
MIT Open Access Articles

BitPacker: Enabling High Arithmetic Efficiency
in Fully Homomorphic Encryption Accelerators

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Samardzic, Nikola and Sanchez, Daniel. 2024. "BitPacker: Enabling High Arithmetic
Efficiency in Fully Homomorphic Encryption Accelerators."

As Published: 10.1145/3620665.3640397

Publisher: ACM

Persistent URL: https://hdl.handle.net/1721.1/154382

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution-Noncommercial-ShareAlike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/154382
https://creativecommons.org/licenses/by-nc-sa/4.0/

BitPacker: Enabling High Arithmetic E�ciency
in Fully Homomorphic Encryption Accelerators

Nikola Samardzic
nsamar@csail.mit.edu

Massachusetts Institute of Technology

Cambridge, MA, USA

Daniel Sanchez
sanchez@csail.mit.edu

Massachusetts Institute of Technology

Cambridge, MA, USA

Abstract

Fully Homomorphic Encryption (FHE) enables computing

directly on encrypted data. Though FHE is slow on a CPU,

recent hardware accelerators compensatemost of FHE’s over-

heads, enabling real-time performance in complex programs

like deep neural networks. However, the state-of-the-art FHE

scheme, CKKS, is ine�cient on accelerators. CKKS repre-

sents encrypted data using integers of widely di�erent sizes

(typically 30 to 60 bits). This leaves many bits unused in

registers and arithmetic datapaths. This overhead is minor

in CPUs, but accelerators are dominated by multiplications,

so poor utilization causes large area and energy overheads.

We present BitPacker, a new implementation of CKKS that

keeps encrypted data packed in �xed-size words, enabling

near-full arithmetic e�ciency in accelerators. BitPacker is

the �rst redesign of an FHE scheme that targets accelerators.

On a state-of-the-art accelerator, BitPacker improves perfor-

mance by gmean 59% and by up to 3×, and reduces energy by

gmean 59%. BitPacker does not reduce precision and can be

applied to all prior accelerators without hardware changes.

CCS Concepts: • Security and privacy→ Cryptography;

• Computer systems organization→ Architectures.

ACM Reference Format:

Nikola Samardzic and Daniel Sanchez. 2024. BitPacker: Enabling
High Arithmetic E�ciency in Fully Homomorphic Encryption Ac-
celerators. In 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
2 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New
York, NY, USA, 14 pages. h�ps://doi.org/10.1145/3620665.3640397

1 Introduction

Fully Homomorphic Encryption (FHE) enables computing
directly on encrypted data. FHE allows o�oading computa-

tion to third parties, like untrusted servers, with guaranteed
privacy. Recent work has applied FHE to many compelling

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0385-0/24/04.
https://doi.org/10.1145/3620665.3640397

Overhead: 144 bits, 60%
(240 bits of information encoded in 6x64 bits)

(a) RNS-CKKS (prior work)

(b) BitPacker (this work)

64-bit

HW word size

Residue sizes: 30-bit 40-bit 50-bit 60-bit

64-bit

HW word size

3x 64-bit residues

𝑟" 𝑟# 𝑟! 𝑟$

�̅�" �̅�# �̅�! �̅�$ �̅�% �̅�&

48-bit terminal residue

Overhead:
16 bits, 6.6%

Figure 1. The state-of-the-art RNS-CKKS implementation

leaves many bits of the datapath unused, wasting area and

energy, because it links residue size and scale (a). BitPacker is

a new RNS implementation of CKKS that avoids this problem,

achieving high utilization (b).

domains, including deep learning inference, genome analysis,

and private information retrieval [8, 16, 18, 21, 22, 24, 28].

The key challenge limiting the adoption of FHE is its high

overhead: on a CPU, FHE programs are about 10,000× slower

than their unencrypted counterparts. Fortunately, FHE is

very amenable to hardware acceleration. Recent FHE accel-

erators [27, 29, 39, 40] achieve speedups of well over 1,000×,

closing most of FHE’s performance gap and enabling new

applications, such as real-time private deep learning.

While FHE accelerators are enticing, they leave signi�-

cant performance on the table because they accelerate FHE

algorithms that were designed and optimized for CPUs. FHE

accelerators have di�erent tradeo�s than CPUs, making hard-

ware-software codesign necessary: higher e�ciency is possi-

ble by redesigning algorithms to use accelerators well.

In this paper, we present the �rst signi�cant redesign of

an FHE scheme that targets accelerators. We focus on CKKS,

the state-of-the-art FHE scheme. CKKS supports arithmetic

on encrypted vectors of �xed-point values. CKKS is ideally

suited to machine learning, and is the scheme used by most

accelerators and applications [8, 16, 18, 21, 22, 24, 28].

CKKS encodes encrypted data using very large integers,

typically over 1,000 bits wide. E�cient CKKS implementa-

tions use Residue Number System (RNS) encoding [15] to

represent each wide integer using multiple narrow integers,

137

https://doi.org/10.1145/3620665.3640397
https://doi.org/10.1145/3620665.3640397
https://creativecommons.org/licenses/by-nc-sa/4.0/

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Nikola Samardzic and Daniel Sanchez

called residues. RNS makes operations more e�cient, and

enables each narrow residue to �t within a hardware word.

However, CKKS implementations leave many bits of the

datapath unused: typical CKKS programs use 30- to 60-bit

residues. This incurs large overheads for FHE accelerators,

as they are dominated by (modular) multiplications, whose

area and energy grow quadratically with bitwidth.

This ine�ciency arises because RNS-CKKS [9], the current

state-of-the-art implementation, constrains the size of the

residues. Speci�cally, residues must equal the scale, a CKKS

parameter that determines the precision (number of usable

bits) of encrypted data. Applications typically use scales

between 30 and 60 bits, and since larger scales are expensive

(Sec. 2), each application combines a wide range of scales.

Fig. 1(a) shows this problem with a simple example. It

shows how RNS-CKKS encodes a ciphertext with 6 scales,

which range from 30 to 60 bits, when using a 64-bit datapath.

RNS-CKKS maps each scale to one residue, taking 6 64-bit

words per wide integer. This is a 60% space overhead, since

the integer encodes 240 (3·30+40+50+60) bits of information.

FHE accelerators su�er heavy performance and energy

penalties from unused datapath bits: for example, a 60%

space overhead causes 2.6× energy overheads in multipliers.

Prior work has thus carefully tuned datapath width. BTS

and ARK [27, 29] use a 64-bit datapath, as in Fig. 1(a). F1

and CraterLake [39, 40], use narrower datapaths (∼ 32 bits),

which are more e�cient, and represent each scale that ex-

ceeds the datapath width using two smaller residues (e.g.,

encoding a 50-bit scale with two 25-bit residues), a technique

called double-prime rescaling. And SHARP [26] carefully

chooses a 36-bit datapath to make double-prime rescaling

less frequent.

However, RNS-CKKS incurs high overheads even with care-

fully tuned datapath widths, because it’s impossible for a

�xed datapath to be e�cient across residue sizes. For exam-

ple, consider Fig. 1(a): a 32-bit datapath would be e�cient

for 30-bit scales, but very ine�cient for 40-bit scales.

We present BitPacker, a new RNS implementation of CKKS

that decouples scale and residue size. BitPacker packs cipher-

texts into residues sized to the datapath width, using hard-

ware e�ciently, while supporting any scale. Fig. 1(b) shows

this representation and how it reduces overheads.

BitPacker relies on several novel contributions. First, we

contribute novel implementations of key CKKS procedures

(rescaling and mod-switching) that enable fully packing

residues while retaining precision (Sec. 3.2). Second, we con-

tribute a novel algorithm that selects tightly packed residue

moduli (Sec. 3.3). Third, we design an accelerator-friendly

implementation that reuses the functional units of state-of-

the-art designs like CraterLake, ARK, and SHARP (Sec. 4),

and requires no hardware changes.

BitPacker’s bene�ts are especially relevant to FHE accel-

erators (Sec. 4). By using fewer hardware words to repre-

sent (and compute on) the same data, BitPacker improves

performance and energy superlinearly. BitPacker also re-

duces on-chip storage and functional unit area, as cipher-

texts are smaller. While BitPacker makes all datapath widths

more e�cient, it makes narrow (28-bit) datapaths the most

e�cient choice, simplifying accelerator design.

We evaluate BitPacker on FHE accelerators with datapaths

ranging from 28 to 64 bits (Sec. 6). BitPacker improves perfor-

mance by 59% on average over the 28-bit design, and by up

to 3×, on a diverse set of benchmarks and across word sizes.

BitPacker also reduces energy by 59% and data movement by

37%. BitPacker improves performance on CPUs as well, by

24% on average. Finally, BitPacker does not hurt accuracy.

2 Background and Motivation

In this section, we �rst present the necessary background on

FHE. Then, we present the CKKS scheme and RNS-CKKS [9],

its RNS implementation. RNS-CKKS’s ine�cient use of �xed-

width words motivates the need for BitPacker.

2.1 CKKS is the state-of-the-art FHE scheme

There are several FHE schemes that encrypt data of di�erent

types. There are two broad types of schemes: vector schemes

(e.g., BGV [6], B/FV [14], and CKKS [10]) encrypt a large

vector of numbers in each ciphertext; and scalar schemes

(e.g., FHEW/TFHE [11, 12]) encrypt a single value per cipher-

text. Scalar schemes are more �exible than vector ones, but

they have much higher overheads. Thus, for applications

that use vectors well, like machine learning, vector schemes

are preferable.

Vector schemes provide three operations on encrypted

vectors: elementwise addition, elementwise multiplication,

and rotations. Vector schemes di�er in their supported data

type: in BGV and B/FV, plaintext vector elements are integers

modulo a certain value. In CKKS, vector elements are �xed-

point values.

For most applications, CKKS’s support of �xed-point arith-

metic is a much better �t than the modular integers of earlier

schemes. Thus, CKKS is the most widely used scheme, with

applications in deep learning inference, machine learning,

genomics, and other areas [8, 16, 18, 21, 22, 24, 28]. State-of-

the-art accelerators (Sec. 4.1) target CKKS.

2.2 CKKS implementation

We now present the key implementation characteristics of

CKKS. Full details are available elsewhere [10, 36, 40].

