (e–

beam) lithography is necessary. Electron beam lithography is similar to direct write

photolithography in principle but uses a focused beam of electrons, rather than a laser,

to expose the resist. Our Ni work makes use of photolithography while our Ru work

requires much smaller feature sizes and thus makes use of e–beam lithography. As

straightforward as it may seem, lithographic patterning involves a massive parameter

space, including choice of chemicals, temperatures, intensity and duration of exposure,

and much more. Developing protocols that reliably achieve high resolution is an entire

discipline on its own.

1.6.2 Lift-off Patterning

Although lift-off patterning makes use of lithographic processes, it is distinct from

lithographic patterning in its fundamental approach to patterning the film. The

process described above is called subtractive patterning while lift-off patterning is

an example of additive patterning. In lift-off patterning, a pattern is laid down on

a bare substrate before deposition. This pattern, called the sacrificial layer, is the

inverse of the desired final features and is usually made lithographically. A film of

the desired material is then deposited over the entire area of the sample, with the

sacrificial layer protecting those areas of the substrate which are intended to remain

bare. The sacrificial layer is then chemically dissolved, washing away the material

deposited on top of it as well and leaving behind a patterned film on the substrate.
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1.7 Observed Phenomenology

Experiments conducted in patterned single-crystal films have yielded myriad fasci-

nating behaviors, a brief overview of which will be provided here.

1.7.1 Edge Retraction

The simplest dewetting phenomenon is the retraction of a film’s edge, which has been

extensively modeled and studied experimentally—Refs. [6, 20–25] are all canonical

examples. As illustrated in figure 1-1, in an isotropic system, the material rejected

from triple-line accumulates in a growing rim which propagates along with the triple-

line; figure 1-1 is a good graphical reference for this entire subsection. After an initial

transient, the total retraction distance of the edge scales as 𝑡2/5. Ahead of the rim,

the height of the film develops oscillations which decay in amplitude with distance

from the rim. The first film height minimum is often referred to as the valley, and it

grows monotonically deeper as the film edge retracts. Eventually, the valley makes

contact with the substrate, turning the rim into an isolated wire and starting the

process of edge retraction over again, see figure 1-1. In strongly anisotropic systems,

this behavior is more complicated, as the presence of facets can profoundly impact the

behavior of the valley. In fully faceted systems, modeling work using the crystalline

method found that films with a stable top facet were entirely impervious to valley

formation [26]. More anisotropic complexity can arise if the in-plane orientation

of the film’s edge is itself unstable. In some materials, such as ruthenium, such a

situation leads to chaotic dewetting, while in other materials, such as Ni, such edges

can undergo the fingering instability, in which the dewetting front develops parallel

protuberances, called fingers, of characteristic size and spacing [8]. These fingers

propagate with constant velocity, greatly increasing the rate of dewetting.
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Figure 1-7: A schematic of a perturbed retracting film edge, viewed from above,
developing the fingering instability

Figure 1-8: A 120 nm–thick Ni (110) film with an intentionally rough edge developing
the fingering instability [8].

1.7.2 Hole Growth

Holes are edges which close on themselves, and as such, they exhibit much of the same

dewetting behavior as simple edges. As will be discussed in detail in chapter 5, the

feature which distinguishes the phenomenology of holes from that of straight edges

is that the growth of a hole implies the elongation of it’s associated triple-line. The

implications of this are one area of focus of this thesis. The rim surrounding a hole can
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Figure 1-9: AFM images of the corner instability in 130 nm–thick Ni (100) films [7].
A) shows a hole which has reached its kinetic Wulff shape but has not yet undergone
the corner instability. B) shows a hole which has undergone the corner instability. C)
highlights how much lower the rim height can be at the corner of a hole. Later stages
of this type of behavior are shown in figure 1-10 A) below.

touch down to the substrate and cause pinch-off, or the corners of a hole can become

unstable and exhibit behavior analogous to the fingering instability [7], see figures 1-9

and 1-10 A). These unstable corners can develop secondary instabilities along their

length, yielding behavior evocative of dendritic solidification. Alternatively, as in

(0001) Ru films, holes can nucleate far more complex behavior, such as the formation

of channels and rings, see figure 1-10 B).
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Figure 1-10: A) Holes in an 85 nm–thick film including early stage holes (small
squares), holes beginning to undergo the corner instability (see chapters 2.2.2 and
5), and holes with fully dendritic corners; B) Hole growth and other subsequent in-
stabilities in a 10nm-thick (0001) Ru film.

1.7.3 Wire Stability

Although planar films are often used to study dewetting, the behavior of wires and

high aspect ratio geometries is at least as important from a technological standpoint.

Studies of wire-like geometries subject to capillary forces date back to the 19th century,

when Rayleigh and Plateau studied the breakup of liquid jets (i.e. cylindrical streams

of free-flowing liquid) into discrete droplets [27–29]. Rayleigh determined that cylin-

ders evolving under capillary forces, regardless of the mechanism of mass transport,

are unstable to perturbations of their radius with wavelength greater than 𝜆 > 2𝜋𝑅0,

for unperturbed cylinder radius 𝑅0 [27, 28]. This instability has come to be known

as the Rayleigh instability. Later, Nichols and Mullins extended this analysis to the

specific case of diffusive mass transport along the surface of the cylinder and found

that the fastest growing perturbations have wavelength 2
√
2𝜋𝑅0 [30]. Nichols also

showed that unperturbed, finite-length cylinders will break up in a process analogous

to edge retraction and pinch-off called ovulation [31]. In anisotropic materials, the

stability of long wires can be extremely orientationally dependent, with wires oriented

such that they are bound by equilibrium orientations exhibiting strong resistance to

the Rayleigh instability [5, 32]. We examine the effects of this anisotropy in detail in

chapter 4.
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1.8 Annealing Conditions

1.8.1 Temperature

As discussed above, solid-state dewetting only occurs over relevant time-scales at el-

evated temperatures. This is because diffusivity has an Arrhenius dependence on

temperature, meaning that 𝐷 ∝ exp(−𝐸/𝑘𝑏𝑇 ) for some characteristic energy 𝐸 [33].

The temperature at which dewetting behavior becomes significant—how exactly sig-

nificance is defined is application dependent—is termed the dewetting temperature

[34]. This temperature is also strongly dependent on the thickness of the film [35],

as thinner films will have initially higher curvatures driving dewetting. Thinner films

also form holes more readily and have smaller diffusion distances over which dewet-

ting occurs, reducing observed dewetting temperatures. Holding geometry constant,

a good rule of thumb is that similar materials (e.g. FCC metals) will have similar

homologous
(︁

𝑇
𝑇melt

)︁
dewetting temperatures [34]. In anisotropic systems the diffusiv-

ity and surface free energies of different orientations will have different temperature

dependencies, meaning that almost every term in equation 1.7 will have complicated

temperature dependence.

1.8.2 Ambient

As a surface phenomenon, dewetting behavior can be extremely sensitive to ambient

conditions. For example, our group has shown that the partial pressure of O2 has

a profound effect on the dewetting behavior of Ni films. At relatively high partial

pressures of O2, Ni films will be coated in NiO. At lower partial pressures, this oxide

begins to disappear, leading to different dewetting behavior. A detailed overview of

the effect of ambient conditions on the surface reconstruction and dewetting behavior

of Ni films is given in reference [36]. Most of the work presented in this thesis was

conducted using flowing 5% H2, 95% N2, intended to fully remove the native oxide of

Ni and Ru films. For example, for our Ru films, we used an Ellingham diagram [37] to
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determine that we would need to bring the oxygen partial pressure in our furnace well

below 7× 10−11 atm to be sure that the native oxide is removed. Using this reducing

gas flowing at 2300sccm, we measured 𝑃𝑂2 = 2.7× 10−22 atm, while annealing an Ru

sample. Beyond considerations of a film’s native oxide, different ambient conditions

can lead to different surface reconstructions, meaning that surface atoms move to

locations other than those defined by the bulk crystalline lattice, which can lead to

significantly different Winterbottom shapes. The effects of such changes are examined

in chapter 3.

1.9 Electron Microscopy

1.9.1 SEM

After annealing our films, it is necessary to determine the morphological changes

which have occurred during the anneal. Our go-to method for this is scanning elec-

tron microscopy, as it allows us to examine the films over a wide range of magnifica-

tions while doing minimal damage to the sample. Imaging our samples is relatively

straightforward, though we do have to be cognizant of the insulating nature of our

substrates. To mitigate charging effects, good electrical contact must be made be-

tween the top surface of the sample and the sample holder, and a low accelerating

voltage must be used. SEMs like the Zeiss Merlin in CMSE and the Zeiss Ultras

and Supra at Harvard CNS can achieve quality images of our samples using an ac-

celerating voltage as low as 2kV. Under these conditions, we tend to obtain the best

images using the Everhart-Thornley secondary electron detector, called SE2 on Zeiss

microscopes.

1.9.2 TEM

The SEM is an excellent tool for for studying morphologies down to ∼ 10nm—higher

resolutions are possible in more conductive samples that can tolerate higher accel-
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erating voltages—in a non-destructive manner. However, when higher resolution is

needed, or when a cross-sectional perspective is more informative than a top-down

view of surface topography, transmission electron microscopy is needed. As their

name suggests, TEMs transmit a focused beam of electrons through the sample being

imaged, with the image being constructed from the transmitted beam. If the sample

is aligned such that columns of atoms run parallel to this beam, atomic-scale resolu-

tion is possible. However, this imaging power comes with important caveats, the most

significant of which is that the sample must be sufficiently thin for the electron beam

to pass through it, on the order of tens of nanometers for the types of samples we

image. Additionally, the electron beam is extremely power dense, with accelerating

voltages in the hundreds of kV up to low MV being typical. This means that the

beam itself can heat or otherwise damage the sample as it is being imaged.

1.9.3 FIB

As stated above, TEM samples must be extremely thin to maximize resolution. For

samples like the ones studied in this thesis, this means that cross-sectional slices must

be cut out of the sample. The tool used create cuts at the nanometer scale is the

focused ion beam. Typically paired with an SEM in what is referred to a dual beam

system, an FIB operates on a similar principle to SEMs, except that it scans a beam

of ions across the sample, rather than a beam of electrons. This beam can be used to

image a sample, but it’s primary purpose is to use the beam much like a nanoscale

water jet cutter and cut the sample in an act referred to as milling. Traditionally,

FIBs made use of gallium ions for this purpose, although systems exist which use

other ions. Early proof of concept work for our work on Ru nanowires, see chapter 4,

used a xenon plasma FIB to fabricate nanowires at high resolution without implanting

gallium into the sample. When the FIB is used to cut cross-sections for TEM imaging,

these cross sections can be lifted out of the sample using a piezo-electrically controlled

probe which tapers down to a nano-scale tip.
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1.9.4 EBSD

Electron backscatter diffraction is a common technique available in many SEMs which

provides detailed information about crystallographic orientation at small scales. The

sample is tilted at a large angle, relative to it’s typical orientation normal to the

incoming electron beam. The initially focused electron beam is diffusely scattered as it

travels through the sample, leading to a broadened distribution of electron directions,

peaked at the initial direction. These electrons then Bragg diffract, yielding cones

rather than spots because of the initial diffuse scattering [38]. The resulting patterns

can be interpreted using software, allowing users to easily map the crystallographic

orientation of sample features including, in our case, the edges of hexagonal rings in

dewetted Ru films. EBSD can also be used as an additional check on whether or films

are truly single crystal.

1.10 Atomic Force Microscopy (AFM)

Atomic force microscopes make use of a vertically oscillating probe, often made of

silicon, which tapers to a very fine tip—the Bruker RTESP-300 AFM probes we

use in our lab have a nominal tip radius of 8nm. In tapping mode, this AFM tip

is scanned across a sample’s surface, as it oscillated up and down, building up a

topographical image of the sample’s surface. Image resolution in the plane of the

surface is dependent on the choice of probe, scan rate, and other variables, but vertical

resolution is consistently on the order of a nanometer.

1.11 Data Analysis

After a series of experiments, there are often measurements, such as hole size and

finger spacing, that need to be extracted from the SEM images which were taken.

A single experiment can generate dozens or even hundreds of images, and analyz-

ing these images can take a great deal of time. Additionally, even using software
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tools like ImageJ, such analysis requires significant human input which can introduce

unnecessary error. For these reasons, I have developed a Python package which au-

tomates these measurements. It is able to read in images, acquire the physical size

of a pixel using Tesseract optical character recognition, locate natural holes within

the image, and measure the holes’ area, perimeter, and diameter. Measuring finger

spacings is similarly easy, though the user still has to define the cross-section along

which the spacing should be measured. The package is well-documented and also

includes commands for analyzing whole batches of data.

1.12 The Work in this Thesis

Building on the concepts and techniques outlined above, the work presented in the

rest of this thesis seeks to explore and better understand the rich behavior arising

in single-crystal films undergoing dewetting. In chapter 2, a new technique for simu-

lating surface self-diffusion and solid-state dewetting in strongly anistotropic systems

is demonstrated. In the next chapter, this technique is applied to the dewetting of

Ni (110) films in both H2– and CO–based ambients, highlighting the importance of

ambient conditions and showcasing our simulation technique’s ability to reproduce ex-

perimental results. Chapter 4 looks at the stability of of single-crystal Ru nanowires,

and its striking dependence on orientation, using both experiments and simulations.

Chapter 5 explores the corner instability and dendritic dewetting through a new

theoretical lens, drawing an analogy to dendritic solidification and viscous fingering.

Finally, in chapter 6, the key findings of this work are summarized and potential areas

of future work are discussed. For the interested reader, a discussion on constructing

anisotropic 𝛾(𝑛̂) and 𝜉(𝑛̂) is presented in appendix A.
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Chapter 2

A Level-set Method for Simulating

Dewetting in Systems with Strong

Crystalline Anisotropy

* This chapter is adapted from an upcoming paper [39].

As outlined in the introduction, solid-state dewetting, and capillary-driven surface

self-diffusion more generally, can give rise to a host of complex phenomena. Accu-

rately modeling the full continuum of dewetting behaviors, especially in systems with

strong anisotropy, is an open problem in materials science. In isotropic systems, the

behavior of dewetting systems is described by the Mullins equation [40], see chapter

1.3. As with other 4th order partial differential equations, traditional numerical meth-

ods for solving the Mullins equation require very small time steps to prevent numerical

instability [41]. For crystalline films, anisotropy necessitates a reformulation of the

Mullin’s equation. In addition to facets, corners, and edges being non-differentiable,

the chemical potential is not directly related to the geometric mean curvature [12].

Furthermore, anisotropic surface diffusivities require that the scalar surface diffusivity

be replaced with a surface diffusivity tensor. Experimental observations of dewetting

wires and films also show behaviors which include topological changes that are trou-

blesome for Lagrangian, front-tracking numerical methods.
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A deeper understanding of the effects of crystalline anisotropy on solid state dewet-

ting is important because of both the striking behaviors to which it gives rise and

the impact these behaviors have on the use of dewetting to create intermediate struc-

tures of use in fabricating devices [34, 42, 43]. In anisotropic systems, retracting rims

develop faceted profiles (see figure 2-1 C)), and small deviations in the alignment of

patterned features relative to a film’s crystalline axes can yield profoundly different

behavior [5, 8, 36]. While this rich and complex behavior is of interest to both exper-

imentalists and modelers, improved numerical methods are required to predict and

understand these phenomena.

Figure 2-1: Schematic illustration of retraction of a film edge in isotropic and strongly
anisotropic films. Material dewetted from the substrate accumulates in a rim which
propagates into the film. A) shows the as-patterned film, B) shows an intermedi-
ate dewetting morphology for an isotropic system, C) shows the same for a simple
anisotropic system, D) shows an isotropic system which has dewetted to the point of
pinch-off. In isotropic systems, a valley always forms behind the rim while the extent
of valley formation in anisotropic systems is determined by material properties. This
will be discussed at greater length below.

To this end, we present a level-set numerical approach for simulating the morpho-

logical evolution of anisotropic materials undergoing dewetting and surface diffusion
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mediated evolution driven by capillarity more generally. The method includes the

effects of anisotropic surface energy and an anisotropic surface diffusion coefficient

tensor. Our method reproduces experimental observations, including faceting and

topological transitions. We have also tested our method in the absence of anisotropy

and show that we can reproduce previous analytical, numerical, and computational

results.

For isotropic systems, there are many examples of modeling behavior governed by

the Mullins equation. This equation was initially applied to grain boundary grooving

[13] and the evolution of surfaces of revolution [30, 44], including Rayleigh instabilities

[27], which have since been modeled in more complex systems such as material contact

with a substrate [45] and material constituting an intragranular phase [46]. Brandon

and Bradshaw [20] conducted early work on solid-state dewetting, in which they

developed a simple analytical model in which a straight dewetting edge’s retraction

distance scales with 𝑡2/5. Computational [21, 24, 26] and experimental [25, 47] work

reproduced approximate 𝑡2/5 scaling at sufficiently long times. Nichols later showed

that finite cylinders are also prone to ovulation [31]—the repeated pinching off and

spheroidization of a cylinder’s ends—in addition to the Rayleigh instability. Smereka

developed a level-set method to model evolution mediated by surface self-diffusion

in isotropic systems, but did not model interactions with substrates [41]. Jiang et

al. also conducted phase-field simulations of several isotropic solid-state dewetting

phenomena [48].

