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Abstract

The near-infinite number of possible macromolecules, arising from the combinations of
monomers, linkages, and their topological arrangement, contributes to the ubiquity
and indispensability of macromolecules. However, such chemical diversity hinders
the development of general computational approaches that can be applied to macro-
molecules. The challenges around representing, comparing and learning over macro-
molecules are manifold. Current representations provide limited coverage of chem-
ical space, and require significant customization to include non-natural monomers
and non-linear topologies. Similarity computation methods are limited to biological
macromolecules, incorporate evolutionary bias in scoring, and generally do not ex-
tend to unnatural monomers or non-linear topologies. Machine learning models are
restricted by descriptors with limited representation capacity.

To address these challenges, we developed chemistry-informed representations for
the individual monomer unit and the complete macromolecule to capture both the
local chemistry and global topology. Chemical similarity computation methods were
developed to compare two or more macromolecules, irrespective of monomer chemistry
and topology. A wide variety of unsupervised and supervised machine learning meth-
ods, selected according to the macromolecule type, data set size, and task, were used
to identify patterns in unlabeled data sets, and map macromolecules to properties in
labeled data sets, respectively. Using attribution analysis over the pre-trained mod-
els, we interpreted the decision-making process of the models. We applied these tools
for de novo design, virtual screening, and in silico optimization of macromolecules,
mostly followed by experimental validation of predictions, for applications ranging
from peptides and glycans, to electrolytes and thermosets.

Thesis Supervisor: Rafael Gómez-Bombarelli
Title: Assistant Professor
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Chapter 1

Macromolecules - Background and

Challenges

1.1 Introduction

Macromolecules are ubiquitous, from constituting what we are made up of to be-

ing present in almost everything we use. An individual macromolecule is a result

of its monomer composition, connecting linkages, and the spatial arrangement of

the monomers and linkages [1]. Individual monomers and linkages are functions of

atomic composition, connectivity and stereochemistry, while spatial arrangement of

the monomers and linkages dictates the topology. The total number of possible macro-

molecules grows exponentially as the number and type of monomers, linkages, and

arrangement increase. For instance, there are 𝑛𝑛−2 possible macromolecules, for n

unique monomers and just one type of linkage [2]. As a result of such chemical

diversity, representing, comparing, and learning over macromolecules with different

monomers, bonds, and topologies emerge as critical challenges.

1.1.1 Biomacromolecules

Biological macromolecules are the basis of life, playing a vital role in a wide range

of biological processes necessary for survival and growth [3]. They are usually di-
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vided into three classes - poly-nucleotides (DNA, RNA), poly-amino acids (proteins),

and poly-saccharides (glycans) [4]. Combinations of these main classes of biomacro-

molecules, commonly referred to as bio-hybrid macromolecules, have been both found

in nature and synthesized by humans [5, 6]. Some prominent examples are glycopro-

teins [7, 8], glycan-RNAs [9, 10], and peptide-nucleic acids [11, 12], .

1.1.2 Synthetic macromolecules

Synthetic macromolecules are man-made macromolecules, with defined chemistry

and/or topology. Humans have engineered the composition [13–15] and topology

[16] to design structural components [17, 18], sensors [19], shape-memory materials

[20], drugs [21], encode messages [22], and much more. Experimental and computa-

tional practitioners have explored a vast macromolecule chemical space by varying

monomers [23, 24], linkages [25], and topologies – linear [15] and non-linear such as

branched [26], star [27], miktoarm [28], and bottle-brush [29].

1.2 Representation

Representing macromolecules in a machine- as well as human-readable form, while

trying to encompass enormous chemical diversity, poses a great challenge. Several

notations and standards have been developed to address these challenges, both for

linear and non-linear macromolecules.

Some of the notable macromolecule representations are strings, hierarchical editing

language for macromolecules (HELM) [30], International Union of Pure and Applied

Chemistry (IUPAC) international chemical identifier (InChI) [31], CurlySMILES [32]

and BigSMILES [33], where SMILES is Simplified Molecular-Input Line-Entry Sys-

tem.

Natural, linear biological macromolecules, such as proteins and DNA/RNA, are

usually represented as sequences of one/three-letter monomer codes. This representa-

tion is limited by the coding system, and does not have a universally accepted way of

encoding new monomers. In a recent attempt, glycans, which are non-linear biologi-
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cal macromolecules, were represented as sequences, where groups of monosaccharides

were clubbed into ’glycowords’ and placed in hierarchical brackets [34].

InChI is a general chemical representation rather than one specifically for macro-

molecules. This representation encodes the formula, connectivity, isotopes, stere-

ochemistry, and tautomers, in successive layers. As the size of InChI can grow

significiantly depending on the size of the molecule, InChIKey was developed as a

hash-based representation for indexing and database searching.

HELM, CurlySMILES, and BigSMILES are hierarchical representations inspired

by the original SMILES representation [35]. Both HELM and CurlySMILES do

not capture the stochastic nature of random macromolecules and require significant

customization to be adopted for new classes of macromolecules. BigSMILES is a

more general macromolecule representation following the SMILES encoding; how-

ever, the limited capability to process using available computational tools restricts its

widespread adoption.

Hierarchical fingerprinting is another approach, which follows a hierarchy of atomic

(categorical encoding of the presence/absence of contiguous atom-sets), physicochem-

ical (e.g., fraction of rings, molecular surface area), and morphological (e.g., length

of side chain, length of main chain) descriptors [36].

In summary, line notations do not always support all topologies, necessitate a fair

amount of customization, and have non-canonical variants, while hierarchical finger-

printing is limited in its coverage of chemical space, ability to differentiate stereo-

chemistry, and capturing of long range through-space interactions.

1.3 Similarity computation

Computing the chemical similarity of two or more macromolecules is key to remov-

ing redundancies in experiments and leveraging prior knowledge within a class of

macromolecules to develop more optimal macromolecules.

For linear biological macromolecules, such as proteins, DNA/RNA and linear gly-

cans, there are several works for computation of sequence similarities [34, 37–39]. Usu-
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ally, sequence alignment is done using Smith-Waterman [40] or Needleman-Wunsch

[41] algorithms, and scored with substitution matrices, such as BLOSUM62 [42] (for

proteins) and GLYSUM [34] (for glycans). These substitution matrices are based on

evolutionary statistics, thereby biasing the scoring towards the statistical frequency

of a particular monomer’s occurrence in the course of evolution rather than chemical

similarity. Apart from sequence alignment in linear macromolecules, edit distances

[43, 44], linear kernels [45, 46] and deep learning methods [47, 48] have been proposed

to compute similarity.

For non-linear macromolecules, alignment of glycans has been explored using q-

grams [49], tree matching methods [50–52], and using tree kernels [53]. On the compu-

tational front, in recent times, there have been significant advances in computation of

similarity using graph edit distances (GED) [54] and graph kernels [55, 56]. Develop-

ment of software packages, such as graphkernels [57] and GraKeL [58], has provided

fast implementations of graph kernels. However, these are general computational

methods, and have not been adapted for macromolecules.

Unfortunately, all of the aforementioned methods are limited to biological macro-

molecules, and do not extend to the general macromolecular chemical space. More-

over, existing tools do not allow incorporation of unnatural monomers and non-linear

topologies, except for glycans.

1.4 Machine learning

Machine learning (ML) has enabled a paradigm shift in the field of chemistry, resulting

in prediction and optimization of both functionality and synthetic accessibility of

molecules for a wide range of applications, ranging from medicine to clean energy

[59–61].

ML applications to individual macromolecule classes, such as RNAs and proteins,

have been very successful in predicting structure [62, 63] and function [47, 64]. How-

ever, these methods typically rely on sequence-based representations that are tailored

for linear macromolecules [65]. In a similar vein, PolymerGenome and similar works
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have explored using monomer features [66–68] and hierarchical fingerprints to pre-

dict different macromolecule properties, like glass transition temperature [36] and

dielectric point [69].

However, these methods are mostly limited to linear topologies and a small set

of monomers. They are not applicable to the general class of macromolecules, with

non-linear structures and diverse monomer and linkage chemistry. Mostly, the lack

of an optimal representation limits the development and performance of ML models.

1.5 Problem statement, and thesis overview

In this thesis, we focus on addressing the challenges around representation, similarity

computation, and ML of macromolecules by developing methods that cater to a wide

range of macromolecules, from sequence-defined macromolecules to networks. These

methods are then applied to applications, from the design of mini-proteins for gene

therapy delivery to sustainable thermosets to to Li-battery electrolytes. We extended

our work to include small molecules, designing organic photoelectronic molecules and

drug-like molecules.

The thesis is divided into 5 distinct chapters, other than the Introduction. Chap-

ter 2 introduces the methods, namely, the tools developed or adapted for represen-

tation, similarity computation and ML. Chapters 3, 4, and 5, discuss applications of

these methods to biomacromolecules, artificial macromolecules, and small molecules,

respectively. Chapter 6 concludes the thesis and provides an outlook for the future.
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Chapter 2

Methods

2.1 Representations

2.1.1 Monomer

Monomers are represented using cheminformatic descriptors and extended connectiv-

ity fingerprints (ECFPs). Both descriptors and fingerprints are generated using the

open-source Python library RDKit [70].

Physicochemical descriptors quantitatively capture the attributes of the molecule

(Figure 2-1A). Some examples are molecular weight, partition coefficient, number of

rings and cycles, topological polar surface area, and partial charges. The descrip-

tors, when used to train interpretable supervised ML models, provide an intuitive

measure to understand the effect of certain molecular attributes on the final prop-

erty. Apart from physicochemical descriptors, shape descriptors, such as weighted

holistic invariant molecular descriptors (WHIM), are used to represent conformers as

fixed-size vectors [71]. However, there are two major limitations in using descriptors

- (1) they provide limited information about the molecule due to a selection bias in

choosing what descriptors need to be used, and (2) certain descriptors might not be

readily available for a lot of molecules, necessitating computationally costly quantum

chemical calculations or wet-lab experiments.

Fingerprints capture the connectivity and stereochemistry of the atoms in their
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Figure 2-1: Monomer representations. A. Selected physicochemical and shape
descriptors. B. Circular fingerprint for alanine.

respective neighborhoods in the form of a bit-vector [72] (Figure 2-1B). This vector is

obtained by representing the molecule as a 2D graph, where the atoms are nodes and

bonds are edges. Each bit in the fingerprint corresponds to a particular sub-graph of

the molecule. The value of the bit is 1 or 0, depending on the presence or absence of the

specific sub-graph. The fingerprints are unique to a particular molecule, and can be

obtained for any new molecule, unlike physicochemical descriptors. For interpretable

models, the predicted property can be attributed to sub-graphs or chemical motifs,

thereby providing very specific information on the impact of chemical structures on

the macroscopic property.

2.1.2 Macromolecule

Macromolecules are represented on the basis of the differentiating group, composition,

or sequence/topology-definition (Figure 2-2). Each representation is optimized for the

specific learning objective.

Representing the differentiating group is ideal for macromolecules where only a

molecular substituent changes while the polymer backbone remains identical for the

system. Representing the substituent alone captures the changes differing from the

backbone baseline, and avoids redundant representation of the backbone. We used

this approach to capture the effect of molecular substituents on conductivity and

viscosity of oligoethylene-based Li-battery electrolytes [66].

For polymer networks, the composition and concentration of different monomers
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Figure 2-2: Macromolecule representations. Differentiating group for molecular
substituent in polymer backbones, monomers and their respective concentration for
networks, fingerprint matrix for sequence-defined linear macromolecules, and graphs
for non-linear macromolecules.

are critical. Thus, representing the monomers using descriptors or fingerprints, and

their respective concentration, effectively captures the chemistry of the network.

As the macromolecule gets more defined, such as sequence-defined macromolecules

like proteins or DNA/RNA, and sequence/topology-defined macromolecules like gly-

cans, representing the exact position of the monomers and their spatial arrangement

becomes essential. For linear macromolecules, a matrix of fingerprints, with the

fingerprints arranged in the order the monomers are present in the polymer back-

bone, captures the local and through-space interactions. Analogously, non-linear

macromolecules are well-characterized by macromolecule graphs, where monomers

are represented by the nodes and linkages by the edges. The nodes and edges in the

macromolecule graph are featurized using fingerprints.

2.2 Similarity computation

2.2.1 Linear macromolecules

Computing similarity for linear macromolecules, represented as sequences of monomer

codes, follows a two-step process - sequence alignment and scoring (Figure 2-3A). The
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Figure 2-3: Similarity computation. A. Global sequence alignment and scoring
using Tanimoto matrix for linear macromolecules. B. Graph edit distance for non-
linear macromolecules, varying in topology and monomer chemistry.

alignment is solved using a dynamic programming algorithm with 𝒪(𝑛2) time and

space complexity. This approach usually solves for global alignment, which is suitable

for relatively shorter sequences like peptides and proteins. Some of the common

algorithms are Needleman-Wunsch [41] and Smith-Waterman [40], which have been

implemented for alignment of DNA/RNA and protein sequences [37, 38]. The major

change in linear sequence alignment is the update to the scoring matrix, where we

are using a Tanimoto dissimilarity matrix. The matrix is computed by calculating

the Tanimoto dissimilarity between the fingerprint bit-vectors of monomers; thus,

self-dissimilarity is 0 and maximum dissimilarity is 1. This approach computes the

chemical dissimilarity without any evolutionary bias. Moreover, this is a general

approach and can be applied to both natural and non-natural monomers, including

those monomers which are not a part of the initial data set.

2.2.2 Non-linear macromolecules

Similarity between two general macromolecules, represented as macromolecule graphs,

is computed using graph edit distance (GED) and graph kernel (Figure 2-3B). GED

is calculated using A* algorithm, and its modifications use a mixed-integer linear

programming approach [54]. The scoring pattern is similar to the one used in scor-

ing between linear macromolecules, based on insertion, deletion and substitution of

monomer nodes and linkage edges. We use a Tanimoto dissimilarity matrix to inform
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the scores in GED. However, GED is an 𝒩𝒫-hard problem, which makes it compu-

tationally costly to obtain exact GED as the size of the macromolecules and the data

set increases. To scale similarity computation to large data sets, we use graph kernels.

Specifically, we use a propagation attribute kernel that propagates the node features

along the edges, capturing both local monomer chemistry and global topology.

2.3 Machine learning

In this thesis, we have used a variety of machine learning methods, based on the

data set size, data type, and task (Figure 2-4). These methods range from physics-

informed models trained on less than 100 unique data points, to language-based mod-

els trained on 100,000+ data points. Similarly, the data type, or more specifically

the macromolecule type, plays a significant role in the model choice. For non-linear

macromolecules, training a graph neural network over macromolecule graphs is more

optimal, as it captures the chemistry of the macromolecule in its native state. Ul-

timately, the objective, such as classification, regression or sampling, dictates the

model choice. Often, we benchmark with a variety of other model architectures, and

even tasks, such as using a threshold classifier for otherwise regression tasks, to en-

sure that the initial choice was optimal. In addition, each model undergoes thorough

hyperparameter optimization using Bayesian approaches [73, 74].

2.3.1 Unsupervised learning

Unsupervised learning methods have been used to learn the general chemical space

using language models [75]. We have used both text completion and translation

models to effectively generate novel, yet chemically similar macromolecules and small

molecules. The text completion models work by starting with a random seed se-

quence, and generate the next character, enabling sequence completion following an

ontology based on the training data set, thus allowing for sampling of novel linear

sequence-defined macromolecules. The translation models enable the mapping of

a feature vector, such as a circular fingerprint or a set of properties, to a string-
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based representation of the molecule. Both approaches help in taking advantage of

large data sets of unlabeled molecules, while the translation approach enables inverse

design of molecules with desired properties. We have applied the text completion

approach to peptides [64], and the translation approach to design organic photoelec-

tronic molecules [76].

To identify patterns and sub-families in large unlabeled data sets, we have used

dimensionality reduction (DR) and clustering approaches. DR helps in the statisti-

cal decomposition of the number of input dimensions to a more palatable number of

dimensions where the data set can be visualized easily. Linear DR methods, such

as principal component analysis (PCA) [77], and non-linear methods like t-stochastic

neighbor embeddings (t-SNE) [78], and uniform manifold approximation (UMAP)

[79], can be used to transform the data while preserving local and global structures

of the data set. Clustering on the low-dimensional data can help in identifying sub-

families [80]. The general approach has been used over fingerprint matrices of pep-

tidomimetic binders to identify sub-families, and over glycan similarity vectors to find

taxonomic and biologically relevant patterns [81].