Datatypes: Fig. 2 shows CKKS’s plaintext and ciphertext

datatypes, and its encryption process. Each plaintext is a

vector of = �xed-point numbers. The scale parameter, (, de-

termines the width of the mantissa (the fractional part) of

each element.

Each ciphertext is a pair of polynomials (ct.0 and ct.1).

Each polynomial has # = 2= integer coe�cients modulo a

large value & . Each ciphertext is very large for two reasons.

138

BitPacker: Enabling High Arithmetic E�iciency in Fully Homomorphic Encryption Accelerators ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

5.398

3.141

2.721 Encrypt

Random noise

𝑛

Plaintext
Secret

key

Ciphertext (Ct)

𝑤
mod 𝑞'(#

𝑤 = log! 𝑄

…

…

𝑁 = 2𝑛

… …

6.465

Scale (𝑆)

mod 𝑞#mod 𝑞"

ct.0 ct.1

Figure 2. Encryption process for CKKS.

First, # must be large for security (# = 65, 536 = 216 is

typical) [33]. Second, each coe�cient is very wide, typically

over 1,000 bits, much wider than the scale (.

Noise and precision: To prevent decryption, each cipher-

text is encrypted with some noise, as Fig. 2 shows. In CKKS,

this noise introduces a small amount of error into the en-

crypted data. This a�ects precision: for a given scale (, which

has log2 (bits, the mantissa has between log2 (− 20 and

log2 (− 15 usable (error-free) bits, with the lower bits taken

over by noise. In practice, programs typically use scales rang-

ing from 30 to 60 bits (i.e., 10 to 45 error-free mantissa bits).

Homomorphic operations:Ciphertexts support only three

operations, called homomorphic operations: elementwise adds,

elementwise multiplies, and rotates of the underlying en-

crypted vectors (add andmultiply allow one of their operands

to be unencrypted). Homomorphic operations have di�erent

costs: addition is cheap, but multiplication and rotation are

expensive; we discuss their costs in Sec. 4.

Noisemanagement:Ciphertexts are encryptedwith a small

amount of noise. Unfortunately, homomorphic operations

increase noise, and if noise becomes too large, it corrupts

the encrypted values. Noise grows primarily with multiplies.

Speci�cally, multiplying two ciphertexts with scale (and

noise X produces a result with scale (2 and noise ∼ (X .

CKKS uses three techniques to manage noise and scale:

rescaling, adjusting, and bootstrapping (these operations do

not change the underlying encrypted values):

1. Rescaling: A rescale divides the coe�cients of the cipher-

text by a value 3 , which can be any divisor of modulus & .

This reduces& , the noise, and the scale by a factor3 . Thus, by

rescaling by a value 3 ≈ (after a multiplication, we can reset

the scale back to (2/3 ≈ (and the noise back to X(/3 ≈ X .

2. Adjusting: Since rescaling changes & , CKKS uses a pro-

cedure called adjust that trims down& by a factor 3 but does

not change the scale by a factor3 . Adjusting enables perform-

ing operations between ciphertexts that have undergone a

di�erent number of multiplications (and rescales).

The following example illustrates the use of rescale and

adjust. Suppose we want to compute G2 + G , where G is a

ciphertext with a 1000-bit & and a 50-bit scale ((= 250).

Multiplying G ∗ G grows the scale to (2 = 2100, or 100 bits;

by choosing a divisor of & , 3 close to 250, rescale(G ∗ G, 3)

trims 50 bits of the modulus and the scale, leaving a 950-bit

Time

C
o

e
ff

.
w

id
th

(l
o
g
!
𝑄

)

Application computation Bootstrapping

𝑠𝑙𝑜𝑝𝑒	~ log! 𝑆

Figure 3. Noise management a�ects ciphertext coe�cient

width (log2&). Narrowing log2& after rescales trims noise;

bootstrapping produces a low-noise, high-log2& ciphertext.

modulus &/3 ≈ 2950 and a 50-bit scale (2/3 ≈ 250. But we

cannot add G directly to this ciphertext, because their moduli

and scales are di�erent (& ≠ &/3 and (≠ (2/3).

adjust(G, 3) produces a compatible ciphertext with a

modulus &/3 and scale (2/3 . The �nal result, rescale(G ∗

G, 3) + adjust(G, 3), has modulus &/3 and scale (2/3 .

3. Bootstrapping: Once coe�cients cannot be narrowed fur-

ther, the ciphertext must be bootstrapped, a procedure that

restores the ciphertext to a large & , letting it undergo more

operations. Bootstraps let FHE support arbitrarily large pro-

grams, but are very expensive, involving hundreds of rotates

and multiplies. Thus, they often dominate performance.

Fig. 3 shows how & ’s bitwidth (log2&) evolves over a typ-

ical FHE application: & progressively decreases as rescales

trim noise, and is reset back up by bootstrapping.

Leveled execution: Since multiplications consume & in

chunks of ∼ log2 (bits, it’s common to think of noise budget

in terms of discrete levels. For example, if each multiplication

consumes 50 bits of& , a 1000-bit& supports a multiplicative

depth of ! = log2&/log2 (= 1000/50 = 20 levels.

Usingmultiple scales: Choosing the smallest possible scale

that does not hurt precision is critical to performance. A large

scale consumes & more rapidly, so for a program of a �xed

multiplicative depth, a larger scale requires using larger &

and eventually causes more frequent bootstrapping.

We have so far discussed using a single scale throughout

the program. However, application developers tune the scale

to balance precision and cost, and often use di�erent scales

at di�erent levels. Thus, the same application uses a wide

range of scales. Bootstrapping causes much of this variabil-

ity: several of its operations need high precision, and use

55- to 60-bit scales. By contrast, non-bootstrap operations

often use lower scales, 30 to 45 bits. Fig. 3 shows this: by

using lower precision in non-bootstrap computation, a pro-

gram consumes & more slowly and makes bootstrapping

less frequent. Thus, it is crucial to support a wide range of

scales e�ciently.

2.3 RNS implementation of CKKS

Residue Number System (RNS) representation: All high-

performance implementations of CKKS use RNS representa-

tion [15]. RNS allows encoding each ciphertext polynomial

with wide coe�cients as ' residue polynomials with narrow

139

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Nikola Samardzic and Daniel Sanchez

𝑆/ = 𝑆0
1/𝑞/

Level Modulus Scale

… … …

𝑆2 = 𝑆/
1	/𝑞2

𝑆0�̅�! �̅�" �̅�# �̅�$ �̅�% �̅�&

𝑞! 𝑞" 𝑞# 𝑞$ 𝑞% 𝑞&

�̅�!
' �̅�"

' �̅�#
' �̅�$

' �̅�%
'

𝑞! 𝑞" 𝑞# 𝑞$ 𝑞%

𝑄(= 𝑞!𝑞"𝑞#𝑞$𝑞%𝑞&

𝑄& = 𝑞!𝑞"𝑞#𝑞$𝑞% =	𝑄(/𝑞&

�̅�!
'' �̅�"

'' �̅�#
'' �̅�$

''

𝑞! 𝑞" 𝑞# 𝑞$

𝑄% = 𝑞!𝑞"𝑞#𝑞$ = 𝑄&/𝑞%

6

5

4

Figure 4. Evolution of residue moduli and scales across three

adjacent levels for RNS-CKKS.

1 def rnsCkksRescale(ct: Ct) -> Ct:
2 for x in (ct.0, ct.1):
3 # x has shape [L][N]
4 # all ops are on N-element vectors
5 for i in [0:L-2]:
6 F = 1 / q[i-1] mod q[i] # precomputed
7 x[i] = (x[i] - x[L-1]) * F mod q[i]
8 return ct[0:L-2] # drop last residue

Listing 1. Implementation of RNS-CKKS rescale from ! to

! − 1.

1 def rnsCkksAdjust(ct: Ct) -> Ct:
2 # ct's scale is S[L] == scale at level L
3 K = q[L-1] * S[L-1] / S[L] # precomputed
4 # ct0's scale = S[L] * K = q[L-1] * S[L-1]
5 ct0 = mulConst(ct, K)
6 # scale after rescale = S[L-1]
7 return rnsCkksRescale(ct0)

Listing 2. Implementation of adjust in RNS-CKKS between

levels ! and ! − 1.

coe�cients. This is achieved by choosing the wide modulus

& to be a product of ' smaller factors,& = @0@1...@'−1, called

residuemoduli. Then, each coe�cientG mod & is represented

as a collection of residues (G mod @0, ..., G mod @'−1). We de-

note these residues as A8 = G mod @8 (Fig. 2).

RNS representation reduces overall operation cost, and

allows supporting many coe�cient widths with a single

narrow width in hardware. Existing software libraries [1, 3,

19] and accelerators [26, 27, 29, 37, 39, 40] all use RNS.

RNS-CKKS links scales and residues: As originally pro-

posed, RNS-CKKS [9] makes '=!, linking each level and

scale to a particular residue modulus. Ciphertexts at level

! have modulus &! = @0...@!−1, and their scale is ∼@! . For

instance, to implement a 1000-bit & with 50-bit scale, we

would choose ! = 20 residue moduli @0, ..., @19 close to 250.

Fig. 4 shows how residues and scales evolve in RNS-CKKS.

In this example, the ciphertext starts at level ! = 6with scale

(6. Each ciphertext coe�cient consists of 6 residues, with

moduli @0...@5. After a multiplication and rescale, the result-

ing ! = 5 ciphertext has scale (5 = (
2
6/@5, and each coe�cient

consists of 5 residues, with moduli @0 ...@4. In other words,

rescaling is achieved by reducing the number of residues.

RNS-CKKS links residues to scales to make rescaling and

Level Modulus Scale

… … …
𝑟! 𝑟" 𝑟# 𝑟$

𝑞!

6

5

4

𝑞" 𝑞# 𝑞$

𝑆0

𝑟!
' 𝑟"

' 𝑟#
' 𝑟$

'

𝑟!
'' 𝑟"

'' 𝑟#
''

𝑞! 𝑞" 𝑞# 𝑞$
'

𝑞! 𝑞" 𝑞#
'

𝑆/ = 𝑆0
1𝑞3

4 /𝑞3

𝑆2 = 𝑆/
1𝑞1

4 /𝑞1𝑞3
4

𝑄(= 𝑞!𝑞"𝑞#𝑞$

𝑄& = 𝑞!𝑞"𝑞#𝑞$
' = 𝑄(𝑞$

' /𝑞$

𝑄% = 𝑞!𝑞"𝑞#
' = 𝑄&𝑞#

' /𝑞#𝑞$
'

Figure 5. Evolution of moduli and scales across three adja-

cent levels for BitPacker.

adjusting implementable, as we describe below. But this rep-

resentation limits hardware e�ciency, because it leaves much

of the datapath unused, as Fig. 1 showed.