Other approaches that go beyond the direct application of the Mullins equation are

needed for anisotropic surface energies. The “crystalline method” enables modeling

evolution through the movement, creation, and annihilation of facets in fully-faceted

systems [49–51]. It has been used to study edge retraction in fully faceted systems,

including the effects of assigning different diffusivities to different facets [26]. Dornel

et al. constructed an anisotropic extension to the method in Ref. [21] and explored

edge retraction behavior in Si films [23]. Burger et al. utilized anisotropy in level-

set method simulations [52]. Jiang et al. simulated anisotropic dewetting using a
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finite-element method [53, 54] and Pierre-Louise et al. used a Kinetic Monte Carlo

(KMC) method to simulate dewetting [55–57]. Kim and Thompson used KMC to

study the orientational dependence of single-crystal nanowire stability [5]. The 𝜉 (𝑛̂)-

construction (described below) was used in reference [52] which took a variational

level-set approach to modeling both mean curvature flow and surface diffusion (though

not dewetting, as there was no substrate in their systems) and in [53, 54], which use

finite-element methods to model anisotropic dewetting. Both methods demonstrated

simulations with regularized hard surface energy anisotropy, though neither placed

emphasis on using 𝛾 (𝑛̂) derived from real physical systems. However references [53,

54] provide many examples using technologically relevant geometries, including long

wires and edges.

In the absence of other potentials, surface self-diffusion is driven by gradients in

weighted mean curvature (𝜅𝛾), and the Mullins equation becomes

𝑣𝑛 = ∇𝑠 ·
(︂
𝐷 (𝑛̂)

𝜈Ω2

𝑘𝐵𝑇
∇𝑠𝜅

𝛾

)︂

, where 𝐷 (𝑛̂) = 𝑅𝑇 (𝑛̂)𝐷 (𝑛̂)natural𝑅 (𝑛̂) for 𝐷natural of the form

𝑑1 0 0

0 𝑑2 0

0 0 0

for an orthonormal basis {𝑣1, 𝑣2, 𝑛̂} and appropriated change of basis matrix 𝑅 (𝑛̂).

In practice, we lump all the materials properties together and use an equation of the

form 𝑣𝑛 = 𝐵 (𝑛̂)∇2
𝑠𝜅

𝛾, where 𝐵 (𝑛̂) incorporates anisotropic diffusivity. Taylor [12]

defines 𝜅𝛾 as “the rate of decrease of surface free energy with respect to volume swept

out by the motion of the surface.” There are several formulations of 𝜅𝛾; Taylor [12]

gives an exhaustive review, and this topic is also discussed in more detail in chapter

1.2.1 (pg. 30). As a quick overview, the most straightforward method for obtaining
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𝜅𝛾is via the divergence of the Cahn-Hoffman vector, 𝜉(𝑛̂) [11]. For isotropic system,

𝜅𝛾 = ∇ · 𝜉 (𝑛̂) = 𝛾∇ · 𝑛̂ = 𝛾 · 𝜅

. The Cahn-Hoffman vector, commonly denoted as 𝜉 (𝑛̂), is the gradient of the ho-

mogeneous extension of the surface energy function Γ (𝐴𝑛̂) = 𝐴𝛾 (𝑛̂) (see figure 1-5

for a graphical explanation and Ref. [58] for analogies to the chemical potential of

binary alloys). For a given 𝛾 (𝑛̂), the curve 𝜉 (𝑛̂) plotted for all surface orientations 𝑛̂,

contains the Wulff shape with the addition of “ears” or “swallowtails” for the unstable

orientations if there are any (i.e., the case of no edges on the Wulff shape), see figure

1-5 F). These ears are the orientation-space analog of a miscibility gap in alloys [58].

In simulations of systems with such unstable orientations, we use a Willmore

regularization term [59] −𝜀2
(︀
𝜅𝑠𝑠 +

1
2
𝜅3
)︀
. This regularization appears to have first

been proposed in this context in Ref. [60] and is used in many studies of anisotropic

surface evolution including Refs. [52–54]. Refs. [53], [61] provide particularly clear

explanations of this regularization. The regularization is the analog to the square-

gradient term in diffuse-interface theories (e.g., Cahn-Hilliard [62] and Allen-Cahn

[63] functionals). Without regularization, surfaces with unstable orientations would

develop facets or pyramids of arbitrary—and possibly infinitesimal—length scale (i.e.,

varifolds [64]). We find that the magnitude of the regularization coefficient sets the

length scale of the faceting instability in our simulations, as expected. In many of our

simulations, we construct the convex portion of 𝜉(𝑛̂) from an observed Wulff shape,

and we find that the exact functional form of the non-convex parts of 𝜉(𝑛̂) (i.e., the

“ears”) plays a very negligible role in the results.

Our simulations are based on the level-set method, an Eulerian approach for simu-

lating the evolution of surfaces, developed by Osher and Sethian [65]. In the level-set

method, the surface being simulated is the zero iso-contour, or level-set, of a function

𝜑 (𝑥⃗) (usually chosen to be a signed distance function). Numerically, surface evolution

is implemented by incrementally updating 𝜑 (𝑥⃗) by computing 𝜑𝑡+𝑣⃗ ·∇𝜑 = 0 for small

time-steps (see figure 2-2). Level set methods are useful for studying morphological
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evolution, particularly when topological changes occur, as the implicit representation

of the evolving surface naturally handles such changes without special treatment.

Another benefit is that geometric quantities, such as the normal vector and curvature

are naturally defined in terms of derivatives of 𝜑 (𝑥⃗). Naïve implementations of LSM

are plagued by issues of stability and volume conservation arising from distortions to

𝜑 (𝑥⃗), which cause it to locally deviate from a signed distance function. Redistancing

methods, which are used in our simulations and discussed in detail below, combat

this problem by approximately restoring 𝜑 (𝑥⃗) to a signed distance function without

moving the zero level-set. A complimentary approach described by Zhao et al. [66]

and first implemented by Smereka [41] removes the distortionary components of cal-

culated quantities, by solving 𝜕𝑔
𝜕𝑡

+ sign (𝜑) ∇𝜑
|∇𝜑| · ∇𝑔, where g can be any calculated

quantity such as interface velocity or 𝜅𝛾.

2.1 Methods

For an LSM simulation of surface self-diffusion driven by the gradient of weighted

mean curvature, the governing equation for the time-evolution of 𝜑 (𝑥⃗, 𝑡) is 𝜑𝑡 =

−(𝐵 (𝑛̂)∇2
𝑠𝜅

𝛾)∇𝜑. As discussed above, 𝐵 (𝑛̂) incorporates the effect of anisotropic

diffusivity, while 𝜅𝛾incorporates the effect of anisotropic surface energy. However,

simply numerically integrating this equation forward in time quickly leads to numer-

ical instabilities and poor volume conservation caused by unphysical distortions to

𝜑 (𝑥⃗). These distortions arise from erroneous values for physical quantities calculated

away from the interface. For example, only the calculated values of 𝜅𝛾on the 𝜑 (𝑥⃗) = 0

level-set have physical meaning, and the 𝜑 (𝑥⃗) = 5 level-set will tend to have much

different values of 𝜅𝛾. If the differing values of 𝜅𝛾on other level-sets, 𝜑 (𝑥⃗, 𝑡) ̸= 0, are

not corrected, these level-sets won’t move in sync with the zero-level-set, and 𝜑 (𝑥⃗, 𝑡)

will become distorted, negatively impacting the accuracy of the simulation. We utilize

the correction method developed by Smereka [41] and Zhao et al. [66]. This approach

replaces non-interfacial values of both 𝜅𝛾and surface velocity with values obtained

by extending the physically meaningful interfacial values out into a band of points
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Figure 2-2: The level-set method implicitly encodes the location of interfaces (indi-
cated by the blue outlines) in the values of a signed distance function, 𝜑(𝑥⃗, 𝑡). The
magnitude of 𝜑 gives the distance from 𝑥⃗ to the closest interfacial point and the sign
indicates whether (⃗𝑥, 𝑡) is inside (𝜑(𝑥⃗, 𝑡) < 0) or outside (𝜑(𝑥⃗, 𝑡) > 0) an interface.
Here, two neighboring circles grow and merge (right, bottom to top). The evolution
of 𝜑 is shown in the center of the figure, with the time axis oriented vertically. Three
Individual time steps are highlighted for clarity.

encapsulating the interface. Smereka proposes a specific algorithm for performing

this extension, but in our testing, we obtained better results using Adalsteinsson and

Sethian’s extension algorithm [67] based on the Fast Marching Method (FMM) [68].

In all of the work presented here, we used the implementation of Adalsteinsson and

Sethian’s algorithm found in the scikit-fmm Python package [69]. While these exten-

sion steps reduce unphysical distortions to 𝜑 (𝑥⃗), we also periodically redistance 𝜑 (𝑥⃗)

to reset it to a signed distance function. In our testing, we have found that Sussman’s

redistancing method [70] usually yields the best results, as opposed to fast marching
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based redistancing, and the results presented here are all from simulations making

use of Sussman’s method.

Numerically, we combine second order spatial derivatives with first order time

stepping. Unfortunately, the central difference stencils used to compute ∇𝜑 (𝑥⃗), and

thus 𝑛̂ (𝑥⃗), yield the same normal vector for a flat surface and for a sawtooth surface

with the same average orientation. During development, this led to non-physical oscil-

lations developing on thermodynamically stable surfaces in some strongly anisotropic

simulations. To combat this, we add a small term that goes as ∇2𝜑 (𝑥⃗) to 𝜅𝛾, cal-

culated using 2nd order central differences. This term is similar to the curvature of

the surface, so setting it too large will cause non-physical smoothing in anisotropic

systems. We still found this smoothing operator to yield superior results to that used

in Ref. [41], which is non-local in nature and thus introduced clearly non-physical

distortions in our testing; Ref. [41] acknowledges the problems posed by these dis-

tortions. To increase computational performance, the size of the time step taken for

each iteration is adaptively determined by Δ𝑡 = 𝛼Δ𝑥 / |𝑆|𝑚𝑎𝑥, where Δ𝑥 is the grid

spacing, |𝑆|max is the maximum of the absolute value the interface velocity, and 𝛼 is a

scaling factor less than 1. In practice, good results are often obtained with 𝛼 ≈ 0.01.

In 3D simulations, we found the performance cost of redistancing after every iteration

was outweighed by the larger 𝛼 it allowed us to use, while in two dimensions, such

frequent redistancing was not always necessary. We found that 𝛼 having too large a

value led to volume drifting upward while setting it too small led to downward volume

drift. Therefore, in most simulations, we adjust 𝛼 after each time step by a very small

amount, negatively proportional to the preceding time step’s change in volume as a

percentage of the initial volume. We find that 𝛼 tends to trend downward during

periods of topological change, such as pinch-off or ovulation, and then rebound when

evolution is less extreme. If 𝛼 climbs to too high a value, the simulation can become

unstable, and if it becomes too low, the simulation takes too long to run, so we also

set upper and lower bounds on 𝛼. In simulations in which 𝛼 was made adaptive in

this way, changes in volume over the course of the simulation were often less than a

percent, and no simulations presented here had volume changes greater than a few
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percent. For all volume measurements in this paper, we follow Sussman’s use of a

smoothed Heavyside function [70] to define the volume of a body characterized by a

signed distance function.

As discussed above, surface energy anisotropy is incorporated into the simulations

through the Cahn-Hoffman vector 𝜉 (𝑛̂). For crystalline systems, calculating 𝜉 (𝑛̂) can

be computationally expensive, so values of 𝜉 (𝑛̂) for such systems were precomputed

and accessed via a lookup table. For 3D simulations, these lookup tables were gen-

erated using the method proposed in Smith et al. [71]. In 2D, we found that lookup

tables with 103 to 105 points were sufficiently dense while in 3D, we used lookup tables

with up to about 3×106 points for materials for which very small facets needed to be

resolved. In 2D simulations, 𝜉 (𝑛̂) could also be interpolated between lookup values

by fitting a spline to the whole lookup table. For simulations which sought to match

the behavior of a specific material, an initial 𝛾 (𝑛̂) was created using DFT-calculated

surface energies from Tran, et al. [72]. Non-equilibrium orientations could be treated

in a variety of ways to tune the hardness of the anisotropy. In each case, the final

𝛾 (𝑛̂) was then extended and numerically differentiated to yield 𝜉 (𝑛̂), as detailed in

the background section. In other cases, arbitrary 𝜉 (𝑛̂) were created to explore how

surface energy anisotropy affects dewetting-like processes more generally. For exam-

ple, we conducted early simulations in a fictional simple cubic system with very high

surface energy for all but {100} surfaces (i.e., the Wulff shape was a cube). For simu-

lations of true dewetting (i.e. simulations in which the evolving material is in contact

with a substrate), we initialize the simulation such that the zero level-set of 𝜑 (𝑥⃗)

intersects the bounding box of the simulation domain along the 𝑥 = 𝑥max plane. This

means that the contact patch between the film and the substrate is implicitly repre-

sented by the triple-line. An additional plane of ghost values is maintained below the

physically meaningful simulation domain, which helps more accurately maintain the

zero-flux boundary condition at the substrate. In the vicinity of the triple-line, these

ghost values are set such that

𝜑 (𝑥 = 𝑥max + 1) = 𝜑 (𝑥 = 𝑥max) +
𝜕𝜑

𝜕𝑥
|𝑥=𝑥max .
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This approach is similar to that used in Ref. [73] but is distinct in that we do not

force the system to have a specific contact angle. To correctly model the evolution of

the triple-line, we set

𝜅𝛾 = ∇ · 𝜉 (𝑛̂) + (𝑐𝛾Γ · 𝑛̂Γ + 𝛾𝐹𝑆 − 𝛾𝑉 𝑆)

√︀
𝑛2
𝑦 + 𝑛2

𝑧

Δ𝑥
√︀
1 + 𝑛2

𝑥

for points in the 𝑥 = 𝑥max-plane in the vicinity of the triple-line, where

𝑐𝛾Γ =
(︁
𝜉 (𝑛̂) · 𝑛̂

)︁
𝑐Γ −

(︁
𝜉 (𝑛̂) · 𝑐Γ

)︁
𝑛̂,

𝑛̂Γ is the in-plane normal vector of the triple-line, and 𝑐Γ is the unit vector defined

to be tangent to the evolving surface and orthogonal to the triple-line while being

oriented such that it points toward the substrate. This is similar to Ref. [54] which

derives that 𝑐𝛾Γ · 𝑛̂Γ+ 𝛾𝐹𝑆 − 𝛾𝑉 𝑆 is the first variation of total free energy of the system

with respect to displacement of the triple-line. In our level-set formulation, however,

the triple-line is represented implicitly, so we incorporate this quantity into 𝜅𝛾, rather

than treating the evolution of the triple-line separately, as is done in Ref. [54]. The

geometric factor
√

𝑛2
𝑦+𝑛2

𝑧

Δ𝑥
√

1+𝑛2
𝑥

relates the variation of the triple-line to the variation of the

surface element directly above the triple-line. We apply zero-flux boundary conditions

at the triple-line and, in 3D simulations, also prohibit flux along the triple-line.

2.2 Results

2.2.1 Isotropic Systems

To benchmark our technique, we simulated edge retraction and the Rayleigh insta-

bility in isotropic systems and compared our results to both theory and previous

simulations. For the retraction of an isotropic, semi-infinite film, the retracting rim

should develop a smooth profile composed of a “hump” containing most of the dewet-

ted material followed by oscillations in film height of decaying amplitude; the first
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minimum is often referred to as the valley [23, 74] (figure 2-3). Eventually this valley

touches down to contact the substrate, separating the rim from the rest of the film

in a behavior called pinch-off . Starting with an edge like the one shown fig. 1a, the

edge retraction distance initially increases rapidly but then is expected to evolve to

approximately scale as 𝑡2/5 [24, 74],. This behavior in isotropic systems, as well as the

effect of contact angle, is explored in depth in [74] and our simulation results match

theirs (figures 2-3 and 2-4). We also report scaling relations for the valley depth and

rim height which were not explicitly discussed in Refs. [23, 74].

Figure 2-3: Rim profile for an isotropic film with 120∘ contact angle as it evolves
toward and through pinch-off. C) closely matches the corresponding figure 4 c) in
Wong et al. [21]. Their simulations used a point-tracking method with adaptive
resolution and dimensionless units such that their film had an initial thickness of 1.
The simulation shown in this figure was run with resolution such that the initial film
thickness was 3.5. For comparison to [21], the spatial dimensions in this figure have
been divided by 3.5 and the time values have been divided by 3.54 (following the same
non-dimensionalization of [21]).

As a second test, we simulated Rayleigh-like instabilities [27] on free-standing

cylinders with isotropic surface energy evolving by surface diffusion. It is well–
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Figure 2-4: Selected scaling relations for an isotropic edge retraction simulation with
90° equilibrium contact angle (Units scaled to match [21]). Data are plotted from the
beginning of the simulation until just before the first pinch-off event. Log-log plots
are included to show how the behavior asymptotically approaches power law scaling.
The annotated least-squares-fit slope on the log-log plots corresponds to the regions
highlighted in red.
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established that perturbations with wavelengths greater than the circumference of

the wire will grow, eventually breaking the cylinder into spheres [30]. Our simulation

technique reproduced the correct behavior, with small wavelength (𝜆 < 2𝜋𝑅0) per-

turbations on infinite cylinders (modeled as finite segments with periodic boundary

conditions) decaying to zero amplitude and perturbations with supercritical wave-

lengths (𝜆 > 2𝜋𝑅0) growing and breaking up the wire, see figure 2-5 A) and 2-5 B).