2.3.2 Supervised learning

For relatively small data sets, such as those with less than 10 unique molecules,

we have used physics-informed models, as they enable learning and extrapolating

from known physical relationships. For instance, we successfully modeled the effect

of molecular substituents on viscosity and conductivity of oligomer electrolytes us-

ing enthalpy-entropy compensation in Arrhenius and Vogel-Tammann-Fulcher (VTF)

equations, with a data set of only twelve unique molecules and eight different tem-

perature values [66].

In the low-data regime with 10s to 100s of data points, we have found simpler

models, such as ridge [82], decision-tree [83], and gradient-boosting [84] regression,

to be more effective adequately capturing the relationship without the risk of over-

fitting. In addition to that, interpretability using coefficients in linear models, and

Gini indices in tree-based models help in attributing the effect of input features on
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Figure 2-4: Machine learning. Different ML model types used for (un)supervised
learning in this thesis are shown here.

the predicted property [85, 86].

Convolutional neural networks (CNNs) and graph neural networks (GNNs) are

really good at learning over macromolecules where local pair-wise interactions and

global through-space interactions are relevant. We have been successful in using

CNNs for linear macromolecules, designing nuclear-targeting mini-proteins for gene-

therapy delivery [64], as well as using GNNs for non-linear macromolecules, classifying

immunogenic and non-immunogenic glycans [81].
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Chapter 3

Applications to biomacromolecules

3.1 Cell-penetrating peptides and mini-proteins

Shorter cell-penetrating peptides (CPPs, 5-20 residues) and longer mini-proteins (30-

80 residues) have been shown to improve intracellular delivery of drug molecules

which otherwise cannot efficiently cross the cell membrane [87–90]. However, the

efficacy of CPPs depend on a variety of factors, such as experimental design for in

vitro and in vivo studies, and the identity of the cargo, thereby making it difficult to

design general-purpose CPPs [91]. Existing studies in the literature have resulted in

inconsistent and sometimes contradictory data sets, owing to the lack of any standard

experimental protocols. These erratic and conflicting results have made it harder to

formulate sequence-activity relationships, and complicated the development and use

of computational methods to develop sequences de novo [92–94].

Recent works on quantitative activity prediction of sequence-defined polymers

have shown significant promise for the development of computational models to ac-

celerate macromolecule discovery, specifically, for design of anti-microbial peptides

and antibody CDR3 loops [95, 96]. For CPPs, there have been attempts to classify

peptides as cell-penetrating or not, using binary classifiers [97–100]. However, by

the nature of the data set and models, these works are limited to a binary decision,

which makes it tough to select peptides for experimental validation in the absence

of a quantitative activity. Moreover, these models possess limited accuracy, owing to
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Figure 3-1: Data set generation. A. 600 unique mini-proteins conjugated to PMO
were synthesized using linear combination of peptide modules. B. Standardized in
vitro quantitative activity assay tests for nuclear delivery using a quantitative fluo-
rescence readout. C. Members of the modular library exhibit a broad spectrum of
activities. Each bit corresponds to a PMO–peptide in the library and its correspond-
ing activity.

challenges arising from the aforementioned inconsistency in the data sources.

In this section, we discuss how we developed an interpretable supervised learning

model by leveraging a standardized data set, followed by generation, optimization,

and experimental validation of predicted CPPs. We also discuss how we adapted the

existing model for generation of shorter CPPs. In addition to being cell-penetrating,

both the peptides and mini-proteins are also nuclear-targeting. To be consistent

with the convention in the literature, we have continued to use CPP, to refer to the

nuclear-targeting peptides and mini-proteins.

3.1.1 Data set

We assembled a standardized, labeled data set by synthesizing and characterizing

the nuclear-targeting activity for a library of 600 sequences, conjugated to antisense

phosphorodiamidate morpholino oligomer (PMO) (Figure 3-1) [101]. The sequences

are linear combinations of modules of short peptides containing diverse structure and

function, unnatural residues and non-linear topology in the form of cysteine-linked

macrocycles [94]. A high throughput nuclear targeting assay was used to acquire a
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Figure 3-2: Machine learning framework. Peptide sequences are represented
as fingerprint matrices, and labelled with experimental activity. A CNN model is
trained, and used in loop with a genetic algorithm-based optimizer to improve the
sequences against an objective function.

quantitative readout of the cell-penetrating activity and nuclear delivery of the PMO.

Activity, as quantified by flow cytometry, was reported as mean fluorescence intensity

(MFI) relative to PMO alone. Across all the sequences in the data set, the mean MFI

was 3, and the maximum was 19.

We also collected a list of CPP sequences from the literature, irrespective of in-

formation about penetrating activity [102, 103]. This mostly unlabeled data set was

used for training of unsupervised language models.

3.1.2 Machine learning framework

We developed a generator-predictor-optimizer framework to sample mini-proteins,

quantitatively predict the intra-cellular delivery efficacy for an unknown sequence,

and optimize sampled sequences against an objective function, respectively (Figure

3-2).

Generator. The generator was modeled on a next-character predicting language

model, where the training is performed using fixed-size inputs and single-character

outputs. For example, the input could be ‘MATERIA’ and the output ‘L’. In this
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manner, the model learns the sequence ontology, specifically, the general order of the

amino acids in CPPs. When used for sampling new sequences using fixed-size seeds,

the model produces novel, CPP-like peptide sequences.

A recurrent neural network - nested long short-term memory (RNN-Nested LSTM)

model architecture was used to train the generator [104]. LSTM models are good at

remembering long-range interactions, which translates to being able to capture non-

local interactions between amino acids from the primary structure [105]. Additionally,

the nested architecture helps in attending to both local and non-local interactions, as

compared to other simpler RNN architectures, such as vanilla-LSTM or bidirectional-

LSTM [104]. The model was trained using a list of known CPPs, both from the library

we assembled and existing sequences in the literature [102]. Since it is a language

model which needs to learn the CPP grammar, we were able to expand our training

data set to include CPPs without quantitative labels.

For training, the characters were featurized as one-hot encodings, where the set of

n characters can be assumed as n categories, and each character represented as an n-

sized vector of 0s, with a single 1 at a particular index. To sample new sequences using

the generator, we used short seed sequences, randomly sampled from the training

data set. We noted that the resulting sequences sampled using the generator had low

string similarity, calculated using Jaro-Winkler text distance, with the sequences in

the training data set. With this approach, we fulfilled one of the key objectives of

generating novel sequences [106].

Predictor. Using the labeled data set, we trained a supervised machine learning

model, to model the experimental activity from the sequences (Figure 3-3). We used

a convolutional neural network (CNN) model architecture for the supervised model.

The CNN model works by aggregating the local features into combined representa-

tions, essentially approximating the contribution of multiple local features in a single

representation. In a sequence scenario, the process starts by capturing pairwise in-

teractions, ultimately leading to the through-space interactions.

The training data set consisted of a curated list of sequences from the assembled
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Figure 3-3: Model performance and attribution. A. Parity plot showing the
predicted and experimental activities for sequences in the test data set, and experi-
mentally validated or Mach sequences. B. Positive activation gradient map showing
the activated fingerprint bits for Mach 3, with the averaged activation values across all
fingerprint indices and residues shown on the right and bottom of the feature activa-
tion map. Amino acids corresponding to the most activated bits, X or aminohexanoic
acid, have been marked in red. C. Activation gradient map for aminohexanoic acid,
and substructure corresponding to the most activated fingerprint bit.

library, and the individual peptide sequence modules. Sequences were represented as

matrices of extended connectivity fingerprints. We randomly split the data set into

80:20 for training and validation of the model.

The model performed well within the range of the MFI values in the training

data set, with a root mean squared error (RMSE) for the validation data set being

0.4 of the standard deviation of the training data. We benchmarked these models

against a variety of model architectures, classification tasks, and one-hot sequence

representations. We noted that almost all the models were limited by the range of

the training data, and only the CNN model trained over fingerprints could extrapolate

in the codomain space. However, the extrapolation came along with increased noise

for the predicted values. We attempted to address the statistical noise by model

ensembling, and were able to average out the extreme predicted values.
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Optimizer. The directed evolution inspired optimizer completed the synthesize-

learn-design loop. A genetic algorithm (GA) based strategy using random mutations

was used to optimize the sequences against an objective function. The mutations

involved single-point mutations, such as insertion, deletion, or swapping of residues

in the seed sequence, and motif mutations or hybridization, involving the replacement

of a random-sized motif with another same or different sized motif sampled from the

training data set. We performed 1000 iterations for every seed sequence.

The objective function involved maximization of the activity predicted using the

pre-trained model, minimization of arginine content as well as length and similarity

to the library, all while retaining water solubility -

𝐺𝐴𝑠𝑐𝑜𝑟𝑒 =
1

2
𝑀𝐹𝐼𝑝𝑟𝑒𝑑 −

1

2

(︂
1

2
𝑅𝑐𝑜𝑢𝑛𝑡 +

1

5
𝐿− 1

10
𝑁𝐶 + 𝑆

)︂
, (3.1)

where 𝐺𝐴𝑠𝑐𝑜𝑟𝑒 is the score used to compare the seed and mutated sequences, with

the sequence corresponding to the higher value being used as the seed for the next

iteration; 𝑀𝐹𝐼𝑝𝑟𝑒𝑑 is the activity predicted using the supervised model; 𝑅𝑐𝑜𝑢𝑛𝑡 is

the number of arginine residues in the sequence; 𝐿 is the sequence length; 𝑁𝐶 is the

isoelectric point estimate for the sequence based on the amino acid composition [107];

and 𝑆 is the mean Jaro-Winkler similarity of the sequence compared to the training

data set.

The GA was used to obtain sequences with a range of activities - ranging from

negligible improvement of using the CPP, as compared to naked PMO, or approxi-

mately 0-fold activity, to 3x the maximum activity observed in the training data set.

This approach was taken to assess the robustness of the model in predicting activity

of the sequences across the range of training data, apart from its ability to extrapo-

late. Moreover, the optimization for the lower activity sequences was to check if the

model could generate negative control.
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3.1.3 Interpreting the predictor model

To interpret the decision-making process of the model, specifically, to attribute the

predicted activity to specific residues and molecular features in the input representa-

tion, we used gradient class activation maps (GradCAM) [108]. This method has been

widely used for attribution analysis for image classification. Briefly, this approach as-

sumes the model as a mathematical function, and obtains the gradients corresponding

to each input feature. These gradients are multiplied with the respective features.

The values greater than zero are noted to have a positive influence on the predicted

result, and those less than zero have a negative influence.

Here, we adapted this framework for regression, generating fingerprint bit-wise

positive and negative activation values, corresponding to the effect of the respective

feature on the predicted activity. For Mach3, one of the most active CPPs, we

observed that the C-terminus aminohexanoic acid (Ahx) residues were most positively

activated compared to the rest of the residues. Further, the fingerprint bit for the

alkyl chain in the Ahx residue was the most activated substructure.

The level of detail on the effect of individual residues and substructures was un-

precedented using both computational and experimental tools. Prior to this frame-

work, arduous experimental methods, such as alanine scanning of the entire peptide

sequence, where individual residues are replaced by alanine, were used to evaluate the

change in the activity and for attribution to individual residues. The savings, in terms

of time and resources, accelerated the development of new hypotheses and directed

wet-lab experiments accordingly. In one such experiment, we investigated whether

the attribution feature is useful towards post hoc mutations to Mach miniproteins,

and found a substantial boost in activity when mutating Ahx (6-carbon chain) to

aminoundecanoic acid (11-carbon chain) in Mach3.

To probe the model further, we used this visualization approach to analyze differ-

ent sequences 3-4. We randomly selected five sequences of different lengths, seeded

them in the predictor–optimizer loop to maximize the activity contingent on other

design constraints and visualized the activation for the best predictions. In line with
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Figure 3-4: Inferring design principles using attribution. Feature activation
maps, averaged across the A. fingeprint indices and B. residues, shown for the op-
timized sequences for lengths, 35, 40, 45 and 50. C. The percentage composition of
positively-charged, negatively-charged, non-polar, and polar amino acids shown for
the sequences. D. Activated substructures for Lys, Ser and Asp are shown. The
blue dot indicates the node and the black bond lines indicate the sub-graph in the
2D graph of the amino acid, with the rest of the structure in grey. The number
noted alongside each substructure refers to the fingerprint bit index in the extended
connectivity fingerprint.

our previous observation for Mach3, we noted a higher activation for residues at the

C-terminus. It may be noted that the C-terminus is the free end of the peptide, with

the PMO conjugated to the N-terminus. General understanding of CPPs suggests

that highly active peptides constitute a good number of positively-charged amino

acids to penetrate the negatively charged cell membrane [109]. We also observed that

the percentage of positively charged amino acids remained on the higher side. Addi-

tionally, the general composition of charged and hydrophobic amino acids remained

unchanged across different sequence lengths. At the substructure level, specific fin-

gerprint bits were noted to be activated, irrespective of the sequence length, such as

the side chains of lysine, serine and aspartic acid.
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3.1.4 In vitro validation of nuclear-targeting mini-proteins

We synthesized and characterized twelve sequences from the list of sequences opti-

mized using the model framework. The sequences were selected to capture a wide

range of lengths, predicted activities, and arginine contents. Along with sequences

predicted to have a high activity, we selected sequences with a lower activity, as nega-

tive control, to check the robustness of the supervised model. We used the same assay,

as was done for the library generation, to characterize these sequences conjugated to

the PMO cargo. All but one of the sequences that were predicted to have activity

greater than 20-fold surpassed the best performing sequence in the generated library

with a 19-fold experimental activity. Despite the limited amount of data available for

training, and the extrapolation outside the range of activities in the training data,

we were able to reasonably predict the trend of predicted and experimental activities

for the new sequences.

The model was able to capture sequence-activity relationships, beyond correla-

tions of activities with physicochemical properties. In the library used for training

the model, longer sequences, and sequences with high arginine content resulted in

higher activity. Using the model, we were able to design sequences with approxi-

mately 30 residues and very low arginine content, and with activity much greater

than the maximum of the training data set. These results demonstrate how machine

learning approaches outdo heuristic-driven physicochemical property-based optimiza-

tion strategies.

3.1.5 Design of shorter CPPs

As an extension to our work on mini-proteins, we intended to design shorter CPPs

with less than 20 residues [110]. These shorter peptides are preferable to longer mini-

proteins, owing to their low molecular weight and ease of synthesis. However, we

have observed a positive correlation between sequence length and activity of the CPP

[101]. In addition, the majority of the CPPs in the original training data set were

longer than 30 residues, indicating a biased data set with limited information about
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Figure 3-5: Designing shorter CPPs. A. 601 out of 653 sequences in the training
data set are longer than 20 residues (scatter plot). The desired design space of
sequences with 20 or less residues is denoted in orange. B. Parity plot for the 10x data
augmented CNN model ensemble is shown, with mean fluorescence intensity (MFI)
for sequences in the validation (blue), test (orange), and experiment (green) data sets.
The points indicate the mean value of the predicted MFI from all of the models in
the ensemble, and the error bars denote the standard deviation of prediction.

sequence-activity relationships in the desired design space. Thus, designing a highly

active CPP, with the added constraint of length posed a greater challenge.

To address the length imbalance in the data set, we used data augmentation. The

data set used in the training the model in Schissel et al. [64] had 640 sequences, with

92% of the sequences having more than 20 residues, and the mean sequence length

being 41. For this work, along with the original 640 sequences, we included the 13

sequences published in Schissel et al. [64]. We replicated the 8% shorter sequences

nine times, bringing the total number of each sequence in the data set to ten. The

augmentation allowed us to train the model over a desired length space using the

shorter sequences, and show the model characteristics of highly active sequences using

the longer sequences in the data set.