Rescaling and adjusting: RNS-CKKS representation makes

rescaling cheap. Listing 1 shows the pseudocode: for each

coe�cient, the last residue is blended with the remaining

residues, then dropped. Rescaling requires $ ('#) multipli-

cations, asymptotically fewer than those required by a ho-

momorphic multiplication ($ ('2#), Sec. 4).

Adjusting is similarly cheap in RNS-CKKS. The original

implementation [9] proposed a trivial but approximate adjust

procedure, called mod-down: adjusting to level 3BC from BA2

is done by discarding residues A3BC , ..., ABA2−1. This discarding

does not change the scale or the underlying encrypted values.

However, this introduces error because the scales at di�erent

levels are not quite the same, as Fig. 4 shows: (5 = (
2
6/@5 ≠ (6.

This error is negligible with very large residue moduli (e.g.,

∼ 250), but not with smaller ones (e.g., ∼ 230).

Listing 2 shows Kim et al.’s adjust implementation[25],

which avoids mod-down’s error: it adjusts the scale so that

the result has the same scale as that of rescale. Speci�cally,

an adjust of a ciphertext at level ! and scale (! produces a

ciphertext at level ! − 1 with scale (!−1 equal to the result

of rescaling a ciphertext at level ! with scale (2
!
(i.e., (!−1 =

(2
!
/@!−1; Fig. 4). This ensures all ciphertexts at the same level

also have the same scale, and can thus be safely added.

rnsCkksAdjust’s implementation is almost identical to

rnsCkksRescale, except that the scale is adjusted by multi-

plying all coe�cients with a constant. To support adjusting

between two non-adjacent levels, Kim et al. discard residues

until the level is one higher than the target level; then List-

ing 2 is applied. Our evaluation uses this implementation.

Supporting scales beyond the hardware word size: As

described so far, RNS-CKKS is limited to scales that �t within

a hardware word. A simple extension, multiple-prime rescal-

ing [26, 40] avoids this limitation by using multiple residue

moduli per scale. For example, a 64-bit datapath can support

a 72-bit scale by using two 36-bit residues. This allows using

narrow datapaths, but still su�ers poor datapath utilization.

140

BitPacker: Enabling High Arithmetic E�iciency in Fully Homomorphic Encryption Accelerators ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

3 BitPacker Representation

3.1 Overview

BitPacker is an implementation of CKKS that leverages RNS

representation more e�ectively than RNS-CKKS by keeping

most data packed in narrow words of a �xed size.

BitPacker decouples residues and scales: Fig. 5 shows an

example of BitPacker’s representation, showing how residues

and scales evolve across levels. This example mimics the

RNS-CKKS example in Fig. 4 to facilitate a side-by-side com-

parison: in both cases, the ciphertext has a 240-bit& at ! = 6,

uses a 40-bit scale at each level, and hardware has 64-bit

words. Whereas RNS-CKKS represents this ciphertext using

6 40-bit residues, one per level (Fig. 4), BitPacker represents

this ciphertext using only 4 residues: the �rst 3 residues use

moduli @0, @1, and @2 close to the hardware word size, 64 bits,

and the fourth residue uses modulus @3, which has 48 bits.

Using 4 residues instead of 6 yields big savings, because the

cost of homomorphic operations grows superlinearly with

residues (Sec. 4).

It is important to emphasize that BitPacker is a more com-

pact representation of the same amount of information. Al-

though Fig. 4 has 6 residues and Fig. 5 has 4, they both encode

a 240-bit & with 6 levels. Thus, BitPacker does not reduce

the number o�evels or cause more frequent bootstrapping.

Terminal and non-terminal residues: In general, a Bit-

Packer ciphertext consists of (1) several word-sized residues

(like @0, @1, and @2 above), called non-terminal residues,

shown in green in Fig. 5; and (2) one or a small number of

residues smaller than the word size (like @3 above), called ter-

minal residues, shown in blue in Fig. 5. Terminal residues

let BitPacker represent coe�cients with an arbitrary number

of bits.

All examples in Fig. 4 show a single terminal residue, but

as we will see, using more than one terminal modulus is

needed sometimes (typically, no more than two are needed).

Rescale and adjust: BitPacker’s representation requires

new techniques for rescaling and adjusting, and our key

contribution is to show that these modulus changes are pos-

sible and simple. The lack of these mechanisms is what led

RNS-CKKS to link residues and scales [9].

For example, in Fig. 5, rescaling the ! = 6 ciphertext

to produce an ! = 5 ciphertext results in coe�cients that

still use 4 residues: the 3 non-terminal residues use the same

moduli (@0,@1, and@2), but the terminal residue uses a smaller

modulus, @′3 (≠ @3). Similarly, ! = 4 uses three residues, with

non-terminal moduli @0 and @1, and terminal modulus @′2.

This example shows that, whereas RNS-CKKS only sheds

residue moduli, BitPacker introduces new ones as it moves

across levels. Our key insight is that this can be done accu-

rately by temporarily scaling up the ciphertext to use a larger

& and number of residues, then shedding the unneeded ones.

BitPacker’s rescale and adjust have small costs (4-7% in

our evaluation), and yield large e�ciency gains in return.

scaleUp(ct, [𝑞#
'])

5

4 𝑟!
'' 𝑟"

'' 𝑟#
''

𝑞! 𝑞" 𝑞# 𝑞$
'

𝑞! 𝑞" 𝑞#
'

𝑆/
1

𝑆2 = 𝑆/
1𝑞1

4 /𝑞1𝑞3
4

𝑟! 𝑟" 𝑟# 𝑟$

Level Modulus Scale

𝑟%
'𝑟$

'𝑟#
'𝑟"

'𝑟!
'

𝑞! 𝑞" 𝑞#
'𝑞# 𝑞$

'

scaleDown(ct’, [𝑞#, 𝑞$
'])

𝑆/
1𝑞1

4

Figure 6. Example showing how BitPacker rescales the ci-

phertext from Fig. 5 from level ! = 5 to level ! − 1 = 4.

In the rest of this section, we �rst explain how BitPacker’s

rescale and adjust operations work (Sec. 3.2). Because Bit-

Packer is a simple change in RNS representation, all other

operations are exactly the same as in RNS-CKKS. Then, we

describe how BitPacker chooses terminal and non-terminal

moduli to achieve high e�ciency and accuracy (Sec. 3.3). Fi-

nally, we discuss BitPacker’s security, showing that it achieves

the same security level as CKKS and RNS-CKKS (Sec. 3.4).

3.2 Level Management

Rescale and adjust move a ciphertext from a higher source

level !BA2 to a lower destination level !3BC . Unlike in RNS-

CKKS, in BitPacker, the ciphertext at !3BC does not use a

subset of the residue moduli at !BA2 : its terminal moduli are

di�erent.

We now present bpRescale and bpAdjust, the BitPacker

versions of rescale and adjust. These procedures use two low-

level RNS operations: scale-up and scale-down.

Rescale and adjust follow the same process to change

terminal moduli. Fig. 6 shows this for rescale, when moving

from !BA2 = 5 to !3BC = 4. (Because rescaling happens after

a multiplication, the initial scale of the ciphertext is (25 .)

First, the ciphertext is scaled up to use a larger modulus,

introducing the terminal moduli of !3BC . Then, the ciphertext

is scaled down to shed the moduli at !BA2 that are not present

in !3BC . This drops !BA2 ’s terminal moduli, and may shed

some non-terminal moduli too. In Fig. 6’s example, rescaling

�rst adds a new residue with terminal modulus@′2, then sheds

@′3 and @2.

Scale-up: To implement the �rst step above, we leverage

a procedure called scale-up. A scale-up of a ciphertext with

modulus & , scale (, and noise X by a factor 3 coprime with

& produces a ciphertext that encrypts the same data as the

input with modulus &3 , scale (3 , and noise X3 .

Listing 3 shows the implementation of the scaleUp pro-

cedure for an RNS representation. scaleUp is not our con-

tribution: RNS-CKKS uses scaleUp prior to bootstrapping,

to produce a much larger ciphertext that bootstrapping can

denoise, as Fig. 3 showed. Our insight is that scale-ups can

also be used to implement rescale and adjust.

141

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Nikola Samardzic and Daniel Sanchez

1 # qs is a list of residue moduli to scale up by
2 # qs are all coprime to ct's modulus
3 def scaleUp(ct: Ct, qs: Seq[int]) -> Ct:
4 K = product(qs) # precomputed
5 ct = mulConst(ct, K)
6 for x in (ct.0, ct.1):
7 # Before append, x's shape is [R][N]
8 x.append([[0] * N] * len(qs))
9 return ct[0:R+len(qs)]

Listing 3. Implementation of scaleUp.

1 def bpRescale(ct: Ct) -> Ct:
2 # moduli[L] holds all residue moduli at level L
3 qs_only_in_Ldst = [qi for qi in moduli[L-1]
4 if qi not in moduli[L]]
5 ct0 = scaleUp(ct, qs_only_in_Ldst)
6 qs_only_in_Lsrc = [qi for qi in moduli[L]
7 if qi not in moduli[L-1]]
8 return scaleDown(ct0, qs_only_in_Lsrc)

Listing 4. Implementation of bpRescale.

1 # rescaleUs = [p_0, p_1, ..., p_k]
2 def scaleDown(ct: Ct, rescaleUs: Seq[int]) -> Ct:
3 for x in (ct.0, ct.1):
4 # x's shape is [R][N]
5 x = moveResiduesToEnd(x, rescaleUs)
6 k = len(rescaleUs)
7 subMe = zeros(shape=(R, N))
8 subMe[R-k:R] = x[R-k:R]
9 for i in range(R-k, R):
10 for j in range(R-k):
11 # C[i][j] is precomputed
12 subMe[j] += C[i][j] * subMe[i] mod q[j]
13 x -= subMe
14 # InvP is precomputed
15 x = mulConst(x[0:R-k], InvP)
16 return ct[0:R-k]

Listing 5. Implementation of scaleDown.