Perturbations close to 𝜆 = 2
√
2𝜋𝑅0 grew the fastest, in correspondence to theory

[30]. In figure 2-5 C), a long, finite wire was given an unstable perturbation. The

ends of the wire began to retract and pinch off in the ovulatory manner predicted by

Nichols [31], but the middle of the wire still decomposed in a Rayleigh-like fashion.

Figure 2-5: Recreating the isotropic Rayleigh-like instability. A) An infinite wire with
an initial perturbation of large amplitude but subcritical wavelength which decays. B)
An infinite wire with an initial perturbation of the same amplitude but supercritical
wavelength. This wire breaks up into spherical particles through the Rayleigh-like
instability. C) A long finite wire with a perturbation of super-critical wavelength.
The ends of the wire retract while the body of the wire undergoes the Rayleigh-like
instability. Initial wire diameter was set to 100 nm with 𝐵 = 6.2−21 m5/J s.

As another demonstration of our technique, we simulated the growth of holes in

isotropic films. As expected, these holes maintained their initially circular shape and

developed a rim with a valley behind it, as in [22]. This behavior will be contrasted

63



with that of anisotropic films in the next section. It is worth noting that, in some

simulations of very thin films, a numerical artifact, which we believe to be similar to

that described in appendix B, caused the shapes of isotropic holes to become distorted

at long times, highlighting that further work is still needed on developing smoothing

operators.

Figure 2-6: An initially circular hole in an isotropic film with 𝛾𝐹𝑆 − 𝛾𝑉 𝑆 = 0.6 and
𝛾𝐹𝑉 = 1. Coloration shows variation in height.

2.2.2 Effects of Anisotropy

We applied our algorithm to anisotropic systems with facets, starting with simulations

of single-crystal Ni, for which there is a large body of experimental data. Such films

can be lithographically patterned with extremely long, straight edges such that in

some cases these experiments can be modeled in two spatial dimensions (e.g., ignoring

the dimension that runs along the edge of the film). Of particular interest is the

experimental observation that for Ni films on MgO, the edge orientations that retract

most slowly are those for which the rim is bound by equilibrium facets along its length.

These orientations are termed kinetically stable, because edges of other orientations
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will eventually facet to become composed of such edges [25]. In Ni (100) films on MgO,

retracting edges with kinetically stable orientations do not exhibit the formation of

a valley [75], while retracting edges with kinetically stable orientations in (110) Ni

films do exhibit valley formation and pinch-off [76]. This disparity exists despite both

systems having equilibrium, low-index top facets, a criterion which past simulation

work suggests should be sufficient to suppress valley formation [26]. To determine if

our simulation technique captures the physical behavior of this system, we first created

a surface energy function based on DFT-calculated values of the surface energy of Ni

[72]. For low-index orientations, this function returned the DFT-calculated value

and returned a linear combination of these energies for intermediate orientations,

ignoring additional energy terms for corners and edges. The cusps corresponding to

equilibrium orientations were very slightly rounded to prevent 𝜉 (𝑛̂) from being ill-

defined at these orientations, similar to the smoothing proposed in Bonzel and Preuss

[77]. The surface energy of the (110) facet was also reduced by less than 1%, from

2.29 J/m2 to 2.28 J/m2 (though these quantities are effectively non-dimensional, as

units are not used internally in the simulation), to ensure that this very small facet

wasn’t washed out by the rounding of the cusps. Viewed along the appropriate cross-

section, this function is shown in figure 2-7, which shows that despite the absence

of an evident (011) cusp in 𝛾(𝑛̂), 𝜉(𝑛̂) still has an obvious facet. The ability of our

simulation method to accommodate more complex surface anisotropy such as this

is one of its core strengths. Following the lead of Jiang et al. [78], we introduced

a Willmore regularization term [59], −𝜀2
(︀
𝜅𝑠𝑠 +

1
2
𝜅3
)︀
, to our chemical potential to

give the faceting instability finite wavelength, as discussed above. In this case, 𝜀 was

simply set to 1.

We then used this 𝛾(𝑛̂) to conduct 2D edge-retraction simulations in 2D free-

standing wires, to isolate the effects of surface energy and diffusivity from any con-

founding effects of triple-line dynamics. Figure 2-8 shows the results of several such

simulations, with the wires cut along their long axis of symmetry for visual clarity. To

test our algorithm for anisotropic diffusivity, we assigned a diffusivity value to each

facet. For non-equilibrium orientations, we treated the surface as being micro-faceted
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Figure 2-7: A) The full surface energy function 𝛾(𝑛̂) derived from DFT values and
B) the cross-section of this function used to simulate Ni edge retraction. The insets
to the right are a close-up of 𝛾(𝑛̂) and 𝜉(𝑛̂) in the vicinity of the (011) facet. Values
are in units of J/m2.

and found the diffusivity through a weighted inverse sum, analogous to adding con-

ductance in series. As in experiments, valley formation occurs in the simulations of

(110) films and not in those of (100) films, even when diffusivity is isotropic. How-

ever, by manipulating the diffusivity across the (110) facet, we found that it is a

key parameter for controlling the relative size of the valley that forms in (110) films.

When the diffusivity across this facet is large, a deep, faceted valley develops. When

this diffusivity is low, valley formation is suppressed. Figure 2-8 A-B) contrasts these

two scenarios. Experimentally, valley formation is not observed in Ni (100) films [25],

and it is also absent in our simulations. We attribute this to the much deeper cusp

in 𝛾(𝑛̂) associated with the (100) facets, in comparison with the (110) facets. Figures

2-8 A) and 2-8 D) demonstrate that the experimentally observed behavior of both

(110) and (100) films can be accurately simulated using a single set of surface energy

and diffusivity functions.

In three dimensions, the range of phenomenology to explore is even richer, and the

impact of anisotropy is even more profound. As a simple example, a simulation of an

unperturbed Ni wire undergoing repeated ovulation demonstrates that our 3D code

retains the ability to handle topological changes naturally, see figure 2-9. 𝜉(𝑛̂) was
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Figure 2-8: 2D simulations of retracting film edges. Note very different x and y scales.
Full wires were 360 units long to start and 11 units tall (only the top half of the wires is
shown because the simulation is symmetric in this direction). A) Most closely matches
experiments (see 3), and D) shows that experimental behavior (suppressed valley
formation) in (100) films can be reproduced using the same parameters as A). The
upper-left corner of each subplot shows the diffusivity function used in the simulation,
while the lower-left corner shows how the orientation of the strip corresponds to the
equilibrium Wulff-shape (based on the function shown in Fig. 6 A-C)).

again based on the same DFT values as above, although only the three lowest energy

families of facets—(001), (011), and (111)—were used and they were configured to

have small spinodes at all corners and edges.

Simulating hole growth in a material with Ni–like surface energy anisotropy yields

profoundly different behavior compared to that seen in isotropic films. In figure

2-10, a film with a (100) top surface is initialized with a circular hole. However,

this hole quickly grows to its kinetic Wulff shape [6, 79] which in this case is bound

by long edges with [110] in-plane normals and truncated corners with [100] in-plane

normals. As the hole continues to grow, a corner instability develops [7], yielding

behavior with striking resemblance to experimental observations. To reduce the size
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of the simulation domain, only one quadrant of the film was simulated, and mirror

boundary conditions were used. This simulation was conducted using the same 𝜉(𝑛̂)

as the simulation in figure 2-9, with mirror boundary conditions used on the right

side of the wire. The film-substrate interfacial energy was set to 0.6 J/m2, to roughly

correspond to the partially non-wetting behavior seen in past studies of Ni (100)

films on MgO. This simulation was repeated with anisotropic diffusivity, see figure

2-11, which scaled as the exponential of surface energy for low–index planes and was

calculated using a weighted inverse sum for other orientations, as described above.

This simulation shows qualitatively similar behavior, to the simulation with isotropic

diffusivity, though anisotropic diffusivity is clearly sharpening the tip of the dendrite.

Finally, we simulated the growth of a hole with isotropic surface energy and the

same anisotropic diffusivity as above, see figure 2-12. This simulation was carried out

using a larger grid with no mirror boundary through the center of the hole to eliminate

any directional biasing introduced by the boundary conditions. Still, the resulting

behavior seems nearly dendritic in character, and simulations of this behavior on

larger domains would be very interesting.

Figure 2-9: Repeated ovulation of an Ni wire bound by (100) and (110) facets along
its length.
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Figure 2-10: An initially circular hole in a simulated Ni film with anisotropic 𝛾(𝑛̂)
and isotropic diffusivity. The corners of the hole begin to show dendritic morphology.
Coloration shows variation in height. Mirror boundary conditions were used with
reflections occurring through the middle of the hole. The full video is available in
Supplemental Materials (hole_1.mp4).

Figure 2-11: An initially circular hole in a simulated Ni film with anisotropic 𝛾(𝑛̂) and
diffusivity. The corners of the hole begin to show dendritic morphology. Coloration
shows variation in height. Mirror boundary conditions were used with reflections
occurring through the middle of the hole. The full video is available in Supplemental
Materials (hole_2.mp4).

Figure 2-12: An initially circular hole in a simulated film with isotropic 𝛾(𝑛̂) and
anisotropic diffusivity. The corners of the hole begins to show strange dendrite-
like morphology. Coloration shows variation in height. Mirror boundary conditions
were used with reflections occurring only at the edges of the displayed domain, not
through the center of the hole as in the two figures above. The full video is available
in Supplemental Materials (hole_3.mp4).
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2.3 Computational Performance

Our implementation of this simulation method was written in the Julia programming

language [80] which enables high performance code that is easy to write and read.

The most computationally intensive parts of our code have been parallelized, and

for the size of simulations demonstrated here, overall performance saturates when

3 threads are used in 2D and 6 threads are used in 3D. This is because the fast

marching package we use, scikit-fmm, is single-threaded and calls to its fast marching

and velocity extension functions become rate limiting for the simulation. We have

mitigated this issue through the use of scikit-fmm’s ability to only update points in a

narrow band around the 𝜑 = 0 level-set. We run our code on a workstation computer

with a 2019-era AMD Threadripper CPU. The 2D simulations shown here take tens

of hours to complete while the 3D simulations take can take several days. Code that

runs faster would allow for higher resolution simulations within reasonable times.

The resolution of the simulation limits the size of facets that can be resolved, and

simulations with resolution that is too low suffer from poor volume conservation and

missing details. A potential approach for increasing performance, and thus practical

resolution, is discussed below.

2.4 Future Work

The code developed for this work was designed with a high degree of modularity, with

an eye toward future improvements to physical accuracy and performance. As with

any simulation method, the degree to which this technique reproduces physical reality

is limited by the accuracy of the materials properties used as input. The relatively

simplistic models of 𝜉(𝑛̂) and 𝐷 (𝑛̂) used in this paper were evidently sufficiently ac-

curate to yield simulation results that recover experimental observations, but more

accurate models for 𝜉(𝑛̂) and 𝐷 (𝑛̂) will certainly lead to even more accurate simu-

lation results. From a performance standpoint, this code has been optimized to the

point where its calls to the scikit-fmm package are now the rate limiting steps. We
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think it should be possible to write a new implementation of the velocity extension

algorithm which allows multiple quantities (in this case, 𝜅𝛾and 𝑣𝑛) to be extended

without repeating redundant fast marching computations. We anticipate that this

could yield a roughly 3x boost in performance, perhaps more if the implementation

is also written in Julia to eliminate the overhead of calls to Python-wrapped C-code.

Another area of future work could be to use an adaptive simulation grid which locally

increases the resolution of the simulation in regions of high curvature. We also be-

lieve there are likely better ways to suppress the formation of non-physical sawtooth

surfaces than penalizing ∇2𝜑 (𝑥⃗), as we did here. Still, as demonstrated, this code

already has sufficient performance and accuracy to probe many physical phenomena

of interest in reasonable amounts of time.

2.5 Conclusions

The 𝜉(𝑛̂) level-set method of simulating morphological evolution proposed and demon-

strated above is capable of reproducing experimental results with a high degree of

fidelity. This method is capable of handling surface energy functions with hard

anisotropy in conjunction with anisotropic surface self-diffusivity. Critically, this

method overcomes the numerical stability and volume conservation issues which are

common in level-set simulations of high-order PDEs. The method uses ∇ · 𝜉 (𝑛̂) to

compute the weighted mean curvature which combines surface tension with geome-

try to produce the position-dependent surface-potential. The normal velocity 𝑣⃗ (𝑥⃗, 𝑡)

is computed from the surface Laplacian of weighted mean curvature. Incorporation

of redistancing and velocity extension algorithms produces enhanced numerical sta-

bility and allows our method to achieve volume conservation within a few percent

while maintaining the benefits of the level-set method, such as natural handling of

topological changes. We have shown that our method matches known behavior for

the isotropic Rayleigh instability and edge retraction. In addition, it matches be-

havior observed in experiments in which anisotropy plays a central role, including

the orientational dependence of valley formation ahead of retracting edges and the
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development of faceted holes that undergo a corner instability. Our software for sim-

ulating morphological evolution caused by anisotropic surface diffusion is available on

Github. This software will enable new research on solid-state dewetting, including

advances in understanding that will aid in the use of solid state dewetting to obtain

specific morphologies useful in micro- and nano-scale devices.
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Chapter 3

The Effects of Ambient Conditions on

Edge Retraction in Nickel (110) Films

* The work in this chapter was conducted in collaboration with Yoon Ah Shin and Baoming Wang. It will form the

basis of an upcoming paper and is also discussed in Yoon Ah’s thesis [81].

3.1 Introduction

As discussed in chapter 1.8.2, ambient conditions can have a profound impact on

dewetting phenomenology. In past work the impact of oxygen partial pressure on

dewetting Ni films was explored, by controlling the flow rate of a hydrogen-based

reducing gas to control 𝑃O2 [36]. In this chapter, we present new experimental findings

which show that the use of carbon monixide (CO) as a reducing gas also has a

profound impact on the dewetting behavior of Ni (110) films and use the simulation

technique introduced in chapter 2 to explain the observed differences.

3.2 Experimental Observations

As discussed in chapter 2, one dewetting phenomenon which has defied understanding

is valley formation in strongly anisotropic materials. In past work, our group has long
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observed that retracting edges in Ni (100) films do not exhibit valley formation, while

Ni (110) films form deep valleys which eventually touch down to the substrate [4, 6].

An early success of our modeling work was reproducing this result and showing that

the diffusivity of the top facet had a large impact on the rate of valley deepening.

This was a powerful validation of our simulation method, especially considering that

previous modeling work had concluded that valley formation was only possible in films

for which there was no stable top facet [26]. The ability to tweak materials properties

such as diffusivity is one of the most computational approaches’ greatest strengths

and is usually very difficult to achieve experimentally. As discussed in chapter 1,

however, changing the ambient conditions used during annealing is one way in which

the properties of the system can be significantly and reproducibly altered.

3.2.1 Experimental Apparatus

As part of a separate effort to understand the effects of ambient conditions on natural

hole formation, we designed and constructed an experimental setup which allows us to

safely use CO-based reducing gas (10% CO, 90% N2). This setup consists of an tube

furnace located inside a normally-closed fume hood. This furnace uses our standard

quartz glass tubes with a 20.5mm inner diameter. Reducing gas is flowed from a

small CO tank which is also kept inside the fume hood. To prevent users from having

to open the fume hood during furnace operation, gas flow rate is controlled by a

digital mass flow controller, which has the added benefit of using a normall-closed

solenoid. This means that a loss of power to the lab, which could also take the fume

hood offline, would cause gas flow to stop immediately. Additional safety measures

include custom fabricated aluminum hard lines connecting the gas tank to the furnace,

multiple CO detectors located throughout the lab, and a wireless emergency shutoff

which can stop gas flow from anywhere in the lab. One downside of this setup is

the small internal dimensions of the fume hood. Early experiments were plagued by

mysterious contamination which was eventually attributed to rubber O-rings used in

our gas fittings being overheated because they were too close to the furnace. The
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issue was resolved by carefully reorganizing the individual components to allow for

more space between the fittings and the furnace.

3.2.2 Experimental Procedures

To study the effects of ambient conditions on system properties, multiple 75nm-thick

Ni (110) films were deposited on 1cm2 MgO substrates. For more details on our depo-

sition conditions, see chapter 1.5 (pg. 38). These films were then patterned with large

(hundreds of microns in length and width) rectangular patches using photolithogra-

phy. A subset of these samples were then annealed at 950∘ C in our standard H2-based

annealing ambient (5% H2, 95% N2, flowed at 2300 sccm), while the other samples

were annealed at the same temperature using the CO-based reducing gas discussed

above, also flowing at 2300 sccm. The edge retraction, valley formation, and pinch-off

behavior of edges retracting along [110] directions were then then carefully observed

and quantified using HRSEM, TEM, and AFM. The [110] direction was chosen be-

cause it is a kinetically stable orientation in both ambient conditions. Additionally,

areas of the film were patterned with smaller patches designed to dewet into particles

or wires from which the relevant cross-section of the systems’ Winterbottom shape

could be extracted.