With this augmentation strategy in place, we were able to see only a slight im-

provement predictions using the CNN model. The improvement can be noted from

comparing experimental activities in the held-out test data set and predicted CPPs

validated in vitro 3-5, where the 𝑅2 score is 0.148 and the Pearson’s correlation is

0.512. Benchmarking against simpler models, such as gradient boosting and multi-

layer perceptrons, we observed that the simpler models had a better prediction of
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mean activity but had significantly large ensemble variance, rendering the mean val-

ues unreliable.

In a retrospective active learning experiment, we added sequences generated as a

part of the study to train new models. Out of a total of 19 sequences, we added 1, 4,

7, 10, 13, and 16 random sequences in the training data set, and tested the new model

on the remaining sequences. We observed that the performance on the test data set

improved in subsequent generations of the model. This improvement indicates that

active learning with new sequences can help in sequential optimization of the model

to predict sequences in desired design space.

3.2 Advanced affinity selection of peptide binders

Many early-stage drug discovery efforts focus on the identification of compounds that

potently bind a biomolecular target [111, 112]. Often such compounds are identi-

fied by mining large libraries, such as high-throughput screening libraries or libraries

generated through combinatorial approaches [113]. A major bottleneck of these tech-

niques, however, is the routine identification of nonspecific binders—compounds that

exhibit little or no binding preference for the target of interest relative to other tar-

gets during library interrogation [114, 115]. These nonspecific binders can additionally

appear as ‘hits’ across multiple assays, including pan assay interference compounds

[114, 116]. This complication requires the activity of each putative binder to be ex-

perimentally validated, a time-consuming and labor-intensive process [112]. While

some filters exist to give confidence to the identification of functional binders, bio-

physical evaluation is generally required to truly evaluate each ‘hit’ [116]. At the

most detrimental, these nonspecific putative binders can derail entire screening ef-

forts [115, 117].

Peptides continue to garner further therapeutic interest due to their potential to

disrupt clinically-relevant protein-protein interactions (PPIs) [118–120]. Their syn-

thetic accessibility [121], amenability to chemical tailoring [122, 123], and potential

for cell penetration [64, 124] have made them increasingly popular starting points in
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drug discovery. New peptide binders are typically discovered from libraries accessed

via either genetically-encoded or chemically-accessed approaches, such as phage dis-

play [125–127], mRNA display [128, 129], one-bead-one-compound (OBOC) screen-

ing [130], or affinity selection-mass spectrometry (AS-MS) [131, 132]. Chemically-

accessed peptide libraries in particular offer the advantage of easy access to expanded

chemical space, enabled by direct incorporation of ‘non-canonical’ amino acids and

amenability to a variety of macrocyclization strategies. However, inherent to all of

these techniques is the concomitant discovery of specific and nonspecific binders, de-

spite a number of approaches aimed at addressing this challenge.

Machine learning has presented a paradigm shift to the drug discovery field,

accelerating efforts in hit generation by virtual screening [133, 134]. For peptides

specifically, there are multiple instances where machine learning models trained over

data from generated libraries or public databases have predicted peptides that ex-

perimentally demonstrate higher activity [134–136]. Accurate predictions of PPIs

have been demonstrated using three-dimensional structures of target protein and

peptides [137, 138]. However, these approaches are limited because they require

three-dimensional structures of peptides and target proteins for prediction and do

not capture protein dynamics or allostery. There is another class of models that

predict the binding affinity or probability of binding for target-specific neoantigens

using sequence information [139–141]. These models represent amino acids as indi-

vidual alphabets using one-hot encodings, or with physicochemical descriptors such

as charge, molecular weight, etc. However, because these models trained on specific

binders alone, they cannot be used to identify nonspecific binders and non-binders.

Furthermore, without atomistic representation of the chemical structure in the model,

the diverse chemical space encompassed by noncanonical amino acids cannot be ef-

fectively included or compared.

Here, we report an unsupervised-supervised machine learning model approach

based on topological representation of amino acids to advance drug discovery using

affinity selection-mass spectrometry. We used data obtained from affinity selections of

canonical L-peptide libraries against IgG 12ca5 used in an recent optimization of AS-
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Figure 3-6: Data set generation. Specific binders to anti-hemagglutinin monoclonal
antibody clone 12ca5 are identified by affinity selection-mass spectrometry (AS-MS)
and distinguished from nonspecific binders based on the known characteristic 12ca5-
specific binding motifs. Unlabeled sequences in the sequence identification step are
colored in grey.

MS [132]. Unsupervised learning readily distinguishes specific and nonspecific binders

on the basis of chemical similarity. Supervised learning classifies unknown sequences

into specific binders, nonspecific binders, and non-binders. Predicted labels of 12ca5-

specific, nonspecific, and non-binders were then validated in AS-MS experiment to

reveal the performance accuracy of the supervised learning classifier.

3.2.1 Data set

Affinity selection data was gathered using a recently optimized workflow, described in

Quartararo et al. [132] (Figure 3-6). First, the biotinylated target protein (mouse anti-

hemagglutinin monoclonal antibody, clone 12ca5) was immobilized onto streptavidin

magnetic beads. After washing with blocking buffer, the immobilized target protein

was incubated with a 2×108 L-peptide library composed of 18 canonical amino acids.

Cysteine was excluded to allow only linear peptide architecture and isoleucine was
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Figure 3-7: Unsupervised learning over binders. UMAP over matrices of residue
fingerprints differentiates peptide sequences into 12ca5-specific binder clusters, spread
of nonspecific binders, and continuum of unlabeled sequences.

excluded as it cannot be distinguished from leucine without isotopic labeling in mass

spectrometry. After incubation and washing, 12ca5-bound peptides were eluted and

subjected to de novo peptide sequencing via nanoliquid chromatography Orbitrap

mass spectrometry [142]. All identified peptides that match the synthetic library

design are considered binding peptides (specific and nonspecific), whereas non-binding

peptides are removed during the washing steps of the selection. Sequences which did

not match the motif were marked as unlabeled. Affinity selection was completed in

triplicate. 12ca5 was used for initial AS-MS optimization because it is known to bind

linear peptides with the motif of D–DYA/S. Given this known binding sequence, the

binding peptides observed by AS-MS were then sorted as 12ca5-specific or nonspecific

binders.

3.2.2 Unsupervised learning

Using fingerprint matrices for peptide sequences, we were able to differentiate between

12ca5-specific and nonspecific binders, and identify sub-families within 12ca5-specific

binders (Figure 3-7). The fingerprint matrix for each sequence was was flattened into

a vector, and decomposed into two components using the uniform manifold approx-
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Figure 3-8: Interactive plot for binder visualization. A Jupyter notebook-based
visualization was created to (de-)select binder groups, check sequences, and even new
sequences, such as those marked as Trial_1, and see where they lay.

imation (UMAP) method. The unlabeled sequences formed the continuum between

islands of 12ca5-specific binder sub-families in the two-component space. In addition

to the fingerprint matrix representation, we also performed unsupervised learning over

similarity vector representation, comparing the similarity of each peptide with rest of

the library, as described in section 2.2.1. Dimensionality reduction of the similarity

vectors was done using multi-dimensional scaling [143].

We benchmarked the UMAP dimensionality reduction against t-stochastic neigh-

bor embeddings (t-SNE), and performed hyperparameter optimization for both ap-

proaches. Specifically, n neighbors were optimized for UMAP, and perplexity and

number of iterations were optimized for t-SNE. We observed that t-SNE was able to

separate the sub-families globally, but there was sparsity observed at a local level.

However, UMAP was able to differentiate at both local and global scales. This ob-

servation is in line with results reported in literature, comparing t-SNE and UMAP

for other dimensionality reduction tasks [79, 81, 144].

To make the pipeline accessible to experimentalists, we created a Jupyter notebook

interface to handle data loading, dimensionality reduction, and an interactive plot to
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down-select by different labels and identify sequences by hovering over the specific

points in the two-component space (Figure 3-8).

3.2.3 Supervised learning classifier

The supervised learning was done in two steps: first, one-class classification and gen-

eration of negative data set (unrecorded sequences which might have been washed

away during the AS-MS experiment), and second, multi-class classification (Figure

3-9). From AS-MS and motif-based sorting, we obtained a data set of binding se-

quences (12ca5-specifc and nonspecific binders), while all non-binding sequences were

washed away. Thus, there was no explicit information available about non-binding se-

quences. Therefore, we obtained a data set of non-binding sequences with a sequence

generator–one-class classifier loop. We trained an isolation forest one-class classifier

using similarity vectors to learn the chemical similarity of binding sequences. A gen-

erator was set up to sample sequences of same length as binding sequences. The

generator was constrained to use the library of 18 amino acids and have a C-terminal

Lys, the same as the experimental peptide library. A similarity vector for each se-

quence was calculated against the library of binding sequences. This similarity vector

was used as an input for one-class classification task. Non-binding sequences were

generated to create a balanced number of sequences for the multi-class classification

(n = 2704).

We trained a CNN model for classification of specific, nonspecific, and non-binders.

The CNN model was trained using bit-vector matrices of sequences against respective

class labels. When evaluated against 20% of randomly held out data set during the

training, the model had a categorical cross entropy loss of 0.002 and 99% accuracy.

99% accuracy was seen when the model was evaluated against another 20% of the

data set which was not used in the training of the model.

The model was able to classify nonspecific binders for 12ca5. We hypothesize that

nonspecific binders are common across multiple selections of similar format (e.g., mag-

netic Dynabeads). However, each protein could have its set of nonspecific binders,

indicating our model will improve with additional affinity selections against other
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Figure 3-9: Supervised learning of binders. A. Different peptide classes are repre-
sented in the Venn diagram. There are two resulting classification tasks: i) one-class
classification between binding (defined as both 12ca5-specific and nonspecific binders)
and non-binding sequences (estimated to be 108 sequences), and ii) Multi-class clas-
sification of 12ca5-spcific binders, nonspecific binders, and non-binding sequences. B.
Performance of one-class classifier against test sequences demonstrated 98% accuracy.
C. Performance of convolutional neural network (CNN) classification model against
20% of test sequences demonstrated 99% accuracy. D. Classification of nonspecific
binders from HLA A1101 selection using the model trained on 12ca5 data successfully
classifies 1801 sequences as nonspecific and 12 sequences as 12ca5-specific binders.

targets. We used our model trained with 12ca5-binder data to classify nonspecific

binders identified in HLA A1101 screening. 1801 out of 1813 sequences (99% accu-

racy) were classified correctly as nonspecific binders, despite the model having never

been trained on the specific data set.

3.2.4 Experimental validation of peptide sequences identified

using the supervised model

Using the supervised multi-class classifier model, we generated peptide sequences in

silico with predicted labels for experimental AS-MS validation that were ‘nonobvious’

to classify by eye (Figure 3-10). Specifically, peptide sequences were generated (n =
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Figure 3-10: Machine learning-predicted sequences demonstrate high accu-
racy in experimental validation to classify nonspecific binders. A. Peptide
sequences were predicted for each classification in silico (n = 8 each), synthesized, and
purified for validation in affinity selection. All sequences were chosen to be “nonobvi-
ous” in classification. Specifically, i) 12ca5-specific binders do not contain the D–DYA
binding motif, and ii) both the nonspecific binders and nonbinders span a range of
hydrophobicity. B. Upon affinity selection, the abundance of each peptide by mass
spectrometry revealed nonspecific binding peptides were accurately predicted (94%
accuracy), similar to nonbinding peptides (88% accuracy). Predicted 12ca5-specific
binders that do not contain the D–DYA binding motif showed some binding (33%
of population), meaning the machine learning model was able to discover new se-
quences outside the known D–DYA/S binding motif through chemical similarity. C.
An outcome matrix explicitly shows the number of times each predicted sequence was
observed (meaning it is a binder or non-specific binder) or not detected (non-binder)
in affinity selection.

8) for each label considered of 12ca5-specific, nonspecific, and non-binders. ‘Nonob-

vious’ nonspecific binders and non-binders were created by varying the predicted

peptides over a range of hydrophobicity, which can contribute significantly in the

nonspecific binding of peptides to proteins and surfaces [145]. Moreover, ‘nonobvi-

ous’ 12ca5-specific binders were generated by predicting binding sequences that did

not contain the D–DYA/S sequence. This requirement simultaneously pushes the

model to its limit as well as potentially explores the sequence space of the motif,

similar to an alanine scan. The 12ca5-specific sequences predicted demonstrate high

chemical similarity to the D–DYA/S sequence, but include frameshifts, deletions, and

substitutions.

After completing the AS-MS experiment with the ML-predicted peptides, the

abundance of each peptide demonstrated that nonspecific binding peptides were ac-

curately predicted (94% accuracy), along with nonbinding peptides (88% accuracy).
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Within our currently optimized methods [132, 142], peptides will be sequenced if they

are above an observed abundance of 5 × 104 counts. If the machine learning predic-

tions is accurate, 12ca5-specific or nonspecific binders should be observed at or above

this sequencing threshold, while non-binders are washed away in the selection.

The machine learning model generally showed high accuracy for the nonspecific

and non-binding peptides. In our experiment, 12ca5-specific binders predicted by

machine learning only showed 33% accuracy for binding. However, this can be ratio-

nalized by our initial requirement that these predicted peptides should not contain

the D–DYA/S binding motif. This result means that 12ca5 binding to peptides is

highly sequence specific to the D–DYA/S binding motif.

3.3 Dynamic time warping analysis of affinity selec-

tion - mass spectrometry data

High-throughput library screening methods, as discussed in Section 3.2, can identify

compounds that bind to the target [111–113]. The pre-processing of the raw data

undertaken in these methods often result in significant loss of information, sometimes

up to 99% of the compounds [146]. Such a huge data loss represents the loss of

valuable information which could have been leveraged better. Affinity selection -

mass spectrometry (AS-MS) method used for identification of peptide binders that

inhibit protein-protein interactions are also a victim of this phenomenon.

In a typical AS-MS experiment, the peptide library is screened against a con-

trol and another target protein. The proteins are conjugated to streptavidin biotin

magnetic beads [147]. These magnetic bead bound proteins are incubated with the

peptide libraries, usually consisting of greater than 1 million peptides [122, 132]. Us-

ing an external magnet, the bound peptide-protein complexes are held to the wall

of the container, and thus separated from the unbound peptides which are washed

away. After purification, these peptides are then fed into a mass spectrometer that

obtains spectra as the peptides elute, based on their mass, followed by a second mass

59



spectrometry of automatically identified spectra of interest, giving the process the

name - tandem mass spectrometry, or MS/MS. The second MS is usually performed

if peptide-like features are observed in the primary MS.

Raw data from the MS/MS experiment is fed into a sequencing algorithm, such

as PEAKS [148, 149]. The mass spectra is processed on the basis of the intensities

of different mass/charge ratios (m/z), resulting in a list of potential bound peptides.

Further processing is done to filter incorrect sequence assignments, noise and side

products [142]. Less than 100 peptides, out of which a lot of the peptides are usually

non-specific, are identified from a starting library of more than 1 million. The non-

specific peptides are filtered by comparing against the peptides present in both target

and control sets, thereby indicating no specific preference for a particular protein. In

most cases, less than 10 peptides are found to be viable hits, or that is not even the

case, for an unknown and hard-to-bind target protein.

The loss of information in the processing steps necessitates the utilization of the

raw data using a method that amplifies the signal-to-noise ratio, and helps in identi-

fication of more hits, as compared to contemporary approaches.

In signal processing research, multi-variate time series data, similar to the AS-MS

data, have been analyzed using methods like dynamic time warping (DTW) [150–155].

DTW is a method applicable to almost any set of time series data and was developed

specifically to combat the problem of time variation [156]. For instance, if we have

two series which expected to have a similar structure but we want some deterministic

way to match patterns in one series to similar patterns in the other, the naive way

is to simply match identical time indices (i.e. match each of the first observations to

each other, then match the second observations, then the third, etc). This approach

runs in to problems if the two series do not have the same number of observations,

are shifted in time, or occur at different rates. DTW addresses all of these problems

and determines the optimal way to match the time indices of each series in a largely

brute-force approach under some reasonable requirements. In general, DTW can be

thought of as finding the best way to compress and stretch time in one series to make

it look like another so that different durations, time shifts, and speeds can all be
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Figure 3-11: AS-MS process and output file. A. Schematic of the AS-MS process
showing the peptide library, protein conjugated to streptavidin biotin magnetic bead.
B. Representative image of MS1 file.

accounted for.