Rescale: Listing 4 shows the implementation of BitPacker’s

rescale. bpRescale reduces the ciphertext’s level by one,

from ! to ! − 1. First, bpRescale scales-up the ciphertext

by all the residue moduli at ! − 1 that do not appear at !

(lines 3–5). Then, bpRescale scales-down this intermediate

ciphertext by all the residue moduli that appear at ! but not

at ! − 1 (lines 6–8), shedding these moduli and producing

the �nal result.

bpRescale implements the scale-down by calling our

scaleDown procedure, shown in Listing 5. scaleDown rescales

each ciphertext polynomial G by multiple residue moduli

?0, ?1, ..., ?:−1, reducing the scale (and noise) by a factor

% = ?0 · ?1 · ... · ?:−1 and shedding these moduli. This is

done by computing the �oor of G/?0?1 · ... · ?:−1. Listing 5

shows how this is done e�ciently in RNS. To simplify the

code, line 5 reorders G ’s residues, placing those to be shed at

the end.

scaleDown uses two types of precomputed values. First,

C[i][j] are the product of @8 and the Bézout coe�cient

corresponding to @8 for (@8 , %/@8) mod @ 9 [5]; thus, each

C[i][j] �ts into one hardware word. Second, InvP is the

multiplicative inverse of % mod&/% , where& is the product

of the ' residue moduli of the input ct [5]; thus, InvP takes

' − : words.

5

𝑞! 𝑞" 𝑞# 𝑞$
'

𝑆/𝑟! 𝑟" 𝑟# 𝑟$

Level Modulus Scale

mulConst(ct, K=𝑆%𝑞$
' /𝑆&𝑞#

')

𝑟$
'𝑟#

'𝑟"
'𝑟!

'

𝑞! 𝑞" 𝑞# 𝑞$
'

𝑆2𝑞3
4 /𝑞1

4

4 𝑟!
'' 𝑟"

'' 𝑟#
''

𝑞! 𝑞" 𝑞#
'

bpRescale(ct’)

𝑆2

Figure 7. Example showing how BitPacker adjusts the ci-

phertext from Fig. 5 from level ! = 5 to level ! − 1 = 4.

1 def bpAdjust(ct: Ct) -> Ct:
2 # Q[L] is product of residue moduli at level L
3 K = Q[L] * S[L-1] / (Q[L-1]*S[L]) # precomputed
4 ct = mulConst(ct, K)
5 return bpRescale(ct)

Listing 6. Implementation of bpAdjust.

scaleDown is similar to calling rnsCkksRescale (List-

ing 1) multiple times, since rnsCkksRescale scales down

one residue at a time. But shedding multiple moduli at once

better leverages accelerators, as we will see in Sec. 4.

Adjust: Listing 6 shows the implementation of BitPacker’s

adjust, bpAdjust. Fig. 7 shows bpAdjust’s behavior, illus-

trating how residues and scales evolve over time (similarly

to how Fig. 6 illustrates bpRescale).

bpAdjustworks similarly to rnsCkksAdjust: it performs

a scale adjustment (lines 3–4) and a rescale (line 5), except: (1)

the scale is adjusted by = (&!/&!−1) ∗ ((!−1/(!) instead

of = @!−1 ∗ ((!−1/(!); this is because BitPacker moduli,

and thus scales, change di�erently across levels than in RNS-

CKKS (compare scales in Fig. 5 and Fig. 4); and (2) we use

bpRescale instead of rnsCkksRescale, again, to match

moduli and scales with those produced by bpRescale.

BitPacker must also support adjusting down by multiple

levels. This follows the same approach as RNS-CKKS: we

�rst drop residue moduli as long as the modulus is larger

than !3BC + 1’s modulus; then apply Listing 6’s algorithm.

3.3 Choosing Residue Moduli

Choosing residue moduli in BitPacker is more involved than

in RNS-CKKS. Fig. 8 shows the requirements that BitPacker

must meet when choosing moduli. Each FHE program re-

quires a number of levels, and each level has a target scale.

At level 0, ciphertexts must have a particular modulus width

log2&<8= to enable bootstrapping or decryption. The tar-

get security level (e.g. 128 bits) sets the maximum modulus

width, log2&<0G , and the size of each ciphertext polynomial,

(Sec. 3.4). Finally, hardware �xes the word size,F .

These constraints limit the moduli that BitPacker can use.

First, residue moduli must be primes ≤ F bits wide, so that

each residue �ts in a single hardware word. Second, moduli

142

BitPacker: Enabling High Arithmetic E�iciency in Fully Homomorphic Encryption Accelerators ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

PROGRAM CONSTRAINTS

HW CONSTRAINT

(1) Word width: w

(1) Max level: Lmax

(2) Target scale per level (L à TL)
(3) Min modulus: Qmin

BITPACKER LEVEL-TO-MODULUS MAP
(1) Level à Modulus (L à QL)
(2) Scale at maximum level: TLmax

(3) Level à Scale (Là SL) (implied from (1), (2)) such that:

- All residue moduli fit in wordsize
- TL*sqrt(2)/2 < SL < TL*sqrt(2), Qmin < QL < Qmax for all L

SECURITY CONSTRAINTS
(1) Polynomial size: N
(2) Max modulus: Qmax

BitPacker modulus selection algorithm

Figure 8. The modulus selection algorithm needs to take

into account program, security, and hardware constraints.

must be NTT-friendly primes [33], i.e., prime numbers that

give remainder 1 when divided by 2# .

Unfortunately, few primes are NTT-friendly. For instance,

with # = 64 and F = 28 bits, there are only 244 NTT-

friendly primes. Moreover, all NTT-friendly primes are larger

than 2# , which places a harsh lower bound on moduli size.

For example, with # = 64 , all NTT-friendly primes are 17

bits or wider.

These constraints make it necessary to sometimes use

multiple terminal moduli. For example, withF = 28 bits, a

70-bit coe�cient needs three residues. But if we were to use

two 28-bit non-terminal residues, the terminal residue would

need a 14-bit modulus, which does not exist. Instead, this

can be achieved with, for example, one 28-bit non-terminal

residue and two 24-bit terminal residues, for which valid

moduli exist.

Choosing target moduli: To generate a modulus for level

!, we �rst set its target modulus. The target modulus at level

! can be derived from the actual scale ((!+1) and modulus

(&!+1) at level ! + 1, as well as the target scale at level ! [25].

Because of this dependence, we de�ne the mapping between

levels and moduli starting from the top level and going down.

Listing 7 shows our algorithm to select residue moduli for

a particular level. We detail its operation below.

Non-terminal moduli: Our modulus selection algorithm

�rst chooses non-terminal moduli that keep the ciphertext as

packed as possible. This is simple: with aF-bit word size, the

algorithm chooses the NTT-friendly primes closest to 2F and

smaller than 2F . The algorithm picks enough non-terminal

moduli @0, ..., @: to cover the largest ciphertext needed (i.e.,

: is such that @0 · ... · @: > &<0G). The algorithm also picks

@0 > ... > @: , so the moduli used by more levels are larger.

Terminal moduli: Next, the modulus selection algorithm

picks the terminal moduli associated with each level. It tries

to minimize the distance between the level’s target scale

(requested by the program) and the actual scale. We use a

simple greedy search, shown in Listing 7. The algorithm

computes the target &! for each level, and tries to match it

using the smallest number of terminal primes. For instance,

1 def Greedy(target_q: Rational, result = []: Seq[int],
2 primes_left = AllDescPrimes(): Seq[int])
3 -> Optional[Seq[int]]:
4 if target_q < sqrt(2)/2: # Overshot target,
5 return None # so stop (and backtrack)
6
7 if sqrt(2)/2 < target_q < sqrt(2):
8 # Product of result within 0.5 bits
9 # of target_q, so return success
10 return result
11
12 # Iterate through all primes smaller than
13 # those in result in decreasing order
14 for idx, prime in primes_left:
15 # Try greedily adding the next prime to result
16 result = Greedy(target_q/prime, result + [prime],
17 primes_left[idx:])
18 if result is not None:
19 return result # Stop on first success
20 return None # No match found

Listing 7. Greedy DFS algorithm for generating residue

moduli whose product matches that of a target modulus.

for the 70-bit target in the above example, this algorithm

will �rst try to use a single terminal prime, �nd there’s no

single 14-bit prime, and then explore combinations of two

terminal primes.

Using a larger number of terminal moduli may enable

�nding a more precise match to the target scale, but it also

makes level management more expensive. Thus, we accept

the closest solution that is within 0.5 bits of the target scale

(i.e., | log2 (! − log2)! | < 0.5). We �nd that this works well

in practice and does not impact accuracy.

Performance: This algorithm completes in less than a sec-

ond for all word sizes we evaluate (Sec. 6). We use precom-

puted NTT-friendly primes; for F ≤ 36 bits, we exhaus-

tively enumerate all such primes; for largerF , we enumerate

enough primes near 2F to always use the best non-terminal

primes, and sample 500 primes evenly spaced out logarith-

mically, to be used as candidates for terminal primes.

3.4 Security

BitPacker does not change the security of CKKS compared to

RNS-CKKS, or to the original (non-RNS) CKKS implementa-

tion [10]. CKKS depends on the security of the ring learning

with errors (R-LWE) problem [7]. The security of a CKKS

ciphertext is proportional to # /log2&<0G , i.e., using larger

ciphertext polynomials increases security, and using wider

coe�cients decreases it.

BitPacker, RNS-CKKS, and CKKS use the same # , and all

are guaranteed to keep every ciphertext modulus & smaller

than&<0G , as de�ned by the program constraints. The exact

moduli used by BitPacker, RNS-CKKS, and CKKS are di�er-

ent (since they use di�erent representations), but the only

relevant aspect for security is that they do not exceed &<0G .

Security in R-LWE also depends on other parameters, such

as the sparsity of the secret key or the distribution of noise

at encryption time [4]. But these aspects are independent of

how ciphertexts are represented. Thus, BitPacker achieves

the same level of security as other CKKS implementations.