3.2.3 Experimental Results

These experiments yielded a wealth of data, though the main experimental findings

can be summarized by a few images, shown below. As shown in figure 3-1, after 1

hour of annealing, the films have retracted a significant distance (∼ 40 times initial

film thickness) along their [110] direction, with the H2-ambient film having retracted

slightly further. However, although the total degree of dewetting is comparable, the

morphology of the two films are very different. Most noticeably, the H2-ambient film

has formed a deep valley ahead of the rim while the CO-ambient film doesn’t ex-

hibit any noticeable valley formation. This morphological difference manifests itself
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as a fundamental difference in the dewetting behavior of the two systems, with the

H2-ambient films eventually undergoing pinch-off as the valley touches down to the

substrate, as shown in figure 3-2. Figures 3-3 and 3-4 show TEM cross-sections of

retracting H2-ambient and CO-ambient edges, respectively. Visible planes are labeled

with their measured orientations, though the higher-index labels in 3-3 likely corre-

spond to lower-index planes with steps in them. Without the exaggerated vertical

scale of the AFM images, valley formation is far more subtle.

Though this disparity in valley formation is the most obvious result from this set

of experiments, several other observations stand out. Perhaps most strikingly, the

leading side of the rim, i.e. the side that connects the top of the rim to the bulk film

or valley, is composed of a single, elongated 120-type facet. It is also apparent that

the top facet of the CO-ambient rim is much larger than its H2-ambient counterpart.

Finally, we also observe that the substrate is more deformed in the vicinity of the

triple-line in H2-ambient samples than in CO-ambient samples. We believe that this

interaction indicates that the MgO substrate has relatively high mobility under these

annealing conditions and that the deformation is an energetic accomodation, in line

with Rachel Zucker’s work on the double-Winterbottom construction [82].
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Figure 3-1: Effects of annealing ambient (H2 versus CO) on edge retraction and pinch-
off in 75-nm-thick Ni(110) films on MgO. (a),(b) Top-view SEM images of retracting
edges, after a 1-h anneal at 950∘C (a) in a reducing gas (5% H2 - 95% N2) flowing
at 2310 sccm, and (b) in a reducing gas (10% CO - 90% N2) flowing at 2310 sccm.
(c),(d) AFM height profiles measured along the dashed arrows in (a) and (b) in each
annealing ambient.
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Figure 3-2: Valley deepening and pinch-off during retraction of a patterned edge in
Ni(110) film on MgO in H2 ambient. (a) Time series AFM images of a retracting
edge along the [11̄0] direction in a 75-nm-thick Ni(110) film on MgO. The annealing
time is indicated at the top of each image. The annealing temperature was 950∘C
and the flow rate of the reducing gas (5% H2 - 95% N2) was 2310 sccm. The in-
plane crystallographic orientation of the Ni(110) film is indicated at the bottom left
corner. (b) AFM height profiles measured along the dashed arrows indicated in the
AFM images in (a). The vertical dashed line in each image in (a) indicates the initial
position of the patterned edge.

Figure 3-3: Cross-sectional TEM image showing the rim shape of a retracting edge in
a 75-nm-thick Ni(110) film on MgO, after a 1-h anneal at 950∘C in the H2 ambient.
Facets that appear on the rim are: (1̄10), (1̄20), (1̄40), (010), (140), (120), (230),
(110), (430), (850), (740), (320), (430), (760), and (110) at the valley. The height at
the valley 𝑍𝑚𝑖𝑛 is 45 nm.

78



Figure 3-4: Cross-sectional TEM image showing the rim shape of a retracting edge in
a 75-nm-thick Ni(110) film on MgO, after a 1-h anneal at 950∘C in the CO ambient.
Facets that appear on the rim are: (2̄10), (1̄20), (1̄30), (130), (120), (110), (210).
Valley did not form in the CO ambient.
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3.3 Computational Study

The experimental results presented above show that films annealed in these two dif-

ferent ambients exhibit profoundly different dewetting behavior. On it’s own, this is

a very interesting result, the implications of which are discussed below, however, it

is difficult to gain mechanistic insight from these experimental results alone. To bet-

ter understand how these two sets of ambient conditions lead to different dewetting

behavior, we turned to the modeling technique described in chapter 2.

3.3.1 Defining 𝜉(𝑛̂)

Before running any simulations, an appropriate 𝜉(𝑛̂) needed to be constructed for

each ambient condition. To this end, an equilibrated particle, from the H2-ambient,

and wire, from the CO-ambient, were cross-sectioned using FIB and subsequently

imaged in a TEM. The wire was oriented such that it’s length ran in the out-of-plane

direction of figures 3-1, 3-2, 3-3, and 3-4, and both cross-sections were taken in the

plane of those images. These cross-sections were then fit to a Wulff shape constrained

to respect the crystallographic symmetry of Ni. Relative surface free energy densities

were extracted from these fits, with the highest energy plane assigned a value of 1.

The relative interfacial energy 𝜎 = 𝛾𝑉 𝑆−𝛾𝑃𝑆

𝛾𝑃𝑉
can also be extracted from these fits.

In principle, it should be trivial to measure the relative surface energies of different

equilibrium facets by simply reverse-engineering the Wulff construction. However,

this assumes a perfectly symmetrical cross-section with a clearly defined center. In

practice, no cross-section is perfect, and fitting was done by generating a fully faceted

Wulff shape in Wolfram Mathematica, overlaying this shape onto the TEM cross-

section in Adobe Photoshop, adjusting the values of 𝛾 used to generate the Wulff

shape, and repeating the process until unable to achieve a better fit. The best fits

achieved are shown in figures 3-6 and 3-5, and the numerical values of the fits are

summarized in table 3.1.
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Measured Quantity H2-Ambient CO-Ambient

𝛾110 1.0 0.956938
𝛾120 0.975806 0.964912
𝛾140 not present 0.977671
𝛾010 0.951613 1.0
𝜎 ∼ 0.4 ∼ −0.2

Table 3.1: Measured Relative Surface Free Energy Densities of Ni Films in Different
Ambients

Figure 3-5: Cross-section of equilibrated Ni particle annealed in H2-based ambient
with fitted Wulff shape. 𝛾110 = 1.0, 𝛾120 = 0.975806, 𝛾010 = 0.951613.
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Figure 3-6: Cross-section of equilibrated Ni particle annealed in CO-based ambient
with fitted Wulff shape. 𝛾110 = 0.956938, 𝛾120 = 0.964912, 𝛾010 = 1.0, 𝛾140 = 0.977671.
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3.3.2 Simulating Edge Retraction

Using these measurements, a 𝜉(𝑛̂) was constructed for both ambients and used to

simulate edge retraction in two dimensions. The relative interfacial energy 𝜎 was set

to 0.4 for the H2-ambient films and -0.2 for the CO-ambient films. An additional

simulation was run pairing the CO-ambient 𝜉(𝑛̂) with the H2-ambient 𝜎 to separate

the effect of a higher 𝜎, i.e. a higher driving force for dewetting, from the contributions

of the very different 𝜉(𝑛̂). For all three simulations, all parameters outside the energies

used to construct 𝜉(𝑛̂) were kept the same. In particular the radius of curvature of

corners on 𝜉(𝑛̂) was set to 0.1 and the ∇2𝜑 smoothing coefficient was set to 0.2.

The results of these simulations are summarized in figures 3-7 and 3-8 which

present the same data with AFM- and TEM-like scalings, respectively. In both fig-

ures, panels A) and B) show the results of the H2- and CO-ambient conditions, re-

spectively, while panel C) shows the output of the hybrid condition simulation. The

two simulaations designed to match experimental conditions do in fact reproduce ex-

perimental behavior, with deep valley formation exhibited by the H2-ambient film

and no valley formation shown by the CO-ambient film. The hybrid film shows very

minimal valley formation, suggesting that the high driving force for dewetting and

larger effective contact angle make a much smaller contribution to valley formation

than the Wulff shape itself. Another experimental observation, that the top facet of

the retracting rim is proportionally larger than that of the equilibrium particle, is

also reflected in these simulations. Furthermore, the experimental observation that

the leading side of the rim is composed of a single, elongated facet is also born out

by the simulations.
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Figure 3-7: Summary of simulation results with equal axis scaling (comparable to
AFM images). C) shows a fictitious system with the Wulff shape of the CO–based
ambient and the effective contact angle of the H2–based ambient. This shows that it
is not effective contact angle which primarily drives valley formation.

84



Figure 3-8: Summary of simulation results with equal axis scaling (comparable to
TEM images). C) shows a fictitious system with the Wulff shape of the CO–based
ambient and the effective contact angle of the H2–based ambient. This shows that it
is not effective contact angle which primarily drives valley formation.
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3.3.3 Discussion of Computational Results

The simulations presented above were able to reproduce experimental results with

high fidelity. It is notable that the simulations assumed isotropic surface energy,

indicating that the most striking experimental features can be explained solely in

terms of surface energy anisotropy. The enlargement of the top facet, relative to the

equilibrium shape, on retracting rims and the fact that the leading side of the rim

is composed of a single facet are both features which one might expect to result pri-

marily from anisotropic diffusivity, but these simulations demonstrate that is not the

case. Additionally, this work shows that the disparity between H2-ambient behavior

and CO-ambient behavior is more directly attributable to the different 𝜉(𝑛̂), not the

different 𝜎.

3.4 Summary and Conclusions

The fundamentally different behavior exhibited by Ni (110) films annealed in our H2-

and CO-based ambients provides an opportunity to explore the fundamentals of valley

formation during edge retraction. For films annealed in a H2-based ambient, edges

retracting along [110] directions exhibited significant valley formation and dewetted

into particles with small top facets and a large effective contact angle (𝜎 ≈ 0.4). Films

annealed in a CO-based ambient, retracting along the same direction, exhibited no

valley formation and dewetted into particles with much larger top facets and a lower

effective contact angle (𝜎 ≈ −0.2). Importantly, the H2-ambient films eventually

underwent pinch-off. As explored in Ref. [21], this pinch-off behavior is periodic and

thus leads to retraction distance scaling linearly with time over sufficiently long time

scales. The lack of pinch-off in CO-annealed films means that their edge-retraction

rate will monotonically decrease with time, leading to greater morphological stability.

Our simulations demonstrate that this primary observation, in addition to the

faceting of the rim’s leading side and the enlargement of its top facet in both films, can

be explained primarily by the features of 𝜉(𝑛̂), without needing to invoke anisotropic
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diffusivity or modify the effects of effective contact angle. This highlights the im-

portance of correctly handling anisotropic surface energy in computational studies of

dewetting. Additionally, the totality of these observations further demonstrates that

dewetting behavior can be extremely sensitive to ambient conditions and that lessons

learned from one set of conditions do not necessarily carry over to another.
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Chapter 4

The Stability of Single-crystal

Ruthenium Nanowires

* The work in this chapter was conducted as part of a collaboration and is the focus of an upcoming paper [83]. Film

deposition was carried out by Quintin Cumston, lithography by Andrew Warren, and TEM by Baoming Wang.

4.1 Introduction and Background

Materials that are in cylindrical form are expected to break up into particles through

a process first described for liquid jets by Plateau [29] and analyzed by Lord Rayleigh

[27]. Rayleigh’s instability analysis showed that a cylinder with isotropic surface

energy and radius 𝑅0 will decompose through growth of perturbations having a

wavelength greater than 𝜆𝑐𝑟𝑖𝑡 = 2𝜋𝑅0. Nichols and Mullins showed that this re-

sult also holds for solid cylinders with isotropic surface energy that evolve through

capillary-driven surface diffusion [30]. They further showed that when the shape

evolves through surface diffusion, the fastest-growing perturbation has wavelength

𝜆𝑚𝑎𝑥 = 2
√
2 𝜋 𝑅0 , such that the resulting particles tend to be spaced at this dis-

tance. In addition, it was shown that the rate at which this perturbation grows is

fixed for a given 𝑅0, and increases with decreasing 𝑅0. The analysis of Nichols and

Mullins has been extended to the case of wires on substrates which they partially wet
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with contact angles between 0 and 180∘ [45].

Santala and Glaeser showed that wire-shaped voids with lengths much greater

than their average diameter that were artificially created in single crystals of sap-

phire broke up into more axisymmetric voids, as expected for a Rayleigh-like insta-

bility [32]. However, they found that the rate of this Rayleigh-like break up and

the spacing and size of the voids that formed were strongly affected by the crystal-

lographic orientation of the axis of the wire-shaped voids. More recently, Kim and

Thompson showed that the break-up of Ni wires formed from patterned single crystal

films broke up through a Rayleigh-like process that was also strongly dependent on

the crystallographic orientation of the wire axis [5].

While Rayleigh-like break-up of wires with isotropic properties can be readily

analyzed and simulated, the effects of anisotropy are much harder to treat, especially

when facetted surfaces develop. Cahn originally studied the effects of anisotropy

which was rotationally isotropic about the axis of a cylinder [84], while Gurski and

McFadden more recently examined the stability of wires with cubic anisotropy [85].

However, a general understanding of the effects of anisotropy on the stability of wires

has not emerged.

In this chapter we report on detailed studies of the break-up of single crystal Ru

nanowires with axes aligned along different crystallographic directions. We find very

pronounced effects of crystalline anisotropy on the Rayleigh-like break up of these

wires and further show that break up of wires bound by equilibrium facets along

their length is fully suppressed. We show that key features of these experiments are

reproduced using a new level-set simulation of dewetting that captures the effects of

anisotropic properties [ref to methods paper].

4.2 Experiments

Single-crystal (0001) Ru films were grown on (0001) sapphire substrates using DC

magnetron sputtering, as detailed in reference [86]. Post deposition, but prior to
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lithographic patterning, samples were step annealed in a vacuum furnace. The furnace

tube was pumped down to 20 mTorr and then Ar/H2 flowed at 16 sccm to provide a

pressure of 100 mTorr during the annealing process. The furnace was then brought

to 450∘ C and held for 1 hour. The temperature was subsequently increased in 100∘

C steps and held for one hour at each step until reaching and being held at 950C

for 30 min. The temperature was then stepped down by 200∘ C every two hours

until reaching 350∘ C, at which point it was allowed to cool to room temperature

naturally. Ru was chosen both because of potential technological applications [87,

88] and because its HCP crystal structure seemed likely to yield behaviors which

differed from those of well-studied FCC metals, such as Ni [4, 6, 8], and diamond

cubic materials, such as Silicon [89, 90], in interesting ways.

For dewetting experiments, films were first patterned into large patches or long

narrow strips using e-beam lithography. Patterned samples were then annealed in

a tube furnace through which 95%Ar/5%H2 was flowing at 2300 sccm. The inner

diameter of the furnace tube was 20.5mm. In experiments on large patterned rect-

angular patches of films, hundreds of microns in each dimension, it was found that

annealing at 950∘ C for 3 hours resulted in solid-state dewetting to an intermedi-

ate state consisting of elongated wire-like features and hexagonal rings aligned along

< 1120 > directions, as shown in figure 4-1. This result suggested that wires with

these alignments were likely to be resistant to Rayleigh-like breakup.

With this information, e-beam lithography was used to pattern radial arrays of

nominally 10um long, 20nm wide strips of Ru from 5nm thick films. Each array

contained 72 wires, each offset by 5∘ from its neighbors. The wafer was patterned with

several replicate subsamples, each patterned with different e-beam exposure dosages

to ensure at least one well-resolved subsample. Each subsample contained 10 such

arrays, the first with 6 strips aligned along < 1120 > directions and each subsequent

array being increasingly offset from this in 0.5∘ increments, resulting in half-degree

angular resolution overall. Figure 4-2 shows the layout of a single starburst, and figure

4-3 shows the lithographic pattern used to create the full array. This sample was
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Figure 4-1: Representative view of a 5nm-thick (0001) Ru film annealed at 950∘ C
for 3 hours. Solid state dewetting led to an intermediate state composed of wire-like
features aligned along < 1120 > orientations.

then annealed at 915∘ C for 3 hours and subsequently studied using high-resolution

scanning electron microscopy (HRSEM). During annealing, the sides of the strips

retracted to form wires and then most of the wires broke up into particles. The

results from the best-resolved subsample, summarized in figure 4-4, are striking (other

subsamples patterned with other dosages had strips which differed slightly in initial

width but yielded very similar behavior).

Wires aligned along < 1120 > directions were seen to be much more stable than

wires with other orientations, with most remaining entirely intact and contracting

significantly in length, while those offset by even a few degrees underwent negligible

length contraction and broke up into dozens of particles. The dependence of both the

number of particles and length contraction on strip orientation is highly non-uniform,

with sharp cusps at stable orientations and the majority of the effect being saturated

within a few degrees of offset.
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Figure 4-2: This figure shows a schematic of a single starburst array that includes
wires with crystallographic axes aligned along < 1120 > directions with other wires
that are off-set by 5∘ increments. The full pattern shown in figure 4-3 consists of 50
such arrays with different orientations and as-patterned line widths.