In this work, we formulated AS-MS spectra as a multi-variate time series, a col-

lection of scans over time where each scan contains a collection of m/z values and

corresponding intensities. In our work we started with two sets of data, a control pro-

tein (12ca5) and a target protein (SARS-Cov2-RBD) consisting of triplicate spectra

each. The task was to determine what structures, specifically what intensity spikes,

were present in the target group and not in the control group. The challenge is

that AS-MS inherently involves small variations in time and the specific structures,

short bursts of intensity, are relatively brief occurrences. In order to overcome this

time variation, we used DTW to align the series for a single target protein together,

amplified the signal by adding the individual spectra, and subtracted the aligned

control spectra from the target to identify the unique intensities, thereby identifying

the target-specific peptides.

3.3.1 Data set and pre-processing

Raw MS-1 spectra obtained from selection against 12ca5 and RBD proteins were

used as-is (Figure 3-11). The raw data is captured using 2 distinct file systems - MS1

and mzXML. The mZXML files document the m/z scan at distinct time periods,

irrespective of presence of eluted material. In contrast, MS1 files are a subset of the
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Figure 3-12: Visualization of MS1 spectra. A. MS1 spectra of peptides against
12ca5 control protein is visualized for all scan numbers shown on the y-axis, and 200-
1400 m/z values, with the x-axis shifted by 200. The coloration shows the intensity of
the peak at a particular m/z value for a specific scan. B. 1D spectra for the 3 replicates
of 12ca5 affinity selection. The range of scan numbers and peak positions indicate
how different individual runs can be. The 1D spectrum is obtained by summing over
all m/z intensities at a particular scan index.

mzXML files after filtering out scans which did not include any peptides, containing

about 10,000 scans, as compared to 30,000 scans in the mzXML file. In our analysis,

we used the smaller MS1 file, instead of the complete mzXML files, for the analysis.

In an effort to impose a consistent structure across all replicates, we sorted the

observed m/z values into bins depending on their decimal value, essentially, rounding

each m/z value to a given number of decimal places and possibly cutting out values

which are too low or too high (Figure 3-12). If two m/z values rounded to the same

number, we kept only one copy of that number but their corresponding intensities

were summed. The upper limit for number of decimal places in our data is four,

but due to memory constraints we have usually rounded to zero decimal places -

the nearest integer. In benchmarks for different decimal places, we noted that the

rounding off did not result in any significant change in the alignment or downstream

analysis. For each replicate this binned data was ultimately stored as a 2-dimensional

array.
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Dim/Rep 12ca5-1 12ca5-2 12ca5-3

1 0 2.33 2.07

2 0 2.75 2.87
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1 0 6.42 6.29

2 0 5.83 5.84

Euclidean norm of TAM

Sum of absolute distances

Figure 3-13: DTW Alignment and metrics. A. Warping path of each replicate
for all the 12ca5 replicates, when warped using DTW. Replicate 1 is selected as
the reference, and all others are aligned to it. The red line is the self-alignment of
replicate 1, hence a straight line. B. Different metrics of alignment - distance and time
alignment measures of one-to-one alignment measures, followed by sum of absolute
distances.

3.3.2 Alignment of different replicates

We used multi-variate time series alignment, as implemented in the dtw-package [157],

to align the different replicates. To understand the difference in the amount of data

required for alignment, we aligned replicates of reduced 1D spectrum and complete

2D spectrum. The 1D spectrum was obtained by summing over all corresponding

intensities of a particular scan, resulting in an intensity versus scan plot. In con-

trast, the 2D spectrum had individual m/z values and intensities for each scan. We

arbitrarily assigned the first replicate of each protein as the reference spectrum, and

aligned the rest of the replicates to it. By adding all the aligned spectra together,

we obtained the amplified spectrum. However, before the analysis, it is important to

note how well the alignment is.

Most often DTW is used to determine how similar two series are, giving a single

distance value rather than the particular time index matches. This DTW distance

has been used to measure similarity in speech recognition, signal processing, signature

validation, and many other areas where small variations in speed and pauses should

not largely affect similarity [156]. Although the DTW distance is usually used, the

first step in its calculation is finding the optimal time alignment or warping path.

That alignment can be used directly to identify and match the patterns in each

series.
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Σ Target ′ Σ Control ′ Difference- =

Figure 3-14: Difference of aligned spectra The aligned sum of replicates for the
control protein is subtracted from the target protein to obtain the difference spectra.

In our work we primarily used the alignment/warping path or time alignment

measure (TAM), and also calculated the DTW distance as one measure of how good

the alignment is (Figure 3-13). In addition to one-to-one alignments, fitness of fi-

nal product of these alignments in terms of the actual data is essential. Since each

alignment can produce a warping path, multiple aligned data sets, and a final differ-

ence data set and each data set can either be a 1D or 2D time series, we used many

different measures of fitness to understand the alignment.

3.3.3 Difference of aligned spectra

DTW distance is the distance between reference and aligned query [152]. This is the

distance (Euclidean by default) between two series after they’ve been aligned through

time warping. By the definition of DTW, this is the minimum (Euclidean) distance

between the series across all allowed time warpings. It is a non-negative number

with no upper bound except that given by the data. This approach can be applied

to either the 1D data set or the 2D data sets although the DTW distance between

1D chromatograms should not be compared to the DTW distance between 2D arrays

since the way Euclidean distance is calculated in each of these cases makes it an unfair

and misleading comparison. This is why we apply 1D alignments to the 2D data set

or vice versa; if we do that so that the dimension of each data set is the same and we
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Figure 3-15: Target-specific scan indices. A. 1D chromatogram showing the
difference of intensities at different scan indices. B. Representative image of scan
indices in the Jupyter notebook.

recalculate DTW distance then the comparisons are fair.

TAM for a given warping path is a measure of how much two series have to be

warped in order to attain the DTW distance [158]. It is a number between 0 and

3 where 0 indicates that no warping was needed (probably the two series are scaled

versions of each other) while 3 indicates that the two series were never in phase (the

warping path contains no diagonal steps). This measure can be calculated using

only the warping path of an alignment and does not have the same dimensionality

problem as the DTW distance. Further, converting a 1D-aligned chromatogram to a

1D-aligned matrix will not change the warping path. So we do often directly compare

TAM values of 1D alignments to TAM values of 2D alignments.

We noted that the results of the alignment varied across different metrics. In

one-to-one alignments, the most consistent measure was TAM, and we could see that

alignment of 1D spectra was better than the 2D spectra. However, visual inspection of

warping paths overlaid with the original time series indicated that 1D alignment was

not robust enough and could be corrupted by the noise in the series. The measures

were consistent for the summed spectra, with 2D alignment being preferable to 1D

across all metrics. This approach showed that the usage of the complete spectra,

or a multi-variate time series alignment, worked better than using a single summary

series.

To obtain the target-specific scans, we aligned the amplified spectrum of the con-
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trol protein to the target, and subtracted the control from the target (Figure 3-14).

This subtracted spectrum shows, for each scan, the specific m/z values that were

observed only in the target data set, and the m/z values which had a larger intensity

in the target compared to the control. Summing over the intensity values across the

m/z values, we obtained the information about specific scans and thus the spectra

unique to the target protein.

The aforementioned pipeline enables identification of target-specific peptide se-

quences from raw spectra obtained from AS-MS (Figure 3-15). To help the experi-

mentalists expedite their AS-MS analysis, we built a Jupyter notebook interface to

handle the raw data, process the replicates using DTW alignment, and display target-

specific scan. In another experiment, the m/z values obtained from the analysis of

scan indices could be used to improve the parameters in the tandem mass spectrom-

etry step, where specific masses could be concentrated on for thorough analysis.

3.4 Vaccine design using machine learning of human

degrons

Personalized molecular vaccines have enabled a paradigm shift in therapeutic strate-

gies for cancer and other pathogenic diseases by catering to individual patients [159,

160]. In general, these vaccines are developed by a well-established protocol (Fig-

ure 3-16) [161–164]. First, a sample of the tumor is acquired by biopsy, or other

invasive procedure, followed by sequencing for pathogen characterization. Compar-

ing the sequencing data with a healthy sample, the mutations are identified, and the

immunogenic antigen is selected. Accordingly, vaccine sequences are developed and

formulated for administration. Once injected, these sequences activate the innate

immune system which in turn lead to the desired therapeutic effect at the tumor site.

In the above process, neutralizing antibodies are readily produced by the extra-

cellular antigens, however, intracellular antigen processing and presentation remains

critical for developing memory in T-cells, a part of the immune system [165–168].
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Figure 3-16: Vaccine design. Development of a molecular vaccine through char-
acterization of DNA, RNA, or protein sequences; selection and production of im-
munogenic antigens; administration of vaccine components; and immune priming of
antigen-specific T and B cells.

The intraceullular processing follows ubiquitinylation and proteasomal degradation

in the cellular cytoplasm, N-terminal trimming in the endoplasmic reticulum, and

loading on to the class I human leukocyte antigen (HLA) molecules. Antigens bound

to the HLA localize at the cell surface, and presented to the T-cells. At this point,

the T-cells recognize the antigens and are activated.

The two-step process necessitates that the vaccine peptides are processed well by

the proteasomal degradation system for immune activation, and high HLA-binding

affinity [169, 170]. Although a few optimization approaches for proteasomal pro-

cessing have been developed, their successful implementation remains a significant

challenge [171, 172]. For HLA-binding affinity prediction, robust predictors based

on bioinformatics and machine learning are available and routinely used by the im-

munotherapy community [173–175]. Hence, improved vaccine design strategies, that

combine both antigen processing and presentation are needed for improved immune

recognition.

Harnessing the degron pathways in the ubiquitin proteasome degradation system

may offer a favorable approach to facilitate antigen processing (Figure 3-17). In

this system, ubiquitin ligases catalyze and regulate the ligation of peptides to the

ubiquitin protein, and further proteasomal degradation [176]. In a study, as early as
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Figure 3-17: Effect of degron on antigen processing. Antigens without a degron
sequence undergo minimal antigen processing, while anitgens with a degron harness
the ubiquitin proteoasome degradation system to facilitate processing and presenta-
tion.

1986, it was noted that a lone N-terminal residue can affect the proteasomal stability

of a peptide, now known as the ‘N-end rule’ [177]. Recent studies have shown how

both N- and C-terminal motifs can affect proteasomal degradation [178–183]. In the

context of antigen processing and presentation, the C-terminal is more critical than

the N-terminal due to the trimming mechanisms [184, 185]. Unfortunately, the lack of

tools to predict degrons has not been able to drive vaccine design using this approach.

In this work, we predicted and optimized the degron sequences, especially C-

degrons, to tune antigen processing and presentation. We validated sequences with a

wide range of proteasomal stability in in vitro experiments.

3.4.1 Data set

We used protein stability data obtained by perturbing the C-terminal and N-terminal

motifs to predict degron activity [183, 186]. These data sets were generated by using

libraries of DNA-encoded sequences of human proteins, conjugated to the C-terminus

of green fluorescent protein (GFP). Flow cytometry analysis of the degradation ac-

tivity of these DNA constructs, observed from the fluorescence intensity of the GFP-
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Figure 3-18: Machine learning of degrons. A. ML Framework with fingerprint
matrix input, and CDI or NDI as output. Parity plots with performance metrics on
test set for B. CDI and C. NDI. D. Joint plot of CDI and NDI for 100,000 randomly
sampled sequences.

containing cell populations, was performed. The intensity plot was distributed into

4 numeric ‘bins’ (e.g., 𝑏𝑖𝑛1, 𝑏𝑖𝑛2, 𝑏𝑖𝑛3, and 𝑏𝑖𝑛4) with nearly equal cell population.

The fraction of cell populations in the lower bins (e.g., 𝑏𝑖𝑛1) indicated more degrada-

tion activity; while the fraction of cell populations in the higher bins indicated less

degradation activity (e.g., 𝑏𝑖𝑛4). Each cell was sequenced for the peptides, and for

every peptide, the count was maintained across all the bins. Ultimately, based on the

counts, the probability of the presence of the respective peptide was calculated for

each bin.

3.4.2 Machine learning

To simplify the bin probabilities, we developed an aggregate scoring method to rep-

resent the proteasomal stability of a single peptide, instead of using individual bin

populations. We refer to this aggregate score as the C-terminus degron index (CDI)
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for the data set with modifications at the C-terminus, or N-terminus degron index

(NDI) for modifications at the N-terminus. This score represents the extent of pro-

teasomal degradation activity, in which a low CDI/NDI indicates more degradation,

but a high CDI/NDI indicates less degradation. Quantitatively, we calculated this

value using a linear combination of bin probabilities and exponentially increasing

coefficients (e.g., 0, 1, 10, and 100) -

𝐶𝐷𝐼 = 𝑏𝑖𝑛1 × 0 + 𝑏𝑖𝑛2 × 1 + 𝑏𝑖𝑛3 × 10 + 𝑏𝑖𝑛4 × 100 (3.2)

We used CDI and NDI scores to develop a CNN model ensemble over peptide

sequences represented as matrices of residue fingerprints (Figure 3-18). The model

ensemble was trained, validated, and tested by splitting the flow cytometry data into

three subsets: 60:20:20. On the respective held-out test data sets, we obtained root-

mean-squared error (RMSE) values in absolute units, 𝐶𝐷𝐼𝑅𝑀𝑆𝐸 12.57, and 𝑁𝐷𝐼𝑅𝑀𝑆𝐸

9.02. We analyzed overlapping N- and C-degron activity for shorter peptides (<25

amino acids), which revealed a Pearson’s correlation of 0.85. This analysis indicates

some crossover activity between N- and C-terminal degrons for shorter peptides, yet

still permits validation through selecting sequences with varying CDI values but a

constant NDI.

We used random sampling of sequences to query the prediction models, in order

to understand the influence of individual amino acids and positions at the C-terminus

on proteasomal processing. By randomly varying 10-residues from the C-terminus,

while keeping the epitope and the N-terminus constant, we generated a total of 30,000

sequences. It was observed that these sequences had CDI score from 25 to 60, and

there were unique trends associated with both higher and lower CDI scores. Specif-

ically, we noted that glycine residues at -1 and -2 positions strongly contributed to

low CDI scores, consistent with observations in the literature. However, it was noted

that glycine at other positions did not have as much influence. Overall, we saw that

alanine and cysteine-containing peptides had lower CDI scores, while the presence of

arginine and valine at certain positions resulted in a lower CDI score. For higher CDI
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Figure 3-19: Sequence logos of degrons. Sequence logos of recurrent amino acids
at corresponding positions, which were plotted across four quartiles of CDI values
(0–25; 25–50; 50–75; and 75–100). The number of sequences represented are shown
in parentheses.

scores, aspartic acid, glutamic acid, and lysine-containing peptides, and tryptophan,

phenylalanine, isoleucin and leucin at specific positions were the key contributors.

In a parallel approach, we analyzed the amino acid frequency distribution using

sequence logos for the random sequences with CDI in different quartiles, 0–25, 25–50,

50–75, and 75–100 (Figure 3-19). A strong influence of the C-terminal residues with

the CDI scores was noted with the presence of specific residues in different quartiles.

One such example is the presence of alanine, glycine and argninine in the first quartile

as residues contributing to low CDI scores.

3.4.3 In vitro validation

Intracellular delivery is essential for evaluating proteasomal degradation of degron

sequences. We achieved intracellular delivery using two anthrax proteins (Figure 3-

20): protective antigen (PA) and the N-terminus of lethal factor (LFN) [187]. We

used these proteins to evaluate seven peptides derived from chicken ovalbumin (OVA

1–7), which were synthesized and conjugated to the C-terminus of LFN using sortase-

mediated ligation [188]. Through enabling robust intracellular delivery, these con-

structs permit the characterization of relative degron activity based on CDI values
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Figure 3-20: Anthrax delivery system. Atomic model of the active protective
antigen (PA) pore, and cartoon illustration of the translocation mechanism from the
PA and N-terminus of lethal factor (LF𝑁).

for OVA 1–7.

We evaluated degron activity using T cell proliferation assays (Figure 3-21). We

envisioned the extent of proliferation would reflect proteasomal degradation and,

in turn, antigen processing and presentation. For these assays, mouse splenocytes

(C57BL/6) were treated with the PA/LFN-OVA 1–7 constructs, followed by co-

incubation with CFSE-stained T cells (OT-1). After 24 h, activation of the T cells

was measured by flow cytometry based on upregulation of CD69 and CD137 markers.