143

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Nikola Samardzic and Daniel Sanchez

4 BitPacker Makes FHE Accelerators
E�cient

So far we have presented BitPacker’s algorithms, with only a

high-level description of why it helps performance. We now

describe these bene�ts concretely. Sec. 4.1 reviews state-of-

the-art accelerators and presents our baseline; Sec. 4.2 ex-

plains how BitPacker bene�ts performance, energy, and area;

and Sec. 4.3 explains how BitPacker maps to accelerators.

4.1 Overview of CKKS accelerators

CraterLake [40], ARK [27], and SHARP [26] are the cur-

rent state-of-the-art CKKS accelerators. CraterLake and ARK

were developed concurrently, and have many similarities:

they feature wide-vector functional units tailored to the

primitive operations of FHE, include large and explicitly

orchestrated on-chip memories to hold CKKS’s enormous

ciphertexts, and use compilers and algorithms that achieve

high data reuse and high throughput. SHARP [27] builds

on ARK, and incorporates techniques from CraterLake to

further improve e�ciency.

The key di�erence among these accelerators is their hard-

ware word width. CraterLake uses narrow 28-bit words,

so RNS-CKKS needs multiple residues per level, whereas

ARK uses wider 64-bit words, and uses one residue per level.

SHARP’s key contribution is to optimize word size: SHARP

uses RNS-CKKS with 36-bit words, and changes programs

to use non-bootstrap scales that �t within 36 bits. SHARP’s

intermediate scale is more e�cient than the prior 28-bit and

64-bit extremes. But as we will see, RNS-CKKS is still ine�-

cient across the range of word widths, and BitPacker provides

substantial savings over all these accelerators.

Earlier ASIC CKKS accelerators exist, but are not as fast:

BTS [29] su�ers from high memory tra�c that limits per-

formance; and F1 [39] is a smaller accelerator that cannot

run programs with bootstrapping e�ciently. Finally, FAB [2]

and Poseidon [41] are recent FPGA accelerators that, though

e�cient, are slower than ASICs. All these accelerators use

RNS-CKKS, so BitPacker would make them more e�cient.

Baseline: CraterLake, ARK, and SHARP are similar at the

hardware level, except for word size (see raw throughputs

and areas in [26, Table 4]). However, they use di�erent soft-

ware stacks thatmake a direct comparison hard. Priorwork [26,

27] compares them by using performance and energy re-

ported by di�erent papers, but this con�ates major di�er-

ences in benchmarks (e.g., using di�erent CKKS scales and

bootstrap algorithms) and prevents a controlled comparison.

To address this, we use CraterLake as the accelerator base-

line, and sweep wordsize to create ARK-like (64-bit) and

SHARP-like (36-bit) con�gurations. This allows comparing

designs representative of these accelerators in a controlled

way, with the same applications and optimizations.

Fig. 9 shows an overview of CraterLake. CraterLake is a

2048-lane vector processor. It has six types of vector

Banked register file (256 MB)

Multiplier ✕ 5

Adder ✕ 5

Change-RNS-base (CRB)

Number-theoretic trans. (NTT) ✕ 2

Automorphism

Keyswitch hint generator (KSHGen)

P
ip

e
li

n
e

d
 F

U
s

… …2,048 vector lanes

High-bandwidth Memory (1TB/s)

Figure 9. CraterLake overview.

functional units (FUs).

Four of these are needed

for functional complete-

ness: modular adder and

multiplier FUs perform

element-wise vector oper-

ations; NTT FUs perform

number-theoretic trans-

forms, needed to multi-

ply polynomials; and au-

tomorphism FUs imple-

ment structured permutations needed for homomorphic ro-

tates. The other two units are performance optimizations:

the CRB FU performs change-of-RNS-base operations, a com-

mon and costly operation that encapsulates many structured

multiply-accumulates (ARK and SHARP have a similar FU,

bConv); and the KSHGen FU generates some auxiliary data

(keyswitch hints) on-chip to reduce memory tra�c (ARK

lacks this FU, but SHARP adopts it).

These accelerators spend most of their area and energy on

computation. For example, in CraterLake, functional units

take 50% of area and 60-80% of energy [40]. Moreover, the

dominant component of functional units ismultipliers, which

take 70% of FU area in CraterLake. Thus, RNS-CKKS’s ine�-

ciency has signi�cant impacts, as we will see below.

4.2 BitPacker improves performance, energy, and

area

To understand BitPacker’s bene�ts, we discuss how perfor-

mance and energy change with the number of residues '.

We focus on the cost of a homomorphic multiplication with

= 64 ; homomorphic rotations have nearly identical costs,

and homomorphic additions have negligible costs.

Performance analysis: A single homomorphic multiplica-

tion requires $ ('2) multiplies, $ ('2) adds, and $ (') NTTs

of residue polynomials (# elements each). NTTs are complex,

requiring about 16× more energy than an element-wise mul-

tiply. To achieve high NTT utilization across values of ', the

CRB unit encapsulates most multiplies and adds. Each CRB

instruction performs$ (') polynomial multiply-accumulates.

Thus, each FU is used$ (') times per homomorphic multiply.

Besides compute, memory also adds overheads: cipher-

text size is linear with ', so by using smaller ciphertexts,

BitPacker incurs fewer memory stalls than RNS-CKKS.

By combining compute and memory savings, BitPacker

improves performance superlinearly. Since accelerators seek

to balance compute and memory utilization, both e�ects are

important. In practice, we observe that performance grows

by about '1.5 on the balanced systems we evaluate (Sec. 6).

Energy analysis: Fig. 10 shows a breakdown of energy per

component, including di�erent functional units and the regis-

ter �le (we assume all operands are on-chip; memory, which

we include later, typically adds minor energy costs). The

CRB and NTT FUs dominate energy, as they perform most

144

BitPacker: Enabling High Arithmetic E�iciency in Fully Homomorphic Encryption Accelerators ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

10 15 20 25 30 35 40 45 50 55 60
Number of residue moduli [R]

0.0

2.5

5.0

En
er

gy
 [m

J] RF
NTT
CRB
Element-wise

Figure 10. Energy breakdown for a homomorphic multiply

as a function of residues ', for a 28-bit hardware word size.

operations. Overall, Fig. 10 shows that energy grows super-

linearly with ', by about $ ('1.6). Growth is sub-quadratic

because only the CRB grows quadratically; NTT and Reg-

File energy grow linearly. By reducing ', BitPacker reduces

energy superlinearly.

Area analysis: For a given hardware con�guration, two com-

ponents can be reduced linearly without loss of performance

when moving from RNS-CKKS to BitPacker: the CRB and

the register �le. The CRB is sized to perform '<0G multiply-

adds per input element, so by reducing '<0G , we can reduce

the number of multiply-adds per CRB lane without loss of

performance. And since ciphertext size is proportional to ',

by reducing ', the register �le needs less space to hold the

same number of ciphertexts. This yields signi�cant savings,

since FHE accelerators have large register �les, e.g., taking

40% of die area in CraterLake [40, Table 2].

4.3 Mapping BitPacker level management to

accelerators

BitPacker’s rescale and adjust procedures (Sec. 3.2) take

somewhat more computation than RNS-CKKS’s. However,

they can leverage the CRB FU in CraterLake (or the bConv

FU in ARK and SHARP) to avoid a performance penalty.

Speci�cally, themain kernels are scaleUp and scaleDown.

scaleUp is cheap: it multiplies all residues by a single, pre-

computed value. scaleDown has 2: (' − :) multiplies of

residue polynomials, where : is the number of shed moduli.

Thus, scaleDown can be 2-3× costlier than scaleUp.

Note that this overhead is minor compared to the $ ('2)

multiplies and adds per homomorphic multiply, as discussed

above. Furthermore, scaleDown’s compute (lines 10–13) can

be handled by the CRB, so in these CKKS accelerators, scaling

down by : residues at a time is almost as fast as scaling down

by a single one. As we will see, this makes BitPacker’s level

management costs comparable to RNS-CKKS’s.

5 Methodology

Accelerators: We compare BitPacker and RNS-CKKS as de-

scribed in Sec. 4.1. Our default accelerator is CraterLake as

proposed, using 28-bit words, 2048 vector lanes, a 256MB reg-

ister �le, and 1 TB/s HBMmemory. We then evaluate acceler-

ator variants withword sizes from 28 to 64 bits. These capture

the tradeo�s of word size, and are representative of ARK [27]

(64-bit) and SHARP [26] (36-bit). We measure performance

using CraterLake’s cycle-accurate simulator [40]. We esti-

mate performance and area using CraterLake’s RTL imple-

mentation, which is synthesized in a commercial 12/14nm

technology process using state-of-the-art tools [40]. We scale

the area and energy fo CraterLake’s components to evalu-

ate di�erent word sizes. We compute energy by combining

per-component energies from RTL synthesis with cycle-level

activity factors from CraterLake’s simulator.

Benchmarks:We use �ve large FHE programs developed by

FHE experts to evaluate BitPacker:

(1) ResNet-20 is Lee et al. [32]’s FHE implementation of

the ResNet-20 deep neural network. ResNet-20 uses a high-

degree polynomial to approximate ReLU activation functions,

which is accurate but adds depth,making bootstrappingmore

frequent. It uses the CIFAR-10 dataset.

(2) ResNet-20+AESPA uses Park et al. [35]’s AESPA to im-

prove the e�ciency of ResNet-20. AESPA uses a low-degree

(degree-2) polynomial in place of ReLU activation functions.

This makes their implementation very low depth, reduc-

ing bootstrapping and execution time. The tradeo� is that,

whereas ResNet-20 with ReLUs can use the same weights as

the unencrypted network, ResNet-20+AESPA requires train-

ing to produce new weights. We follow AESPA’s training

procedure (using CIFAR-10 as in ResNet-20) and observe

negligible impact on accuracy (achieving a 91.9% accuracy).

(3) RNN performs sentiment analysis using a Recurrent Neu-

ral Network [13]. It is derived from the LSTM benchmark

in [40]. RNN processes 200 word embeddings G8 , and incor-

porates each in its hidden state following ℎ8+1 = f (,ℎℎℎ8 +

,8ℎG8 + 1). f (·) is a degree-3 polynomial, and G8 and ℎ8 are

both of dimension 128. It uses the IMDB dataset [34].