A cross-sectional Transmission Electron Microscope (TEM) image of a stable Ru

wire is shown in figure 4-5(a). This image shows that the wire is bound by specific

low index facets. The wire was sectioned such that the image plane was normal to the

axis of the wire, Fig. 4-5(b). The observed facets correspond well with equilibrium

facets on the Wulff shape [15] generated from DFT calculations using the 3 lowest

energy planes of Ru [72]. This supports the understanding that the facets seen in the

cross-sectional image lie parallel to the axis of the wire. The Wulff shape shown in

Fig. 4-5(c) has been generated with slightly rounded corners and edges to match the

experimental observation. A wire bound by facets along its length is expected to be

resistant to a Rayleigh-like break up because of the large energy penalty associated

with growth of perturbations of the stable facets. This having been said, we have

found that this effect is surprisingly strong, even in the presence of rounded corners
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Figure 4-3: The full lithographic pattern used to create the first batch of samples.
The labels on the left indicate the nominal strip width of the arrays in that row,
and the labels across the top indicate the rotation of the starbursts in that column,
relative to the alignment shown in the inset of figure 4-2. In practice, the pattern was
not well-resolved for 5nm and 10nm wide strips. Multiple replicates of this pattern
were created on the same wafer, using a different e-beam dosage for each replicate.
The data used in this paper came from the replicate corresponding to a beam dosage
of 3800 𝜇C/cm2.

and edges.

To explore the mechanisms leading to this very strongly orientation-dependent

behavior, we patterned a new sample with starbursts of initially ∼70 nm–wide strips.

These strips were patterned by using a PMMA lift-off process to pattern an SiO2 hard

mask over the Ru film. This more complex patterning process was used because of

COVID–era difficulties in obtaining HSQ. These wider samples were annealed under

the same conditions as above in short time increments and examined between anneals

using HRSEM. The sides of the strips rapidly retracted to form wires, and these wires

then displayed behavior similar to that described above. The larger wire diameter led

to slower evolution and to features that were more readily resolved in HRSEM images.

Note that wires of all orientations have nominally identical cross-sectional areas, and

in the isotropic case, would be expected to break up at the same rate to form particles
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Figure 4-4: Summary of experimental results for patterned 20nm-wide lines (see figure
4-5 for post-anneal cross-section). (a) A representative image of dewetted wires after
annealing at 950∘ C for 3 hrs. The wire aligned along a < 1120 > direction has
not broken up, but it has shortened significantly. Lines with other orientations have
broken up but have not significantly shortened. (b) A close up of the end of the
stable wire, highlighting how mazss from the retracting end has accumulated in a
sharply defined thicker segment. (c) and (d) Plots of the average number of particles
as a function of wire orientation, with (c) showing the whole range in 5∘ increments
and (d) focusing on lines lying between ±5∘ around the central cusp in half-degree
increments. Points show results for individual wires and the line indicates the average.
e) and f) Plots of the average length contraction as a function of orientation, at 5∘
and 0.5∘ increments, respectively. For unstable wires, length contraction is defined
as the difference between the as-patterned length and the distance between the two
outermost particles.

with the same size and spacing. As previous work on single-crystal wire stability [5]

would suggest, the development of a Rayleigh-like instability is evident for all but

the wires aligned along < 1120 > directions. Fig. 4-6(a) shows the development

of such an instability on a wire offset from < 1120 > by 5∘ . The wavelength of

this instability is relatively large and leads to large particles at correspondingly large

spacings. For larger angular offsets (Fig. 4-6(b), the periodicity of break-up, and thus

the final spacing of the particles, was significantly smaller. In all cases, the Rayleigh

instability develops with some irregularity along the length of the wire because it
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Figure 4-5: a) A cross-section of a stable wire obtained using focused ion beam sec-
tioning and transmission electron microscopy. (b) Illustration of the TEM image
plane relative to the axis of the wire, and c) the Wulff shape assumed in our simula-
tions, with the relevant cross-sectional plane from (a) and (b) shown in gray.

Figure 4-6: Images at selected times showing the evolution of a wire with 5∘ offset
relative to a < 1120 > direction, showing mostly Rayleigh-like breakup. b) Wires
with selected offsets after 45 min of annealing showing evidence of both Rayleigh-like
and ovulation behavior. Note that breakup of the 5∘ wires in both a) and b) leads to
a significantly greater characteristic spacing than the wires with larger offset, which
share similar particle spacings.
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arises from random perturbations to the wire’s surface. Therefore, at intermediate

stages, long segments of unbroken wire coexist with fully-formed particles. These

particles are observed to have a relatively broad distributions of sizes and spacings.

4.3 Simulations

To better understand the phenomenological observations made above, we used our

recently developed simulation method, see chapter 2, to simulate the evolution of

finite, cylindrical, free-standing Ru wires. In dimensionless units, these wires had

length 379, and radius 5, with an initial sinusoidal perturbation of wavelength 10 and

amplitude 0.1 to provide some surface roughness. Simulations were conducted using

a Cahn-Hoffman vector 𝜉 (𝑛̂), corresponding to the Wulff shape shown in Fig. 4-5(b),

see Supplementary Information for more details. The role of 𝜉 (𝑛̂) in encoding surface

energy anisotropy in our simulations is discussed in detail in chapter 2[citation of

methods paper]. In short, 𝜉 (𝑛̂) is a vector-valued quantity derived from material’s

surface energy 𝛾 (𝑛̂). Taking the divergence of 𝜉 (𝑛̂) along an object’s surface yields

it’s weighted mean curvature, denoted 𝜅𝛾, which can be used as a replacement for the

product 𝜅 · 𝛾 in the isotropic Mullins equation. Simulations were conducted for wires

offset from < 1120 > by 5∘ , 10∘ , 20∘ , and 30∘ , in the same plane as the experiment.

For computational efficiency, only the top half of the wires were simulated, and mirror

boundary conditions were used. A wire aligned along the stable orientation was

simulated as well. The simulations used in this paper were implemented using the code

developed in chapter 2. The surface energies used to create 𝜉 (𝑛̂) for these simulations

were 2.6 for {0001} surfaces, 2.88 for < 1120 > surfaces, and 2.91 for < 1120 >

surfaces. These correspond to the DFT-obtained surface energies, in J/m2, found in

Ref. [72], however units are not used inside the simulation. All measures of length

used in reference to the simulation (for example, the initial length of 379) are given in

terms of the grid spacing underlying the simulation. Measurements of time come from

the velocity term in the Mullins equation 𝑣 = −𝐵∇2
𝑆𝜅

𝛾 = −𝐵∇2
𝑆

(︁
∇2

𝑆𝜉 (𝑛̂)
)︁
. In all

simulations shown in this paper, B is simply taken to be 1 for all surface orientations.
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Thus, the measurements of time and length given by the simulations could be easily

rescaled to physical units if B,𝜉 (𝑛̂), and the grid spacing were assigned physical values.

As discussed in chapter 2, the level-set function 𝜑 (𝑥⃗, 𝑡) is smoothed by adding a term

which penalizes ∇2𝜑 (𝑥⃗, 𝑡) to the diffusion potential. In the simulations shown here,

the numerical pre-factor multiplying ∇2𝜑 (𝑥⃗, 𝑡) was set to 0.4.

As in the experiments, the simulated wire aligned along the < 1120 > contracted

significantly in length with no breakup or evidence of a Rayleigh-like instability. In the

other simulations, ovulation [31] of the wires’ ends led to greatly reduced contraction

in length—measured as the difference between the initial length of the wire and the

span between the two farthest points of Ru surface once evolution is complete, see

Fig. 4-7(a).

Figure 4-7: Examples of simulations reproducing experimentally observed behav-
ior. a) A stable (0∘ offset) wire undergoing length contraction with no ovulation or
Rayleigh instability. b) Simulation of a wire offset from the stable orientation by 30∘ .
Both Rayleigh-like and ovulation modes are evident. c) A snapshot from a 10∘ offset
simulation matching the behavior of a segment of a 6∘ offset wire from experiment.
The values for time given in the simulations can be compared across figures but are
not directly comparable to experiments. Full videos of both a) (wire_0_degree.mp4)
and b) (wire_30_degree.mp4) are available in Supplemental Materials.

For all non-zero offsets, Rayleigh instabilities develop along the length of the wire,

with the instability on the 5∘ offset wire having a much larger wavelength. Rayleigh-
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like pinch-off does not occur everywhere at the same time, so long segments coexist

with fully broken-up regions, as in experiments. The ends of the long segments begin

to ovulate as they retract so that ovulation significantly contributes to the overall

break-up process, Fig. 4-7(b) shows an example. Qualitative comparisons of simu-

lation snapshots and experimental images suggest that the simulations are faithfully

capturing many details of the experimental system, as exemplified in Fig. 4-7(c).

These comparisons also drew attention to experimental images in which ovulation

appears to be occurring or to have recently occurred, including at the ends of long

segments created by Rayleigh-like pinch-off. From such comparisons, we conclude

that both Rayleigh-like modes and ovulation play critical roles in the breakup of Ru

nanowires and that it is the combination of Rayleigh-like pinch-off and ovulation that

leads to the relatively broad distributions of particle sizes and spacings observed in

both the simulations and experiments. The importance of ovulation, particularly

ovulation acting on long segments created from initially Rayleigh-like behavior, is an

unexpected result that challenges the idea that the Rayleigh instability is the dom-

inant mechanism of breakup for long wires. It is especially noteworthy that wires

bound by facets along their length are stable with respect to both Rayleigh break-up

and ovulation. The simulations reproduce the experimentally observed orientational

sensitivity of both the retraction distance and the number of particles into which a

wire breaks up, as shown in Fig. 4-8.
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Figure 4-8: Comparison of experimental and simulation results. a) and b) in this
figure reproduce the data in Figs. 4-4 (c) and (e) while c) and d) in this figure show
analogous plots based on simulation results. Each orientation is assigned a distinct
color, so that results can be readily compared.

4.3.1 Additional Simulation Time Series

Time series from simulations of wires with the stable orientation and a 30∘ offset are

shown in Fig. 4-7. Time series for the other simulations referenced in this chapter

are shown below. Full videos of all simulations referenced in this chapter are also

available in Supplemental Materials.
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Figure 4-9: Time series of simulated ruthenium nanowire with 5∘ offset. See Supple-
mental Materials (wire_5_degree.mp4) for a full video.

Figure 4-10: Time series of simulated ruthenium nanowire with 10∘ offset. See Sup-
plemental Materials (wire_10_degree.mp4) for a full video.
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Figure 4-11: Time series of simulated ruthenium nanowire with 20∘ offset. See Sup-
plemental Materials (wire_20_degree.mp4) for a full video.

102



4.4 Conclusions

Understanding the morphological stability of nanowires with strongly anisotropic

properties has proven to be a challenging problem for some time. In experiments

using single crystal Ru nanowires aligned along different crystallographic axes, we

have shown that wires bound by facets along their length are stable with respect

to Rayleigh-like break-up and ovulation, while wires with nominally the same cross-

sectional dimensions but different orientations breakup through an interplay of both

mechanisms. We show that a level-set simulation that accounts for the effects of

strong surface energy anisotropy reproduces the behavior seen in experiments. These

results point to the importance of crystallographic alignment in producing morpho-

logically stable nanostructures and provides a framework for analysis and prediction

of morphological stability that accounts for the strong crystalline anisotropy.
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Chapter 5

A Simple Model of Dendritic

Dewetting

* This chapter is adapted from an upcoming paper [91].

In several materials systems, it has been observed that the rims of growing holes

can become unstable and develop dendritic morphology [6, 75, 89, 92–97]. Exper-

imental characterization of these dewetting dendrites [7] has identified key features

which hint at the underlying mechanisms of their growth including:

1. These dewetting dendrites are oriented such that their main axis is along specific

crystallographic orientations.

2. The rim height at the tip of the dendrite is small and doesn’t increase over time.

3. The tips of the dendrites propagate with constant velocity [7].

Recently, kinetic Monte Carlo (KMC) simulations have also been used to explore

hole growth phenomenology from an atomistic perspective [98]. Despite their scien-

tific and practical interest, a clear explanation of dendritic dewetting phenomenology

is absent from the literature. On the other hand, dendritic solidification has been

studied and explained far more thoroughly (see Refs. [99–101], for example). The

striking resemblance dewetting and solidification dendrites bear to one another, as
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Figure 5-1: An initially square hole (outlined with white dashed line), the corners of
which have become unstable and begun to exhibit dendritic behavior. The film (light
gray) is an 85nm Ni (100) film on MgO (dark gray) annealed for 6hrs at 950∘ C in
flowing 95% H2, 5% N2.

well as the observation that both phenomena arise in systems with diffusive transport

in a highly out of equilibrium system, suggests that an analogy between these two

systems might provide insight into dendritic dewetting. In this chapter, we formalize

this analogy and explore the space of behaviors it predicts, drawing inspiration from

comparisons to both dewetting experiments and the solidification literature.

First, we illustrate that the physics of dewetting can be modeled as a two-dimensional

problem by separating the effects of in-plane and out-of-plane curvatures—which we

will denote 𝜅tl (tl for triple–line) and 𝜅rim, respectively—and embedding them as effec-

tive quantities defined along the triple–line. In other words, the triple–line is treated

as a dynamic curve in two spatial dimensions, and the height of the rim ahead of

the triple–line is inferred by the volume accumulated during retraction. These two
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quantities are used to calculate the motion of the triple–line, as detailed below. In

analogy to the stabilizing effect of surface tension on the Mullins-Sekerka instability,

linear stability analysis of our simplified dewetting model shows that the triple–line

is fundamentally unstable unless an equivalent line-tension term appears. Next, we

find that further insight into dewetting is provided by comparison to dendritic solid-

ification and the Saffman-Taylor instability in Hele-Shaw cells [102]. In particular,

we explore how these systems relate to the notion of microscopic solvability (the idea

that dendrite morphologies are stable attractors in configuration space [101]) as a

necessary condition for steady–state pattern selection (i.e. dendritic morphologies)

and propose that the combined effect of anisotropic surface energy and diffusivity

can satisfy an analogous solvability condition in dewetting systems. We illustrate the

plausibility of this solvability condition by studying the role of anisotropy in level-set

simulations of our model, making use of the method of characteristics to visualize the

role of anisotropy.

5.1 Background

According to the Mullins equation developed for isotropic systems [40], surface self-

diffusion driven by gradients in curvature leads to surfaces whose velocity along their

normal is proportional to the surface Laplacian of curvature. In the case of a straight

edge in a semi-infinite thin film, mass flows from the triple line and accumulates in

a growing rim. The profile of this rim determines the flux of mass normal to the

triple–line, see Figure 5-2. Larger rims lead to a lower overall driving force for edge

retraction, and approximating the rim as having a semi-circular cross-section along

which rejected mass diffuses yields that the velocity of the rim, 𝑣 ∝ ℎ−3 [7, 20].

For edges retracting away from their center of curvature—such as a hole in a film—

this relationship is more complicated, as the arc-length of the triple–line is increasing,

spreading out the accumulated mass over a greater length of rim. This reduces the rim

height in regions of high curvature (𝜅tl is defined to be positive for regions of triple–line

protruding into the film, as in Figure 5-2), driving faster retraction. Likewise, regions
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Figure 5-2: Schematic of assumed corner geometry. A) Top view with triple–line
highlighted in red. B) Perspective view. C) Side view highlighting the path of material
rejected away from the triple–line (blue) and the dependence of retraction velocity
on rim height (yellow).

in which 𝜅tl < 0 accumulate mass in their rims more quickly and therefore retract

more slowly. Additionally, as we explore below, 𝜅tl can be thought of as interacting

with an effective line tension that resists increases in 𝜅tl.

In single-crystal films, sufficiently large holes of any initial shape grow to be bound

by kinetically stable edges with straight morphologies that, due to the combined

effects of both anisotropic surface energy and diffusivity, retract more slowly than

edges with other orientations [6]. However, the corners of these holes are localized

regions of high in-plane curvature and can become unstable and propagate faster than

the rest of the hole as mass rejected from the triple line accumulates in the straight

sections of rim left behind by the corner. These corners propagate along specific

crystallographic directions and develop dendritic morphologies as they race ahead of

the rest of the rim.

Solidification fronts exhibit a similar curvature–induced enhancement/retardation

dynamic, as shown in the analyses of Mullins and Sekerka [99, 100]. During solidi-

fication, the rate at which either heat (for a pure system) or solute (for an alloy) is

dissipated away from the solidification front controls the rate of solidification. The
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heat/solute accumulates ahead of the solidification front and decreases the local driv-

ing force. This accumulation of heat/solute is analogous to the increase of rim height

ahead of a dewetting triple–line. The key insight made by Mullins and Sekerka was

that areas of positive curvature increase the arc-length of the solidification front as

they grow. This increases the area over which rejected heat/solute is dissipated, lo-

cally reducing the concentration of heat/solute and increasing the driving force for

solidification. Likewise, areas of negative curvature lead to rejected heat/solute accu-

mulating more rapidly ahead of the front, reducing the driving force for solidification.

In this model, any perturbation of the solidification front will be amplified over time.