After 72 h, T cell proliferation was assessed by flow cytometry based on dilution of the

CFSE dye. This study revealed a correlation between the CDI value and T cell pro-

liferation activity, which suggests broader opportunities to tune immune recognition

of molecular vaccines through increasing or decreasing degradation activity.

3.5 Prediction and optimization of flow synthesis

Organic reactions are arduous processes, usually involving multiple steps and ne-

cessitating labor-intensive and numerous rounds for optimization [189]. Automation

of these have been explored using flow chemistry which offers better reaction out-

comes, along with higher productivity and reproducibility, relative to batch methods

[190, 191]. Some of the recent works have shown the development of a modular syn-

thesis platform for synthesis and purification of small molecules using building blocks
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Figure 3-21: In vitro validation. A. List of peptide sequences conjugated to
LFN:OVA 1–7. B. Flow cytometry analysis of T cell activation after treatments
with PA (20 nM) and LFN-OVA 10, 1, and 0.1 uM): CD137+ and CD69+ (24 h); T
cell proliferation (72 h). C. Representative T cell proliferation graphs from treatment
with PA (20 nM) and LFN-OVA (1 uM). D. Correlation between predicted C-degron
index (CDI) vs. T cell proliferation.

for Suzuki-Miyaura cross-couplings [192, 193]. In another instance of flow chemistry,

a compact, multi-purpose benchtop synthesis system was developed to address several

chemical reactions [189].

Advances in data science and artificial intelligence have transformed the heuristic-

driven, trial-and-error intensive organic synthesis process 13-16. Combining state-of-

the-art algorithms with robotics, automated systems that plan, execute and evaluate

new experiments have been developed [194]. Specialized chemistry software, such as

ChemOS [195], Chemputer [196], Ada [197] and Phoenics [198], have been developed

to aid easy interfacing with hardware for chemists, along with automating the process.

Other works around retrosynthesis [199], and optimization of reaction conditions have

approached synthesis prediction from a different perspective [200, 201]. Despite all
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Figure 3-22: Overview of flow synthesis prediction, optimization, and val-
idation loop. A. Schematic of data acquisition from the experimental setup. B.
Per-residue reaction yield of peptide sequence to train on. C. Single residue mutation-
based sequence optimization for improved synthetic yield.

these efforts, the prediction and optimization of synthetic yield of a complete reaction,

especially for an unknown reaction, remains as a challenge.

A major bottleneck in the development of computational methods lies in the

access to high quality data sets[202]. The data acquired from reaction platforms is

often proprietary, customized to the specific experimental set-ups, and sometimes

irreproducible, and hence not easily available and not able to be used directly [203].

In this work, we predicted flow synthesis reaction yields for peptides, using high

quality peptide synthesis data generated in-house (Figure 3-22) [204]. We used the

predictive models to optimize sequences to prevent aggregation and other sequence-

dependent events [205–210]. In addition to optimization, we used attribution methods

to interpret the decision-making process in the sequence optimization.
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Figure 3-23: Average synthetic yields per residue and position of sequence.
Integrals of deprotection peaks were analyzed and averaged for the addition of every
incoming residue and the positions.

3.5.1 Data set

Synthesis data was generated using an automated fast-flow peptide synthesizer [121,

211]. Using an in-line UV-Vis detector, step-wise coupling and deprotection steps

in the solid phase peptide synthesis process are monitored [212, 213]. The time-

dependent data acts as a proxy for the step-wise or residue-specific synthetic yields,

and also provides information for the complete reaction [214, 215]. Since the signal

in the coupling step is saturated for every residue, we used the information for the

deprotection step to quantify the yield.

The data set consisted of 35,427 individual synthesis steps, out of which 17,459

were unique [204]. Pre-synthesized sequence on the resin or pre-chain, incoming

amino acid, and synthesis parameters, define each step. The area under the curve

or integral, height, and full width at half the height for each deprotection step were
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Figure 3-24: Model framework and performance. A. Schematic of the ML
model with sequence data and synthesis parameters as input, and deprotection peak
information as output. B. Parity plot of predicted versus experimental integral values
for synthesis steps in the test data set.

used to quantify the yield. Apart from these values, the difference between width and

height was used as an explicit representation for aggregation. Analyzing the average

integral values per residue and for each coupling reaction along the peptide sequence,

we note that there are huge variations in the efficiency at how each residue addition

occurred (Figure 3-23).

3.5.2 Machine learning

Sequence data and synthesis parameters were used as inputs to the ML model (Fig-

ure 3-24A). For the sequence data, the pre-synthesized sequence on the resin was

represented as a fingerprint matrix, while the incoming amino acid was featurized

as a circular fingerprint [64, 70]. Each amino acid in the synthesis has side-chain

protecting groups and fluorenylmethyloxycarbonyl (Fmoc) protection at the amide

end. To represent the chemistry accurately, we used fingerprints of Fmoc and side

chain-protected molecules for the incoming amino acids, and only side-chain protected

molecules for residues in the pre-synthesized sequence. Key synthesis parameters were

presented to the ML model as input values. Coupling agent and number of strokes

were represented as categorical features, while coupling temperature, reactor temper-

ature, and flow rate were represented as numerical values.

We trained multi-modal convolutional neural networks (CNN) over deprotection
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Figure 3-25: Predicted and experimental traces for GLP-1 synthesis. Ex-
perimental traces for integral, width, height and difference, have been overlaid for
predictions with the uncertainty.

peak information as output (Figure 3-24B). The model architecture learnt individually

over pre-chain, incoming amino acid, and synthesis parameter features, aggregated all

the information, processed through a couple of fully-connected layers, and then made

the final prediction of the output values. A 70:30 train: test random split of the data

set was used for the model training. Evaluating on the held out test data set, for

integral, width, and height, all predictions are within 0.1 root-mean-squared error.

For GLP-1, a sequence not in the training data set, we noted that the predictions for

the UV-Vis traces representing the synthetic yield nearly matched the experimental

traces (Figure 3-25).
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contribution of residues towards aggregation in wild-type and mutants of GLP-1. The
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B. Experimental traces of difference for WT GLP-1 and optimized mutants.

3.5.3 Aggregation prediction and sequence optimization

We used the same model to predict the difference of width and height, representative

of sequence-dependent events, referred to as aggregation in the synthesis (Figure 3-

24). The model was able to predict aggregation in the held-out test data set with

an 0.13 RMSE. For GLP-1, the model was able to correctly identify the aggregating

event at Ala18 (A18) (Figure 3-25).

To interpret the decision-making process of the model using gradient class acti-

vation maps-based attribution introduced in [64], we trained a minimal model with

sequence information input, and difference as the sole output. This approach enabled

us to identify residues in the sequence and individual substructures that led to prob-

lems in the synthesis process. One of the key outcomes from this analysis was the

realization that the residue most responsible for aggregation could be far away from

the aggregating step, and sometimes in the initial steps of the synthesis, contrary to

the contemporary intuition.

Single-point mutation was used to optimize sequences to reduce aggregation in the

flow synthesis process (Figure 3-26). By brute-forcing through all possible mutations,

we predicted and ranked how each mutation would affect the aggregation event. From
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Figure 3-27: Prediction of PNA synthesis. A. Parity plot of predicted and exper-
imental integral values for validation and test data sets using ridge regression. The
inset text box notes the model performance metrics. B. Linear coefficients of ridge
regression model for different features.

the list of mutants, we selected four sequences, with varying yield, to synthesize

and validate the model predictions. We noted that the experimental traces of all

the sequences were within error range of the predicted traces. The reduction of

aggregation also resulted in higher purity of the final product, and helped in ease of

downstream processing of the sequence.

We extended our aggregation analysis to include the proteins in the Protein Data

Bank (accessed on April 17, 2020) [216]. In total, we analyzed 8,441 natural proteins

with less than or equal to 50 amino acids. We found that 45% of the sequences were

found to be aggregating, or having at least one synthesis step where the difference is

greater than 20. Similar to our observation for GLP-1, we noted that residues closer

to the C-terminus, where the synthesis starts, are most likely to cause aggregation

than others in subsequent positions. Also, residues with aromatic and bulky side-

chain protecting groups are more responsible for aggregation, as compared to others.

Our analysis is in line with reports in the literature where hydrophobic amino acids

have been flagged to cause aggregation [205, 208].

3.5.4 Extension to peptide nucleic acid flow synthesis

Peptide nucleic acid (PNA) platform combining the anti-sense oligonucleotide thera-

peutics [217–221], with delivery peptides, is gaining a lot of traction to address gene-
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specific therapies [222, 223]. This platform offers enhanced chemical and thermal

stability, apart from high target-specificity [224]. Recently, we developed a fully-

automated synthesizer, on the lines of the automated flow peptide synthesizer [121],

to enable rapid, reproducible PNA synthesis [225, 226].

A PNA synthesis data set using in-line UV monitoring was generated, similar to

[204]. To normalize the deprotection traces, a 3-mer Lys motif was inserted at the

C-terminus of the PNA sequences, and integrals of all peaks were normalized to the

average of the integrals of the lysine motif. The final data set consisted of 239 unique

pre-chain and incoming nucleotide combinations.

Given the significantly less amount of data for PNA synthesis, as compared to

peptide synthesis, we adapted both the feature representations and ML methods.

The pre-chain and incoming nucleotides were represented using one-hot encodings

denoting the presence or absence of the 1-mer and 2-mers. A total of 21 different input

features were used - four 1-mers for the 4 nucleotides, sixteen 2-mers for the sixteen

possible combinations, and the length of the pre-chain. The normalized integral value

was used as output to represent the synthetic yield of the step.

A variety of ML model architectures, ranging from linear, random forest, gradient-

boosted tree models to Gaussian processes, were used to train over the PNA synthesis

data set. For the training and evaluation, we split the data set as 60:20:20 for training,

validation and test, respectively. Ridge regression was noted to be the best model

with the lowest RMSE, 0.07, and highest Pearson’s correlation, 0.97, on the held out

test data set (Figure 3-27).

We analyzed the coefficients of the ridge regression model to understand feature

importance. In a linear model, such as ridge regression, the coefficients directly

correspond to the positive and negative importance of each input feature. Here, we

noted that length and the presence of different PNA monomers are key to the success

of the synthesis step, more than any of the dimer features.

To validate the model performance, PNA sequences were generated and experi-

mentally synthesized. For a set of six random sequences, consisting of three 10–mers,

one 6-mer, one 14-mer and one 18-mer, we observed that the predicted traces were
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similar to the experimental traces, thereby indicating the prediction accuracy of our

ML model. Additionally, we also predicted synthetic traces for all potential antisense

PNA sequences targeting DMD [227]. We selected three PNA sequences with varying

predicted yields, experimentally synthesized them, and compared with the predic-

tions. In line with the predictions, we noted that the easy-to-synthesize sequence

could be obtained with high purity, while we faced significant challenges and could

obtain only trace amounts for the difficult-to-synthesize sequence.

3.6 Similarity computation, machine learning and

optimization of glycans

Glycans are one of the most diverse class of macromolecules having non-linear topolo-

gies and a wide range of monomer and bond chemistries [228]. In glycan databases,

such as GlycoBase [229] and GlycomeDB [230], we noted more than a thousand

unique carbohydrate monomers. This number is between one and two orders of

magnitude greater than what is observed in other biological macromolecules - poly-

nucleotides, with 4 monomers, and proteins, with 20 naturally occurring monomers.

The monomers can be connected with other monomers at one or more of the carbon

atoms in the ring or side chains, and by a variety of bonds with different stereo-

chemistries, further contributing to the diversity of the chemical space [231, 232].

A number of structural, metabolic, immune and regulatory functions are driven

by glycans [233–236]. Lectins, or glycan-binding proteins, play a significant role in

the upregulation and downregulation of these functions [237]. Glycan profiles have

been shown to correlate with numerous conditions, such as diabetic retinopathy [238],

cancer [239], Alzheimer’s disease [240, 241], amongst several others. However, due

to limited technological advancements, widespread study of the effect of glycans on

the human body, or glycomics, is lacking compared to its biological macromolecule

counterparts - genomics and proteomics [242–245].

Given the sheer complexity of these macromolecules, relatively limited experi-
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mental attempts have been made to study them in depth [246, 247]. Amongst these

attempts, the use of glycan arrays for profiling binding affinity of diverse lectins to the

printed glycans is most prominent [248]. This approach has led to large data acqui-

sition attempts, and ultimately led to the founding of the Consortium of Functional

Glycomics (CFG), which hosts a number of experimental data repositories [249]. In

addition to the study of lectin-glycan binding, consolidation efforts have resulted in

databases of functional glycans with immunogenicity and taxonomic labels [250].

Similar to the experimental attempts, the complexity of the glyan chemical space

and the lack of extensive data sets have resulted in limited computational attempts.

Similarity computation of glycans has been attempted using tree-based methods

[51, 53, 251, 252], and more recently using a BLOSUM-inspired GLYSUM evolu-

tionary matrix-based motif alignment approach [34, 42]. While the former class of

methods are more mathematical and do not have a solid chemical basis for similarity

computation, the latter is limited to linear glycans alone.

Machine learning studies directed towards glycans, and lectin-glycan interactions

have used non-chemical representations. A large number of works have used text-

like representation, such as ‘glycowords’ in [34] and n-grams for monomer, dimer and

trimer structures in [253]. Sub-tree mining of the glycan graph has also been used for

prediction tasks [254, 255]. Despite using powerful model architectures, the lack of a

chemistry-informed representation has limited the performance and interpretability

of the models.

In this work, we developed a chemistry-informed graph representation for non-

linear macromolecules, such as glycans, using which we performed similarity com-

putation, unsupervised and supervised machine learning for immunogenicity and

taxonomy-prediction tasks (Figure 3-28). We used the same framework to predict

lectin-glycan binding affinity, and employed graph-based genetic algorithm (GBGA)

optimization to generate new glycans with high predicted binding affinity and low

probability of human immunogenicity.
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Figure 3-28: Overview of computational framework for non-linear macro-
molecules. A. Representative heatmap of pair-wise similarity computation of a
library of macromolecules. B. Schematic of ML model with macromolecule graph
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3.6.1 Data set

We downloaded a data set of 19,299 glycans from GlycoBase (accessed on November

2, 2020) [229]. The file listed the glycans in a nested-bracket string format, with

species and immunogenicity labels. The bracket system closely followed the SMILES

convention [35], where the branches were within distinct brackets, with sub-branches

in the nested brackets. After data curation and removal of invalid data points and

glycans for which no monomers could be identified, we had 19,147 glycans.

A custom parser was developed to parse the glycan strings to intermediate text

files and final NetworkX graphs [256]. The intermediate text files were designed

as a generalized text file format for sequence and topology-defined macromolecules.

These files had SMILES, MONOMERS and BONDS as individual segments, inspired

by the Protein Data Bank (PDB) file format [216]. SMILES listed monomer and bond

codes, followed by the SMILES representation of the molecule. MONOMERS listed

the position of each monomer in a 2D graph, and BONDS enumerated the connec-

tivity between the monomers. These text files were then parsed into macromolecule

graphs, with monomers as nodes and bonds as edges, both featurized using circular

fingerprints.
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3.6.2 Similarity computation and unsupervised learning

Pair-wise similarity of the glycan graphs was computed using GED for a limited

number of glycans, and graph kernels for the entire library (Section 2.2.2). The output

of a graph kernel is a kernel matrix with similarity vectors, or individual row/column

entries, representing the similarity of an individual glycan with the rest of the library.

These vectors are a powerful representation as they capture the variation in both

chemistry and topology of the graph across the library, and can be readily used for

downstream analysis, motivated by multi-dimensional scaling with linear and non-

linear dimensionality reduction methods [257].

Unsupervised learning over the individual similarity vectors using dimensionality

reduction and clustering provided insights into the sub-families of glycans (Figure

3-29). The immunogenic and non-immunogenic glycans clustered in nearly distinct

spaces on the 2-component UMAP projection [79], with the former being on the

fringes, and the latter forming the core. Similarly, when we visualized glycans by

their taxonomic labels, bacteria were at the core, eukarya were spread out from the

core, and viruses were at the fringes. We benchmarked our dimensionality reduction

approach against t-SNE [78] and PCA [258], noting that t-SNE was better at captur-

ing local structure and PCA the global structure, while UMAP performed better in

separating the glycans at both levels.