(4) SqueezeNet is an FHE implementation of the SqueezeNet

neural network [23, 30]. SqueezeNet uses degree-2 activa-

tion functions following AESPA [35], so it bootstraps less

frequently than ResNet-20. It uses the CIFAR-10 dataset.

(5) LogReg uses the HELR algorithm [21] to perform logistic

regression training. LogReg performs 32 iterations of Nes-

terov Accelerated Gradient Descent [38] with batch size 1024

and 197 features per sample. It uses the MNIST dataset [31].

These applications need di�erent scales for application-

level computation: ResNet and RNN use 45-bit scales, while

SqueezeNet and LogReg use 35-bit scales.

Bootstrapping: All applications use bootstrapping. We use

two state-of-the-art bootstrapping algorithms fromLattigo [1],

which have di�erent levels of end-to-end precision, 19 and

26 bits. We denote these algorithms BS19 and BS26. BS26 is a

bit costlier than BS19, but achieves higher precision.

These algorithms use di�erent scales: BS19 uses scales of

52, 55, and 30 bits; BS26 uses scales of 54, 60, and 40 bits.

FHE parameters: We use ciphertext polynomials with # =

64 coe�cient and log2&<0G = 1, 596 bits. We use a combi-

nation of 3-digit, 2-digit, and 1-digit keyswitching [17, 20, 40].

These parameters achieve 128-bit security [40].

145

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Nikola Samardzic and Daniel Sanchez
Re

sN
et-

20
 (B

S1
9)

Re
sN

et-
20

+AE
SP

A (
BS

19
)

RN
N (B

S1
9)

Sq
ue

ez
eN

et
(BS

19
)

Lo
gR

eg
 (B

S1
9)

Re
sN

et-
20

 (B
S2

6)

Re
sN

et-
20

+AE
SP

A (
BS

26
)

RN
N (B

S2
6)

Sq
ue

ez
eN

et
(BS

26
)

Lo
gR

eg
 (B

S2
6)

gm
ea

n

0.0
0.5
1.0
1.5
2.0

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e BitPacker RNS-CKKS

Figure 11. Execution time for BitPacker

and RNS-CKKS on CraterLake with 28-

bit words (lower is better).
Re

sN
et-

20
 (B

S1
9)

Re
sN

et-
20

+AE
SP

A (
BS

19
)

RN
N (B

S1
9)

Sq
ue

ez
eN

et
(BS

19
)

Lo
gR

eg
 (B

S1
9)

Re
sN

et-
20

 (B
S2

6)

Re
sN

et-
20

+AE
SP

A (
BS

26
)

RN
N (B

S2
6)

Sq
ue

ez
eN

et
(BS

26
)

Lo
gR

eg
 (B

S2
6)

gm
ea

n

0

1

2

No
rm

al
ize

d
En

er
gy

BP

R-C

Level Mgmt Other

Figure 12. Energy for BitPacker (BP) and

RNS-CKKS (R-C) on CraterLake with 28-

bit words (lower is better).

Re
sN

et-
20

 (B
S1

9)

Re
sN

et-
20

+AE
SP

A (
BS

19
)

RN
N (B

S1
9)

Sq
ue

ez
eN

et
(BS

19
)

Lo
gR

eg
 (B

S1
9)

Re
sN

et-
20

 (B
S2

6)

Re
sN

et-
20

+AE
SP

A (
BS

26
)

RN
N (B

S2
6)

Sq
ue

ez
eN

et
(BS

26
)

Lo
gR

eg
 (B

S2
6)

gm
ea

n

0.0

0.5

1.0

1.5

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

BP
R-C

Level Mgmt Other

Figure 13. Execution time for BitPacker

(BP) and RNS-CKKS (R-C) on a CPUwith

64-bit words (lower is better).

As noted above, each application uses four diverse CKKS

scales ranging from 30 to 60 bits: one for application compu-

tation, and three for bootstrapping.

Due to the lack of small NTT-friendly primes (Sec. 3.3),

when hardware word sizes are narrow, there are some scales

in the 30–35-bit range that RNS-CKKS cannotmeet, as SHARP

notes [26]. For example, with 28-bit words, a 30-bit scale is

not possible, because there is no combination of two residue

moduli whose bitwidth adds up to 30 bits. In these cases, we

use the smallest possible scale. For instance, a single 35-bit

scale is possible by combining 17- and 18-bit residue moduli.

This consumes ciphertext bits more rapidly when scales are

35-bit or lower, but it is an unavoidable ine�ciency of RNS-

CKKS. Designs with 35-bit or larger word sizes do not su�er

this problem, and this does not a�ect BitPacker, which can

match any scale (BitPacker’s only requirement is that enough

NTT-friendly primes exist, whichF ≥ 28 bits meets).

BitPacker CPU implementation: We implement a single-

threaded FHE library in Rust, similar to Lattigo, that supports

BitPacker and RNS-CKKS. We use this library to evaluate

BitPacker’s accuracy and its performance on a 3.5 GHz AMD

Zen 2 CPU (a Ryzen Threadripper PRO 3975WX).

6 Evaluation

6.1 BitPacker with 28-bit hardware words

Fig. 11 compares the execution time of BitPacker and RNS-

CKKS across workloads, when using the default CraterLake

con�guration with 28-bit words (lower is better). BitPacker

achieves a gmean 59% speedup over RNS-CKKS.

BitPacker helps all workloads, but speedups are higher on

workloads that use smaller scales, which are less e�cient in

RNS-CKKS: SqueezeNet and LogReg, which use 35-bit scales

for application work, see higher speedups than ResNet-20

and RNN, which use 45-bit scales; and BS19 variants see

slightly higher speedups than BS26, since in RNS-CKKS,

BS19’s scales pack worse to 28-bit words.

Fig. 12 compares the energy consumed by 28-bit Crater-

Lake when running BitPacker and RNS-CKKS, normalized

to BitPacker (lower is better). Trends are similar to perfor-

mance: BitPacker reduces energy over RNS-CKKS by gmean

59%. By improving performance and energy e�ciency, Bit-

Packer reduces energy-delay product (EDP) by 2.53× over

RNS-CKKS (equivalently, improves performance/Joule by

this amount).

Fig. 12 also breaks down energy consumption by level man-

agement operations (rescale and adjust), shown in red, vs.

other operations, shown in blue. Level management costs

are small for both BitPacker and RNS-CKKS (6% and 7%

gmean, respectively). Interestingly, in absolute terms, Bit-

Packer level management costs are lower than RNS-CKKS.

This is because, while BitPacker switches multiple residues

per level, it leverages the CRB to do so cheaply (Sec. 4.3),

and at 28 bits, RNS-CKKS uses two residues per level, so it

su�ers from a larger number of residues.

Performance across FHE parameters: The above results

achieve 128-bit security. We �nd similar bene�ts on FHE pa-

rameters that achieve 80-bit security: 53% gmean speedup (vs.

59% for 128-bit), and 63% lower energy (vs. 59% for 128-bit).

This change stems from using lower-digit keyswitching for

80-bit security (2- and 1-digit) [40], which makes keyswitch-

ing take less time. Overall, BitPacker’s bene�ts are similar

because all parameters bene�t from its more compact repre-

sentation.

6.2 Comparison across word sizes

To characterize BitPacker’s bene�ts more broadly, we evalu-

ate accelerator variants with di�erent hardware word sizes.

We evaluate designs with 28- to 64-bit words. Since chang-

ing word size has several complex e�ects, we perform iso-

throughput scaling: as we increase word size, we proportion-

ately reduce the number of vector lanes, so that the total num-

ber of bits consumed per cycle stays roughly constant. For

example, the 30-bit accelerator has twice the vector lanes of

the 60-bit accelerator (we do this scaling by changing Crater-

Lake’s lane groups [40]). All designs use the same register

�le size and memory bandwidth. We retain the same balance

of functional units, except that wider words reduce '<0G , so

146

BitPacker: Enabling High Arithmetic E�iciency in Fully Homomorphic Encryption Accelerators ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

40 60
Word size [bits]

0

100

200

300

400

Ex
ec

ut
io

n
Ti

m
e

[m
s]

ResNet-20 (BS19)

BitPacker
RNS-CKKS

40 60
Word size [bits]

0

25

50

75

100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

ResNet-20+AESPA (BS19)

BitPacker
RNS-CKKS

40 60
Word size [bits]

0

200

400

600

Ex
ec

ut
io

n
Ti

m
e

[m
s]

RNN (BS19)

BitPacker
RNS-CKKS

40 60
Word size [bits]

0

10

20

30

Ex
ec

ut
io

n
Ti

m
e

[m
s]

SqueezeNet (BS19)

BitPacker
RNS-CKKS

40 60
Word size [bits]

0

50

100

150

200

Ex
ec

ut
io

n
Ti

m
e

[m
s]

LogReg (BS19)

BitPacker
RNS-CKKS

40 60
Word size [bits]

0

100

200

300

400

Ex
ec

ut
io

n
Ti

m
e

[m
s]

ResNet-20 (BS26)

BitPacker
RNS-CKKS

40 60
Word size [bits]

0

25

50

75

100

Ex
ec

ut
io

n
Ti

m
e

[m
s]

ResNet-20+AESPA (BS26)

BitPacker
RNS-CKKS

40 60
Word size [bits]

0

200

400

600

800

Ex
ec

ut
io

n
Ti

m
e

[m
s]

RNN (BS26)

BitPacker
RNS-CKKS

40 60
Word size [bits]

0

10

20

30

40

Ex
ec

ut
io

n
Ti

m
e

[m
s]

SqueezeNet (BS26)

BitPacker
RNS-CKKS

40 60
Word size [bits]

0

100

200

Ex
ec

ut
io

n
Ti

m
e

[m
s]

LogReg (BS26)

BitPacker
RNS-CKKS

Figure 14. Execution time in milliseconds on CraterLake of BitPacker compared to RNS-CKKS as word size changes.

we reduce the number of multiply-adds per lane of the CRB

unit linearly (otherwise, the CRB would be overdesigned).

For example, the 30-bit design has a CRB with 56 MAC units

per lane, whereas the 60-bit design uses 28 per lane.

Overall, this scaling strategy maintains the same raw com-

putational throughput across word sizes. But designs with

widerwords havemore area, becausemultipliers scale quadrat-

ically. Speci�cally, whereas the 28-bit design takes 472mm2

in a commercial 14/12nm process [40], the 64-bit design con-

sumes 557mm2, chie�y due to a larger NTT unit.