However, Mullins and Sekerka’s initial analysis ignored the effect of surface tension,

as did early work on steady–state tip morphology [103, 104]. Attempts to rectify this

issue instead determined that any degree of capillarity in an isotropic system elimi-

nated the dendritic instability, as the tips of runaway perturbations would be blunted

by capillary effects and grow in size [101, 105–108]. Two review papers by Langer

[101, 109] provide an excellent overview of these models, their successes, and their

shortcomings. Instead, it was determined that dendritic solidification was only possi-

ble in the presence of surface energy anisotropy that fixes the dendrite tip’s geometry,

a condition called solvability [101]. More specifically, solvability theory hypothesizes

that a necessary condition for dendritic behavior is the existence of a tip geometry

that is an attracting fixed point in configuration space [101]. This means that so-

lidification dendrites propagate along specific crystallographic axes, as in dewetting.

Clearly there are parallels between these two systems, which we discuss below in more

depth.

5.2 Building an Analytical Model

To formalize the analogy between dendritic dewetting and dendritic solidification,

we developed a simple analytical model of dewetting. Our model assumes that the

rim ahead of the triple–line has a semi-circular cross-section of radius ℎ, which we

illustrate for the corner of a rectangular hole in figure 5-2. Our model focuses only
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on mass transport orthogonal to the triple–line which we justify by noting the gra-

dient in chemical potential should be far larger in this direction than along the rim,

unless ∇𝑠𝜅tl is very large. This is supported by experimental observations showing

that rim height varies relatively slowly along the rim [7] and by noting that in-plane

curvature of the triple–line creates roughly equal and opposite gradients of curvature

on the hole–side and film–side of the rim, a point which will have further significance

in our analysis below. We assume that mass rejected from the triple–line accumu-

lates in the rim with a semi-circular cross-section, such that the effective gradient in

curvature over the rim goes as ℎ−2 and the retraction velocity goes as ℎ−3, where

ℎ is the height of the rim. Notably we assume the same rim geometry as Bran-

don and Bradshaw’s analysis [20] and obtain the same scaling relationships, but as

Ref. [24] shows, Brandon and Bradshaw’s model makes two errors that happen to

cancel and yield the correct result. Namely, Brandon and Bradshaw take retraction

velocity to go as the first derivative of curvature, rather than the second derivative,

while also erroneously scaling the rate of mass accumulation with the height of the

rim, rather than the height of the film, recovering an extra factor of ℎ left out by

their first mistake. In either case, it has been noted that this geometric construction

does not correctly treat the region of transition between the rim and unperturbed

film and thus does not rigorously conserve volume [24]. In principle, this criticism

is valid, but the development of a valley ahead of the dewetting rim, as seen in [21,

39], shows that this transition region is far smoother than in the volume conserving

model proposed in [24]. Importantly, the construction presented here predicts that

the retraction distance of a straight edge should scale as 𝑡2/5, which is, after initial

transients, the scaling predicted by far more sophisticated models, [21, 24, 39] and

observed in experiments [6, 25].

Using this construction, we can, at every time 𝑡, uniquely label each point along

the triple–line, 𝑥⃗ and assign to it a value ℎ(𝑥⃗, 𝑡), defined as the maximum height of

the rim along a line emanating from that point, normal to the triple–line, see Figure
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5-2. The velocity of the triple–line is a function of this height,

𝑣(𝑥⃗, 𝑡) = 𝛼ℎ−3(𝑥⃗, 𝑡). (5.1)

As discussed above, it is important to correctly capture the effect of the triple–line’s

in-plane curvature on the in-plane arc-length of the rim. Such curvature leads to

either localized arc-length expansion or contraction, which, in turn, either enhances

or counteracts the dissipation of mass rejected from the triple–line, respectively. For

a small segment of rim of arc-length 𝐿 which has volume 𝑉 and in-plane curvature

𝜅tl, the cross-sectional area 𝐴 of the rim is given by 𝑉
𝐿
. We want to see how 𝐴 changes

as the rim advances. If we use 𝜈 to describe the displacement of the triple–line along

its normal, we find that

𝜕𝐴

𝜕𝜈
=

𝜕

𝜕𝜈

(︂
𝑉

𝐿

)︂
=

𝜕𝑉
𝜕𝜈
𝐿− 𝑉 𝜕𝐿

𝜕𝜈

𝐿2
(5.2)

=
ℎ0𝐿 · 𝐿
𝐿2

− 𝑉 𝜅tl𝐿

𝐿2

= ℎ0 −
𝑉 𝜅tl

𝐿

= ℎ0 − 𝐴𝜅tl

𝜕𝐴

𝜕𝜈
= ℎ0 − 𝜅tl

𝜋

2
ℎ2 (5.3)

To convert back to rim height,
𝜕ℎ

𝜕𝑡
=

𝜕𝐴

𝜕𝑡

𝜕ℎ

𝜕𝐴
.

For a semi-circular rim, this yields

𝜕ℎ

𝜕𝑡
=

𝛼ℎ0

𝜋ℎ4
− 𝛼𝜅tl

2ℎ2
. (5.4)

Finally, since velocity is only a function of rim height,

𝜕𝑣

𝜕𝑡
=

𝜕𝑣

𝜕ℎ

𝜕ℎ

𝜕𝑡
,
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𝜕𝑣

𝜕𝑡
=

3𝛼2𝜅tl

2ℎ6
− 3𝛼2ℎ0

𝜋ℎ8
. (5.5)

In analogy with Mullins and Sekerka [100], we examine the behavior of a retracting

rim with a small sinusoidal perturbation. If we imagine a nearly straight retracting

triple–line with in-plane profile

𝑦(𝑥, 𝑡) = 𝑦0(𝑡) + 𝛿(𝑡) sin(𝑘𝑥), (5.6)

such that the positive 𝑦-direction points into the film and 𝑦0(𝑡) ∝ 𝑡2/5 denotes the

retraction distance of an equivalent triple–line without a perturbation, for small delta,

𝜅tl ≈ −𝑦′′ = 𝛿𝑘2 sin(𝑘𝑥). The minus sign in our expression for triple–line curvature

preserves the sign conventions we established above. This means that

𝜕𝑣

𝜕𝑡
=

3𝛼2𝛿𝑘2 sin(𝑘𝑥)

2ℎ6
− 3𝛼2ℎ0

𝜋ℎ8
.

Therefore, in the frame of reference moving with the velocity of an unperturbed rim,

𝛿

𝛿
=

3𝛼2𝑘2

2ℎ6
. (5.7)

According to this analysis, all perturbations are unstable (i.e., they have positive

acceleration when 𝛿 sin(𝑘𝑥) is positive and negative acceleration where 𝛿 sin(𝑘𝑥) is

negative), with shorter wavelength perturbations being more unstable.

5.3 Comparison to Simulation

The model produces highly unstable behavior, but from the Mullins-and-Sekerka-style

analysis alone, it is difficult to tell if our model captures fully dendritic behavior.

For this, we turn to computational modeling, specifically a simple level-set method

simulation [110, 111] in which the signed distance function 𝜑(𝑥⃗, 𝑡) is the distance from

the triple line measured in the plane of the substrate, and the rim height ℎ(𝑥⃗, 𝑡) is

stored on the same grid as 𝜑. The triple line is advanced according to equation 5.1
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and the rim height is updated according to equation 5.4. Both the rim height and

the velocity calculated at the triple line are extended over the entire computational

domain using the Python package scikit-fmm’s implementation of the Fast Marching

algorithm [67–69]. Periodic redistancing of 𝜑, which returns it to a signed-distance

function, is also implemented using scikit-fmm. A discussion of numerical artifacts

and volume conservation is presented in the supplementary information. Selected

snapshots from one such simulation are shown in figure 5-3.

Isotropic Dendritic Instability

Figure 5-3: A level-set method simulation of our simple Mullins-and-Sekerka-inspired
model. An initially square hole immediately exhibits dendritic instability at the
corners.

The simulation appears to reproduce dendritic behavior, including a steady–state

tip morphology and side-branching. However, as in Mullins and Sekerka’s linear

stability analysis that we emulate, the line tension of the interface (in this case the

triple–line) is neglected.

5.4 Considering In-plane Capillarity

By embedding the gradient in curvature over the rim into a function of rim height,

we have ignored the effective triple–line tension. As alluded to above, a region of
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triple–line with non-zero in-plane curvature yields curvatures of opposite sign and

roughly equal magnitude on the hole-facing and film-facing sides of the rim. For a

section of triple–line with positive curvature, like the tip of a dendrite, the gradient

of in-plane curvature of the rim has the opposite sign of the out-of-plane curvature

gradient driving dewetting and thus acts to locally slow edge retraction. Within the

context of our simple model outlined above, we account for this effect by rewriting

our expression for triple–line velocity as 𝑣 = 𝛼( 1
ℎ
− 𝜏𝜅)ℎ−2. The effective line tension,

𝜏 accounts for the gradient of curvature caused by in-plane triple–line curvature. For

a semicircular rim, we assume 𝜏 ≈ 2, matching the assumption of equal and opposite

curvatures, but it could vary with other rim geometries. The effective triple line

tension can be related to the surface tension integrated over the surface area that is

proximate to the triple line. It is plausible that this line tension could be a function of

rim height, and we suggest this as a topic for further analysis. Repeating the analysis

above with this new expression for 𝑣, noting that velocity now has a dependence on

𝜅tl and thus,
𝜕𝑣

𝜕𝑡
=

𝜕𝑣

𝜕ℎ

𝜕ℎ

𝜕𝑡
+

𝜕𝑣

𝜕𝜅tl

𝜕𝜅tl

𝜕𝑡
,

yields

𝑑𝑣

𝑑𝑡
= −3𝛼2ℎ0

𝜋ℎ8
+

5𝛼2ℎ0𝜅tl𝜏

𝜋ℎ7
+

3𝛼2𝜅tl

2ℎ6

− 2𝛼2ℎ0𝜅
2
tl𝜏

2

𝜋ℎ6
− 3𝛼2𝜅2

tl𝜏

2ℎ5
. (5.8)

Again using a triple–line with an in–plane perturbation given by equation 5.6, we find

that

𝑑𝑣

𝑑𝑡
= −3𝛼2ℎ0

𝜋ℎ8
+

3𝛼2𝛿𝑘2 sin(𝑘𝑥)

2ℎ6
+

5𝛼2𝛿ℎ0𝑘
2𝜏 sin(𝑘𝑥)

𝜋ℎ7

− 3𝛼2𝛿2𝑘4𝜏 sin2(𝑘𝑥)

2ℎ5
− 2𝛼2𝛿2ℎ0𝑘

4𝜏 2 sin2(𝑘𝑥)

𝜋ℎ6

To first order, the front is still unstable, but the second order terms suggest that

long-time behavior might be more complicated.
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Capillary Suppression of Dendritic Instability

Figure 5-4: A simulation of an initially square hole with in-plane capillarity included
in the model. System behavior is no longer dendritic and more closely resembles
viscous fingering.

Simulations of the system described in this model, see figure 5-4, produce corners

that do retract faster than the surrounding film but which also grow blunter over time

and fail to achieve a steady–state, producing morphological evolution more evocative

of viscous fingering in a radial Hele-Shaw cell [112] than of dendritic solidification.

This finding is consistent with Langer’s discussion of the two phenomena, [101] which

highlights that dendritic solidification and viscous fingering are mathematically anal-

ogous, with pressure fulfilling the of role heat/solute and surface free energy density

acting as an effective line tension. In our model of dewetting, we have decoupled

the components of capillarity acting orthogonal and parallel to the triple–line, with

the former analogous to the pressure in a Hele-Shaw cell and the latter acting as an

effective line tension. In Hele-Shaw cells, this line tension means that the system

lacks solvability, such that there is no tip geometry that propagates in a self-similar

manner. Instead, viscous fingers are driven to grow increasingly blunt by line tension,

matching the behavior of our simulated isotropic dewetting. Langer highlights a par-

ticularly insightful set of experiments by Couder et al. [113] in which viscous fingers

are made to exhibit steady–state, dendrite-like behavior by air bubbles trapped at
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their tips. These air bubbles bias the tips toward a specific radius of curvature, coun-

teracting the capillary driving force toward broadening and thus endowing the system

with solvability. In solidification, crystalline anisotropy plays a fundamentally similar

role by providing a driving force that favors a specific tip geometry and length-scale.

The experimental findings that dewetting dendrites consistently form along specific

crystallographic directions suggests that anisotropy is playing a similar role in these

systems as well.

5.5 The Role of Anisotropy

For dewetting films, anisotropic diffusivity and surface energy can cause edge retrac-

tion velocity to vary strongly as a function of in-plane orientation [6]. Given that

long-time Brandon and Bradshaw scaling seems to be a universal feature of unper-

turbed triple–lines [24, 25], a reasonable but simple way to introduce anisotropy into

our model and simulations is to add an orientation-dependent pre-factor to our equa-

tion for retraction velocity, such that 𝑣 = 𝛼(𝑛⃗)( 1
ℎ
− 𝜏𝜅)ℎ−2, for triple–line normal

vector 𝑛⃗. It is likely possible to gain analytical insights into this system of equations

for certain well-behaved anisotropy functions, as in Barbieri, Hong, and Langer’s work

on solidification dendrites using WKB techniques [108, 114], but we believe that the

level-set simulation method we have demonstrated above is better suited to studying

long-time behavior. In the anisotropic simulations shown below, we chose

𝛼(𝑛⃗) =
1

2
(1 + 𝛽(𝑛4

𝑥 + 𝜁𝑛2
𝑥𝑛𝑦

2 + 𝑛𝑦4)) (5.9)

because it has tunable anisotropy and can be made to roughly match the shape of

the effective 𝛼(𝑛⃗) measured for Ni (100) films [6]. For a film of unit thickness, our

level-set simulation yields the behavior shown in figure 5-5 for 𝛽 = 3, 𝜁 = 6.

This behavior is clearly dendritic, with the tip reaching a steady–state profile and

side branches forming at later times. We have also explored our model’s parameter

space using this simulation technique, including the effects of film thickness (see figure
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Anisotropic Dendritic Dewetting in a Film of Unit Thickness

Figure 5-5: A simulation of the growth of a square hole in a film with unit thickness
with 𝛽 = 3, 𝜁 = 6.

5-6), anisotropy strength (see figure 5-7), and the strength of in-plane capillarity (see

figure 5-8), which could vary depending on the cross-sectional profile of the rim.

Anisotropic Dendritic Dewetting in a Thinner Film

Figure 5-6: A simulation of the growth of a square hole in a film with thickness =
0.05 and 𝛽 = 3, 𝜁 = 6.
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Insufficiently Strong Anisotropy for Dendritic Dewetting

Figure 5-7: A simulation of the growth of a square hole in a film with weaker
anisotropy (𝛽 = 𝜁 = 1, with 𝑛⃗ rotated by 45∘ to align the corners of 𝛼 with the
corners of the more anisotropic 𝛼 used elsewhere) and thickness = 1. This anisotropy
is not strong enough to sustain truly dendritic behavior.

Anisotropic Dendritic Dewetting with Reduced In-plane Capillarity

Figure 5-8: A simulation (𝛽 = 3, 𝜁 = 6) of the growth of a square hole in a film
with unit thickness and reduced in-plane capillarity(𝜏 = 1

2
). The hole and anisotropy

function are also rotated by 22.5∘ to illustrate that 𝛼(𝑛⃗) is indeed determining dendrite
orientation.
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5.6 Connections to Solvability Theory

Understanding the Effect of Anisotropy

Figure 5-9: A) select frames from the same simulation as figure 5-6 with
orientationally-determined characteristics overlaid to show the role of anisotropy.
The convergence of 𝛼(𝑛⃗)–characteristics at the tip and in regions which become side
branches illustrates the role of anisotropy in fixing a steady–state tip morphology. B)
A Cahn-Hoffman-like gradient construction created by connecting all characteristics
emanating from a point. C) The corner of a square patterned in a 85nm thick 100
Ni film that has become unstable during growth induced by annealing at 950∘ C in
a reducing ambient of 5% H2, 95% N2. Note the well-defined tip geometry and the
jogging of the triple–line behind the tip. The sample had been annealed for a total of
six hours when this image was taken. D) shows the formation of a side branch along
the dendritic triple–line of another hole after 315 minutes of annealing.