3.6.3 Supervised learning

We performed classification of glycans for immunogenicity and different levels of tax-

onomy using five distinct graph neural network model architectures - Weave [259],

Message Passing Neural Networks (MPNNs) [260], AttentiveFP [261], Graph con-

volutional networks (GCN) [262], and Graph Attention Networks (GAT) [263], im-

plemented in Deep Graph Library [264]. We benchmarked fingerprint and one-hot

encoding representations, and evaluated the model architectures thoroughly. We ran-

domly split the data set in 60:20:20 training, validation and test sets. Hyperparameter

optimization for the models was done using SigOpt [73]. The top five hyperparame-

84
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Figure 3-29: Similarity computation and unsupervised learning of glycans.
A. Overlay of similarity vectors normalized to the maximum value of the vector for
all the glycans in the data set. B. 2-component UMAP and coloring of glycans by
immunogenicity labels.

ter sets were re-run with five different weight initialization seeds to obtain the final

models.

For classification of immunogenic versus non-immunogenic glycans, we obtained

state-of-the-art results, achieving a receiver operating characteristic-area under curve

(ROC-AUC) score of 0.99 on the held-out test data set (Figure 3-30). Out of eight

glycan classification tasks reported in the literature, we achieved state-of-the-art re-

sults in four, and comparable results in the remaining tasks [265]. In addition to

the classification tasks, we also performed regression over anti-microbial activity of

peptides, in order to evaluate the models over continuous-valued tasks for non-linear

macromolecules.

3.6.4 Attribution

We used integrated gradients (IGs) [266] and Input x Grad (InpGrad) [267] for the

attribution analysis of the GNNs - Weave, Attentive FP and MPNN. The model

architecture selection was done to have one of each type of architecture – Weave

(graph convolution), AttentiveFP (graph attention), and MPNN (message passing).

In the following formulation for attribution, the macromolecule is represented as

a graph, 𝒢(𝑉,𝐸), where V represents monomers at vertices/nodes, and E represents

connecting bonds at the edges.
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Figure 3-30: Supervised learning. A. ROC-AUC curve for the glycans in the
held-out test data set for immunogenicity classification of glycans. B. Parity plot of
predicted and ground truth anti-microbial activity for regression over peptides.

IGs interpolate between the input graph and a baseline graph with zero-valued

features, accumulating the gradient values for each node (Equation 3.3). The notation

follows [268].

𝒢𝐴 = (𝒢 − 𝒢 ′)
∫︁ 1

𝛼=0

𝑑𝑦 (𝒢 ′ + 𝛼 (𝒢 − 𝒢 ′))

𝑑𝒢
𝑑𝛼 (3.3)

InpGrad is the element-wise product of the input graph and the gradient.

𝒢𝐴 =

(︃
𝑑𝑦

𝑑𝒢

)︃𝑇

𝒢 (3.4)

For the attention-based GNN, AttentiveFP, in addition to IGs and InpGrad, we

evaluated attribution using attention weights, where the node attention weights are

obtained by averaging over the attention scores of the adjacent nodes.

The node weights were obtained by multiplying the positive weights with the input

fingerprint vectors, and then normalized to the maximum node weight to obtain the

normalized weights-

n =
∑︁
𝑛𝑜𝑑𝑒𝑠

𝒢+
𝐴 𝒢, (3.5)

nnorm =
n

𝑚𝑎𝑥(n)
(3.6)

We used AttentiveFP-IGs for attribution analysis of glycans, identifying both key
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Figure 3-31: Attribution analysis. A. Distribution of standard deviation of node
weights for different model architecture - attribution method combinations. B. List
of key monomers contributing to immunogenicity of glycans, in descending order of
importance. C. Visualization of weighted monomer nodes and substructures most
responsible for immunogenicity in a representative glycan.

monomers and chemical motifs therein that contribute the most to immunogenicity

(Figure 3-31). To find the most optimal model architecture - attribution method

combination, we used the axiomatic approach described in [269]. In this context, the

implementation invariance axiom requires that the node weights obtained across dif-

ferent implementations of the attribution-architecture combination be similar, with

the ideal standard deviation being zero. Plotting the distribution of standard devi-

ations for all the different combinations, we observed that for AttentiveFP-IGs, the

mean of the distribution was the lowest. This observation can also be interpreted as

different model instances consistently attributing the model prediction to the same

nodes with similar importance.

Using the AttentiveFP-IGs combination, we analyzed the entire data set identi-
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Figure 3-32: Graph-based genetic algorithm optimization workflow. A seed
glycan is randomly mutated using a predictor-optimizer loop, increasing the predicted
binding affinity, while keeping the immunogenicity probability below a threshold, t.

fying key monomers - N-glycolylneuraminic acid, xylose, and fucose - responsible for

immunogenicity in glycans. For a single glycan, we visualized the key monomers that

contribute towards immunogenicity. In addition to monomers, we also showed the

substructures, such as the one centered on the anomeric carbon of xylose, that are

key to the immunogenic activity of the glycan.

3.6.5 Optimization of lectin-glycan binding affinity

We applied the machine learning framework for prediction of binding affinity of gly-

cans to lectins, and extended it further by adding a graph-based genetic algorithm

(GBGA) optimization workflow. To demonstrate the application, we used mam-

malian glycan array data from the CFG for dendritic cell-specific ICAM-grabbing

non-integrin (DC-SIGN) as the use case [248].

The predictor model was trained using glycan graph representations against cor-

responding binding affinities, represented as relative fluorescence units (RFU). All

replicates of glycan-RFU pairs in the data set were used for the training, and the data

set was split as 60:20:20 by the glycan for training, validation and test sets. Since

RFUs had a right-skewed distribution, log transformed RFU values were used as out-
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puts in the model training. An AttentiveFP GNN model ensemble was trained due to

its prior success for classification and regression tasks of non-linear macromolecules

in [81]. The ensemble had a root-mean-squared error of 0.782 of the standard devi-

ation of the training data set, outperforming other results reported in the literature

[253, 270].

The GBGA framework optimized a given seed glycan against an objective func-

tion for a specified number of iterations (Figure 3-32). In this case, the objective

was increasing predicted binding affinity and keeping the immunogenicity probability

under 0.5. In each iteration, the seed glycan undergoes a random mutation - inser-

tion, deletion or swapping of a node, with the corresponding correction to its bonds

and branches. The affinity of the mutated glycan is predicted, and if the affinity

is greater than that of the seed glycan and the immunogenicity probability is less

than the threshold, then the mutated glycan is used as the seed glycan for the next

iteration. For DC-SIGN, the optimization was performed for the top fifty glycans, in

descending order of binding affinity. We developed the framework as a generalized

toolkit applicable to the single-value optimization of any macromolecule.

To select high affinity, chemically diverse glycans from the list of optimized gly-

cans, we used similarity computation and dimensionality reduction techniques, similar

to Section 3.6.2 (Figure 3-33). Using graph kernels, we obtained the pairwise simi-

larity matrix. Dimensionality reduction of the similarity vectors using 2-component

UMAP transformed the glycans into a more visually accessible projection space. We

used k-means clustering, weighted by the binding affinity to identify five glycan clus-

ters [271]. From each cluster, we selected the glycan with the highest binding affinity.

The selected glycans are chemically diverse, while having high binding affinity to

DC-SIGN and low immunogenicity probability.
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Chapter 4

Applications to artificial

macromolecules

4.1 Prediction, screening and validation of oligoethy-

lene glycol-based Li-battery electrolytes

Quantitative attribution of the effect of molecular substituents have significant appli-

cations in a broad range of fields, ranging from catalysis to semiconductors [272–276].

Materials design necessitates these effects to be understood across different scales from

the atomistic mechanism to the macroscopic property [277, 278]. For electrolytes,

Edisonian approaches with thorough analysis of individual systems has improved our

understanding, but a priori quantitative prediction remains a challenge [279–283].

To develop the next-generation of safe, easily processable electrolytes with high room

temperature conductivity, comparable to liquid organic electrolytes or solid state ce-

ramics, a model system and a quantitative model are both necessary [284–286].

For the model system, we chose the well-studied class of oligoethylene glycol-based

electrolytes (Figure 4-1A) [287, 288]. Multiple studies have shown the enhancement

of conductivity and viscosity by introducing substituents, copolymer blocks, small

molecule additives [289–297].

Given the large number of possible interactions, it has been difficult to experimen-
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Figure 4-1: Model system and overview of approach. A. Interactions in OEG-
electrolyte system with and without substituents. B. DFT simulations, experimental
synthesis and characterization, modeling, and experimental validation framework.

tally screen several compounds or probe the mechanism of action [298]. Molecular

dynamics simulations have been limited owing to the need for custom force fields and

the amount of time required to simulate the necessary time scale [299–307]. Density

functional theory (DFT) simulations have provided insights for smaller molecules, but

have not been able to scale to necessary time or length scales [308–310]. The use of

conventional ML approaches necessitate large data sets or accurate descriptors, both

of which have been hard to find for the electrolyte systems of interest [36, 311–316].

In order to address these challenges, we used an enthalpy-entropy compensated

Arrhenius equation with DFT computed pairwise interaction energies to model the ef-

fect of secondary substituents on the experimentally obtained temperature-dependent

conductivity and viscosity (Figure 4-1B). We used this regression model to screen a

small library of OEG-based electrolytes, out of which we synthesised and character-

ized three compounds with high, medium and low conductivity.
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Figure 4-2: Experimental data set of OEG-electrolytes with molecular sub-
stituents. A. Different molecular substituents in the experimental data set. B.
Experimental conductivity and viscosity at different temperatures.

4.1.1 Data set

We synthesized and characterized eleven OEG-oligomer electrolytes with different

molecular substituents, and one without any substituent (Figure 4-2). The oligomer

library constituted of substituents with a variety of chemical characteristics - hy-

drogen bond donors (triazole, urea, thiourea, thiourethane, hydroxyl groups) and

acceptors (triazole, carbonate, urea, thiourea, thiourethane, hydroxyl groups), Lewis

acids ((glycolato) diboron, benzenediboronic ester) and bases (carbonate, triazole,

thioether, hydroxyl), and nonpolar aromatics (xylene). In addition to the following

substructures, we developed a generalized procedure that can be used to design new

substituents for OEG-based electrolytes.

The molal ionic conductivity and viscosity were measured across a range of temper-

ature values. A constant lithium to oxygen ratio, 1/12, was maintained to minimize

the differences between the substituents. Experimental observations show a remark-

able difference in the conductivity and viscosity values, spanning approximately three

orders of magnitude. The experimentally observed range of the molal conductivities

of the OEG-based electrolytes, 0.0005–0.004 𝑆𝑐𝑚−1/𝑚𝑜𝑙𝑘𝑔−1 is consistent with the

results reported in the literature, 0.0005–0.003 𝑆𝑐𝑚−1/𝑚𝑜𝑙𝑘𝑔−1 [317, 318]. We also

confirmed that the conductivity and viscosity values for individual substituted OEG-
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Figure 4-3: DFT computed pairwise interaction energies for the molecular
substituents. Interactions with the oligoethylene chain, lithium cation, TFSI anion
and self were considered.

electrolytes were inversely related, consistent with Walden analysis [317, 319, 320].

DFT calculations were performed to obtain pairwise interaction energies for four

binary complexes - substituent with oligomer chain, lithium cation, bis (trifluo-

romethane) sulfonimide (TFSI) anion, and with itself (Figure 4-3) [321]. The sub-

stituent was represented using the smallest fragment separated by ether oxygen atoms

from the OEG chain, and capped by methyl groups on both ends. These interaction

energies were hypothesized to represent the effect of the substituents on the properties

of the electrolyte, compared to the OEG-oligomer alone.

4.1.2 Arrhenius model formulation

The experimental conductivity and viscosity, and DFT computed interaction energies

data sets were modeled using the Arrhenius equation: ln𝑌 = ln𝐴 − 𝐸𝑎/𝑘𝑇 , where

94



0.0 1.0 0.0 1.0 0.0 1.0

ΔELi-R

ΔETFSI-R

ΔEDME-R

ΔER-R

ln
 (1

 / 
Vi

sc
os

ity
)

ln
 (M

ol
al

co
nd

uc
tiv

ity
)

ln A − Ea / kT −ln A + Ea / kT

Training set Training set

B

A Propylene

Diisopropylsilyl

Sulfone

Figure 4-4: Validation of new molecular substituents. A. Substituted OEG-
oligomer structures and pairwise interaction energies for the three screened sub-
stituents. B. Parity plot of model predicted and experimentally obtained conductivity
and viscosity for the training data set and the new oligomers.

𝑌 represents the experimental conductivity or viscosity, 𝐸𝑎 is activation energy, 𝐴 is

pre-exponential factor, 𝑘 is Boltzmann’s constant, and 𝑇 is temperature in Kelvin.

(Figure 4-4). The formulation with the enthalpy-entropy compensation is -

ln𝑌 = ln𝐴𝑜 + 𝑏𝐶 − 𝐸𝑎 + 𝐶

𝑘𝑇
(4.1)

where 𝐶 is 𝑎1∆𝐸𝐿𝑖−𝑅 + 𝑎2∆𝐸𝑇𝐹𝑆𝐼−𝑅 + 𝑎3∆𝐸𝐷𝑀𝐸−𝑅 + 𝑎4∆𝐸𝑅−𝑅, with 𝑎𝑖 being

the compensation coefficient for respective pairwise interaction ∆𝐸𝑗−𝑅, and 𝑗 consists

of the various components 𝐿𝑖 for lithium cation, 𝑇𝐹𝑆𝐼 for TFSI anion, 𝐷𝑀𝐸 for a
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dimer of the OEG-oligomer, and 𝑅 for the substituent.

As the baseline case, we analyzed the 𝐸𝑎 for the OEG-oligomer octaglyme alone,

noting that the predicted value in for the conductivity model was 0.29 ± 0.02 eV

close to the literature reported value of 0.34 eV for tetraglyme [317]. We also noted

that the 𝐸𝑎 for the OEG-oligomer alone was the lowest in the entire library, and the

𝐸𝑎 considerably increased with the addition of the molecular substituents, with the

highest being 0.65 eV and 0.66 eV for conductivity and viscosity of benzenediboronic

ester. This increased 𝐸𝑎 is also reflected in the increase in the value of 𝐴, which can

be explained by the enthalpy-entropy compensation [322, 323].

In addition to the Arrhenius model, we also used the Vogel-Tammann-Fulcher

(VTF) equation to model conductivity and viscosity accounting for the temperature-

dependent deviation from the Arrhenius model: ln𝑌 = ln𝐴−𝐸𝑎/𝑘(𝑇 −𝑇𝑜), where 𝑇𝑜

is usually considered to be 𝑇 −𝑇𝑔, with 𝑇𝑔 being glass transition temperature [1, 324].

This modeling helped us obtain better fits for the conductivity and viscosity values.

However, the 𝐸𝑎 and 𝐴 values were found to be within a small range across all the

substituents, which can possibly be attributed to the addition of 𝑇𝑔 which accounts

for the variations in the properties.

4.1.3 Validation of new substituents

We manually generated a library of thirty-two different substituents, for which we cal-

culated the pairwise interaction energies using DFT, obtained the conductivity and

viscosity values using the Arrhenius model, and selected three substituents for valida-

tion (Figure 4-4). Amongst these three substituents, we predicted and successfully val-

idated that the propylene-substituted OEG-electrolyte will have a higher conductivity,

0.86 𝑚𝑆𝑐𝑚−1/𝑚𝑜𝑙𝑘𝑔−1, than the OEG-electrolyte alone, 0.54 𝑚𝑆𝑐𝑚−1/𝑚𝑜𝑙𝑘𝑔−1 at

room temperature, 298 𝐾. For the other two substituents also, the predictions were

nearly accurate as the experimentally observed conductivity and viscosity values,

with the conductivity of diisopropylsilyl and sulfone substituted OEG-electrolytes

being medium and low on the range of the conductivities in the original data set. We

also predicted that fluorinated substituents for OEG-electrolytes would enhance the
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Figure 4-5: Analysis of the effect of different interaction energies on con-
ductivity. A. Parallel coordinates obtained by random sampling of sets of different
interaction energies and computing the conductivity. B. Correlation of individual
interaction energies with conductivity.

properties, and this prediction was confirmed by another recent work for a similar

system [325].