Fig. 14 shows how the execution time (~-axis) of BitPacker

and RNS-CKKS varies as we scale word size from 28 to 64

bits (G-axis). Each plot shows results for a di�erent applica-

tion. Fig. 14 shows a stark di�erence in behaviors. BitPacker

maintains constant performance across word sizes, because it

fully leverages the accelerator’s raw throughput, which is

constant given our scaling methodology.

Fig. 14 also shows that RNS-CKKS always performs worse

than BitPacker. RNS-CKKS has extremely uneven perfor-

mance across word sizes, with peaks and valleys that are

about 2× apart. The valleys correspond to points where the

word size matches one of the scales in the program. For ex-

ample, ResNet-20 with BS19 bootstrapping uses scales of 45

bits (outside of bootstrapping) and 30, 52, and 55 bits (during

bootstrapping). The valleys occur at these points because

RNS-CKKSmatches residue sizes to scales, and some fraction

of the residues (but never all) achieve good datapath utiliza-

tion. Conversely, peaks happen at word sizes that cause poor

utilization across the board, like 40 bits in ResNet-20.

Since di�erent applications use di�erent scales, Fig. 14

shows that each benchmark shows di�erent peaks and val-

leys, so the optimal word size for RNS-CKKS varies signif-

icantly across applications. BitPacker erases this problem,

providing uniformly high utilization for any scale.

To better capture performance trends, Fig. 15 shows the

gmean, maximum, and minimum slowdowns of RNS-CKKS

vs. BitPacker across all benchmarks. This again highlights

that RNS-CKKS is ine�cient across word sizes, and shows

that large word sizes are somewhat more a�ected by poor

utilization. For example, at 64 bits (ARK-like con�guration),

RNS-CKKS’s gmean slowdown is 2.18×, vs. 59% at 28 bits.

Finally, Fig. 16 shows BitPacker and RNS-CKKS execution

times by unit area, relative to the execution time × area

ratio of BitPacker with 28-bit words (this is the inverse of

performance per area). Recall that, to provide the same raw

throughput, designs with wider words use somewhat more

area: the 64-bit accelerator is 18% larger than the 28-bit one.

This is why the BitPacker line now trends upwards, and the

RNS-CKKS line grows more quickly than in Fig. 15. Overall,

RNS-CKKS at 64 bits (ARK-like con�guration) has 2.5×worse

performance/area than BitPacker at 28 bits. This shows that

narrower word sizes are more e�cient, and that BitPacker

with 28-bit words is the most e�cient choice.

Comparison with SHARP: The 36-bit points in Figs. 14–16

capture the key contribution of SHARP [26], tuningword size.

However, BitPacker has multiple advantages over SHARP.

First, SHARP requires changing applications to use scales

close to 36 bits, whereas BitPacker works with arbitrary

scales. Using 36-bit scales limits �xed-point precision to

about 20 bits, which is insu�cient for many applications (this

is a far smaller range than 16-bit �oating-point, often used in

neural networks). SHARP evaluated 3 applications; ResNet-

20 needed simple changes to work with smaller scales, and

sorting su�ered added error. Three of our workloads (ResNet-

20, ResNet-20+AESPA, and RNN) use 45-bit scales and would

require two primes per level in SHARP, which would hinder

e�ciency. We found that RNN diverged when using 35-bit

scales; for ResNet-20, we use 45-bit scales following Lee

147

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Nikola Samardzic and Daniel Sanchez

30 40 50 60
Word size [bits]

0

1

2

3

RN
S-

CK
KS

 S
lo

wd
ow

n

Max
Gmean
Min

Figure 15. Gmean, maximum, and min-

imum slowdown for RNS-CKKS com-

pared to BitPacker across word sizes.

30 40 50 60
Word size [bits]

0.0

1.0

1.5

2.0

2.5

No
rm

al
ize

d
Gm

ea
n

Ex
ec

ut
io

n
Ti

m
e

x
Ar

ea

BitPacker
RNS-CKKS

Figure 16.Gmean inverse performance

per unit area across word sizes for Bit-

Packer and RNS-CKKS (lower is better).

150 200 250 300 350
Scratchpad size [MB]

0

1

2

3

Gm
ea

n
Ex

ec
ut

io
n

Ti
m

e
(N

or
m

al
ize

d)

BitPacker
RNS-CKKS

Figure 17. Gmean execution time on

28-bit CraterLake across register �le

sizes, relative to BitPacker at 256 MB.

et al.’s implementation [32], but we were able to use 35-bit

scales with minimal loss of accuracy by applying the changes

discussed in SHARP, replicating their result.

Second, SHARP hinders bootstrapping, which needs a

wide range of scales. SqueezeNet and LogReg have 35-bit

application scales, well-matched to SHARP, but Fig. 14 shows

signi�cant overheads, about 30%, due to bootstrapping costs.

Third, BitPacker enables using a 28-bit datapath, which is

more e�cient than a 36-bit one, as we have seen.

As a result, BitPacker at 28-bit words is gmean 43% faster

than the 36-bit SHARP-like design and has 2.2× better EDP.

6.3 BitPacker reduces accelerator area

So far, we have evaluated accelerators that were tuned for

RNS-CKKS. But BitPacker uses fewer residues, so we can re-

duce area without hurting performance, as Sec. 4.2 explained.

First, Fig. 17 shows gmean execution time as the accelera-

tor’s register �le size (G-axis) changes. Results are normalized

to BitPacker at 256MB. RNS-CKKS plateaus at 256MB but

steadily loses performance at lower sizes. By contrast, Bit-

Packer sees no loss in performance from 256MB until 200MB.

Even at 150 MB, BitPacker sees only a 70% slowdown, while

RNS-CKKS slows down by over 3×. Second, as Sec. 4.2 dis-

cusses, we �nd that we can make CraterLake’s CRB 28%

smaller with no performance regression for BitPacker.

Thus, BitPacker enables using a CraterLake con�guration

that has 395.5 mm2 instead of the original 472.3 mm2, with

no loss in performance, a 19% area reduction.

Combining BitPacker’s performance, energy, and area im-

provements, we see that BitPacker with this con�guration

improves energy-delay-area product by 3.0× over RNS-CKKS

on the original CraterLake con�guration.

6.4 BitPacker performance on CPUs

Fig. 13 compares the performance of BitPacker and RNS-

CKKS on a CPU. We use 64-bit words, the best choice on

CPUs (32-bit words have 2× vector throughput, but over

2× instructions per homomorphic operation). BitPacker is

gmean 24% faster than RNS-CKKS; this is signi�cant, but

lower than the 2.1× speedup on 64-bit accelerators (Fig. 15).

Mean Worst-case

Benchmark BitPacker RNS-CKKS BitPacker RNS-CKKS

ResNet-20 20.7 20.8 18 18

ResNet-20+AESPA 12.8 13.8 8 9

RNN 23.3 23.2 22 22

SqueezeNet 15.4 15.0 13 13

LogReg 11.7 11.7 9 9

Table 1. Error-free mantissa bits in BitPacker and RNS-

CKKS.

The speedup is lower because, due to the lack of special-

ized FUs, NTTs (which grow with ') dominate and level

management is a bit costlier; and due to the CPU’s limited

compute, memory isn’t a bottleneck. Thus, while BitPacker

is broadly bene�cial, it helps accelerators much more.

6.5 BitPacker preserves accuracy

BitPacker improves performance without compromising pre-

cision. We �rst compare BitPacker’s accuracy with RNS-

CKKS in end-to-end applications, and then analyze the accu-

racy of individual level management operations, rescale and

adjust.

Table 1 shows that BitPackermatches the precision of RNS-

CKKS across workloads. We run many samples to ensure

precision is stable (all results have 95Cℎ percentile con�dence

intervals below 1%). RNS-CKKS precision results use 64-bit

words because RNS-CKKS has better precision with 64-bit

words than with smaller word sizes [25]. BitPacker precision

results use 28-bit words, the choice that limits residue moduli

the most and thus has the highest risk to impact precision;

we observe no accuracy changes with larger word sizes.

Table 1 reports mean and worst-case error for each bench-

mark by comparing the outputs of each sample with those

of unencrypted computation using 64-bit �oating-point val-

ues. Table 1 reports the number of error-free mantissa bits.

For all applications except ResNet-20+AESPA, mean error

di�erences are small and well within the 0.5-bit margin that

we set for choosing moduli, and worst-case errors all match.

For ResNet-20+AESPA, Table 1 shows that BitPacker’s

mean and worst-case errors are 1 bit worse than RNS-CKKS.

148

BitPacker: Enabling High Arithmetic E�iciency in Fully Homomorphic Encryption Accelerators ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

30 40 50 60
Scale bits

15

20

25

30

35

40

45

Pr
ec

isi
on

 b
its

BitPacker
RNS-CKKS

Figure 18. Comparison of error distributions for the rescale

operation, for 28-bit BitPacker (BP) and 64-bit RNS-CKKS

(R-C). Box-and-whisker plots show the distribution of error-

free mantissa bits (the box denotes quartiles, and whiskers

show min/max values).

Table 1 also shows that numerical errors are higher than

the other applications that use 45-bit scales (ResNet-20 and

RNN have >20 error-free mantissa bits; ResNet-20+AESPA

has 13.8). This happens because ResNet-20+AESPA is less

numerically stable and quite sensitive to scale: with RNS-

CKKS, reducing scale by 1 bit (from 45 to 44 bits) reduces

the average number of error-free mantissa bits by 2.4, from

13.8 to 11.4 bits. BitPacker’s 1-bit di�erence happens because

its moduli selection algorithm often chooses slightly smaller

scales (within 0.5 bits of the target). Despite this di�erence,

RNS-CKKS and BitPacker always produce the same classi�-

cations and achieve the same end-to-end accuracy, 91.9%.

Since BitPacker’s key contribution is a new approach to

level management, we analyze the accuracy of these opera-

tions in more depth. We follow a similar methodology to Kim

et al. [25]: for rescale, we measure the statistical distribution

of error after squaring and rescaling ciphertexts with values

uniformly distributed in [−1, 1]; for adjust, we measure error

after adjusting by one level. In both cases, we use ciphertexts

with a starting level ! =10, and use scales ranging from 30 to

60 bits. Like before, we compare BitPacker with 28-bit words

(the most limiting choice) and RNS-CKKS using 64-bit words.