We claim that employing the method of characteristics with a Cahn-Hoffman-

type construction provides further insight into the role of anisotropy in dendritic

dewetting. The method of characteristics is a relatively general approach to solv-

ing the initial value problem for PDEs. It produces curves, called characteristics,

that emanate from the initial surface and project it forward in time; see Refs. [115,

116] for relevant overviews. We posit that the existence of an experimentally ob-

served steady–state tip geometry with finite in-plane curvature implies that a region

of the tip has characteristics which are parallel and of equal length. Furthermore,

we contend that the fundamental arguments of solvability theory must also apply

to dewetting systems that exhibit dendritic behavior, namely that the steady–state
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geometry is a configuration-space attractor. This implies that there exists a set of

geometries neighboring the steady–state geometry in configuration-space which have

regions of finite, positive in-plane curvature with converging characteristics. We have

shown above that in systems with isotropic and weakly anisotropic 𝛼(𝑛⃗), these cri-

teria are not met. Furthermore, because 𝛼(𝑛⃗) is a simple multiplicative prefactor

to triple–line velocity in our model, we hypothesize that the way in which it mod-

ifies the triple–line’s characteristics can be qualitatively explored by examining the

characteristics the triple–line would have if 𝑣(𝑥⃗, 𝑡) = 𝛼(𝑛⃗(𝑥⃗, 𝑡)). This simplification

yields linear characteristics, as demonstrated in [115]. These characteristics, scaled

appropriately in length, point to what would be the future location of the triple–line,

if it were evolving under purely orientationally-dependent velocity. We illustrate this

by overlaying these characteristics onto the profile of a simulated dendrite tip, see

figure 5-9 A), to get a qualitative idea of anisotropy’s contribution to the system’s

behavior. These characteristics are color-coded to match the velocity gradient con-

struction in 5-9 B), the convex part of which corresponds to the kinetic Wulff shape

of our velocity function and the ears of which correspond to orientations which are

kinetically unstable over long time, see [58, 79] for a detailed explanation. We see that

the tip of the dendrite has converging characteristics, which correspond to the lower

left ear of our gradient construction. The convergence of these characteristics shows

that velocity anisotropy is driving the persistence of a steady–state tip morphology

that in-plane capillarity would otherwise blunt, fulfilling the reframed solvability cri-

teria given above. Although not a rigorous proof, this graphical construction provides

plausibility to the hypothesis that the presence of ears in the gradient construction of

𝛼(𝑛̂) is a necessary, though likely insufficient, requirement of solvability for dewetting

systems. The formation of side branches can be understood in a similar way, starting

with the observation that, because the rim further away from the tip has been retract-

ing for more time, the dendrite must, on average, get wider with increasing distance

from the tip. We see, however, in both simulation and experiment (figure 5-9 C)),

that the dendrite accommodates this constraint through the formation of in-plane

jogs created through kinetic faceting. Figure 5-9A) highlights how these jogs create
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alternating regions of diverging and converging characteristics. This behavior is anal-

ogous to the “varifolds” in minimal anisotropic surfaces introduced by Taylor [117,

118]. In the absence of rim height and in-plane curvature considerations, we would

expect those parts with converging characteristics to get ahead of the neighboring

areas with diverging characteristics and form new branches. Instead, side branches

only form when this effect, coupled with the arc-length instability associated with

regions of high in-plane curvature, is strong enough to overcome the stabilizing effect

of in-plane capillarity.

5.7 Discussion

In analogy to the original analysis of dendritic solidification by Mullins and Sekerka,

in solid–state dewetting the arc length instability is driven by enhanced dissipation

of excess free energy at areas of high in-plane curvature. Specifically, in areas of

positive curvature, the retraction of the triple line creates new arc length through

which mass rejected from the triple line can diffuse. This is in contrast to areas of

zero or negative curvature where mass rejected from the triple line accumulates into

an ever-thickening rim, reducing the driving force for retraction. Again, in analogy

with Mullins and Sekerka, in the absence of an energetic term that counteracts high

in-plane curvature, the dissipative advantage of high curvature areas is sufficient to

drive the formation of sharply pointed, needle-like dendrites. The absence of in-plane

capillarity is non-physical, and the addition of a term accounting for the gradient

in in-plane curvature from the hole–side to the film–side of the rim is sufficient to

entirely suppress dendritic behavior. To regain dendritic behavior, as in the case of

solidification, the introduction of anisotropy is necessary. Motivated by experimental

findings in the literature that the retraction velocity of the triple–line can be highly

orientationally dependent, our numerical simulations multiply the simple isotropic

velocity by an orientationally dependent prefactor, 𝛼(𝑛⃗). For 𝛼(𝑛⃗) with sufficiently

hard anisotropy, this simple change restores dendritic behavior, and our simulations

qualitatively match key experimental findings, including jogs in the triple–line that
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give rise to side branches. We also show that the role of anisotropy can be graphically

illustrated using the method of characteristics.

5.8 Conclusions

Solidification and solid-state dewetting share phenomenology that produces dendritic

evolution for some materials parameters. In each case, regions of high curvature ac-

celerate the dissipation of excess free energy. This curvature effect is necessary but

insufficient to explain observed dendritic behavior during solid-state dewetting. Our

results suggest that coupling this instability with crystalline anisotropy produces den-

dritic morphologies. We have also shown that, although anisotropic surface energies

and diffusivities interact in complicated ways, a simple treatment that combines their

effects into a single orientationally dependent pre-factor to the triple–line velocity

plausibly explains the core features of dendritic dewetting. In our model, we have

identified the functional form of this anisotropy, the thickness of the initial film, and

the magnitude of the effective line tension accounting for the gradient of in-plane

curvature over the rim as the three factors controlling dendritic behavior and mor-

phology. Increased film thickness and line tension broaden the tip of the dendrite,

while the effects of anisotropy are more nuanced. In our simulations, we find that,

in order for dendritic dewetting to occur, anisotropy must be sufficiently strong to

overcome in-plane capillarity. This suggests that solvability theory from the solidifi-

cation literature can be used to understand dendritic dewetting and is also consistent

with our heuristic that—for solid-state dewetting—a steady–state tip must contain a

region of converging 𝛼(𝑛⃗)–characteristics.
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Chapter 6

Conclusions

As stated at the beginning of this document, the goal of this thesis work was to

develop a more predictive understanding of solid-state dewetting in systems with

anisotropic properties. As a problem which is both deeply complex and well-studied,

it seemed clear from the beginning that new insights into dewetting behavior were

likely to come from the intersections of different scientific disciplines and viewpoints.

It is therefore not a coincidence that this thesis features work of experimental, compu-

tational, and theoretical character and examines the behavior of strikingly disparate

materials systems. Each of these efforts provided unique insights, with interesting

results and puzzles from one approach providing information and inspiration for the

others.

6.1 Main Results

The main thrust of this work was the development of a new simulation method which

allowed for the faithful modeling of the anisotropic Mullins equation for systems with

strongly anisotropic properties. This method, outlined in chapter 2, is based on the

level-set method and synthesizes many ideas from the fields of materials physics, ap-

plied mathematics, and computational materials science to realistically encode the

physics of solid-state dewetting into the level-set framework. By making use of tech-
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niques in the level-set method literature such as narrow-banding, velocity extension,

ghost values, and redistancing, in addition to improvements we developed ourselves,

such as adaptive time-stepping tied to volume conservation and energetically penal-

izing ∇2𝜑(𝑥⃗), we were able to create a simulation framework which preserved the

traditional strengths of level-set simulations—sharp interfaces and natural handling

of topological changes—and mitigates their traditional weaknesses—poor computa-

tional performance, poor volume conservation, and poor numerical stability when

modeling high-order differential equations. This method was validated against known

analytical and numerical solutions for isotropic dewetting phenomena in addition to

observed experimental behavior in strongly anisotropic systems. This framework was

used to study edge retraction, wire stability, and hole growth and the dependence

of these behaviors on surface energy and surface self-diffusivity anisotropy. These

computational studies were paired with experiments carefully designed to probe the

same behavior in complementary ways.

Beginning with edge retraction, these simulations recovered the experimental ob-

servation that films with stable top facets are still capable of exhibiting valley forma-

tion. This behavior is seen in experiments on Ni (110) films but couldn’t be explained

using previous modeling techniques. Our simulations reproduce not only this behav-

ior but also its dependence on ambient conditions, using measured values for relative

surface free energy densities and 𝜎. Additionally, these simulations showed that sur-

face energy anisotropy alone can account for the morphology of these retracting rims’

leading sides as well as the elongation of the top facet relative to the Winterbottom

shape.

These simulations also recovered, in surprising detail, the orientational dependence

of Ru nanowire stability on orientation. In fact, the videos produced by these nanowire

simulations aided in developing the hypothesis, which was experimentally confirmed

months later, that ovulation and the Rayleigh instability act together along a wire’s

full length. The other experimental findings from the Ru nanowire work were equally

striking, with the stability of these wires having a remarkably strong dependence
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on orientation. In both experiment and simulation, wires aligned along stable <

1120 > directions seemed impervious to both the Rayleigh instability and ovulation

and exhibited dramatic length contraction over the same length of time the unstable

wires took to break up. Furthermore both experiment and simulation showed that

the orientation dependence of wire stability was mostly saturated within 5∘ of offset

from < 1120 > orientations. These results show the extreme importance anisotropy

could have in the reliability of single-crystal devices, and they illustrate the potential

utility of our LSM framework in studying and designing for device reliability.

One of the most striking behaviors observed in dewetting is the corner instability

followed by dendritic dewetting. Simulations of this behavior were shown in chap-

ter 2. Using DFT-calculated values for the surface energy of Ni’s 3 lowest-energy

facets, an initially circular hole in a (100) film was shown to first grow to it’s kinetic

Wulff shape, subsequently undergo the corner instability, and finally begin to develop

dendritic characteristics, including the beginnings of side branches. Such behavior

was recovered using both isotropic and anisotropic surface self-diffusivities, though

clear qualitative differences in behavior were apparent between the two cases, sug-

gesting that further simulations can be used to tease apart the effects of diffusivity

and surface energy. This behavior was also examined from a theoretical perspective

in chapter 5, drawing insight from the extensive literature on dendritic solidification

and viscous fingering. This work hinged on a simplified model of dewetting which

embeds the most essential characteristics of dewetting edges into a set of coupled

two-dimensional equations. Among other simplifications, this model combined the

orientational dependencies of surface energy density and surface self-diffusivity into a

single quantity, allowing the effect of anisotropy to be studied more generally. Thus

simplified, dewetting behavior becomes at least somewhat analytically tractable, and

a Mullins-Sekerka-type analysis was conducted on this model system, in addition to

simple LSM simulations of these simplified governing equations—it is worth reiter-

ating that these simulations are entirely distinct from those introduced in chapter

chapter 2 and used in chapters 3, and 4. These analyses revealed, in analogy to

dendritic solidification, that dendritic dewetting is only possible in the presence of
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sufficiently strong anisotropy. We extended the analogy further and hypothesized

that systems which exhibit dendritic dewetting behavior must satisfy a solvability

criterion which mirrors the microscopic solvability criterion used to explain dendritic

solidification. We provided support for this conjecture by using the method of char-

acteristics to illustrate that anisotropy can push a dewetting system toward dendritic

morphology with a steady-state geometry.

6.2 Looking Forward

Though we have made significant progress in developing a more predictive under-

standing of dewetting, there is certainly more work to be done. As outlined in

chapter 2, there are several areas of our simulation framework which could be im-

proved upon, including a more efficient implementation of coupled fast marching and

velocity extension algorithms and development of a smoothing operator which more

selectively targets non-physical sawtooth surfaces. Ironically, the ability to model

systems with arbitrarily anisotropic properties raises a host of questions about how

to model anisotropy less arbitrarily. Thus, much more work is also needed in de-

veloping realistic physical models of anisotropic surface energy density and surface

self-diffusivity.

There are also many more experiments to be conducted, including work on electro-

migration in single-crystal nanowires, further exploration of the effects of CO reducing

gas on the dewetting behavior of Ni films, more careful study of nanowire stability

at junctions and intersections (see appendix C), and testing of our solvability hy-

pothesis in systems with weakly anisotropic and isotropic properties. Branching out

from fundamental explorations, the ability to predict dewetting behavior computa-

tionally should aid in developing dewetting-based nanofabrication techniques, with

applications in areas like photonics and sensing.
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Appendix A

Designing 𝜉(𝑛̂)

A recurring theme in this thesis is the use of 𝜉(𝑛̂) which embody strong crystalline

surface anisotropy. In this appendix, I will briefly overview how such 𝜉(𝑛̂) were

constructed, how their functional form can be physically interpreted, and what im-

provements can be made in the future.

A.1 Defining the Problem

As stated in the introduction of this thesis, surface free energy density is a complex

function of temperature, ambient, and orientation. Existing models of these effects

tend to focus on orientations with small offsets from stable orientations. Several such

models are discussed in [119], and we made attempts to develop 𝛾(𝑛̂)s based on these

models. The difficulty with these models is that they contain many parameters ac-

counting for different entropic and energetic factors. Given the difficulty of measuring

surface free energy densities for non-equilibrium orientations, such complex models

present an over-fitting problem. Furthermore, such models tend to focus on describ-

ing the properties of a single surface and it’s neighboring orientations, meaning that

𝛾(𝑛̂)s naïvely assembled from models of an equilibrium shape’s constituent surfaces

are not guaranteed to be smooth or even continuous. Attempts to fix and smooth

the resulting 𝛾(𝑛̂)s lead to complex functions which lose physical interpretability and,
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for whatever it’s worth, just don’t look quite right. This begs the question, is mod-

eling 𝛾(𝑛̂) in this way the best approach? In most contexts, the surface free energy

density, 𝛾(𝑛̂), though it contains the same information as 𝜉(𝑛̂), is thought of as the

more fundamental or natural of the two quantities. Working from this point of view,

it is natural to try and define a 𝛾(𝑛̂) for a system and compute 𝜉(𝑛̂) as needed. In

keeping with this thesis’s overarching goal theme of trying to reframe problems in

more tractable ways, we take a different approach.

A.2 Starting with 𝜉(𝑛̂)

Rather than starting with 𝛾(𝑛̂) and computing 𝜉(𝑛̂), we have found that it is far

better to directly construct 𝜉(𝑛̂) and compute 𝛾(𝑛̂) if desired. The foundation for

this approach is the observation that, if a system’s surface free energy density were

defined such that 𝛾(𝑛̂) was always equal to the energy of the energy minimizing

linear combination of facets (effectively the energy density corresponds to that of

vicinal surfaces), the resulting 𝜉(𝑛̂) would be composed of a few discontiuous points.

In this scenario, for 𝑛̂ corresponding exactly to equilibrium surfaces, 𝜉(𝑛̂) = 𝑛̂𝛾(𝑛̂).

For all other orientations, 𝜉(𝑛̂) corresponds to the vertex connecting the relevant

facets or, in three dimensions, possibly the center of the edge connecting two relevant

facets. Starting with this set of discrete points, it is relatively straightforward to

computationally construct a function which smoothly connects them. In some sense,

the problem is one of simply parameterizing the surface of a polygon or polyhedron

with some degree of corner rounding. If a 𝜉(𝑛̂) with orientational spinodes is desired,

the corners of these shapes are given negative radii of curvature.

A.3 Example Mathematica Code

The following code is a tidy example of how a 𝜉(𝑛̂) corresponding to a simple square

could be constructed, following the logic outlined above.
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SetDirectory[NotebookDirectory[]];SetDirectory[NotebookDirectory[]];SetDirectory[NotebookDirectory[]];

roundingRadius = 0.1;roundingRadius = 0.1;roundingRadius = 0.1;

orientationParser4Fold[vx_, vy_, energy_]:=orientationParser4Fold[vx_, vy_, energy_]:=orientationParser4Fold[vx_, vy_, energy_]:=

Module[{orientations, energies},Module[{orientations, energies},Module[{orientations, energies},

orientations =orientations =orientations =

DeleteDuplicates[{{vx, vy}, {vx,−vy}, {−vx, vy}, {−vx,−vy}}];DeleteDuplicates[{{vx, vy}, {vx,−vy}, {−vx, vy}, {−vx,−vy}}];DeleteDuplicates[{{vx, vy}, {vx,−vy}, {−vx, vy}, {−vx,−vy}}];

energies = ConstantArray[energy,Length[orientations]];energies = ConstantArray[energy,Length[orientations]];energies = ConstantArray[energy,Length[orientations]];

{orientations, energies}]{orientations, energies}]{orientations, energies}]

normedVecs = {{1, 0}, {0, 1}};normedVecs = {{1, 0}, {0, 1}};normedVecs = {{1, 0}, {0, 1}};

avgEnergies = {1, 1};avgEnergies = {1, 1};avgEnergies = {1, 1};

startingFaces = Table[Append[normedVecs[[𝑖]], avgEnergies[[𝑖]]],startingFaces = Table[Append[normedVecs[[𝑖]], avgEnergies[[𝑖]]],startingFaces = Table[Append[normedVecs[[𝑖]], avgEnergies[[𝑖]]],

{𝑖, 1,Length[avgEnergies]}];{𝑖, 1,Length[avgEnergies]}];{𝑖, 1,Length[avgEnergies]}];

temp = orientationParser4Fold@@@startingFaces;temp = orientationParser4Fold@@@startingFaces;temp = orientationParser4Fold@@@startingFaces;

unnormedNormals = Flatten[temp[[;;, 1]], 1];unnormedNormals = Flatten[temp[[;;, 1]], 1];unnormedNormals = Flatten[temp[[;;, 1]], 1];

energies = Flatten[temp[[;;, 2]]];energies = Flatten[temp[[;;, 2]]];energies = Flatten[temp[[;;, 2]]];

normedNormals = (#/Norm[#])&/@unnormedNormals;normedNormals = (#/Norm[#])&/@unnormedNormals;normedNormals = (#/Norm[#])&/@unnormedNormals;

allPlanes = Table[Append[normedNormals[[𝑖]], energies[[𝑖]]],allPlanes = Table[Append[normedNormals[[𝑖]], energies[[𝑖]]],allPlanes = Table[Append[normedNormals[[𝑖]], energies[[𝑖]]],