4.1.4 Parallel coordinate analysis

To understand how substituent interactions played a role in the conductivity, we used

parallel coordinates to visualize interaction energies and conductivity. We generated

sets of interaction energies for one thousand hypothetical substituents and computed

the conductivity using the Arrhenius model. Each interaction energy was restricted

to be within the range of the respective previously DFT-calculated energies. The pre-

dicted conductivity was colored on a scale of white to blue, depicting the range of low

to high values. We also plotted the individual energies to the computed conductivity

values.

High conductivity was found to be associated with low self-interaction energy,

clustering at the bottom of the ∆𝐸𝑅−𝑅 column in the parallel coordinates plot, and

having a strong correlation (𝑅2 = 0.86) in the individual plot (Figure 4-5). The

unexpected observation in this analysis was the negligible correlation of conductvity
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Figure 4-6: Mechanism of action for the ionic conductivity. Differences in the
conductivity owing to weak and strong self-interaction energies.

with ∆𝐸𝑅−𝐿𝑖 and ∆𝐸𝑅−𝑇𝐹𝑆𝐼 , and the weak correlation with ∆𝐸𝑅−𝐷𝑀𝐸.

Given these observations, we hypothesized that there is high ionic mobility due to

the low self-interaction energy which manifest as weak interactions in the electrolyte

(Figure 4-6). These weak interactions resulted in low energy barriers, aiding the dif-

fusion of the oligomers and ease of hopping of lithium cations between the oligomers.

On the contrary, strong self-interaction energies result in low ionic mobility.

4.2 Prediction, screening and validation of sustain-

able thermosets

The dramatic increase in the production and use of plastic, and the concurrent rise

in waste production necessitates development of sustainable plastics [326, 327]. It is

projected that the amount of plastic produced in the next 15 years will be more than

the combined production of plastic all across human history [328]. Compounded

by the long-term impacts of plastic waste, it is high time that we develop more

sustainable and reusable plastics [329, 330].

Thermosets, at 20% constitute one of the largest categories of plastics manu-

factured [331–335]. These plastics are covalently crosslinked polymers that harden

irreversibly upon curing. They are often used in extreme environments, such as in

high-temperature, mechanically and chemically harsh settings. Given the irreversible
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hardening and covalent crosslinking, it is difficult to recycle thermosets, thus requiring

the disposal of the waste in landfills where they persist for long periods of time.

Cleavable comonomer additives (CCAs) have been introduced into the thermosets

during crosslinking, within existing manufacturing protocols, to improve their lifecy-

cle circularity [331, 332]. CCAs enable chemical deconstruction of thermosets, usually

by a mechanism different from the ones possible in the chemical environment they

are used in. The deconstructed products could be recycled, and used for making new

thermosets. In a recent work, we showed how 7-10% cyclic olefin CCAs with silyl

ether groups could copolymerize with norbornene derivatives to form pDCPD (poly-

dicyclopentadiene), a widely used thermoset [336]. Through heuristic-driven design

of CCAs, we were able to increase the glass transition temperature, 𝑇𝑔, necessary for

high-temperature applications, while ensuring deconstructability of the thermosets.

While this work is a proof-of-concept for the use of CCAs in the development of

sustainable thermosets, the identification of new CCAs remains a key challenge.

Data-driven approaches have helped in accelerating materials discovery and syn-

thesis for a wide range of applications. Polymer data sets from PoLyInfo [337] and

PI1M [338] have been used to develop models for 𝑇𝑔 [337, 339–341], thermal con-

ductivity [342], dielectric constant [343], crystallization tendency [344] and bandgap

[345].

The aforementioned works and a lot of others in the polymer informatics literature

focus on homopolymers alone, and train over molecular descriptors without using any

synthesis information. Such approaches can be reasoned by the widespread availabil-

ity of homopolymer data in the databases [337]. For instance, PoLyInfo (accessed on

January 31, 2022) lists 𝑇𝑔 for 7996 homopolymers, 4135 composites, and 1156 blends.

Upon filtering the characterization conditions to ‘neat resin’ material type and ‘pellet’

shape, 𝑇𝑔 is available for only 161 homopolymers, 29 composites, and 18 blends. The

stark difference in the number of data points highlights the lack of information about

synthetic parameters, and non-standard experimental characterization approaches.

Such differences can have a significant effect on the training of ML models, hence,

necessitating the assembly of data sets with standardized synthesis protocols.
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Figure 4-7: Data-driven design of sustainable thermosets. A. Experimental
synthesis and validation of comonomer substituted DCPD polymers. B. ML frame-
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In this work, we developed a synthesis-learning-screening closed-loop framework

to enable the discovery of new CCAs (Figure 4-7). Experimental synthesis of pDCPD

derivatives and characterization of 𝑇𝑔 for these polymers helped in acquiring a large,

standardized data set. This data set was used to train a model ensemble, with varying

model architectures, train-valid-test data sets, and hyperparameters, to predict 𝑇𝑔

based on the comonomer, crosslinker molecules, and other experimental conditions.

Using this model ensemble, we screened for a variety of molecular structures of cyclic

alkene CCAs with different ring sizes containing silyl ether groups, and explored a

range of comonomer and crosslinker compositions.

4.2.1 Data set

A data set, with information about chemicals and synthesis parameters, was assem-

bled from existing works in the literature and in-house experiments [346–353]. A

total of 101 data points, with different combinations of comonomer and crosslinker
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molecules, ratios of monomer to Grubbs initiator, and initiator type, along with their

𝑇𝑔 values, measured after curing at 120 ∘C for 30 minutes, were collected.

The number of points in this data set falls in the low data regime for ML model-

ing. However, a key differentiator in this data set is the detailed information about

synthesis parameters and standardized conditions of measuring 𝑇𝑔. This difference

provides a unique opportunity for robust prediction of 𝑇𝑔, unlike the homopolymer-𝑇𝑔

data sets routinely used for training 𝑇𝑔 models [337, 339–341].

4.2.2 Machine learning

We used different circular fingerprint representations of comonomer and crosslinker,

and their respective concentrations in mol%, monomer to initiator ratio, and initiator

type, as the input to the model ensemble (Figure 4-8). The mol% and monomer to

initiator ratio were represented as continuous values, while the initiator type was

represented using a one-hot encoding. To benchmark the molecular representations,

we used physicochemical descriptors to train another set of models.
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features affecting the 𝑇𝑔 values identified using attribution analysis.

To address the limited data challenge, we trained an ensemble of 50 models, with 5

different hyperparameter-optimized model architectures, trained on 10 different parts

of the training and validation data sets (Figure 4-9A). The top 5 architectures were

chosen after analyzing a total of 12 architectures, based on linear models, random

forest, gradient boosting, feed-forward networks and Gaussian process regression.

The data set was split into 60:20:20 for training, validation and evaluation of the

model ensemble. Our model could predict 𝑇𝑔 for compositions in the held out test

data set within 14.88 ∘C, and had a strong 𝑅2 of 0.91, and a Pearson’s correlation of

0.96.

Our strategy was to spread the learning across all models in the ensemble, such

that we could capture the black-box function of mapping input features to the 𝑇𝑔,

without overfitting to either a particular set of training data or to a particular func-

tional form in the set of model architectures. This approach is in direct contrast to

the usual convention of using cross-validation with a single model architecture, such

as the works using only Gaussian process [339, 354], or convolutional neural networks

[355, 356].

We used feature importance analysis for models in the ensemble, wherever possi-

ble, to identify key input features that impact the predicted 𝑇𝑔 (Figure 4-9B). Con-

sistently across both fingerprint and descriptor-based models, we noticed that the
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comonomer mol%, monomer to initiator ratio, and initiator type were the most im-

portant. Aryl substituents and norbornene-based crosslinkers were identified as the

key substructures from the analysis of the fingerprint-based models, along with prop-

erties like number of aliphatic carbocycles, electrotopological state index (ESI), and

partial charges, from the descriptor-based models.

4.2.3 In silico titration analysis and validation

To asses how well the model had learnt the property landscape, we varied the concen-

trations of iPrSi and DDMS across a grid of mol% values, and visualized the predicted

𝑇𝑔 (Figure 4-10). iPrSi, a comonomer, copolymerizes with DCPD introducing cleav-

able bonds within the polymer network, and decreasing the network density, thus the

𝑇𝑔, while DDMS, a crosslinker, forms multiple links in the network, having an inverse

effect. This contrasting characteristic was observed in the heatmap of 𝑇𝑔 values. We

experimentally synthesized and characterized selected combinations with {0%, 10%,

20%} iPrSi and {10%, 20%} DDMS. The experimentally observed 𝑇𝑔 closely matched

the predicted 𝑇𝑔 values, hence successfully validating the model ensemble. In this ex-

periment, we also discovered a novel composition of 10% iPrSi, 10% DDMS which

had a 𝑇𝑔, 13 ∘C, greater than the previous best CCA-based thermoset, and closer to

the 𝑇𝑔 of pDCPD alone, 166.5 ± 5 ∘C [332].
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crosslinking comonomers, at different compositions.

4.2.4 Virtual screening and validation of new comonomers

With the success of the titration experiment, we attempted to expand the chemical

space by screening possible substituents and comonomers that could be used to tune

the 𝑇𝑔 (Figure 4-11). We screened a library of commercially available dichlorosilanes,

which could be used as CCAs or comonomers, and identified three molecules of interest

- PhSi7, LinF7, and PFP7. We were able to synthesize and characterize 𝑇𝑔 for PhSi7

and LinF7, noting that the predicted values matched the experimentally observed 𝑇𝑔.

However, we were unable to synthesize a stable thermoset with PFP7. In addition

to the 𝑇𝑔 values, we experimentally confirmed that all new thermoset compositions

were chemically deconstructable.

In another experiment, we retrospectively analyzed 𝑇𝑔 for recently reported CCA-

like strand-cleaving crosslinkers (SCCs) [336]. Although the model was not trained

on this class of molecules, it was able to predict the 𝑇𝑔 for all but one composition.

This particular composition was a 100 mol% SCC without any DCPD, and not an

additive alone. Understandably, the model was not able to predict the 𝑇𝑔 and had a

high uncertainty associated with it, demonstrating the low confidence attributed by

the model ensemble. We believe that an active learning strategy with new classes of

molecules would help generalize the model ensemble’s prediction ability.
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Chapter 5

Extended applications to small

molecules

5.1 Design of organic photoelectronic molecules with

desired properties

Deep generative models have been used to train on unlabeled data, sample novel

molecules, but using them to design optimal molecules with desired properties re-

mains a challenge [276, 357]. Recently, a new generative model framework based on

conditional recurrent neural networks (cRNNs) was reported, and applied to the gen-

eration of drug-like molecules [75]. Unlike previous generative models that sample

the latent space and discover novel molecules serendipitously, cRNNs translate de-

sired property to string-like simplified molecular-input line-entry system (SMILES)

representations.

The cRNN model enables the sampling novel of molecules conditioned on desired

features, such as circular fingerprints, or desired properties. The model architecture

combines a set of fully-connected neural network layers, followed by a recurrent neural

network - long short-term memory (RNN-LSTM) decoder [105]. The fully-connected

layers transform the input representation into a low-dimensional embedding, which is

then used to set the initial state of the decoder. For sampling, fingerprint representa-
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Figure 5-1: Schematic of cRNN model. The model translates chemical repre-
sentations, either circular fingerprints or properties, into the SMILES-string for the
molecule.

tions, or list of desired properties of molecules, used as-is or with added random noise,

steer the generation of new molecules. Using a stronger supervision constrained by the

properties, as compared to earlier approaches, the cRNN model attempts to constrain

the chemical space to the desired properties [358–360]. Such a model could be used

for inverse design of molecules with desired properties, such as drugs, metal-organic

frameworks, or organic photoelectronic molecules (OPMs).

OPMs have a wide range of applications, from components of displays to solar

cells [276, 361]. Although not chemically as diverse as drug-like molecules, OPMs

have a vast chemical space with conjugated heterocycles and sizes in tens of heavy

atoms. The desired electronic and optical properties for OPMs can be quantified using

energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied

molecular orbital (LUMO), and the energy needed to transition from the HOMO

to LUMO, called the optical gap. Using DFT simulations, the energy levels can be

obtained with reasonable accuracy.

In this work, we trained cRNN models over fingerprints (FP) and DFT-calculated

energies to generate new OPMs (Figure 5-1). Using a data set of OPMs, reported

in the literature, and combinatorially generated molecules, we trained a large, unsu-

pervised FP-based (FPB) model, and then used transfer learning (TL) to learn over

molecules, with HOMO and optical gap values in the desired property range. We

used the HOMO, LUMO and optical gap values, outside the desired properties range,
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to train a physicochemical properties-based (PCB) model to translate the properties

to molecules directly. The desired property range was HOMO between -7.5 and -6.5

eV, and optical gap between 2 and 3 eV, chosen based on HOMO -7 eV and optical

gap 2.5 eV at which the solar flux has the highest intensity [362].

5.1.1 Data set

An unlabeled data set of OPMs was extracted by going through the literature and data

available from the US patents and trademark office for the period 2001-19 [312, 363].

OPMs collected from literature and patents were fragmentized by disconnecting non-

ring aryl single bonds in each molecule. For each set of fragments generated from

their respective OPM, if one fragment occurs more than once in the OPM and is

sandwiched between two different fragments, it is categorized as a functional group;

otherwise, it is categorized as a capping group. If the fragment occurs only once,

it is categorized as a core. Cores and functional groups were then combinatorically

assembled to generate new molecules. This process was repeated once between the

generated core-functional-group new molecules and capping groups to further generate

new molecules. A total of 157,665 unlabelled molecules were assembled or generated

in this process.

Based on the availability of similar experimental studies, heuristics, and random

selection, DFT calculations were performed on a subset of the molecules to obtain

HOMO, LUMO and optical gaps for the OPMs. Within the labeled data set, all

molecules with HOMO and optical gap in the desired range were removed and marked

as the ‘seed’ data set, and the remaining data set was used for training the TL and

PCB models. The filtered data set had 13,616 molecules, while the seed data set had

1,129 molecules.

5.1.2 Machine learning

The FPB and TL models were trained on circular fingerprints of molecules, while

the PCB model was trained on the property vectors (Figure 5-2). Non-canonical
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Figure 5-2: Performance of cRNN models. A. Different metrics for assessing
the performance of FPB, TL and PCB models. B. Distributions of average negative
log-likelihood and maximum Tanimoto similarity of the sampled molecules against
the training data set.

variants of SMILES strings were used to augment the training data set. A 90:10

training: validation random split was used for the model training. The complete

unlabeled data set, with the exception of the molecules in the labeled data set, was

used to train the FPB model. The best performing FPB model had a categorical cross

entropy (CCE) validation loss of 0.025. We re-trained this model using the filtered

data set for 200 epochs to obtain the TL model. The TL model performed poorly

compared to the FPB model given the significantly limited data for the labeled OPMs

and had a CCE validation loss of 0.217. The PCB model, trained over the filtered

data set had a CCE validation loss of 0.162.

We also used a variety of text-based, novelty and similarity metrics to assess the

performance of these models. Valid SMILES % is the percentage of SMILES that can

be processed using RDKit, reconstruction % is the percentage of molecules that were
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shown, along with DFT-calculated HOMO and optical gap values for the molecules
sampled using respective models. The vertical lines mark the desired properties of -7
eV HOMO, and 2.5 eV optical gap.

exactly the same as the seed molecules at inference time, unique sampled molecules

% notes the percentage of unique molecules sampled across all the seeds, and novelty

% notes how many new molecules not present in the training data set were sampled.

The performance varied across the models with the FPB and PCB models generating

a large number of valid SMILES, 82.6% and 42.4%, as compared to 13.1% for the

TL model. The unique molecules generated across all the seeds was high in FPB and

TL models as 98.1% and 100%, compared to 9.6% for PCB model, resulting from

a possible mode collapse. In terms of novelty of molecules, TL and PCB models

outperformed FPB model, with 98.5% and 91.3% novelty, respectively, compared to

67.4% for the FPB model.