To ensure statistical signi�cance, we use 1 million samples.

Fig. 18 and Fig. 19 report the distribution of errors for

rescale and adjust, respectively. Each distribution is reported

as a box-and-whiskers plot, where the box denotes the quar-

tiles (i.e., the bottom of the box is the 25Cℎ percentile, the

middle line is the median, and the top of the box is the 75Cℎ

percentile), and the whiskers report the minimum and maxi-

mum values. Each group of two box plots reports results for

a di�erent scale. Precision is given in bits (i.e., −;>62 (4AA>A)).

Fig. 18 and Fig. 19 show that BitPacker’s level manage-

ment operations have error distributions with negligible

di�erences from those of RNS-CKKS. Like before, these dif-

ferences are within the 0.5-bit margin we set when selecting

BitPacker moduli.

30 40 50 60
Scale bits

15

20

25

30

35

40

45

Pr
ec

isi
on

 b
its

BitPacker
RNS-CKKS

Figure 19. Comparison of error distributions for the adjust

operation, for 28-bit BitPacker (BP) and 64-bit RNS-CKKS

(R-C). Box-and-whisker plots show the distribution of error-

free mantissa bits (the box denotes quartiles, and whiskers

show min/max values).

7 Conclusion

Making full use of FHE accelerators requires redesigning FHE

algorithms to use them well. We have presented BitPacker,

a new implementation of the state-of-the-art CKKS scheme

that addresses the overheads of standard RNS-CKKS. Bit-

Packer decouples CKKS scales from RNS residues, enabling

high utilization of accelerator datapaths. This signi�cantly

improves performance, e�ciency, and area, with no preci-

sion loss.

Acknowledgments

We thank the anonymous reviewers; our shepherd, Jung

Ho Ahn; and Aleksandar Krastev, Axel Feldmann, Hyun

Ryong Lee, Quan Nguyen, Yifan Yang, Victor Ying, Shabnam

Sheikhha, Fares Elsabbagh, and Joel Emer for feedback on

earlier versions of this manuscript. We thank Aleksandar

Krastev for help with benchmarks. This research was funded

in part by a Wistron research grant.

References
[1] 2020. Lattigo. h�ps://github.com/ldsec/la�igo.

[2] Rashmi Agrawal, Leo de Castro, Guowei Yang, Chiraag Juvekar, Rabia

Yazicigil, Anantha Chandrakasan, Vinod Vaikuntanathan, and Ajay

Joshi. 2023. FAB: An FPGA-based accelerator for bootstrappable fully

homomorphic encryption. In HPCA-29.

[3] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce

Cousins, Saroja Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt,

Andrey Kim, Yongwoo Lee, et al. 2022. OpenFHE: Open-source fully

homomorphic encryption library. In Proceedings of the 10th Workshop

on Encrypted Computing & Applied Homomorphic Cryptography.

[4] Martin R Albrecht, Benjamin R Curtis, Amit Deo, Alex Davidson,

Rachel Player, EamonnW Postlethwaite, Fernando Virdia, and Thomas

Wunderer. 2018. Estimate all the {LWE, NTRU} schemes!. In Proc. of

the 1tth int. conf. on Security and Cryptography for Networks (SCN).

[5] Jean-Claude Bajard, Julien Eynard, M Anwar Hasan, and Vincent

Zucca. 2017. A full RNS variant of FV like somewhat homomorphic

encryption schemes. In Proc. of the 23rd intl. conf. on Selected Areas in

Cryptography (SAC).

149

https://github.com/ldsec/lattigo

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Nikola Samardzic and Daniel Sanchez

[6] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Lev-

eled) fully homomorphic encryption without bootstrapping. ACM

Transactions on Computation Theory (TOCT) 6, 3 (2014).

[7] Zvika Brakerski and Vinod Vaikuntanathan. 2011. Fully homomorphic

encryption from ring-LWE and security for key dependent messages.

In Proc. of the 31st Annual Cryptology Conference (CRYPTO).

[8] Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast Private Set Inter-

section from Homomorphic Encryption. In Proceedings of the ACM

SIGSAC Conference on Computer and Communications Security (CCS).

[9] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yong-

soo Song. 2018. A full RNS variant of approximate homomorphic

encryption. In Proc. of the 25th intl. conf. on Selected Areas in Cryptog-

raphy (SAC).

[10] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017.

Homomorphic encryption for arithmetic of approximate numbers. In

Proceedings of the International Conference on the Theory and Applica-

tion of Cryptology and Information Security (ASIACRYPT).

[11] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-

abachène. 2016. Faster Fully Homomorphic Encryption: Bootstrapping

in less than 0.1 Seconds. In ASIACRYPT.

[12] Léo Ducas and Daniele Micciancio. 2015. FHEW: Bootstrapping Ho-

momorphic Encryption in Less Than a Second. In EUROCRYPT.

[13] Je�rey L Elman. 1990. Finding structure in time. Cognitive science 14,

2 (1990).

[14] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully

homomorphic encryption. IACR Cryptol. ePrint Arch. (2012).

[15] Harvey L Garner. 1959. The residue number system. In Papers presented

at the the March 3-5, 1959, Western Joint Computer Conference.

[16] Craig Gentry and Shai Halevi. 2019. Compressible FHE with Applica-

tions to PIR. In Proceedings of the Theory of Cryptography Conference

(TCC).

[17] Craig Gentry, Shai Halevi, and Nigel P Smart. 2012. Homomorphic eval-

uation of the AES circuit. In Proceedings of the 32nd Annual Cryptology

Conference (CRYPTO).

[18] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter,

Michael Naehrig, and John Wernsing. 2016. CryptoNets: Applying

neural networks to encrypted data with high throughput and accuracy.

In Proc. of the Intl. Conf. on Machine Learning (ICML).

[19] Shai Halevi and Victor Shoup. 2020. Design and implementation of

HElib: a homomorphic encryption library. Cryptology ePrint Archive,

Paper 2020/1481. h�ps://eprint.iacr.org/2020/1481

[20] Shai Halevi and Victor Shoup. 2020. HElib design principles. Technical

Report.

[21] Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Daejun Park.

2018. E�cient Logistic Regression on Large Encrypted Data. Cryptol-

ogy ePrint Archive, Report 2018/662.

[22] Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Daejun Park.

2019. Logistic regression on homomorphic encrypted data at scale. In

Proc. of the AAAI Conference on Arti�cial Intelligence, Vol. 33.

[23] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,

William J Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level

accuracy with 50x fewer parameters and <0.5MB model size. arXiv

preprint arXiv:1602.07360 (2016).

[24] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.

2018. GAZELLE: A low latency framework for secure neural net-

work inference. In Proceedings of the 27th USENIX Security Symposium

(USENIX Security 18).

[25] Andrey Kim, Antonis Papadimitriou, and Yuriy Polyakov. 2022. Ap-

proximate homomorphic encryption with reduced approximation er-

ror. In Proc. RSA Conference, Cryptography Track (CT-RSA).

[26] Jongmin Kim, Sangpyo Kim, Jaewan Choi, Jaiyoung Park, Donghwan

Kim, and Jung Ho Ahn. 2023. SHARP: A Short-Word Hierarchical

Accelerator for Robust and Practical Fully Homomorphic Encryption.

In ISCA-50.

[27] Jongmin Kim, Gwangho Lee, Sangpyo Kim, Gina Sohn, Minsoo Rhu,

John Kim, and Jung Ho Ahn. 2022. ARK: Fully homomorphic encryp-

tion accelerator with runtime data generation and inter-operation key

reuse. In MICRO-55.

[28] Miran Kim, Yongsoo Song, Baiyu Li, and Daniele Micciancio. 2020.

Semi-parallel logistic regression for GWAS on encrypted data. BMC

Medical Genomics 13, 7 (2020).

[29] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung,

John Kim, Minsoo Rhu, and Jung Ho Ahn. 2022. BTS: An accelerator

for bootstrappable fully homomorphic encryption. In ISCA-49.

[30] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny

images. Technical Report. University of Toronto.

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Ha�ner. 1998.

Gradient-based learning applied to document recognition. Proc. IEEE

86, 11 (1998).

[32] Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune

Kim, Jong-Seon No, and Woosuk Choi. 2022. Low-Complexity Deep

Convolutional Neural Networks on Fully Homomorphic Encryption

Using Multiplexed Parallel Convolutions. In Proc. of the Intl. Conf. on

Machine Learning (ICML).

[33] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2013. On ideal

lattices and learning with errors over rings. Journal of the ACM (JACM)

60, 6 (2013).

[34] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, An-

drew Y. Ng, and Christopher Potts. 2011. Learning Word Vectors for

Sentiment Analysis. In Proc. of the 49th Annual Meeting of the Associa-

tion for Computational Linguistics: Human Language Technologies.

[35] Jaiyoung Park,Michael Jaemin Kim,Wonkyung Jung, and JungHoAhn.

2022. AESPA: Accuracy preserving low-degree polynomial activation

for fast private inference. arXiv preprint arXiv:2201.06699 (2022).

[36] Chris Peikert. 2016. A decade of lattice cryptography. Foundations and

Trends in Theoretical Computer Science 10, 4 (2016).

[37] M Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. 2020. HEAX:

An architecture for computing on encrypted data. In ASPLOS-XXV.

[38] Sebastian Ruder. 2016. An overview of gradient descent optimization

algorithms. arXiv preprint arXiv:1609.04747 (2016).

[39] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas De-

vadas, Ronald Dreslinski, Christopher Peikert, and Daniel Sanchez.

2021. F1: A fast and programmable accelerator for fully homomorphic

encryption. In MICRO-54.

[40] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan

Manohar, Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris

Peikert, and Daniel Sanchez. 2022. CraterLake: A hardware accelerator

for e�cient unbounded computation on encrypted data. In ISCA-49.

[41] Yinghao Yang, Huaizhi Zhang, Shengyu Fan, Hang Lu, Mingzhe Zhang,

and Xiaowei Li. 2023. Poseidon: Practical Homomorphic Encryption

Accelerator. In HPCA-29.

150

https://eprint.iacr.org/2020/1481