{𝑖, 1,Length[normedNormals]}];{𝑖, 1,Length[normedNormals]}];{𝑖, 1,Length[normedNormals]}];

cusps = allPlanes;cusps = allPlanes;cusps = allPlanes;

coeffs = Table[Symbol[a <> ToString[𝑖]], {𝑖,Length[allPlanes]}];coeffs = Table[Symbol[a <> ToString[𝑖]], {𝑖,Length[allPlanes]}];coeffs = Table[Symbol[a <> ToString[𝑖]], {𝑖,Length[allPlanes]}];

faces = −allPlanes[[;;, 1;;2]];faces = −allPlanes[[;;, 1;;2]];faces = −allPlanes[[;;, 1;;2]];

nodes =nodes =nodes =

Union[Append[#, 1]&/@Union[Append[#, 1]&/@Union[Append[#, 1]&/@
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Quiet[Cases[LinearSolve[Most/@#,−Last/@#]&/@Quiet[Cases[LinearSolve[Most/@#,−Last/@#]&/@Quiet[Cases[LinearSolve[Most/@#,−Last/@#]&/@

Subsets[allPlanes, {2}],_List]]];Subsets[allPlanes, {2}],_List]]];Subsets[allPlanes, {2}],_List]]];

vertices = DeleteDuplicates[Select[nodes,Chop[Min[allPlanes.#]]>=0&],vertices = DeleteDuplicates[Select[nodes,Chop[Min[allPlanes.#]]>=0&],vertices = DeleteDuplicates[Select[nodes,Chop[Min[allPlanes.#]]>=0&],

Equal];Equal];Equal];

vertices = DeleteDuplicates[vertices/.n_?NumericQ/;Abs[𝑛] < 1*∧-5 → 0,vertices = DeleteDuplicates[vertices/.n_?NumericQ/;Abs[𝑛] < 1*∧-5 → 0,vertices = DeleteDuplicates[vertices/.n_?NumericQ/;Abs[𝑛] < 1*∧-5 → 0,

Equal];Equal];Equal];

roundedPlanes = allPlanes;roundedPlanes = allPlanes;roundedPlanes = allPlanes;

roundedPlanes[[;;, 3]] = roundedPlanes[[;;, 3]]− roundingRadius;roundedPlanes[[;;, 3]] = roundedPlanes[[;;, 3]]− roundingRadius;roundedPlanes[[;;, 3]] = roundedPlanes[[;;, 3]]− roundingRadius;

roundedNodes =roundedNodes =roundedNodes =

Union[Append[#, 1]&/@Union[Append[#, 1]&/@Union[Append[#, 1]&/@

Quiet[Cases[LinearSolve[Most/@#,−Last/@#]&/@Quiet[Cases[LinearSolve[Most/@#,−Last/@#]&/@Quiet[Cases[LinearSolve[Most/@#,−Last/@#]&/@

Subsets[roundedPlanes, {2}],_List]]];Subsets[roundedPlanes, {2}],_List]]];Subsets[roundedPlanes, {2}],_List]]];

roundedVertices =roundedVertices =roundedVertices =

DeleteDuplicates[Select[roundedNodes,DeleteDuplicates[Select[roundedNodes,DeleteDuplicates[Select[roundedNodes,

Chop[Min[roundedPlanes.#]]>=0&],Equal];Chop[Min[roundedPlanes.#]]>=0&],Equal];Chop[Min[roundedPlanes.#]]>=0&],Equal];

roundedVertices =roundedVertices =roundedVertices =

DeleteDuplicates[roundedVertices/.n_?NumericQ/;Abs[𝑛] < 1*∧-5 → 0,DeleteDuplicates[roundedVertices/.n_?NumericQ/;Abs[𝑛] < 1*∧-5 → 0,DeleteDuplicates[roundedVertices/.n_?NumericQ/;Abs[𝑛] < 1*∧-5 → 0,

Equal];Equal];Equal];

roundedVerts = roundedVertices[[;;, 1;;2]];roundedVerts = roundedVertices[[;;, 1;;2]];roundedVerts = roundedVertices[[;;, 1;;2]];

verts = vertices[[;;, 1;;2]];verts = vertices[[;;, 1;;2]];verts = vertices[[;;, 1;;2]];

normedVerts = verts/Map[Norm, verts];normedVerts = verts/Map[Norm, verts];normedVerts = verts/Map[Norm, verts];

normedRoundedVerts = roundedVerts/Map[Norm, roundedVerts];normedRoundedVerts = roundedVerts/Map[Norm, roundedVerts];normedRoundedVerts = roundedVerts/Map[Norm, roundedVerts];

thetaStep = 1*∧-3;thetaStep = 1*∧-3;thetaStep = 1*∧-3;

thetas = Range[−thetaStep, 2𝜋 + thetaStep, thetaStep];thetas = Range[−thetaStep, 2𝜋 + thetaStep, thetaStep];thetas = Range[−thetaStep, 2𝜋 + thetaStep, thetaStep];

xiNiTestSolvedEdges[nx_, ny_]:=xiNiTestSolvedEdges[nx_, ny_]:=xiNiTestSolvedEdges[nx_, ny_]:=
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Block[{𝑣 = {nx, ny}, thresh = 0.99, factor, faceProds, vertProds,Block[{𝑣 = {nx, ny}, thresh = 0.99, factor, faceProds, vertProds,Block[{𝑣 = {nx, ny}, thresh = 0.99, factor, faceProds, vertProds,

faceLoc, vertLoc, vertsSorted, alphaVert},faceLoc, vertLoc, vertsSorted, alphaVert},faceLoc, vertLoc, vertsSorted, alphaVert},

faceProds =faceProds =faceProds =

NMinimize[{Total[coeffs * allPlanes[[;;, 3]]],NMinimize[{Total[coeffs * allPlanes[[;;, 3]]],NMinimize[{Total[coeffs * allPlanes[[;;, 3]]],

Total[coeffs * allPlanes[[;;, 1;;2]], 1] == 𝑣&&Total[coeffs * allPlanes[[;;, 1;;2]], 1] == 𝑣&&Total[coeffs * allPlanes[[;;, 1;;2]], 1] == 𝑣&&

LogicalExpand[AllTrue[coeffs,# ≥ 0&]]}, coeffs][[2]]//Values;LogicalExpand[AllTrue[coeffs,# ≥ 0&]]}, coeffs][[2]]//Values;LogicalExpand[AllTrue[coeffs,# ≥ 0&]]}, coeffs][[2]]//Values;

vertProds = #.𝑣&/@roundedVerts//𝑁 ;vertProds = #.𝑣&/@roundedVerts//𝑁 ;vertProds = #.𝑣&/@roundedVerts//𝑁 ;

faceLoc = Ordering[faceProds][[−1]];faceLoc = Ordering[faceProds][[−1]];faceLoc = Ordering[faceProds][[−1]];

vertsSorted = Ordering[vertProds];vertsSorted = Ordering[vertProds];vertsSorted = Ordering[vertProds];

vertLoc = vertsSorted[[−1]];vertLoc = vertsSorted[[−1]];vertLoc = vertsSorted[[−1]];

factor = Min[Max[(faceProds[[faceLoc]]− thresh)/(1− thresh), 0], 1]∧factor = Min[Max[(faceProds[[faceLoc]]− thresh)/(1− thresh), 0], 1]∧factor = Min[Max[(faceProds[[faceLoc]]− thresh)/(1− thresh), 0], 1]∧

2;2;2;

allPlanes[[faceLoc, 1;;2]] * allPlanes[[faceLoc]][[3]] * factor+allPlanes[[faceLoc, 1;;2]] * allPlanes[[faceLoc]][[3]] * factor+allPlanes[[faceLoc, 1;;2]] * allPlanes[[faceLoc]][[3]] * factor+

(1− factor) * (roundedVerts[[vertLoc]] + roundingRadius * 𝑣)(1− factor) * (roundedVerts[[vertLoc]] + roundingRadius * 𝑣)(1− factor) * (roundedVerts[[vertLoc]] + roundingRadius * 𝑣)

]]]

xis = xiNiTestSolvedEdges[Cos[#], Sin[#]]&/@thetas;xis = xiNiTestSolvedEdges[Cos[#], Sin[#]]&/@thetas;xis = xiNiTestSolvedEdges[Cos[#], Sin[#]]&/@thetas;

ListLinePlot[xis,PlotRange → {{−1.8, 1.8}, {−1.8, 1.8}},ListLinePlot[xis,PlotRange → {{−1.8, 1.8}, {−1.8, 1.8}},ListLinePlot[xis,PlotRange → {{−1.8, 1.8}, {−1.8, 1.8}},

AspectRatio → 1,PlotStyle → {Red,Thickness[0.005]}]AspectRatio → 1,PlotStyle → {Red,Thickness[0.005]}]AspectRatio → 1,PlotStyle → {Red,Thickness[0.005]}]
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gammas = Table[{Cos[thetas[[𝑖]]], Sin[thetas[[𝑖]]]}.xis[[𝑖]],gammas = Table[{Cos[thetas[[𝑖]]], Sin[thetas[[𝑖]]]}.xis[[𝑖]],gammas = Table[{Cos[thetas[[𝑖]]], Sin[thetas[[𝑖]]]}.xis[[𝑖]],

{𝑖, 1,Length[thetas]}];{𝑖, 1,Length[thetas]}];{𝑖, 1,Length[thetas]}];

ListPolarPlot[{thetas, gammas}//Transpose, Joined → True]ListPolarPlot[{thetas, gammas}//Transpose, Joined → True]ListPolarPlot[{thetas, gammas}//Transpose, Joined → True]
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Appendix B

Notes on the Simulations in Chapter

5

B.1 Numerical Artifacts and Volume Conservation

As mentioned in the Comparison to Simulation section, the simulations presented

in this work show some evidence of numerical grid effects. These effects are most

apparent in isotropic simulations without effective line tension (𝜏 = 0). Our lin-

ear stability analysis shows that these simulations should produce infinitely sharp

dendrites—and they do. However, there is a limit to the curvatures which the grid

underpinning our simulations can resolve. Furthermore, the simulation can resolve

higher curvatures along Cartesian directions. As a result, corners initially patterned

in any orientation quickly turn toward the closest Cartesian direction. The addition

of non-zero line tension greatly diminishes this effect, though it is not entirely elim-

inated. Figure 8 demonstrates that although 𝛼(𝑛⃗) does determine the direction of

dendritic dewetting, side-branch formation is erroneously asymmetric. In simulations

in which 𝛼(𝑛⃗) was chosen to have maxima offset from Cartesian directions by only

a few degrees, the direction of dendrite propagation was biased toward the Carte-

sian directions. This suggests that further enhancements to our numerical methods,

such as using adaptive regridding [120] or using a triangular mesh [121] rather than
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a Cartesian grid are necessary, but the main features of dewetting phenomenology

are clearly being captured. Of course, the governing equations being simulated here

are already intentional simplifications, and a full-three dimensional simulation of the

anisotropic Mullins equation would be necessary for full accuracy, as shown in chapter

2. Nevertheless, our results provide a framework for understanding and describing

the phenomenology of dendritic dewetting. Another shortcoming of this simple sim-

ulation method is that volume is not conserved when rims from different regions of

the triple-line run into each other and merge into wires, so the long-time behavior of

side-branches is not correctly captured.
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Appendix C

Miscellaneous Results

Over the course of this thesis work, we explored several other areas of research which,

for one reason or another, have not yet been sufficiently investigated to merit a dedi-

cated thesis chapter. In this appendix, we present a collection of interesting findings

from this work which merit further investigation.

C.1 Additional Ruthenium Results

As part of our research on the stability of Ru nanowires, we also explored the dewet-

ting behavior of other related geometries, such as wire intersections and junctions

between strips of different dimensions. These were annealed under the same condi-

tions as the Ru nanowires in chapter 4 and showed similar orientational dependence

of stability.

C.1.1 Electrical Test Structures

One of the major motivations for our work on Ru nanowires was an interest from

industry in next-generation single-crystal Ru interconnects. To better understand

the electrical properties of these nanowires, in particular how the faceting induced by

dewetting might increase conductivity, our collaborators at the University of Central
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Florida designed and fabricated a test structure in which narrow single-crystal Ru

lines were connected to large poly-crystalline Ru electrical pads. These connections

were mediated by additional single-crystal lines of far greater width (500 nm). All

single–crystal features were patterned from 5 nm–thick films. In the first batch of

samples, the polycrystalline films were under a great deal of as-deposited stress which

caused them to rupture and delaminate during annealing. This rendered the samples

useless for electrical testing, so we instead annealed them to the point of significant

dewetting to observe how the larger strips and the junctions between different strips

behaved. AFM measurements show that our Ru films do not exhibit significant valley

formation, but we repeatedly see that lines wider than ∼250 nm (for 5 nm–thick films)

tend to bifurcate into wider lines. We believe that the mechanism of breakup is likely

to be the formation of holes inside the strips which then lead to channel dewetting

[97]. Uncovering the exact width which leads to bifurcation will require experiments

with more granular variation in line width.

These experiments also show that a significant amount of dewetting occurs at the

junction between the wider and narrower lines, often leading the narrower lines to

pinch–off from the wider ones. This suggests that future designs could be improved

by widening the narrower wire in the region of the junction, to allow the junction to

dewet and facet without pinching off.
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Figure C-1: This figure shows a wide view of a significantly dewetted electrical test
structure. The wide lines leading to the center test line have bifurcated and the
polycrystalline contacts have ruptured and partially delaminated.
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Figure C-2: A closer view of a ruptured and partially delaminated polycrystalline
electrical contact
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Figure C-3: A wide view of an additional electrical test structure
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Figure C-4: A closer view of the structure shown in figure C-3 showing the junction
between wide and narrow lines, with the wide lines having undergone bifurcation and
the narrow line staying relatively stable. Material has pulled away from the junction,
separating the two lines.
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Figure C-5: This image shows a channel which has partially propagated through
a narrowing wide line, leading to partial bifurcation. This is direct evidence that
channel dewetting is playing a role in line bifurcation, rather than the bulk thinning
mechanism alone.
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Figure C-6: We observed holes in many of the wide lines, at various stages of dewet-
ting. It is our belief that hole formation coupled with channel dewetting is likely the
primary mechanism by which wide lines bifurcate.
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Figure C-7: A set of wider electrical leads (initially 500 nm–wide) at an earlier stage
of dewetting

Figure C-8: An AFM scan of a set of lines similar to those seen in figure C-7.
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Figure C-9: A line scan extracted from the AFM data shown in figure C-8. This
shows no evidence of valley formation.
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C.1.2 Narrow Line Intersections

In addition to studying the junctions between lines of different widths, we also an-

nealed samples featuring intersections of relatively narrow lines of the same width.

The results of these experiments further showcase the twin roles of ovulation and

Rayleigh-like modes in Ru nanowire breakup, as the point of intersection can nucle-

ate instability. These structures were patterned from 5 nm–thick films.

Figure C-10: Intersections of ∼70 nm–wide as–patterned lines. The left intersection
is composed of two stable < 1120 > lines while the right contains one stable and one
unstable line.
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Figure C-11: Intersection of ∼70 nm–wide as–patterned lines. The horizontal line is
aligned along a stable < 1120 > direction, and the vertical line is 30∘ offset from such
an orientation.
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Figure C-12: Intersection of ∼70 nm–wide as–patterned lines. Both lines are aligned
along stable < 1120 > directions.
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Figure C-13: Intersections of ∼70 nm–wide as–patterned lines. Both intersections
contain one stable < 1120 > and one unstable line.
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Figure C-14: Intersections of ∼70 nm–wide as–patterned lines. The left intersection
contains two unstable lines, and the right intersection contains one unstable line (the
line closer to horizontal) and one stable < 1120 > line (the line closer to vertical).
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Figure C-15: Intersections of ∼70 nm–wide as–patterned lines. The left intersection
contains two unstable lines, and the right intersection contains one unstable line (the
line running from lower left to upper right) and one stable < 1120 > line (the line
running from upper left to lower right).
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Figure C-16: Intersections of ∼70 nm–wide as–patterned lines. The left intersection
is composed of two stable lines and has decomposed into 3 pieces: two lines and one
sideways “V”. The right intersection contains unstable line (the vertical line) and one
stable < 1120 > line.
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Figure C-17: Intersections of ∼70 nm–wide as–patterned lines. Both lines contain one
stable < 1120 > line and one unstable line.
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Figure C-18: Intersections of ∼70 nm–wide as–patterned lines. The left intersection
contains one stable < 1120 > line (oriented closer to vertical) and one unstable line.
The right intersection is composed of two unstable lines.
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C.1.3 Hexagonal Patches

Some samples were also patterned with hexagonal patches of different sizes and ori-

entations. Those shown below were patterned from a 5 nm–thick film.

Figure C-19: A Ru patch which has been annealed for 45 minutes. The edges of the
pattern are all 30∘ offset from stable < 1120 > orientations. These edges have formed
lines which are now in the process of breaking up.
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Figure C-20: A Ru patch, far smaller than that shown above, which has been annealed
for 45 minutes. The edges of the pattern are all 30∘ offset from stable < 1120 >
orientations. These edges have formed lines which are now in the process of breaking
up.
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Figure C-21: A Ru patch which has been annealed for 45 minutes. The edges of
the pattern are aligned along stable < 1120 > orientations and thus appear more
stable than those in figures C-19 and C-20. We believe channel dewetting is the likely
mechanism by which the concentric hexagonal rings are formed.
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Figure C-22: A Ru patch which has been annealed for 45 minutes. The behavior seen
in this image is similar to that in figure C-21.
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