The distributions of negative log-likelihood (NLL) and Tanimoto similarity indi-

cate a trend similar to the aforementioned metrics across the models. The FPB model

is noted to be good at reconstruction based on the lower NLL, while the TL and PCB

models are good at generating novel molecules, as observed in the low maximum

Tanimoto similarity of the molecules when compared to all of the training data set.
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5.1.3 Conditional sampling

The pre-trained models were used to sample potential OPMs with desired properties

(Figure 5-3). For the FPB and TL models, fingerprints of molecules in the seed

data set were used. Randomly sampled property values within 0.5 eV of the desired

HOMO and optical gap were used to seed the PCB model. We used DFT calculations

to validate the properties of these sampled molecules, and observed that all the models

generated molecules that were close to the desired HOMO of -7 eV, with HOMOs of

-7.07 ± 0.41, -7.50 ± 0.70, and -7.41 ± 0.67 eV, as well as the desired optical gap of

2.5 eV, with gaps of 2.72 ± 0.49, 2.97 ± 0.85, and 2.78 ± 0.73 eV, for FPB, TL, and

PCB models, respectively.

In the sampling experiment, we also noted that HOMO and optical gap values

are not only closer to the desired property values, but also significantly different from

the mean of the training data set. This difference indicates that the models were able

to learn the general chemical space of OPMs, and help in sampling molecules in the

desired property range, despite not having been trained explicitly over them.

5.1.4 Benchmarking against graph-based genetic algorithm

A graph-based genetic algorithm (GB-GA) approach was used to benchmark the

generation of OPMs using cRNN models (Figure 5-4) [364]. 100 random molecules

were chosen from the unlabeled data set to seed the GA, and default settings were

used for all mutations. The objective function in the GA was set to minimize the

mean squared error of predicted and desired HOMO and optical gap values. The

predictions for HOMO and optical gap were obtained using a pre-trained graph-

convolutional model trained on OPMs in the labeled data set, with validation mean

absolute error of 0.24 eV for the sum of the two properties [365].

In this experiment, we noted that both approaches produced a significant number

of unrealistic molecules, and only a small number of realistic OPMs. Two molecules

generated using cRNN, first and fifth in the Figure 5-4 were noted to be realistic,

while none in the GB-GA set were found to be realistic. The unrealistic molecules
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generated using the GB-GA can be reasoned by the reliance on the curated set of

rules that the approach uses to mutate the molecules. The lack of chemical context

in the molecule generation process affects the sampling. For the cRNNs, we noted

that the decoding of SMILES played a role in the unfeasible OPMs. We believe that

increasing the amount of training data and the size of the models will help improve

the generation using the cRNN models.

5.2 Inverse design of molecules from shapes with de-

sired chemistry

Inverse design of materials with specific properties could help accelerate development

in a wide range of areas, from catalysis to therapeutics to photonics [357, 366–369].

Deep generative models, such as variational autoencoders (VAEs), have been used to

design organic photovoltaics [276, 370], porous materials [371, 372], inorganic solid

state materials [373–375], and several other types of materials. However, such models

usually require a large amount of training data, and often lead to generation of a

large number of nonsensical molecules. Recently, a conditional generative model ar-

chitecture based on recurrent neural networks (cRNNs) was introduced. cRNNs map

property or chemical feature vectors directly to molecules, constraining the chemical

space by stronger supervision [75, 76].

Individual molecules exist in a number of 3-dimensional structures, or conformers.

Ensemble and individual properties of conformers, and the 3D structures themselves,

are routinely used to inform physicochemical and biological processes, such as reaction

mechanisms [376], electrocatalysis [377], and protein-ligand interactions [378, 379].

A significant amount of effort has been spent in developing physics and heuristic-

driven methods to predict conformers, given a molecule [380–383]. Similarly, a number

of machine learning models, such as GeoMol [384] and others [385–388], have also

been recently developed to address the forward conformer generation. In terms of

cardinality, aforementioned approaches belong to a class of one-to-many relationships,
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mapping a single molecule to multiple conformers.

Several works have tried to do the inverse, attempting to map 3-dimensional shape

and property information, to a molecule, proposing a many-to-one model [389]. De

Fabritiis and co-workers used 3D representations, such as voxels of ligands [390] and

target protein pockets [391], with 3D-convolutional neural network-based VAEs, to

generate molecules. Koes and co-workers used a similar approach with 3D represen-

tations, mapping the spatial atomic density to individual atom types, followed by

generation of the SMILES representation of the molecule [392, 393]. cRNN models

have been used to train over the eigenvalues of the Coulomb matrix as a descrip-

tor for the protein pocket to design ligands [394]. Recently, both voxels and molecule

graphs have been used to train multi-modal models, such as DEVELOP and DeLinker

[395, 396]. However, it maybe noted that most of the models mentioned here use 3D

representations - voxels, molecular graphs or spatial atomic density - which might be

passing information about the atomic connectivities to the models. We believe that

such representations might limit the model in learning a small chemical space, which

in turn only partially learns the general mapping function of shape to molecule.

To address this challenge, we developed a model framework, Shape2Mol (S2M),

which translates conformers, represented using weighted holistic invariant molecu-

lar (WHIM) and a few other global physicochemical descriptors, to SMILES strings

(Figure 5-5A). We used this model to generate rigid versions of small molecules, and

quantified them using a variety of metrics. In addition, we generated potential binders

for three different proteins with different levels of docking difficulty - DRD2 kinase

(easy), F2 protease (medium), and ESR2 nuclear receptor (hard); and small molecule

analogues of peptides using their predicted 3D structures.

5.2.1 Data set

We used conformers for drug-like molecules from the GEOM data set [397]. Briefly,

the GEOM data set was assembled by running semi-empirical DFT calculations and

high quality sampling using the CREST program [381, 398]. From more than 300,000

molecules in GEOM, we randomly sampled 30,000 molecules for training, and another
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Figure 5-5: Overview of Shape2Mol model. A. Schematic of Shape2Mol model,
trained with WHIM and physicochemical descriptors of conformers as input, and
SMILES representations of molecules as output. B. Visualization of molecules, gener-
ated using cRNN model, with different Tanimoto similarities with the seed molecules.
C. CCE loss and other metrics, as described in Section 5.1.2, for models trained on
10,000 and 30,000 different molecules, with {1, 3, 10} conformers. The shaded model
with 30,000 molecules and 10 conformers was used for further analysis.

1,000 molecules for the held-out test data set. One or more conformers for a single

molecule was used for model training and evaluation.

5.2.2 Machine learning

We trained cRNN models over conformers represented using a feature vector of WHIM

[71, 399] and physicochemical descriptors to generate SMILES strings (Figure 5-5C).

All the physicochemical descriptors used here are global properties without any ex-

plicit connectivity information, such as topological polar surface area [400], and elec-

trotopological state index [401]. For each molecule, five non-canonical SMILES were
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generated by random enumeration of the starting atom in RDKit, giving a total of six

training data points per molecule. The training data set was split 80:20 for training

and validation of the model, and the held-out test data set was used to evaluate the

model post-training. Default hyperparameters were used for training all the models.

Multiple cRNN models were trained using different combinations of number of

molecules and conformers per molecule. We observed that increasing both the number

of molecules and the conformers helped in improving the performance of the model

on the test data set.

5.2.3 Comparative Analysis of Generated Molecules

We hypothesized that sampling using the model might lead to more rigid molecules

than the seed molecule, while preserving a similar spatial arrangement. To test this

hypothesis, we carried out the sampling in two parts - using the lowest energy con-

former, and using a random high energy conformer. In case of the lowest energy

conformer, we sampled using descriptors of 1000 molecules from a held-out test data

set. For sampling with the high energy conformer, we filtered the molecules from

the test data set, to those having more than hundred unique conformers, and then

choosing a conformer with energy greater than 5 kcal/mol relative to the most stable

conformer. Visual inspection of the sampled molecules provided some evidence that

the model uses classical medicinal chemistry tricks such as ring closing, and converting

hexane to benzene rings (Figure 5-5B).

To rigorously assess the sampled molecules, we used a variety of metrics, ranging

from cheminformatic descriptors, information obtained from conformation generation

using CREST, to distances between descriptors.

At first, we calculated the number of rotatable bonds in the seed and generated

molecules (Figure 5-6). We observed that when the lowest energy conformer was

used, the distribution of the number of rotatable bonds was similar in both seed

and generated molecules, with a mean of 5.00 and 4.99 rotatable bonds, respectively.

For sampling with high energy conformers, the distribution obtained for the generated

molecules had a lower mean 6.20 as compared to 6.78 for the seed molecules. Another
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Seed - GenSeed - Gen

Figure 5-6: Comparison of rotatable bonds in generated molecules. A. Dis-
tributions of number of rotatable bonds in generated molecules, when S2M is seeded
with lowest and a random high energy conformer, as compared to the seed molecules.
B. Difference of number of rotatable bonds between seed and generated molecules,
where >0: seed has more, <0: seed has less, =0: same number of rotatable bonds.
Results from generation using lowest energy conformer and a random high energy
conformer are shown in left and right columns.

perspective for the rotatable bonds was obtained by calculating the difference between

the number of rotatable bonds in the seed and generated molecules. For the sampling

using the lowest energy conformers, the bar plot was nearly Gaussian, indicating that

the sampled molecules were indifferent to the rotatable bonds, thereby acting as a

positive control. However, in sampling using high energy conformers, we observed

that half of the sampled molecules had lower rotatable bonds than the seed molecule.

The SC RDKit score, as described in [396], was used to compare the exact con-

formers of seed and generated molecules (Figure 5-7A). For both sampling approaches,

all results were reported for the conformer of the sampled molecule with the highest

SC RDKit score against the seed conformer. The distributions for the scores for the
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Figure 5-7: Conformer comparison using similarity, entropy metrics, and
count. A. Distribution of similarity, calculated as SC RDKit score, of generated
conformer with the seed conformer, compared to random conformers. B. Distribution
of ensemble entropy of the generated conformers, compared to seed conformers. C.
Distribution of number of unique conformers of seed and generated molecules. Results
from generation using lowest energy conformer and a random high energy conformer
are shown in left and right columns.
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seed and generated conformers, and two random conformers, were different for both

sampling approaches, with the model having a difficult time in sampling molecules

when seeded with high energy conformer descriptors. Specifically, only 7% of the

molecules sampled using the high energy conformer had a score greater than 0.5, as

compared to 19% of the molecules when sampled using the lowest energy conformer.

The distribution of ensemble entropy was similar for seed and generated con-

formers, for sampling using lowest and high energy conformers (Figure 5-7B). The

difference in the spread of the distribution, especially the wider spread for the lowest

energy conformers, as compared to the narrow distribution of high energy conformers,

may be attributed to the flexibility of the generated molecules.

The distributions of the number of conformers for seed and sampled molecules was

different for both sampling approaches (Figure 5-7C). When sampling using the lowest

energy conformer, both seed and sampled molecules had a right skewed distribution.

For the high energy conformers, the seed molecules followed a similar distribution,

as the lowest energy conformers, while the sampled molecules had a wide spread and

more uniform distribution. This distribution may be attributed to the sampling of

varied high energy spatial configurations.

5.2.4 Docking of cRNN generated molecules

We used the model to generate new molecules from docked poses of molecules bound

to three different proteins. The three proteins - DRD2 kinase (easy), F2 protease

(medium), and ESR2 nuclear receptor (hard) - were selected from the benchmarks

presented in [402], noting proteins with a range of functions in the order of difficulty of

being able to dock molecules. For each of the proteins, 1000 molecules with varying

binding affinities or docking energies were randomly sampled from the DockString

data set [402]. Conformers of these molecules were seeded to the pre-trained cRNN

model to generate new molecules. These molecules were docked to their respective

target proteins using the same approach that was used to obtain the seeds.

The models were able to generate molecules with low Tanimoto similarity to the

seed molecules, while still having low docking energy or high binding affinity (Figure
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5-8). Visualizing the docked poses of the seed and generated molecules together, we

observed that the interactions by the molecules with the target proteins were similar

in both cases, thereby validating our approach of exploring the local chemical space

while preserving the shape of the molecules.

A

B

DRD2 Kinase, Easy F2 Protease, Medium ESR2 Nuclear Receptor, Hard

C
Sampled Molecules Seed Molecules

Figure 5-8: Docking generated molecules against DRD2 kinase, F2 protease
and ESR2 nuclear receptor proteins. A. Docking energy and Tanimoto similarity
of generated molecules for 3 proteins. B. Comparison of docking energies of seed and
generated molecules. Data points above the 𝑦 = 𝑥 line have higher binding affinity
or lower docking energy for generated molecule, as compared to seed molecule, and
vice-versa. C. Overlay of docked poses of generated molecules with the best docking
energies, and corresponding seed molecules, with respective target proteins.
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VSALK. C. Molecules generated, when seeded with 3D structure of VSALK.

5.2.5 Generation of small molecule analogues of peptides

We generated small molecules with conformers similar to predicted 3D structures of

peptides (Figure 5-9). Peptide sequences with all-natural amino acids and lengths

less than 8 residues were selected from the data set of cell-penetrating peptides [64].

The 3D structures of peptides were predicted using AlphaFold2 [63]. We used WHIM

descriptors calculated for the top-ranked 3D structures as-is and with added random

noise to seed the cRNN models. 2-4 valid molecules were sampled for each peptide.

Tanimoto similarity of all generated molecules with corresponding peptides is within

0.15, with most of the molecules having a similarity of 0.1 or less. Using this approach,

peptides and other macromolecule 3D structures can be translated into small molecule

analogues with similar shapes.
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Chapter 6

Conclusion

Our work presented a computational framework to represent, compute similarity

for, and learn over sequence-defined macromolecules with arbitrary monomer/linkage

chemistry and topology. We applied this approach to a wide range of biological and

artificial macromolecules, as well as small molecules, developing interpretable models

and achieving state-of-the-art or comparable results. Using these models, we virtu-

ally screened, designed de novo, or optimized, and experimentally validated materials

with desired properties.

For biological macromolecules, our work involved optimization of functionality

and synthetic accessibility of peptides, peptide-nucleic acids, and glycans. Quanti-

tative prediction of cell-penetrating efficacy of mini-proteins and peptides enabled

optimization of gene therapy delivery, opening doors to a number of other therapeu-

tic modalities, which could be delivered using a similar platform. Unsupervised and

supervised machine learning and dynamic time warping analysis helped in discover-

ing sub-families of peptidomimetic binders, and resulted in design of new binders.

Peptide vaccines for cancer were designed by machine learning of human degrons,

and effectively harnessing the antigen processing and presentation by the ubiquitin-

proteasome degradation system. Prediction and optimization of synthetic accessibil-

ity of peptides and peptide nucleic acids improved flow synthesis. Applications to

non-linear biomacromolecules resulted in state-of-the-art or comparable results for a

number of tasks, and discovery of novel high-affinity, lectin-specific glycans.
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We developed robust prediction and uncertainty estimation approaches to learn

over artificial macromolecules in the low-data regime. Using a physics-informed

model, we were able to map the effect of secondary substituents in oligoethylene

glycol-based Li-battery electrolytes to conductivity and viscosity, screen and suc-

cessfully validate new substituted-electrolytes. We discovered and validated a novel

comonomer: crosslinker composition, and another new comonomer, for chemically-

deconstructable thermosets, with glass transition temperature comparable to com-

monly used polydicyclopentadiene thermosets.

Extending our work to small molecules, we used conditional generative models

to design organic photoelectronic molecules with specific properties. Modifying the

cRNN model architecture, we developed Shape2Mol to inversely design molecules

from shape with desired chemistry. With this model, we generated molecules that

docked better than seeds in target proteins, and small molecule analogues for peptides

from their predicted 3D structures.

We believe our work serves as a foundation for further work on sequence-defined

macromolecules. In the future, multi-objective optimization against different prop-

erties, such as functionality, synthetic accessibility, cost and carbon footprint, could

be used to design better and more sustainable materials. We envision that our work

will ultimately lead to acceleration of development of macromolecules across several

domains.
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